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Chapter 1

Overview of Key Features
of Shang

Shang is a feature-rich high-level programming language and computing envi-
ronment. It unifies the essences of many diverse and perhaps conflicting pro-
gramming language concepts and paradigms, such as procedural, functional
programming, and object-oriented programming, etc, and offers many features
including first class parameterizd functions, partial substitution, domains, con-
ditional classes, and automatons. Shang combines the strengths of both dynamic
typing and static typing.

The goal of design is to make the language very easy to read and learn, and
the syntax as intuitive, concise, and clean as possible. Unnecessary keywords,
counter-intuitive and complicated syntax rules, and any other kind of inelegant
kludges are never introduced into the design.

Shang supports object oriented programming with a number of annovative
features. Access to class member attributes can be controlled and member at-
tributes can have domains which protect the integrity of member data and make
class interfaces more expressive and readable, and often enough to completely
specify the class. Class membership validator and conditional class provide
two clean solutions to the well-know ”ellipse-circle” difficulty associated with
traditional object programming.

Shang is meant to be a gereral-purpose programming language. Yet it is
equipped with built-in features for efficiently handling scientific computations,
many of which are not found in other popular numerical softwares, such as sets,
matrices of infinite size integers and arbitrary precision floating point numbers,
internal support for matrices of special patterns such as banded matrices (be-
sides general sparse matrices), handle parameterized functions, etc.

For executing function calls and large loops the Shang interpreter is very
fast, compared to other interpreted programming languages (except when the
so called Just-In-Time compiler is used; in which case the program is running
in compiled mode). This is achieved before any substantial effort is made on

9
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optimization. Our next goal is to bring the interpreter close to the speed of
compiled languages.

1.1 Multi-faceted Data

Data types and classes don’t form a rigid hierarchical system. A piece of data
is usually multi-faceted — meaning that it is not restricted to the functionality
related to a single type and can play different roles. For example, (almost)
anything is a function, a function is also a set, a set is also a function, a class
is also a set, etc. This often makes it possible to implement functionalities by
the most convenient and concise way, yet maintains a uniform interface to the
client functions.

1.2 First-class object only

Every entity including a function and a class is a value and first-class object.
Functions and classes can be used anywhere a value is expected. They can be
defined inside functions, can be passed to functions as input arguments, and
created and returned by functions as outcomes of function calls. New functions
can be created not only by writing code, but also by operations on existing func-
tions such as addition/subtraction, multiplication/division, composition, partial
calls, and function vector/matrix.

1.3 Domains

Function input and output arguments may have domains and the language in-
terpreter automatically checks the value of the arguments and generates domain
error if the value is not in domain. Shang combines the advantages of both stat-
ically and dynamically typed languages. It is as flexible as dynamically typed
language, yet it can be more specific than statically typed language, because
what it requires is the input argument is inside a domain, not just of a type. A
domain is a set that can be defined by different ways, and can be very specific
and can often completely ensure the validity of input data, while static typing
is often inadequate in this respect.

1.4 Function Parameters

Functions can have parameters in addition to input/output arguments, which
makes functions customizable after they are created, and simplifies the calling
sequence in many cases. Functions with parameters act like a class-less objects
and spawn new functions like its own constructor.
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1.5 Class and Members

Shang is objected oriented and has full support for most of the OOP features
including access control of member attributes and multi-inheritance. Each at-
tribute of a class can have a domain so that public class attributes can often
be used for convenience yet object integrity is still protected. This can help
eliminate the need of private attributes and ”setter/getters” and make the class
interfaces both safe and clean. The attributes a subclass inherited from super
classes may violate the validity of the member of sub class. A class may have a
validator to guard against illegal actions performed by super class attributes.

Shang has also extended the traditional concept of class to conditional class.
A conditional class is a collection of loosely connected objects. Unlike a tradi-
tional class, it doesn’t “create” new members using the constructor, but issues
membership to members of other classes that satisfy certain conditions. Such
memberships may be cancelled once the conditions are no longer satisfied, or the
member can choose to withdraw from the class voluntarily. By using conditional
classes, it is possible to avoid unnecessary programming complexity, too many
levels of multiple inheritance, and frequent object creations and destructions.

1.6 Vectorization

In Shang all the numerical data are consistently represented in matrix format.
A scalar is just a one by one matrix. Common matrix operations are supported
directly. General data values are also vectorized. Every value is a list; when it
is not defined as a list, it is considered a list of one element.

1.7 Rich features for numerical computing

While being a general purpose programming tool, Shang matrices of two and
multi dimensions of various storage types including infinite size integers and
arbitrary precision floating point numbers for efficient numerical computing.
Extensive collection of matrix functions are built-in. Many other constructs such
as functions, sets, lists, and tables also make it more convenient and efficient to
express computing models and algorithms.

1.8 Minimized Implicit Behavior

Programing languages that use object references exclusively provide no way to
directly handle objects, and cannot do neither passing by value nor passing by
reference properly. This promotes implicit behavior of programs and poses par-
ticular difficulties when implementing structures like sets which are supposed to
maintain a constant value unless changed by their owner. In Shang data values
instead of their references are stored in variables therefore a variable’s status
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never changes unless a new value assigned to it, or explicit modifying opera-
tion performed on it, and therefore implicit behaviors of programs are reduced.
On the other hand, safe and effective pointers are implemented with clear and
readable syntax, to provide means to build complicated data structures.

1.9 Automaton

Shang provides automaton – a special data type that is a program with its own
variables, whose execution can be halted and resumed, with running status and
values of local variables retained. Automatons function as computers and can
communicate with each other. They can help implement complicated control
flows and event-driven programs.

1.10 High Performance

Our preliminary partial tests show that Shang interpreter is probably more
efficient than most other interpreted programming language for executing loops
and recusive function calls. That means it can be used as a real programming
language and programmers don’t need to be advised to avoid recursions and
loops.

1.11 The Interactive User Interface

The interactive command console supports multi-line command editing with
history browsing, so that whole blocks of commands can be edited and retrieved
from command history. Full colored syntax highlighting makes the command
editing easier, and the display more readable and less dull.



Chapter 2

The Shang Interpreter

2.1 The interactive mode

When the Shang executable program is invoked, a Shang session is launched.
The initial mode of the session is an interactive programming environment, in
which Shang commands are executed and answers displayed.

In the interactive mode the interpreter displays the prompt sign “>>” to
indicate that it is waiting for the user to enter a command.

>>

When the user types a command after the prompt and hits Enter, the inter-
preter will examine the command. If it contains no syntax error and can be
carried out, the interpreter will perform some necessary calculations and show
the result and display the prompt sign again.

>> cos(pi)
-1

>>

The interpreter recognizes pi as a system defined global variable that stores the
value of the mathematics constant π, therefore evaluates cos(pi) to the cosine
of π. Otherwise, if it doesn’t recognize a symbol, it will print an error message
and wait for the next command.

>> cos(pi)
-1

>> cos(PI)
Error: line 2, symbol "PI" not defined

>>

A session can be viewed as a stack whose top level is the interactive mode.
If user-defined functions are invoked, the session enters lower levels of the stack.
The local variables defined in the interactive mode cannot be accessed on lower

13
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levels of the stack. Each level of the stack has its own work space to store local
variables and won’t interfere with each other. When a function call is finished,
the work space is deleted and the active level of the stack is restored to the
previous level. For example, during the execution of the following commands,
the two variables both named x belong to different levels of stack and won’t
interfere with each other.

>> x = 10;
>> f = function y -> z

x = sqrt(1 + y^2);
z = 1 / x;

end
>> f(10)

0.09950371902
>> x

10

2.2 Use Shang as an arbitrary precision calcula-
tor

The interpreter can be used as a calculator. An arithmetic expression can
be entered like in other programming languages, and after enter is hit, the
interpreter will return the value of the expression. An expression is similar to
those found in math books and can contain numbers and operators +, -, *, and
/ that represent addition, subtraction, multiplication respectively, and division,
and parentheses can be used for grouping. For example

>> (1 + sqrt(5)) / 2
1.618033989

The value of a^b is a raised to the power of b.

>> 81^(1/2)
9

Most common elementary functions such as sqrt, exp, log, sin, cos,
tan, asin, acos, and atan can be used in the expressions.

Complex numbers are supported directly. A complex number of real and
imaginary parts a and b is displayed as a+bi, and can be entered as either
a+bi, a+bI, a+bj, or a+bJ. For example

>> sqrt(-5)
0 + 2.236067977i

>> (3+5i) / (2-3j)
-0.6923076923 + 1.461538462i

If a constant has the M suffix, it is treated as a multi-precision floating point
number. By default, it is stored with 128 binary digits. For example
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>> (1 + sqrt(5M)) / 2
1.61803398874989484820458683436563E0

2.3 Define Variables

Variables can be defined using the equal sign. For example

>> h = 1.25

creates a variable with name ”h” and assign value 1.25 to it. If there is already
a variable named ”h”, its old value will be updated to 1.25.

A variable name can be a string of letters and digits, and underscore , but
cannot begin with a digit.

2.4 Define and call functions

To define a simple one-liner function, one can use the sign ->

>> f = x -> (1 - x) / (1 + x + x^2)

A defined function can be called in the usual way

>> f = x -> (1 - x) / (1 + x + x^2)
user defined function

>> f(-1)
-2

A function can have several variables

>> f = (r, theta) -> r * (1 + cos(theta));
>> f(2, pi)

0

More complicated functions have to be defined using the keyword function.

2.5 Suppress the display using semicolon

Usually the result of a command is displayed after Enter is hit. If the command
is followed by a semicolon at the end, the answer will not be displayed.

>> h = 1.25;
>>

By suppressing unwanted displays, the command window can be kept cleaner
and more efficient.



16 CHAPTER 2. THE SHANG INTERPRETER

2.6 Commenting

2.6.1 Single line comment

All the characters in a line following the symbol // are ignored. For example

>> // this is a comment
>> sqrt(-3) // this is a comment as well

0 + 1.732050808i

2.6.2 Multi-line comment

Comments can run multilines as well. Any characters between a pair of /* and
*/ are ignored.

>> sqrt(-3) /* square root of -3 --- this is a comment
it will be a complex number --- this is still a comment
the answer is double precision --- yet another comment
we’re now done commenting */

0 + 1.732050808i

Shang interpreter can recognize five levels of nested comments.

2.7 Run a script

A script file is a text file that contains a sequence of Shang commands. For
example, a file with name ”testscript.txt” may contain the following lines

f = (h, r, theta) -> r^2 + h * (1 + cos(theta));
h = 3.5;
r = 5;
theta = pi / 2;
f(h, r, theta)

In the interactive mode, if the following command is issued

>> run("testscript.txt");
28.5

>>

All the commands in the script file will be executed as if they were just typed
in.

2.8 Line continuation

If a line is ended with three dots, then the current line and the next line will
be joined by the interpreter to form a single line. This can help enter very long
lines.
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f = (h, r, theta) -> ...
r^2 + h * (1 + cos(theta));

2.9 Command editing and History

Using the up and down arrow keys the previously entered commands can be
brought up for editing and entered again.
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Chapter 3

Data Type

In this chapter we will introduce the different structures that can be used to
represent and store data. In Shang a piece of data is anything that can be
assigned to a variable. In particular, a function or a class is just like a number
or a string, and can be stored in a variable. Therefore by data we refer to both
static information such as numbers, matrices, and character strings, as well as
functions, classes, and running programs.

3.1 Data value and attribute

3.2 Numerical Data

All numerical data are in matrix format. Therefore a scalar is also a 1×1 matrix.
There is no distinction between vector and matrix either. Also supported is
multi-dimensional matrix of double precision floating point numbers.

3.2.1 Scalar

A number can be entered literally in decimal, binary, or hexadecimal format.
For binary and hex format, the prefixes 0b, 0B, 0x, or 0X should be used.

>> x = 1011.11 /* decimal format */
1011.11

>> y = 0B1011.11 /* binary format */
11.75

>> z = 0X1011.11 /* hex format */
4113.0664060

>> w = -0Xabcd.ab /* hex format */
-214375.2578

19
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3.2.2 Storage type of numerical values

Numerical scalars and elements of matrices can be of the following storage types:

double: double precision floating point number. The value is between±realmax,
where realmax is a built-in constant. A plain constant without suffix such
as 123 or -11.75, is always stored as a double.

int: an integer of the natural size supported by the machine. The value is
between two built-in constant intmin and intmax inclusive. A numerical
literal with suffix Z, such as 37Z or -98Z is an int constant. Note that
without suffix an integer constant is considered a double constant instead
of an int.

byte: a small integer (one byte) with value between 0 and 256. The suffix for
byte is B.

long integer: an integer of arbitrary size. The value can be any integer as
long as the computer has enough memory to store it. A long constant is
written with a terminal L, as in 325598728592935528L.

mpf: software floating point number with modifiable precision. The internal
binary format of such a number is

±0.a1a2...an × 2e

where ai equals either 0 or 1, with a1 = 1 unless all ai’s are zero, in which
case the value of the number is zero. The value of n is controled by global
variable mpf ndigits, and e + k is a long integer. The suffix for an mpf
constant is M. For example

x = 3.14159265358979323846264338327950M

The default value of mpf ndigits is 128, therefore an mpf may have
128 significant binary digits as opposed to 52 for double. The value of
mpf ndigits. can be set to a multiple (at least 2) of 32.

Note: none of double, int, long, mpf, or byte is a keyword. There are several
sets, namely D, Z, B, M, and L, which are also built-in functions. They can
be used to create matrices of various storage types, or test if a scalar or the
element of a matrix belongs to a particular type.

3.2.3 Matrix

A matrix is a rectangular array of numbers. it can be created with elements
included in a pair of square brackets. The rows are separated by semicolons,
while elements in the same row are separated by commas.
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>> A = [1,4, 9; 2, 3, 5; -2, 5, 10]
1 4 9
2 3 5
-2 5 10

>>

Create Matrices
Alternatively, a matrix of a required size can be created and initialized using

built-in functions zeros, ones, or rand. The command

A = zeros(3, 5)

will return a matrix of three rows and five columns, with each element being
zero. Similar usage of ones and rand will create matrices of 1’s and random
numbers (between 0 and 1) respectively.

These three functions can also be called with a single parameter, in which
case the second parameter is assumed to be 1, and thus a column vector is
created.

>> B = rand(5)

0.289
0.353
0.154
0.566
0.821

>>

By the dimension of a matrix we refer to the number of rows and the number
of columns. For example, the dimension of the scalar -5 is 1 × 1, while the
dimension of

-2 3 9
10 1 -2

is 2× 3.
Create Even Spaced Vectors Using the Colon Operator

The symbol : can be used to create a row matrix whose elements are evenly
spaced. The default step-size of the vector is 1, which is assumed when one
colon is used.

>> A = -1 : 5
-1 0 1 2 3 4 5

To specify a step-size other than 1, two colons are needed.

>> A = 3 : 0.5 : 5
3 3.5 4 4.5 5
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Scalar, vector, and matrix
Every numerical value is treated as a matrix. It is only for convenience

that sometimes we call some special matrices scalars or vectors. There is no
distinction between a scalar, a, row or column vector of length 1, or 1 × 1
matrix. Likewise, a row vector of five elements is the same as a 1 × 5 matrix,
and a column vector of five elements is the same as a 5× 1 matrix.

3.3 Matrix Indexing

One element or a group of elements of a matrix can be referenced, extracted, or
modified by an index expression. An index expression can have a single part,
two or more parts separated by commas, or two parts separated by semicolons.

Each part of an indexing expression can be either an integer scalar or a
matrix of integers. An index is an integer no less than 1. Zero is not a valid
index.

3.3.1 Single Index

If A is a vector (n × 1 matrix or 1 × n matrix), then A[k] is naturally the kth
element of A. The index doesn’t have to be a scalar. If K is a matrix itself, then
A[K] would be a matrix of the same dimensions. For example

>> A = [2, 3, 5, 7, 11, 13, 17, 19, 23];
>> A[3]

5
>> K = [1, 3, 5, 7];
>> A[K]

2 5 11 17
>> J = [1, 3; 5, 7]
>> A[J]

2 5
11 17

Even if A is not a vector, it is still possible to use a single index expression
to A. If matrix A has c columns, and k = ic+ j, then A[k] refers to the element
by of A at i-th row and j-th column. In other words, A[k] is the k-th element
of the row vector obtained by horizontally joining all the rows of A.

>> C = rand(3,5)
0.802 0.716 0.262 0.752 0.925
0.65 0.489 0.327 0.859 0.655
0.396 0.329 0.941 0.854 0.857

>> C[7]
0.489

>> C[10]
0.655
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The indexing expression can be a matrix itself. In this case a matrix with
the same size as that of the indexing matrix is created, whose elements are the
elements of the indexed matrix at the positions specified by the elements of the
indexing matrix.

A = rand(7)
K = 1 : 2 : 7
A[k]

A = rand(5, 3)
K = [1, 3; 5, 7]
A[k]

3.3.2 Two indices separated a comma

In an index expression like A[i, j], we call i the row index and j the column
index.

If both i and j are scalars, then A[i, j] refers tot he element of A at i-th
row and j-th column.

Such an indexing expression will return a square block of the indexed matrix.
For example, A[3:5, 7:10] returns a 3 × 4 matrix whose elements are all the
elements of A that lie on row 3, 4, 5 and column 7, 8, 9, and 10, namely

A[3:5, 7:10] =

A[3,7] A[3,8] A[3,9] A[3,10]
A[4,7] A[4,8] A[4,9] A[4,10]
A[5,7] A[5,8] A[5,9] A[5,10]


3.3.3 Two indices separated a semicolon A[i; j]

In an index expression like A[i; j], we still call i the row index and j the
column index. If both i and j are scalars, then A[i; j] is the same as A[i,
j]. Otherwise, one entry of the row index i matches one or more entries of the
column index j. There are three types of match.

Firstly, if the row and column indices are vectors of the same length, then
the two parts form matched pairs – The result of the index expression is a
column vector of elements of the indexed matrix whose row and column indices
are specified by i and j, namely, the numbers A[i[1], j[1]], A[i[2], j[2]],
...

For example, if both i and j have five elements, then the expression X[i;
j] refers to the following matrix

X[i[1], j[1]]
X[i[2], j[2]]
X[i[3], j[3]]
X[i[4], j[4]]
X[i[5], j[5]]
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In particular, if A is an 6 × 6 matrix, then A[1:6; 1:6] returns the main
diagonal of A, and A[2:6; 1:5] returns the first sub diagonal of A.

Second, if the length of the row index equals the number of rows of the col-
umn index then each entry of row index matches a row of the column index. For
example, A[1:3; [1,2,3; 2,3,4; 3,4,5]] would form the following matrixA[1,1] A[1,2] A[1,3]

A[2,2] A[2,3] A[2,4]
A[3,3] A[3,4] A[3,5]


If the number of columns of the row index equals the length of the column

index then each column of row index matches one entry of the column index.
For example, A[[[1;2;3],[2;3;4], [3;4;5]]; [1,2,3]] would form the fol-
lowing matrix A[1,1] A[2,2] A[3,3]

A[2,1] A[3,2] A[4,3]
A[3,1] A[4,2] A[5,3]


3.3.4 Using backslash \ to reference diagonals

If A is a square matrix, then

• A[\] returns the diagonal (as a column matrix) of A.

• A[\,0] also returns the diagonal of A.

• A[\,k] returns the k-th super-diagonal if 1 ≤ k < n.

• A[\,k] returns the (−k)-th sub-diagonal if −n < k ≤ −1.

In the expression A[\,k], k can be a vector as well. For example, if A is
n × n, A[\, 1:n-1] would return the elements of the upper triangular part of
A (as a vector).

>> A = [1, 2, 3; 4, 5, 6; 7, 8, 9]

1 2 3
4 5 6
7 8 9

>> A[\, 1:2]
2
6
3

>> A[1,1:2] = 0

1 0 0
4 5 0
7 8 9



3.3. MATRIX INDEXING 25

If A and B are two 9× 9 matrices, A[\, 1:9]=B[\,1:9] would copy the upper
triangle of B to A.

3.3.5 $ stands for the largest index

In an index expression, the dollar sign $ stands for the largest possible value of
the index. Suppose that A is an m × n matrix. Then in the single-part index
expression, the value of $ is the size of the matrix, that is, m × n. Then A[$]
returns A[m * n], the last element of A, and . A[$-1] returns A[m * n - 1],
the second last element of A.

If $ appears in the row index of a two-part index expression, its value is m,
the number of rows of the matrix; if it appears in the column index, its value is
n, the number of columns of the matrix. Therefore, A[$, 2] returns the element
at the last row and the second column, and A[1, $] returns the element at the
first row and last column.

The dollar sign can participate in arithmetic operations. For example,
A[$-2] gives the third last element of A; and A[1 : $, $ - 2] returns the
second last column of A. Note that the two $’s have different values in this
expression.

3.3.6 : is equivalent to 1 : $

If an index consists of a single colon, then it is equivalent to 1 : $. For
example, A[1, :] returns the first row; A[:, 3] returns the third column, and
A[:] returns the column vector obtained by joining all rows of A.

3.3.7 Index bound

Any elements of an index must be an integer no less than 1. Normally an index
also has an upper bound, so that no reference to an non-existing element is
made, unless the index expression is used as an lvalue (see next subsection). In
particular, for an m × n matrix, a row index should be an integer within the
range [1, m], and a column index should be within the range [1, n], and an
index value in a single-part index expression should be within the range [1,
mn].

>> A = [1, 3, 5, 7, 11, 13, 17, 19];
>> A[9]

Error 0 "9": index value 9 out of bound 1-8
>> A[9] = 23

1 3 5 7 11 13 17 19 23

3.3.8 Index expression as lvalue

The lvalue is the expression of the left-hand side of an assignment expression.
All the index expressions we have just described can be used as lvalues for
modifying the contents of matrix. For examples
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>> A = zeros(5,5);
>> A[2,3]=2.3
>> A[1:3, 1:3] = rand(3,3)
>> A[$]=100

Usually when an index expression is used as an lvalue, the dimension and
size of the right hand side of the assignment should match that of the index
expression to make the assignment possible. The only exception is when the
right hand side is a scalar, then all the indexed elements of the matrix will be
set to the same scalar value.

>> A = zeros(3,3)
0 0 0
0 0 0
0 0 0

>> A[1, :] = 3
3 3 3
0 1 0
0 0 1

>> A[\] = 1
1 3 3
0 1 0
0 0 1

When updating the contents of a matrix, the indices don’t have to be within
the upper bounds, which makes it possible to make the size of the matrix grow.
As the size of a matrix is extended, the new entries are set to zero, except for
those being specified by the assignment statement. For example,

>> X = [1,4,9]
1 4 9

>> X[4] = 16
1 4 9 16

>> x[8]=36
1 4 9 0 0 0 0 36

3.4 Storage types of matrix elements

When the three builtin-in functions zeros, ones, and rand are called to create
matrix, a final optional argument can be used to specify the storage type of the
elements of the matrix. The value of the argument can be Z, B, L, or M, for
int, byte, long, and mpf respectively.

