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◮ ...An federal election with four candidates: LiberAl, Bloc Quebecois,
Conservative, or New Democratic.

We can describe people’s preferences with a table:
e.g. this means that 10% of the people prefer A

to B, prefer B to C , and prefer C to D.
There is no unanimous favourite.
We must have a vote...
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(e.g. 10% of the voters prefer A to B, prefer B to C , and prefer C to D.)
Clearly A wins the election, with 30% of the vote.
But most voters prefer any other candidate over A:

70% prefer B to A. . . . . . 70% prefer C to A. . . . . . 70% prefer D to A.
How did A win?
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Idea: More than 50% of voters despise A, but the ‘anti-A’ vote is ‘split’
between candidates B, C, and D, so A still wins.
Problem: With four candidates, no single candidate gets a clear majority.
(We say A wins with a plurality, meaning she gets the biggest fraction of
votes, but still a minority).
Solution? Have a ‘run-off election’ between A and the second-place
candidate (In this case, this is D, who got 25% of the vote).
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A versus D versus C

Preferences # A≻D D≻A C ≻D D≻C

A≻B≻C ≻D 10 10 10
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Verdict: D≻A C ≻D

In the run-off election, D crushes A, winning with 70% of the vote.
Problem: 64% of the voters prefer C to D!
The ‘wrong’ candidate won again! How?
Idea: The ‘anti-D vote’ was split between B and C.
Thus, D obtained second place, even though most voters prefer C.
Solution? Have a sequence of two-candidate elections.
In each of these, the winner must have a clear majority.
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then B wins again, with 68%.

Finally, if we match this winner (B) against D; then D wins, with 68%.
Thus, D wins the election. Such a sequence of pairwise votes is often used by
committees to approve motions and amendments.
Problem: With a different ‘agenda’ of matches, we get a different winner:
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With yet another ‘agenda’, we can get a yet another winner.

wins
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D

A

B

C

70 (D ≻A)

30 (A≻D)

D 68 (D ≻B)

32 (B ≻D)

D 36 (D ≻C )

64 (C ≻D)

CC

Problem: The winner depends upon the order in which we match the
candidates against each other.
With a suitable agenda of pairwise votes, we can make any one of B, C, or
D the ‘winner’ of the election!
Solution? Have a sequence of run-off elections. Start with all candidates,
and after each election, drop the lowest-ranked candidate.



Thomas Hare’s ‘Instant Runoff’ system. (8/84)

Electorate Profile

Preferences #

A≻B≻C ≻D 10
A≻C ≻D≻B 9
A≻D≻B≻C 11
B≻C ≻D≻A 22
C ≻D≻B≻A 23
D≻B≻C ≻A 25

Total 100

The instant runoff system (also called Hare’s method) works as follows:
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1. Each voter writes her complete preference ordering on her ballot.
Thus, we have all the information in the above table.
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Majority Vote

Preferences # A B C D
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A≻D≻B≻C 11 11
B≻C ≻D≻A 22 22
C ≻D≻B≻A 23 23
D≻B≻C ≻A 25 25

Total 100 30 22 23 25

Verdict: No majority winner

The instant runoff system (also called Hare’s method) works as follows:
1. Each voter writes her complete preference ordering on her ballot.
Thus, we have all the information in the above table.
2. We count the number of voters who favour each candidate.



Thomas Hare’s ‘Instant Runoff’ system. (8/84)

Majority Vote

Preferences # A B C D

A≻B≻C ≻D 10 10
A≻C ≻D≻B 9 9
A≻D≻B≻C 11 11
B≻C ≻D≻A 22 22
C ≻D≻B≻A 23 23
D≻B≻C ≻A 25 25
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Verdict: No majority winner

The instant runoff system (also called Hare’s method) works as follows:
1. Each voter writes her complete preference ordering on her ballot.
Thus, we have all the information in the above table.
2. We count the number of voters who favour each candidate.
3(a). If some candidate has a strict majority of votes, she wins.
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Majority Vote

Preferences # A B C D

A≻B≻C ≻D 10 10
A≻C ≻D≻B 9 9
A≻D≻B≻C 11 11
B≻C ≻D≻A 22 22
C ≻D≻B≻A 23 23
D≻B≻C ≻A 25 25

Total 100 30 22 23 25

Verdict: No majority winner

The instant runoff system (also called Hare’s method) works as follows:
1. Each voter writes her complete preference ordering on her ballot.
Thus, we have all the information in the above table.
2. We count the number of voters who favour each candidate.
3(a). If some candidate has a strict majority of votes, she wins.
3(b). Otherwise, we remove the candidate who is favoured by the fewest
voters —in this case, B.



Thomas Hare’s ‘Instant Runoff’ system. (8/84)

Removal of B:

Preferences # A≻D ≻C D ≻C ≻A C ≻A≻D D ≻A≻C A≻C ≻D C ≻D ≻A

A≻BX≻C ≻D 10 10
A≻C ≻D≻BX 9 9
A≻D≻BX≻C 11 11
BX≻C ≻D≻A 22 22
C ≻D≻BX≻A 23 23
D≻BX≻C ≻A 25 25

Total 100 11 25 0 0 19 45

The instant runoff system (also called Hare’s method) works as follows:
1. Each voter writes her complete preference ordering on her ballot.
Thus, we have all the information in the above table.
2. We count the number of voters who favour each candidate.
3(a). If some candidate has a strict majority of votes, she wins.
3(b). Otherwise, we remove the candidate who is favoured by the fewest
voters —in this case, B.
4. We reconstruct the voter’s preference orders, with B removed.



Thomas Hare’s ‘Instant Runoff’ system. (8/84)

Majority Vote

Preferences # A C D

A≻C ≻D 19 19
A≻D≻C 11 11
C ≻D≻A 45 45
D≻C ≻A 25 25

Total 100 30 45 25

Verdict: No winner.

1. Each voter writes her complete preference ordering on her ballot.
Thus, we have all the information in the above table.
2. We count the number of voters who favour each candidate.
3(a). If some candidate has a strict majority of votes, she wins.
3(b). Otherwise, we remove the candidate who is favoured by the fewest
voters —in this case, B.
4. We reconstruct the voter’s preference orders, with B removed.
5. Again, we count the number of voters who favour each candidate.
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Majority Vote

Preferences # A C D

A≻C ≻D 19 19
A≻D≻C 11 11
C ≻D≻A 45 45
D≻C ≻A 25 25

Total 100 30 45 25

Verdict: No winner.

Thus, we have all the information in the above table.
2. We count the number of voters who favour each candidate.
3(a). If some candidate has a strict majority of votes, she wins.
3(b). Otherwise, we remove the candidate who is favoured by the fewest
voters —in this case, B.
4. We reconstruct the voter’s preference orders, with B removed.
5. Again, we count the number of voters who favour each candidate.
6(a) Again, if some candidate has a strict majority of votes, she wins.



Thomas Hare’s ‘Instant Runoff’ system. (8/84)

Majority Vote

Preferences # A C D

A≻C ≻D 19 19
A≻D≻C 11 11
C ≻D≻A 45 45
D≻C ≻A 25 25

Total 100 30 45 25

Verdict: No winner.

2. We count the number of voters who favour each candidate.
3(a). If some candidate has a strict majority of votes, she wins.
3(b). Otherwise, we remove the candidate who is favoured by the fewest
voters —in this case, B.
4. We reconstruct the voter’s preference orders, with B removed.
5. Again, we count the number of voters who favour each candidate.
6(a) Again, if some candidate has a strict majority of votes, she wins.
6(b) Otherwise, we again remove the candidate who is favoured by the
fewest voters —in this case, D.



Thomas Hare’s ‘Instant Runoff’ system. (8/84)

Removal of D

Preferences # A≻C C ≻A

A≻DX≻C 11 11
DX≻C ≻A 25 25
A≻C ≻DX 19 19
C ≻DX≻A 45 45

Total 100 30 70

3(a). If some candidate has a strict majority of votes, she wins.
3(b). Otherwise, we remove the candidate who is favoured by the fewest
voters —in this case, B.
4. We reconstruct the voter’s preference orders, with B removed.
5. Again, we count the number of voters who favour each candidate.
6(a) Again, if some candidate has a strict majority of votes, she wins.
6(b) Otherwise, we again remove the candidate who is favoured by the
fewest voters —in this case, D.
7. We continue this process until some candidate wins a strict majority.



Thomas Hare’s ‘Instant Runoff’ system. (8/84)

Electorate

Preferences #

A≻C 30
C ≻A 70

Verdict: C wins.

3(b). Otherwise, we remove the candidate who is favoured by the fewest
voters —in this case, B.
4. We reconstruct the voter’s preference orders, with B removed.
5. Again, we count the number of voters who favour each candidate.
6(a) Again, if some candidate has a strict majority of votes, she wins.
6(b) Otherwise, we again remove the candidate who is favoured by the
fewest voters —in this case, D.
7. We continue this process until some candidate wins a strict majority.
....In this case, it is C.



“The greatest improvement in government”? (9/84)

Electorate Profile

Preferences #

A≻B≻C ≻D 10
A≻C ≻D≻B 9
A≻D≻B≻C 11
B≻C ≻D≻A 22
C ≻D≻B≻A 23
D≻B≻C ≻A 25

Total 100

Hare’s ‘Instant Runoff’ is used to elect the President of Ireland, the mayors
of London and San Francisco, and the host city for the Olympic Games.
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yet made in the theory and practice of government.”
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of London and San Francisco, and the host city for the Olympic Games.
In 1860, John Stuart Mill called it, “among the very greatest improvements
yet made in the theory and practice of government.”
However, Instant Runoff has a little problem.



Problem: Monotonicity Failure (9/84)

Electorate Profile
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Hare’s ‘Instant Runoff’ is used to elect the President of Ireland, the mayors
of London and San Francisco, and the host city for the Olympic Games.
In 1860, John Stuart Mill called it, “among the very greatest improvements
yet made in the theory and practice of government.”
However, Instant Runoff has a little problem.
Suppose 4% of the “D≻B≻C ≻A” voters change to “C ≻D≻B≻A”.
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Preferences #

A≻B≻C ≻D 10
A≻C ≻D≻B 9
A≻D≻B≻C 11
B≻C ≻D≻A 22
C ≻D≻B≻A 23
D≻B≻C ≻A 25

Total 100

Hare’s ‘Instant Runoff’ is used to elect the President of Ireland, the mayors
of London and San Francisco, and the host city for the Olympic Games.
In 1860, John Stuart Mill called it, “among the very greatest improvements
yet made in the theory and practice of government.”
However, Instant Runoff has a little problem.
Suppose 4% of the “D≻B≻C ≻A” voters change to “C ≻D≻B≻A”.
Thus, the (bottom) “D ≻ B ≻ C ≻ A” tally decreases from 25% to 21%,
while the (second last) “C ≻D≻B≻A” tally increases from 23% to 27%.



Problem: Monotonicity Failure (9/84)

Electorate Profile

Preferences #

A≻B≻C ≻D 10
A≻C ≻D≻B 9
A≻D≻B≻C 11
B≻C ≻D≻A 22
C ≻D≻B≻A 27
D≻B≻C ≻A 21

Total 100

Hare’s ‘Instant Runoff’ is used to elect the President of Ireland, the mayors
of London and San Francisco, and the host city for the Olympic Games.
In 1860, John Stuart Mill called it, “among the very greatest improvements
yet made in the theory and practice of government.”
However, Instant Runoff has a little problem.
Suppose 4% of the “D≻B≻C ≻A” voters change to “C ≻D≻B≻A”.
Thus, the (bottom) “D ≻ B ≻ C ≻ A” tally decreases from 25% to 21%,
while the (second last) “C ≻D≻B≻A” tally increases from 23% to 27%.
Note that this change in public opinion is strictly favourable towards C.
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Electorate Profile

Preferences #

A≻B≻C ≻D 10
A≻C ≻D≻B 9
A≻D≻B≻C 11
B≻C ≻D≻A 22
C ≻D≻B≻A 27
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Total 100

In 1860, John Stuart Mill called it, “among the very greatest improvements
yet made in the theory and practice of government.”
However, Instant Runoff has a little problem.
Suppose 4% of the “D≻B≻C ≻A” voters change to “C ≻D≻B≻A”.
Thus, the (bottom) “D ≻ B ≻ C ≻ A” tally decreases from 25% to 21%,
while the (second last) “C ≻D≻B≻A” tally increases from 23% to 27%.
Note that this change in public opinion is strictly favourable towards C.
C won the election before, so she should win again. But let’s watch....



Problem: Monotonicity Failure (9/84)

Majority Vote

Preferences # A B C D

A≻B≻C ≻D 10 10
A≻C ≻D≻B 9 9
A≻D≻B≻C 11 11
B≻C ≻D≻A 22 22
C ≻D≻B≻A 27 27
D≻B≻C ≻A 21 21

Total 100 30 22 27 21

Verdict: No majority winner

In 1860, John Stuart Mill called it, “among the very greatest improvements
yet made in the theory and practice of government.”
However, Instant Runoff has a little problem.
Suppose 4% of the “D≻B≻C ≻A” voters change to “C ≻D≻B≻A”.
Thus, the (bottom) “D ≻ B ≻ C ≻ A” tally decreases from 25% to 21%,
while the (second last) “C ≻D≻B≻A” tally increases from 23% to 27%.
Note that this change in public opinion is strictly favourable towards C.
C won the election before, so she should win again. But let’s watch....
During the first round, D has the lowest support, so she is eliminated.



Problem: Monotonicity Failure (9/84)

Removal of D:

Preferences # A≻B ≻C B ≻C ≻A C ≻A≻B B ≻A≻C A≻C ≻B C ≻B ≻A

A≻B≻C ≻DX 10 10
A≻C ≻DX≻B 9 9
A≻DX≻B≻C 11 11
B≻C ≻DX≻A 22 22
C ≻DX≻B≻A 27 27
DX≻B≻C ≻A 21 21

Total 100 21 43 0 0 9 27

In 1860, John Stuart Mill called it, “among the very greatest improvements
yet made in the theory and practice of government.”
However, Instant Runoff has a little problem.
Suppose 4% of the “D≻B≻C ≻A” voters change to “C ≻D≻B≻A”.
Thus, the (bottom) “D ≻ B ≻ C ≻ A” tally decreases from 25% to 21%,
while the (second last) “C ≻D≻B≻A” tally increases from 23% to 27%.
Note that this change in public opinion is strictly favourable towards C.
C won the election before, so she should win again. But let’s watch....
During the first round, D has the lowest support, so she is eliminated.



Problem: Monotonicity Failure (9/84)

Majority Vote

Preferences # A B C

A≻B≻C 21 21
A≻C ≻B 9 9
B ≻C ≻A 43 43
C ≻B≻A 27 27

Total 100 30 43 27

Verdict: No winner.

