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1 Introduction

(i) Reconceiving Epistemology
Philosophy is traditionally defined as ‘The Search for Knowledge.’ There is some con-

tention about what exactly ‘Knowledge’ is, but it is generally agreed that one essential
characteristic of Knowledge is certainty. Knowledge is not contingent; it is not provisional.
You ‘know’ that a certain statement is true if it is simply impossible for that statement to be
false. You ‘know’ things are a certain way if they simply could not be any other way.

The trouble is: all certainty is ultimately based upon an act of faith. To establish the
certainty of assertion X, you really only have two options.

(1) Assert that X is ‘self-evident’.

(2) Logically deduce X from other certainties

The problem with strategy (2) is obvious: the ‘certainty’ of X depends on the pre-existing
‘certainty’ of other statements. In trying to build an edifice of certainties, we inevitably
either:

• Fall into an infinite regress of antecedent assumptions,

• Enter a self-justifying system of circular logic,

or

• Ultimately invoke certain truths as ‘self-evident’ —ie. resort to strategy (1).

Most philosophers ultimately resort to (1), whether they invoke the ‘natural light of
Reason’, refer to a priori truths, or are honest about it and simply admit to making a ‘leap
of faith’.

The justifications for the so-called ‘self-evidence’ of truths are not particularly compelling.
They usually fall into two categories:

Appeal to Common Sense: Assert that ‘Any fool can see X is true’.

Rejection of the Unimaginable: Assert that the negation of X is ‘inconceivable’.

The Appeal to Common Sense fails because there is always at least one ‘fool’ who insists
that, actually, he can’t see that X is obviously true. There is actually little consensus in
‘common sense’. What consensus exists is usually a product of culture; many of Plato’s
‘common sense’ truths may strike modern readers as somewhat absurd.

The Rejection of the Unimaginable is simply a failure of the imagination. It is, in fact, a
monumental hubris to believe that, simply because imagining something exceeds the limits
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of our own puny cognitive faculties, it simply cannot be. Many formerly ‘unimaginable’
things often end up being true: the roundness of the earth, the nonexistence of an entelechy
in living things, the physical basis for consciousness, the unity of space and time, and the
curvature of both.

I don’t believe anything can be known for certain. This may seem absurd, since many
things seem ‘certain’: the reality of everyday events, the empirically verified facts of natural
science, the truths of mathematics, the self-evident validity of logic, or the incontrovertible
physicality of our own existence. ‘How can you argue,’ you may ask, ‘That I do not know
for certain that two plus two equals four?’

I do not argue it, however. I do not argue against someone’s assertion of certainty —I
simply do not believe it. It is absurd to demand that I must justify my lack of belief; the
burden of proof is on the maker of the assertion, not upon the skeptic.

Of course, I am not seriously entertaining the possibility that 2+2 = 5, or that my entire
life is a hallucination. I am quite willing to believe in mathematics, science, and the evidence
of my sense —but on a provisional basis. While not ‘certain’, these beliefs are definitely
useful. They give meaning and structure to my existence, and provide a basis for decision-
making; a basis which, so far, usually yields desirable results. This fact alone justifies my
continuous, tentative acceptance of these beliefs.

Nor am I actively asserting, ‘Nothing is certain, nor can anything be certain.’ It would
be self-contradictory to assert, with ‘certainty’, that nothing could be certain. Perhaps the
best formulation is, ‘I am not certain of anything, even this statement.’ Perhaps it would
even be responsible to add the word ‘yet’.

This is a pragmatic epistemology. Constructing an edifice of certainty is (probably)
impossible, but it is also unnecessary. It is sufficient to build a structure of beliefs which we
provisionally accept as true, and which help us answer the questions and make the decisions
which confront us.

(ii) Philosophy and Models

The most vociferous defense of the idea of certainty comes from the philosophers them-
selves. After all, if Philosophy is the search for Knowledge, and Knowledge is defined by
Certainty, how can there by Philosophy if there is no Certainty? A rejection of the possibility
of certainty seems to undermine the raison d’etre of philosophy.

However, rejection of certainty does not jeopardize the entire philosophical program. It
only requires a slight reconception of philosophy. Philosophy still has at least three crucial
roles:

To challenge and question: Incisive philosophical questions reveal our ignorance of what
we thought we knew, and expose the incoherence or inconsistency of our beliefs. Even
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(indeed especially) when they are unanswered, these questions clarify our thinking, and
identify the limits of our understanding.

To clarify communication: A philosophical conversation may never resolve the question
which started it. But it forces its participants to clearly express their ideas and precisely
define their terms. By doing so, they achieve a deeper insight into the question, and
come to better understand not only each other’s beliefs, but their own.

To build models: Rather than peddling false assurances of certainty through ‘answers’ to
philosophical questions, philosophy can offer models. A model is not a certainty; it is
instead a well-defined, formal theoretical framework, which accords with our intuitions
and real-world experience (as much as possible), and which generates (provisional)
answers to philosophical questions.

It is this notion of a philosophical model which I will be primarily concerned with. A
good analogy can be made with scientific models. Scientists long ago accepted the provi-
sional nature scientific knowledge. Scientific theories are temporary constructions. They are
mental approximations of reality, built to match the real thing as well as possible, but built
always with the awareness that they may someday become obsolete. Scientific theories are
predictively powerful, metaphysically comfortable, and pragmatically useful. They are also
fundamentally disposable.

The job of a scientific theory is not to provide us with absolute Knowledge of the workings
of nature. Instead, science serves several pragmatic purposes:

• Science structures our understanding of nature, providing us for a framework within
which to build new theories, interpret data, ask questions, and design experiments.

• Science allows us to predict future behaviour of natural systems based on their present
state –indeed, the basic test of any theory is how accurate its predictions are.

• Science makes possible the design and construction of technology, and the application
of rationality to real-world decision making, thus providing us with practical ways of
improving our lives.

• Science plays a metaphysical role for many people, by providing us with a sense of
intrinsic order and structure –even meaning –in the cosmos.

Likewise, we should conceive of philosophy as the construction of models —models which
are temporary, tentative, contingent, provisional, and disposable. A philosophical model
should yield (provisional) answers to philosophical questions, but to be satisfactory, it should
meet several other criteria:
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Logical consistency: It must be impossible to deduce contradictory conclusions from the
model.

Well-definedness: The terms of the model must be clearly and precisely defined, so there
is no ambiguity in their interpretation.

Phenomenological compatibility: As much as possible, a model must be in accord with
our everyday personal experience. When it deviates from this, it must have good rea-
son. For example, Dennet’s [10] ‘Multiple drafts’ model of consciousness is radically
different than the ‘Cartesian Theater’ suggested by our subjective experience. But
Dennet converges upon this unintuitive model only after he concludes that the Carte-
sian Theater is unsatisfactory for several reasons, and he shows how ‘Multiple Drafts’
can coherently account for what he calls ‘user illusion’ —our subjective experience of
a single stream of consciousness.

Intuitive Plausibility: The model should agree with our intuitions. However, since our in-
tuitions have internal contradictions, it will be impossible to perfectly match them with
any logically consistent theory. Philosophical model-building will inevitably challenge
our cherished intuitions; in the process of integrating them into some logical frame-
work, we may be forced to revise them, restructure them, or even reject them. A good
philosophical thought-experiment often confronts us with a fundamental incoherency
in intuitions we previously took for granted.

Structuring Understanding: A good model provides an intellectual framework which
clearly define the limits of our (provisional) knowledge. It tells us what questions
we should be asking, and how we might go about answering them. By forcing us to
structure our ideas in a formal context, the model clarifies the logical and cultural
relationships between ideas, exposing inconsistencies and logical dependencies, and
revealing patterns which may eventually become paradigms.

Theoretical Fecundity: The model should provides a language and/or methodology for
the development of further theories. The model may ultimately be superseded, but
perhaps its greatest contribution can be in helping formulate its own successors. For ex-
ample, physicists depend heavily on the language and intuitions of classical mechanics
when formulating quantum mechanics.