To create a 3× 5 int matrix of 0’s or 1’s, use the command

x = zeros(3, 5, _Z);

or
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x = ones(3, 5, _Z);

To create a column vector of 5 bytes of random values between 0 and 255, use
the command

x = rand(5, _B);

or

x = rand(1, 5, _B);

To create a row vector of 5 binaries, use the command binary(5).

3.5 Sparse Matrix

Using the regular dense storage scheme to store an m × n matrix of double
needs 8mn bytes of memory. If a large number of the elements of the matrix
are zeros, the dense storage scheme can be wasteful and inefficient. For large
sparse matrices or matrices of special formats several more effective alternative
storage formats can be chosen.

sparse: an m× n sparse matrix is created with sparse(m, n).

banded: a square n × n matrix with l subdiagonals and u superdiagonals is
created using band(n, l, u).

upper triangular: a square n × n upper triangular matrix is created using
upper(n).

lower triangular: a square n × n lower triangular matrix is created using
lower(n).

symmetric: a symmetric n× n symmetric matrix is created using lower(n).

All these commands give rise to matrices whose elements are all zeros. To make
the matrices useful, normal assignment statements can be used to add non-zero
elements.

sparse and banded matrices use efficient storage scheme and can save on
memory, while triangular and symmetric matrices use the same storage scheme
as dense matrix and thus woulldn’t save on memory but may be more efficient
when solving some linear algebraic problems.

Note that these special storage schemes are supported only for double pre-
cision floating point numbers.
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3.6 Multi-dimensional matrix

A numerical matrix can also be multi-dimensional, whose each element is refer-
enced by three or more indices. To create such a matrix, one has to use any of
the three built-in functions zeros, ones, or rand, with three or more parame-
ters to specify the size of each dimension. For example, the following command
returns a matrix of 5 slices, with each slice having 3 rows and 2 columns.

>> rand(5,3,2);

An element or a slice of a multi-dimensional matrix can be referenced or reset
using an indexing expression with appropriate number of indices. For example

>> x = rand(5,3,2);
>> x[1, :, :]; // the first slice of x

Note that the only storage type available for multi-dimensional matrices is
double precision floating point number. Therefore type does not need no be
specified.

If two multi-dimensional matrices A and B have the same dimensions, A +
B and A - B are defined the usual way. The only other operation defined for
multi-dimensional matrix is scalar multiplication.

3.7 Attributes of matrix

If A is an m× n matrix, then

A.length returns mn

A.nrows returns m

A.ncolumns returns n

A.size returns column vector [m;n]

A.abs returns a copy of A whose elements are absolute values of A

A.norm returns the vector norm (if A is a row or column vector), or matrix
norm of A.

A.sum returns the sum of all elements of A

A.max returns the maximum of all elements of A

A.min returns the minimum of all elements of A

A.range returns [m1, m2], where m1 and m2 are the minimum and maximum
of A.

A.mean returns the average of all elements of A
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A.var returns the variance of all elements of A

A.stddev returns the standard deviation of all elements of A

A.rowsum returns the sum of all each row of A

A.rowmax returns the maximum of each row of A

A.rowmin returns the minimum of each row of A

A.rowrange returns the range of each row of A A.rowmean returns the average
of each row of A

A.rowvar returns the variance of each row of A

A.rowstddev returns the standard deviation of each row of A

A.columnsum returns the sum of all each column of A

A.columnmax returns the maximum of each column of A

A.columnmin returns the minimum of each column of A

A.columnrange returns the range of each column of A A.columnmean returns
the average of each column of A

A.columnvar returns the variance of each column of A

A.columnstddev returns the standard deviation of each column of A

A.sort() sorts the elements of A in ascending order

A.rowsort() sorts each row of A in ascending order

A.columnsort() sorts each column of A in ascending order

A.reverse() reverses the order of all elements

A.rowreverse() reverses the order of all elements in each row

A.columnreverse() reverses the order of all elements in each column

A.swaprows(j, k) swaps row j and row k of A

A.swapcolumns(j, k) swaps column j and column k of A

A.scalerow(j, alpha) multiply row j of A by a scalar alpha

A.scalecolumn(j, alpha) multiply column j of A by a scalar alpha

A.addrows(j, k, alpha) add alpha times of row k to row j of A

A.addcolumns(j, k, alpha) add alpha times of column k to column j of A
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3.8 Character String

A character string is created by enclosing a sequence of characters by a pair of
double quotes or single quotes.

>> s = "Yankee Doodle went to town."
Yankee Doodle went to town.

When using double quotes, the character \ acts as an escaping signal in order to
include special characters in the string. The defined escaping sequences are the
same as provided by the C programming language. The complete list is given
in the table. Note that the backslash character doesn’t have a special meaning
in a single quoted string.

\a alert (bell) character \\ backslash
\b backspace \? question mark
\f formfeed \’ single quote
\n newline \" double quote
\r carriage return \ooo octal number
\t horizontal tab \xhh hexadecimal number
\v vertical tab

3.8.1 Index and substring

A string can be used as if it were a one-dimensional array of characters. That
is, an individual character or a substring can be accessed and modified by using
an index expression.

>> x = "The flying pig"
The flying pig

>> x[3:5]
e f

>> x[1] = "E";
Ehe flying pig

>> x[1:3] = "the";
the flying pig

>> x[$-2:$] = "wig"
the flying wig

Note that the $ sign when appearing in an index expression represents the length
of the variable being indexed, therefore x[$] refers to the last character of the
string.

ASCII values can be assigned to one or several characters of a string. For
example,

>> x = "The flying pig"
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>> x[12] = 119;
>> x

The flying wig
>> x[12:14] = [98, 112, 103];
>> x

The flying bug"

Note that the value assigned to string must be valid ASCII value; in particular,
zero value is not allowed.

3.8.2 Attributes of a string

If s is a string, s.length returns the length of s. s.reverse() reverses s.

3.8.3 Use string as a function

When a string s is used as a function, the argument should also be a string t,
and the index of occurrence of s as a substring of t is returned.

>> x = "The flying pig";
>> y = "pig";
>> y(x)

12

3.8.4 Concatentation and other operations

A bunch of strings can be joined to make a longer one by puting them inside a
pair of brackets, and separating them with commas. For example

>> ["Entering", " ", "Rose", " ", "County"]

Entering Rose County

The same can be achieved by using the addition operator. For example

>> s = "Entering" + " " + "Rose" + " " + "County"

Entering Rose County

If n is a positive integer and s is a string, n * s or s * n will create a new
string which is s repeated n times.

>> s = "haha ... ";
>> 5 * s

haha ...haha ...haha ...haha ...haha ...

If s and t are two strings of the same length, or one of them has length 1,
then s - t returns a row vector of integers, which are the differences between
the ASCII codes of s and t. For example
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>> s = "bcdefg" - "a"
1 2 3 4 5 6

>> s = "uvwxyz" - "UVWXYZ"
32 32 32 32 32 32

If s is a string, and x is a integer scalar, or a vector of integers having the
same length as x, then s + x returns a vector of the same length as s whose
ASCII values are those of s plus the value(s) of x.

>> s = "BCDEFG" + 32
bcdefg

Note s - x and x - x are defined in the same manner.

>> s = "bounding" - ("a" - "A")
BOUNDING

When numbers or vectors are being added to or subtracted from a string, the
resulting must still have characters within the range of ASCII values. Otherwise
the operation is not carried out.

3.9 Regular expression

A regular expression object can be created with a tilde followed by a pair of
slashes with regular expression in between. The following is a regular expression
that matches one or more repeating z’s.

r = ~/zz*/

A few options can follow the closing slash. They are m for multi-line, i for
ignoring case, g for finding all matches.

r = ~/zz*/gi

A regular expression can be used as either a function, or a set. To match a
regular expression r against a string s, just call r as a function:

r(s)

The result is the starting and end indices of the match. If the g option of the
regular expression is enabled, the result is an n × 2 matrix with the indices of
all the matches given as rows.

Because a function is also a set, so a regular expression can be used anywhere
a set is expected, especially for specifying the domain of a function parameter,
argument, or a class attribute. For example, the regular expression /zz*/ can
be considered as the set of all strings that contain z’s.

A regular expression r has the following attributes

• r.pattern
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• r.options

• r.match

The pattern and options attributes can be accessed and reset, and the
match attribute is a function that matches the pattern against the argument
string.

3.10 Regular expression substitution

The function of a regular expression substitution is to substitute the occurrence
of a pattern with a given string. A regular expression substitution object is
created with a tilde followed by three slashes, with the regular pattern between
the first two slashes, and the substitute string between the middle and the last.
For example

s = ~s/zz*/oz/

Again, a few options can be given after the closing slash. They are m for
multi-line, i for ignoring case, and g for finding all matches.

s = ~s/zz*/oz/

To apply a regular expression substitution, use it as function. It doesn’t
alter the argument string (like any Shang function), but returns an updated
copy of the string, which can be assigned to the same variable if one wishes.

text = "Monkey in the zzoo"
s = ~s/zz*/oz/
text = s(text)

A regular expression substitution s has the following attributes

• s.pattern

• s.substitute

• s.options

The pattern and options attributes can be accessed and modified, and the
match attribute is a function that matches the pattern against the argument
string.

3.11 List

A list is a one dimensional array of data values of any different kinds. It is
created with a sequence of elements separated by commas, and surrounded by
a pair of parentheses. For instance

x = (2, 3, "My goldfish is evil");
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Any data value can be a list element, including a list. For example

x = (2, [3, 5], x -> sqrt(x^2 + 1), "My goldfish is evil", ("a", "b", "c"));

Here the second element is a matrix, the third element is a function, the fourth
element is a string, and the last element is a list.

To access any element, use the operator # followed by the index. The index
value must be an integer starting from 1. For example, the third element is

x#3

Several elements of a list can be indexed at once using a vector index. The
result is a still a list. For example

x#[1:3]

gives a list of the first three elements of the list, while

x#[1:2:9]

returns the list of odd-indexed elements up to the ninth.
To check the length of a list, one can use # followed by the list variable name

>> x = (2, 3, "My goldfish is evil");
>> #x

3

x.length would achieve the same thing. However, if x is a vector of three
elements, x.length would also return 3, while # x returns 1.

The last element of a list can be retrieved using the index $, and the next
last using $-1, etc.

Note that Shang is vectorized on the object level. Therefore a list is not a
so-called “container” in other languages. Any value that is not a list, is actually
a list of one item. For example, the number -3 is also a list of one number -3.

x=-3;
y=(-3);
x == y

1

Likewise, -3, (-3), ((-3)), and (((-3))) are all the same. And it’s impossible
to distinguish (a, b) from ((a, b)).

3.11.1 Fixed length list and variable length list

A fixed length list has a fixed number of elements, while the number of elements
of a variable length list can decrease or increase. A list defined normally has a
fixed length, while a list defined with a trailing tilde has variable length. For
example,

x=(100, "Kernobe", ~);
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Note that the length of list x is 2, and it is equal to the fixed length list y=(100,
"kernobe"), except that x can be expanded or shrinked. The tilde at the end of
the list is not a special element; it just signals that the list is capable of changing
length. For example

x=(100, "Kernobe", ~);
x#3="Schwartz";

(100, Kernobe, Schwartz)
x#5="Dark Helmet";

(100, Kernobe, Schwartz, [], Dark Helmet)

If you plan to create a list x by starting with an empty list and adding new
elements one by one, the list should be initialized as

x=(~);

Note that both (~) and () are empty list, but new elements can only be added
to (~).

List plays a critical role in the operation of functions, as calling a function f
with f(a,b,c) is equivalent to the multiplication operation between the function
f and the list of arguments (a, b, c).

Variable length lists have the following attribute functions

• To add an element at the end of a list s, one can use s.append(x); to add
an element at the beginning, one can use s.prepend(x).

• To insert an element at the position k, one can use s.insert(k, x).

• To delete the element at the position k, one can use s.delete(k).

• To delete the last element, one can use s.pop().

• To delete the first element, one can use s.leftpop().

• To remove all repeated elements (leave only the first copy), one can use
s.unique().

For both fixed length and variable length lists

• To reverse the order of all elements, one can use s.reverse().

• To sort all elements in increasing order, one can use s.sort().

3.12 Hash Table

A hash is a set of values, with each value associated with a unique key. The
value can be retrieved by providing the right key. To create a hash table, put
an arrow => in between each key/value pair, and put all pairs inside a pair of
braces, separated by commas.



36 CHAPTER 3. DATA TYPE

A = {"red" => "maple", "purple" => "lilac", "grey" => "ash"}

Each element of the table can be extracted and reset using the operator @.

>> A = {"red" => "maple", "purple" => "lilac", "grey" => "ash"};
>> A @ "purple"

lilac

Note that a hash table can also act like a function, therefore to reference the
entry of a table A with key r, one can use either A@r, or A(r).

If one needs to create a finite function (whose domain is finite set), one
doesn’t have to write a bunch of code and can use a hash table instead.

>> f = {1 => 0, 2 => 0, 3 => 0, 4 => 1, 5 => 1, 6 => 1};
>> f(1)

0
>> f(3)

0
>> f(6)

1

Values can be reset or added to the table using

A@r = new_value

Note that although both A@r and A(r) refer to the same value of the table,
only A@r can be used as an lvalue in an assignment expression.

A hash table can have a default key, which matches anything that is not
explicitly used as a key value. For example, if a table is created by

>> u = {1 => 2, 2 => 3, 3 => 4, 4 => 5, default => 0};

Then u(x) = 0 for any x except 1, 2, 3, 4.

3.13 Set

Set is a concept rather than a specific data type. It is a facet of any data value
and virtually anything can be used as a set. For two values x and s, if any of
the expressions x in s, x (- s, s(x), or s*x evaluates to true (non-zero), then
we consider that x to be a member of the set s. There several ways to create
and use a set.

3.13.1 Finite Sets

A finite set can be created with a pair of braces with all the set members in
between and separated by commas.

colors = {"red", "orange", "yellow", "green", "blue", "purple"}
faces = {1, 2, 3, 4, 5, 6}
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To test if a value x is member of a set s, one can use

x (- s

or

x in s

or

s(x)

or

s * x

If x is a member of s, all of the above will return non-zero; otherwise 0.
To add a new member to a set, use

s.add(m)

To remove a member from a set, use

s.remove(m)

The k-th element of a set can be extracted using

s[k]

However, the order of the members is not a property of the set. Therefore if
s[1] is not equal to t[1], it doesn’t imply that s does not equal t. Providing
the indexing function is for the purpose of looping over the whole set. Note also
that set member can not be added or updated using the indexing expression.

3.13.2 Intervals

Interval of real numbers in mathematics can be can be represented using the
keyword to. For example, the closed interval [0, 1] can be created by

>> s = 0 to 1; // interval [0, 1]

Note that since any single value is the same as a list whose only entry is that
value. Therefore, 0 to 1 is equivalent to (0 to 1), and we can write

>> s = (0 to 1); // interval [0, 1]

Open and half open intervals are created using suffix + and -. For example

>> s1 = (0 to 1); // interval [0, 1]
>> s2 = (0+ to 1-); // open interval (0, 1)
>> s3 = (0+ to 1); // half open interval (0, 1]
>> s4 = (0 to 1-); // half open interval [0, 1)
>> s5 = (0 to inf); // interval [0, inf)
>> s6 = (-inf to 1); // interval (-inf, 1]
>> s7 = (-inf to inf); // interval (-inf, inf) equivalent to _R
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3.13.3 Define a set using function

Any function f can act like a set. If the logical value of f(x) is true, then x is
considered a member of f, otherwise it is not. For example, the set of all the
(floating point) numbers between 0 and 1 can be defined by

>> S = x -> (x >= 0 && x <= 1)
>> 0.5 (- S

1
>> 1.5 (- S

0

3.13.4 Set operations

• To check if s is a subset of t

s (= t

• To check if s is a true subset of t

s (< t

• To check if s is a super set of t

s =) t

• To check if s is a true super set of t

s >) t

To calculate the union of two sets:

s \/ t

• To calculate the intersection of two sets:

s /\ t

• The following gives the intersection of s and the complement of t

s \ t

All the above three operations can be performed on any objects as well as
finite sets. If both operands are finite sets, the outcome is also a finite set. If
any operand is not a finite set, the result is usually a function that can be used
as a set. For example, if

u = s \/ t
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then u is a function such that u(x) = 1 if x is a member of either s or t, and
zero otherwise.

The interpreter is capable of determining if s is a subset of t only when s is
a finite set. It is done by testing each element of s. If s is defined by a function,
such computation is impossible and would not be attempted. The same applies
to other set operations that involve infinitely many steps of computations.

3.14 Stack

Stack is a type of collective data that stores data in a ”first in, last out” manner.
”stack” is not a keyword, but a built-in function name. To create an empty
stack, call the stack function

s = stack();

To push an item x into the stack,

s.push(x);

To pop the top item out of the stack

x = s.pop();

To check the height of the stack

s.height;

3.15 Queue

Queue is a another type of collective data that stores data in a ”first in, first
out” manner. To create an empty queue, call the queue function

q = queue();

To add an item x into the queue,

q.enqueue(x);

To remove the next available item in the queue

x = q.dequeue();

To check the length of the queue

s.length;
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3.16 Structure

A structure is a group of attribute values with each one associated with an
identifier. It is very easy to create by using a pair of braces. Each attribute is
declared and initialized by assigning the value to the identifier, and all attributes
are enclosed in a pair of braces. For example

dims = {length = 15, width = 10, height = 9};

Here a structure with three attributes is created. Note that each part of the
definition corresponds to a structure attribute. The identifier on the left side of
the assignment sign declares the name of an attribute, and will not be confused
with any local variable in the surrounding scope. The expression to the right of
the assignment sign is evaluated in the surrounding scope. For example

length = 17
height = 28;
dims = {length = 15, width = length, height = height};

In definition of the dims structure, when width = length is processed, width
declares a new structure attribute, where length is the value of the local variable
length and has nothing to do with the previously defined attribute of the same
structure, which is also named length. In height = height, the first height
declares a new attribute, while the second will be the value of the local variable
height.

An attribute of a structure can be accessed, added or reset using the dot
operator .

>> dims = {length = 15, width = 10, height = 9};
>> dims.height

9
>> dims.height = 12
>> dims.height

12

Note that since function is also a data type, attributes of a structure can be
functions as well. For example

>> region = {
shape = "circular",
center = [2, -3],
radius = 15,
verify = (x, y) -> (x - 2)^2 + (y + 3)^2 <= 225

};

>> region.verify(3, 2)
1

One obvious use of structure is to return more than one values in a function.
For example
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dstats = function x -> s
n = length(x);
min = max = sum = x[1];
for k = 2 : n

sum += x[k];
if x[k] < min

min = x[k];
end
if x[k] > max

max = x[k];
end

end
mean = sum / n;
sd = 0;
for k = 1 : n

sd += (x[k] - mean)^2;
end

sd = sqrt(sd / (n - 1));

s = {
n = n, min = min, max = max,
mean = mean, sd = sd

};
end

x = rand(15);
dstats(x)

In order to make a copy of a structure, we only need to assign the structure
to another variable.

>> dims = {length = 15, width = 10, height = 9};
>> newdims = dims;
>> newdims.width = 30;
>> dims.width

10
>> newdims.width

30

A structure encapsulate several pieces of data and behaves like a class mem-
ber. One may regard it as an object without a class, or a quicker way to create
an object. Structures lack the more advanced features of classes, but are of-
ten sufficient and more convenient. Another important use of these classless
objects is to provide ‘candidates’ for conditional classes (chapter 8). They can
“apply” for memberships of conditional classes and then be able to use the rich
functionalities offered by the classes.
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3.17 Other Data Types

In most programming languages, programming structures such as functions and
user defined types are treated differently from normal values and are not consid-
ered data types. In Shang, any entity has a value and can be stored in a variable.
Apart from the types discussed above, the following are all data types:

• functions (user defined, built-in, pseudo)

• classes

• members of classes

• automatons (running functions)

They can be assigned to variables, and be entries of lists, and be passed to func-
tions as arguments values. Functions are discussed in 5.9, classes and members
are discussed in 6.16.4, and automatons in 11.4.3.



Chapter 4

Operators

An expression is a sequence of constants and variables combined by operators
that produces a new value. The constants and variables are called the operands
of the operator. Many operators take one or two operands, where other oper-
ators may take more. The construction of expression is recursive, therefore an
operand can be an expression itself. For example, in expression a + b / c, the
second operand of + is an expression b / c.

4.1 Arithmetic Operators

Arithmetic operators manipulate numerical data. Most of them are the usual
ones learned in elementary math, and work the familiar way. However, they
take not only numbers but vectors, matrices, and other data as well, and there
are a few operators designed for matrices only.

4.1.1 Addition and Subtraction: +,-

Numerical Operands

The expression x + y produces the sum of x and y when they are two scalars
(either doubles, integers, or bytes).

If A and B are matrices of the same dimensions, A + B is a matrix of same
dimension whose entries are the sums of the corresponding entries of A and B.

If either A or B is scalar (1 x 1 matrix), then the scalar is added to each
entry of the other matrix.

If A is an m × n matrix and B is m × 1 row vector, when A+B is calcuated,
the kth element of B is added to each element of the kth row of A.

Similarly, if A is an m× n matrix and B is 1× n column vector, when A+B is
calcuated, the kth element of B is added to each element of the kth column of
A.

If the dimensions of A and B don’t match in any of the ways described above,
A + B will cause an error. For example

43
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x = [-2.5, 3; 9, 7]
-2.5 3

9 7
y = [1, -2; 3, -5]

1 -2
3 -5

z = x + y
-1.5 1
12 2

If A and B are of the same storage type, then A + B is of the same type.
Otherwise the type of the result is same as the one that needs more storage
space. For example, if a double matrix and a integer matrix are added, the
result is a double matrix.

Subtraction A - B is defined in the similar manner.

Functional Operands

If either of A and B is a function, A + B or A - B will be a new function. For
example

>> f = sin + cos;
f(pi / 4)

0
>> h = x -> sqrt(x^2 + 1);
>> h1 = f + h;
>> h1(0)

2

>> g = 2 - sin;
>> g(pi/2)

2.141592654

Note that the definition of g is g(x) = 2x − sinx instead of g(x) = 2 − sinx.
Therefore g(π/2) = 2(π/2)− sin(π/2) = π − 1.

List Operands

If M and N are two lists of the same length, then M + N is a list of the same
length, whose elements are the sums of the corresponding entries of M and N.

>> M = (3, 5, 9, [2, -3]);
>> N = (1, -7, 0, [-2, 5]);
>> M + N

(4, -2, 9, [0, 2])

The subtraction of one list from another list is defined similarly. If the lengths
of the two lists are different, or if any two corresponding elements can not be
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added, then the addition of the two lists is undefined and attempt to it will
cause an error.

Note that in some languages, adding two lists means concatenating them to
make a longer list. In Shang, the operator for concatenating two lists is >-<.