In 1860, John Stuart Mill called it, “among the very greatest improvements
yet made in the theory and practice of government.”
However, Instant Runoff has a little problem.
Suppose 4% of the “D≻B≻C ≻A” voters change to “C ≻D≻B≻A”.
Thus, the (bottom) “D ≻ B ≻ C ≻ A” tally decreases from 25% to 21%,
while the (second last) “C ≻D≻B≻A” tally increases from 23% to 27%.
Note that this change in public opinion is strictly favourable towards C.
C won the election before, so she should win again. But let’s watch....
During the first round, D has the lowest support, so she is eliminated.
During the next round, C is eliminated...



Problem: Monotonicity Failure (9/84)

Removal of C

Preferences # A≻B B≻A

A≻CX≻B 9 9
CX≻B≻A 27 27
A≻B≻CX 21 21
B ≻CX≻A 43 43

Total 100 30 70

In 1860, John Stuart Mill called it, “among the very greatest improvements
yet made in the theory and practice of government.”
However, Instant Runoff has a little problem.
Suppose 4% of the “D≻B≻C ≻A” voters change to “C ≻D≻B≻A”.
Thus, the (bottom) “D ≻ B ≻ C ≻ A” tally decreases from 25% to 21%,
while the (second last) “C ≻D≻B≻A” tally increases from 23% to 27%.
Note that this change in public opinion is strictly favourable towards C.
C won the election before, so she should win again. But let’s watch....
During the first round, D has the lowest support, so she is eliminated.
During the next round, C is eliminated...



Problem: Monotonicity Failure (9/84)

Electorate

Preferences #

A≻B 30
B≻A 70

Verdict: B wins.

In 1860, John Stuart Mill called it, “among the very greatest improvements
yet made in the theory and practice of government.”
However, Instant Runoff has a little problem.
Suppose 4% of the “D≻B≻C ≻A” voters change to “C ≻D≻B≻A”.
Thus, the (bottom) “D ≻ B ≻ C ≻ A” tally decreases from 25% to 21%,
while the (second last) “C ≻D≻B≻A” tally increases from 23% to 27%.
Note that this change in public opinion is strictly favourable towards C.
C won the election before, so she should win again. But let’s watch....
During the first round, D has the lowest support, so she is eliminated.
During the next round, C is eliminated...
In the final round, B (not C) is the winner.
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Electorate

Preferences #

A≻B 30
B≻A 70

Verdict: B wins.

However, Instant Runoff has a little problem.
Suppose 4% of the “D≻B≻C ≻A” voters change to “C ≻D≻B≻A”.
Thus, the (bottom) “D ≻ B ≻ C ≻ A” tally decreases from 25% to 21%,
while the (second last) “C ≻D≻B≻A” tally increases from 23% to 27%.
Note that this change in public opinion is strictly favourable towards C.
C won the election before, so she should win again. But let’s watch....
During the first round, D has the lowest support, so she is eliminated.
During the next round, C is eliminated...
In the final round, B (not C) is the winner.
Thus, a shift in public opinion that favoured C actually destroyed C’s victory!



Problem: Monotonicity Failure (9/84)

Electorate

Preferences #

A≻B 30
B≻A 70

Verdict: B wins.

Suppose 4% of the “D≻B≻C ≻A” voters change to “C ≻D≻B≻A”.
Thus, the (bottom) “D ≻ B ≻ C ≻ A” tally decreases from 25% to 21%,
while the (second last) “C ≻D≻B≻A” tally increases from 23% to 27%.
Note that this change in public opinion is strictly favourable towards C.
C won the election before, so she should win again. But let’s watch....
During the first round, D has the lowest support, so she is eliminated.
During the next round, C is eliminated...
In the final round, B (not C) is the winner.
Thus, a shift in public opinion that favoured C actually destroyed C’s victory!
Thus, “Instant Runoff” lacks a critical property: monotonicity.
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Electorate

Preferences #

A≻B 30
B≻A 70

Verdict: B wins.

Note that this change in public opinion is strictly favourable towards C.
C won the election before, so she should win again. But let’s watch....
During the first round, D has the lowest support, so she is eliminated.
During the next round, C is eliminated...
In the final round, B (not C) is the winner.
Thus, a shift in public opinion that favoured C actually destroyed C’s victory!
Thus, “Instant Runoff” lacks a critical property: monotonicity.

Solution? Have a single election involving all four candidates. But let each
voter more clearly and completely express her preferences.



Problem: Monotonicity Failure (9/84)

Electorate

Preferences #

A≻B 30
B≻A 70

Verdict: B wins.

Note that this change in public opinion is strictly favourable towards C.
C won the election before, so she should win again. But let’s watch....
During the first round, D has the lowest support, so she is eliminated.
During the next round, C is eliminated...
In the final round, B (not C) is the winner.
Thus, a shift in public opinion that favoured C actually destroyed C’s victory!
Thus, “Instant Runoff” lacks a critical property: monotonicity.

Solution? Have a single election involving all four candidates. But let each
voter more clearly and completely express her preferences.
Example: Let each voter vote for her ‘top two’ candidates, or even her ‘top
three’ candidates. Or let her ‘rank’ all four candidates.



Top two vs. top three candidates (10/84)

Vote for top two

Preferences # A B C D

A≻B≻C ≻D 10 10 10
A≻C ≻D≻B 9 9 9
A≻D≻B≻C 11 11 11
B≻C ≻D≻A 22 22 22
C ≻D≻B≻A 23 23 23
D≻B≻C ≻A 25 25 25

Total 100 30 57 54 59

Verdict: D wins.

Suppose each voter votes for her ‘top two’ candidates.
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A≻D≻B≻C 11 11 11
B≻C ≻D≻A 22 22 22
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Total 100 30 57 54 59

Verdict: D wins.

Suppose each voter votes for her ‘top two’ candidates.
Then D wins the election, with 59 points.
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Vote for top two

Preferences # A B C D

A≻B≻C ≻D 10 10 10
A≻C ≻D≻B 9 9 9
A≻D≻B≻C 11 11 11
B≻C ≻D≻A 22 22 22
C ≻D≻B≻A 23 23 23
D≻B≻C ≻A 25 25 25

Total 100 30 57 54 59

Verdict: D wins.

Suppose each voter votes for her ‘top two’ candidates.
Then D wins the election, with 59 points.
But suppose instead we let each voter vote for her ‘top three’ candidates.



Top two vs. top three candidates (10/84)

Vote for top two

Preferences # A B C D

A≻B≻C ≻D 10 10 10
A≻C ≻D≻B 9 9 9
A≻D≻B≻C 11 11 11
B≻C ≻D≻A 22 22 22
C ≻D≻B≻A 23 23 23
D≻B≻C ≻A 25 25 25

Total 100 30 57 54 59

Verdict: D wins.

Suppose each voter votes for her ‘top two’ candidates.
Then D wins the election, with 59 points.
But suppose instead we let each voter vote for her ‘top three’ candidates.
(Effectively, she ‘votes against’ her worst candidate; thus this is called
antiplurality vote).



Top two vs. top three candidates (10/84)

Antiplurality (vote for top three)

Preferences # A B C D

A≻B≻C ≻D 10 10 10 10
A≻C ≻D≻B 9 9 9 9
A≻D≻B≻C 11 11 11 11
B≻C ≻D≻A 22 22 22 22
C ≻D≻B≻A 23 23 23 23
D≻B≻C ≻A 25 25 25 25

Total 100 30 91 89 90

Verdict: B wins.

Suppose each voter votes for her ‘top two’ candidates.
Then D wins the election, with 59 points.
But suppose instead we let each voter vote for her ‘top three’ candidates.
(Effectively, she ‘votes against’ her worst candidate; thus this is called
antiplurality vote). Then B wins the election, with 91 points.



Top two vs. top three candidates (10/84)

Antiplurality (vote for top three)

Preferences # A B C D

A≻B≻C ≻D 10 10 10 10
A≻C ≻D≻B 9 9 9 9
A≻D≻B≻C 11 11 11 11
B≻C ≻D≻A 22 22 22 22
C ≻D≻B≻A 23 23 23 23
D≻B≻C ≻A 25 25 25 25

Total 100 30 91 89 90

Verdict: B wins.

Suppose each voter votes for her ‘top two’ candidates.
Then D wins the election, with 59 points.
But suppose instead we let each voter vote for her ‘top three’ candidates.
(Effectively, she ‘votes against’ her worst candidate; thus this is called
antiplurality vote). Then B wins the election, with 91 points.
Who is the ‘real’ winner?



Top two vs. top three candidates (10/84)

Antiplurality (vote for top three)

Preferences # A B C D

A≻B≻C ≻D 10 10 10 10
A≻C ≻D≻B 9 9 9 9
A≻D≻B≻C 11 11 11 11
B≻C ≻D≻A 22 22 22 22
C ≻D≻B≻A 23 23 23 23
D≻B≻C ≻A 25 25 25 25

Total 100 30 91 89 90

Verdict: B wins.

Suppose each voter votes for her ‘top two’ candidates.
Then D wins the election, with 59 points.
But suppose instead we let each voter vote for her ‘top three’ candidates.
(Effectively, she ‘votes against’ her worst candidate; thus this is called
antiplurality vote). Then B wins the election, with 91 points.
Who is the ‘real’ winner? B(antiplurality)?



Top two vs. top three candidates (10/84)

Antiplurality (vote for top three)

Preferences # A B C D

A≻B≻C ≻D 10 10 10 10
A≻C ≻D≻B 9 9 9 9
A≻D≻B≻C 11 11 11 11
B≻C ≻D≻A 22 22 22 22
C ≻D≻B≻A 23 23 23 23
D≻B≻C ≻A 25 25 25 25

Total 100 30 91 89 90

Verdict: B wins.

Suppose each voter votes for her ‘top two’ candidates.
Then D wins the election, with 59 points.
But suppose instead we let each voter vote for her ‘top three’ candidates.
(Effectively, she ‘votes against’ her worst candidate; thus this is called
antiplurality vote). Then B wins the election, with 91 points.
Who is the ‘real’ winner? B(antiplurality)? D(vote-for-2)?



Top two vs. top three candidates (10/84)

Antiplurality (vote for top three)

Preferences # A B C D

A≻B≻C ≻D 10 10 10 10
A≻C ≻D≻B 9 9 9 9
A≻D≻B≻C 11 11 11 11
B≻C ≻D≻A 22 22 22 22
C ≻D≻B≻A 23 23 23 23
D≻B≻C ≻A 25 25 25 25

Total 100 30 91 89 90

Verdict: B wins.

Suppose each voter votes for her ‘top two’ candidates.
Then D wins the election, with 59 points.
But suppose instead we let each voter vote for her ‘top three’ candidates.
(Effectively, she ‘votes against’ her worst candidate; thus this is called
antiplurality vote). Then B wins the election, with 91 points.
Who is the ‘real’ winner? B(antiplurality)? D(vote-for-2)? or A(plurality)?
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Another voting system is the Borda Count. Each voter gives:
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Borda Count (11/84)

Another voting system is the Borda Count. Each voter gives:
◮ 3 points to her favourite candidate
◮ 2 points to her second-best candidate
◮ 1 points to her third-best candidate
◮ 0 points to her least-favourite candidate.

Then we sum up the points, and the candidate with the highest sum wins.



Borda Count (11/84)

Another voting system is the Borda Count. Each voter gives:
◮ 3 points to her favourite candidate
◮ 2 points to her second-best candidate
◮ 1 points to her third-best candidate
◮ 0 points to her least-favourite candidate.

Then we sum up the points, and the candidate with the highest sum wins.
Borda Count

Preferences # A B C D

A≻B≻C ≻D 10 3×10 2×10 10
A≻C ≻D≻B 9 3×9 2×9 9
A≻D≻B≻C 11 3×11 11 2×11
B≻C ≻D≻A 22 3×22 2×22 22
C ≻D≻B≻A 23 23 3×23 2×23
D≻B≻C ≻A 25 2×25 25 3×25

Total 100 90 170 166 174

Verdict: D wins.



Borda Count (11/84)

Another voting system is the Borda Count. Each voter gives:
◮ 3 points to her favourite candidate
◮ 2 points to her second-best candidate
◮ 1 points to her third-best candidate
◮ 0 points to her least-favourite candidate.

Then we sum up the points, and the candidate with the highest sum wins.
Borda Count

Preferences # A B C D

A≻B≻C ≻D 10 3×10 2×10 10
A≻C ≻D≻B 9 3×9 2×9 9
A≻D≻B≻C 11 3×11 11 2×11
B≻C ≻D≻A 22 3×22 2×22 22
C ≻D≻B≻A 23 23 3×23 2×23
D≻B≻C ≻A 25 2×25 25 3×25

Total 100 90 170 166 174

Verdict: D wins.
In this case, the winner is D, with 174 points.
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Now consider the following profile
Electorate Profile

Preferences #

A≻B≻C ≻D 22
A≻D≻C ≻B 22
C ≻B≻D≻A 23
D≻B≻C ≻A 33

Total 100

In this case, all four methods give different answers....
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Now consider the following profile
Plurality Vote

Preferences # A B C D

A≻B≻C ≻D 22 22
A≻D≻C ≻B 22 22
C ≻B≻D≻A 23 23
D≻B≻C ≻A 33 33

Total 100 44 0 23 33

Verdict: A wins.

In this case, all four methods give different answers....

◮ A wins the plurality election, with 44% of the vote.
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Now consider the following profile
Vote for top two

Preferences # A B C D

A≻B≻C ≻D 22 22 22
A≻D≻C ≻B 22 22 22
C ≻B≻D≻A 23 23 23
D≻B≻C ≻A 33 33 33

Total 100 44 78 23 55

Verdict: B wins.

In this case, all four methods give different answers....

◮ A wins the plurality election, with 44% of the vote.

◮ B wins the ‘vote-for-two’ election, with 78 points.
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Now consider the following profile
Antiplurality (vote for top three)

Preferences # A B C D

A≻B≻C ≻D 22 22 22 22
A≻D≻C ≻B 22 22 22 22
C ≻B≻D≻A 23 23 23 23
D≻B≻C ≻A 33 33 33 33

Total 100 44 78 100 78

Verdict: C wins.

In this case, all four methods give different answers....

◮ A wins the plurality election, with 44% of the vote.

◮ B wins the ‘vote-for-two’ election, with 78 points.

◮ C wins the antiplurality election, with 100 points.
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Now consider the following profile
Borda Count

Preferences # A B C D

A≻B≻C ≻D 22 3×22 2×22 22
A≻D≻C ≻B 22 3×22 22 2×22
C ≻B≻D≻A 23 2×23 3×23 23
D≻B≻C ≻A 33 2×33 33 3×33

Total 100 132 156 146 166

Verdict: D wins.

In this case, all four methods give different answers....

◮ A wins the plurality election, with 44% of the vote.

◮ B wins the ‘vote-for-two’ election, with 78 points.

◮ C wins the antiplurality election, with 100 points.

◮ D wins the Borda Count election, with 166 points.



All four methods can disagree (12/84)

Now consider the following profile
Borda Count

Preferences # A B C D

A≻B≻C ≻D 22 3×22 2×22 22
A≻D≻C ≻B 22 3×22 22 2×22
C ≻B≻D≻A 23 2×23 3×23 23
D≻B≻C ≻A 33 2×33 33 3×33

Total 100 132 156 146 166

Verdict: D wins.

