
A Brief Shang Tutorial

1 Using Shang as a calculator

1.1 Doing Arithemetic

If an arithmetic expression is entered at command prompt the interpreter will evaluate it and

display the answer.

>> (75.00 + 89.50 + 97.50) / 3 * 0.7 + 92.00 * 0.3

88.73333333

The expression may contain numbers and operators +, -, *, and / that represent addition, sub-

traction, multiplication, and division, and parentheses can be used for grouping.

+ addition

- subtraction

* multiplication

/ division

^ a^b is equal to ab

() grouping

Finding the square root of 62 + 82

>> (6^2 + 8^2)^(1/2)

10

Numbers can also be enter using exponential format. For example, -1.1e-3 is the same as -0.0011,

and 1e+6 or 1e6 is another way of writing 1000000, a million.

1.2 Common Functions

Many common elementary functions such as sqrt, exp, log, sin, cos, tan, asin, acos,

and atan are built in the interpreter can be used in the expressions directly. For example, sqrt

is the name of square root function. To find the square root of 62 + 82

>> sqrt(6^2 + 8^2)

10

The built-in name for exponential function ex is exp. To evaluate e−0.5 we should write exp(-0.5)

instead of e^(-0.5). Although e^(-0.5) would in theory give the same answer, it’s computed

differently and might be less accurate. log is the name of the natural logarithm function ln x.

1

1.3 Common Constants

The mathematical constants e, π and imaginary unit i are represented by e, pi, and i respectively,

and can be used directly. For example:

>> cos(pi)

-1

>> sin(pi)

1.224606354e-16

Note that the exact answer to sin(π) is 0 and what we are given here is only an approximate

answer since π is just an approximate representation of π, and the sin function uses numerical

method.

1.4 Arbitrary Precision Computation

If a number has the suffix M it is treated as an arbitrary precision floating point number, which

by default has about 38 significant decimal digits. For example

>> sqrt(3M)

1.73205080756887729352744634150587E0

>> x = 3.14159265358979323846264338327950M

3.14159265358979323846264338327950E0

>> sqrt(x)

1.77245385090551602729816748334114E0

The precision of MPF can be rest by assigning a multiple to global variable global.mpf ndigits.

The default value of mpf ndigits is 128, therefore an mpf may have 128 significant binary digits

as opposed to 52 for double. The value of mpf ndigits. can be set to a multiple (at least 2) of

32.

If a number has the suffix L it is treated as a long integer, which can be as big as the computer

memory allows. For example

>> 128L ^ 20L

1393796574908163946345982392040522594123776

1.5 Complex Numbers

Complex numbers are supported interally. A complex number of real and imaginary parts a and

b is displayed as a+bi, and can be entered as either a+bi, a+bI, a+bj, or a+bJ. For example

>> sqrt(-5)

0 + 2.236067977i

>> (3+5i) / (2-3j)

-0.6923076923 + 1.461538462i

2

1.6 Define Variables

Variables can be defined using the assignment operator =. For example

>> h = 1.25

creates a variable named “h” and assign value 1.25 to it. If there is already a variable named “h”,

then its value will be updated to 1.25.

The interpreter remembers the values of the variables, so that you can recall the names of the

variables to use their values. For example:

>> c = 10;

>> b = 8;

>> sqrt(c^2 - b^2)

6

A variable name can be a string of letters and digits, and underscore , but cannot begin with a

digit. For example, x1, value 1, and val03 are all valid variable names.

1.7 Unwanted Printing

Usually the result of a command is displayed after Enter is hit.

>> h = 1.25

1.25

To prevent this, a semicolon can be appended. By suppressing unwanted displays, the command

window can be kept cleaner and the program may run more efficiently.

>> h = 1.25;

>> // nothing is displayed here

1.8 Command Editing and History

By using the up and down arrow keys on the keypad, the previously entered commands can be

brought up for editing and entered again.

1.9 Two ways to enter commands

(a) Type in

You can always type the commands directly in the command window and see the answers

right away.

(b) Edit and paste

Alternatively, you can edit all the commands using a text editor and when you are done, copy

the commands to clipboard and then paste it to the Shang interpreter window. This can be

more efficient since whenever anything goes wrong, you just need to correct the commands

in the text editor and paste them again and don’t have to retype everything.

3

1.10 Submit a Command and Abondon a Command

If the cursor position is at the end of the command, pressing enter will submit the command for

execution.