4.1.2 Multiplication: *

If A and B are two scalars, then A * B is the product of A and B.
If one of A and B is a scalar and the other is a matrix, the result is a matrix

of the same size, whose entries are the products of the value of the scalar and
the entries of the matrix. For example

>> x = 2;
>> y = -9;
>> x * y

-18
>> A = [3, 5; 2, -8];
>> 3 * A

9 15
6 -24

>> A * 7
21 35
14 -56

If A and B are non-scalar matrices, then A * B is the matrix multiplication of
A and B. This is defined only when the sizes of A and B match, i.e., the number
of columns of A equals the number of rows of B. For example

>> A = [3, 5; 2, -8; 1, 9];

3 5
2 -8
1 9

>> B = [2, 1, 7; -2, 0, 8]

2 1 7
-2 0 8

>> A * B
-4 3 61
20 2 -50

-16 1 79

>> B * A
15 65
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2 62

Attempt to multiply matrices whose sizes do not match will cause an error.
If A and B are two lists with the same length n, then A * B is the dot product

(A#1) * (B#1) + (A#2) * (B#2) + ... + (A#n) * (B#n).
If B is a list with length n, and A is a list whose length is m and whose each

element is again a list with the same length n, then A * B is the list of length
m: ((A#1)*B, (A#2)*B, ..., (A#n)*B).

4.1.3 Division: /

If both A and B are scalars, then A / B is the quotient of A and B. No matter
they are doubles or integers, the quotient is always a floating point number of
double precision. If A is not equal to zero, but B is, then A / B is inf. If both
A and B are zero, then A / B is nan (meaning not a number).

If one of A and B is a scalar, while the other is a matrix, then A / B is a
matrix of the same size, with each element being A divided by the each entry of
B, or each entry of A divided by B, depending which one is a scalar.

If both A and B are matrices, then A / B is the (numerical) solution of matrix
equation X B = A. The matrix B must be an n × n non-singular square matrix
and A must have n columns. Note that X B = A is solved numerically, so the
solution can only satisfy the equation approximately.

>> A = [3, 2, -5];
>> B = [1, 2, -3; 2, 1, 5; 0, -1, 3];
>> X = A / B

11 -4 16
>> X * B

3 2 -5

4.1.4 Back Division for solving linear system: \
Numerical Operands

If both A and B are matrices, then A \ B is the (numerical) solution of matrix
equation A X = B. The matrix A must be an n × n non-singular square matrix
and B must have n rows. For example

>> A = [1, 2, -3; 2, 1, 5; 0, -1, 5];
>> b = [3; 1; -2];
>> x = A \ b

0.75
0.75
-0.25

>> A * x
3
1
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-2
>> norm(A*x-b)

2.220446049e-16

Note that Ax is only approximately equal to b.

Set Operands

If both A and B are finite sets, then A \B is the difference between set A and B:

A\B = {x ∈ A, x /∈ B}

For example

>> A = {3, -5, "abc", 9, 10, -7};
>> B = {9, -3, "abc", -7, -3};
>> A \ B

{3, -5, 10}

4.1.5 Element-wise multiplication and division: .*, ./

If A and B are two matrices of the same size, then A .* B and A ./ B are
the matrices of the same size, whose entries are the products/quotients of the
corresponding entries of A and B. For example

A = [1, 2, 3, 4, 5];
A .* A

1 4 9 16 25
A = [1, 2; 3, 4];
B = [1, 1; 2, 2];
A .* B

1 2
6 8

A ./ B
2

1.5 2

4.1.6 Power: ^

If b and r are two scalars, then b^r is b raised to the power of r: br.
If the base b is negative and the exponent r is a fraction, or either b or r

is complex, the result is the principal value of the (multi-valued) power br. For
example

2 ^ (5)
32

3 ^ (-2)
0.1111111111
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9 ^ (1/2)
3

(-3) ^ (1/2)
0 + 3i

If A is a square matrix, and

• n is a positive integer, then A^n is the product of n copies of A:

An = AA · · ·A

• n=0, then A^0 is the identity matrix

A0 = I

• n = -1, then A^(-1) is the inverse matrix of A

• n is negative integer, then Aˆn is the inverse of A^(-n)

An = (An)−1

4.1.7 Element-wise Power: .^

If A and B are two matrices of the same size, or either one is a scalar, then A .^
B is A raised to power of B element-wise.

For example, if want to square each entry of a vector

>> A = [1, 2, 3, 4, 5];
>> A .^ 2

[1, 4, 9, 16, 25]
>> B = [-2, -1, 0, 1, 2];
>> A .^ B

1 0.5 1 4 25

4.1.8 Modulus

If p and q are two numbers (of any storage type), and p = n * q + r, where
p and r have the same sign, n is an integer, and |r| < |q|, then p % q = r.
For example

>> 5 % 3
2

>> 5 % (-3)
2

.> (-5) % 3
-2

>> (-5) % (-3)
-2
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>> r = 10 % pi
0.5752220392

>> (10 - r) / pi
3

If one of p and q is a matrix and the other is a scalar, or both are matrices
of the same storage type, then p % q is defined as a matrix, whose entries are
the element-wise modulus of the entries of p and q.

4.2 Unary + and -

4.2.1 Prefix + and -

If x is a scalar or matrix, then +x is the same as x, where -x is a matrix of
the same size as x, with each element being the negative of the corresponding
element of x. For example

>> x = [1, 5; -5, 1]
>> -x

-1 -5
5 -1

4.2.2 Postfix + and -

For any real scalar a, a+ and a- have the same value as a, except they are used
for constructing intervals.

(a to b) is open interval [a, b].
(a+ to b-) is open interval (a, b).
(a+ to b) is half open interval (a, b].
(a to b-) is half open interval [a, b).
For example

>> 3+
3

>> 3-
3

>> 3 to 5
[3, 5]

>> 3+ to 5-
(3, 5)

>> 3 to 5-
[3, 5)
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4.3 Transpose: ’

x’ is the complex transpose of x. If x is a real scalar, then x’ is the same as x.
If x is a complex scalar, then x’ is the complex conjugate of x. If x is an m× n
matrix of numbers, then x’ is the complex transpose of x, i.e., an n× m matrix
whose element on row i and column j is the conjugate of the element of x on
row j and column i.

>> A = [1, 2; -3, 5]
1 2
-3 5

>> A’
1 -3
2 5

>> v = [1, -5, 3, 2]
1 -5 3 2

>> v’
1
-5
3
2

>> U = [2, 3; 2-i, 5-3i]
2+0i 3+0i
2-1i 5-3i

>> U’
2-0i 2+1i
3-0i 5+3i

4.4 Relational Operators

If x and y are two real scalars, then

• the value of x == y is 1 if x is equal to y, and 0 otherwise.

• the value of x < y is 1 if x is less than y, and 0 otherwise.

• the value of x > y is 1 if x is greater than y, and 0 otherwise.

• the value of x <= y is 1 if x is less than or equal to y, and 0 otherwise.

• the value of x >= y is 1 if x is greater than or equal to y, and 0 otherwise.

• the value of x != y is 1 if x is not equal to y, and 0 otherwise.

These operations are also defined if either one of x and y is a scalar and the
other is a matrix, or both are matrices of the same size. In that case, when the
relation of interest is true for any two corresponding elements, the value of the
operation is 1. For example
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>> 3 > -5
1

>> -2 >= 0
0

>> x = [1, 2, 3, 5]
>> x >= 1

1

>> y = [2, 2, 3, 7]
>> x < y

0
>> x <= y

1

4.5 Logical Operators

Logical operators manipulate data and return a true or false value. These
operators are often necessary in flow control structures where whether a condtion
is true or false needs to be tested.

4.5.1 Logical Value

Virtually any data item has a true/false value. In particular, the following
objects have false logical value

• The scalar 0

• The empty matrix or empty list []

• A matrix whose entries are all zero

• The empty string ""

Anything else would have true logical value.
There is no special type for logical values. The result of any relational or

logical operation is either 1 or 0. But if one wish, one can always define two
global variables true and false

global.true = 1;
global.false = 0;

and always use true and false for logical values.

4.5.2 Logical and: &&

A && B is true if both A and B are true, and false otherwise. The interpreter
will evaluate A first. If it is false, B will not be evaluated. For example
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>> x = ("abc", "def", "ghi", "jkl");
>> k = 3;
>> if (k >= 1 && k <= #x)

play(x # k);
end

4.5.3 Logical or: ||

A || B is true if either A or B is true, and false otherwise. The interpreter will
evaluate A first. If it is true, B will not be evaluated.

>> x = ("abc", "def", "ghi", "jkl");
>> k = 3;
>> if (k < 1 || k > #x)

"Invalid selection"
end

4.5.4 Logical not: !

!A is true if A is false, and vice versa. For example, the following piece of code
finds out the count of items in a list x that don’t qualify (assuming that the
values of x have the qualify attribute):

>> count = 0;
>> for k = 1 : #x

if ! x[k].qualify()
++count;

end
end

4.6 Assignment Operator: =

4.6.1 Lvalue: variable name

The assignment operator = can be used to declare and initialize a local variable,
or update the value of an existing variable. The operand on the left side of the
= sign is called the lvalue. The most common lvalue is an identifier. If it is
an identifier that does not coincide with any local variable’s name, a new local
variable with this name will be created and initialized. Otherwise the existing
variable by that name will be reset to the value given on the right hand side of
=.

When assignment a = b is carried out, the variable a obtains a copy of b,
and the two values are now independent. For example

>> b = (2, 3, 5);
>> a = b;
>> a # 2 = -3;
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>> a
(2, -3, 5)

>> b
(2, 3, 5)

Two variables can never refer to the same object, or in other words, one object
cannot have two different names. This is quite unlike programming languages
that store references instead of values in variables.

4.6.2 Multiple Assignments

The lvalue can be a list of several variable names. In this case the right hand
side of the assignment operator must also be a list of the same length. The
effect of the assignment is the each element of the list on left hand side assigned
to the corresponding variable name on the left hand side list.

>> data = (2, 3, "point");
>> (x, y, label) = data;
>> x

2
>> y

3
>> label

point

4.6.3 Other Lvalues

Besides identifiers that are names of local or global variables, other expressions
that can appear on the left side of = include

• Matrix indexing expression

A[3] = 5;
A[1:3] = [-1, 0, 1];
A[1:3, 1:3] = rand(3,3);
A[1:3; 1:3] = [3,3,3];

• List indexing expression

A # 3 = "xx xxx";

• Hash table entry

A @ "ppp" = 3;
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• Function parameter, structure, or class member attribute

A.name = "flee";

Note that in the above

• A can be either the name of a variable, or one of the lvalues listed above.
For example, A.name[1] = "F".

• For function parameter or class member attribute, the value on the right
side of = must be in the domain of the parameter or attribute.

4.6.4 Compound Assignments

In the expression

A = A + 3;

the variable name A appears twice. The expression reads “add 3 to A”, and can
be written in a condensed form

A += 3;

Note that in A += B, A must be a variable or lvalue, while B can be any expres-
sion. A += B is a valid statement as long as A + B is defined. For example

>> x = 35;
>> y = 6;
>> x += y + 1;
>> x

42
>> A = [3, 5, 9];
>> B = [2, 0, -2];
>> A += B .^ 2;
>> A

7 5 13

There are compound assignment operators for other arithmetic operators,
defined in the same way. They are listed in Table (4.1).

4.7 Increment and Decrement Operators

It is often needed to add 1 to or subtract 1 from a variable. The expression for
doing this is

x = x + 1;
y = y - 1;
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Table 4.1: Table of Compound Assignment Operators

Operation Equivalent
A += B A = A + B
A -= B A = A - B
A *= B A = A * B
A /= B A = A / B
A %= B A = A % B
A \= B A = A \ B
A ^= B A = A ^ B
A .*= B A = A .* B
A ./= B A = A ./ B
A .^= B A = A .^ B

or

x += 1;
y -= 1;

The expression += 1 has a further shortened form of syntax, which is ++. It
can be put in front of or after the variable, i.e., ++A, or A++. The effects of ++A
and A++ on the variable A are same, but the values of the two expressions are
different, as described below

• ++A and --A

++A will add 1 to the value of A, and return the updated value of A. --A
will subtract 1 from the value of A, and return the updated value of A.

• A++ and A--

++A will add 1 to the value of A, and return the original value of A. --A
will subtract 1 from the value of A, and return the original value of A.

If ++A and A-- are two stand-alone expressions, their effects on the variable
A are same and their own values are discarded, so they are equivalent. But if
they are parts of a larger expression, their values will be different. For example:

>> n = 1;
>> p = ++n

2
>> // now n is 2

>> q = n++;
>> // q is 2
>> // but n is now 3
>> q
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2
>> n

3

4.8 Other Operators

There are quite a few other operators that are defined for particular data types.
The detailed descriptions of these data types and operators are given in other
chapters. The following is a summary of the usage of those.

4.8.1 Attribute Retrieval

If value v has an attribute a, then the value of the attribute can be retrieved by

v.a

The attribute name must be an identifier.
Most system defined data types have some built-in attributes. For example,

matrices have attributes length, norm, nrows, ncols, etc..

4.8.2 Matrix

Matrix element and submatrix indexing operator []. The syntax is

A[index]

where A is a matrix of any numerical type. The index can have a single part,
or two parts separated by a comma, or two parts separated by a semicolon, or
more (3+) parts separated by commas.

1. A single index. The index must be a matrix of positive integers. The
value of the indexing expression is a matrix.

2. Two indices separated by a comma. This will extract a square block of
the matrix, except when the first index is a slash \, where the result is
one or more diagonals of the matrix.

3. Two indices separated by a semicolon.

The value of the indexing expression is a column vector

4. Three or more indices separated by commas. This can only be used on
multi-dimensional matrix.

Colon Operator for creating evenly spaced vector
If a and b are two real scalar, a : b returns a row vector of numbers a,

a+1, a+2, up to b, or the largest number a+n such that a+n <= b. If a<b+1,
then a : b returns empty matrix.
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>> v = 1 : 5
1 2 3 4 5

>> v = 1.2 : 5.3
1.2 2.2 3.2 4.2 5.2

>> v = 3 : -1
[]

If a<b are two real numbers, and h>0, then a : h : b returns a row vector
of numbers a, a+h, a+2h, up to b, or the largest number a+nh such that a+nh
<= b.

If a>b, and h<0, then a : h : b returns a row vector of numbers a, a+h,
a+2h, down to b, or the smallest number a+nh such that a+nh> b. a : b
returns empty matrix.

>> v = 1 : 2 : 10
1 3 5 7 9

>> v = 1.2 : -1 : -5
1.2 -0.2 -1.2 -2.2 -3.2 -4.2

4.8.3 List Indexing

The k-th element of a list s

s # k

k must be an integer no less than 1 or a vector whose entries are no less than 1.
The length of a list is obtained by

#s

4.8.4 Function Parameter, Structure and Class Member
Attribute

The value of a parameter, an attribute of a structure or a class member is
referenced by

A.name

where A is an expression whose value is a function, a structure, a class, or a
class member, and name is an identifier.

4.8.5 Hash Entry

The value of a hash table entry is accessed using the operator @

A@key

where A is an that evaluates to a hash table, and key is an expression whose
value is a key of the table.
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4.8.6 Set

To test if x belongs to a set S, we use either

x in S

or

x (- S

To test if x is an element of a matrix or list S, one can only use

x in S

To test if S is subset, true subset, superset, or true superset of a set T, use

S (= T
S (< T
S =) T
S >) T

respectively.

4.8.7 Pointer

To obtain a pointer that points to A, one can use

p = >> A

or

p =>> A

To retrieve the value that a pointer p points to, one can use

x = p>>

To reset the value pointed to by p, one can use

p>> = new_value

or

p >>= new_value

4.8.8 Function

To call a function f with argument x, one can use

f * x

or

f(x)
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Operator Associativity
::
>>
.

[], {}, ()
#, @ left to right
’

!, >>, ++, --
^, .^
&*, &/

*, /, %, .*, ./ left to right
+, - left to right
/

>-<, <->, <-<, >->, =>
to, ==, >, <, !=, >=, <=

&&, in, (-, -), (=, =), (<, >)
||
<>
->

=, +=, -=, *=, .*=, %=, /=, ./=, ^=, .^=, >> right to left

4.9 Precedence and Associativity of Operators

Operators have a set order of precedence during evaluation. Items enclosed in
parenthesis are evaluated first and have the highest precedence.

When several operators with equal precedence appear in the same statement,
they are evaluated according to their associativity. For example, + and - have
the same level of precedence and associate from left to right, therefore a-b+c
is evaluated as (a-b) + c. The assignment operator = associates from right to
left, therefore a=b=c=89 is evaluted as a = (b = (c = 89)).

The following chart shows the order of precedence with the items at the top
having highest precedence.
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Chapter 5

Flow Control Structures

An expression consists of constants, variables, and operators. An expression
followed by a return or a semicolon is a simple statement. A sequence of simple
statements would be executed one by one by the interpreter. Sometimes we
want some statements to be executed repeatedly, or we want some statements
to be executed only when certain conditions are met. To achieve this we need
the flow control structures which specify the order of execution of statements.

5.1 if statement

An if statement can appear anywhere a statement is expected. Its simplest
form contains two key words if and end.

if expression
statement

end

It is used to expression decisions. When the flow of program execution comes
to an if statement, the expression is evaluated. If the logical value of the ex-
pression is true, statement will be executed. Otherwise, statement is skipped
and the program moves to the point after end. For example

x = rand(2); // get two random numbers

// test if the point (x[1], x[2]) is inside the unit circle
if norm(x) <= 1

in_circle = 1;
end

If one wishes to execute certain commands when the expression is true, and
some other commands when its false, a variant of the if statement that involves
three keywords if, else, and end can be used.

61
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if expression
statement group 1

else
statement group 2

end

For example,

if norm(x) <= 1
in_circle = 1;

else
in_circle = 0;

end

If the first condition is tested to be false, further condition can be tested using
the elseif keyword to determine if the second group of commands are to be
executed. The following is the general form of an if statement.

if expression 1
statement group 1

elseif expression 2
statement group 2

elseif expression 2
statement group 2

... // more elseif’s
else

statement group n
end

If expression 1 is true, then statement group 1 is executed. If expression
1 is false and expression 2 is true, then statement group 2 is executed.
This goes on until the condition after one of the elseif’s is true. If none
of expression 1 to expression n-1 is true, statement group n is executed.

Note that each statement group can be one or several statements, and can
also have nested control structures.

In the general form, the parts that start with elseif and else are optional.

5.2 unless statement

To execute a group of commands when a condition is not true, one can use

if ! expression
command group

end

Alternatively, one can use the structure unless ... end
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unless expression
command group

end

Note that the unless statement only has this one simple form; there can’t be
any else or elseif keywords following it.

5.3 for statement

The for statement is used to repeatedly execute a bunch of commands for a
definite number of times. The often used form is as follows

for var = k0 : k1
statement group

end

where var is a variable name, k0 and k1 are two expressions that should evaluate
to two integers with k0<=k1. When the for statement is encountered, the
variable var is set to k0, and if k0 is less than or equal to k1, the statement
group is executed once. then the variable var is increased by 1. If var is still
within k1, the statement group is executed again. This is repeated untill var
exceeds k1. The loop counter var is a variable that can be accessed in the group
of statements. It can be either a previously defined variable, or a new name.
Inside the loop, the value of the counter is updated automatically, and therefore
shouldn’t be altered explicitly. Any assignment to the loop counter inside the
loop is ignored. For example, the following code find the sum 1 + 2 + 3 + ...+ n

s = 0;
n = 1000000;
for k = 1 : n

s += k;
end

A second variant of the for statement

for var = k0 : step : k1
statement group

end

In this case, the loop counter var receives values of k0, k0 + step, k0 + 2
* step, ..., until it’s greater than k1 (if step is positive), or less than k1 (if
step is negative).

Finally, there is a short form of for statement, in which the value of the
counter is not needed in the loop, and the code is repeated for a given number
of times.
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for n
statement group

end

where n should be an expression that evaluates to an integer, which is the
number of times the statement group is going to be carried out.

The statement group of the for loop may contain simple statements or other
control structures. For example,

A = zeros(10, 10);
for k = 1 : 10

for j = 1 : 10
A[k, j] = k * j;

end
end

5.4 while statement

The while statement can be used to repeatedly execute a sequence of statements
as long as a condition is satisfied.

while expression
statement group

end

What it does is evaluate expression first. If its logic value is true, the state-
ment group is executed. Then expression is evaluated again, and if it is true
statement group is executed again. This is repeated over and over until the
value of expression becomes false. For example:

s=0;
k=1;
while k <= 100

s += k++;
end

The execution of the loop commands should be able to affect the value of the
expression, so that the loop comes to an end at some point. Otherwise, it will
run forever, and the interpreter will have to be closed by the operating system.

5.5 until statement

The until statement can be used to repeatedly run a piece of code as long as
a condition is not satisfied.
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until expression
statement group

end

It is the opposite of while statement. The statement group is executed until
the logical value of expression becomes true.

Note that untill and until are equivalent.

5.6 do -- while statement

The do-while statement repeatedly executes a piece of code until a condition
is no longer satisfied.

do
statement group

while expression;

It will execute the statement group first and then evaluate the logical value
of expression. If it’s false, the loop is over. If it’s true, the statement group
will be executed again, until expression becomes false.

A do-while statement always carries out the sequence statements at least
once.

5.7 do -- until statement

The do-until statement repeatedly executes a body of commands until a con-
dition is satisfied.

do
statement group

until expression;

This will execute the statement group first and then evaluate the logical value
of expression. If it’s true, the loop is over. If it’s false, the statement group
will be executed again, until expression becomes true.

A do-until statement always carries out the group of statements at least
once.

Again, do-untill and do-until are same.

5.8 break and continue

There are three types of loop structures (for, while, and do statements). They
provide structured solutions to most of the repetitive computing tasks. However,
the lack of the goto statement makes it not easy to stop a loop in the middle.
The break and continue statements can somehow remedy this.
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The break statement breaks out of the innermost enclosing for, while, or
do loop and continues after the loop. For example, the following code repeatedly
reads a command, and executes the command until the command is ”quit”, in
which case the loop will be terminated.

while 1
command = readline();
if command == "quit"

break;
end
execute_command(command);

end

The continue statement skips the rest of the current round of the loop and
continues with the next iteration.

continue statement is very similar to break statement. The difference is
it doesn’t break out of the loop altogether, but only breaks out of the current
round of the loop. Then the interpreter continues to execute the next iteration
in the loop.

In the case of a for loop, the loop counter is updated immediately and its
value is tested to determine if a new iteration of loop is to be carried out.

For a while or until loop, the execution flow jumps up to the beginning
of the loop body. For a do-while or do-until loop, the rest of the commands
of the loop body are skipped and execution flow jumps to the loop condition
testing.

For example, the following code repeatedly reads and processes a command.
If the command is empty, the loop starts over, if the command is ”quit” the loop
will be terminated. Otherwise the command is executed and new command is
read again.

while 1
command = readline();
if command == ""

continue;
end
if command == "quit"

break;
end
execute_command(command);

end

Because of the use of continue, no empty string will be submitted for execution.