In this case, all four methods give different answers....

◮ A wins the plurality election, with 44% of the vote.

◮ B wins the ‘vote-for-two’ election, with 78 points.

◮ C wins the antiplurality election, with 100 points.

◮ D wins the Borda Count election, with 166 points.

Who is the real winner?
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(Anti)plurality, vote-for-two, and Borda count are positional voting systems.
In a positional voting system, there is some sequence of ‘scores’

s1 ≥ s2 ≥ s3 ≥ s4 ≥ · · ·
and each voter gives:

◮ s1 points to her favourite candidate,
◮ s2 points to her second-favourite candidate,
◮ s3 points to her third choice, etc.

For example, if there are four candidates, then:
◮ ‘Vote-for-two’ has s1 = s2 = 1 and s3 = s4 = 0.
◮ Antiplurality vote has s1 = s2 = s3 = 1 and s4 = 0.
◮ Plurality vote has s1 = 1 and s2 = s3 = s4 = 0.
◮ Borda Count has s1 = 3, s2 = 2, s3 = 1, and s4 = 0.

Of course, there are infinitely many other choices for s1 ≥ s2 ≥ s3 ≥ · · · .
Unlike ‘Instant runoff’, positional systems are always monotone: a change
in public opinion which favours candidate X will always benefit X.
Also, unlike agendas of pairwise votes, positional systems are neutral: they
don’t systematically favour one candidate over others.
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Which procedure is fairest? (14/84)

Problem: For a given electorate, with fixed preferences, different ‘voting
procedures’ can choose different winners.
Question: Which voting procedure is correct?
Perhaps a better question: which procedure is the most ‘fair’?
(Or most ‘democratic’? Or most ‘rational’? Or most ‘scientific’?)
Agendas of pairwise votes favours ‘later’ candidates over early ones.
Instant runoff sometimes ‘punishes’ a candidate who gains public support.
The traditional plurality vote allowed candidate A to win with a minority of
votes, even though A was despised by most voters.
‘Vote-for-two’ and Antiplurality detect the majority’s dislike of A, and chose
C or D instead.... but they don’t distinguish a voter’s favourite from her
2nd best candidate. (Or 2nd best vs. 3rd best, for antiplurality).
The Borda count seems to be a good compromise between ‘plurality’,
‘antiplurality’, and ‘vote-for-two’ procedures.
It allows each voter to ‘vote against’ her worst candidate, but also assigns
more ‘weight’ to her favourite than to her 2nd best, and more ‘weight’ to
her 2nd best than her 3rd best, etc.
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Borda Count was invented by Jean Charles de Borda (1733-1799), a French
mathematician, military engineer, naval commander, and political theorist.
It has many advantages, and is still widely used.
But Borda has drawbacks. For example, consider the following profile:

Borda Count

Preferences # A B C

A≻B≻C 60 2×60 60
B≻C ≻A 40 2×40 40

Total 100 120 140 40

Verdict: B wins.

Clearly B wins the Borda Count election, with 140 points.
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Verdict: A wins.

Clearly B wins the Borda Count election, with 140 points.
However, A is prefered by a strict majority (60%) of the voters.
Rationale: A is ‘polarizing’ candidate, loved by 60%, but hated by 40%.
B is loved by only 40%, but hated by no one; she is a good ‘compromise’
candidate, and Borda Count detects this.
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Borda Count was invented by Jean Charles de Borda (1733-1799), a French
mathematician, military engineer, naval commander, and political theorist.
It has many advantages, and is still widely used.
But Borda has drawbacks. For example, consider the following profile:

Plurality Vote

Preferences # A B C

A≻B≻C 60 60
B≻C ≻A 40 40

Total 100 60 40 0

Verdict: A wins.

Clearly B wins the Borda Count election, with 140 points.
However, A is prefered by a strict majority (60%) of the voters.
Rationale: A is ‘polarizing’ candidate, loved by 60%, but hated by 40%.
B is loved by only 40%, but hated by no one; she is a good ‘compromise’
candidate, and Borda Count detects this.
But many ‘positional’ systems have this property; why use Borda’s?
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The problems with Borda’s method were first
noted by his contemporary, Marie Jean Antoine
Nicolas de Caritat, the Marquis de Condorcet
(1743-1794). Condorcet was a French mathemati-
cian and philosopher, and a pioneer of modern
mathematical voting theory. He discovered many
important facts about voting and probability, and
was a strong advocate of democracy and social
reform. He died in prison during the French Rev-
olution.

Condorcet asserted that any ‘fair’ voting system should always choose
candidate X if X could beat every other candidate in a two-way election—in
other words, if a majority of voters prefer X to any other single candidate.
In this case, X is called the Condorcet winner of the election.
Thus, Condorcet’s Criterion says:
A voting system should always choose the Condorcet winner, if one exists.

(The last example shows that Borda count violates the Condorcet criteria.)



Condorcet’s Paradox (17/84)

However, as Condorcet himself discovered, a Condorcet winner doesn’t
always exist....



Condorcet’s Paradox (17/84)

However, as Condorcet himself discovered, a Condorcet winner doesn’t
always exist.... For example, consider the following profile:

Condorcet Pairwise Votes

Preferences # A≻B B≻A B≻C C ≻B A≻C C ≻A

A≻B≻C 33 33 33 33
B≻C ≻A 33 33 33 33
C ≻A≻B 34 34 34 34

Total 100 67 33 66 34 33 67

Verdict: A≻B B≻C C ≻A



Condorcet’s Paradox (17/84)

However, as Condorcet himself discovered, a Condorcet winner doesn’t
always exist.... For example, consider the following profile:

Condorcet Pairwise Votes

Preferences # A≻B B≻A B≻C C ≻B A≻C C ≻A

A≻B≻C 33 33 33 33
B≻C ≻A 33 33 33 33
C ≻A≻B 34 34 34 34

Total 100 67 33 66 34 33 67

Verdict: A≻B B≻C C ≻A

◮ 67% of the voters prefer A to B.



Condorcet’s Paradox (17/84)

However, as Condorcet himself discovered, a Condorcet winner doesn’t
always exist.... For example, consider the following profile:

Condorcet Pairwise Votes

Preferences # A≻B B≻A B≻C C ≻B A≻C C ≻A

A≻B≻C 33 33 33 33
B≻C ≻A 33 33 33 33
C ≻A≻B 34 34 34 34

Total 100 67 33 66 34 33 67

Verdict: A≻B B≻C C ≻A

◮ 67% of the voters prefer A to B.
◮ 66% of the voters prefer B to C.



Condorcet’s Paradox (17/84)

However, as Condorcet himself discovered, a Condorcet winner doesn’t
always exist.... For example, consider the following profile:

Condorcet Pairwise Votes

Preferences # A≻B B≻A B≻C C ≻B A≻C C ≻A

A≻B≻C 33 33 33 33
B≻C ≻A 33 33 33 33
C ≻A≻B 34 34 34 34

Total 100 67 33 66 34 33 67

Verdict: A≻B B≻C C ≻A

◮ 67% of the voters prefer A to B.
◮ 66% of the voters prefer B to C.
◮ 67% of the voters prefer C to A.



Condorcet’s Paradox (17/84)

However, as Condorcet himself discovered, a Condorcet winner doesn’t
always exist.... For example, consider the following profile:

Condorcet Pairwise Votes

Preferences # A≻B B≻A B≻C C ≻B A≻C C ≻A

A≻B≻C 33 33 33 33
B≻C ≻A 33 33 33 33
C ≻A≻B 34 34 34 34

Total 100 67 33 66 34 33 67

Verdict: A≻B B≻C C ≻A

◮ 67% of the voters prefer A to B.
◮ 66% of the voters prefer B to C.
◮ 67% of the voters prefer C to A.

Thus, there is no Condorcet winner.
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However, as Condorcet himself discovered, a Condorcet winner doesn’t
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However, as Condorcet himself discovered, a Condorcet winner doesn’t
always exist.... For example, consider the following profile:

Condorcet Pairwise Votes

Preferences # A≻B B≻A B≻C C ≻B A≻C C ≻A

A≻B≻C 33 33 33 33
B≻C ≻A 33 33 33 33
C ≻A≻B 34 34 34 34

Total 100 67 33 66 34 33 67

Verdict: A≻B B≻C C ≻A

◮ 67% of the voters prefer A to B.
◮ 66% of the voters prefer B to C.
◮ 67% of the voters prefer C to A.

Thus, there is no Condorcet winner. This is called Condorcet’s Paradox.
The majority’s apparently ‘cyclical’ preference ordering

· · · ≻ A ≻ B ≻ C ≻ A ≻ B ≻ C ≻ A ≻ B ≻ C ≻ A ≻ B ≻ C ≻ · · ·

is called a Condorcet cycle.
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Problem: Whoever controls the agenda (e.g. the Chair of a committee,
the head of the Election Commission) can control the outcome.
This is called agenda manipulation.
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Condorcet cycles can also cause political instability.
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Suppose A wins an election against B.
In the next election, opponents of A can introduce C, who will beat A.
In the third election, opponents of C can reintroduce B, who will beat C.
But now, in the fourth election, opponents of B bring back A, who beats B.
Then the cycle starts over.
According to certain mathematical models of electoral politics developed by
McKelvey (1976,1979) and Schofield (1978,1983), such ‘voting chaos’ is
quite common (perhaps ubiquitous) in real democracies.
Worse yet: a sly ‘electioneer’ can construct a Condorcet spiral

A1 ≻ B1 ≻ C1 ≻ A2 ≻ B2 ≻ C2 ≻ A3 ≻ B3 ≻ C3 ≻ · · ·

which will converge towards any desired target in the ‘political spectrum’.
Thus, by deploying a suitable sequence of candidates, the electioneer can
‘steer’ the democracy wherever she wants.
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The Borda Count fails the Condorcet Criterion. Recall our earlier example:
2-way Borda count

Preferences # A≻B B≻A

A≻B 60 1× 60
B≻A 40 1× 40

Total 100 60 40

Recall: B wins the Borda Count election, with 140 points.
However, A is the Condorcet winner.
Problem: B wins the Borda only because the presence of the 3rd-place
candidate C ‘boosts’ B’s score (because B picks up ‘2nd place’ points).
If C withdrew, then A would win the Borda Count instead of B!
Thus, the presence of an irrelevant alternative —a third-place candidate
like C —can change the outcome of the contest between A and B.
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This sensitivity to irrelevant alternatives plagues not only Borda Count, but
many voting systems, including the conventional plurality vote.
For example, consider the following election:

A versus B (C excluded)

Preferences # A≻B B≻A

A≻B≻C 40 40
B≻C ≻A 35 35
C ≻B≻A 25 25

Total 100 40 60

Verdict: B≻A

A wins , but only because the anti-A vote is ‘split’ between B and C.
If the third-place C withdraws, then B wins with a majority of 60%.
Thus, plurality vote is sensitive to the ‘irrelevant alternative’ C.
In fact, Donald Saari (1989) has shown that almost any positional voting
system (e.g. (anti)plurality, vote-for-two, etc.) is highly sensitive to
irrelevant alternatives....
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Irrelevant alternatives =⇒ collective irrationality (22/84)

Sensitivity to irrelevant alternatives is a form of ‘collective irrationality’.
For example, imagine a restaurant with the following dessert menu:

◮ Apple cobbler

◮ Banana cream pie

◮ Chocolate cake.

You think, “I prefer Apple cobbler to Banana pie, and I prefer Banana pie
to Chocolate cake (i.e. A≻B≻C ). So I will order the Apple cobbler.”
But then the waiter comes and says, “I’m sorry; the kitchen says there is no
more Chocolate cake.”
So you say: “Then I will order the Banana cream pie.”
Does this make sense? No. But that is exactly what a voting procedure
does if it is sensitive to irrelevant alternatives (in this case, Chocolate cake).
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Irrelevant alternatives =⇒ electioneering (23/84)

If a voting procedure is sensitive to ‘irrelevant alternatives’, then a sly
‘electioneer’ can manipulate the outcome by introducing ‘fringe’ candidates.
For example, in the following plurality election, the supporters of A might
introduce an ‘irrelevant’ third candidate, C....
This splits the opposition, so A wins instead of B.

Plurality Vote

Preferences # A B C

A≻B≻C 40 40
B≻C ≻A 35 35
C ≻B≻A 25 25

Total 100 40 35 25

Verdict: A wins.

Borda Count

Preferences # A B C

A≻B≻C 60 2×60 60
B≻C ≻A 40 2×40 40

Total 100 120 140 40

Verdict: B wins.

On the other hand, suppose the right-hand election was a Borda Count.
The supporters of B might introduce an ‘irrelevant’ third candidate, C....
This inflates B’s Borda score, so that B wins instead of A.
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Indeed, ‘sensitivity to irrelevant alternatives’ plagues every reasonable
voting system. To explain this, we need some terminology.
Consider an election with three candidates A, B, and C.
There are six possible preference orderings a voter could have over these
three candidates, namely:

A≻B≻C , B≻C ≻A, C ≻A≻B, B≻A≻C , A≻C ≻B, C ≻B≻A.

A 3-candidate profile is a list of how many voters
espouse each of these six preference orderings.

For example, here is one possible profile.

Likewise, there are 24 possible preference order-
ings over four candidates A, B, C, D.

A 4-candidate profile lists how many voters es-
pouse each of these 24 orderings.
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Preferences #

A≻B≻C 10
A≻C ≻B 15
B≻A≻C 12
B≻C ≻A 18
C ≻A≻B 20
C ≻B≻A 25

Total 100
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Preferences #
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B≻D≻A≻C 1
B≻D≻C ≻A 15
C ≻A≻B≻D 3
C ≻A≻D≻B 2
C ≻B≻A≻D 6
C ≻B≻D≻A 1
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Total 100
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Total 100

For example, here is one possible 4-candidate profile.

An ordinal voting procedure is a rule which, for any pro-
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For example, the following profile unanimously prefers B:
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B≻D≻A≻C 15
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A procedure V respects unanimity if, when-
ever a profile unanimously prefers X, the pro-
cedure V chooses X as the winner.

This rules out stupid procedures like “Always
pick A”, or “Always pick the candidate who
has the lowest Borda count”, or “Always pick
whichever candidate gets the most votes, ex-
cept for B”.

Clearly, if everyone thinks B is the best, then B should win.
Example: Borda count, plurality vote, antiplurality vote, etc. all respect
unanimity.
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Desideratum: Independence of Irrelevant Alternatives

Plurality vote does not satisfy IIA, as the following tables show:

The two profiles agree about A and B.

But on the left, A wins the plurality vote, whereas on the right, B does.

Plurality Vote

Preferences # A B C

A≻B≻C 20 20
A≻C ≻B 20 20
B≻A≻C 15 15
B≻C ≻A 15 15
C ≻A≻B 5 5
C ≻B≻A 25 25

Total 100 40 30 30

Verdict: A wins.

Plurality Vote

Preferences # A B C

A≻B≻C 15 15
A≻C ≻B 15 15
B≻A≻C 20 20
B≻C ≻A 20 20
C ≻A≻B 15 15
C ≻B≻A 15 15

Total 100 30 40 30

Verdict: B wins.