(iii) Working Assumptions

One advantage of this ‘modeling’ approach to philosophy is that it obviates many tradi-
tional epistemological problems. Rather than labouring in futility to lay a rock-solid epis-
temological foundation, we’ll simply (provisionally) endorse an epistemological framework
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which is minimal, practical, and seems reasonable, and then go from there. Let’s make some
working assumptions concerning the a priori, physical reality, and other minds.

The a priori: Let’s accept the truth-preserving nature of logical deduction. Next, let’s
endorse some axiomatization of mathematics, and assume the applicability of this mathe-
matics in describing the empirically observed patterns of personal experience. We use this
framework because it seems to work. If it stops working, we may stop using it.

Physical Reality: I choose to believe that my sensory experience is the consequence of
some independent physical reality, and not just a dream. This is a purely practical decision.
I can’t prove that an independent physical reality exists. However, even if I am dreaming,
this dream behaves as if it had an independent reality (for example, I can’t predict/control
the unfolding of the dream), so I might as well treat it as if it was real. Also, frankly,
the alternative (to dismiss life as a hallucination) is boring and depressing. Unless I had
a compelling reason to decide I was dreaming (for example, persistent inconsistencies and
discontinuities in my experience, or an inexplicable degree of control over my own reality), I
would reject it on purely aesthetic/emotional grounds.

Notice that I make no assertions about the nature of this independent reality —for
example, whether it is made from atoms and molecules, or is just a ‘virtual reality’ within
a computer core. It is irrelevant (and unknowable) to me whether I am a ‘brain in a body’
or a ‘brain in a vat’. It suffices to observe that the world behaves as if it was made out of
atoms, and I experience it as if I was a brain in a body —thus, I choose to believe this to
be the case. I can’t prove it, but I don’t need to.

Other minds: I believe in the existence of other minds because my sense-data suggests the
existence of other beings with mental processes similar to my own. For example, I (seem to)
have conversations with people which surprise and enlighten me. I often find myself thinking,
‘I would never have thought of that.’ I can’t prove that the (apparent) participants in these
conversations have minds like me own, but this hypothesis is an excellent model of their
behaviour —certainly far better than any of the alternatives. For example, the hypothesis
that other people have conscious minds like mine —with similar emotions and cognitive
limitations —yields a surprising amount of success in predicting their behaviour in certain
situations.

Clearly, these other minds are not identical to my own. However, they more similar to
me than to any other phenomenon I experience. Modeling people as conscious entities akin
to myself yields predictive success, whereas modeling (say) storm systems, automobiles, or
trees as conscious entities does not.
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(iv) Domains of Discourse

Philosophy can be conceived as ‘personal science’. Science is a public endeavour which
seeks to recognize and codify regularities and patterns in our (collective) experience of the
world. Philosophy is a private endeavour, whereby I seek to to recognize and codify the
regularities in my (personal) experience of reality.

Different scientific theories have different domains of discourse. Quantum theory de-
scribes the interaction of microscopic systems; classical mechanics applies to (low-energy)
interactions of macroscopic systems; special relativity describes high-energy interactions in
weak gravitational fields; general relativity, in strong fields. At the borderlands between
these theories, they should agree; for example, the laws of classical mechanics can be de-
duced from quantum theory by taking the ‘macroscopic limit’. However, things don’t always
work out: neither quantum theory nor relativity gives a good description of microscopic sys-
tems in strong gravitational fields. This means that the ‘coverage’ of our physical theories
is incomplete, but it does not invalidate each theory within its own domain. Ultimately, of
course, we want an ‘umbrella’ theory, which subsumes both quantum and relativistic physics.
But even a fragmented theoretical edifice is useful.

This demarcation of domains is important, because it again allows independent develop-
ment in different domains. It is not necessary to develop quantum and gravitational physics
synchronously, and constantly ensure compatibility between the two.

In the same way, different philosophical models can address questions in different do-
mains. Ideally, these models should agree at the common boundaries of their domains. If
they disagree, it means that our theoretical edifice is imperfect; however, each model may
still be valuable within its domain.

For example, since language is about communication between minds, a theory of linguistic
semantics will be related to a theory of mental representation. However, we may find that
our best model of linguistic semantics which is incoherent with our best model of mental
representation. I will develop two different theories of linguistic representation in Chapters
2 and 5, which, though similar, are not identical. Nevertheless, each is useful within its own
domain.

(v) Neural, Linguistic, and Mathematical models

A model is any mental representation of a pattern or regularity in our experience. In this
sense, all of us unconsciously and continually construct and employ thousands of personal
models of the world around us. You can walk only because, implicitly, your cerebellum
contains a sophisticated unconscious model of the mechanics of bipedal locomotion. When
your eyes follow a moving object across your visual field, they are employing a model of
ballistic movement to instantaneously predict the location of the object in the very near
future, and then direct the next saccade to fixate the eye on that point. When you intuit
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that you have said something to upset your friend, you are employing the extremely complex,
subtle, and almost entirely unconscious model of human psychology we call empathy.

These models are coded in the neural structures of the brain; they are unavailable to
conscious introspection, and impossible to communicate to others. We could call them
“prelinguistic”, but this seems pejorative, suggesting that it would somehow be “better” if
they were linguistic in nature. I will call them neural models. Other examples include
reflexes and instincts, learned physical skills (ie. playing the piano, ballet-dancing), geomet-
ric/physical intuition (ie. a carpenter’s intuition that a structure is stable, or a painter’s
ability to create the illusion of depth in a picture through the suggestion of perspective).

Neural models can be quite powerful, but they have disadvantages.

• They are unavailable to introspective examination. We can’t understand how they
work, so we can’t understand why they fail. We can’t intelligently correct or improve
them, but instead must simply trust in the natural, unconscious learning mechanisms
of the brain.

• Since their mechanism is mysterious, neural models do not structure our understanding
or provide a basis for further theory generation.

• Neural models can’t be communicated to other people. This makes it impossible to
share insights, and difficult to reach consensus when the models disagree.

For this reason, we prefer linguistic models —that is, models which can be formulated
in words, diagrams, tables, etc., and thereby communicated to other people. Indeed, it is
fair to say that the recurring theme in the intellectual development of human civilization has
been the replacement of inarticulate, unconscious, private neural models, with consciously
articulated, publically accessible linguistic ones. When Socrates asks, ‘What is Justice?’, he
is asking his friends to transmute their neural models of justice into linguistic ones. The
response, ‘I don’t know what it is, but I know it when I see it,’ is essentially an admission
of failure in this endeavour.

Linguistic models transcend some of the limitations of neural models, but they have
disadvantages of their own:

• The absence of a precise language for theory-specification often makes it difficult or
impossible to precisely communicate the model to other people.

• Different people thus end up with different versions of the model, and thus, derive
differing conclusions. Hence, initially unanimous ‘schools of thought’ inevitable schism
into conflicting factions. In matters of theology or ideology, this often leads to war.

• Since we must reason ‘linguistically’ about linguistic model (ie. employ verbal dialogue
or monologue as a problem-solving methodology), linguistic ambiguity can be magnified
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into outright fallacy. The history of philosophy is filled with examples of this. One will
suffice:

God is (by definition) the perfect being. Nonexistence is a form of imper-
fection, and God is perfect, so God cannot nonexist. Hence, God exists.

This spurious ontological ‘proof’ exploits the ambiguity of the word ‘perfect’.

Early science began with purely linguistic models (eg. the physics of Aristotle). However,
to address the problem of linguistic ambiguity, scientists began to employ mathematical
models. The best-known ancient example was Archimedes; the first modern example was
probably Galileo.

A mathematical model is a linguistic model where the meanings of all the relevant
terms are defined with perfect precision. This has several advantages:

Precise Communication: Mathematical language allows precise specification of the model,
so it can be communicated with perfect fidelity.

