
Plot

1 overview

Plot is a package of programs written in Shang language for creating scientific graphs and math-

ematical illustrations. These graphs and drawings can be 2D or 3D, black and white or colored.

The graphs are saved as postcript files which can be easily viewed or converted to other image

formats.

The original purpose of plot is to test the OOP related features of Shang. Currently it has a

number of limitations to overcome. These include problems related to text alignment, non-ascii

text printing, legend, hidden surface removal, and better treatment of intersection of surfaces, etc.

2 Postscript viewer

plot is not part of the core of the language — it is a program written in Shang. Shang does not

have built-in graphical capabilities. The figures produced by the plot program are postscript files

and need a viewer to be displayed and printed.

1. Install postscript and ghostview on your computer so that postscript files can be viewed,

printed, and converted to other formats. For MS Windows, the programs can be obtained

from

http://pages.cs.wisc.edu/~ghost/

2. Run plot.x before making any plot. This can be done manually or putting with("plot.x")

in your program.

3 A simple example

After running the following commands, the graphs of the two functions y = cos xe−0.01x and

y = sin xe−0.01x will be plotted and saved in the file test.eps.

with("plot.x");

x = linspace(0, 10 * pi, 500);

y1 = cos(x) .* exp(-.1 * x);

y2 = sin(x) .* exp(-.1 * x);

fig = figure.new();

fig.plot(x, y1);

fig.plot(x, y2);

fig.save("test.eps");

4 Structure of plot

The whole program resides in the file plot.x. It consists of the following classes, and a few global

variable definitions.

epspainter

a postscript driver with many plotting commands. It is possible to work with these low level

routines directly if you’re familiar with the postcript language. This class is not documented

and you need to look into the source file in order to use it.

figure

2d figure class for creating 2D graphs. There are several attributes corresponding to the the

building blocks of figures. All are modifiable. If you want to improve them you can look

through the source file.

figure3d

3d figure class. Draw 2d surfaces and 1d curves in space.

histogram

creating bar graphs given a set of data.

piechart

creating pie charts given a set of percentages.

2

5 2D plot

figure is a class. To make a 2D plot, you first create a member of the this class. It is like a

blank canvas and you can add graphical elements such as curves, lines, symbols, etc, to it using

functions defined for figure class. When everything is added to the figure, it can be saved in a

postscript file, which can then be displayed or printed.

1. Create a figure.

Use the following command to create a figure and assign it to a variable named "fig":

fig = figure.new();

2. Plot data.

plot is an attribute function of figure and can treat two vectors x and y as coordinates of

the locations of a sequence of points in the 2d plane. Marks can be drawn at these locations,

or lines and curves drawn through them. The command for plotting x and y data on figure

fig is

fig.plot(x, y, linetype, linewidth, color, gray);

where x and y are two vectors of the same length. The plot can be straight line segements

joining the points, marks placed at the locations defined by x and y, or a smooth curve

(a piece-wise cubic polynomial) through the dots. The type of the plot is specified by the

argument linetype.

solid — dotty

dash - - - - dashdot —.—.—.

dot circle ◦ ◦ ◦
oval ⊂⊃⊂⊃⊂⊃ square ���

diamond � � � cross ×××
flake ∗ ∗ ∗ asterisk ? ? ?

triangle 444 dtriangle OOO

plus +++ curve (smooth curve)

linewidth is a number. The line to be drawn will be linewidth times as wide as the default

linewidth. For example, to make the line twice as wide as the normal, use value 2.

color is a vector of three numbers between 0 and 1, with each component representing the

intensity of red, green, or blue. gray is a number between 0 and 1.

It’s not necessary to provide all the arguments to plot. The default values of linetype,

linewidth, color, and gray are "solid", 1, [0, 0, 0], and 1. Therefore a simple call

fig.plot(x, y);

3

will draw solid straight line segments through the (x, y) points; the width of the lines is 1

unit, and the color is black. This is because that when calling a function, you may provide

only the first few arguments, the others will receive default values. For example,

xx = [0, 1, 2, 3, 4, 5];

yy = [0, 1, 0.5, 0.75, 0.625, 0.6875];

fig.plot(x, y);

To change the line type,

fig.plot(xx, yy, "oval");

To change the line width as well

fig.plot(xx, yy, "oval", 2);

If you just want to specify the line width, you still have to provide at least the first four

arguments, but you can use default value for the third argument linetype

fig.plot(xx, yy, *, 2);

Named argument By the previous way of calling fig.plot, the order of arguments have

to match the signature of the function. Alternatively, you can use named arguments. For

example

fig.plot{x = xx, y = yy, linewidth = 2};

Note that you can not only skip certain arguments, but don’t have to follow any specific

order of argument either. For example

fig.plot{y = yy, linewidth = 2, x = xx};

However you still need to provide the correct names of the arguments, namely, x, y, linewidth,

etc.