A voting procedure V satisfies Independence of Irrelevant Alternatives if,
whenever two profiles P1 and P2 agree about X and Y, and V makes X the
winner in P1, then V can’t make Y the winner in P2.
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In fact, none of the procedures we have introduced so far satisfies IIA; this
was part of the reason for all the ‘paradoxes’.
Indeed, no sensible ordinal procedure can satisfy IIA....

Arrow’s Impossibility Theorem: Suppose an election has three or more

candidates. Then there is no ordinal voting procedure which respects

Unanimity and is Independent of Irrelevant Alternatives.

That is: any ordinal voting procedure must either disrespect unanimity, or
be sensitive to ‘irrelevant alternatives’, or both.

(Or, it must be a system which is not an ‘ordinal voting procedure’ —e.g.
it uses some other data besides ‘preference orders’).

This theorem was proved by the mathematical economist Kenneth Arrow in
1950. Arrow almost single-handedly invented modern axiomatic voting
theory (also called social choice theory). In 1972, he received the Nobel
Prize in Economics, in part for this result.
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A proof is a sequence of logical deductions, which shows that certain
conclusions are the inescapable logical consequence of certain assumptions.
For example......
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Given a voting rule V , we say that A can defeat B under V with p%
support if there exists a profile of voter preferences where:

◮ p% of the voters believe A ≻ B;

◮ (hence, (100 − p)% of the voters believe B ≻ A);

◮ and where V chooses A as the winner.

For example, if V is plurality vote, then A can defeat B with 55% support,
because A is the winner of the following profile:

Plurality Vote

Preferences # A B C

A≻B≻C 55 55
B≻A≻C 45 45

Total 100 55 45 0

Verdict: A wins.

(Here, “C” represents all the other candidates besides A and B.)
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Given a voting rule V , we say that A can defeat B under V with p%
support if there exists a profile of voter preferences where:

◮ p% of the voters believe A ≻ B;

◮ (hence, (100 − p)% of the voters believe B ≻ A);

◮ and where V chooses A as the winner.

If V is any voting rule respecting unanimity, then A can defeat B with
100% support, because A is the winner of the following profile:

Preferences %
A≻B≻C 100

Unanimous verdict: A

(Here, “C” represents all the other candidates besides A and B.)
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Given a voting rule V , we say that A can defeat B under V with p%
support if there exists a profile of voter preferences where:

◮ p% of the voters believe A ≻ B;

◮ (hence, (100 − p)% of the voters believe B ≻ A);

◮ and where V chooses A as the winner.

If A can defeat B with p% support, and V satisfies IIA, then in any profile
of voter preferences where p% of the voters believe that A ≻ B, the
procedure V cannot choose B as the winner.
(Of course, V might not choose A as the winner either).

In this case, we say that A always defeats B with p% support.
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Lemma 1. Let V be a voting rule which respects unanimity and IIA.

Let A and B be two candidates. Suppose A can defeat B with p% support.
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(That is: if some candidate can defeat some other candidate with p%
support, then any candidate always defeats any other candidate with p%
support.)
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Preferences % A≻B B≻D B ≻ X

A≻B≻D ≻ X 60% 60% 60% 60%
B≻D≻A ≻ X 40% 40% 40%
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Claim 1: V makes A the winner for this profile.

Proof: B can’t win: 60% of voters think that A≻B. But A can defeat
B with 60% (by hypothesis); hence A always defeats B with 60% (by IIA).
D can’t win: 100% of voters think B≻D. But B can defeat D with 100%
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Proof: B can’t win: 60% of voters think that A≻B. But A can defeat
B with 60% (by hypothesis); hence A always defeats B with 60% (by IIA).
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(V respects unanimity); hence B always defeats D with 100% (by IIA).
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But B can defeat X with 100% (because V respects unanimity);
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B with 60% (by hypothesis); hence A always defeats B with 60% (by IIA).
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always defeats X with 100% (by IIA).
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Claim 1: V makes A the winner for this profile.

Proof: B can’t win: 60% of voters think that A≻B. But A can defeat
B with 60% (by hypothesis); hence A always defeats B with 60% (by IIA).
D can’t win: 100% of voters think B≻D. But B can defeat D with 100%
(V respects unanimity); hence B always defeats D with 100% (by IIA).
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always defeats X with 100% (by IIA).
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picks A. Hence A wins. (Claim 1).
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Then for any candidates C and D, C always defeats D with p% support.

Proof. For simplicity, suppose p = 60%. Consider the following profile:
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(
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)

Claim 1: V makes A the winner for this profile.

Proof: B can’t win: 60% of voters think that A≻B. But A can defeat
B with 60% (by hypothesis); hence A always defeats B with 60% (by IIA).
D can’t win: 100% of voters think B≻D. But B can defeat D with 100%
(V respects unanimity); hence B always defeats D with 100% (by IIA).
Finally, any other candidate X can’t win: 100% of voters think that B ≻ X.
But B can defeat X with 100% (because V respects unanimity); hence B

always defeats X with 100% (by IIA).
But V must pick someone as the winner. A is the only choice left, so V

picks A. Hence A wins. (Claim 1).
Note: Claim 1 means that A can defeat D with 60% support.
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Proof. Now let p be anything.
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Claim 1: V makes A the winner for this profile.
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Claim 1: V makes A the winner for this profile.

Proof: B can’t win: p% of voters think that A≻B . But A can defeat B
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Proof: B can’t win: p% of voters think that A≻B . But A can defeat B

with p% (by hypothesis); hence A always defeats B with p% (by IIA).
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always defeats X with 100% (by IIA).
V must pick someone.
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always defeats X with 100% (by IIA).
V must pick someone. A is the only choice left, so V picks A. (Claim 1).
Note: Claim 1 means that A can defeat D with p% support.
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Claim 2: V makes C the winner for this profile.

Proof: D can’t win: p% of voters think A≻D. But A can defeat D with
p% support (by Claim 1). Hence A always defeats D with p% (by IIA).
A can’t win: 100% of voters think C ≻A. But C can defeat A with 100%
(V respects unanimity); hence C always defeats A with 100% (by IIA).
Finally, any other candidate X can’t win: 100% of voters think C ≻ X.
But C can defeat X with 100% (because V respects unanimity); hence C

always defeats X with 100% (by IIA).
V must pick someone. C is the only choice left, so V picks C. (Claim 2).
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Let A and B be two candidates. Suppose A can defeat B with p% support.

Then for any candidates C and D, C always defeats D with p% support.

Proof. Let q% := 100 − p%. (e.g. if p = 60% then q = 40%).
Now consider the following profile
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C ≻A≻D ≻ X p% p%
D≻C ≻A ≻ X q%

Total: 100% p%

(
Here, X= all
other candidates.

)

Claim 2: V makes C the winner for this profile.

Claim 2 implies that C can defeat D with p% support.
Thus, C always defeats D with p% support, because V satisfies IIA.
But this is what we wanted to prove.
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Recall that Hare’s method suffered from nonmonotonicity: Candidate A can
go from being a winner to a loser when we increase A’s support.
In other words, A might defeat B when p% of voters think A≻B, but then
A might be defeated by B when P% of voters think A≻B for some P > p.
This is totally perverse. If voting rule respected unanimity and IIA, then it
wouldn’t have this problem.
Lemma 2. Let V be a voting rule which respects unanimity and IIA.

Let A and B be two candidates, and suppose A can defeat B with p%
support. Then for any P > p, A always defeats B with P% support.

In other words: increasing the number of voters who prefer A over B can
never cause A to lose to B.

Example: In plurality vote, if A defeats B with 55% support, then A also
defeats B with 60% support.
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If A are B are any candidates, then A always defeats B with 51% support.

Proof. First suppose p := 51% Consider the following profile:
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A≻B ≻ X 51%
B ≻A ≻ X 49%

Total: 100%

„

Here, X= all
other candidates.

«
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Note that some other candidate X can’t win:
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Lemma 3: Let V be a rule which respects unanimity and IIA.

If A are B are any candidates, then A always defeats B with 51% support.

Proof. First suppose p := 51% Consider the following profile:
Preferences % A ≻ X

A≻B ≻ X 51% 51%
B ≻A ≻ X 49% 49%

Total: 100% 100%

„

Here, X= all
other candidates.

«

Note that some other candidate X can’t win: 100% of the voters think
A ≻ X.
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Lemma 3: Let V be a rule which respects unanimity and IIA.

If A are B are any candidates, then A always defeats B with 51% support.

Proof. First suppose p := 51% Consider the following profile:
Preferences % A ≻ X

A≻B ≻ X 51% 51%
B ≻A ≻ X 49% 49%

Total: 100% 100%

„

Here, X= all
other candidates.

«

Note that some other candidate X can’t win: 100% of the voters think
A ≻ X. But A can defeat X with 100% (because V respects unanimity).
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Lemma 3: Let V be a rule which respects unanimity and IIA.

If A are B are any candidates, then A always defeats B with 51% support.

Proof. First suppose p := 51% Consider the following profile:
Preferences % A ≻ X

A≻B ≻ X 51% 51%
B ≻A ≻ X 49% 49%

Total: 100% 100%

„

Here, X= all
other candidates.

«

Note that some other candidate X can’t win: 100% of the voters think
A ≻ X. But A can defeat X with 100% (because V respects unanimity).
Thus, A always defeats X with 100% (by IIA).
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Lemma 3: Let V be a rule which respects unanimity and IIA.

If A are B are any candidates, then A always defeats B with 51% support.

Proof. First suppose p := 51% Consider the following profile:
Preferences % A ≻ X

A≻B ≻ X 51% 51%
B ≻A ≻ X 49% 49%

Total: 100% 100%

„

Here, X= all
other candidates.

«

Note that some other candidate X can’t win: 100% of the voters think
A ≻ X. But A can defeat X with 100% (because V respects unanimity).
Thus, A always defeats X with 100% (by IIA).

This leaves 2 cases: either A wins, or B wins.
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Lemma 3: Let V be a rule which respects unanimity and IIA.

If A are B are any candidates, then A always defeats B with 51% support.

Proof. First suppose p := 51% Consider the following profile:
Preferences % A ≻ X

A≻B ≻ X 51% 51%
B ≻A ≻ X 49% 49%

Total: 100% 100%

„

Here, X= all
other candidates.

«

Note that some other candidate X can’t win: 100% of the voters think
A ≻ X. But A can defeat X with 100% (because V respects unanimity).
Thus, A always defeats X with 100% (by IIA).

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.
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Lemma 3: Let V be a rule which respects unanimity and IIA.

If A are B are any candidates, then A always defeats B with 51% support.

Proof. First suppose p := 51% Consider the following profile:
Preferences % A ≻ X A≻B

A≻B ≻ X 51% 51% 51%
B ≻A ≻ X 49% 49%

Total: 100% 100% 51%

„

Here, X= all
other candidates.

«

Note that some other candidate X can’t win: 100% of the voters think
A ≻ X. But A can defeat X with 100% (because V respects unanimity).
Thus, A always defeats X with 100% (by IIA).

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.

Then A can defeat B with 51% support.
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Lemma 3: Let V be a rule which respects unanimity and IIA.

If A are B are any candidates, then A always defeats B with 51% support.

Proof. First suppose p := 51% Consider the following profile:
Preferences % A ≻ X A≻B

A≻B ≻ X 51% 51% 51%
B ≻A ≻ X 49% 49%

Total: 100% 100% 51%

„

Here, X= all
other candidates.

«

Note that some other candidate X can’t win: 100% of the voters think
A ≻ X. But A can defeat X with 100% (because V respects unanimity).
Thus, A always defeats X with 100% (by IIA).

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.

Then A can defeat B with 51% support. Thus A always defeats B with
51% support, by IIA.
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Lemma 3: Let V be a rule which respects unanimity and IIA.

If A are B are any candidates, then A always defeats B with 51% support.

Proof. First suppose p := 51% Consider the following profile:
Preferences % A ≻ X A≻B

A≻B ≻ X 51% 51% 51%
B ≻A ≻ X 49% 49%

Total: 100% 100% 51%

„

Here, X= all
other candidates.
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This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.

Then A can defeat B with 51% support. Thus A always defeats B with
51% support, by IIA.
Case 2: B wins.



Proof of Arrow’s Theorem: Condorcet property (40/84)

Lemma 3: Let V be a rule which respects unanimity and IIA.

If A are B are any candidates, then A always defeats B with 51% support.

Proof. First suppose p := 51% Consider the following profile:
Preferences % A ≻ X A≻B B ≻A

A≻B ≻ X 51% 51% 51%
B ≻A ≻ X 49% 49% 49%

Total: 100% 100% 51% 49%

„

Here, X= all
other candidates.

«

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.

Then A can defeat B with 51% support. Thus A always defeats B with
51% support, by IIA.
Case 2: B wins.

Then B defeats A with 49% support.
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Lemma 3: Let V be a rule which respects unanimity and IIA.

If A are B are any candidates, then A always defeats B with 51% support.

Proof. First suppose p := 51% Consider the following profile:
Preferences % A ≻ X A≻B B ≻A

A≻B ≻ X 51% 51% 51%
B ≻A ≻ X 49% 49% 49%

Total: 100% 100% 51% 49%

„

Here, X= all
other candidates.

«

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.

Then A can defeat B with 51% support. Thus A always defeats B with
51% support, by IIA.
Case 2: B wins.

Then B defeats A with 49% support.
Thus, for any Q > 49, Lemma 2 says that B defeats A with Q% support.
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Lemma 3: Let V be a rule which respects unanimity and IIA.

If A are B are any candidates, then A always defeats B with 51% support.

Proof. First suppose p := 51% Consider the following profile:
Preferences % A ≻ X A≻B B ≻A

A≻B ≻ X 51% 51% 51%
B ≻A ≻ X 49% 49% 49%

Total: 100% 100% 51% 49%

„

Here, X= all
other candidates.

«

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.

Then A can defeat B with 51% support. Thus A always defeats B with
51% support, by IIA.
Case 2: B wins.

Then B defeats A with 49% support.
Thus, for any Q > 49, Lemma 2 says that B defeats A with Q% support.
But 51 > 49.
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Lemma 3: Let V be a rule which respects unanimity and IIA.

If A are B are any candidates, then A always defeats B with 51% support.

Proof. First suppose p := 51% Consider the following profile:
Preferences % A ≻ X A≻B B ≻A

A≻B ≻ X 51% 51% 51%
B ≻A ≻ X 49% 49% 49%

Total: 100% 100% 51% 49%

„

Here, X= all
other candidates.

«

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.

Then A can defeat B with 51% support. Thus A always defeats B with
51% support, by IIA.
Case 2: B wins.

Then B defeats A with 49% support.
Thus, for any Q > 49, Lemma 2 says that B defeats A with Q% support.
But 51 > 49. Thus, B defeats A with 51% support.
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Lemma 3: Let V be a rule which respects unanimity and IIA.

If A are B are any candidates, then A always defeats B with 51% support.