Deductive Clarity: In a mathematical model, consequences can be deduced using purely
logical arguments. All consequences of the theory must follow tautologically from the
original premises. This renders unambiguous the validity or fallacy of any chain of
reasoning within the model.

Metatheoretical: We can apply rigorous and powerful methods to analyze a mathematical
model, to discover its flaws and limitations.

Predictive: Mathematical models yield precise, quantitative predictions. This facilitates
the design of technology and the formulation of policy. Furthermore, these predictions
are falsifiable in the sense that they can be unambiguously tested. A falsified prediction
refutes the theory.

Virtually all modern science deals in mathematical models. Theories originally formu-
lated in nonmathematical terms (eg. Darwin’s theory of natural selection) are soon refor-
mulated in mathematical ones (eg. Fischer’s statistical population genetics). We’ll look at
mathematical models again in Chapter 7.

(vi) Mathematical Models in Philosophy

If philosophy, like science, is about constructing plausible models rather than uncovering
incontrovertible proofs, then, like science, philosophy could benefit from the use of mathe-
matics. Philosophy obviously does not seek to produce empirically testable predictions, but
mathematical models have many other advantages, as mentioned above

Mathematics has already made some appearances in the philosophical discourse:
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Bayesian Theory Confirmation uses Bayes’ Theorem1 to formulate a precise and com-
pelling (though by no means perfect) account of how it is that an experimental result
can ‘confirm’ the validity of a scientific theory.

The Probabilistic Account of Causality developed by Patrick Suppes [40].

Metalogic [25, 16, 41] is a branch of mathematics concerned with studying the limitations
of mathematical reasoning itself, and yields results with consequences for epistemology,
ontology, and the philosophy of language. Some results show that certain truths are
forever beyond the ken of any deductive reasoning system:

Gödel’s First Incompleteness Theorem [14] states that, for any (consistent) ax-
iomatization of mathematics, there are true statements which are unprovable
within that axiom framework.

Gödel’s Second Incompleteness Theorem states that it is impossible to deter-
mine whether a particular axiomatization of mathematics even is consistent.

Formal Undecidability: After Gödel, many mathematical problems were shown to
be formally undecidable —that is, unanswerable within the deductive framework
of (standard) mathematics. One of the most well-known concerns mathemati-
cal models of computation called Turing machines. The nominal purpose of such
machines is to carry out complex computations to answer certain questions. How-
ever, Turing showed that it is undecidable whether a particular machine will ever
finish it’s computation, or just keep grinding away forever [18].

Other results demonstrate the inescapable expressive limitations of any human lan-
guage, by showing the existence of mathematical objects so ‘big’ or ‘complex’ that
they can never be explicitly described.

1Bayes’ Theorem says this: Suppose A and B are propositions whose truth or falsehood is unknown. Let
P(A) and P(B) be their ‘prior’ probabilities of being true (ie. given no information). Let P(A|B) be the
probability of A being true, given knowledge that B is already true. Similarly, let P(B|A) be the probability
of B, given A. Then:

P(A|B) =
P(B|A)P(A)

P(B)
.

The interpretation in the Philosophy of Science is this: suppose A is the truth of some theory, and B is some
prediction made by that theory. Then, the probability of theory A being true, given that prediction B was
valid, is P(A|B). Since theory A implies prediction B, we have P(B|A) = 1. Thus, we can rewrite the above
equation:

P(A|B) = P(A)/P(B).

Thus, if prediction B is, a priori a very unlikely event, but theory A predicts it anyways, then confirmation
of prediction B will be strongly ‘corroborate’ theory A, in the sense that the posterior probability P(A|B),
will be significantly greater than the prior probability P(A).



10 CHAPTER 1. INTRODUCTION

Russel’s Paradox demonstrates that the domain of discourse of any logically consis-
tent mathematical theory must be a strict subset of the ‘set of all mathematical
objects’. Any attempt to formally define the ‘set of all sets’ must result in con-
tradiction.

Incomputable Numbers are real numbers which cannot be expressed or described
using any finite string of symbols. I can’t give you an example of such a number,
because if I could communicate it to you in any way (or if I could even conceive
of it mentally), then it would be computable, by definition. Nonetheless, Allan
Turing demonstrated that such numbers not only exist, but actually form the
majority of the real numbers.

Unreachable Cardinal Numbers are infinite quantities so large that it would take
an infinite amount of time just to describe how large they are [25].

Social Consensus Theory [21, 34] addresses political and ethical questions using quanti-
tative, analytic methods. The strategy is to formulate ethical/political issues as ‘op-
timization’ problems (akin to economics). One can then prove theorems about what
solutions exist or don’t exist. Two famous results:

Arrow’s Impossibility Theorem [1] says (loosely) that there is no rational political
system which is Paretian 2, and independent of irrelevant alternatives3 which is
not dictatorial, in the sense that a single person dictates all decisions.

Sen’s Impossibility Theorem [39, 38] says (loosely) there there is no rational po-
litical system which is Paretian and provides absolute protection of individual
rights (in the sense that there are certain decisions —involving, say, your person
or property —over which you have absolute control).

Of course, these results depend upon very specific mathematical formulations of no-
tions like ‘rational political system’, ‘democracy’, and ‘individual rights’, and these
formulations are open to challenge, and a different formulation may yield different
conclusions. Nevertheless, these results are exciting because they provide a precise
formulation and rigorous justification of political assertions which have been debated
for centuries.

Ethical Game Theory seeks to rationally justify altruism through Game Theory. Gau-
thier [13] has disputed the classical game theoretic conclusion that, in situations such
as the ‘Prisoner’s Dilemma’ (see Table 8.3 on page 90 of Chapter 8§(iii)), the most ‘ra-
tional’ strategy is that of amoral selfishness. Axelrod [3] and Danielson [9] have used

2This means that, if everyone prefers A to B, then the system will always choose A over B.
3The relative ranking of some third option C has no effect on the system’s choice of A vs. B



(VII). ORGANIZATION AND OVERVIEW 11

computer simulations of the ‘iterated Prisoner’s Dilemma’ to empirically demonstrate
that ‘moral’ players actually fare better than immoral players, in the long run.

Cognitive Science develops mathematical models of human cognition, and eventually, per-
haps, of consciousness. A mathematical model is subject to mathematical critique. For
example, the ‘Strong AI’ paradigm asserts, essentially, that ‘Consciousness is compu-
tation’ —that is, that the human mind is a Turing machine or similar computational
device. This position has been attacked by Lucas [26] and Penrose [29] using the
concept of formal undecidability discussed above, although this argument has been
convincingly refuted by, for example, Hofstadter [17]

My goal in this book is to develop mathematical models to address some contemporary
philosophical problems.

(vii) Organization and Overview

The chapters which follow are basically independent of one another, and may be read in
any order, although it may be helpful to read Chapter 2 before Chapter 3. I have tried to keep
the mathematical prerequisites to a minimum, but it has often been clearly advantageous,
or even necessary, to employ certain mathematical concepts and terms. Because of this,
I’ve included appendices explaining all the relevant terminology. My advice is to read these
appendices on a ‘need to know’ basis.

In Chapter 2, I propose a model of lingistic and mental representation, and use this
model to examine issues like the intersubjectivity of knowledge, the incommensurability of
language, the reification of culture, and the ‘ineffable’.

In Chapter 3, I argue that ‘order’ and ‘disorder’ are purely subjective concepts, which
arise from our (necessarily) incomplete information about complex systems and our (nec-
essarily) limited cognitive resources. Using a model of ‘representation’ similar to that of
Chapter 2, I discuss the Second Law of Thermodynamics, the difference between energy as
‘work’ and energy as ‘heat’, and the relationship between (subjective) disorder and (subjec-
tive) complexity.

In Chapter 4, I develop model of language as a set of (probabilistic) constraints on the
arrangement of symbols. I use this to examine whether language constrains our private
thought and our collective cultural development. I conceive of computational abstraction
levels as a form of language, and use this to critique the design of information technology.