5.9 switch statement

The switch statement is a multi-way decision making mechanism which tests
whether an expression matches one of a number of given values, and carry out
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corresponding commands accordingly. The following is the general form of a
switch statement.

switch expression
case value1

statement group 1
case value2

statement group 2
...
default

statement group
end

It is equivalent to the following if statement

if expression == value1
statement group 1

elseif expression == value2
statement group 2

...
else

statement group
end

The default clause in the switch statement is optional.
Besides the case keyword, one can also use cases. For example,

switch word
case value

statement group 1
cases values

statement group 2
end

Here, if word is equal to value, statement group 1 will be executed. If word
is not equal to value, but it is a member of the set values, then statement
group 2 will be executed. It is equivalent to the following if statement

if expression == value
statement group 1

elseif expression in values
statement group 2

end

The following code reads lines of text and count the words in them that start
with a, b, c, and d.

T @ "a" = 0; // set counters to zero
T @ "b" = 0;
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T @ "c" = 0;
T @ "d" = 0;
T @ "?" = 0;
while 1
line = readline(); // read a line
words = split(line, " "); // split the line to a list of words
for k = 1 : (# words) // loop over all words
switch words # k
cases ~/^ *[aA]/; // word starts with a or A

T @ "a" = T @ "a" + 1;
cases ~/^ *[bB]/; // word starts with b or B

T @ "b" = T @ "b" + 1;
cases ~/^ *[cC]/;

T @ "c" = T @ "c" + 1;
cases ~/^ *[dD]/;

T @ "d" = T @ "d" + 1;
default

T @ "?" += 1;
end

end
end
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Function

Functions are one of the most important features of a programming language.
Our concept of function is any value f that can be called using syntax f(x).
Most values such as scalars, matrices, strings, regular expressions, lists, hash
tables, sets, and classes can act as functions. More useful functions are created
by writing a subprogram. When such a function is called, a work space of local
variables is created, and input argument values are passed to the work space,
and the code of the function is executed. When the execution of the code of the
function is done, the local variables of the function are cleared, but the output
argument value is kept and passed back to the caller.

Shang functions are powerful and very easy to use. They also have a number
of new features which are not supported in most other programming languages.
For example, function can have parameters which make them customizable;
their arguments can have domains, so that the interpreter can automatically
check if arguments are valid; functions can be added, subtracted, multiplied,
and chained to make up new ‘pseudo’ functions; functions can be part of a
matrix; a partial list of input arguments can be passed a function to create a
new function whose arguments are the ones missing from the list; etc.

6.1 Function definition

6.1.1 One Liner Functions

A function that can be represented by a single formula can be defined as a single
line map using the symbol ->. For example, function f(x) = 2x2 − 3

x can be
defined by

>> f = x -> 2*x^2 - 3/x;
>> f(3)

17

Here x is the name of the formal argument, and will not be confused with
the variable named x in the surrounding environment (if there is any) of the
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function. The right hand side of -> is an expression involving constants, the
formal argument, and global variables. The local variables of the surrounding
environment are invisible on the right hand side of ->.

If the function has more than one argument, they can be included in a pair
of parentheses. For example

f = (x, y) -> 2*x - y;

If there is no input argument, use a pair of empty parentheses.

>>f = () -> rand(1)^ 2; //define a function with no input

>> f() // call it
0.1156542049

One-linear functions that have no output arguments are useless and therefore
not allowed.

6.1.2 Functions defined by a sequence of code

The structure of a general function is as follows

function input_arguments -> output_arguments
statement
statement
statement
...

end

The first line of a function definition is called the header, which starts with
keyword function, followed by input arguments and output arguments, which
are joined by an arrow ->. The header must end with a newline, and no other
statements can appear in the line of the header after the output argument. The
last line of the function must be the keyword end. Between the header and the
last line is a sequence of statements.

In the function header, input arguments and output arguments are either
a single variable name such as x, or a list of variable names, such as (x, y, z),
or an empty list. Therefore a function header may look like one of the following

function x -> y // one input, one output
function (x, y) -> z // two inputs, one output
function (x, y, z) -> w // three inputs, one output
function x -> (y, z) // one input, two outputs
function x -> () // one input, no output
function () -> z // no input, one output
function () -> () // no input, no output

In Shang, anything is also the list containing itself. Therefor x = (x), so it’s
ok to write function x -> y as function (x) -> (y)
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Note that a variable name in the argument list may optionally contain the
default argument value (See 6.11), and the domain (See 6.12) of values of the
argument. Therefore, a function header may look like this

function (x = 0, y = 1) -> z // input arguments have default values
function (x in _R, y _in _R) -> z // input arguments have domains

For now, we will focus on the simplest case – an argument declaration only
contains the argument name.

A function definition will evaluate to a value of type function. It doesn’t
automatically have a name. To be able to call the function later, usually we
should assign the function definition to a variable, such as

>> sumto = function n -> s
s = 0;
for k = 1 : n

s += k;
end

end

The above defines a function which takes a single argument n and calculates the
sum of 1, 2, ..., n. The function is assigned to the variable sumto. Now we
can call the function by using name sumto

>> sumto(100)
5050

6.2 Local variables

A function definition starts a new local variable scope in which the local variables
of the scope surrounding the function definition are invisible.

Any variable that is created for the first time (by using assignment statement
variable name = value) in the body of a function definition is a local variable,
and can only be accessed by the statements in the body of the current function
definition. Local variables are even not accessible inside the body of a function
definition contained in the current function body. For example

f = function x -> y
var = 35;
f = function u -> v // this f is not the previous f

v = u + var; // bad, since var is not defined
....
....

end
end

The function input and output arguments automatically become local variables
of the function. When the function is called, the input arguments receive the
values passed by the caller, where the output variable is initialized to null.
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The assignment operator = can be used to declare and initialize a local
variable, or update the value of an existing variable. The operand on the left
side of the = sign is called the lvalue. If the lvalue is an identifier, it must refer to
a local variable. If a local variable by that name does not exist yet, a new local
variable with this name will be created and initialized. Otherwise the existing
variable by that name will be updated. Here we have an example function:

// binary search for target in a list x
binsearch = function (x, target) -> index

n = #x;
left = 1;
right = #x;
while left < right

// round down using floor
center = floor(left + (right - left) / 2);
if x # center < target

right = center;
elseif x # center > target

left = center + 1;
else

index = center;
return;

end
end

end

It has local variables x, target, index, n, left, right, center, among which
x and target are input arguments, index is output argument, and the rest are
variables created inside the function body.

When a function definition such as

f = function x -> y
...
...

end

is executed, the function definition is processed, and the code is compiled to
instructions in some internal format. But the local variables do not exist until
a call to the function is made. When a function is called, a stack is initialized
that contains all the local variables of this function. Different calls to the same
function will have different variable stacks and therefore different copies of the
local variables.

Upon termination of the function call, all the local variables except for the
output argument will cease to exist, the memory they occupy is recycled, and
the stack is destroyed. The value of the output argument will be kept and
returned to the caller. If the caller chooses to ignore the return value, the Shang
interpreter will claim the memory used by the return value – the programmer
never needs to worry about ‘garbage collection’.
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6.2.1 Global Variable

As we have seen, local variables can only be accessed by the statements in
the function body in which the variables are defined, and can be restrictive
sometimes. For example, the following code will not work

taylor_sin = x -> x - x^3 / 6 + x^5 / 120;

test_fun = function x -> d
d = abs(sin(x) - taylor_sin(x));
// bad -- taylor_sin is invisible here

end

since taylor sin is a local variable in the scope outside the body of test fun
and therefore can not be accessed inside. One solution to this is passing the
value of taylor sin to the function

test_fun = function (x, f1, f2) -> d
d = abs(f1(x) - f2(x));

end
test_fun(1.25, sin, taylor_sin)

0.0009258624152

However, this may make the function calls more complicated. Sometimes there
are certain important data values that many functions need to use and share. It
would be convenient to store such a value in a public area that can be accessed
inside any function. Such a variable is called a global variable.

The Shang interpreter maintains a global variable that can be accessed any-
where. The name of this global variable is global. It is a structure whose
attributes can be used as if they were independent variables. For example, to
create and initialize or modify a global variable named volume, one can do

global.volume = 75

To reference a global variable, the keyword and the dot global. can be
omitted if the surrounding scope does not have a local variable with the same
name. For example

global.taylor_sin = x -> x - x^3 / 6 + x^5 / 120;

test_fun = function x -> d
d = abs(sin(x) - taylor_sin(x));
/* this will be ok */

end
test_fun(1.25)

0.0009258624152

Note that
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• in the body of text fun, taylor sin refers to the global variable, since no
local variable by the same name exists. Otherwise we must use global.taylor sin.

• sin is already a global variable (i.e., an attribute of the global structure),
which stores the built-in function sin.

Function definitions are usually stored in global variables. In the case of C and
most other programming languages, functions are special structures and are not
stored in variables, but are globally accessible. However, global variables that
store other forms of data should not be used excessively. They should not be
used in place of normal function argument passing. Too many global data will
make the program hard to understand and problems hard to diagnosed.

A global variable can have a domain which limits the values that can be
assigned to the variable to a set. The domain is optionally declared when the
variable is first assigned a value using the keyword in. For example, a global
variable defined as follows can only take one of the three values 0, 1, or 2.

global.u = 1 in {0, 1, 2};

After this, a command global.u = 3 will fail and cause an error, since 3 is not
in the domain of global.u. Note that domain can only be specified once. If
domain is not specified when the variable is created, it has a default domain
ALL, which is the set of everything.

6.3 Return value of a function

The return value is the value of the output argument when the function call is
finished. So no explicit ”return value” statement is needed. Since the output
argument is a local variable, it is initialized to null in the beginning of the
function call. If output variable is never reset during the function call, then
null will be returned. Of course, usually it should be assigned a value.

If a function does not intend to return any value, then there is no need to
specify the output argument variable. The header of the function should look
like

f = function x -> ()
...
...

end

In this case, the function call f(x) still returns the null value back to the caller.
(the null value is equal to an empty list, or an empty matrix, represented the
symbol (), or []).

6.4 return statement

The return statement can be used to terminate the execution of the function
immediately. For example, the following function enters a loop and repeat
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some commands untill done is true. It then executes the return command and
terminates the function call.

f = function x -> y
done = 0;
...
while 1

...
if done

y = some_value;
return;

end
...

end
end

The return statement doesn’t take any argument. To return a certain value,
one may assign the value to the output argument prior to the return statement.

6.5 Calling a function

To call a function f with argument value x, one can write either

f(x)

or

f * x

In other words, you can view ”f of x” as ”multiply x by f”. Conversely, whenever
A * B is defined, one can use A like a function.

If f takes more than one input argument, one can either call the function
with the correct number of arguments, or call it with a single argument, which
is a list whose length is equal to the number of input arguments of the function
definition. For example

f = (x, y, alpha) -> (x^alpha + y^alpha)^(1 / alpha);
s = (3, 4, 2);
f(s) // equivalent to f(3, 4, 2), and f * s as well

On the other hand, if the function definition has only one input argument,
it’s still possible to call it with more than one actual arguments, in which case,
the arguments will be wrapped as a list and the list is passed to the function.
This provides a simple way to implement variant argument list.

f = function x -> s
s = 0;
for k = 1 : #x
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s += x # k;
end

end

f(2, 3, 5, 7, 11)
28

In general, no matter how the function f is defined, the signature can be
represented as f = function x -> y, where x and/or y can be single variable,
list of variable, or empty list.

6.6 Pass Functions as Input and Output Argu-
ments

The definition of a function can appear anywhere a data value is expected.
Function is a data type and can be stored in a variable, therefore there is no
trouble passing a function as input argument, or returning a function as an
output argument. For example

>> f = g -> abs(g(0));
>> f(sin)

0
>> f(cos)

1

The one-linear definition of a function can be used directly

>> f = g -> abs(g(0));
>> f(x -> sqrt(3 + x^2))

1.732050808

>> select_func = function code -> f
if code == ’s’

f = sin;
elseif code == ’c’

f = cos;
elseif code == ’a’

f = sin + cos
else

f = x -> sqrt(1 + x^2);
end

end
>> f = select_func(’a’);
>> f(pi/4)

1.414213562

Also, it is very common and easy to use nested functions — function defini-
tions inside function definition. For example
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create_func = function d -> func
...

func = function x -> y
y = sqrt(x^2 + 1);

end
end

When create func is called, it creates a function f and return it. Note that
inside the definition of func, the value of input argument d is not accessible,
so it may seem impossible to create a function based on the input value of
create func. Actually there are two ways to get around this – parameterized
functions (See 6.8) and partial substitution (See 6.10).

6.7 Argument Passing

All input arguments are passed by value. Therefore assigning values to the input
arguments inside the function definition will not alter the original values of the
arguments of the caller.

>> f = function x -> y
x = x^2 + 1;
y = sqrt(x);

end
>> p = 25;
>> f(p)

25.01999201
>> p

25

If it is desired to change the value of a local variable using a function, one
can either assign the result of the function call to the variable, or pass a pointer
(See 8.2) to the function.

6.8 Return Multiple Output Arguments

If the output argument in the function header contains a list of names, then
each of these name will become a local variable for the function. At the end of
the function call, a list will be built using these output variables and returned
to the caller. For example

>> summary = function x -> (mean, min, Q1, median, Q3, max)
x = sort(x);
n = length(x);
s = x[1];
min = x[1];
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max = x[1];
for k = 2 : n

if x[k] < min
min = x[k];

end
if x[k] > max

max = x[k];
end
s += x[k];

end
mean = s / n;

global.findmedian = function y -> md
N = length(y)
if N % 2

md = y[(N + 1) / 2];
else

md = (y[N / 2] + y[N / 2 + 1]) / 2;
end

end

median = findmedian(x)

if n % 2
Q1 = findmedian(x[1 : (n + 1) / 2]);
Q3 = findmedian(x[(n + 1) / 2 : n]);

else
Q1 = findmedian(x[1 : n / 2]);
Q3 = findmedian(x[n / 2 + 1 : n]);

end

end
>> s = summary([3, 5, 2, 1, 9, 10, 22])

(7.42857, 1, 2.5, 5, 9.5, 22)

The function returns a single value, which is list of all output arguments. We can
use a multi-assignment statement to pass all the list assignments to individual
variables of the caller

(mean, min, Q1, median, Q3, max) = summary([3, 5, 2, 1, 9, 10, 22]);

6.9 Function Parameters

Sometimes the terms function argument and function parameter are used
interchangeably. In Shang language, they are different. Apart from input and



6.9. FUNCTION PARAMETERS 79

output arguments, a function may have a number of parameters. These are
attributes of the function that can be used to modify the behavior of the function
after the function is created. A parameterized function can be viewed as either
a family of functions, from which one can pick given the parameter value, or a
function with a state that can be modified.

6.9.1 Parameter Syntax

To specify a list of function parameters, one can include them in a pair of square
brackets and place the brackets right in front of the input arguments list in the
function header. The items in the parameter list are separated by commas. The
syntax of the simplest form of a parameter item is

parameter_name = intial_value

where parameter name is a name used to identify the parameter, initial value
is the initial value of the parameter

For example, the following defines a function f(x) = αx + β, with two
parameter α and β.

f = function [alpha = 3, beta = 5] x -> y
y = alpha * x + beta;

end

A parameterized function behaves like a class member that has attributes that
can be accessed using the dot operator. To refer to the value of a parameter
alpha of function f outside the function body (in a scope where f is visible),
one can use f.alpha. For example;

>> f = function [alpha = 3, beta = 5] x -> y
y = alpha * x + beta; // alpha is the value of the parameter

end
>> f.alpha

3
>> f.beta

5

To refer to the value of parameter alpha inside the function definition body,
one can simply state the parameter name, like in the above example. However,
if a local variable has the same name, the local variable has higher precedence.
In this case, alpha refers to the name of the local variable, while to access the
parameter named alpha, one needs to use this.alpha. Of course, this.alpha
always refers to a function parameter, whether there is a local variable alpha
or not. So the above function can also be written as

f = function [alpha = 3, beta = 5] x -> y
y = this.alpha * x + this.beta;

end
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Inside a function body, the keyword this refers to the function itself. The
following example illustrates the difference between a local variable and a pa-
rameter.

>> f = function [alpha = 3, beta = 9] () -> y
alpha = -5; /* now alpha is a local variable */
y = [alpha, this.alpha, beta, this.beta];

end
>> f()

-5 3 9 9

6.9.2 public parameter

If the parameter is specified with no modifier, or with the keyword public, it
is a public parameter. A public parameter is like a readonly local variable for
the function, which can be accessed but not modified by the function itself. But
its value can be extracted and reset in the scope where the function is visible.
For example

>> f = function [public alpha = 3, public beta = 5] x -> y
y = alpha * x + beta * y;

end

>> f.alpha
3

>> f.alpha = -5;
>> f.alpha

-5
>> f.beta = 10;
>> f.beta

10

It’s impossible to change the value of a public parameter inside the function
body. For example, if we do

>> f = function [public alpha = 3, public beta = 5] x -> y
alpha = 10;
...

end
>> f.alpha

3

we merely creates a local variable whose name is alpha and value is 10. And

>> f = function [public alpha = 3, public beta = 5] x -> y
this.alpha = 10;
...

end
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will result in a compile error. The purpose of this restriction is to reduce the
implicit behavior of a function. The owner (the surrounding scope) of a function
can always predict the behavior of a function as long as it only has public pa-
rameters because the function itself cannot change its public parameter values.

6.9.3 private parameter

If a parameter is declared with keyword private in front of the parameter
name, it is a private parameter. A private parameter is accessible but not
modifiable outside the function definition body, but can be reset within the
function during function execution. For example, in the following function, the
private parameter count keeps a record of the times f is called.

>> f = function [private count = 0] x -> y
this.count = this.count + 1;
...

end
>> f.count

0
>> f(1);
>> f.count

1
>> f(2);
>> f.count

3
>> f.count = 0; // !!! error ...

Inside the function body, to access a private parameter, this keyword must be
used. Internal parameters will add to the implicit behavior of a function, and
makes the function call results hard to predict, therefore they should be used
only when necessary.

6.9.4 common, auto, and readonly parameters

Function parameters can be also declared with keywords common, auto, or
readonly in front of the parameter identifier.

A readonly parameter is an attribute of the function that is accessible but
not modifiable inside or outside the function. However, its value can be modified
by other common or auto parameters.

common and auto parameters are both functions
A common parameter is an attribute of the function that is itself a function.

Its value is fixed (to the initial value, which is a function). It is like a utility
function which can be used to reset the values of readonly parameters.

An auto parameter is an attribute of the function that is itself a function
which takes no input arguments. When the auto parameter is accessed, the
function will be called automatically.

The following example will illustrate the uses of various parameters.
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polynomial = function [private coeff,
common setcoeff = function c -> ()

parent.coeff = c;
end,

auto roots = () -> polyroots(parent.coeff)] x -> y

y = polyeval(coeff, x);
end

6.9.5 Parameter Domain

Reseting a parameter’s value will alter the behavior of a function, therefore it
is necessary that a parameter is only allowed to be set to certain values. This
can be realized by specifying a domain for the parameter. For example

>> plot = function [coordinate = "cartesian" in {"cartesian", "polar"},
color_scheme = "bw" in {"bw", "rgb"}] (x, y) -> ()
...
...

end
>> plot.color_scheme = "rgb"; // ok
>> plot.color_scheme = "bs"; // !!! error

The general syntax for specifying the domain of a parameter is

[access_control_type] parameter_name [= initial_value [in domain]]

where initial value is the initial value of the parameter, domain is the do-
main of the parameter. initial value and domain are evaluated in the scope
surrounding the function definition. If the domain is specified, then the value
assigned to the parameter must belong to the domain. Otherwise an error will
occur.

The value of domain may be a finite set, which is defined using a pair braces,
like in the above sample function plot. Domains can also be functions that act
like sets. For example, we may use the following function to define a set of
positive numbers

pnumbers = x -> (x > 0);

Then we may use this function as the domain of a parameter

lf = function [alpha = 1 in pnumbers, beta = 0 in pnumbers] x -> y
y = alpha * x + beta;

end

Note that the set pnumbers can be represented using interval pnumbers = 0+
to inf, or using the built-in function R.

By using domains we ensure that parameters can only be set to valid values,
and then the function is never in an illegal state. Note that although you don’t
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have to provide a domain in the function definition, every parameter always
has a domain – the default domain for any parameter is the set that contains
everything – ALL. Since anything belongs to this set, having it as domain won’t
apply any restrictions to the values assigned to the parameter.

Spawn a New Function

A function is a value and can be stored in a variable. If f is a function,

g = f;

will create a copy of f and assign it to g. Any modification to g will not affect f.
Only functions that have parameters are modifiable. The following code makes
a copy of f and then modifies the copy.

f = function [alpha = 1] x -> y
y = sqrt(x^2 + alpha^2);

end
g = f;
g.alpha = 5;

Now we have two functions

f(x) =
√
x2 + 1, g(x) =

√
x2 + 25

Any function can act as a prototype and new functions can be “spawned”
directly from it. The syntax of spawning a new function is

f[parameter_value_1[, parameter_value_2, ...]]

where parameter value 1 is the value of the first public parameter, parameter value 2
the value of the second public parameter, etc. The parameter names must ap-
pear in the same order as in the original function definition, with non-public
parameters skipped. For example

f = function [alpha = 1] x -> y
y = sqrt(x^2 + alpha^2);

end
g = f[5];

g will be a function that is the same as f, except that its parameter alpha has
value 5.

It’s possible to combine function spawning and calling and pass the values
of arguments and parameters at the same time. For example

>> f = function [alpha = 1] x -> y
y = sqrt(x^2 + alpha^2);

end
>> f[5](3)

5.830951895
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6.10 Recursion

A function may call itself directly or indirectly. This is referred to as recursive
function call, and is very common feature of most programming languages. In
Shang there are three ways that recursion can be done. First, the keyword this
can be used inside the function to call the function object itself. For example

fac = function n -> f
if n <= 1

f = 1;
else

f = n * this(n - 1);
end

end

Inside the function body, this refers the function fac, therefore this(n - 1)
is a call to the function itself. The result of calling fac(n) will be the factorial
of n, i.e., the product of 1, 2, ..., up to n. This appears to be a neat solution for
doing recursion, but when calling a function itself indirectly is needed, it can’t
help. In this case the best strategy is to define the functions as global variables.
The following is an example of indirect recursion.

global.f = function x -> y
...
global.g(3);
...

end

global.g = function x -> y
...
global.f(3);
...

end

Here the two functions f and g call each other. We call this indirect recursive
function call. Note that direct recursion can be done like this as well.

global.fac = function n -> f
if n <= 1

f = 1;
else

f = n * fac(n - 1);
end

end

Note that the statement f = n * fac(n - 1) can be written as f = n * global.fac(n
- 1) as well.
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Finally, it’s also possible to implement recursion by passing the function to
itself as an input argument value (or set it to one of its parameter values). For
example:

>> fib = function (n, f) -> s
if n <= 1

s = 1;
else

s = f(n - 1, f) + f(n - 2, f);
end

end

which can be called as follows

>> fib(10, fib)
89

.