Proof. First suppose p := 51% Consider the following profile:
Preferences % A ≻ X A≻B B ≻A

A≻B ≻ X 51% 51% 51%
B ≻A ≻ X 49% 49% 49%

Total: 100% 100% 51% 49%

„

Here, X= all
other candidates.

«

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.

Then A can defeat B with 51% support. Thus A always defeats B with
51% support, by IIA.
Case 2: B wins.

Then B defeats A with 49% support.
Thus, for any Q > 49, Lemma 2 says that B defeats A with Q% support.
But 51 > 49. Thus, B defeats A with 51% support.
Thus, Lemma 1 says that A can also defeat B with 51% support.
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Lemma 3: Let V be a rule which respects unanimity and IIA.

If A are B are any candidates, then A always defeats B with 51% support.

Proof. First suppose p := 51% Consider the following profile:
Preferences % A ≻ X A≻B B ≻A

A≻B ≻ X 51% 51% 51%
B ≻A ≻ X 49% 49% 49%

Total: 100% 100% 51% 49%

„

Here, X= all
other candidates.

«

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.

Then A can defeat B with 51% support. Thus A always defeats B with
51% support, by IIA.
Case 2: B wins.

Then B defeats A with 49% support.
Thus, for any Q > 49, Lemma 2 says that B defeats A with Q% support.
But 51 > 49. Thus, B defeats A with 51% support.
Thus, Lemma 1 says that A can also defeat B with 51% support.
Thus A always defeats B with 51% support, by IIA.
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Lemma 3: Let V be a rule which respects unanimity and IIA. Let p > 50%.

If A are B are any candidates, then A always defeats B with p% support.

Proof.
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Proof. Now let p be arbitrary. Let q% := 100 − p%.
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Total: 100%
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„
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Note that some other candidate X can’t win:
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Lemma 3: Let V be a rule which respects unanimity and IIA. Let p > 50%.

If A are B are any candidates, then A always defeats B with p% support.

Proof. Now let p be arbitrary. Let q% := 100 − p%. Consider profile:
Preferences % A ≻ X

A≻B ≻ X p% p%
B ≻A ≻ X q% q%

Total: 100% 100%

„

Here, X= all
other candidates.

«

Note that some other candidate X can’t win: 100% of the voters think
A ≻ X.
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Lemma 3: Let V be a rule which respects unanimity and IIA. Let p > 50%.

If A are B are any candidates, then A always defeats B with p% support.

Proof. Now let p be arbitrary. Let q% := 100 − p%. Consider profile:
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A≻B ≻ X p% p%
B ≻A ≻ X q% q%

Total: 100% 100%

„

Here, X= all
other candidates.

«

Note that some other candidate X can’t win: 100% of the voters think
A ≻ X. But A can defeat X with 100% (because V respects unanimity).
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Lemma 3: Let V be a rule which respects unanimity and IIA. Let p > 50%.

If A are B are any candidates, then A always defeats B with p% support.

Proof. Now let p be arbitrary. Let q% := 100 − p%. Consider profile:
Preferences % A ≻ X

A≻B ≻ X p% p%
B ≻A ≻ X q% q%

Total: 100% 100%

„

Here, X= all
other candidates.

«

Note that some other candidate X can’t win: 100% of the voters think
A ≻ X. But A can defeat X with 100% (because V respects unanimity).
Thus, A always defeats X with 100% (by IIA).
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If A are B are any candidates, then A always defeats B with p% support.

Proof. Now let p be arbitrary. Let q% := 100 − p%. Consider profile:
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A≻B ≻ X p% p%
B ≻A ≻ X q% q%
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„
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Note that some other candidate X can’t win: 100% of the voters think
A ≻ X. But A can defeat X with 100% (because V respects unanimity).
Thus, A always defeats X with 100% (by IIA).

This leaves 2 cases: either A wins, or B wins.
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Lemma 3: Let V be a rule which respects unanimity and IIA. Let p > 50%.

If A are B are any candidates, then A always defeats B with p% support.

Proof. Now let p be arbitrary. Let q% := 100 − p%. Consider profile:
Preferences % A ≻ X

A≻B ≻ X p% p%
B ≻A ≻ X q% q%

Total: 100% 100%

„

Here, X= all
other candidates.

«

Note that some other candidate X can’t win: 100% of the voters think
A ≻ X. But A can defeat X with 100% (because V respects unanimity).
Thus, A always defeats X with 100% (by IIA).

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.
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Lemma 3: Let V be a rule which respects unanimity and IIA. Let p > 50%.

If A are B are any candidates, then A always defeats B with p% support.

Proof. Now let p be arbitrary. Let q% := 100 − p%. Consider profile:
Preferences % A ≻ X A≻B

A≻B ≻ X p% p% p%
B ≻A ≻ X q% q%

Total: 100% 100% p%

„

Here, X= all
other candidates.

«

Note that some other candidate X can’t win: 100% of the voters think
A ≻ X. But A can defeat X with 100% (because V respects unanimity).
Thus, A always defeats X with 100% (by IIA).

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.

Then A can defeat B with p% support.
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Lemma 3: Let V be a rule which respects unanimity and IIA. Let p > 50%.

If A are B are any candidates, then A always defeats B with p% support.

Proof. Now let p be arbitrary. Let q% := 100 − p%. Consider profile:
Preferences % A ≻ X A≻B

A≻B ≻ X p% p% p%
B ≻A ≻ X q% q%

Total: 100% 100% p%

„

Here, X= all
other candidates.

«

Note that some other candidate X can’t win: 100% of the voters think
A ≻ X. But A can defeat X with 100% (because V respects unanimity).
Thus, A always defeats X with 100% (by IIA).

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.

Then A can defeat B with p% support. Thus A always defeats B with p%
support, by IIA.
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Lemma 3: Let V be a rule which respects unanimity and IIA. Let p > 50%.

If A are B are any candidates, then A always defeats B with p% support.

Proof. Now let p be arbitrary. Let q% := 100 − p%. Consider profile:
Preferences % A ≻ X A≻B

A≻B ≻ X p% p% p%
B ≻A ≻ X q% q%

Total: 100% 100% p%

„

Here, X= all
other candidates.

«

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.

Then A can defeat B with p% support. Thus A always defeats B with p%
support, by IIA.
Case 2: B wins.
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Lemma 3: Let V be a rule which respects unanimity and IIA. Let p > 50%.

If A are B are any candidates, then A always defeats B with p% support.

Proof. Now let p be arbitrary. Let q% := 100 − p%. Consider profile:
Preferences % A ≻ X A≻B B ≻A

A≻B ≻ X p% p% p%
B ≻A ≻ X q% q% q%

Total: 100% 100% p% q%

„

Here, X= all
other candidates.

«

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.

Then A can defeat B with p% support. Thus A always defeats B with p%
support, by IIA.
Case 2: B wins.

Then B defeats A with q% support.
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Lemma 3: Let V be a rule which respects unanimity and IIA. Let p > 50%.

If A are B are any candidates, then A always defeats B with p% support.

Proof. Now let p be arbitrary. Let q% := 100 − p%. Consider profile:
Preferences % A ≻ X A≻B B ≻A

A≻B ≻ X p% p% p%
B ≻A ≻ X q% q% q%

Total: 100% 100% p% q%

„

Here, X= all
other candidates.

«

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.

Then A can defeat B with p% support. Thus A always defeats B with p%
support, by IIA.
Case 2: B wins.

Then B defeats A with q% support.
Thus, for any Q > q, Lemma 2 says that B defeats A with Q% support.
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Lemma 3: Let V be a rule which respects unanimity and IIA. Let p > 50%.

If A are B are any candidates, then A always defeats B with p% support.

Proof. Now let p be arbitrary. Let q% := 100 − p%. Consider profile:
Preferences % A ≻ X A≻B B ≻A

A≻B ≻ X p% p% p%
B ≻A ≻ X q% q% q%

Total: 100% 100% p% q%

„

Here, X= all
other candidates.

«

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.

Then A can defeat B with p% support. Thus A always defeats B with p%
support, by IIA.
Case 2: B wins.

Then B defeats A with q% support.
Thus, for any Q > q, Lemma 2 says that B defeats A with Q% support.
But p > q (because p > 50% and q = 100 − p < 50%).
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Lemma 3: Let V be a rule which respects unanimity and IIA. Let p > 50%.

If A are B are any candidates, then A always defeats B with p% support.

Proof. Now let p be arbitrary. Let q% := 100 − p%. Consider profile:
Preferences % A ≻ X A≻B B ≻A

A≻B ≻ X p% p% p%
B ≻A ≻ X q% q% q%

Total: 100% 100% p% q%

„

Here, X= all
other candidates.

«

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.

Then A can defeat B with p% support. Thus A always defeats B with p%
support, by IIA.
Case 2: B wins.

Then B defeats A with q% support.
Thus, for any Q > q, Lemma 2 says that B defeats A with Q% support.
But p > q (because p > 50% and q = 100 − p < 50%).
Thus, B defeats A with p% support.



Proof of Arrow’s Theorem: Condorcet property (41/84)

Lemma 3: Let V be a rule which respects unanimity and IIA. Let p > 50%.

If A are B are any candidates, then A always defeats B with p% support.

Proof. Now let p be arbitrary. Let q% := 100 − p%. Consider profile:
Preferences % A ≻ X A≻B B ≻A

A≻B ≻ X p% p% p%
B ≻A ≻ X q% q% q%

Total: 100% 100% p% q%

„

Here, X= all
other candidates.

«

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.

Then A can defeat B with p% support. Thus A always defeats B with p%
support, by IIA.
Case 2: B wins.

Then B defeats A with q% support.
Thus, for any Q > q, Lemma 2 says that B defeats A with Q% support.
But p > q (because p > 50% and q = 100 − p < 50%).
Thus, B defeats A with p% support.
Thus, Lemma 1 says that A can also defeat B with p% support.
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Lemma 3: Let V be a rule which respects unanimity and IIA. Let p > 50%.

If A are B are any candidates, then A always defeats B with p% support.

Proof. Now let p be arbitrary. Let q% := 100 − p%. Consider profile:
Preferences % A ≻ X A≻B B ≻A

A≻B ≻ X p% p% p%
B ≻A ≻ X q% q% q%

Total: 100% 100% p% q%

„

Here, X= all
other candidates.

«

This leaves 2 cases: either A wins, or B wins.
Case 1: A wins.

Then A can defeat B with p% support. Thus A always defeats B with p%
support, by IIA.
Case 2: B wins.

Then B defeats A with q% support.
Thus, for any Q > q, Lemma 2 says that B defeats A with Q% support.
But p > q (because p > 50% and q = 100 − p < 50%).
Thus, B defeats A with p% support.
Thus, Lemma 1 says that A can also defeat B with p% support.
Thus A always defeats B with p% support, by IIA.
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other candidates.

«

B can’t win: 662
3% of voters think A≻B.
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Proof. (by contradiction) Suppose V was such a procedure. Consider profile:
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3% of voters think A≻B. But A always defeats B with
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3% support, by Lemma 3.
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Proof. (by contradiction) Suppose V was such a procedure. Consider profile:
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pick a winner. Thus, we have a contradiction. Thus, no such voting
procedure V can exist.
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Question: Perhaps the problem is that we insisted on giving all voters the
same power. Perhaps some voters should have more power; for example,
maybe some voters should have ‘tie-breaker’ power, or veto power. Could
such a ‘non-egalitarian’ procedure escape Arrow’s Theorem?

Answer: No. Here we actually proved a special case of Arrow’s Theorem,
where we assumed all voters were equal.
The ‘general’ version of Arrow’s Theorem even covers ‘non-egalitarian’
procedures, where different voters have different influence (but the proof of
this version is too hard for us to do here).

The general version of Arrow’s Theorem states that the only ‘voting
procedure’ which respects unanimity and IIA is a dictatorship, where one

voter has all the power. This is hardly a desirable form of ‘democracy.’
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Question: Perhaps the problem is that we required the procedure to
always ‘pick a winner’. Maybe instead the procedure should allow for a ‘tie’
between two or more candidates. Could such an ‘indecisive’ procedure
escape Arrow’s Theorem?

Answer: No. There is a version of Arrow’s theorem even for such
‘indecisive’ procedures (but again, the proof is too complicated to do here).

Question: Maybe the problem is that we insisted on an ‘ordinal’ voting
procedure. This only uses the voter’s ‘preference orders’, and not the
intensity of these preferences. Could we escape Arrow’s theorem with a
procedure which also accounts for ‘preference intensity’?

Answer: Yes. We will next consider several ‘non-ordinal’ voting
procedures.



Next: (45/84)

◮ Escape from Arrow? Nonordinal voting systems.

◮ Strategic Voting: The Gibbard-Satterthwaite Theorem

◮ Representative democracy: Paradoxes.

◮ Voting power indices.

◮ What is democracy? ‘Liberalism vs. Populism’.

◮ Social choice and social welfare functions.
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One way to escape Arrow’s Theorem is to not use an ordinal voting method.
At least three ‘non-ordinal’ voting systems have been proposed: Approval

voting, Cumulative voting, and Relative Utilitarianism.
In Approval voting (AV), each voter is asked if she ‘approves’ of each
candidate. She can ‘approve’ as many or few candidates as she wants.
For example, she can....

◮ ...strongly vote for candidate X by giving her approval only to X.
◮ ...vote against candidate Y by giving approval for everyone except Y.

However, unlike Borda Count, she cannot ‘approve’ of some candidates
more strongly than others. Approval is all-or-nothing.
The candidate with the most ‘approvals’ wins the election.
AV was invented by Robert Weber (1971) and strongly promoted by Steven
J. Brams and Peter Fishburn (1982). It is used by many professional
societies (e.g AMS and IEEE), by the U.S. National Academy of Science,
and also to choose the Secretary-General of the U.N.



Non-ordinal voting systems: Approval voting (47/84)

One way to escape Arrow’s Theorem is to not use an ordinal voting method.
At least three ‘non-ordinal’ voting systems have been proposed: Approval

voting, Cumulative voting, and Relative Utilitarianism.
In Approval voting (AV), each voter is asked if she ‘approves’ of each
candidate. She can ‘approve’ as many or few candidates as she wants.
For example, she can....

◮ ...strongly vote for candidate X by giving her approval only to X.
◮ ...vote against candidate Y by giving approval for everyone except Y.

However, unlike Borda Count, she cannot ‘approve’ of some candidates
more strongly than others. Approval is all-or-nothing.
The candidate with the most ‘approvals’ wins the election.
AV was invented by Robert Weber (1971) and strongly promoted by Steven
J. Brams and Peter Fishburn (1982). It is used by many professional
societies (e.g AMS and IEEE), by the U.S. National Academy of Science,
and also to choose the Secretary-General of the U.N.
AV is not an ‘ordinal voting system’, so Arrow’s Theorem doesn’t apply.