When you press enter, if the interpreter doesn’t show answer, but keep opening new lines, it thinks

the input commands are not complete. It is expecting some closing brackets or quotes. If you

want to start over and abondon the current commands, use the ctrl-a command.

1.11 Run a script

A script file is a text file that contains a sequence of Shang commands. For example, a file with

name ”testscript.txt” may contain the following lines

f = (h, r, theta) -> r^2 + h * (1 + cos(theta));

h = 3.5;

r = 5;

theta = pi / 2;

f(h, r, theta)

In the interactive mode, if the following command is issued

>> run("testscript.txt");

28.5

>>

All the commands in the script file will be executed.

1.12 Commenting

It’s always a good idea to use comments to annotate your commands and programs.

1.12.1 Single line comment

All the characters in a line following the symbol // are ignored, and therefore can act as comments.

For example

>> // this is a comment

>> sqrt(-3) // this is a comment as well

1.12.2 Multi-line comment

Comments can run multilines as well. Any characters between a pair of /* and */ are ignored.

>> /* this is a comment

this is still a comment

this is still a comment

...

we’re done commenting (finally) */

4

Shang interpreter can recognize five levels of nested comments.

2 Flow Control

2.1 Conditionals

If we want to assign c to b when the condition f(a) * f(c) < 0 is true:

if f(a) * f(c) < 0

b = c;

end

If we want to assign c to b when the condition f(a) * f(c) < 0 is true, and assign c to a when

the condition is false:

if f(a) * f(c) < 0

b = c;

else

a = c;

end

To test the condition “n equals to 1”, we need to use two equal signs, like n == 1, not n = 1.

Note that a single = is the assignment operator. The statement n = 1 would assign 1 to n instead

of testing the condition. The following assigns c to b when n equals 1, and assigns c to a when n

equals to 2:

if n == 1

b = c;

elseif n == 2

a = c;

end

2.2 Loops

If we want to repeatedly execute a bunch of commands for a million times, we can use the for

loop

s = 0; // initialize s

for k = 1 : 1000000

s += k; // add k to s --- equivalent to "s = s + k"

end

The above loop compute the sum
1000000∑

k=1

k

5

The while loop enables us to repeatedly execute a bunch of commands as long as a condtion is

satisfied

s = 0;

k = 1;

while k <= 1000000 // do the following as long k is less than a million

if k % 2 != 0 // k % 2 is the remainder of k/2

s += k;

end

++k; // increment k, same as k = k + 1;

// without the increment, k will stays as 1 and loop runs forever

end

The above while loop sums up all the odd numbers between 1 and a million; it is equivalent to

the following for loop

s = 0;

for k = 1 : 2 : 1000000

s += k;

end

3 Define Functions

3.1 One Liner Functions

To define a simple one-liner function, one can use the arrow to join the input argument and the

output value. For example, function f(x) = 1−x

1+x+x2 can be defined by

f = x -> (1 - x) / (1 + x + x^2)

A defined function can be called in the obvious way

f = x -> (1 - x) / (1 + x + x^2) // define a function

f(-1) // call the function

A function can have several input arguments. For example

f(r, θ) = r(1 + cos(θ))

can be defined by

f = (r, theta) -> r * (1 + cos(theta)); // define

6

3.2 More Complicated Functions

If a function definition has more than one line of statements, the keyword function should be

used. The syntax is

function_name = function (input_arguments) -> (output arguments)

... // a bunch of statements

end

Note that in the body of the function, the input arguments can be used as if they are variables

(but they are not visible outside the function), and the output arguments should be given values

before the end of the function. The following function evaluates the Taylor expansion of cos(x)

function for a small x value

cos x ≈
N∑

n=0

(−1)n
x2n

(2n)!

cos_taylor = function (x, N) -> v

v = 1;

vk = 1;

xsq = x * x;

for k = 1 : N

vk = - vk * xsq / (2 * k) / (2 * k - 1);

v += vk;

end

end

4 Matrices

A matrix is a rectangular array of numbers. it can be created with elements included in a pair

of square brackets. The rows are separated by semicolons, while elements in the same row are

separated by commas.

>> A = [1,4, 9; 2, 3, 5; -2, 5, 10]

1 4 9

2 3 5

-2 5 10

To refer to the element of matrix A at second row and third column, use A[2,3]

>> A[2,3]

5

Create Matrices

Alternatively, a matrix of a required size can be created and initialized using built-in functions

zeros, ones, or rand. The command

7

A = zeros(3, 5)

will return a matrix of three rows and five columns, with each element being zero. Similar usage

of ones and rand will create matrices of 1’s and random numbers (between 0 and 1) respectively.