6.11 Partial Substitution

If we have a function f(x, y) = e−(x2+y2)
√
x2 + y2

f = (x, y) -> exp(-(x^2 + y^2)) * sqrt(x^2 + y^2);

we don’t have to pass the values of both arguments to f all at the same time.
Instead, we may pass the value of y to f, and leave x unspecified. The result is
a new function of x. An unspecified argument value is represented by a dot.

f1 = f(., 3)

Here the definition of function f1 is

f1(x) = e−(x2+9)
√
x2 + 9

We call such a function call a partial substitution.
In general, when calling a function, some input arguments can receive dots

as values, while the rest receive actual values. The result of such a function
call is a new function whose input arguments are those given dots, while the
arguments of the original function which do get values passed to are no longer
arguments of the new function. Here a dot means a missing or delayed value,
and corresponds to an argument of the new function. Calling the new function
is equivalent to calling the original function by two separate steps of argument
passing. For example:

>> f = function (x, y, alpha) -> s
s = (x^alpha + y^alpha) ^ (1 / alpha);

end
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>> f2 = f(., ., 2);
>> f2(3, 4) // equivalent to f(3, 4, 2)

5

A function call in which all argument values are dots will have no effect – it just
evaluates to the original function. For example, sin(.) is the same as sin.

With the support of partial substitution, we can write a general function,
which takes many arguments. Then for a particular application, all calls to the
master function may use the same values for some arguments. Then we may
create a customized version of the function by partially substituting these often
used argument values into the function. The calling sequence of the customized
function is more compact. For example, a plotting function may be designed to
take all the following arguments

plot = function (x, y, coord, line_style, color,
axis, xlabel, ylabel) -> graph

.....

.....
end

If every time we use the same choice of coordinates, line style, color setting,
axis, xlabel, and ylabel, then we can do

myplot = plot(., ., "cartesian", "solid", "bw", "boxed",
"population", "revenue");

to make a plotting function that takes only x and y as arguments.
Partial substitution provides an alternative way to function parameters for

customizing the behavior of a function after it is created. Unlike parameterized
functions in which some variable are predefined to be parameters, in partial
substitutions any of the input variables can be chosen as parameters. However,
in terms of performance it may be at disadvantage compared to the function
parameter approach since one more abstract level is added and two argument
passing steps have to be processed in order to perform a call to a partial sub-
stitution.

6.12 Default value of arguments

When defining a function the default value of an input argument can be specified
using the assignment operator =. When calling a function, the symbol * should
be given to each argument for which default argument value is intended. For
example:

>> f = function (x = 3, y = 5, z = 7) -> w
// define function w = f(x,y,z), with
// default argument values 3, 5, 7
...

end
>> f(*, 10, *) // equivalent to f(3, 10, 7)
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Here the default values of the 1st and 3rd arguments are passed to the function.
Function calls don’t have to match the signature of the function definition

exactly. To be specific, there are the following situations.

• If the function call provides fewer arguments than the function definition
requires, the provided arguments will match from the begining of the
formal argument list, and the missing arguments are given the default
values. For example, if f is called by f(3), it is equivalent to f(3, *,
*).

• If the function definition requires only one argument, and a function call
receives more than one arguments, then these arguments are wrapped as
a list and passed to the function.

• If the function definition requires more than one arguments, and a function
call receives only one arguments, and this argument is a list of the same
length as the formal argument list of the function definition, then entries
of the provided argument list will be extracted and passed to the function.

Another fact is that every function argument has a default default value.
The default default value of an input argument is null (which is the same
as the empty matrix []). Of course, unless the function definition code does
something to handle default default value, using it directly will usually cause
an error.

6.13 Domain of Function Argument

The definition of a function may specify the domains of input or output argu-
ments. Domains are sets to which the values of arguments must belong. When
a function is called, the interpreter first evaluate all the arguments passed, and
then check if each is in the corresponding domain. If the domain check is passed,
then the argument values as well as the program control are passed to the func-
tion. Otherwise a domain error is raised and the function will not be executed.
When the function call is finished, the interpreter also checks if the output vari-
able value is in the domain of the output argument. If not, the value will not
be returned, and a domain error is caused.

The domain of an argument is specified in the function header using the
following syntax

variable_name = default_value in domain

For example, the function header may look like

global._RP = (0+ to inf);
func = function (x = 1 in _RP,

options = "real" in {"real", "complex") -> y in _RP
...

end
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The above defines a function that takes two arguments x and options. RP is
the set of all positive numbers. So the argument x must be a positive number,
while options must be either "real" or "complex". The output argument
value y must be a positive number as well. Whenever func is called with invalid
argument values, the interpreter will complain.

>> func(-5, 6) // !! domain error ...

When function definition is processed, the default value and the domain
of an argument are evaluated in the scope surrounding the function definition.
Therefore they can be expressions containing the local variables of the surround-
ing scope, but they cannot make an reference to the other argument names of
the function definition. For example

x = 3;
p = function (x = x) -> (y = x)

...
end

Here in (x = x) -> (y = x), the first x is the name of the formal argument,
while the second and third x are the default values of arguments and refer to
the value of the local variable x (whose value is 3) of the surrounding scope.

We may define a set, and then use it as the domain in a function definition
immediately

Dmx = x -> (x <= -1 || x >= 2);
Dmy = x -> (x >= -1 && x <= 2);

f = function (x = 3 in Dmx, y = 0 in Dmy) -> z in _RP
...

end

In practice sometimes the domains of two arguments are not independent of
each other. For example

f(x, y) =
1− x− y
x2 + y2

, 0 ≤ x ≤ 1, 0 ≤ y ≤ x

To fully represent this domain in Shang, we need to define a function of one
variable, which is either a vector, or a list of x and y.

Dxy = v -> (v[0] >= 0 && v[0] <= 1 && v[1] >= 0 && v[1] <= v[0]);

f = function v = [0, 0] in Dxy -> w
w = (1 - v[0] - v[1]) / (v[0]^2 + v[1]^2);

end

Note that if the domain of an input argument is given, a default value must
be provided. Otherwise the interpreter may find the default default value (=
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null) does not belong to the domain, and have difficulty processing a call to
the function that provides default argument value. On the other hand, one may
specify the default value but omit the domain. Whenever the domain is not
specified, a default domain, which is ALL, the set of everything, will be set as
the domain of the argument.

Programming languages can roughly be divided into two categories: stati-
cally typed, in which argument value must be of a certain type, and dynamically
typed, in which formal arguments can be any type. Shang has both the flex-
ibility of dynamically typed language and the rigorousness of statically typed
language. It is in fact superior to statically typed language with respect to
type-checking since the domain is a set, which can be much more expressive and
specific than a type. Many times, being a value of certain type doesn’t guarantee
that the argument is a valid one. For example, if an argument a represent age.
Statical type checking only guarantees that a is an integer, while in Shang, the
domain of a can be a customized set that contain all valid ages, such as integers
between 0 and 150.

6.14 Calling functions using named arguments

To pass argument values to a function, an alternative way is to use a pair of
braces, and “name” the arguments. For example, instead of f(3,9), one can
use

f{x=3, y=9}

Here x and y must be the same formal argument names declared in the definition
of the function.

Calling functions this way has two advantages. Firstly, the order of the
arguments doesn’t matter. For example f{x=3, y=9} and f{y=9, x=3} would
be the same. Secondly, you don’t have to pass a value for every argument. Any
arguments not named in the braces will take default values (specified in the
function definition).

Note that an expression {x=3, y=9} is exactly the same as the syntax for
defining a structure with fields x=3, y=9. So passing arguments as named
parameters is similar to passing a structure to the function.

6.15 Built-in functions

A built-in function is a function provided by the interpreter system. It is com-
piled from C code and can be called the same way as a user defined function.
For example, rand is a built-in function that that generates random numbers
and matrices, length is a built-in function that returns the length of a vector
or matrix, and cos is the trigonometric function cosine.

>> x = rand(5, 1);
>> length(x)
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5
>> cos(pi/4)

0.7071067812

The complete list of the built-in functions is given in the appendix.
Like user-defined functions, built-in functions can have parameters as well.

For example, the built-in function normal which generates (pseudo) random
numbers of normal distribution has five parameters mu, sigma, pdf, prob, and
quantile. mu and sigma are the mean and standard deviation of the distribu-
tion.

>> normal(1)
0.5723149278

>> normal(2)
1.64
-0.559

>> normal.mu
0

>> normal.sigma
1

>> normal.prob(-inf, 0)
0.5

The two parameters mu and sigma are modifiable. Their initial value are mu =
0 and sigma = 1 respectively. If we want a non-standard normal distribution
random number generator, we may make a copy of normal and reset the values
of mu and sigma

>> my_normal = normal;
>> my_normal.mu = 10;
>> my_normal.sigma = 2;
>> my_normal(1)

8.029350953
>> my_normal(2)

12
10.9

>> my_normal.prob(-inf, 10)
0.5

Note that normal is a global variable and can only be modified using the global
keyword, therefore normal.mu = 10 doesn’t work. But in my normal = normal,
normal does refer to the global variable normal, since here we are not try-
ing to alter its value. The assignment my normal = normal assigns a copy of
global.normal to my normal, which can then be modified.

It’s very easy to override the definition of a built-in function. Locally defined
variables have higher precedence. Once they are defined, they will replace the
built-in definitions.
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>> sin = x -> x - x^3 / 6;
>> sin(6)

-30

However, an overridden built-in function is not lost. Actually all built-in func-
tions are attributes of the global variable builtin. So they can always be
accessed using builtin.name. For example

>> sin = x -> x - x^3 / 6;
>> sin(2.5*pi)

-72.891530550
>> builtin.sin(2.5*pi)

1

6.16 Pseudo Functions

Pseudo functions are structures that act like functions that are neither built-in
nor generated from user written function code. They are created from existing
functions or other data based on certain rules.

6.16.1 Operations on functions

It’s possible to add or multiply two functions, subtract one from another, divide
one by another, and compose (chain) two functions (user defined, built-in, or
defined in any other way). The result is called a pseudo function, and can be
used anywhere a function is expected.

The operators for function addition and subtraction are + and -, while the
operators for function multiplication and division are &* and &/ respectively.
The operator for function composition is <>. For f + g, f - g, f &* g, and f

Operator Definition
h = f + g f(x) = f(x) + g(x)
h = f - g f(x) = f(x) - g(x)
h = f &* g f(x) = f(x) * g(x)
h = f &/ g f(x) = f(x) / g(x)
h = f <> g f(x) = f(g(x))
h = -f f(x) = -f(x)

&/ g, f and g should have the same signature, i.e., they take the same number
of input arguments, and return two values that are compatible for addition,
subtraction, multiplication, and division respectively.

For f <> g, the number of output arguments of g should be the same as the
number of input arguments of f.

For example
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>> f = sin + cos;
>> f(pi/4)

1.414213562

>> p = sin &* cos;
>> p(pi/4)

0.5

>> g = sin - cos;
>> g(pi/4)

-1.110223025e-16

>> h = log <> sin;
>> h(pi/2)

0

Note that in the above, f and g don’t have to be both ‘real’ functions – they
can be pseudo functions, or anything that can be used as functions, such as
numbers or matrices. If either operand is a function, the operation will create
a new pseudo function. For example

f = sin + 2

will create a function f(x) = sin(x) + 2x. Note that 2 as a function means x
-> 2x instead of x -> 2.

6.16.2 Function Matrix

Function vectors or matrices are vectors or matrices whose entries are functions
instead of numbers. When they are called, the argument is passed to each
element function, the outcome is a vector or matrix built from the return values
of each element function call. For example

f = [cos, -sin; sin, cos];

defines a function

f(x) =
[
cosx − sinx
sinx cosx

]
>> f = [cos, -sin; sin, cos];
>> f(pi/4)

0.707 -0.707
0.707 0.707

Note that the elements of the matrix can be data of other type that can be used
as functions, and are not restricted to functions (user or built-in). As long as
one element is a function, the whole matrix is evaluated to a function matrix.
The following example creates a function matrix
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f = [exp <> cos, 2; x -> sqrt(1 + x^2), exp <> (-sin)]

which represents the following function

f(x) =
[
ecos x 2x√
1 + x2 e− sin x

]
Note that <> is the symbol of function composition.

In general, all the elements of a matrix function should have the same number
of input arguments, and the return values should be compatible for building a
matrix.

6.16.3 Everything is a function

In Shang, function is a facet of almost any data type, therefore almost anything
can be used as a function. In particular,

• If A is a number or matrix, then A(x) = A * x.

• If A is a hash table and x is a key, then A(x) = A @ x.

• If A is a set, then A(x) = 1 if x is in A, and 0 if x is not in A.

• If A and B are strings, then A(B) is non-zero if A is a substring of B, and
zero otherwise.

• If A, and x are two lists with the same length, then

A(x) =
#A∑
k=1

[A#k][x#k]

• If A is a regular expression and B is a string, then A(B) is non-zero if B
matches A and zero otherwise.

• If A is a class, then A(x) is non-zero if x is a member of A, and zero
otherwise.

• If A is an member of a class that has multiplication operator overloaded,
A(x) = A * x.

For example, the function f(x, y) = 5x − 3y can be created by f = (5, -3),
while the function

f(x) =



0, x = 1
1, x = 2
2, x = 3
3, x = 4
4, x = 5
5, x = 0

can be created by

f = {0 => 1, 1 => 2, 2 => 3, 3 => 4, 4 => 5, 5 => 0};
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6.16.4 Turn a matrix into a function

A matrix (or a number) is already a linear function via the multiplication oper-
ation A(x) = Ax. Yet, it’s also possible to turn the matrix indexing expressions
into functions of the index.

• If A is a vector (a 1×n or n×1 matrix), then f = A[.] creates a function
of one variable such that f(x) = A[x].

• If A is matrix, then f = A[., .] creates a function of two variables such
that f(x, y) = A[x, y].

• If A is matrix, then f = A[., :] creates a function of one variable such
that f(x) = A[x, :], which gives the x-th row of A.

• If A is matrix, then f = A[:, .] creates a function of one variable such
that f(x) = A[:, .], which gives the x-th column of A.

• If A is matrix, and k is a constant (a scalar or vector that is a valid column
index for A), then f = A[., k] creates a function of one variable such that
f(x) = A[x, k].

• If A is matrix, and k is a constant (a scalar or vector that is a valid row
index for A), then f = A[k, .] creates a function of one variable such
that f(x) = A[k, x].

For example

>> s = floor(rand(5) * 10)
5
3
0
7
2

>> fs = s[.];
>> fs(1)

5
>> fs(3)

0

Another example

>> s = floor(rand(5, 5) * 10)
7 0 5 8 3
9 0 3 7 8
1 6 6 7 9
2 5 5 3 2
1 2 5 5 0

>> fr = s[., :];
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>> fr(1)
7 0 5 8 3

>> fr(3)
1 6 6 7 9

>> fc = s[:, .];
>> fc(1)

7
9
1
2
1

>> fc(3)
5
3
6
5
5

Sometimes a structured set of data is stored most efficiently in a vector or
matrix. However a client function that needs to use the data may expect a
function that returns one data item given an index. In such a situation we can
store the data in a matrix A, and pass A[.] whenever the client function is
being called.
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Chapter 7

Class and Member

A class is a set whose members are data values ‘created’ by the set itself. Each
member of a class is a structural value whose attributes are prescribed in the
class definition. A class definition includes a constructor, which is a function
used to create new class members, and specifications of other member attributes.
When a new class member is created by calling the constructor, the member
will possess the member attributes. Member attributes can be any data type
including functions. An attribute function may access or modify the other
attributes of the member.

7.1 Class definition syntax

A class definition starts with the keyword class, and ends with the keyword
end, with a number of attribute declarations in between.

class
attribute_1;
attribute_2;
attribute_3;
....
attribute_N;

end

There are two types of attributes, those for the members of the class and
those for the class itself. They are called member attributes and collective at-
tributes respectively.

To define a member attribute, one needs to specify the type of access control

access_control_type identifier [= default_value [in domain]]

where the specification of default value and domain is optional. To define a
collective attribute, one starts directly with the name of the attribute (which
currently can only be one of new, super, or title).

97
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7.2 Access Control of Member attributes

There are four types of access controls for member attributes, which are public,
private, common, and auto.

7.2.1 public

A public attribute is accessible to and modifiable by both attribute functions
of the same member and the surrounding scope of the member. For example

circle = class
public radius = 1;
auto perimeter = () -> 2 * pi * parent.radius;
auto area = () -> pi * (parent.radius)^2;

end

in which radius is a public attribute, and perimeter and area are two auto
attributes. If x is a circle, then one can use x.radius to find its radius, and
use x.radius = new value to reset its radius to a new value. The new value
assigned to a public attribute must belong to the domain of the attribute,
which, by default, is ALL.

Inside an attribute function, to access another attribute of the same member
of the class, the keyword parent must be used. In the above example, if x is a
member of circle class, then in the surrounding scope of x, the radius of x is
x.radius, while inside an attribute function (such as perimeter and area) of
x the radius of x is referred to as parent.radius.

7.2.2 private

A private member attribute is not visible outside the definition of the class, but
can be accessed and modified by other attribute functions of the class member.
For example

>> circle = class
private radius = 1;
common getRadius = () -> parent.radius;
// access parent.radius is ok here
common setRadius = function x -> ()

if x > 0
parent.radius = x;

end
end

auto perimeter = () -> 2 * pi * parent.radius;
auto area = () -> pi * (parent.radius)^2;

end
>> p = circle.new();
>> p.radius; // Error: accessing private attribute
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>> p.getRadius()
1

>> p.setRadius(12);
>> p.getRadius();

12

Here radius is private attribute and cannot be accessed outside the class. But
other attribute functions (getRadius and setRadius) can access it using the
parent keyword.

7.2.3 common

A common attribute must be a function, and can not be modified, and its code
is therefore shared by all members of the same class. When declaring a common
attribute, the default value (a function definition) must be provided, and will
become the attribute value of all members of the class.

In the previous example, the two functions getRadius and setRadius are
common attributes. Common attributes as functions can be called outside or
inside the class, but they cannot be modified. For example

>> circle = class
...
common setRadius = function x -> ()
if x > 0

parent.radius = x;
end

end
...

end
>> p = circle.new();
>> p.setRadius = function x -> ()

...
end

Error: modifying common attribute

If setRadius is declared as public, then we can still use it almost the same
way, but we’ll be free to assign new values to the setRadius attribute of any
individual member of circle.

7.2.4 auto

An auto attribute is essentially a special common attribute. It is a read-only
function, therefore the values of the attribute for all members of the class are
the same as the default value given in the class definition, which is a function,
and cannot be modified after the class member is instantiated. But an auto
function must take no input argument, and therefore the header looks like
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auto f = function () -> y
...
...

end

Normally if f has no input argument, it should be called by appending a pair of
empty parentheses, as in f(). Here suppose that u is class member. If f were a
common attribute, we would have to call it by u.f(). The only difference made
by being an auto is now f can be called by u.f without the empty parentheses
enclosure. For example

circle = class
public radius = 1;
auto perimeter = () -> 2 * pi * parent.radius;
auto area = () -> pi * (parent.radius)^2;

end

If x belongs to the circle class, to find its area, one only needs to write x.area.
But manually setting x.area to new value using x.area = new value is not
allowed, since x.area can only be automatically calculated using the attribute
function.

7.3 Domain of Attribute

The attribute radius of class circle obviously should be a positive number.
Does being public mean that any absurd value can be assigned to it, and the
circle class member is still legitimate? Actually, an attribute definition may
also include a domain, which is the set of all allowed values of the attribute.
The Shang interpreter monitors every value assigned to an attribute, attempt
to set an attribute to an invalid value will be stopped.

The syntax for specifying the domain of an attribute is the keyword in
followed by a set.

global._RP = (0+ to inf);
circle = class

public radius = 1 in _RP;
auto perimeter = () -> 2 * pi * parent.radius;
auto area = () -> pi * (parent.radius)^2;

end

Here RP is a global variable predefined to be the interval of all positive scalars.
With this domain specified, now only positive numbers can be assigned to the
radius field.

When an attribute is declared without specifying a domain, its domain will
be the default value ALL, which is the set of everything. Note that whenever
a domain is specified, the default value of the attribute must also be specified,
since the default constructor of the class will create a member of the class that
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has only default values. If no default value is given, then null is used. But
then if there is a domain defined, null may not be in the domain, and the
constructor may return an invalid object.

Domain is most useful for public attributes. In the following example, each
attribute of a person is public, and therefore can be accessed and modified
directly. Yet, only valid values can be assigned to the attributes. In many lan-
guages, to protect the integrity of data, such attributes must be made private,
and direct access to them disallowed. Instead, function attributes called “get-
ters” and “setters” are used to access and modify their values (see the example
in 7.2.1).

person = class
public gender = "M" in {"F", "M"};
public age = 1 in 1 : 150;
public first = "Mark" in ~/[A-Za-z][A-Za-z]*/;
public last = "Brown" in ~/[A-Za-z][A-Za-z]*/;

end

Although domain makes most sense in the case of public field, a private field
can have a domain as well.

7.4 Collective attribute

A record in the class definition that begins with no access type is a collective
attribute. It is not created for any particular class member, but belongs to the
class itself. Currently only three collective attributes can be defined, which are

• title: must be a character string. It is meant to give a brief description
of the purpose or functionality of the class.

• new: must be a function. It is the constructor of the class, and used to
create new members of the class.

• super: must be a class or a list of classes. It is the super class(es) from
which the current class inherit attributes.

All the collective attributes are optional. The following is a class which has all
the three collective attributes.

global.circle = class
super = global.ellipse;
title = "circle";
new = radius -> ();

public radius = 1 in _RP;
auto longaxis = () -> parent.radius;
auto shortaxis = () -> parent.radius;
auto area = () -> pi * (parent.radius)^2;
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auto perimeter = () -> 2 * pi * parent.radius;
end

7.5 The Constructor

The constructor of a class is a collective attribute named new. It must be a
function that has no output argument. The constructor is just like a normal
function, which makes no mentioning of the class. The result of calling the con-
structor is the creation of a class member. Any local variable of the constructor
whose name matches that of a member attribute of the class, will be assigned to
the corresponding attribute of the class member. Any attribute of the member
whose name is not a local variable of the constructor will be given the default
value.

A very simple and effective way to write a constructor is to write a one-liner
function. For example

student = class
public name = "xxx xxx";
public id = "000000";
public age = 18;
...
new = (name, id, age) -> ();
end

At first sight, the constructor may appear to be doing nothing at all. Actu-
ally, when the constructor is called with three input arguments, a function stack
is created which has three local variables named name, id, and age. The values
of the three local variables are the arguments passed to the constructor when
it’s called. Because all these three names are also names of member attributes
of the class, a class member is created whose name, id, and age attributes are
the input arguments of the constructor.

In this example the constructor simply uses the input arguments as values
of member attributes without any checking. If one would like to manually check
the validity of the input arguments, one can write some code in the constructor
to do so. If the checking fails, error can be generated and new class member is
not created. Note that if the definition of each member attribute has a domain,
then even if the constructor does no explicit value checking, the domain-checking
is still performed. Therefore a simple constructor like the above one may still
be sufficient.