In Chapter 5 I develop a model of linguistic/mental representation in terms of proba-
bilistic correlations. I use this to examine the semantics of language and the intentionality
of mental representations.
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In Chapter 6 I examine the issue of continuity of identity, at both a personal and cultural
level.

In Chapter 7 I develop a mathematical description of the nature of scientific models and
scientific theories. I use this to discuss the nature of scientific inference, and distinguish be-
tween ‘description’, ‘explanation’, and ‘prediction’. I then examine the empirical verification
of theories, and discuss ‘Occam’s Razor’.

A careful examination of scientific practice is crucial if we conceive of philosophy as
a ‘quasiscientific’ activity, which aspires to construct ‘philosophical models’ analogous to
scientific models. This chapter begins such an examination, but leaves many questions
unanswered.

In Chapter 8, I develop a game-theoretic model of human social, economic, and political
interactions. I use this to examine concepts such as power, justice, freedom, and the stability
of sociopolitical systems.

An interesting feature of this analysis is the importance of semiotics in understanding
how the ‘players’ interpret each other’s actions, and how they project their power through
(nonverbal) communication. I sketch how the ‘Social Game’ model can accomodate real-
world phenomena like advertising, propaganda, and diplomatic posturing (phenomena which
are usually neglected in simpler models of politico-economic interactions between ‘rational
maximisers’).

2 Representation, Perception, and Speech

In the long run, the most productive kinds of thought are not the methods with
which we solve particular problems, but those that lead us to formulating useful
new kinds of description.

—Marvin Minsky, The Society of Mind

(i) Representations as functions

How does perception work? A state of the physical world (the ‘perceived’) induces a
mental state (the ‘percept’) in a person (the ‘perceiver’). We are inclined to regard this
percept as her ‘mental representation’ of the perceived worldstate.

How does speech1 work? The speaker encodes her mental state (‘intent’) in some arrange-
ment of ‘signifiers’ (verbal utterances, written symbols, pictures, gestures, facial expressions,

1...or any other form of communication.
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movements of gaming tokens, etc.), which act as a ‘linguistic representation’ of her intent.
This linguistic representation, when perceived by the audience, induces a percept: a ‘mental
representation’ of the speaker’s intent.

But what is representation? In the previous examples, representation seems to be the
process whereby an element of one domain (eg. a physical state, a mental intent, etc.)
is transformed into an element in another domain (a mental percept, an arrangement of
signifiers, etc.). Mathematically speaking, a representation is a thus a function

f : X−→Y .

Here, X is the space of things to be represented, and Y is space in which we represent them.
For example, perception is a function

p :W−→M (2.1)

where W is the space of world-states, and M is the space of mental states of the perceiver.
Language takes the form of a pair of functions:

M1
s−→ L p−→M2. (2.2)

Here, M1 is the mental statespace of the speaker, and the function s represents the speech
act. L is the space of all possible signifiers (eg. sentences, pictures, etc.), M2 the mental
statespace of the audience, and p represents the process of linguistic comprehension

We can also compose these functions. For example, if Byron tells Catherine, ‘There’s an
Airplane!’, we can combine diagrams (2.1) and (2.2) to get:

WA
p−→MB

s−→ L p−→MC .

where WA represents the space of the world (or at least, the airplane), MB is the mind of
Byron, and MC that of Catherine.

This crude model of representation suffers from two limitations:

• It is a model of the semantics of complete assertions (eg. ‘It is raining’) or complete
perceptions (ie. a percept of a rain cloud). It does not address the semantics of
individual words (eg. ‘rain’) or ‘thought-fragments’ (the ‘idea of a rain cloud’). 2

2Indeed, the ‘meaning’ of the word ‘rain’ is actually much more complex object than the meaning of a
sentence like ‘It is raining’. The meaning of ‘rain’ is entirely context-dependent (eg. ‘rain or shine’ vs. ‘rain
on your parade’ vs. ‘desert rain’ vs. ‘rain of fire’, etc.) Arguably, the word ‘rain’ has no meaning, except in
context. More precisely, the meaning of ‘rain’ is somehow an ensemble of all the meanings the word assumes
in various contexts.
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• This model does not explain how a sentence represents a mental state. To put it
another way, it does not tell us why we are justified in asserting that the sentence, ‘I
am sad’, represents a mental state of sadness (as opposed to the mental idea of formal
undecidability, or the melody of Bach’s Passacaglia and Fugue in C Major).

I will address these issues in Chapter 5. The goal of the present chapter is to apply the
above crude ‘function’ model of representation to explicate issues such as intersubjectivity,
ineffability, and incommensurability.

Representation vs. Causality In the example of perception and speech, the worldstate
w ‘causes’ the percept p(w), and mindstate m ‘causes’ the speech act s(m). However,
representation is not always causal in nature. For example, consider the following kinds of
mental representation:

Recollection of past worldstates (Wpast−→Mnow).

Reverie over past mindstates (Mpast−→Mnow).

Prediction of future worldstates (Wfut−→Mnow).

Anticipation of future mindstates (Mfut−→Mnow).

Empathy (Mother−→Mself).

In these cases, the representation function cannot be so clearly identified with a causal
process.

(ii) Translation and Intersubjectivity

Each person speaks a slightly different ‘dialect’ of English. The discrepancies between
these dialects often result in misunderstandings, even when communication seems clear.
Aletheia and Byron can be said to speak ‘exactly the same’ English dialect if the following
diagram commutes:

PSfrag replacements

MA

MB
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pB

sA

sB

W L
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In other words, the same worldstate w ∈ W, perceived by both Aletheia and Byron, may
lead to different mental percepts pA(w) and pB(w), but ultimately yields the same speech
act:

sA

(

pA(w)
)

= sB

(

pB(w)
)

.

Even if Aletheia and Byron speak different dialects, we should be able to translate between
them. A perfect translator is a bijection t : LA−→LB so that the following diagram com-
mutes:

PSfrag replacements

MA

MB

pA

pB

sA

sB

W

LA

LB

t

It is not clear, a priori, that such a translator exists, or, if it does, that it can be iden-
tified. Even if a perfect translator exists, it only tells us that Aletheia and Byron make
intertranslatable declarations about the world. It does not tell us that they actually think
alike.

All human minds are different. But many philosophers assume that, underneath superfi-
cial differences, we are all pretty much the same. This is the assumption of intersubjectivity
—that my mental states are, in principle, translatable into your mental states. We can
represent it with a commuting diagram:

PSfrag replacements

Mme

Myou

pme

pyou

sme

syou

W

Lme

Lyou

tτ

where τ :Mme−→Myou is the translator of mental states. This does not mean that you and
I are the same person, or that we hold the same beliefs; it just means that, in principle, the
‘mental vocabulary’ within which I represent my thoughts can be perfectly translated into
your ‘mental vocabulary’.

Intersubjectivity seems like a reasonable assumption. It is certainly the experience of
mathematicians; indeed, the strongest argument for the ‘independent existence of math-
ematical objects’ is the commuting diagram experienced by every mathematician who has
ever communicated with a colleague:
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PSfrag replacements
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(To avoid issues concerning the ontology of mathematical entities, let’s interpret Wmath

as being the ‘world of mathematical literature’, rather than some metaphysical ‘world of
mathematical objects’. Hence, this diagram should be interpreted as, for example, two
mathematicians inspecting the same (written) proof, and independently reaching the same
conclusion about its correctness.)

Different mathematicians may think in different ways, and perceive the ‘mathematical
universe’ differently, and express their ideas using different notations, but ultimately, math-
ematical statements and ideas —if true —are intertranslatable. Similarly, the collective
endeavour of any scientific community is based upon the presumed intersubjectivity of the
perception of physical reality.

Because of these successes, we are inclined to carry the assumption of intersubjectivity
into the philosophical domain. A philosopher theorizes based upon her personal experience,
but she presumes that the self-evident truth of her observations and conclusions will be clear
to anyone who hears and understands her. When her ideas are rejected, it must be due to
communication breakdown.