Example

xx = [0, 1, 2, 3, 4, 5];

yy = [0, 1, 0.5, 0.75, 0.625, 0.6875];

fig = figure.new();

fig.plot(xx, yy, *, *, colors.green);

fig.plot(xx, yy*0.8, "curve", *, colors.purple);

fig.plot(xx, yy*0.8, "oval");

fig.plot{x = xx, y = yy*0.3, linetype = "curve", color = colors.red};

fig.plot{x = xx, y = yy*0.3, linetype = "diamond", linewidth = 2, color = colors.olive};

fig.save("symbols.eps");

4

3. Draw objects

Some simple shapes can be drawn on the canvas without first defing data.

• line

To draw a line segement you need to specify the starting and the end points.

fig.line(P0, P1, style, linetype, linewidth, color);

where P0 and P1 are the starting and end points of the line segement. style is one of

"-", "->", "<-", or "<->" which specifies whether one end or both ends of the line has

an arrow. linetype is either "solid" or "dotty".

• polygon

The command

fig.polygon(x, y, type, color);

will draw a polygon given the x and y coordinates of the vertices. type can be

"contour" or "solid", which specifies whether the polygon is hollow or solid.

• rectangle

The command

fig.rectangle(x, y, width, height, style, cornersize, type, color);

will draw a rectangle given the x and y coordinates of the center, the width, and the

height. style can be "plain", "rounded", or "beveled", which specifies the shape of

the four corners of the rectangle. type can be either "contour" or "solid".

5

• ellipse

The command

fig.ellipse(ox, oy, a, b, theta, type, color);

draws an ellipse. It place the center of the ellipse at the location whose coordinates are

ox and oy. a and b are the long and short axes, theta is the angle between the long

axis of the ellipse and the horizontal direction of the canavas, type is either "contour"

or "solid".

Example

fig = figure.new();

fig.line([0, 0], [2, 2], "->");

fig.ellipse{ox = 0, oy = 0, a = 2, b = 1.5, theta = 0, color = colors.red};

fig.rectangle{x = 0, y = 0, width = 4, height = 3, color = colors.lime};

fig.style = "empty";

fig.save("objects.eps");

4. modify figure attributes

A figure has the following attributes that can be modified.

• style

6

This is the setting surrounding the figure. It can be put in a nice box, can come the

horizontal and vertical axes, or coordinate grids. This feature is called the “style” of

the figure and the value is one of "boxed", "grid", "center", or "empty". To change

the style of a figure to "center"

fig.style = "center";

• title

It’s the title of the figure, which is displayed on the top. The value should be a string.

For example, to set the title of the figure to “The cosmos”

fig.title = "The cosmos";

• xlabel

The label of the horizontal axis. The value should be a string. To set the xlabel to

“Time”

fig.title = "Time";

• ylabel

The label of the vertical axis. Works the same way as the horizontal axis.

• getXrange

This attribute is a function. It returns the width of the clipping area of the plot. The

clipping area is a rectangular box. Anything out of the box is not shown on the actual

image. The default values of xrange and yrange would try not to clipp off anything.

To check the xrange of the figure

r = fig.getXrange();

• getYrange

fig.getYrange.() returns the yrange of the clipping box of the plot.

• setXrange

A function attribute. To set the xrange to [-5, 5]

fig.setXrange([-5, 5]);

• setYrange

Similarly to setXrange, fig.setYrange(yr) sets the height of the clipping box to yr,

which is vector of 2 numbers.