In the absence of a constructor, when the class definition is processed the
interpreter will generate a default constructor. When the default constructor is
called, it will create a member of the class all of whose attributes have default
values. Note that the default constructor is equivalent to

class
...
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new = () -> ();
...

end

7.5.1 Multiple Constructors

A class definition can have only one collective attribute called new. However,
new as a function can accept different numbers of arguments, which makes it
possible to initialize a class member in different ways. For example

student = class
public name = "xxx xxx";
public id = "000000";
public age = 18;
...
new = function args -> ()

if #args == 3
name = args # 1;
id = args # 2;
age = args # 3;

elseif #args == 2
name = args # 1;
id = args # 2;

else if #args == 1
name = args;

end
end

end

7.6 Inheritance

When defining a new class, all the member attributes of an existing class can
be inherited. The existing and the new class are called super and sub classes
respectively.

The super class of a sub class is specified in the sub class definition by setting
the super collective attribute to a value. For example:

global.person = class
public name = "???";
public dob = "???";
public gender = "F";
...

end

global.student = class
...
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super = person
end

Here person should be a value visible in the surrounding scope of the defi-
nition of student class. Usually it should be a globally defined class name. To
avoid potential name clashes, one can use

super = global.person

Now student is a sub class of person, all attributes defined for person will
be created for any member of student as well. For example

>> s = student.new();
>> s.name // check s’s name, which is inherited from ’person’
>> s.dob // check s’s dob, which is inherited from ’person’

There is no language facility provided for calling the constructor of the super
class automatically. The sub class needs to write a constructor to handle the
initialization of the inherited attributes.

7.7 Multiple Inheritance

When defining a class, the attributes of more than one classes can be inherited,
and each of such a class is called a super class. To realize this, the super
collective attribute in the class definition should be set to a list of classes.

super = {s1, s2, s3}

7.8 Attribute name clash

When defining a class, attributes must have different names. However, an at-
tribute inherited from a super class may have the same name with an attribute
defined in the class itself. And attributes with same names may be inherited
from different super classes. In Shang the attribute defined in a class definition
always has higher precedence than inherited attributes. For example, if class z
has a member attribute bark but also inherits a member attribute bark from a
super class. If m is a member of z, then m.bark refers to the attribute defined
in z not in the super class. But if z doesn’t have a bark attribute, m.bark of
course refers to the attribute of the super class.

If there is a name clash, the keyword as can be used to clarify which class
is referred to. For example, if m belongs to both S class and T class, and both
classes have member attribute fern, then one can use (m as S).fern or (m as
T).fern to eliminate the ambigulty.
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7.9 Validation of member attribute modification

Normally a class behaves the way it’s designed to. However, if it inherits from a
super class, in theory, its members automatically have all the member attributes
of the super class, and some of these attributes may reduce a sub class member
into illegal state. For example, consider a circle class that inherits from a super
class ellipse. The two axes of an ellipse x are called x.a and x.b. x is considered
an ellipse if x.a is equal to x.b. However, x as an ellipse may be able to change
the values of a or b so that x.a is no longer equal to x.b. This will cause a
circle to enter an illegal state.

In Shang, a class may have a common attribute validate which verifies that
the state of the class member is valid. Whenever an attempt to modify a class
member is made, the modification will be temporarily made and then validate
is implicitly called. If it returns non-zero value, the validation is passed and the
modification will take effect. Otherwise, the modification will be reversed.

Note that validate is called whenever an update of class member state is
made. If x.a must equal to x.b in order for x to be valid, a simultaneous
assignment (x.a, x.b) = (v, v) must be done in order to pass validation.

global.ellipse = class
title = "ellipse";
public a = 1 in (0 to inf);
public b = 5 in (0 to inf);
auto longaxis = () -> max(parent.a, parent.b);
auto shortaxis = () -> min(parent.a, parent.b);
auto area = () -> pi * parent.a * parent.b;
new = (a, b) -> ();

end

circle = class
super = global.ellipse;
title = "circle";
auto radius = () -> parent.a;
auto longaxis = () -> parent.radius;
auto shortaxis = () -> parent.radius;
auto perimeter = () -> 2 * pi * parent.radius;
common set_radius = r -> ((parent.a, parent.b) = (r, r));
common validate = () -> (parent.a == parent.b);
new = (a, b) -> ();

end

u = circle.new(3, 3)
u.a = 5; // won’t work

Note that without the validate function, u.a = 5 will change u to an ellipse
with a = 5, b = 3.
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7.10 Class as a Set

A class is naturally also a set that contains all its members. When the class is
created, it is an empty set until the constructor is called and a member is added
to the set. As a set, a class can be used as the domain of a function parameter,
argument, or a class member. For example,

>> Dog = class
.....
.....

end

>> Spot = Dog.new();

>> Spot in Dog // check if Spot is a member of the dog class
1

>> Person = class
...
public dog in Dog;
...

end

Here a member of the Person class has an attribute dog, which has to be a
member of the Dog class.

7.11 Operator Overloading

Operators +, -, *, \, etc., can be performed on built-in numerical data types
(as well as some other types). Classes are meant to specify a representation
of user-defined data types. So what operators can be applied to members of
user defined class? Firstly, they have attributes that can be accessed by the
operator “.”. Besides the dot operator, if addition, subtraction, multiplication,
division and other operations are appropriate for the concept implemented by
the classes, they can be made available to be used on the class members directly.
This mechanism is called operator overloading.

The operators that can be overloaded are +, -, *, /, .*, ./, ^ , [],
., including the dot operator for attribute selection. To overload an operator, a
member attribute with a specific name needs to be defined. The operator and
the attribute names are given in table (7.1).

If class s is defined as follows

s = class
common _sum = y -> z
...

end
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Table 7.1: Overloaded Operators

Operator Attribute Name
+ sum
- sub
* mul
/ divide
\ backdivide
[] sqbracket
[,] sqbracket2
^ power
.* dotmul
./ dotdivide
. field

common _sqbracket = i -> z
...

end

common _dotmul = y -> z
...

end

common _field = str -> z
...

end
end

Then, if x is a member of class s, x+y is the outcome of x. sum(y), x[i] is the
outcome of x. sqbracket(i), x[i, j] is the outcome of x. sqbracket2(i,
j), x .* y is the outcome of x. dotmul(y), and x.str is the outcome of
x. field(str).

The following example uses overloading to define a sparse matrix class. Note
that in Shang does have built-in support for sparse matrix, which much more
efficient and feature rich.

sparsemat = class
private index = [1, 1];
private y = 0;

readonly nrows = 10;
readonly ncolumns = 10;
readonly size = 100;
readonly nzn = 0;
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new = function (nrows, ncolumns) -> ()
size = nrows * ncolumns;

end

common _subasgn = function (n, y) -> ()
if n >= 1 && n <= parent.size

indx = [fix((n - 1) / parent.ncolumns) + 1, (n - 1) % parent.ncolumns + 1];
for k = 1 : parent.nzn

if parent.index[k,:] == indx
if y == 0

parent.index[k,:] = parent.index[parent.nzn, :];
parent.y[k] = parent.y[parent.nzn];
--parent.nzn;

else
parent.y[k] = y;

end
return;

end
end

++parent.nzn;
parent.index[parent.nzn, :] = indx;
parent.y[parent.nzn] = y;

else
panic("index out of bound");

end

end

common _subasgn2 = function (idx1, idx2, y) -> ()
if idx1 >= 1 && idx1 <= parent.nrows && idx2 >= 1 && idx2 <= parent.ncolumns

indx = [idx1, idx2];
for k = 1 : parent.nzn

if parent.index[k,:] == indx
if y == 0

parent.index[k,:] = parent.index[parent.nzn, :];
parent.y[k] = parent.y[parent.nzn];
--parent.nzn;

else
parent.y[k] = y;
return;

end
end

end
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++parent.nzn;
parent.index[parent.nzn, :] = indx;
parent.y[parent.nzn] = y;

end
end

common _sqbracket = function n -> y
if n >= 1 && n <= parent.size

y = 0;
indx = [fix((n - 1) / parent.ncolumns) + 1, (n - 1) % parent.ncolumns + 1];
for k = 1 : parent.index.nrows

if parent.index[k,:] == indx
y = parent.y[k];
return;

end
end
y = 0;

else
panic("index out of bound");

end

end

common _sqbracket2 = function (i, j) -> y
if i >= 1 && i <= parent.nrows && j >= 1 && j <= parent.ncolumns

y = 0;
for k = 1 : parent.index.nrows

if parent.index[k,:] == [i,j]
y = parent.y[k];
return;

end
end
y = 0;

else
panic("index out of bound");

end

end

common _mul = function x -> b
if parent.ncolumns == x.nrows && x.ncolumns == 1

b = zeros(parent.nrows, 1);

for k = 1 : b.nrows
v = 0;
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for j = 1 : parent.ncolumns
v += parent[k, j] * x[j];

end
b[k] = v;

end
end

end

common _sum = function x -> b
if x in type(parent) && parent.nrows == x.nrows && parent.ncolumns == x.ncolumns

T = type(parent);
b = T.new(parent.nrows, parent.ncolumns);
for k = 1 : x.nrows

for j = 1 : x.ncolumns
b[k, j] = parent[k, j] + x[k, j];

end
end

end
end

end

7.12 Acquired Attributes and structure

A member of a class can acquire an attribute that is not a class attribute declared
in the class definition. Such an attribute is called an acquired attribute. To add
such an attribute to a member, we only need to use an assignment statement

A.attrib_name = value;

For example

x.color = "red";

Acquired attribute definition may also carry a domain.

x.color = "red" in {"red", "gree", "blue"};

Specification of domain can occur only at the first time the attribute is defined
(the first time a value is assigned to the attribute). If domain is not given,
the attribute will have the default domain, which is the set ALL. Subsequent
assignment to the attribute can no longer specify a new domain, and the assigned
value must belong to the domain of the attribute.

A structure is an object which doesn’t belong to any class. It therefore has
no class attribute and only has acquired attributes. To define such an object,
just enclose all attributes in a pair of braces.

solution = {x = 3.8, y = -5.2};
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New acquired attributes can be added to the object and updated at any
time, and domain can be specified when it’s added.

It is worth mentioning at this time that the keyword global is a actually
structure that can be accessed in any scope. The attributes of global function
as global variables.
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Chapter 8

Conditional Class

Traditional classes are suitable for representing essential and static identities of
objects, but they may be too rigid and inflexible for describing nonessential and
volatile characteristics of objects.

A conditional class is a collection of loosely connected objects. Unlike a
traditional class, it doesn’t “create” new members using the constructor, but
issues membership to members of other classes that satisfy certain conditions.
Such memberships may be cancelled once the conditions are no longer satisfied.

By using conditional classes, it is possible to avoid unnecessary program-
ming complexity, too many levels of multiple inheritance, and frequent object
creations and destructions.

8.1 Defining a Conditional Class

The definition of a conditional class is similar to a regular class, except that

• the keyword conditional should be used instead of class,

• there are only common member attributes, but no public, private, or
auto member attributes.

• there are no new or super collective attributes. Instead, a conditional
class can have collective attributes named title and database. title is
a string and meant to be a brief description of the class, and database is
supposed to be a centralized database that stores the information of the
members. It needs to be a pointer so that member functions may alter its
value.

8.2 Utility Attributes

Three common member attributes join, validate, and withdraw are special
utility functions of the class, and should be defined according to the following
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specifications.

• join: this is a function that processes applications for memberships of
the class. It takes only one argument, which is the conditional class. Any
object o can try to join any conditional class cl, by calling obj.join(cl).
If obj satisfies the conditions of the class cl, the application is approved,
and the value 1 is returned. The join function may modify the object,
and may write a record to the database of the conditional class.

• validate: this is a function that verifies that a certain object is a member
of the class. This function is automatically called whenever an object acts
as a member of the conditional class, and tries to use a service function
of the class. validate takes one argument, which is the conditional class,
and returns a logical value. Having joined the class does not guarantee
an object remains a member of the class forever, so a verification is always
necessary.

• withdraw: this is the function that performs some tasks on a member of
the class when it withdraws from the class. It also takes one argument
(the conditional class).

Besides the utility attributes, a conditional class may have a number of
common or auto member attributes. These are the member services provided by
the class. Note that the first argument of any of the attribute function is always
the class itself, so that there is never a need to resolve name conflict between
different conditional classes. When an object tries to use any of the member
services, validate will be called. Only upon success of validate, the service
can be provided.

The following code defines an ellipse, a regular class and circle, a condi-
tional class.

The validate function of circle tests if a value x is an ellipse and if x.a
is equal to x.b.

The circle class has a member attribute function perimeter. To call it,
we need to specify the conditional class, e.g., x.perimeter(circle).

The validate function is automatically called when the systems tries to
evaluate x in circle or x.perimeter(circle).

global.ellipse = class
public a = 4 in _R;
public b = 3 in _R;
auto area = () -> pi * parent.a * parent.b;
new = (a,b)->();

end

global.circle = conditional
common validate = function sys -> r
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if parent in global.ellipse && parent.a == parent.b
r = 1;

else
r = 0;

end
end
common perimeter = sys -> 2*pi * parent.a;

end

c2 = ellipse.new(9,9);
c2.perimeter(circle)
c1 in circle

The following defines a conditional class called ratclub. In order to join
the ratclub class, an object must belong to the the Person class. Upon joining
the ratclub class, each new member is giving a ratid, and some information
of the member is recorded on file. Each time a member service is request, the
recorded information will be verified. If the verification fails, the request for
service is denied.

global.Person = class
public name = "John Smith";
public gender = "M" in {"M", "F"};
public phone = "911";
public birthdate = "06/01/1985";
public address = "123 Ashgrove cres., Stonycreek, ON";
private id = 92052;
public changeid = function newid -> ()

parent.id = newid;
end

common alterid = function newid -> ()
parent.id = newid;

end
auto getid = () -> parent.id;

end;

global.ratclub = conditional
database = newpointer(~);
common join = function sys -> r

if parent in global.Person
parent.ratid = # (sys.database)>> + 1;
(sys.database) >> # (parent.ratid) = {name =

parent.name, phone = parent.phone, address =
parent.address, gender = parent.gender, birthdate =
parent.birthdate, points = 500};
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r = 1;
else

r = 0;
end

end

common validate = function sys -> r
ratid = parent.ratid;
record = (sys.database) >> # ratid;

if (record.name == parent.name && record.gender ==
parent.gender && record.birthdate == parent.birthdate
&& record.address == parent.address &&
record.phone==parent.phone)

r = 1;
else

r = 0;
end

end

common contribute = function (sys, x) -> r
ratid = parent.ratid;
((sys.database) >> # ratid).points += x;

r = 1;
end

common check_points = function sys -> r
ratid = parent.ratid;
dbp = sys.database;
db = dbp>>;
record = db # ratid;
r = record.points;

end

end

x = Person.new();
x.join(ratclub);
x.check_points(ratclub)
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Pointers

A pointer is piece of data that contains the information about how to access
another piece of data. One may say that a pointer is the abstract address of
a variable. However, the implementation of pointer has no direct link with the
physical memory address of the variable.

When a pointer p contains the address of a variable x, we say that p points to
x. If two pointers have equal values, they would point to the same variable. This
makes it possible for different variables to share data, and create dependencies
among different modules of programs.

Pointer is supported in a manner so that programmers can build intricate
data structures when necessary, and yet are not forced to use pointers for nor-
mal tasks. Pointers are safe since there is no way to do pointer arithmetic,
and invalid pointers are detected by the interpreter to avoid interpreter failure.
More importantly, since it is not necessary to use pointers all the time, implicit
program behaviors can be minimized.

9.1 Pointer Syntax

The operator for creating and deferencing a pointer is >>. To create a pointer
that points to x, one can use

p = >>x

One can combine the two operators = and >>

p =>> x

One may read the above as “let p point to x”
To retrieve the value pointed to by p, one can use

v = p>>

One may read the above as ”Let v be the value that p points to”
To reset the value that p points to
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p>> = 3

or you may use

p >>= 3

There are two types of pointers. The first is created using

p =>> x

Here p is like the address of a local variable x, and through p >>= one can reset
the value of x. Such a pointer cannot be returned as function return value,
otherwise, referencing the return value will result in an error.

If p doesn’t exist, or p is not a pointer, then doing

p >>= 3

will create a pointer that points to a piece of anonymous data. This is similar
to the malloc function in C. Such a pointer can be return by a function. Here
the lvalue must be a variable.

There is also a built-in function newpointer that can be used to create a
new pointer pointing to given data. For example p >>= 3 is equivalent to

p = newpointer(3);

9.2 Pointers and Function Arguments

Shang passes arguments to functions by value, so the called function cannot
directly alter the value of an argument in the calling function since what it
receives is only a copy of the variable of the caller. For example, if one wishes
to write a function to interchange the values of two variables, the following will
not work

A = "AAA";
B = "BBB";
swap = function (a, b) -> ()

temp = a;
a = b;
b = temp;

end
swap(A, B);
A
B

since what swap receives are the copies of A and B.
However, if pointers to local variables are passed then it’s possible to modify

the values of the local variables of the calling function. For example, the swap
function can be implemented the following way
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A = "AAA";
B = "BBB";
swap = function (a, b) -> ()

temp = a>>; // temp gets the value a pointing to
a>>= b>>; /* the location a pointing to gets

the value b pointing to
*/

b>>= temp; /* the location b pointing to gets
the value of temp

*/
end

swap(>>A, >>B); // pass pointers to A and B to swap
A
B

When swap(>>A, >>B) is being executed, a copy of >>A and a copy of >>B are
passed to swap. However, those two copies still point to A and B respectively,
which are values of the local variables of the caller. Therefore, in function swap,
when updating the values these pointers pointing to, the values of the local
variables of the caller are altered.

9.3 Linked List

There are many ways to define a linked list. First we may select a domain for
the data (although it’s not necessary) we want to store on the list. Then we can
define a class for the list node. For example

global._RP = (0 to inf);

global.list_node_type = class
public data = 1 in _RP;
public next = [] in newptrnset(global.list_node_type);
new = (data, next) -> ();

end

Now to create a list of nodes and set the data we may do

head = list_node_type.new(0,[])
head.next = newpointer(list_node_type.new(1,[]));

p = head.next
p>>.next = newpointer(list_node_type.new(2,[]));

p = p>>.next;
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p>>.next = newpointer(list_node_type.new(3,[]));

p = p>>.next;

p>>.next = newpointer(list_node_type.new(4,[]));

9.4 Returning a Pointer

A function may return a pointer as the outcome of a function call. For example

create_array = function () -> p
p >>= ("a", "b", "c");

end
array = create_array();
array >> # 3

A returned pointer provides piece of data that does not belong to the local
storage of any function. Therefore several functions can work on the same data
by obtaining pointers to the data.

When a function call is terminated, the values of all the local variables are
lost. Therefore pointer to a local variable should not be returned. For example,
the following function

create_array = function () -> p
array = ("a", "b", "c");
p = >>array

end

is bad since the return value will not be usable. The function will compile fine.
But when the return value is accessed, an error will occur

array = create_array();
array >> # 3

9.5 Pointer and Class Member

A function may take a class member as argument, it cannot modify the values
of the attributes of the class member. For example, if there is a person class,
whose members have attribute hairlength, the following function won’t work

cut_hair = function p -> r
p.hairlength /= 2;

end

since the function cut hair will duplicate the argument passed to it and only
change the hair length of the duplicate. If we do want to alter the status of a
class member, we can pass a pointer to the class member to the function.
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cut_hair = function p -> r
p >>. hairlength /= 2;

end
p = person.new();
cut_hair(>>p);

9.6 Pointer and Program Efficiency

Pointers can be used to build structures like linked lists and trees, and share
data among functions and modules. Otherwise pointers can be avoided and
there is little need to use pointers merely for the sake of efficiency. In fact,
using pointer can often make the program less efficient as Shang pointers are
not really memory addresses and are implemented in an abstract manner to
ensure safety and generality.

When a function is called, the value of the argument is passed to the function
but the copy is not made until the function call attempts to alter the value of
the argument. So if the memory usage and performance cost of copying function
arguments has been a concern, one may just design the function such that the
argument values are not overwritten.

Similarly, assigning a to b does not cause a copy of a made immediately.
Although a to b are supposed to be independent data, they share the same
storage until one is being changed. Even when such an event occurs, the copying
process is still likely to be very efficient, especially when the variable is a list,
table, class, function, class or object, in which case, each component of the copy
is just a temporary link to the component of the old variable, except the part
that is being updated.

9.7 Use pointer to emulate reference

In the Java programming language, if p is reference to an object, then q = p
will make a reference to the same object, and statement like q.a = 0 will alter
the status of p as well. This is not the case in Shang, as q = p will make a
duplicate of p. If one wishes to emulate the behaviors of object references in
Java, one can design a front end class which has an attribute that is a pointer
pointing to the real data. Thus copies of the front end refer to the same data.
For example

global.person_data = class
public gender = "M" in {"F", "M"};
public age = 1 in 1 : 150;
public first = "Mark" in ~/[A-Za-z][A-Za-z]*/;
public last = "Brown" in ~/[A-Za-z][A-Za-z]*/;
new = (gender, age, first, last) -> ();

end
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global.person_ref = class
private data_p;

auto gender = () -> (parent.data_p) >>. gender;
auto age = () -> (parent.data_p) >>. age
auto first = () -> (parent.data_p) >>. first
auto last = () -> (parent.data_p) >>. last

new = function (gender, age, first, last) -> ()
data_p = newpointer(global.person_data.new(gender, age, first, last));

end

common set_gender = function x -> ()
(parent.data_p) >>. gender = x;

end

common set_age = function x -> ()
(parent.data_p) >>. age = x;

end

common set_first = function x -> ()
(parent.data_p) >>. first = x;

end
common set_last = function x -> ()

(parent.data_p) >>. last = x;
end

end

p1 = person_ref.new("M",25,"Derek", "Burke");
p1.set_age(29);

Now p1 acts as a reference to the actual person data. Copies of p1 are like
aliases of the same person. If a copy of p1 is updated, the original p1 will
undergo the same change.

p2 = p1;
p2.set_age(35);
p2.age

// ans is 35
p1.age

// ans is 35 also
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Errors and Exception
Handling

10.1 Parsing Errors and Run-time Errors

Parsing errors are those detected by the interpreter when examine the code and
translating it into commands executable by the computer. Most such errors are
related to syntax. When a parsing error is encountered the interpreter generates
an error message and stips the parsing of the rest of the program. For example

>> x = [3, 5,]
Error: unexpected closing bracket

A program may have passed the phase of parsing, but during execution may
still run into an abnormal event that must cause the program to abort. Such
an error is called a run-time error or exception. Typical run-time errors include
out-of-bound array indices and function domain errors. For example

>> s = function x -> y
y = x[1] + x[2];

end
>> s(3)

Error: index out of bound

When the above piece of code is processed, the interpreter doesn’t find any
syntax error. The expression s(3) appears to be ok since it’s very hard for the
interpreter to note the fact that function s expects a matrix with length at least
2. The detection and handling of such an error is delayed untill run-time.