Approval Voting (48/84)

For example, suppose 5 voters rate 4 candidates on a scale from 0 to 1:

Candidate ⇒ A B C D
Voter ⇓ Threshold Rating Vote Rating Vote Rating Vote Rating Vote

#1 0.95 0.75 0.31 0.04
#2 0.94 0.05 0.33 0.73
#3 0.06 0.73 0.98 0.32
#4 0.04 0.65 0.31 0.91
#5 0.01 0.92 0.25 0.75

Total: ⇒

Outcome ⇒



Approval Voting (48/84)

For example, suppose 5 voters rate 4 candidates on a scale from 0 to 1:

Candidate ⇒ A B C D
Voter ⇓ Threshold Rating Vote Rating Vote Rating Vote Rating Vote

#1 0.5 0.95 * 0.75 * 0.31 0.04
#2 0.5 0.94 * 0.05 0.33 0.73 *
#3 0.5 0.06 0.73 * 0.98 * 0.32
#4 0.3 0.04 0.65 * 0.31 * 0.91 *
#5 0.5 0.01 0.92 * 0.25 0.75 *

Total: ⇒

Outcome ⇒

Suppose each voter approves all candidates whom she rates at or above
some personal threshold....



Approval Voting (48/84)

For example, suppose 5 voters rate 4 candidates on a scale from 0 to 1:

Candidate ⇒ A B C D
Voter ⇓ Threshold Rating Vote Rating Vote Rating Vote Rating Vote

#1 0.5 0.95 * 0.75 * 0.31 0.04
#2 0.5 0.94 * 0.05 0.33 0.73 *
#3 0.5 0.06 0.73 * 0.98 * 0.32
#4 0.3 0.04 0.65 * 0.31 * 0.91 *
#5 0.5 0.01 0.92 * 0.25 0.75 *

Total: ⇒ 2 4 2 2
Outcome ⇒ B wins, when each person approves above some threshold.

Suppose each voter approves all candidates whom she rates at or above
some personal threshold.... In this case, B wins the election.
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For example, suppose 5 voters rate 4 candidates on a scale from 0 to 1:

Candidate ⇒ A B C D
Voter ⇓ Threshold Rating Vote Rating Vote Rating Vote Rating Vote

#1 0.5 0.95 * 0.75 * 0.31 0.04
#2 0.5 0.94 * 0.05 0.33 0.73 *
#3 0.5 0.06 0.73 * 0.98 * 0.32
#4 0.3 0.04 0.65 * 0.31 * 0.91 *
#5 0.5 0.01 0.92 * 0.25 0.75 *

Total: ⇒ 2 4 2 2
Outcome ⇒ B wins, when each person approves above some threshold.

Suppose each voter approves all candidates whom she rates at or above
some personal threshold.... In this case, B wins the election.
Problem: To maximize the ‘impact’ of her vote, each voter will either:



Approval Voting (48/84)

For example, suppose 5 voters rate 4 candidates on a scale from 0 to 1:

Candidate ⇒ A B C D
Voter ⇓ Threshold Rating Vote Rating Vote Rating Vote Rating Vote

#1 0.9 0.95 * 0.75 0.31 0.04
#2 0.9 0.94 * 0.05 0.33 0.73
#3 0.9 0.06 0.73 0.98 * 0.32
#4 0.9 0.04 0.65 0.31 0.91 *
#5 0.9 0.01 0.92 * 0.25 0.75

Total: ⇒ 2 1 1 1
Outcome ⇒ A wins the de facto ‘plurality vote’

Suppose each voter approves all candidates whom she rates at or above
some personal threshold.... In this case, B wins the election.
Problem: To maximize the ‘impact’ of her vote, each voter will either:

1. Only ‘approve’ her best candidate; or



Approval Voting (48/84)

For example, suppose 5 voters rate 4 candidates on a scale from 0 to 1:

Candidate ⇒ A B C D
Voter ⇓ Threshold Rating Vote Rating Vote Rating Vote Rating Vote

#1 0.1 0.95 * 0.75 * 0.31 * 0.04
#2 0.1 0.94 * 0.05 0.33 * 0.73 *
#3 0.1 0.06 0.73 * 0.98 * 0.32 *
#4 0.1 0.04 0.65 * 0.31 * 0.91 *
#5 0.1 0.01 0.92 * 0.25 * 0.75 *

Total: ⇒ 2 4 5 4
Outcome ⇒ C wins the de facto ‘antiplurality vote’

Suppose each voter approves all candidates whom she rates at or above
some personal threshold.... In this case, B wins the election.
Problem: To maximize the ‘impact’ of her vote, each voter will either:

1. Only ‘approve’ her best candidate; or

2. Vote ‘against’ her worst candidate (by ‘approving’ everyone else).



Approval Voting (48/84)

For example, suppose 5 voters rate 4 candidates on a scale from 0 to 1:

Candidate ⇒ A B C D
Voter ⇓ Threshold Rating Vote Rating Vote Rating Vote Rating Vote

#1 0.1 0.95 * 0.75 * 0.31 * 0.04
#2 0.1 0.94 * 0.05 0.33 * 0.73 *
#3 0.1 0.06 0.73 * 0.98 * 0.32 *
#4 0.1 0.04 0.65 * 0.31 * 0.91 *
#5 0.1 0.01 0.92 * 0.25 * 0.75 *

Total: ⇒ 2 4 5 4
Outcome ⇒ C wins the de facto ‘antiplurality vote’

Suppose each voter approves all candidates whom she rates at or above
some personal threshold.... In this case, B wins the election.
Problem: To maximize the ‘impact’ of her vote, each voter will either:

1. Only ‘approve’ her best candidate; or

2. Vote ‘against’ her worst candidate (by ‘approving’ everyone else).

Thus, in reality, Approval Voting will devolve into either a de facto plurality
vote or antiplurality vote, with all the weaknesses of these methods.



Non-ordinal voting systems: Cumulative Voting (49/84)

In cumulative voting (CV), each voter is given a supply of ‘points’ (e.g.
ten points), she can allocate amongst the candidates any way she wants.
For example, she could...



Non-ordinal voting systems: Cumulative Voting (49/84)

In cumulative voting (CV), each voter is given a supply of ‘points’ (e.g.
ten points), she can allocate amongst the candidates any way she wants.
For example, she could...

◮ ...simulate Borda Count, by giving 4 points to her favourite, 3 points
to her 2nd-best, 2 points to her 3rd best, and 1 point to her 4th best.
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In cumulative voting (CV), each voter is given a supply of ‘points’ (e.g.
ten points), she can allocate amongst the candidates any way she wants.
For example, she could...

◮ ...simulate Borda Count, by giving 4 points to her favourite, 3 points
to her 2nd-best, 2 points to her 3rd best, and 1 point to her 4th best.

◮ ...simulate ‘vote-for-2’ by giving 5 points each to her top 2 candidates.
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In cumulative voting (CV), each voter is given a supply of ‘points’ (e.g.
ten points), she can allocate amongst the candidates any way she wants.
For example, she could...

◮ ...simulate Borda Count, by giving 4 points to her favourite, 3 points
to her 2nd-best, 2 points to her 3rd best, and 1 point to her 4th best.

◮ ...simulate ‘vote-for-2’ by giving 5 points each to her top 2 candidates.
◮ ...simulate ‘approval voting’ by equally distributing the points over all

candidates she ‘approves’.
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In cumulative voting (CV), each voter is given a supply of ‘points’ (e.g.
ten points), she can allocate amongst the candidates any way she wants.
For example, she could...

◮ ...simulate Borda Count, by giving 4 points to her favourite, 3 points
to her 2nd-best, 2 points to her 3rd best, and 1 point to her 4th best.

◮ ...simulate ‘vote-for-2’ by giving 5 points each to her top 2 candidates.
◮ ...simulate ‘approval voting’ by equally distributing the points over all

candidates she ‘approves’.
◮ ...simulate plurality vote by given all 10 points to her favourite.
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In cumulative voting (CV), each voter is given a supply of ‘points’ (e.g.
ten points), she can allocate amongst the candidates any way she wants.
For example, she could...

◮ ...simulate Borda Count, by giving 4 points to her favourite, 3 points
to her 2nd-best, 2 points to her 3rd best, and 1 point to her 4th best.

◮ ...simulate ‘vote-for-2’ by giving 5 points each to her top 2 candidates.
◮ ...simulate ‘approval voting’ by equally distributing the points over all

candidates she ‘approves’.
◮ ...simulate plurality vote by given all 10 points to her favourite.

The candidate who accumulates the most points wins.
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In cumulative voting (CV), each voter is given a supply of ‘points’ (e.g.
ten points), she can allocate amongst the candidates any way she wants.
For example, she could...

◮ ...simulate Borda Count, by giving 4 points to her favourite, 3 points
to her 2nd-best, 2 points to her 3rd best, and 1 point to her 4th best.

◮ ...simulate ‘vote-for-2’ by giving 5 points each to her top 2 candidates.
◮ ...simulate ‘approval voting’ by equally distributing the points over all

candidates she ‘approves’.
◮ ...simulate plurality vote by given all 10 points to her favourite.

The candidate who accumulates the most points wins.
Cumulative voting was proposed by Charles Dodgson (1873) (a.k.a. Lewis
Carrol), and later by Richard Musgrave (1953), and James Coleman (1970).
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In cumulative voting (CV), each voter is given a supply of ‘points’ (e.g.
ten points), she can allocate amongst the candidates any way she wants.
For example, she could...

◮ ...simulate Borda Count, by giving 4 points to her favourite, 3 points
to her 2nd-best, 2 points to her 3rd best, and 1 point to her 4th best.

◮ ...simulate ‘vote-for-2’ by giving 5 points each to her top 2 candidates.
◮ ...simulate ‘approval voting’ by equally distributing the points over all

candidates she ‘approves’.
◮ ...simulate plurality vote by given all 10 points to her favourite.

The candidate who accumulates the most points wins.
Cumulative voting was proposed by Charles Dodgson (1873) (a.k.a. Lewis
Carrol), and later by Richard Musgrave (1953), and James Coleman (1970).
It is used in Peoria, Illinois; Amarillo, Texas; and Norfolk Island, Australia.
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In cumulative voting (CV), each voter is given a supply of ‘points’ (e.g.
ten points), she can allocate amongst the candidates any way she wants.
For example, she could...

◮ ...simulate Borda Count, by giving 4 points to her favourite, 3 points
to her 2nd-best, 2 points to her 3rd best, and 1 point to her 4th best.

◮ ...simulate ‘vote-for-2’ by giving 5 points each to her top 2 candidates.
◮ ...simulate ‘approval voting’ by equally distributing the points over all

candidates she ‘approves’.
◮ ...simulate plurality vote by given all 10 points to her favourite.

The candidate who accumulates the most points wins.
Cumulative voting was proposed by Charles Dodgson (1873) (a.k.a. Lewis
Carrol), and later by Richard Musgrave (1953), and James Coleman (1970).
It is used in Peoria, Illinois; Amarillo, Texas; and Norfolk Island, Australia.
It is also used in publicly owned corporations (where each shareholder gets
a ‘point’ for each shares she owns).



Non-ordinal voting systems: Cumulative Voting (49/84)

In cumulative voting (CV), each voter is given a supply of ‘points’ (e.g.
ten points), she can allocate amongst the candidates any way she wants.
For example, she could...

◮ ...simulate Borda Count, by giving 4 points to her favourite, 3 points
to her 2nd-best, 2 points to her 3rd best, and 1 point to her 4th best.

◮ ...simulate ‘vote-for-2’ by giving 5 points each to her top 2 candidates.
◮ ...simulate ‘approval voting’ by equally distributing the points over all

candidates she ‘approves’.
◮ ...simulate plurality vote by given all 10 points to her favourite.

The candidate who accumulates the most points wins.
Cumulative voting was proposed by Charles Dodgson (1873) (a.k.a. Lewis
Carrol), and later by Richard Musgrave (1953), and James Coleman (1970).
It is used in Peoria, Illinois; Amarillo, Texas; and Norfolk Island, Australia.
It is also used in publicly owned corporations (where each shareholder gets
a ‘point’ for each shares she owns).
Again, CV is not an ‘ordinal’ system, so Arrow’s Theorem doesn’t apply.



Cumulative Voting (50/84)

For example, again suppose that 5 voters each rate 4 candidates on a scale
from 0 to 1:

Candidate ⇒ A B C D

Voter ⇓ Strategy Rating Vote Rating Vote Rating Vote Rating Vote

#1 0.95 0.75 0.31 0.04
#2 0.94 0.05 0.33 0.73
#3 0.06 0.73 0.98 0.32
#4 0.04 0.65 0.31 0.91
#5 0.01 0.92 0.25 0.75

Total: ⇒

Outcome ⇒



Cumulative Voting (50/84)

For example, again suppose that 5 voters each rate 4 candidates on a scale
from 0 to 1:

Candidate ⇒ A B C D

Voter ⇓ Strategy Rating Vote Rating Vote Rating Vote Rating Vote

#1 Borda 0.95 4 0.75 3 0.31 2 0.04 1
#2 Vote for 2 0.94 5 0.05 0 0.33 0 0.73 5
#3 Vote for 1 0.06 0 0.73 0 0.98 10 0.32 0
#4 Vote for 3 0.04 0 0.65 3.33 0.31 3.33 0.91 3.33
#5 Vote for 3 0.01 0 0.92 3.33 0.25 3.33 0.75 3.33

Total: ⇒

Outcome ⇒

Suppose each voter has 10 ‘points’, and the voters adopt various
point-allocation strategies, as shown....



Cumulative Voting (50/84)

For example, again suppose that 5 voters each rate 4 candidates on a scale
from 0 to 1:

Candidate ⇒ A B C D

Voter ⇓ Strategy Rating Vote Rating Vote Rating Vote Rating Vote

#1 Borda 0.95 4 0.75 3 0.31 2 0.04 1
#2 Vote for 2 0.94 5 0.05 0 0.33 0 0.73 5
#3 Vote for 1 0.06 0 0.73 0 0.98 10 0.32 0
#4 Vote for 3 0.04 0 0.65 3.33 0.31 3.33 0.91 3.33
#5 Vote for 3 0.01 0 0.92 3.33 0.25 3.33 0.75 3.33

Total: ⇒ 9 9.66 18.66 12.66

Outcome ⇒ C wins, when voters use various strategies.

Suppose each voter has 10 ‘points’, and the voters adopt various
point-allocation strategies, as shown.... ...then C will win.



Cumulative Voting (50/84)

For example, again suppose that 5 voters each rate 4 candidates on a scale
from 0 to 1:

Candidate ⇒ A B C D

Voter ⇓ Strategy Rating Vote Rating Vote Rating Vote Rating Vote

#1 Concentrate 0.95 10 0.75 0 0.31 0 0.04 0
#2 Concentrate 0.94 10 0.05 0 0.33 0 0.73 0
#3 Concentrate 0.06 0 0.73 0 0.98 10 0.32 0
#4 Concentrate 0.04 0 0.65 0 0.31 0 0.91 10
#5 Concentrate 0.01 0 0.92 10 0.25 0 0.75 0

Total: ⇒

Outcome ⇒

Suppose each voter has 10 ‘points’, and the voters adopt various
point-allocation strategies, as shown.... ...then C will win.
Problem: Each voters will maximize her impact by concentrating all ten

points on her favourite (amongst those who has any chance of winning).