These three functions can also be called with a single parameter, in which case the second param-

eter is assumed to be 1, and thus a column vector is created.

>> B = rand(5)

0.289

0.353

0.154

0.566

0.821

By the dimension of a matrix we refer to the number of rows and the number of columns. For

example, the dimension of the scalar -5 is 1× 1, while the dimension of the matrix

-2 3 9

10 1 -2

is 2× 3.

Create Even Spaced Vectors Using the Colon Operator

The symbol : can be used to create a row matrix whose elements are evenly spaced. The default

step-size of the vector is 1, which is assumed when one colon is used.

>> A = -1 : 5

-1 0 1 2 3 4 5

To specify a step-size other than 1, two colons are needed.

>> A = 3 : 0.5 : 5

3 3.5 4 4.5 5

When you use A : B to create a vector, the value B is not always included in the vector. Alterna-

tively, the built-in function linspace can be used to created even spaced vector with the specified

end points included. linspacea, b, n will create a column vector of length n, with a and b being

the two end points.

5 Matrix Indexing

5.1 Single Index

If a matrix A is a row vector or a column vector, then A[k] refers to the kth element of A. The

index k is a number between 1 and the length of the vector. Note that 0 is not a valid index value.

8

>> A = [3, 5, -2, 7, 0.9];

>> A[3]

-2

The index itself can be vector such that a bunch of the elements of A are referenced.

>> A = [3, 5, -2, 7, 0.9];

>> A[[1, 3, 5]]

3 -2 0.9

>> A[1:3]

3 5 -2

>> A[1 : 2 : 5] // 1 : 2 : 5 is the same as [1, 3, 5]

3 -2 0.9

The dollar sign $ when used as an index, is the largest value of the index, therefore A[$] is the

last element of A.

>> A = [3, 5, -2, 7, 0.9];

>> A[$]

0.9

>> A[3:$]

-2 7 0.9

If matrix A is not a vector, then the element referred to by A[k] is the k-th element of the row

vector obtained by horizontally joining all the rows of A.

>> A = [1,4, 9; 2, 3, 5; -2, 5, 10]

1 4 9

2 3 5

-2 5 10

>> A[5]

3

>> A[9]

10

5.2 Two Indices Separated by a Comma

A[i, j] is the element of A at i-th row and j-th column. Both i and j (or their elements) must

be positive integers. Note that both indices can be vectors

>> A = [8, 1, 6; 3, 5, 7; 4, 9, 2]

8 1 6

3 5 7

4 9 2

>> A[2,3]

9

7

>> A[1, 1 : 3] // the first row

8 1 6

>> A[1 : 3, 2] // the second column

1

5

9

>> A[[2, 3], [2, 3]] // the 2x2 submatrix on the lower right corner

5 7

9 2

5.3 The colon : alone as an index

If an index consists of a single colon, then it is equivalent to 1 : $. For example, A[1, :]

returns the first row, A[:, 3] returns the third column.

>> A = [8, 1, 6; 3, 5, 7; 4, 9, 2]

8 1 6

3 5 7

4 9 2

>> A[1, :] // the first row

8 1 6

>> A[:, 2] // the second column

1

5

9

>> A[1 : 2, :] // the first two rows

8 1 6

3 5 7

5.4 The colon : alone as an index

If an index consists of a single colon, then it is equivalent to 1 : $. For example, A[1, :]

returns the first row, A[:, 3] returns the third column.

>> A = [8, 1, 6; 3, 5, 7; 4, 9, 2]

8 1 6

3 5 7

4 9 2

>> A[1, :] // the first row

8 1 6

>> A[:, 2] // the second column

1

10

5

9

>> A[1 : 2, :] // the first two rows

8 1 6

3 5 7

5.5 Change the Elements of a Matrix

Any of the indexing expression can be used to modify part of the elements of a matrix. For

example, A[2, 3]=-1 would change the element at row 2 and column 3 to −1.

>> A = zeros(3,5)

0 0 0 0 0

0 0 0 0 0

>> A[2,3]=2.3

0 0 0 0 0

0 0 2.3 0 0

>> A[:, 1] = [5; 10]

5 0 0 0 0

10 0 2.3 0 0

>> A[:, 3] = A[:, 3} + A[:, 1]

5 0 5 0 0

10 0 12.3 0 0

>> A[2, :] = 9

5 0 5 0 0

9 9 9 9 9

Usually when an indexing expression is used as an lvalue, the dimension and size of the right

hand side of the assignment should match that of the indexing expression to make the assignment

possible. The only exception is when the right hand side is a scalar, then all the indexed elements

of the matrix will be set to the same value.