5. Print text

A character string can be printed anywhere in the graph. The location, size, and other

attributes of the text can be specified, but it usually would take some trial and error to get

it right or satisfactory. The following is the command for printing text

7

fig.print(x, y, contents, orientation, alignment, color, font, fontstyle,

fontscale);

where x and y are the coordinates of the location of the text, contents is the text to be

printed (a string of characters). The other values are as follows:

argument allowed values

orientation "portrait", "landscape"

alignment "left", "right", "center", "top", "bottom",

font "Helvetica", "Times", "Courier", "Symbol"

fontstyle "Regular", "Bold", "Italic", "BoldItalic"

fontscale positive number

color vector of three number between 0 and 1

6. Save a figure.

You won’t see any picture until you save the figure in a file. To save the figure as an

encaspuslated postscript file, do fig.save(filename). For example

fig.save("flowering-times.eps");

Note that most of the processing occurs when the figure is being saved, therefore if there’s

something wrong with the plotting commands, error messages usually are not produced until

at this stage.

After a figure is saved, it still exists and more contents can be added to it and then it can

be saved again.

7. Reset a figure

If you’re not satisfied with how a figure looks, you can erase everything in it by using clear.

To delete all elements in a figure and leave it empty

fig.clear();

Or you could simply redo fig = figure.new() — the previous value of fig is destroyed.

8. Working with color

A color a vector of length three with each element (a number between 0 and 1) representing

the intensity of red, green, or blue. Sixteen colors are predefined in the global variable

colors.

global.colors = {

black = [0, 0, 0],

gray = [0.5, 0.5, 0.5],

silver = [0.75, 0.75, 0.75],

8

white = [1, 1, 1],

yellow = [1, 1, 0],

lime = [0, 1, 0],

aqua = [0, 1, 1],

fuchsia = [1, 0, 1],

red = [1, 0, 0],

green = [0, 0.5, 0],

blue = [0, 0, 1],

purple = [0.5, 0, 0.5],

maroon = [0.5, 0, 0],

olive = [0.5, 0.5, 0],

navy = [0, 0, 0.5],

teal = [0, 0.5, 0.5]

};

To specify a color, one can give the rgb vector like

fig.plot(x = xx, y = yy, color = [0.5, 0.7, 0.2];

or use one of the predefined colors like

fig.plot(x = xx, y = yy, color = colors.olive};

New color definition can be easily added to the global variable colors. For example:

global.colors.lavender = [0.6, 0.35, 0.73];

6 3D plot

The 3D figure class can draw surfaces defined by parametric functions, and space curves or meshes

according to the given data. If only one object is plotted, the result is usually satisfactory. If

several surfaces in the space are shown at the same time, the intersections are not always handled

correctly or accurately.

To make a 3D plot, you first create a member of the the class figure3d.

1. To create a 3D figure

fig = figure3d.new();

2. Plot a surface

plot(xf, yf, zf, urange, vrange, meshsize, frontcolor, bgcolor);

9

where xf, yf, and zf are the three parameteric equations that define the surface to be

drawn. Each of them is a function of two parameters. For example, the unit sphere can be

represented by the following three equations

x = cos u cos v

y = cos u sin v

z = sin u

urange is the range of the first parameter. vrange is the range of the second parameter.

meshsize is a vector of two numbers, which specifies how many points are sampled on urange

and vrange. If these numbers are big, the surface will be finer and smoother; otherwise it

be more like a polyhedron rather than a smooth surface.

frontcolor and bgcolor are the colors of the front side and the back side of the surface

respectively. Here we suppose that the surface is orientable, i.e., it has two sides.

A semisphere can be drawn using this command

fig = figure3d.new();

xf = (u, v) -> cos(u) * cos(v);

yf = (u, v) -> cos(u) * sin(v);

zf = (u, v) -> sin(u);

fig.plot(xf, yf, zf, [-pi/2, 0], [0, 2 * pi]);

fig.save("semisphere.eps");

10

In the above meshsize, frontcolor and bgcolor are not specified — the default values are

used.