A function may specify a domain, in which case, the interpreter may check
domain error during parsing time and detect such errors. In general it’s difficult
to tell what kind of errors are caught at which time unless user programs are
meticulously designed to ensure that all invalid argument values are caught by
the interpreter and not passed to the function.
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When an error occurs during the execution of a program, the default action of
the interpreter is to display some error message and information about where the
error occurs, and then execution of the commands and functions is terminated.
The interpreter returns to the interactive level and waits for new commands.

Alternatively, a user program may try to ‘catch’ and handle an error, and
continue to do other tasks from the point where the error is caught. This way
the program flow is not interrupted, and the interpreter is not brought all the
way down to the user interactive level.

10.2 Raising Exceptions

Whenever an unexpected error occurs, the throw statement can be used to
“throw” an exception, and abort the current function (all subsequent commands
in the function will be skipped). The program flow is reduced to the user inter-
active level, unless the thrown exception is caught by a ‘catch command. The
throw statement takes a single parameter, which is an identifier (not quoted)
used as the name of the exception. All the exceptions are stored as global names
and form their own name space. There is no need to pre-define an exception.
At the first time an exception is thrown or caught, the exception will be defined
and the name added to the database of exceptions, and can be referred to later.

10.3 Handling Exceptions

To catch an exception that may occur during the execution of a sequence of
code, one can enclose the code in a try -- catch block as follows

try
...
throw exception_name;
...

catch exception_name
/* exception handling commands here */

end

where exception name is an identifier used to represent the exception. All the
names of exceptions form a global name space and are independent from local
or global variable names. For example

function T = rctrap(f, a, b, n)
x = [a, b];
try

y = f(x);
catch no_vec

// f is not vectorized; proceed accordingly
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end
// f is vectorized; ...

...
end
hump = map x -> y

if x.length != 1
throw no_vec;

end
// other stuff

end

In this example, the function hump is not vectorized and throws an exception
no vec if called with a non-scalar. The function rctrap takes a function as the
first argument and expects it to be vectorized. It catches the no vec exception
and does not perform the computations if the argument passed to it throws the
error.

At present, errors caught by the interpreter are not (yet) exceptions and
cannot be caught. Example of such errors are index out of bound error, unde-
fined data attribute, etc.. When such errors occur, the interpreter returns to
the user-interactive level, and the variables at the interactive level and global
variables are left with uncertain values. This might be an inconvenience but
it’s possible to write throw/catch blocks to manually detect, throw, and handle
these errors and bypass the interpreter’s automatic error handling mechanism.
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Chapter 11

File, Input, and Output

In this chapter we present some of the facilities that enable the programs to
intereact with their environment, i.e., the operating system and the user. At
present our implementation is just the frontend of a minimalistic selection of the
C standard input and output library routines. More operating system specific
functionalities will be added later.

11.1 File

The file access model is closely based on the standard C library stdio.h. An
opened file is a value and can be assigned to a variable. The file value has
a number of attributes that make it possible for the program to check the file
status and read from/write to the file.

A file object is not the same as the file stored on the computer. It exists
only after the physical file is opened as an I/O stream associated with the
interpreter program. Once it is closed, the file value ceases to exist in the
perspective of the Shang interpreter (until the file is reopened).

A file is created using the built-in function fopen

f = fopen("file_name", "mode");

where file name is the path of the file that is absolute or relative to the current
working directory, and mode is the string that contains the options. The valid
modes are

r: open text file for reading

w: create text file for writing; discard previous contents if any

a: append; open or create text file for writing at end of file

r+: open text file for update (i.e., reading and writing)

w+: create text file for update; discard previous contents if any
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a+: append; open or create text file for update, writing at end

The mode may contain an additional character b, such as w+b, which indicates
a binary file.

If fopen is called successfully, the returning value is a file, which has the
following attributes (assuming that f = fopen(fname, mode) has been exe-
cuted):

f.name: a string that contains the absolute path of the file name

f.mode: the mode of the file

f.status: 1 if the file is open, or 0 if it’s closed.

f.readline(): reads a line from the file. If end of file is reached, null is
returned.

f.writeline(str): writes a line of text string str to the file.

f.close(): closes the file.

f.open(): open the file (if it’s closed).

f.eof: 1 if the current position of the file is at end, 0 otherwise.

f.read(n): read n bytes from the file. Return value is a vector of bytes.

f.write(x): write data x (a character string, a scalar, or a vector) to the file.

f.rewind(): set the current position to the beginning of the file.

f.flush(): causes any buffered but unwritten data to be written. the output
buffer of the file.

f.getpos(): get the current position (an integer) of file.

f.setpos(n): set the current position of a file to a given value.

f.tell(): get the current position (an integer) of file.

f.seek(whence, offset): set the file position of the stream to a given offset.
whence can be "beginning", "current", or "end".

Example: the following makes a copy of a file.

f1 = fopen("pinks.txt", "r");
f2 = fopen("dianthus.txt", "w");
if f1 && f2

line = f1.readline();
while line != null

f2.writeline(line);
line = f1.readline();
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end
end
f1.close();
f2.close();

Note that file values behave like pointers or references. If you pass a file
to a function, the function can write to the same physical file on the disk,
instead of a copy of the file (the caller and the called function have the same
file instead of two independent copies). If f is a file, after g = f, g will refer to
the same physical file. This is unlike any other type of value. But this is not
a contradiction to the everything is a value not a reference principle, since the
actual files are not part of the system.

11.2 Output

If a statement is an expression that has a value, and the statement ends with
a newline without a trailing semicolon, then the value of the statement will be
displayed. If the value is a numerical scalar, matrix, character string, or a list of
these values, it will be displayed the usual way. If the value is a more “abstract”
one, such as a function, a hash table, or, a class, the system will try to print
some information about it. For example:

>> x = rand(1)
0.08847010159

>> y = rand(2)
0.346
0.53

>> sin
Builtin function

>> f = x -> sqrt(1+x^2)
user defined function

To suppress unwanted display of answers, a semicolon should be appended at
the end of the statement.

The built-in function print will display the value of its operand, even if the
line that contains print ends with a semicolon. The print function takes one
argument, and display its value, but does not return anything. For example

>> print(cos);
Builtin function

How values are displayed by print function is defined by the system, and
cannot be modified. To display data in customized ways, the formatted output
function printf and sprintf can be used.
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11.3 Input

The built-in function readline can be used to read a line from the command
input. For example, after the following,

mesg = readline();

a character string is read from keyboard until enter is hit. Besides readline,
sscanf and fscanf can read formatted input from a string or a file.

11.4 Formatted IO

11.4.1 printf

The function printf converts a sequence of values to strings in specified format
and display the string. The first argument is a format string that contains
all text that is to be printed literally and the formats in which the following
arguments are to be converted. Each format specification starts with a % sign.
The rest of the arguments are values to be converted.

For example

>> printf("e = %g, pi = %g\n", e, pi);
e = 2.71828, pi = 3.14159

If f is a file, then it has a printf attribute function. For example,

>> f.printf("e = %g, pi = %g\n", e, pi);

will write the string e = 2.71828, pi = 3.14159 to the file. Alternatively, we
can also use the built-in function fprintf to write a formated string to a file

>> fprintf(f, "e = %g, pi = %g\n", e, pi);

11.4.2 sprintf

The sprintf function is the same as printf except that it does not print the
result of the conversion but returns it as a string. Of course, if the trailing
semicolon at end of the sprintf command is not present, then the returned
string is still printed.

>> s = sprintf("e = %g, pi = %g\n", e, pi);
>> s

e = 2.71828, pi = 3.14159

Normal characters contained in the format string are printed literally, such
as the strings e = and pi = and \n. Each substring in the format that starts
with the character % and ends with a conversion character is called a conversion
specification. Valid conversion characters include d, f, g, etc.. For example,
in the format k = %5d, e = %g, pi = %g\n, %5d and %g are conversion speci-
fications, and the rest are normal characters.

Between the % sign and the type character there may be, in order,
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• Flags (in no particular order), which modify the print specification

-: left adjustment.

+: the number will be printed with a sign.

space: if the first character is not a sing, a space will be prefixed.

0: fields for numbers are padded with leading zeros.

#: number will be printed in alternate form. For type o, the printed
number starts with zero. For x or X, the number printed starts with
0x. Floating point numbers will always contain the decimal point.
And trailing zeros in format g are kept.

• Minimum field width This is an integer w. It specifies that the converted
value will be printed in at least w characters. If the value is shorter than
w characters, the field width will padded left or right (depending on if left
adjustment flag is present) with space or zeros (if zero flag is given).

• A period that separates the minimum field width and the precision.

• Precision This is an integer p. For

strings: at most p characters will be printed

integers: at least p digits will be printed (leading zeros might be added)

e,E,f conversions: p digits after the decimal point will be printed

g,G conversions: p significant digits will be printed

• A length modifier l, L, or h, which indicate that the corresponding
numbers are to be printed as long, long double, and short respectively.
For definitions of these types please refer to a C standard library manual.

The following is a list of the conversions that the functions of the printf
family can perform.

Character Type of Value
d,i integer of signed decimal format
o integer of unsigned octal format
x,X integer of unsigned hexadecimal format
u integer of unsigned decimal format
c ASCII character
s character string
f floating point number of double precision, decimal notation
e,E floating point number of double precision, scientific notation
g,G floating point number of double precision; scientific notation if

size of exponent is too big, decimal notation otherwise.
% print a %
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11.4.3 sscanf

sscanf is opposite of sprintf. It scans a string, interprets the characters
according to the specified format, and convert them into a list of values. It
takes two input arguments. The first is the string to be scanned. The second is
the format string. The return value is a list of the values it has found from the
input string. For example

>> sscanf("adfadf 32 sdf 12.1", "%s %d %s %f")

(adfadf, 32, sdf, 12.1)

If f is a file, then it has the scanf attribute function. For example,

>> f.scanf("%s %d %s %f")

will try to read a string, an integer, and a floating point number from the file
(separated by white spaces)). Similarly to fprintf, we can also use

>> fscanf(f, "%s %d %s %f")

where f is the file being scanned.
The following is a list of the conversions that the functions of the scanf

family can perform.

Table 11.1: Scanf conversions

Character Type of Value
c single character
d decimal integer
o octal integer
x hexadecimal integer

e, f, g floating point number
s character string
% literal %, no conversion

.
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Automaton

An automaton is a program that can pause and restart. It has its own local
variables and a sequence of instructions. The instructions are executed once
the automaton starts running. Once it stops the flow control is returned to the
interpreter, but the values of the local variables and the status and position of
the instruction sequence are retained, and when the automaton restarts, it will
restore the local variable values and the previous execution status.

An automaton doesn’t output or return any values, nor does it take any input
arguments when it starts. Instead, it works like a computer, and may have a
number of ports, which are two-way channels used for data exchange. Data can
be manually added to or removed from the ports, but automatons can also be
connected through the ports to form a network, in which case one automaton’s
certain output channel becomes another automaton’s input channel.

The purpose of automaton is to simplify complex flow controls and simplify
function calls and data exchange. It may help design event-driven programs.
At present automatons are an experimental feature. The future version might
be implemented using threads provided by the operation system.

12.1 Define Automaton

The definition of an automaton starts with the keyword automaton and ends
with the keyword end. In the middle there are two parts. The first part is
optional. It follows right after the automaton keyword, and declares a list of
attributes, which are enclosed in a pair of brackets. These are much like the
parameters of functions. They are used like local variables and can be accessed
and updated outside the automaton using the dot operator like attributes of
class members.

The second part of the automaton is the sequence of commands and state-
ments, like the body of a function. The keyword this can be used in the com-
mands and provides a reference to the automaton itself.
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12.2 Port

An automaton has a number of ports, through which data input and output are
performed. There is no limit on the number of ports. If K is the maximum port
number used in the automaton, then K ports will be created. Each port has two
channels — input channel and output channel. Each channel is like a queue —
data comes in from one end, form a chain, and goes out from the other end.

Inside the automaton, to output a piece of data x to port 1

this.put(x)

or to output a piece of data x to port n

this.put(x, n)

To remove the next available piece of data from port 1, and assign it to x

x = this.get()

or to remove the next available piece of data from port n

x = this.get(n)

Two attribute functions input and output can be used to send a piece of
data to a port of an automaton, or receive a piece of data. They are used outside
the definition of the automaton, i.e., in the surrounding scope of the automaton.
For example,

A.input(x) // input data at port 1
A.input(x, 2) // input data at port 2
x = A.output() // output data at port 1
x = A.output(2) // output data at port 2

Example

u = automaton
n = 0;
while n == 0

n = this.get();
while n > 0

this.put(n);
--n;
stop;

end
end

end
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12.3 Run Automaton

To run an automaton A, write

A.run()

The sequence of commands in the body of the automaton will be executed from
where it left off last time (or from the beginning of the body, if it’s the first time
the automaton is running), until a stop statement is reached, or until the end
of the body. Usually the body of an automaton is inside a loop so that the end
is never reached.

When the stop statement is reached, the execution of the automaton is
suspended. The control of flow is returned to wherever the run command is
issued. The values of all the local variables and parameters are retained and
when the automaton is called a next time, it will start right after the stop
statement that terminated the automaton last time.

It is also possible to use the keyword yield to transfer program control to
another automaton. For example

global.u2=0;

global.u1 = automaton
for k = 1 : 5

this.put(k);
yield global.u2;

end
end

global.u2 = automaton
while 1

k = this.get();
k * pi
yield global.u1;

end
end

u1 <-> u2;

u1.run()

Here the two automatons take turns to run, and yield to each other. They are
called coroutines.

12.4 Connections between Automatons

When two ports of two automatons, say A and B, are connected, one automaton’s
input becomes the other one’s output. So when one automaton outputs some
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data, the other one can receive it from the connected port. There are several
types of connection.

• Two-way connection

A <-> B;

The input channel of A’s port 1 becomes the output channel of B’s port
1. And vice versa.

• Right connection

A >-> B;

The output channel of A’s port 1 becomes the input channel of B’s port 1.

• Left connection

A <-< B;

The input channel of A’s port 1 becomes the output channel of B’s port 1.

In order to specify a port other than port 1, we will need to use a list which
contains the automaton and the port index. For example, to connect port 2 of
A and port 5 of B

(A, 2) <-> (B, 5);
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Built-in Functions

13.1 System utility functions

13.1.1 run

The function run takes a single parameter, which must be a character string
that represents a file name. It will change the current input device to the file
specified. The file is supposed to contain any Shang commands, programs, or
functions. The contents of the file will be executed, and upon end of file is
reached, the input device is changed back to the previous setting (usually user
input).

The file name can be an absolute path name, such as

run("D:\my programs\test_program.x")

No special file extension is required, although .x is preferred.
Relative path name can be used, in which case, the current working directory

will be added to the path name. The current working directory can be checked
and reset using the system commands pwd and cd.

13.1.2 with

The function with is very similar to run except that it only run the file once,
and subsequent calls to with("file") will not run file unless the file has been
updated.

13.1.3 pause

The function pause will suspend the execution of current program until a key
input is read. pause(mesg) prints a mesg (a character string) and wait until
the user presses a key.
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13.1.4 panic

The function panic takes one parameter which is an error message. It will
terminate the execution the current program or command, clear all function
stacks, return to the interactive level (where user can type in commands), and
display the error message.

13.1.5 clock

The function clock takes no argument, and returns the clock ticks since the
start of the program (the interpreter). The system clock usually ticks 1000
times per second, so that clock() returns the amount of milliseconds that have
passed since the invoke of the interpreter.

13.1.6 etime

The function etime takes one or two arguments. The arguments are the numbers
of clock ticks (returned by clock()). When called with two arguments like
etime(c1, c2), the time duration between c1 and c2 in seconds is returned.
When called with one argument, like etime(c), the time duration between c
and present (in seconds) is returned.

13.1.7 time

The function call time() returns the current date and time as a string. For
example

>> time()
Sun Mar 02 12:49:23 2008

13.2 Elementary Math functions

13.2.1 Trigonometric functions - vectorized

All of the following functions take a numerical value, scalar or matrix, real or
complex, as argument.

sin(x) sine of x
cos(x) cosine of x
tan(x) tangent of x
asin(x) arcsine of x
acos(x) arccosine of x
atan(x) arctangent of x
sec(x) secant of x
csc(x) cosecant of x
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13.2.2 Exponential and power - vectorized

All of the following functions take a numerical value, scalar or matrix, real or
complex, as argument.

exp(x) exponential function ex

ln(x) natural logarithm lnx. Parameter: base with default value e
log10(x) log10 x: logarithm with base 10
log2(x) log2 x: logarithm with base 2
log(x) logbase x: logarithm with base base
sqrt(x) square root

√
x

cbrt(x) cubit root 3
√
x

sinh(x) hyperbolic sine
cosh(x) hyperbolic cosine
tanh(x) hyperbolic tangent

The function log has a parameter base, and log(x) is equal to logbase x.
The default value of base is e. To change base to 3

>> global.log.base = 3;

To spawn a new copy of log with base 3

>> f = log[3];

13.2.3 Polynomial

The built-in function poly is a polynomial, which has a public parameter coeff.
The default value of coeff is 1, so that poly(x) = 1 regardless of x. To make
a nontrivial polynomial, one needs to reset the value of poly.coeff

>> global.poly.coeff = [1, 2, -2];

or spawn a new function like this

>> p = poly; // making a copy of poly
>> p.coeff = [1, 2, -1];

or

>> p = poly[[1, 2, -2]];

Now p is a polynomial p(x) = 1+2x−x2. p can be called like a normal function

>> p = poly[[1, 2, -2]];
>> p(100)

-9799
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13.3 Matrix

13.3.1 Creation and initialization of matrices

The built-in functions zeros, ones, rand, band, binary, sparse, upper, lower,
and symm are used to generate vectors and matrices.

The function zeros returns vectors or matrices of zeros.

zeros(n) n × 1 column matrix of zeros (double
precision)

zeros(m, n) m×n matrix of zeros (double precision)
zeros(n, domain) n × 1 column matrix of zeros; storage

type specified by domain
zeros(m, n, domain) m × n column matrix of zeros; storage

type specified by domain
zeros(m1, m2, m3, ...) m1 ×m2 ×m3 × · · · multi-dimensional

matrix of zeros (double precision)

The values of m, n, and m1, m2, m3, ... are positive integers. domain is
one of the following built-in set functions

Z machine integers
L arbitrary size integers
B bytes
M arbitrary precision floating point numbers

The function ones and rand are similar to zeros; ones create matrices of
1’s and rand creates matrices of random numbers.

The function rand has a public parameter range, which is a vector of two
numbers. The rand function returns random numbers that are uniformly dis-
tributed between them.

For example, to create a 5× 1 matrix of random machine integers

x = rand(5, 1, _Z);

or

x = rand(5, _Z);

To create a 5× 3 matrix of arbitrary precision random floating point numbers

x = rand(5, 3, _M);

To change the parameter range of rand, use either

global.rand.range = [0, 10]; // alter the range parameter of rand

or
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f = rand[[0, 10]]; // spawn a copy of rand with new range

The function sparse creates sparse matrices of double precision floating
point numbers. sparse(m, n) return sparse m × n matrix, and sparse(n)
return sparse n× 1 matrix (a row vector).

The function band creates banded square matrices of double precision float-
ing point numbers. band(n, l, u) returns an n× n banded matrix with with
l sub-diagonals and u super-diagonals.

The functions upper, lower, and symm creates square upper triangular,
lower triangular, and symmetric matrices respectively. The usage is upper(n),
lower(n), symm(n), where n is the number of rows (and the number of columns)
of the matrix.

Note that sparse, band, upper, lower, and symm all create matrices of zeros.
The elements of these matrices can be altered using the normal assignment
operations.

Note also that the matrices created by sparse and band use special storage
schemes and may save on memory as well as make operations more efficient. Ma-
trices created by upper, lower, and symm use the regular dense storage scheme.
Although it is not memory efficient, some linear algebraic routines may still take
advantage of the fact that the matrix is triangular or symmetric.

Binary scalars and matrices are created using function binary.

binary(n): n× 1 column binary matrix of zeros

binary(m, n): m× n byte binary matrix of zeros

linspace(a, b): create a row vector of 100 elements evenly spaced between
a and b.

linspace(a, b, n): create a row vector of n elements evenly spaced
between a and b.

13.3.2 Basic attributes of matrices

The following functions apply to all numeric scalar and matrix x.

abs(x): absolute value of x

arg(x): angular argument of x

real(x): real part of x

imag(x): imaginary of x

conj(x): complex conjugate of x

ceil(x): round x toward infinity

floor(x): round x toward minus infinity

fix(x): round x toward zero

round(x): round x of toward the nearest integer
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13.3.3 Other functions

reshape(x, m): change the dimension of x to m× 1.

reshape(x, m, n): change the dimension of x to m× n.

reptile(x, m): replicate m copies of x and stack them vertically to form a
new matrix.

reptile(x, m, n): replicate mn copies of x and stack them like an m × n
matrix to form a new bigger matrix.
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13.4 Linear Algebra

Suppose that A is a matrix.

lu(A): LU factorization of matrix A. Find matrices P, L, U such that P A =
L U, where L and U are lower and upper triangular matrices and P is row
permulation of identity matrix. A has to be square. Does not return L,
U, or P. Instead, stores factorization result internally so that subsequent
computations involving A will take its advantage. This procedure is usually
unnecessary as using the backslash operator to solve lineary systems will
automatically invoke LU factorization and memorize the result.

LU(A): LU factorization of matrix A. Returns the list of matrices (L, U, P),
such that P A = L U.

qr(A): QR factorization of matrix A. Find matrices Q, R such that A =
QR, where Q is orthogonal matrix and R is upper triangular matrix. A
doesn’t need to be square. qr(A) doesn’t return Q or R. It just stores the
factorization results internally and use them in subsequent least square
computations involving A.

QR(A): QR factorization of matrix A. Returns the list of two matrices (Q, R).

svd(A): singular value decomposition of matrix A. Find matrices U, S, V such
that A = U’SV, where U and V are orthogonal matrices and S is diagonal
matrix. Doesn’t return U, S, or V, just store them internally for late use.

SVD(A): singular value decomposition of matrix A. Returns the list of two
matrices (U, S, V).

eig(A) eigenvalues and eigenvectors of square matrix A. Returns a list (d,
v), where d is a column vector of eigenvalues of A, and the columns of v
are the corresponding eigenvectors.

norm(A, p): returns the p norm of vector or matrix A. p can be 1, 2, inf,
or "fro".

norm(A) returns the 2 norm of A.

cond(A, p): returns the condition number of matrix A using matrix p norm.

cond(A): returns the condition number of matrix A using matrix 2 norm.

rank(A, t): returns the rank of matrix A using threshold t.

rank(A): returns the rank of matrix A using threshold eps.

det(A): returns the determinant of square matrix A.

inverse(A): returns the inverse of square matrix A.

cholesky(A): returns the Cholesky decomposition of positive definite matrix
A.
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identity(n): returns n× n identity matrix.

sign(A): returns the sign of A if A is a vector; or the matrix of the signs of the
elements of matrix A.

arg(A): returns the angles on the complex plane corresponding to each element
of matrix A.

dot(u, v): dot product of vectors u and v

cross(u, v): cross product of two 3D vectors u and v

trace(A): the trace of square matrix A.

trans(A): the transpose of matrix A.

sparsity(A): returns the ratio between memory savings and logical size for
matrix A. For normal dense matrix, always returns zero. No zero value is
returned only for sparse matrix, banded matrix, and range (those created
by zeros, ones, and linspace).

isnan(x): returns 1 if x is NaN, and 0 otherwise.

hasnan(x): returns 1 if at least one entry of x is NaN, and 0 otherwise.

isfinite(x): returns 1 if each element of x is finite, 0 otherwise.