Cumulative Voting (50/84)

For example, again suppose that 5 voters each rate 4 candidates on a scale
from 0 to 1:

Candidate ⇒ A B C D

Voter ⇓ Strategy Rating Vote Rating Vote Rating Vote Rating Vote

#1 Concentrate 0.95 10 0.75 0 0.31 0 0.04 0
#2 Concentrate 0.94 10 0.05 0 0.33 0 0.73 0
#3 Concentrate 0.06 0 0.73 0 0.98 10 0.32 0
#4 Concentrate 0.04 0 0.65 0 0.31 0 0.91 10
#5 Concentrate 0.01 0 0.92 10 0.25 0 0.75 0

Total: ⇒ 20 10 10 10

Outcome ⇒ A wins the de facto ‘plurality vote’

Suppose each voter has 10 ‘points’, and the voters adopt various
point-allocation strategies, as shown.... ...then C will win.
Problem: Each voters will maximize her impact by concentrating all ten

points on her favourite (amongst those who has any chance of winning).

Thus, in reality, CV will function just like plurality vote.



Non-ordinal voting systems: Relative Utilitarianism (51/84)

In Relative Utilitarianism (RU, also called range voting, ratings summation,
or score system) each voter gives each candidate a fractional numerical
‘score’ on a scale of 0 to 1 (where 1=best and 0=worst).
For example:
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In Relative Utilitarianism (RU, also called range voting, ratings summation,
or score system) each voter gives each candidate a fractional numerical
‘score’ on a scale of 0 to 1 (where 1=best and 0=worst).
For example:

◮ Her most favourite candidate would get a score of 1.0.
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or score system) each voter gives each candidate a fractional numerical
‘score’ on a scale of 0 to 1 (where 1=best and 0=worst).
For example:

◮ Her most favourite candidate would get a score of 1.0.

◮ Her 2nd best candidate might get a score of 0.95, etc.
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or score system) each voter gives each candidate a fractional numerical
‘score’ on a scale of 0 to 1 (where 1=best and 0=worst).
For example:

◮ Her most favourite candidate would get a score of 1.0.

◮ Her 2nd best candidate might get a score of 0.95, etc.

◮ If she is ambivalent about candidate X, she might give X a score of 0.5.



Non-ordinal voting systems: Relative Utilitarianism (51/84)

In Relative Utilitarianism (RU, also called range voting, ratings summation,
or score system) each voter gives each candidate a fractional numerical
‘score’ on a scale of 0 to 1 (where 1=best and 0=worst).
For example:

◮ Her most favourite candidate would get a score of 1.0.

◮ Her 2nd best candidate might get a score of 0.95, etc.

◮ If she is ambivalent about candidate X, she might give X a score of 0.5.

◮ If she despises candidate Y, she will give Y a score of 0.



Non-ordinal voting systems: Relative Utilitarianism (51/84)

In Relative Utilitarianism (RU, also called range voting, ratings summation,
or score system) each voter gives each candidate a fractional numerical
‘score’ on a scale of 0 to 1 (where 1=best and 0=worst).
For example:

◮ Her most favourite candidate would get a score of 1.0.

◮ Her 2nd best candidate might get a score of 0.95, etc.

◮ If she is ambivalent about candidate X, she might give X a score of 0.5.

◮ If she despises candidate Y, she will give Y a score of 0.

The candidate with the highest average score wins.
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In Relative Utilitarianism (RU, also called range voting, ratings summation,
or score system) each voter gives each candidate a fractional numerical
‘score’ on a scale of 0 to 1 (where 1=best and 0=worst).
For example:

◮ Her most favourite candidate would get a score of 1.0.

◮ Her 2nd best candidate might get a score of 0.95, etc.

◮ If she is ambivalent about candidate X, she might give X a score of 0.5.

◮ If she despises candidate Y, she will give Y a score of 0.

The candidate with the highest average score wins.
This is how winners are chosen in many Olympic events (e.g. figure skating,
gymnastics).
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In Relative Utilitarianism (RU, also called range voting, ratings summation,
or score system) each voter gives each candidate a fractional numerical
‘score’ on a scale of 0 to 1 (where 1=best and 0=worst).
For example:

◮ Her most favourite candidate would get a score of 1.0.

◮ Her 2nd best candidate might get a score of 0.95, etc.

◮ If she is ambivalent about candidate X, she might give X a score of 0.5.

◮ If she despises candidate Y, she will give Y a score of 0.

The candidate with the highest average score wins.
This is how winners are chosen in many Olympic events (e.g. figure skating,
gymnastics).
RU has many nice properties, and has been studied by Cao (1982), Dhillon
and Mertens (1998-99), Karni (1998), and Segal (2000).



Non-ordinal voting systems: Relative Utilitarianism (51/84)

In Relative Utilitarianism (RU, also called range voting, ratings summation,
or score system) each voter gives each candidate a fractional numerical
‘score’ on a scale of 0 to 1 (where 1=best and 0=worst).
For example:

◮ Her most favourite candidate would get a score of 1.0.

◮ Her 2nd best candidate might get a score of 0.95, etc.

◮ If she is ambivalent about candidate X, she might give X a score of 0.5.

◮ If she despises candidate Y, she will give Y a score of 0.

The candidate with the highest average score wins.
This is how winners are chosen in many Olympic events (e.g. figure skating,
gymnastics).
RU has many nice properties, and has been studied by Cao (1982), Dhillon
and Mertens (1998-99), Karni (1998), and Segal (2000).

Again, RU is not an ‘ordinal’ voting system (rather, it is a ‘cardinal’ voting
system), so Arrow’s Theorem doesn’t apply.



Relative Utilitarianism (52/84)

For example, suppose 5 voters each rate 4 candidates from 0 to 1:

Candidate ⇒ A B C D
Voter ⇓ Strategy Rating Vote Rating Vote Rating Vote Rating Vote

#1 0.95 0.75 0.31 0.04
#2 0.94 0.05 0.33 0.73
#3 0.06 0.73 0.98 0.32
#4 0.04 0.65 0.31 0.91
#5 0.01 0.92 0.25 0.75

Total: ⇒

Outcome ⇒



Relative Utilitarianism (52/84)

For example, suppose 5 voters each rate 4 candidates from 0 to 1:

Candidate ⇒ A B C D
Voter ⇓ Strategy Rating Vote Rating Vote Rating Vote Rating Vote

#1 Honest 0.95 0.95 0.75 0.75 0.31 0.31 0.04 0.04
#2 Honest 0.94 0.94 0.05 0.05 0.33 0.33 0.73 0.75
#3 Honest 0.06 0.06 0.73 0.73 0.98 0.98 0.32 0.32
#4 Honest 0.04 0.04 0.65 0.65 0.31 0.31 0.91 0.91
#5 Honest 0.01 0.01 0.92 0.92 0.25 0.25 0.75 0.75

Total: ⇒

Outcome ⇒

If voters honestly reveal their ratings of candidates...



Relative Utilitarianism (52/84)

For example, suppose 5 voters each rate 4 candidates from 0 to 1:

Candidate ⇒ A B C D
Voter ⇓ Strategy Rating Vote Rating Vote Rating Vote Rating Vote

#1 Honest 0.95 0.95 0.75 0.75 0.31 0.31 0.04 0.04
#2 Honest 0.94 0.94 0.05 0.05 0.33 0.33 0.73 0.75
#3 Honest 0.06 0.06 0.73 0.73 0.98 0.98 0.32 0.32
#4 Honest 0.04 0.04 0.65 0.65 0.31 0.31 0.91 0.91
#5 Honest 0.01 0.01 0.92 0.92 0.25 0.25 0.75 0.75

Total: ⇒ 2.00 3.10 2.18 2.77
Outcome ⇒ B wins, when each person votes honestly.

If voters honestly reveal their ratings of candidates......then B will win.



Relative Utilitarianism (52/84)

For example, suppose 5 voters each rate 4 candidates from 0 to 1:

Candidate ⇒ A B C D
Voter ⇓ Strategy Rating Vote Rating Vote Rating Vote Rating Vote

#1 Honest 0.95 0.95 0.75 0.75 0.31 0.31 0.04 0.04
#2 Honest 0.94 0.94 0.05 0.05 0.33 0.33 0.73 0.75
#3 Honest 0.06 0.06 0.73 0.73 0.98 0.98 0.32 0.32
#4 Honest 0.04 0.04 0.65 0.65 0.31 0.31 0.91 0.91
#5 Honest 0.01 0.01 0.92 0.92 0.25 0.25 0.75 0.75

Total: ⇒ 2.00 3.10 2.18 2.77
Outcome ⇒ B wins, when each person votes honestly.

If voters honestly reveal their ratings of candidates......then B will win.
Problem: Each voters will maximize her impact by giving a score of 1.0 to
her favourite(s), and 0 to everyone else.



Relative Utilitarianism (52/84)

For example, suppose 5 voters each rate 4 candidates from 0 to 1:

Candidate ⇒ A B C D
Voter ⇓ Strategy Rating Vote Rating Vote Rating Vote Rating Vote

#1 Plurality 0.95 1.00 0.75 0.00 0.31 0.00 0.04 0.00
#2 Plurality 0.94 1.00 0.05 0.00 0.33 0.00 0.73 0.00
#3 Plurality 0.06 0.00 0.73 0.00 0.98 1.00 0.32 0.00
#4 Plurality 0.04 0.00 0.65 0.00 0.31 0.00 0.91 1.00
#5 Plurality 0.01 0.00 0.92 1.00 0.25 0.00 0.75 0.00

Total: ⇒ 2.00 1.00 1.00 1.00
Outcome ⇒ A wins the de facto ‘plurality vote’

If voters honestly reveal their ratings of candidates......then B will win.
Problem: Each voters will maximize her impact by giving a score of 1.0 to
her favourite(s), and 0 to everyone else.
Thus, in reality, RU will function just like Approval Voting.



Relative Utilitarianism (52/84)

For example, suppose 5 voters each rate 4 candidates from 0 to 1:

Candidate ⇒ A B C D
Voter ⇓ Strategy Rating Vote Rating Vote Rating Vote Rating Vote

#1 Antiplurality 0.95 1.00 0.75 1.00 0.31 1.00 0.04 0.00
#2 Antiplurality 0.94 1.00 0.05 0.00 0.33 1.00 0.73 1.00
#3 Antiplurality 0.06 0.00 0.73 1.00 0.98 1.00 0.32 1.00
#4 Antiplurality 0.04 0.00 0.65 1.00 0.31 1.00 0.91 1.00
#5 Antiplurality 0.01 0.00 0.92 1.00 0.25 1.00 0.75 1.00

Total: ⇒ 2.00 4.00 5.00 4.00
Outcome ⇒ C wins the de facto ‘antiplurality vote’

If voters honestly reveal their ratings of candidates......then B will win.
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If voters honestly reveal their ratings of candidates......then B will win.
Problem: Each voters will maximize her impact by giving a score of 1.0 to
her favourite(s), and 0 to everyone else.
Thus, in reality, RU will function just like Approval Voting.
Approval voting, in turn, tends to devolve into an (anti)plurality vote.
However, using extensive computer experiments, Warren D. Smith has
recently argued that, even when voters exaggerate like this, RU is still
better than any other known voting procedure. Smith runs the ‘Centre
for Range Voting’, which promotes RU for electoral reform.
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As we’ve seen, the various ‘non-ordinal’ voting systems are easily
manipulated through strategic voting.
However, ‘ordinal’ voting systems are also susceptible to strategic voting,
especially because of their sensitivity to ‘irrelevant alternatives’.

For example, consider this election:
A wins the plurality vote, because the op-
position is ‘split’ between B and C.
But a supporter of C can see she has no
hope of winning. Voting for C is really vot-
ing ‘against’ B, and thereby helping A.

Plurality Vote

Preferences # A B C

A≻B≻C 45 45
B ≻C ≻A 50 50
C ≻B≻A 5 5

Total 100 45 50 5

Verdict: B wins.

It would be better for her to vote strategically for B. That way at least she
gets her second-best outcome B, not her worst outcome, A.
If 2/3rds of C’s supporters voted strategically like this, then B would win.
Example: U.S. Presidential Election 2000, A=Bush, B=Gore, C=Nader.
But if the outcome is the result of strategic voting, how can we say it really
reflects the ‘Will of the People’?
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This kind of strategic voting can occur in any of the voting systems we
have described. (Exercise: Find strategic situations for each one.)
Is it possible to design a voting system which is ‘immune’ to strategic
voting? Unfortunately, no.

Theorem. (Alan Gibbard, 1973; Mark Satterthwaite, 1975)
Suppose an election has three or more candidates. In any voting mechanism

(ordinal or otherwise) there always exist situations where some voter will

find it advantageous to misrepresent her preferences and vote ‘strategically’

(if she could predict how other people were going to vote).

To vote strategically, you need to predict the behaviour of other voters (at
least approximately). If you were totally ignorant of other voters, then
the best strategy is simply ‘vote honestly’.

Thus, public opinion polls actually facilitate strategic voting.
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The Gibbard-Satterthwaite Theorem says that every voting system is
susceptible to strategic voting.
However, some systems are more susceptible than others.
An election is most vulnerable to strategic voting when the vote is nearly
tied, so that a small number of strategic votes could change the outcome.
Thus, a voting system is ‘less susceptible’ to strategic voting if it is less
likely to produce ‘nearly tied’ outcomes.
For example, suppose there are three candidates, A, B, and C, so voters are
distributed over six possible preference orders:

A≻B≻C , B≻C ≻A, C ≻A≻B, B≻A≻C , A≻C ≻B, C ≻B≻A.

Theorem. (Donald Saari, 1990)
Suppose all possible distributions of voters over these six orders are equally

likely. Then, amongst all positional voting systems, the Borda Count is the

least susceptible to strategic voting.
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So far we’ve been looking at direct democracy, where every voter can vote
‘directly’ for the candidates.
However, in a representative democracy, the voters elect delegates, and it is
these delegates, in turn, who vote for/against the candidates.

◮ In the U.S. Electoral College, each state elects one or more ‘electors’,
who then elect the President.

◮ In regional representation (or ‘first past the post’) systems (e.g.
Canada, U.K., or U.S.A.) each ‘district’ (or ‘constituency’ or ‘riding’)
elects a representative to the Parliament (Congress, Senate, etc.)
through plurality vote.

◮ In proportional representation systems (e.g. Israel, Brazil, EU
parliament) parties propose ‘lists’ of candidates, and people vote for
parties. If a party gets N % of the popular vote, then it controls N %
of the seats in Parliament (drawn from the list).
In the closed list version, people vote for the party list as a whole.
In the open list version, people can vote for individual list members.
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◮ In Parallel Voting systems (e.g. Japan, South Korea) a fixed portion of
delegates are elected by Regional Representation, and the remainder
are chosen using Proportional Representation. But there is no attempt
to make the overall distribution proportional.

◮ In Mixed Member Proportional (MMP) systems (e.g. Scotland,
Germany, Mexico, New Zealand) most delegates are elected using
Regional Representation. The remainder are drawn from party ‘lists’ so
as to ‘approximate’ the outcome of Proportional Representation as
closely as possible. This system was recently considered in Ontario.