3. Plot 1D data in space

Draws a smooth curve through a set of points in the space.

fig.curve(x, y, z, color, lw);

x, y, and z are three vectors of the same length which are treated as the coordinates of dots

in the space; a smooth curve with width lw through the dots will be drawn. Without some

background, it is very hard to tell if a curve is in 3D space. So in the following example, we

plot three orthogonal planes to reveal the dimension

fig = figure3d.new();

fig.light_direction = [2/3, 1/3, 3/5];

gx = (y, z) -> 0;

gy = (x, z) -> 0;

gz = (x, y) -> 0;

fig.plot(gx, (y,z)->y, (y,z)->z, [0, 30], [0, 30], [4, 4], rand(3), rand(3));

fig.plot((x,y)->x, (x,y)->y, gz, [0, 30], [0, 30], [4, 4], rand(3), rand(3));

fig.plot((x,z)->x, gy, (x,z)->z, [0, 30], [0, 30], [4, 4], rand(3), rand(3));

t = linspace(0, 10 * pi);

x = 6 * cos(t) + 10;

y = 6 * sin(t) + 10;

fig.curve(x, y, t, colors.red, 3);

fig.save("spiral.eps");

11

4. Plot a polygon in space

fig.polygon(x, y, z, nv, frontcolor, bgcolor);

Draws a polygon whose vertices are x, y, and z, normal direction is nv (a 3d vector), colors

of front and back are frontcolor and bgcolor.

5. Plot 2D data in space

This is like a uniform discretization of a surface z = f(x, y) over the rectangle [0, m]× [0, n].

You only need to provide the z coordinates of the points on the surface.

fig.mesh(v, frontcolor, bgcolor);

v is a m× n matrix whose elements are treated as the the z coordinates of a set of points.

The x and y coordinates are the 0, 1, ...,m− 1 and 0, 1, ..., n− 1.

7 Bar graph

This is a class for creating bar graphs. It draw bars whose lengths are proportional to a small set

of data values and hence visually display and compare the data values.

The class is called histogram. To create a memeber of this class

h = histogram.new(xlabels, yvalues, grouplabels);

where xlabels is the labels displayed on the horizontal axis used to identify each value. yvalues

are the values to be compared. grouplabels is the labels used to identify each group of data. It

can be left out if there’s only one group.

hist = histogram.new(("a", "b", "c"), ((0.6, 0.25, 0.15), (0.7, 0.32, 0.27), ...

(0.9, 0.2, 0.5)), ("Ocean", "Lake", "Pond"));

hist.save("hist.eps");

12

8 Pie chart

A pie chart is a circular disk divided into sectors with the angles proportional to a set of frequencies.

This is how a pie chart is created.

chart = piechart.new(percentages, labels);

where percentages is the vector of percentages (must add up to 1), and labels is a list of strings

used to identify each percentage.

chart = piechart.new((0.6, 0.25, 0.15), ("aaa", "bbb", "ccc"));

chart.font = "Courier";

chart.save("pie.eps");

9 Tips

• The plot program can function like a normal drawing tool — the only difference is that you

have to type commands instead of using mouse. While it may seem not as convenient as

using a normal painter program, the advantage of using commands is that it is very easy to

modify and improve them. With Shang plot, a graph is very portable, — it is no more than

a few commands saved in a file. Besides, plot has all the numerical computing capabilities

of Shang at its disposal.

13

• There’s no need to plot everything before you save the figure. You can save the figure every

time you add something to the figure or make a change to it. After saving, the postscript

viewer will refresh the image, so that your command takes effect right away.

• Put all the plotting commands in a file. Keep editing it and then running it until the figure

is satisfactory.

10 Examples

1. Lines and curves

with("plot.x");

x = linspace(-5, 5, 10);

fig = figure.new();

/* draw small circles at (x,y) locations */

/* color is vector of 3 numbers between 0 and 1, in rgb format */

fig.plot{x=x, y=cos(x), linetype="circle", color=[1, 0, 0]};

/* connect the dots with solid lines,

linetype is the default value "solid" */

fig.plot{x=x, y=cos(x), color=[0,1,0.5]};

/* draw circular dots at location underneath the previous curve */

fig.plot{x=x, y=cos(x) -1, linetype="dot", color=[1, 0, 1]};

/* connect the dots with smooth curve */

fig.plot{x=x, y=cos(x) -1, linetype="curve", color = [0, 0, 1]};

/* set the xrange and yrange of the picutre */

fig.setXrange([-5.5, 5.5]);

fig.setYrange([-2.5, 1.5]);

fig.save("curves.eps");

2. Butterfly curves

with("plot.x");