13.5 String and regular expression

strcmp(str0, str1): compare two strings alphabetically; returns -1, 0, 1 if
str0 is <, ==, or > str1 respectively.

trim(str): returns a copy of str with leading and trailing blanks removed.

ltrim(str): returns a copy of str with leading blanks removed.

rtrim(str): returns a copy of str with trailing blanks removed.

split(str): split str at the spaces. For example, split("My gold fish is
evil") return list ("My", "gold", "fish", "is", "evil".

split(str, sep): split str at the positions where string sep occurs.

regexp(s): has three parameters patter, options, and match. match string
s against regular expression pattern. Return the position of the first
occurence.

reggexp(s): has three parameters patter, options, and match. match string
s against regular expression pattern. Return the positions of all the
occurences.
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regsub(): has three parameters patter, substitute, and options. match
string s against regular expression pattern. Replace first occurence with
substitute.

reggsub(): has three parameters patter, substitute, and options. match
string s against regular expression pattern. Replace all occurences with
substitute.

13.6 Math functions

factorial(n): the factorial of an integer n.

choose(m, n): returns the number n!
m!(n−m)!

gcd(x, y): the greatest common divisor of x and y

lcm(x, y): the least common multiple of x and y

splinefit(): returns a cubic spline function (see the following function cspline).

splinefit(x, y): free cubic spline

splinefit(x, y, yp0, yp1): clamped boundary condition cubic spline

splinefit(x, y, type): cubic spline; type may be "cyclic", "periodic"
(same as "cyclic"), or "not-a-knot".

cspline(x): has two parameters xnodes and coeff. Returns the evaluation of
cubic spline evaluated at x. This function is the return value of splinefit.

int(f, I): the numerical integral of function f over interval I

dsolve(ode, I, y0): the numerical solution of the initial value problem over
the interval I defined by the ordinary differential equation ode with initial
value y0 at the start of I

13.7 Creation and initialization of data of other
types

newlist(n):

newlist(n) returns an empty list with buffer size n.

newstring(n):

newstring(n) returns an empty string with buffer size n.

newstring(s, n) returns a copy of string s with buffer size extended to
n.

stack(): returns a new empty stack
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queue(): returns a new empty queue

newpointer(x): create a pointer that points to x

newptrset(s): create a set of pointers that point to a value in the set s.

newptrnset(s): create a set of pointers that point to a value not in the set s.

convert(x, type): convert value x into new type type. Type may be specified
by the built-in set function D, Z, B, M, L, S, C, or character strings
"D", "Z", "B", "M", "L", "S", "C".

13.8 Data processing and statistics

x should be numerical vector or matrix.

fft(x): fast Fourier transform of vector x. If x is matrix or multidimensional
matrix, return 2D or multidimensional transform.

ifft(x): inverse fast Fourier transform of x.

sum(x): sum of all elements of vector or matrix

mean(x): mean of all elements of vector or matrix

max(x): maximum of all elements of vector or matrix

min(x): minimum of all elements of vector or matrix

range(x): minumum and maximum of all elements of vector or matrix, re-
turned as a vector

var(x): variance of all elements of vector or matrix

stddev(x): variance of all elements of vector or matrix

rowsum(x): sum of all elements in each row

rowmean(x): mean of all elements in each row

rowmax(x): maximum of all elements in each row

rowmin(x): minimum of all elements in each row

rowrange(x): minumum and maximum of all elements in each row returned
as a vector

rowvar(x): variance of all elements in each row

rowstddev(x): variance of all elements in each row

columnsum(x): sum of all elements in each column
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columnmean(x): mean of all elements in each column

columnmax(x): maximum of all elements in each column

columnmin(x): minimum of all elements in each column

columnrange(x): minumum and maximum of all elements in each column
returned as a vector

columnvar(x): variance of all elements in each column

columnstddev(x): variance of all elements in each column

13.9 Sorting and searching

x can be a numerical vector, matrix, or a list of numbers or strings.

sort(x): sort in ascending order. Treat x as row vector when it is a matrix.

rowsort(x): sort each row in ascending order

columnsort(x): sort each column in ascending order

indexsort(x): return the index vector of the sorted copy of x

rowindexsort(x): return the index matrix of the of x with each row sorted

columnindexsort(x): return the index matrix of the of x with each column
sorted

reverse(x): reverse

rowreverse(x): reverse each row

columneverse(x): reverse each column

If one wishes to sort all the rows according to the value of a column, an index
sort can be done to that column, then the sorted index is applied to the matrix.
For example,

x = rand(8,8);
I = indexsort(x[:,1]);
x = x[I, :];

find(x, v): find v in x (a vector, matrix, or list). Returns the index of the
first occurence.

findall(x, v): find v in x (a vector, matrix, or list). Returns the indices of
the all occurences.

sfind(x, s): find an entry of x that belongs to set s. Returns the index of
the first occurence.
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sfindall(x, s): find entries of x (a vector, matrix, or list) that belong to set
s. Returns the indices of all occurences.

findmax(x): find the maximum of x. Returns the index of the first occurence.

findallmax(x): find the maximum of x. Returns the indices of all the oc-
curences.

findmin(x): find the minimum of x. Returns the index of the first occurence.

findallmin(x): find the minimum of x. Returns the indices of all the oc-
curences.

13.10 Probability Distributions

All of the following functions take one or two arguments, and return a column
vector or a matrix of random numbers. For example, normal(5) returns a
column of five random numbers, while normal(3,6) returns a 3 × 6 matrix of
random numbers of random numbers of normal distribution.

Each distribution may have a few public parameters, which can be modified.
For example, the normal function has two public parameters mu and sigma with
default values mu = 0 and sigma = 1.

To change the values of the public parameters, the global keyword must be
used. E.g., global.normal.sigma = 0.5 will change the sigma parameter of
the system’s normal function to 0.5. Alternatively, you can create your own
copy of the normal distribution with your chosen values of the parameters. For
example,

rv = normal[3, 2];

or

rv = normal;
rv.mu = 3;
rv.sigma = 2;

will generate a normal distribution with mu = 3 and sigma = 2.
The private parameters mean, stddev, and variance are attributes (mean,

standard deviation, and variance) of the distribution. For example, rv.stddev
returns the standard deviation of the random variable rv. The private param-
eters pdf, prob, and quantile are attribute functions.

• rv.pdf(x) gives the probability density of rv at x;

• rv.prob(a, b) gives the probability P (a < X < b), where X is a random
variable of distribution rv, and a and b may be ±∞;

• rv.cdf(b) gives the probability P (x < b);

• rv.quantile(p) gives the value b such that P (x < b) = p.
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List of probability distributions:

rand: uniform distribution.
Public parameter: range

randz: random integer.
Public parameter: range

normal: normal distribution.
public parameter: mu and sigma
private parameter: mean, stddev, variance, pdf, prob, quantile

gauss: Normal distribution with µ = 0 and σ = 1.

gammarv: Gamma distribution.
public parameter: location, scale, and shape.
private parameter: mean, stddev, variance, pdf, cdf, prob, quantile

betarv: Beta distribution.
public parameter: a, b.
private parameter: mean, stddev, variance, pdf, cdf, prob, quantile

binomial: Binomial distribution.
public parameter: n, p.
private parameter: mean, stddev, variance, pdf, cdf, prob, quantile

poisson: Poisson distribution.
public parameter: mu.
private parameter: mean, stddev, variance, pdf, cdf, prob, quantile

chi: Chi-square distribution.
public parameter: df.
private parameter: mean, stddev, variance, pdf, cdf, prob, quantile

frv: F distribution.
public parameter: dfn, dfd.
private parameter: mean, stddev, variance, pdf, cdf, prob, quantile

exprv: Exponential distribution.
public parameter: mu.
private parameter: mean, stddev, variance, pdf, cdf, prob, quantile

student: Student t-distribution.
public parameter: df.
private parameter: mean, stddev, variance, pdf, cdf, prob, quantile

hypergom: Hypergeometric distribution.
public parameter: N, D, n.
private parameter: mean, stddev, variance, pdf, cdf, prob, quantile

multinomial: Multinomial distribution.
public parameter: n, p
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13.11 Input and output

print(x): display the contents of x

readline(): read a line from user input

writeline(f, mesg): write mesg to file f

sprintf(format, x1, x2, ...: formatted text output, returns the string

printf(format, x1, x2, ...): formatted text output, prints the string

fprintf(file, format, x1, x2, ...): formatted text output, prints the
string to file

sscanf(str, format): formatted text input, reading from string, returns a
list if more than one conversions are made

fscanf(f, str, format): formatted text input, reading from file f

13.12 Sets

These sets are implemented as built-in functions and can be used like functions
or sets. For example, string is the set of all character strings, then both

_string("Obi-Wan Kenobe buys a used car")

and

"Obi-Wan Kenobe buys a used car" in _string

are true.

string: the set of character strings

list: the set of lists

hash: the set of hash tables

obj: the set of class members

13.12.1 Sets of real numbers

R: the set of real numbers. Has one parameter domain, whose value can be an
interval, a list of two numbers, or null. If domain is null, R is the set of
all real numbers. Otherwise, it is the interval specified by domain.

R2: the set of 2D vectors of real numbers. Has one parameter domain.

R3: the set of 3D vectors of real numbers. Has one parameter domain.

R4: the set of 4D vectors of real numbers. Has one parameter domain.
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Rn: the set of nD vectors of real numbers; has a parameter n and a parameter
domain.

R22: the set of 2× 2 matrices of real numbers. Has one parameter domain.

R33: the set of 3× 3 matrices of real numbers. Has one parameter domain.

R44: the set of 4× 4 matrices of real numbers. Has one parameter domain.

Rnn: the set of n × n matrices of real numbers ; has a parameter n and a
parameter domain.

R21: the set of 2D column vectors of real numbers. Parameter: domain.

R31: the set of 3D column vectors of real numbers. Parameter: domain.

R41: the set of 4D column vectors of real numbers. Parameter: domain.

Rn1: the set of nD column vectors of real numbers. Parameters: n and domain.

R12: the set of 2D row vectors of real numbers. Parameter: domain.

R13: the set of 3D row vectors of real numbers. Parameter: domain.

R14: the set of 4D row vectors of real numbers. Parameter: domain.

R1n: the set of nD row vectors of real numbers. Parameters: n and domain.

Rmn: the set of m×n matrices of real numbers. Parameters: m, n and domain

13.12.2 Sets of integers

Z: the set of machine integers. Parameter: domain.

Z2: the set of 2D vectors of machine integers. Parameter: domain.

Z3: the set of 3D vectors of machine integers. Parameter: domain.

Z4: the set of 4D vectors of machine integers. Parameter: domain.

Zn: the set of nD vectors of machine integers; has a parameter n

Z22: the set of 2× 2 matrices of machine integers. Parameter: domain.

Z33: the set of 3× 3 matrices of machine integers. Parameter: domain.

Z44: the set of 4× 4 matrices of machine integers. Parameter: domain.

Znn: the set of n×n matrices of machine integers. Parameter: n and domain.

Z21: the set of 2D column vectors of machine integers. Parameter: domain.

Z31: the set of 3D column vectors of machine integers. Parameter: domain.
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Z41: the set of 4D column vectors of machine integers. Parameter: domain.

Zn1: the set of nD column vectors of machine integers. Parameter: n and
domain.

Z12: the set of 2D row vectors of machine integers. Parameter: domain.

Z13: the set of 3D row vectors of machine integers. Parameter: domain.

Z14: the set of 4D row vectors of machine integers. Parameter: domain.

Z1n: the set of nD row vectors of machine integers. Parameter: n and domain.

Zmn: the set of m × n matrices of machine integers. Parameter: m, n, and
domain.

13.12.3 Sets of complex numbers

C: the set of complex numbers

C2: the set of 2D vectors of complex numbers

C3: the set of 3D vectors of complex numbers

C4: the set of 4D vectors of complex numbers

Cn: the set of nD vectors of complex numbers; has a parameter n

C22: the set of 2× 2 matCices of complex numbers

C33: the set of 3× 3 matCices of complex numbers

C44: the set of 4× 4 matCices of complex numbers

Cnn: the set of n× n matCices of complex numbers ; has a parameter n

C21: the set of 2D column vectors of complex numbers

C31: the set of 3D column vectors of complex numbers

C41: the set of 4D column vectors of complex numbers

Cn1: the set of nD column vectors of complex numbers; has a parameter n

C12: the set of 2D row vectors of complex numbers

C13: the set of 3D row vectors of complex numbers

C14: the set of 4D row vectors of complex numbers

C1n: the set of nD row vectors of complex numbers; has a parameter n

Cmn: the set of m × n matCices of complex numbers; has two parameters m
and n
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13.12.4 Sets of double precision floating point numbers

D: the set of doubles

D2: the set of 2D vectors of doubles

D3: the set of 3D vectors of doubles

D4: the set of 4D vectors of doubles

Dn: the set of nD vectors of doubles; has a parameter n

D22: the set of 2× 2 matrices of doubles

D33: the set of 3× 3 matrices of doubles

D44: the set of 4× 4 matrices of doubles

Dnn: the set of n× n matrices of doubles ; has a parameter n

D21: the set of 2D column vectors of doubles

D31: the set of 3D column vectors of doubles

D41: the set of 4D column vectors of doubles

Dn1: the set of nD column vectors of doubles; has a parameter n

D12: the set of 2D row vectors of doubles

D13: the set of 3D row vectors of doubles

D14: the set of 4D row vectors of doubles

D1n: the set of nD row vectors of doubles; has a parameter n

Dmn: the set of m× n matrices of doubles; has two parameters m and n

13.12.5 Sets of machine integers

I: the set of integers

I2: the set of 2D vectors of integers

I3: the set of 3D vectors of integers

I4: the set of 4D vectors of integers

In: the set of nD vectors of integers; has a parameter n

I22: the set of 2× 2 matrices of integers

I33: the set of 3× 3 matrices of integers

I44: the set of 4× 4 matrices of integers
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Inn: the set of n× n matrices of integers ; has a parameter n

I21: the set of 2D column vectors of integers

I31: the set of 3D column vectors of integers

I41: the set of 4D column vectors of integers

In1: the set of nD column vectors of integers; has a parameter n

I12: the set of 2D row vectors of integers

I13: the set of 3D row vectors of integers

I14: the set of 4D row vectors of integers

I1n: the set of nD row vectors of integers; has a parameter n

Imn: the set of m× n matrices of integers; has two parameters m and n

13.12.6 Sets of byte integers

B: the set of bytes

B2: the set of 2D vectors of bytes

B3: the set of 3D vectors of bytes

B4: the set of 4D vectors of bytes

Bn: the set of nD vectors of bytes; has a parameter n

B22: the set of 2× 2 matrices of bytes

B33: the set of 3× 3 matrices of bytes

B44: the set of 4× 4 matrices of bytes

Bnn: the set of n× n matrices of bytes ; has a parameter n

B21: the set of 2D column vectors of bytes

B31: the set of 3D column vectors of bytes

B41: the set of 4D column vectors of bytes

Bn1: the set of nD column vectors of bytes; has a parameter n

B12: the set of 2D row vectors of bytes

B13: the set of 3D row vectors of bytes

B14: the set of 4D row vectors of bytes

B1n: the set of nD row vectors of bytes; has a parameter n

Bmn: the set of m× n matrices of bytes; has two parameters m and n
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13.12.7 Sets of complex numbers

DC: the set of complex numbers (no nan/inf)

DC2: the set of 2D vectors of complex numbers (no nan/inf)

DC3: the set of 3D vectors of complex numbers (no nan/inf)

DC4: the set of 4D vectors of complex numbers (no nan/inf)

DCn: the set of nD vectors of complex numbers (no nan/inf); has a parameter
n

DC22: the set of 2× 2 matrices of complex numbers (no nan/inf)

DC33: the set of 3× 3 matrices of complex numbers (no nan/inf)

DC44: the set of 4× 4 matrices of complex numbers (no nan/inf)

DCnn: the set of n × n matrices of complex numbers (no nan/inf) ; has a
parameter n

DC21: the set of 2D column vectors of complex numbers (no nan/inf)

DC31: the set of 3D column vectors of complex numbers (no nan/inf)

DC41: the set of 4D column vectors of complex numbers (no nan/inf)

DCn1: the set of nD column vectors of complex numbers (no nan/inf); has a
parameter n

DC12: the set of 2D row vectors of complex numbers (no nan/inf)

DC13: the set of 3D row vectors of complex numbers (no nan/inf)

DC14: the set of 4D row vectors of complex numbers (no nan/inf)

DC1n: the set of nD row vectors of complex numbers (no nan/inf); has a
parameter n

DCmn: the set of m × n matrices of complex numbers (no nan/inf); has two
parameters m and n

13.12.8 Sets of other numbers

L: the set of all arbitrary size integers

M: the set of all arbitrary precision floating point numbers
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13.13 Miscellaneous

exist(x): returns 0 if x is DNE, 1 otherwise.

to set(x): convert value (vector, matrix) to a set.

hashcode(x): returns the hash code of value x

trivial(x): has one parameter p; returns p regardless the value of x



Chapter 14

System Commands

A few system commands can be used within the interpreter. They are like
functions but when they are called the arguments don’t need to be included in
brackets.

sysem: execute an operating system command

>> system "cmd.exe";

The command prompt window will pop up.

pwd: show current working directory. Takes no argument

>> pwd;
G:\xlab07\windows\

cd: change current working directory. Takes one argument, which is the direc-
tory to be changed to (a quoted string).

>> cd "..";
>> cd "secrets";

In Windows, absolute path starts with the drive letter followed by a colon.
To change current drive to D, do

>> cd "D:";

ls: list files in current working directory. Works the same way as the shell
command ls, but it doesn’t take arguments.

clear: clear the screen.

cat: print contents of a file.

157
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>> cat "boot.ini";

The contents of file boot.ini will be printed out in the command window.

exit: close the interpreter program. Takes no argument.

help: displays a help message on a given topic. Takes one argument (the help
subject).

>> help "while"


	Overview of Key Features of Shang
	Multi-faceted Data
	First-class object only
	Domains
	Function Parameters
	Class and Members
	Vectorization
	Rich features for numerical computing
	Minimized Implicit Behavior
	Automaton
	High Performance
	The Interactive User Interface

	The Shang Interpreter
	The interactive mode
	Use Shang as an arbitrary precision calculator
	Define Variables
	Define and call functions
	Suppress the display using semicolon
	Commenting
	Single line comment
	Multi-line comment

	Run a script
	Line continuation
	Command editing and History

	Data Type
	Data value and attribute
	Numerical Data
	Scalar
	Storage type of numerical values
	Matrix

	Matrix Indexing
	Single Index
	Two indices separated a comma
	Two indices separated a semicolon A[i; j]
	Using backslash \ to reference diagonals
	$ stands for the largest index
	: is equivalent to 1 : $
	Index bound
	Index expression as lvalue

	Storage types of matrix elements
	Sparse Matrix
	Multi-dimensional matrix
	Attributes of matrix
	Character String
	Index and substring
	Attributes of a string
	Use string as a function
	Concatentation and other operations

	Regular expression
	Regular expression substitution
	List
	Fixed length list and variable length list

	Hash Table
	Set
	Finite Sets
	Intervals
	Define a set using function
	Set operations

	Stack
	Queue
	Structure
	Other Data Types

	Operators
	Arithmetic Operators
	Addition and Subtraction: +,-
	Multiplication: *
	Division: /
	Back Division for solving linear system: \
	Element-wise multiplication and division: .*, ./
	Power: ˆ
	Element-wise Power: .ˆ
	Modulus

	Unary + and -
	Prefix + and -
	Postfix + and -

	Transpose: '
	Relational Operators
	Logical Operators
	Logical Value
	Logical and: &&
	Logical or: ||
	Logical not: !

	Assignment Operator: =
	Lvalue: variable name
	Multiple Assignments
	Other Lvalues
	Compound Assignments

	Increment and Decrement Operators
	Other Operators
	Attribute Retrieval
	Matrix
	List Indexing
	Function Parameter, Structure and Class Member Attribute
	Hash Entry
	Set
	Pointer
	Function

	Precedence and Associativity of Operators

	Flow Control Structures
	if statement
	unless statement
	for statement
	while statement
	until statement
	do -- while statement
	do -- until statement
	break and continue
	switch statement

	Function
	Function definition
	One Liner Functions
	Functions defined by a sequence of code

	Local variables
	Global Variable

	Return value of a function
	return statement
	Calling a function
	Pass Functions as Input and Output Arguments
	Argument Passing
	Return Multiple Output Arguments
	Function Parameters
	Parameter Syntax
	public parameter
	private parameter
	common, auto, and readonly parameters
	Parameter Domain

	Recursion
	Partial Substitution
	Default value of arguments
	Domain of Function Argument
	Calling functions using named arguments
	Built-in functions
	Pseudo Functions
	Operations on functions
	Function Matrix
	Everything is a function
	Turn a matrix into a function


	Class and Member
	Class definition syntax
	Access Control of Member attributes
	public
	private
	common
	auto

	Domain of Attribute
	Collective attribute
	The Constructor
	Multiple Constructors

	Inheritance
	Multiple Inheritance
	Attribute name clash
	Validation of member attribute modification
	Class as a Set
	Operator Overloading
	Acquired Attributes and structure

	Conditional Class
	Defining a Conditional Class
	Utility Attributes

	Pointers
	Pointer Syntax
	Pointers and Function Arguments
	Linked List
	Returning a Pointer
	Pointer and Class Member
	Pointer and Program Efficiency
	Use pointer to emulate reference

	Errors and Exception Handling
	Parsing Errors and Run-time Errors
	Raising Exceptions
	Handling Exceptions

	File, Input, and Output
	File
	Output
	Input
	Formatted IO
	printf
	sprintf
	sscanf


	Automaton
	Define Automaton
	Port
	Run Automaton
	Connections between Automatons

	Built-in Functions
	System utility functions
	run
	with
	pause
	panic
	clock
	etime
	time

	Elementary Math functions
	Trigonometric functions - vectorized
	Exponential and power - vectorized
	Polynomial

	Matrix
	Creation and initialization of matrices
	Basic attributes of matrices
	Other functions

	Linear Algebra
	String and regular expression
	Math functions
	Creation and initialization of data of other types
	Data processing and statistics
	Sorting and searching
	Probability Distributions
	Input and output
	Sets
	Sets of real numbers
	Sets of integers
	Sets of complex numbers
	Sets of double precision floating point numbers
	Sets of machine integers
	Sets of byte integers
	Sets of complex numbers
	Sets of other numbers

	Miscellaneous

	System Commands