◮ In Single Transferable Vote (STV) systems (e.g. Ireland, Malta,
municipal elections in Scotland and New Zealand), delegates are
elected as in Regional Representation, but something like ‘Instant
Runoff’ is used to ensure that the allocation of seats to parties is
roughly proportional. This system was recently considered in B.C.

Regardless of how they are chosen, the use of delegates introduces
additional paradoxes and pathologies into democracy.
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C ≻D≻B≻A 25% 25% 25% 25% 25% 25%
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Verdict: A wins A wins A wins A wins A wins A gets all seats

As we’ve seen, if there are four parties (e.g. LiberAl, Bloc, Conservative
and New Democratic), then it’s possible for the A candidate in District X

to get elected with only 26% of the votes —even if the A candidate is
despised by the other 74% of the voters.
If this happens in every single district, then the A party could get all the
seats in the Parliament, even though the A party is despised by almost
three quarters of the voters!
However, stranger things can happen, even when there are only two

candidates, and one has a strict majority....
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Consider a referendum on some proposal.
Suppose there are 100 voters living in five districts with 20 voters each.
Suppose popular support for the proposal is distributed as follows:

District

Preference 1 2 3 4 5 Total

Yes 20 20 8 8 8 64
No 0 0 12 12 12 36

People’s verdict: Yes Yes No No No Yes

Parliamentary verdict: No

64% of all voters say Yes, so the proposal is easily approved in a referendum.
But instead, suppose the question is decided by a Parliament chosen
through Regional Representation.
Then 3 out of 5 Parliamentarians can each honestly say that a majority of
her constituents reject the proposal.
Thus, if each Parliamentarian obeys the ‘wishes’ of her constituents, the
proposal would be rejected by a vote of 3 to 2.
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Even with Proportional Representation, there can be problems.
Suppose there are two parties, A and B, which propose different policies on
three distinct ‘issues’. Suppose public support for these policies is as follows:

Voters Issue 1 Issue 2 Issue 3 Votes for

20% A B B B
20% B A B B
20% B B A B
20% A A A A
20% A A A A

Majority Position: A A A
Parliamentary Majority: B (60%)

Suppose each person votes for a party if she agrees with it on most issues.
Then 60% will vote for B, so the B party will control a majority in
Parliament, and will implement B party policies.
But on every issue, a majority of voters prefer A’s policy to B’s policy.
This paradox was discovered by Moise Ostrogorski (1902), who was highly
critical of the role of political parties in democratic politics.
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Ostrogorski’s paradox happens because people can’t vote for individual
policies; instead, they must vote for a party’s ‘platform’ of policies.
Suppose voters could vote for individual policies. Suppose there are three
issues, and two policies for each issue. Voter preferences are as follows:
Voters Issue 1 Issue 2 Issue 3 Overall

Policy Happy? Policy Happy? Policy Happy? Satisfaction

20% A C F
20% B D F
20% B C E
20% A D E
20% A D E

Verdict: A (60%) D (60%) E (60%) (60%)

In referenda, A, D, and E will be chosen, each with 60% support.
Each referendum outcome will make some voters happy and others unhappy.
Suppose a voter is ‘satisfied overall’ if she is happy with 2 out of 3
referenda. Then 60% of the voters are dissatisfied overall!
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This paradox was found by British philosopher Elizabeth Anscombe (1976).

It happens because, on each issue, the winner has only a ‘small’ majority.

Wagner (1983) has shown that Anscombe’s paradox cannot occur if, on
each issue, the winning policy is supported by at least 3/4 of the voters.
Of course, such a ‘supermajority’ does not usually occur.....

Suppose it appears unlikely that either of the policies A or B will attract
3/4 of the voters.
The only solution is to attempt some ‘creative compromise’, and replace A
and/or B with new proposals (say, A1 and B1), one of which is likely to
satisfy 3/4 of the voters. (The same goes for C vs. D, and E vs. F).

How can we find this ‘creative compromise’? Only through widespread
dialogue and deliberation....
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Assume each party votes as a ‘bloc’ —either because all members have
identical ideologies, or because of strong ‘party discipline’.
Question: How often does party D’s vote actually change the outcome?
Answer: Never.
Conclusion: Although party D has 20% of the seats, D has zero power.
Also, parties A, B and C all have exactly the same power, even though A
has slightly more seats.
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Partisan Bloc Votes
Party A B C Total Score

#Seats 48 47 5 Yes No Outcome

No No No 0 100 No
No No Yes 5 95 No
No Yes No 47 53 No
No Yes Yes 52 48 Yes
Yes No No 48 52 No
Yes No Yes 53 47 Yes
Yes Yes No 95 5 Yes
Yes Yes Yes 100 0 Yes

Idea: The correct measure of your ‘voting power’ is not the percentage of
seats you control..... It is the probability that your vote will actually
change the outcome —i.e. the probability that you will be a pivotal voter.
A voting power index (VPI) is an estimate of this probability, based on
assumptions about how ‘voting coalitions’ can form.
Example: Suppose three parties split Parliament as shown above.
No one party can dictate the outcome, but any team of two parties can.
Thus, a VPI would say all three parties actually have equal power.
In particular C has exactly the same power as A and B, even though C has
only 5% of the votes (C holds “the balance of power”).
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(Here, N! := N · (N − 1) · · · 3 · 2 · 1. Example: 5! = 5 · 4 · 3 · 2 · 1 = 120.)
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Party A B C

#Seats 48 47 5
For example, in this scenario,

SSI (A) = SSI (B) = SSI (C ) = 1/3.

(All three parties have the same amount of power.)
Party A B C D

#Seats 28 26 26 20
In this scenario,

SSI (A) = SSI (B) = SSI (C ) = 1/3, and SS(D) = 0.

(A, B, and C have the same power; D has no power.) The SSI shows that
the power of a party in a coalition government can be wildly
disproportionate to its share of Parliamentary seats.

When combined with the previous ‘voting paradoxes’, the power of a party
may be even more wildly disproportionate to its share of the popular vote.
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For example, the SSI of each Permanent Member of the UNSC is 19.6%.
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◮ Populism sees democracy as a device to determine the ‘Will of the
People’ and convert this ‘General Will’ into law. This view is usually
associated with French philosopher Jean-Jacques Rousseau (1762).

◮ Liberalism sees democracy as a device to eject bad governments, and
to deter corruption and incompetence. This view is often associated
with American constitutionalist James Madison (1787).

After an election, when journalists and politicians say, “The voters want X”,
or “The voters said Y ”, they are implicitly adopting a Populist viewpoint.

However, for Riker, modern voting theory shows that ‘Populism’ is
incoherent.
For Riker, voting paradoxes, pathologies, and Impossibility Theorems imply
that there is no such thing as a ‘General Will’ —or at least, none which
could ever be ascertained through an election or referendum.

Thus, Riker advocates the more pessimistic ‘Liberal’ view of democracy.
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One kind of social choice function seeks to maximize a social welfare
function: a mathematical representation of the ‘aggregate happiness’ of
society. For example:

◮ Utilitarianism seeks to maximize the ‘sum total utility’ of all citizens
(where utility ≈ happiness).
It was first articulated by British philosopher Jeremy Bentham (1789).

◮ Relative Utilitarianism is a modern variant of utilitarianism, where each
citizen’s ‘utility’ is assumed to be between 0 and 1.

◮ Egalitarianism seeks to maximize the minimum utility over all citizens.
(In practice, this usually means equalizing the utilities of all citizens).
It is often associated with American philosopher John Rawls (1971).

Each of these social choice functions satisfies different (and mutually
exclusive) mathematical axioms (which encode philosophical ideals).
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Even if we can identify the ‘Will of the People’ (e.g. via a social choice
function), how can we measure it, without being misled by strategic voting?

For example: suppose we implement Bentham’s Utilitarianism by asking each
voter to assign a ‘utility’ to each candidate. Then each voter will exaggerate
her preferences (e.g. overstate the utility of her favourite candidates, and
understate the utility of her least prefered candidates).

Each voting system is like a ‘game’, and sometimes a voter’s best ‘strategy’
is to be dishonest. We want to design a ‘voting game’ where each voter’s best
strategy is always to be honest. This is the subject of a branch of mathematical
economics called mechanism design.

For example, the Clarke Pivotal Mechanism (CPM) is a hybrid
election/auction. Each voter declares a monetary ‘price’ for each candidate
(which we interpret as ‘utility’). If a candidate wins by only a small margin, the
voter might have to pay this price, in the form of a ‘Clarke tax’.

Thus, it is never optimal to exaggerate her preferences in the CPM (you can
mathematically prove this, if you assume each voter is ‘risk neutral’).
Problem: People aren’t ‘risk neutral’. Also, CPM favours rich voters.
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Some other topics we haven’t even touched upon:

May’s Theorem says that, if there are only two candidates, then simple
Majority Vote really is the ‘best’ way to aggregate preferences.

Condorcet’s Jury Theorem says, under certain conditions, that Majority
Vote is highly likely to correctly answer objective factual questions.

Weighted voting is clearly present in shareholder meetings. Surprisingly, it
also ‘hides’ inside many systems with vetos or multiple quota criteria.

Other forms of collective decision making include bargaining,
arbitration, fair division (i.e. ‘cake cutting’), auctions, and cooperative

games. Each of these has a rich mathematical theory.

Public choice theory applies methods of economics to political science;
e.g. the role of campaign finance in elections and policy formation; the
corruption of legislators and bureaucrats by special interests, etc.



Conclusion (77/84)

Democracy is more complicated than you think.



Conclusion (77/84)

Democracy is more complicated than you think.

The commonly used ‘plurality vote’ often produces outcomes that are
incoherent, counterintuitive, unfair, or just plain wrong.



Conclusion (77/84)

Democracy is more complicated than you think.

The commonly used ‘plurality vote’ often produces outcomes that are
incoherent, counterintuitive, unfair, or just plain wrong.

It exhibits ‘voting paradoxes’, it encourages ‘strategic voting’, and it can
unleash political instability through ‘Condorcet cycles’.



Conclusion (77/84)

Democracy is more complicated than you think.

The commonly used ‘plurality vote’ often produces outcomes that are
incoherent, counterintuitive, unfair, or just plain wrong.

It exhibits ‘voting paradoxes’, it encourages ‘strategic voting’, and it can
unleash political instability through ‘Condorcet cycles’.

Howevever, so does almost any other voting system.
We can never eliminate these pathologies. Instead, we must find voting
systems which minimize their frequency and severity.



Conclusion (77/84)

Democracy is more complicated than you think.

The commonly used ‘plurality vote’ often produces outcomes that are
incoherent, counterintuitive, unfair, or just plain wrong.

It exhibits ‘voting paradoxes’, it encourages ‘strategic voting’, and it can
unleash political instability through ‘Condorcet cycles’.

Howevever, so does almost any other voting system.
We can never eliminate these pathologies. Instead, we must find voting
systems which minimize their frequency and severity.

Distrust ideologues who say ‘more democracy’ is the solution to every
political problem.



Conclusion (77/84)

Democracy is more complicated than you think.

The commonly used ‘plurality vote’ often produces outcomes that are
incoherent, counterintuitive, unfair, or just plain wrong.

It exhibits ‘voting paradoxes’, it encourages ‘strategic voting’, and it can
unleash political instability through ‘Condorcet cycles’.

Howevever, so does almost any other voting system.
We can never eliminate these pathologies. Instead, we must find voting
systems which minimize their frequency and severity.

Distrust ideologues who say ‘more democracy’ is the solution to every
political problem.
Distrust politicians and pundits who cite the ‘Will of the People’ as if such
a thing could be ascertained through an simple election.



Conclusion (77/84)

Democracy is more complicated than you think.

The commonly used ‘plurality vote’ often produces outcomes that are
incoherent, counterintuitive, unfair, or just plain wrong.

It exhibits ‘voting paradoxes’, it encourages ‘strategic voting’, and it can
unleash political instability through ‘Condorcet cycles’.

Howevever, so does almost any other voting system.
We can never eliminate these pathologies. Instead, we must find voting
systems which minimize their frequency and severity.

Distrust ideologues who say ‘more democracy’ is the solution to every
political problem.
Distrust politicians and pundits who cite the ‘Will of the People’ as if such
a thing could be ascertained through an simple election.

There are no simple solutions to these problems.
But mathematical analysis can help us to identify and mitigate them.



Further Reading I

All slides for this lecture are available at
http://xaravve.trentu.ca/voting.pdf

Further Reading
Basic Voting Theory (general audience)

◮ William Poundstone Gaming the vote: Why elections aren’t fair (and what we can
do about it). Hill & Wang, New York, 2008. 338 pages. ISBN:978-0-8090-4893-9

◮ Ya-Ping Yee’s colour ‘visualizations’ of various voting methods:
http://zesty.ca/voting/sim/

◮ Electorama website: http://wiki.electorama.com/wiki/Main Page

Basic Voting Theory (middle school level)

◮ Saari, Donald G. Chaotic elections! A mathematician looks at voting. American
Mathematical Society, Providence, RI, 2001. 159 pages. ISBN: 0-8218-2847-991-01

◮ Nurmi, Hannu. Voting paradoxes and how to deal with them. Springer-Verlag,
Berlin, 1999. 153 pages. ISBN: 3-540-66236-791B12

Voting Theory (highschool or intro college level)



Further Reading II

◮ Taylor, Alan D. Mathematics and politics. Strategy, voting, power and proof.
Springer-Verlag, New York, 1995. 284 pages. ISBN: 0-387-94500-8

◮ Hodge, Jonathan K. and Klima, Richard E. The mathematics of voting and
elections: a hands-on approach. American Mathematical Society, Providence, RI,
2005. 226 pages. ISBN: 0-8218-3798-2

◮ Riker, William H. Liberalism against Populism, Waveland Press, Prospect Heights,
IL, 1982. 311 pages. ISBN: 0-88133-367-0.

Advanced Voting Theory

◮ Saari, Donald G. Geometry of voting. Springer-Verlag, Berlin, 1994. 372 pages.
ISBN: 3-540-57199-X

Social Choice Theory

◮ Moulin, Hervé. Axioms of cooperative decision making. Cambridge University Press,
Cambridge, U.K. 1988. 332 pages. ISBN: 0-521-36055-2

◮ Roemer, John E. Theories of Distributive Justice. Harvard University Press,
Cambridge, MA. 1996, 342 pages. ISBN: 0-674-87920-1



Further Reading III

Special Topics

Approval Voting.

◮ Steven J. Brams and Peter C. Fishburn Approval voting (2nd
edition). Springer-Verlag, 2007. 198 pages. ISBN:
978-387-49895-9.

◮ Citizens for Approval Voting: http://www.approvalvoting.org
◮ Americans for Approval Voting: http://www.approvalvoting.com

Range Voting. (a.k.a. ‘relative utilitarianism’)

◮ Centre for Range Voting website: http://rangevoting.org/

Proportional Representation v.s. Single Transferable Vote.

◮ FairVote: http://www.fairvote.org
◮ Electoral Reform Society http://www.electoral-reform.org.uk
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