14

fig = figure.new();

for k = 0 : 99

theta = linspace(k * 2 * pi, (k + 1) * 2 * pi, 500);

rho = exp(cos(theta)) - 2 * cos(4*theta)+sin(theta/12).^5;

x = rho .* cos(theta);

y = rho .* sin(theta);

fig.plot{x=x, y=y, linetype="curve", color=rand(3)};

end

fig.style = "empty";

fig.save("butterfly.eps");

fig = figure.new();

for k = 0 : 99

theta = linspace(k * 2 * pi, (k + 1) * 2 * pi, 500);

rho = exp(cos(theta)) - 2.1 * cos(6*theta)+sin(theta/30).^7;

x = rho .* cos(theta);

y = rho .* sin(theta);

fig.plot{x=x, y=y, linetype="curve", color=rand(3)};

end

15

fig.style = "empty";

fig.save("butterfly2.eps");

3. Sierpinsky Gasket

fig = figure.new();

h = 10 * sin(pi/3);

x = [-5, 5, 0];

y = [-h/3, -h/3, h*2/3];

/* the big solid triangle */

fig.polygon(x, y, "solid", [0.2, 1, 0.2]);

/* recursively remove the center of triangle whose vertices are x and y */

/* figp is pointer to fig object. It needs to be a pointer since function

remove_triangle_center will modify the figure object

*/

remove_triangle_center = function (figp, x, y) -> ()

L = norm([x[2] - x[1], y[2] - y[1]]);

xo = x.mean;

yo = y.mean;

/* midpoints of the sides */

xm = [x[1] + x[2], x[2] + x[3], x[3] + x[1]] / 2;

ym = [y[1] + y[2], y[2] + y[3], y[3] + y[1]] / 2;

/* [1, 1, 1] is color white -- to remove the center */

figp >>. polygon(xm, ym, "solid", [1, 1, 1]);

16

theta = pi/5;

for k = 1 : 10

cx = xo + L * 0.08*cos(k * theta);

cy = yo + L * 0.08*sin(k * theta);

/* draw an ellipse; x and y are center coordinates

0.5 and 0.4 are long and short axis

0 is angle between long axis and horizontal

"contour" is the style -- other option is "solid"

[1, 0, 1] is the color -- r=1, g=0, b=1

*/

figp >>. ellipse(cx, cy, 0.04 * L, 0.03 * L, 0, "contour", [1, 0, 1]);

end

if L >= 1

this(figp, [xm[1], x[2], xm[2]], [ym[1], y[2], ym[2]]);

this(figp, [xm[2], x[3], xm[3]], [ym[2], y[3], ym[3]]);

this(figp, [xm[3], x[1], xm[1]], [ym[3], y[1], ym[1]]);

end

end

remove_triangle_center(>>fig, x, y);

fig.setXrange([-5, 5]);

fig.setYrange([-5, 9]);

fig.title = "Sierpinsky Gasket with flower pattern";

fig.style = "empty";

fig.save("gasket.eps")

4. Fractal Fern

with("plot.x");

N = 50000;

x = zeros(N);

y = zeros(N);

x[1] = 0.5;

y[1] = 0.5;

z = [0.5; 0.5];

17

p = [0.85, 0.92, 0.99, 1.00];

A1 = [0.85, 0.04; -0.04, 0.85];

b1 = [0; 1.6];

A2 = [0.20, -0.26; 0.23, 0.22];

b2 = [0; 1.6];

A3 = [-0.15, 0.28; 0.26, 0.24];

b3 = [0; 0.44];

A4 = [0, 0; 0, 0.16];

for k = 2 : N

r = rand(1);

if r < p[1]

z = A1 * z + b1;

elseif r < p[2]

z = A2 * z + b2;

elseif r < p[3]

z = A3 * z + b3;

else

z = A4 * z;

end

x[k] = z[1];

y[k] = z[2];

18

end

fig = figure.new();

fig.plot{x=x, y=y, linetype="dot", linewidth=0.2, color=[0.0, 0.9, 0.3]};

//fig.plot{x=x, y=y};

fig.style="empty";

fig.save("fern.eps");

5. Bushes

with("plot.x");

/* generate a tree of n generations */

generate_tree = function (T0, fatom, xatom, n) -> T

T = T0;

for j = 1 : n

t = T;

T = "";

for k = 1 : t.length

if t[k] == "F"