However, it is also possible that, when we depart from the ‘objective’ realm of math-
ematics or physical science, intersubjectivity breaks down. Perhaps different people have
fundamentally different experiences of their own consciousness, or time, or sense-data. This
is a fact which philosophers should keep in mind when we debate the nature of consciousness,
etc. There may not be a single right answer.

(iii) Expressive Domains: Boolean Algebras

I have spoken of W as the ‘space of worldstates’. A point w ∈ W is thus a ‘complete
specification’ of a worldstate, down to the position and motion of ever atom and molecule3.
When you describe a ‘state of the world’, however, you never speak with such exactitude.
When you believe, ‘It is raining in Toronto’, you are in fact mentally referring to a very large
set of worldstates; the set of all w ∈ W such that, in the worldstate w, rain is falling on
Toronto.

3I am being deliberately vague here. The exact meaning of points in W depends upon a physics model.
In a classical model, a point in W exactly specifies the position and momentum of every particle in the
universe. Thus, in a universe of N particles, Wclass = R6N . In a quantum model, elements of W would be
wavefunctions: complex-valued ‘probability distributions’ over all possible classical states. Thus, Wquant =
L2(Wclass;C). However, the detailed nature of W is irrelevant for this discussion.
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Similarly, the elements ofM correspond to exhaustive descriptions of mental states, down
to the level of every calcium ion in every neuron4. A ‘mental state’ in everyday parlance,
such as, ‘I feel sad,’ does not point to a single point inM, but instead, a large subset ofM.

In short, the referent of a mental representations is not an element of W, but a subset.
Likewise, the referent of a linguistic representation is a subset, not an element, of M. This
is inevitable. The world is much more complex than our minds can appreciate. And the
subtlety of our thoughts often eludes our crude language. In representing the world in our
thoughts, or our thoughts via language, we gloss over distinctions and obliterate information.
For example: the space W is probably uncountable, whereas L, being a collection of finite
sequences in some finite alphabet, is necessarily countable. The ‘size’ ofM is hard to judge,
but it is probably much smaller thanW, and larger than L. Hence, the ‘perception’ function
p :W−→M and the ‘speech’ function s :M−→L must necessarily be many-to-one.

The meaning of a speech act ` ∈ L is the preimage set s−1{`} := {m ∈M ; s(m) = `}.
Thus, really, the language L does not allow us to precisely specify points inM (ie. complete
mental states) but only subsets of M. The collection of all subsets we can describe using L
is the expressive domain of the language. Let us call this collection D.

Next, let’s suppose that the language L possesses the capability to express logical con-
junction, disjunction, and negation. Thus, if λ and ` are both elements of L, then so are “λ
and `”, “λ or `”, and “not λ”.

The proposition “λ and `” obviously corresponds to the set s−1{λ}∩ s−1{`}; the propo-
sition “λ or `”, to s−1{λ} ∪ s−1{`}; and “not λ”, to M \ s−1{λ}. If D is a collection of
subsets ofM closed under the operations of intersection, union, and complementation, then
D is called a Boolean algebra5. The elements of D are linguistic categories; they are
the collections of mental states which one can specify within the framework of L.

In the same way, the perception function p :W−→M yields a Boolean algebraD ⊂ P(W)
of subsets ofW. These are mental categories, the collections of worldstates which one can
mentally represent.

(iv) Sense vs. Referent

In his analysis of linguistic semantics, Frege [12], distinguished between sense and ref-
erence. He used the example of the Morning Star and the Evening Star. We know that
the terms ‘Morning star’ and ‘Evening star’ refer to the same object: the planet Venus.
However, the sense of the two terms is different, since they describe different subjective expe-
riences. The first describes an experience which takes place at dawn, while facing east; the

4I am being deliberately vague here. The precise meaning of points in M depends upon a model of
mentation. For example, in a dualist model, elements of M would not correspond to physical states at all.
Again, the detailed nature of M is irrelevant for us.

5See Appendix D.
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other, an experience at dusk, facing west. This experiential difference historically engendered
the belief that the Morning Star and the Evening Star were in fact two different entities.

In terms of the formulation I’ve presented here, the sense of a speech act ` ∈ L is its
preimage s−1{`}, a subset of M. In other words, if ` is the sentence, ‘I see the morning
star’, then the sense of ` is the set of all mental states represented by these words, which, I
expect, involve subjective experiences of early dawn, looking east, etc.

The referent of ` is the double preimage p−1s−1{`}, a subset of W. In other words, the
referent of ‘I see the morning star’ is the set of physical states where the speaker and the
planet Venus are in a certain relative position, it is early dawn, the sky is not overcast, etc.6

(v) Ineffability

What are we to make of the claim that some ideas are simply ineffable, or incapable of
linguistic expression?

If D contains all subsets ofM—ie. D = P(M), the power set ofM—then it is possible,
in principle, to specify any subset of M using L. In other words, it is possible to articulate
any mental state, or set of mental states, in the vocabulary of the language. However, it is
more likely that D is only a small subset of P(M). This means that there are mental states
which simply cannot be precisely specified in the language L. Such states might be called
“ineffable”.

Artists and mystics report this phenomenon all the time, but the mental states they
report are transcendental ecstacies which a logical positivist might dismiss as ‘contentless’.
But perhaps what is true in art is also true in philosophy. Perhaps it is possible to develop a
mode of understanding the world which it is simply impossible to convey in words. Because
of this, we should be wary of logocentrism, the assumption that all truths can be conveyed
using language.

(vi) Incommensurability

Suppose Aletheia and Byron are scientists arguing about physical reality. Their different
perceptions and terminologies may inhibit communication —especially if they have different
areas of expertise. We seek a translator t yielding a commuting diagram:
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6Note that I’ve described the sense and referent of an entire sentence, ‘I see the morning star’, rather
than the sense and referent of the word, ‘morning star’, which was Frege’s original concern. Again, it’s easier
to pin down the meaning of an entire sentence than of an isolated word. See note 2.
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Here, rA = sA ◦ pA and rB = sB ◦ pB. Let DA and DB be the Boolean algebras induced in
W by rA and rB respectively.

If DA = DB, then there is no real difficulty. Once Aletheia and Byron discover that they
are simply using the same words to mean different things, they can find some translation
scheme t, and achieve clear communication.

However, what if DA 6= DB? Then there are certain things that Aletheia can express
in her language which simply cannot be translated into Byron’s language. This is the phe-
nomenon of incommensurability between languages. Aletheia’s language and Byron’s are
incommensurable, because ideas expressible in one are not expressible in the other, and vice
versa. This creates major difficulties, if, for example, Aletheia is a proponent of one scien-
tific theory, Byron a proponent of a rival theory, and they are trying to discuss the relative
merits of their theories. This incommensurability between scientific languages, according to
Kuhn[24], can only be resolved through a scientific revolution

Linguistic incommensurability separates academics in different fields, making it hard for
specialists to appreciate the value —or even the coherence —of research outside their field
of expertise. The gulf is especially wide between the sciences and the humanities. Linguistic
incommensurability also thwarts resolution of ideological debates. It is easier to demonize
one’s opponents then make the radical mental shift necessary to appreciate the internal logic
of their strange ideas.

(vii) Culture and Reification

Mathematician and playwright John Mighton[27] once facetiously suggested a ‘Meaning
Decay Coefficient’: a mathematical measure of the rate at which a new word, introduced
into the popular lexicon, semantically decays over time. From initial precision, the word’s
meaning inevitably dissolves into vagueness and ambiguity, finally becoming devoid of se-
mantic content. When new ideas —artistic, philosophical or political —are digested by mass
culture, they rarely remain in their original form. They are misconstrued, reinterpreted,
reified. Often, an idea intended to subvert status quo ideologies ends up being co-opted to
support them. For example:

• During political revolutions (eg. France, Russia), ideals of ‘liberty’ and ‘equality’ are
used to justify the creation of a postrevolutionary tyranny even more oppressive and
totalitarian than the ancien régime it supplanted.