>> A = zeros(3,3)

0 0 0

0 0 0

0 0 0

>> A[\] = 1;

1 0 0

0 1 0

0 0 1

When updating the contents of a matrix, the indices don’t have to be within the upper bounds,

which makes it possible to make the size of the matrix grow. As the size of a matrix is being

11

extended, the new entries are set to zero, except for those being specified by the assignment

statement. For example,

>> X = [1,4,9]

1 4 9

>> X[4] = 16

1 4 9 16

>> x[8]=36

1 4 9 16 0 0 0 36

6 Matrix Operation

6.1 Arithmetic

If A and B are two matrices, then A+B, A-B, and A * B are the sum, difference, and product of A

and B.

A+B, A-B are possible only when A and B have the same dimensions, or one of them is a scalar.

A*B is possible only when the number of columns of A equals the number of rows of B, or one of

them is a scalar.

6.2 Solving Linear System: \

If both A and B are matrices, then A \ B is the (numerical) solution of matrix equation A X = B.

The matrix A must be an n× n non-singular square matrix and B must have n rows. For example

>> A = [1, 2, -3; 2, 1, 5; 0, -1, 5];

>> b = [3; 1; -2];

>> x = A \ b

0.75

0.75

-0.25

>> A * x - b

0

0

0

7 Graphics

Shang has no built-in functionalities for handling graphics. However there is a package of programs

written in the Shang language which can create 2D and 3D plots. The package saves pictures as

12

encapuslated postscript files. In order to print or display the images created by plot.x, you need

to download and install the Ghostscript and GSview programs at

http://pages.cs.wisc.edu/~ghost/

To use this package, you need to run the file plot.x, which is located in the programs directory.

Or just run the following command before you plot

include("plot.x");

The package plot.x defines a class named figure. To make a plot, first create a figure object

using

fig = figure.new();

If X and Y are the coordinates of a sequence of points, then

fig.plot(X, Y);

will plot Y against X. The result is the points joined by straight line segments.

To plot (X,Y) as dots, use

fig.plot(x=X, y=Y, linetype = "dot");

To plot (X,Y) as circles, use

fig.plot(x=X, y=Y, linetype = "circle");

To plot a smooth curve through the (x,y) points, use

fig.plot(x=X, y=Y, linetype = "curve");

To plot a smooth curve through the (x,y) points, using red color, and making the line thicker

fig.plot(x=X, y=Y, linetype = "curve", linewidth = 2, color=[1,0,0]);

When the plotting is done, pick a file name (extension eps) and save the picture

fig.save("file_name.eps");

For example, the following commands will plot some curves and dots

with("plot.x");

x = linspace(-5, 5, 10);

fig = figure.new();

/* draw small circles at (x,y) locations */

/* color is vector of 3 numbers between 0 and 1, in rgb format */

fig.plot{x=x, y=cos(x), linetype="circle", color=[1, 0, 0]};

/* connect the dots with solid lines, linetype is the default value "solid" */

fig.plot{x=x, y=cos(x), color=[0,1,0.5]};

13

/* draw circular dots at location underneath the previous curve */

fig.plot{x=x, y=cos(x) -1, linetype="dot", color=[1, 0, 1]};

/* connect the dots with smooth curve */

fig.plot{x=x, y=cos(x) -1, linetype="curve", color = [0, 0, 1]};

/* set the xrange and yrange of the picutre */

fig.setXrange([-5.5, 5.5]);

fig.setYrange([-2.5, 1.5]);

fig.save("curves.eps");

-5 -2.5 0 2.5 5

-2

-1

0

1

The following commands will draw a butterfly

with("plot.x");

fig = figure.new();

for k = 0 : 99

theta = linspace(k * 2 * pi, (k + 1) * 2 * pi, 500);

rho = exp(cos(theta)) - 2 * cos(4*theta)+sin(theta/12).^5;

x = rho .* cos(theta);

y = rho .* sin(theta);

fig.plot{x=x, y=y, linetype="curve", color=rand(3)};

end

fig.style = "empty";

fig.save("butterfly.eps");

For more examples, check out Shang website.

14

8 More Advanced Topics

There are many, many other features of Shang not covered in this tutorial. If you’re interested

more advanced topics on Shang programming, please take a look at the language reference manual

and other documentations.

15