T = T + fatom;

elseif t[k] == "X"

T = T + xatom;

19

else

T = T + t[k];

end

end

end

end

/*

fatom = "FF-[-F+F+F]+[+F-F-F]";

xatom = "";

T0 = "F";

turning_angle = 22;

*/

/* draw the tree according to commands given in a string

this function is recursive

figp: pointer to the figure object. It needs to be a pointer since

the function will modify the figure object

x, y: the current position

direction: the angle of the current direction

angle: the angle in degree of turning when commands + and - are executed

command: the string of commands

kp: the pointer to the current position in the command string

*/

draw_tree = function (figp, x, y, direction, angle, command, kp, color) -> ()

k = kp>>; /* take the index of the fist command code */

while k <= command.length

c = command[k];

if c == "]"

kp >>= k + 1; /* let kp point to the next command code */

return;

elseif c == "["

kp >>= k + 1;

/* call itself to excute the commands up to the matching] */

this(figp, x, y, direction, angle, command, kp, color);

k = kp>>;

continue;

elseif c == "+"

direction += angle/180*pi;

20

elseif c == "-"

direction -= angle/180*pi;

elseif c == "F"

nx = x + cos(direction);

ny = y + sin(direction);

figp >>. line([x, y], [nx, ny], *, *, *, color);

x = nx;

y = ny;

end

++k;

end

end

/* ------------- bush 1 ---------------------- */

fatom = "FF-[-F+F+F]+[+F-F-F]";

xatom = "";

T0 = "F";

turning_angle = 22;

bush = generate_tree (T0, fatom, xatom, 4);

/* let command pointer point to the beging of command code sequence */

k = 1;

kp = >>k;

fig = figure.new();

/* pass the pointer to fig to draw_tree */

draw_tree(>>fig, 0, 0, pi/2, turning_angle, bush, kp, colors.lime);

fig.style="empty";

fig.save("bush1.eps");

/* ------------- bush 2 ---------------------- */

fatom = "FF";

xatom = "F[+X]F[-X]+X";

turning_angle=20;

T0 = "X";

bush = generate_tree (T0, fatom, xatom, 6);

21

k = 1;

kp = >>k;

fig = figure.new();

draw_tree(>>fig, 0, 0, pi/2, turning_angle, bush, kp, colors.blue);

fig.style="empty";

fig.save("bush2.eps");

/* ------------- bush 3 ---------------------- */

fatom = "FF";

xatom = "F-[[X]+X]+F[+FX]-X";

turning_angle = 22.5;

T0 = "X";

bush = generate_tree (T0, fatom, xatom, 6);

k = 1;

kp = >>k;

fig = figure.new();

draw_tree(>>fig, 0, 0, pi/2, turning_angle, bush, kp, colors.purple);

fig.style="empty";

fig.save("bush3.eps");

6. Lorenz Attractor

with("plot.x");

/* the lorenz differential equation */

22

lorenz = function [a = 10, b=28, c=8/3] (t, y) -> dydt

d1 = a * (y[2] - y[1]);

d2 = b*y[1] - y[2] - y[1] * y[3];

d3 = y[1] * y[2] - c * y[3];

dydt = [d1; d2; d3];

end

/* solve the ivp on t=[0,50] */

(x, y) = dsolve(lorenz, [0, 50], [8; 9; 10]);

/* 2d plot */

fig = figure.new();

fig.plot{x = y[:,2], y = y[:,1], linetype = "curve", color = [0.2, 1, 0.1]};

fig.save("lorenz21.eps");

fig = figure.new();

fig.plot{x = y[:,2], y = y[:,3], linetype = "curve", color = [0.7, 0.2, 0.1]};

fig.save("lorenz23.eps");

fig = figure.new();

fig.plot{x = y[:,1], y = y[:,3], linetype = "curve", color = [0.2, 0.2, 0.7]};

fig.save("lorenz13.eps");

/* for 3d view plot */

cr = y.columnrange;

fig = figure3d.new();

fig.light_direction = [2/3, 1/3, 3/5];

gx = [xv=cr[1,1]] (y, z) -> xv;

gy = [yv=cr[1,2]] (x, z) -> yv;

gz = [zv=cr[1,3]] (x, y) -> zv;

fig.plot(gx, (y,z)->y, (y,z)->z, cr[:, 2], cr[:, 3], [4, 4], rand(3), rand(3));

fig.plot((x,y)->x, (x,y)->y, gz, cr[:, 1], cr[:, 2], [4, 4], rand(3), rand(3));