• Initially ‘anti-Establishment’ musical/cultural movements (rock, punk, alternative)
soon become the ‘Establishment’. An ‘anti-conformist’ subculture engenders a cultural
norm to which people must conform to attain social acceptance. ‘Anti-consumerist’
music is commodified by music companies, and sold as records, posters, and souvenir
tee-shirts. ‘Anti-fashion’ becomes fashionable.
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• A Westernized pastiche of foreign culture (eg. Chinese cuisine, Arabic music, Zen
Buddhism) often attains far greater dissemination and public recognition than the
authentic original. For example, Said[35] critiques the Western European construction
of ‘the Orient’, a construction which is more familiar and far more ‘real’ to most
Westerners than the actual cultures it represents.

This phenomenon of reification can be explained in terms of incommensurability.
The commensurability between the languages of two people depends upon the similarity

of their values and worldviews, which, in turn, is a function of cultural background. Indeed,
commensurability partially characterizes culture: people belonging to the ‘same culture’
generally have commensurable languages. The more incommensurable their languages be-
come, the greater the ‘cultural differences’ between them.

Most members of a given culture, then, have roughly the same way of representing the
world, both linguistically and mentally. What happens if a radical new idea is introduced
into this culture? How will these individuals assimilate this idea? How will the culture
assimilate it?

Suppose you are trying to explain a radical new idea to me, one which is ineffable within
my mental representation system. If I am mentally flexible, and I want to understand,
then perhaps I can gradually evolve my mental representation system to accommodate your
radical idea, inventing what might be called a new “mental category” to represent it. I might
start by trying to approximate this new category using some collection of existing mental
categories. At first, this approximation will be crude, but over time, as my mind adapts (ie.
as my Boolean algebra of mental categories grows or changes) I will (hopefully) develop in
my mind a good approximation of the idea you tried to convey. This is called learning.

Learning requires active mental effort, intelligence and mental flexibility, and finally,
it requires time. But suppose that, through impatience, laziness, or stupidity, I instead
develop a gross misconception of your radical idea. I have reformulated it in terms which I
understand, but have bastardized it in the process. I have approximated an element of Dyou

by some element of Dme, and the approximation is not a good one.
Now, I go away and try to explain this idea to other people of a similar cultural back-

ground. They find my bastardized version easy to internalize in their Boolean algebra of
mental categories —much easier than your original radical idea.

In articulating your idea to me, you have lost control of it. I and others are free to mis-
construe and misrepresent what you have said. Furthermore, since ‘similar culture’ means
‘similar mental representation scheme’, different members of the same cultural group are
likely to misconstrue the idea in roughly the same way, and then, in discussions with one
another, reinforce their common misunderstanding. Over time, these misconceptions often
converge upon a sort of equilibrium, an ‘attractor’ in the space of mental categories. This at-
tractor represents mass culture’s attempt to approximate the radical idea using a conceptual
vocabulary which is simply inequipped to properly express it.
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This is reification: the process whereby a culture appropriates and bastardizes a radical
idea, and reduces it to something which is recognizable, but facile and inauthentic. Reifi-
cation is particularly problematic in an information society, where ideas is are transmitted
and retransmitted far more rapidly than they can be properly assimilated. This distortion
can affect the meaning of a single word, a complex idea, a piece of art, or an entire cultural
movement.

The problem is exacerbated by the deliberate efforts of commercial advertising and po-
litical propaganda to manipulate mass culture. These ‘cultural engineers’ often attempt to
transform the meaning of a word like ‘freedom’ in order to manipulate consumer demand or
political opinion.

Notes

The model of representation in this chapter seems similar to the ‘tower bridge’ model of Egan et al. [8, 11].
The differences are twofold:

1. In the ‘tower bridge’ model, the ‘interpretation function’ maps from the space of mental states into
the space of real world states. In my model, the map goes in the opposite direction, and this is key.

2. The ‘tower bridge’ interpretation function takes individual concepts (eg. the number ‘2’, or the idea of
your friend Alvin) as input, and outputs their meanings; relationships between concepts (eg. ‘2+2=4’,
‘Alvin loves Bob’) are then mapped to the corresponding relationships between their meanings through
a sort of ‘functorial’ property of the representation function. In my model, the function takes entire
worldstates as input (rather than pieces of them, such as the image of Alvin or Bob), and maps them
to entire mental states (not just concepts, like the idea of Alvin or Bob)

3 Order and Disorder

According to convention there is a sweet and a bitter, a hot and a cold. Ac-
cording to convention, there is an order. In truth, there are atoms and a void.

—Democritus, 400 B.C.

‘Order’ and ‘disorder’ are subjective notions. I judge a system ‘orderly’ when I perceive a
pattern or structure that I recognize —in other words, when the structure of the system fits
neatly into one of my mental categories. Consequently, my perception of ‘order’ depends upon
my own idiosyncratic vocabulary of mental categories. I perceive a system as ‘disorderly’
simply because its structure is foreign to my framework of mental categories.
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But what of the well-known Second Law of Thermodynamics? The Second Law
(2LT) is usually formulated:

Isolated physical systems must proceed inexorably towards a state of maxi-
mum disorder.

Unfortunately, this formulation is misleading, and the meaning of (2LT) is often miscon-
strued. Since it is considered incontrovertible Physical Law, (2LT) is then used spuriously
to ‘deduce’ all sorts of fallacies. The misconceptions about (2LT) are twofold:

• That (2LT) is a deterministic principle (hence the word ‘inexorably’), which is true
with absolute certainty (hence, the italicised ‘must’).

• That (2LT) is an objective statement about the actual state of the physical system.

(2LT) is not a deterministic or absolute statement. It is a probabilistic statement. Nor is
it a statement about the actual state of a physical system —rather, it is a statement about
the ‘perceived’ state. A more accurate (but less snappy) reformulation of (2LT) reads:

With extremely high probability, an isolated physical system will proceed to-
wards a state of maximum perceived disorder, where (with extremely high prob-
ability) it will remain indefinitely.

The ‘extremely high probability’ here is, for most macroscopic physical systems, so close to
probability one that, we can, for all practical purposes, consider it to be absolute certainty.
Nonetheless, there is always extremely small (but nonzero) probability that the system will
deviate from ‘maximum disorder’. The probability of this event is is so tiny that it can,
for all practical purposes, be regarded as ‘impossible’. It is comparable to the probability
that one thousand monkeys banging on typewriters will accidentally produce Hamlet, or the
probability of flipping a fair coin and coming up ‘heads’ one million times in a row. But it
is not absolutely impossible, and this must be understood if one is to properly understand
(2LT) .

The concept of ‘maximum perceived disorder’ is a bit more slippery. The purpose of this
chapter is twofold:

• To explain the idea of ‘perceived’ order/disorder.

• To explain why (2LT) is a natural consequence of the nature of perception.
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Figure 3.1: Perception divides up the space of worldstates into pieces corresponding to
mental categories.

(i) Microstates vs. Macrostates; Noumena vs. Phenomena

In Chapter 2, I introduced a model of perception as a function p : W−→M, where W
is the statespace of the world, and M the mental statespace of the perceiver, who we will
call Persephone. Each element m ∈M corresponds to the a specific mental percept, and the
preimage Cm = p−1{m} ⊂ W is the set of all world states ‘recognized’ by Persephone as that
particular percept. Two worldstates w and w′ in Cm are indistinguishable to Persephone; they
generate the same percept in her mind, and thus, they are perceived by her as ‘identical’.
We can think of Cm as a mental category. Let’s consider a couple of examples.

Example: Water

Consider a glass of water. The glass contains approximately 1023 water molecules, in
constant motion. Even if your eyes were sharp enough to see the individual molecules,
your mind could never simultaneously apprehend the positions and velocities of all of them
simultaneously. You have no knowledge of the ‘microscopic’ properties of molecules, but only
of ‘macroscopic’ properties, like the fact that the water is cold at the bottom of the glass
but warmer at the top, or the fact that it sloshes around when you stirs it with a spoon.

This leads physicists to distinguish between the microstate of the glass of water (a
precise specification of the position and velocity of each molecule, which requires about
6×1023 variables), and the macrostate: large-scale observable properties like a temperature
gradient or aggregate motion (sloshing).

The microstate/macrostate dichotomy is somewhat analogous to Kantian dichotomy of
noumena vs. phenomena. In terms of the model of perception we have developed, microstates
correspond to worldstates (in W), and macrostates correspond to percepts (in M). Each
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macrostate thus represents a very large collection of microstates. The act of perception, in
this context, is called measurement.

In principle, we could formulate a physical model of the water in terms of its microstates,
but this would be useless: we can’t directly observe microstates, and even if we could,
we can’t compute formulae with 6 × 1023 variables. Instead, we must formulate a theory
in terms of macrostates. Such a theory must necessarily be probabilistic in nature, since
we are only working with ‘approximate’ (ie. macroscopic) information about the system.
We hope to identify statistical regularities in the evolution of the macrostates. This is the
basic paradigm of statistical mechanics, of which classical thermodynamics is one branch.
The aforementioned Second Law is one of these ‘statistical regularities’. The miracle of
statistical mechanics is this: As the number of particles in a system becomes very large,
certain statistical regularities become near certainties.

Example: ‘Random’ Numbers
Consider the three following 30-digit numbers:

01234 56789 01234 56789 01234 56789;
00005 00040 00300 02000 10000 00000;
010101 010101 010101 010101 010101.







(3.1)

In each case, you recognize a pattern, which allows you to represent the entire number in
your mind at once. Hence, your ‘percept’ of the number is an exact representation of it.
Now consider the 30-digit random number:

97238 33463 64832 39798 53562 95141 (3.2)

You think you see it, but you don’t, really. Your mental percept cannot immediately and
simultaneously represent the totality of this number. For example, you probably couldn’t
copy it down without repeatedly checking against the original. Eventually, if you studied
(3.2), you might memorize it. You might begin to spot patterns —or perhaps, invent patterns
—and use them as mnemonics.

However, even if you memorized (3.2), it wouldn’t help you ‘recognize’ another random
30 digit number (except one closely related). There are 1030 such numbers —no matter how
many you memorized, you couldn’t ever become personally acquainted with more than a
tiny minority. The three examples (3.1) —and all other numbers with recognizable patterns
—are part of this tiny minority. The vast majority of the 1030 numbers have no recognizable
pattern. They thus appear ‘random’.

However, the key phrase is ‘recognizable pattern’. For example, consider the well-known
digits sequence

π = 3.14159 26535 89793 23846 36433 83279 . . .
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Now look at (3.2) again. It is just the first 30 digits of π, written backwards, excluding the
leading ‘3’. Suddenly, it is no longer ‘random’ at all, but instead, highly ordered.

These examples show that the world is much vaster and more complex than a human
brain. Hence, W is a much larger space than M, and the map p : W−→M is necessarily
many-to-one. In other words, for most percepts m ∈M, the corresponding mental category
Cm must contain many elements.

(ii) Information content in mental categories
If Cm is a small subset of W, then the percept m provides highly ‘specific’ information

about the world; if Persephone perceives m, then she has an almost complete specification
of the worldstate w which generated that percept. On the other hand, if Cm is a large subset
of W, then the percept m provides only vague and nonspecific information about w. To
understand this, consider the following assertions1 about the location of a buried treasure:

(m1) ‘It is somewhere on planet Earth.’

(m2) ‘It is buried under the Royal Ontario Museum, in Toronto, Canada.’

(m3) ‘It is buried exactly 4.3 metres below a spot which is 17.1 metres west and 23.7 metres
south of the intersection of Bloor street and Avenue road.’

In this example, w is the location of the buried treasure (so that W is the space of all
possible locations —say, the space of all points on earth). Percept (m1) is extremely vague;
C(m1) = W is huge, so this tells us nothing. Percept (m2) is more specific, and C(m2) is a
smaller subset of W; the set of all w ∈ W where the treasure is underneath the Museum.
Percept (m3) is the most specific, and C(m2) is a very small subset of W.

As this example illustrates, the information content of a percept m is inversely propor-
tional to the size of C(m). Hence, if Persephone wants specific information about her world,
she wants, whenever possible, to perceive percepts whose corresponding mental categories
are as small as possible as subsets of W.

(iii) The importance of being biased
Now Persephone has a problem. She can only divide up W into a limited number of

mental categories (corresponding to the size of M), but she wants most of these mental
categories to be small (ie. high in information content). At the same time, they must
together cover all of W, which is large.

One solution is to choose an ‘equitable’ perception scheme where all mental categories
are of equal size (Figure 3.2A). The problem is that, in this case, all the mental categories

1For the purposes of this example, I will gloss over the distinction between (linguistic) assertions and
(mental) percepts.
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Big Hairy
Moving Things People

Lions
Antelope

(A) Equitable (B) Biased
Figure 3.2: (A) An equitable perception scheme with 16 mental categories. (B) A biased
perception scheme, also with 16 mental categories.

are large, and all percepts are uselessly vague. Had our ancestors possessed such vague
perceptual apparatus, they would have been eaten by lions (which our ancestors would have
perceived as ‘big hairy moving things’).

Instead, Persephone must chose a mental classification scheme which is precisely discrim-
inates distinctions which affect Persephone’s well-being, and glosses over distinctions which
do not. I’ll refer to such a perceptual scheme as biased (Figure 3.2B). The key point is
this: to extract any useful information from its environment, a person of limited cognitive
resources must have a highly biased perception scheme.

For example, Persephone the Paleolithic hunter-gatherer needs a very specific perception
of the species of plants and animals in her world, but requires only a vague perception of
minerals or geological formations. In her mind, most rocks would just engender the percept,
‘rock’. On the other hand, Persephone the post-industrial geologist has a extremely detailed
perception of various minerals, but is largely oblivious to vegetation. Persephone aspires to
perfection in all things, and undoubtably would prefer to have detailed perception of flora,
fauna, and geology. But her mental resources are limited, so she must prioritize.

If the hunter-gatherer and the geologist were to meet, they would perceive ‘order’ in
very different situations. Where the hunter-gatherer sees a ‘random jumble of boulders’, the
geologist sees a detailed record of 500 million years of geological history. Where the geologist
sees only a ‘forest’, the hunter-gatherer sees ten edible plant species, thirteen poisonous ones,
one tree which is good for making houses, another for canoes, another for weapons, etc.

Regardless of the perceptual scheme Persephone possesses, most of her repertoire of
percepts is exhausted in a relatively detailed classification of some small part of W. The
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remaining few percepts are left to cover the vast majority of W, and will represent vague
categories like ‘rocks’, ‘forest’, or just, ‘unrecognizable’. In her mental ‘map’ of W, Perse-
phone has only enough ‘ink’ to chart a small portion with any degree of detail, and she must
leave the vast majority of the map virtually blank, with only the words, terra incognita.

(iv) Measuring the size of Mental Categories

To define a ‘biased’ perceptual scheme, I employed the ‘size’ of the mental category C(m)
as a subset ofW. What exactly does this mean? There are several ways that the concept of
‘size’ can be made precise, depending on the mathematical structure of W.

Cardinality: SupposeW andM are large finite sets. We suppose thatW is much larger.
For example, perhapsM contains 1 000 000 distinct states, whileW contains 1 000 000 000
distinct states. Then clearly, the average percept m ∈ M must represent a category C(m)
containing about 1000 distinct worldstates.

Dimension: If W is a vector space2 or a manifold3, then the size of W can be measured
by its dimension: the number of distinct coordinates needed to exactly specify a point in
W. For example, if W is 100-dimensional, and M is 20-dimensional, and p : W−→M is a
‘reasonable’ function4, then for percept m ∈M, the category C(m) will be an 80-dimensional
submanifold in W. In other words, perception provides Persephone with exact information
about 20 coordinates, while leaving the other 80 entirely unspecified.