23

fig.plot((x,z)->x, gy, (x,z)->z, cr[:, 1], cr[:, 3], [4, 4], rand(3), rand(3));

fig.curve(y[:,1], y[:,2], y[:,3], rand(3));

fig.save("lorenz3d.eps");

7. Mesh

with("plot.x");

// Solve Laplace’s equation with Jacob’s relaxation method

// Usage: lpc(w,h,bv_up,bv_down,bv_left,bv_right,minchange)

// w: width, h: height, bv_up...bv_down: boundary values, min_change: precision

lpc = function (w, h, bv_up, bv_down, bv_left, bv_right, min_change = 1e-5) -> v

% a crude guess initial value

v=(bv_up+bv_down+bv_left+bv_right)*0.25*ones(w,h);

vave=zeros(w-2,h-2);

//boundary conditions

v[1,:]=bv_left*ones(1,h);

v[w,:]=bv_right*ones(1,h);

v[:,1]=bv_down*ones(w,1);

24

v[:,h]=bv_up*ones(w,1);

change=10;

while change>min_change

vave=(v[2:w-1,1:h-2]+v[1:w-2,2:h-1]+v[2:w-1,3:h]+v[3:w,2:h-1])*0.25;

change=max(max(abs(vave-v[2:w-1,2:h-1])));

v[2:w-1,2:h-1]=vave;

end

end

v = lpc(30,30,5, 5, 9, 25,*);

fig = figure3d.new();

fig.light_direction = [1/3, 2/3, 1/3];

c = rand(3);

d = rand(3);

fig.mesh(v, c, d);

fig.save("laplace.eps");

8. Surfaces

25

with("plot.x");

fig = figure3d.new();

fx = (theta, phi)->(9 + 2 * cos(phi)) * cos(theta);

fy = (theta, phi) -> (9 + 2 * cos(phi)) * sin(theta);

fz = (theta, phi) -> 2 * sin(phi);

fig.plot(fx, fy, fz, [0,2*pi], [0,2*pi]);

fx = (theta, phi)->(4 + 1.2 * cos(phi)) * cos(theta);

fy = (theta, phi) -> (4 + 1.2* cos(phi)) * sin(theta);

fz = (theta, phi) -> 2+1.2 * sin(phi);

fig.plot(fx, fy, fz, [0,2*pi], [0,2*pi]);

fx = (theta, phi)->1+(9 + 3 * cos(phi)) * cos(theta);

fy = (theta, phi) -> 3 * sin(phi);

fz = (theta, phi) -> (9 + 3 * cos(phi)) * sin(theta);

fig.plot(fx, fy, fz, [0.7,1.2*pi], [0,2*pi]);

fx = (theta, phi)->7+(3 + 0.6 * cos(phi)) * cos(theta);

26

fy = (theta, phi) -> 0.6 * sin(phi);

fz = (theta, phi) -> (3 + 0.6 * cos(phi)) * sin(theta);

fig.plot(fx, fy, fz, [0,2*pi], [0,2*pi]);

fig.light_direction = [2/3, 2/3, 1/3];

fig.save("torus.eps");

9. Seashell

with("plot.x");

/* it’s not necessary to use global variable

in order to use function parameter

just to show it’s possible

*/

global.n = 3;

global.a = 8;

global.b=35;

global.c=5;

fig = figure3d.new();

fig.light_direction = [2/3, -2/3, 1/4];

27

fx = (s, t)->a * (1-t/(2*pi))*cos(n*t) * (1+cos(s)) + c * cos(n*t);

fy = (s, t)->a * (1-t/(2*pi))*sin(n*t) * (1+cos(s)) + c * sin(n*t);

fz = (s, t)->b * t / (2*pi) + a *(1-t/(2*pi)) * sin(s);

fig.plot(fx, fy, fz, [0,2*pi], [0,6], [50, 50]);

fig.save("seashell.eps");

28

29

	overview
	Postscript viewer
	A simple example
	Structure of plot
	2D plot
	3D plot
	Bar graph
	Pie chart
	Tips
	Examples