Diameter: If W is a metric space5, then the size of a subset C(m) ⊂ W is its diameter
–the maximum distance between two points in W.

For example, supposeW was a map of the world, andM was the set of countries. For any
country m ∈ M, the set C(m) is just the territory occupied by the country m on the map.
The assertion, ‘You are in Luxembourg’ describes your location much more precisely than
the assertion, ‘You are in Canada’, because the diameter of Luxembourg is much smaller.
Two people in Luxembourg could be separated by a distance of at most 50 km. Two people
in Canada could potentially be 3000 km apart.

Probability: If W is a probability space, then the size of a subset C(m) ⊂ W is just its
probability as a random event. High probability events are unsurprising, and thus, pro-
vide relatively little information. Low probability events are surprising, and provide more
information.

2A mathematical generalization of a line, plane or 3-dimensional volume.
3A mathematical generalization of a curve or surface.
4That is, linear or differentiable.
5That is, a mathematical structure where one can measure the ‘distance’ between any two points in W.
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For example, suppose I flip a coin one hundred time, and tell you how many times it
came up ‘heads’. Thus, W is a set containing 2100 ≈ 1030 elements (all possible sequences
of coin flips), while M contains 101 elements (the numbers from 0 to 100). It is highly
probable that I will flip approximately 50 heads; maybe 51 or 48. But probably not 75. And
almost certainly not 100 heads in a row. The (unsurprising) statement, ‘I flipped 53 heads
and 47 tails’ contains very little information, because there are about 1030 possible sequences
of a hundred coin flips which yield 53 heads and 47 tails. However, the (very surprising)
statement, ‘I flipped 100 heads in a row’ contains a lot of information: there is only one
possible sequence of coin flips leading to this state. The statement, ‘I flipped 99 heads’
contains slightly less information, but still a lot. There are one hundred possible sequence of
coin flips leading to this state, which is more than one, but still much, much less than 1030.

Information Content: Suppose percept m corresponds to mental category C(m), which
has probability P . The previous reasoning leads us to define the information content of the
percept m as:

I(m) = − log2 (P )

Thus, low probability percepts are accorded high information content, while high probability
percepts get low information content. In the previous example, the statement ‘I flipped 100
heads’ has information content 100, and ‘I flipped 99 heads’ has information content 93.3,
while ‘I flipped 53 heads’ has information content less than 1.

Amongst these notions of size, the probabilistic formulation is the most natural and ver-
satile. We will use the accompanying notion of information content to characterize subjective
order and disorder. Persephone perceives subjective order if she perceives a percept of high
information content. For example, a sequence of 100 ‘head’ coin flips in a row would be per-
ceived by most people as a suspiciously ‘ordered’ sequence of events. Persephone perceives
subjective disorder when she perceives a percept of low information content. Thus, flipping
53 heads seems quite ‘disorderly’, because a such a sequence would appear ‘patternless’.

This perception is subjective because it depends entirely upon the specific patterns Perse-
phone is looking for —ie. the specific information she chooses to extract from the coin flips.
Until now, her perception of the coin flips has been limited to merely counting heads. But
suppose instead she treated the sequence of heads and tails as a binary number: a sequence
of 100 bits. Perhaps then she notices that the formerly ‘random’ sequence of 53 heads and 47
tails is actually a binary representation of the first 30 digits of π. By a change in perspective,
a worldstate formerly perceived as ‘disorder’ suddenly becomes highly orderly.

(v) Ergodicity and the Second Law

If order and disorder are mere artifacts of perception, then is (2LT) also an artifact?
From the right ‘perspective’, is the universe is actually proceeding towards a state of greater
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order? Unfortunately, no.
As we’ve seen, anyone with limited cognitive resources, to survive, must adopt a biased

perception scheme which provides highly detailed information about certain regions of W,
while leaving large parts of W as terra incognita. However, physical systems evolves along
their own path, heedless of how we chose to perceive them. A system S is said to be ergodic
if, over time, it tends to spend roughly equal amounts of time in all parts of its statespace
W. Hence, if Persephone were to inspect S at a random moment, she would be equally likely
to see it in one part ofW as in any other part. But wait: Persephone doesn’t ‘see’ the actual
state of S; she only sees her perception of it. And a very large part of W is relegated to a
relatively small number of Persephone’s percepts; a terra incognita which she only vaguely
perceives as ‘random’ or ‘disordered’.

In other words, if S is ergodic, then, most of the time, when Persephone looks at S, she
will perceive it to be in a state of ‘subjective disorder’. Furthermore, this is true independent
of the exact nature of her perceptual representation. Different people will perceive subjec-
tive disorder in different situations (for example, the head-counter vs. the binary number
watcher), but everyone will perceive disorder ‘most’ of the time.

This yields a more precise statement of the Second Law of Thermodynamics:

Let O be a (biased) observer, and let S be an ergodic system. An observa-
tion of S by O will, with high probability, yield a percept of low (subjective)
information content (ie. of high subjective disorder) to O.

The less information a percept p contains (ie. the more ‘disorderly’ it is), the
more likely that O will observe p.

Even if S begins in a state of high (subjective) order, it will soon (by virtue of ergodicity)
leave this state and enter a more (subjectively) disorderly one; hence we perceive that S
‘proceeds towards a state of maximum disorder’.

Some key observations about this formulation of (2LT) :

(2LT) is a statement about the perception of S, not the reality.

(2LT) is only true when perception is biased, and S is an ergodic system.

(2LT) is a statement about the higher relative probability of ‘disordered’ percepts.

The greater the bias of our perception, the greater the relative probability of subjective
disorder. The stronger the ergodicity of the system6, the faster the perceived ‘decay of order’
will be. (2LT) is appears an ‘inexorable principle’ of thermodynamic systems precisely
because thermodynamic systems are rapidly ergodic7, and because we perceive them in a
highly biased way.

6That is, the speed with which the system traverses its statespace.
7This is called Boltzmann’s Ergodic Hypothesis.
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(vi) Thermodynamic Entropy

This formulation of (2LT) is not the quantitative one found in most physics texts. The
quantitative version reads:

In any closed thermodynamic system, the entropy never decreases, and usually
increases over time.

The word ‘entropy’ rich in connotation and misconception. Let’s be precise about its physical
meaning:

• Entropy is a property of macrostates (ie. ‘percepts’), not microstates.

• Entropy is not an absolute quantity (like mass), but a relative one (like potential
energy). We can only speak of potential energy gap between two states; likewise, we
can only speak of the entropy difference between two (macro)states of a system.

The entropy difference between two macrostates is usually defined through a certain integral.
However, this definition is equivalent to the following one:

Let m0 and m1 be two macrostates of a system S, containing N particles. The
entropy difference h(m1)−h(m0) is proportional to the negative difference of their

information contents. Formally, h(m1)− h(m0) = −c ·N ·
(

I(m1)− I(m0)
)

.

Here, c is some constant, which depends upon the choice of physical units, and which we
can assume is equal to 1. Hence, our observation that ergodic systems minimize information
content is equivalent to the assertion that they maximise entropy.

In the appendix at the end of the chapter, I discuss some simple examples that show
this ‘informational’ definition is equivalent to the ‘textbook’ definition of thermodynamic
entropy.

(vii) Work vs. Heat

Stuart Kauffman[20] complains that physics makes no clear distinction between ‘work’
and ‘heat’. Both are forms of energy. The difference is that work is ‘useful’ or ‘structured’
energy (eg. the ‘work’ of lifting a brick against gravity, or of compressing a cylinder of gas),
while heat is ‘useless’ or ‘waste’ energy (ie. the heat released when the brick is dropped and
hits the floor, or when the cylinder explodes and the pressure is released).

Thermodynamics was originally developed to characterize the efficiency of machines;
that is, to quantify how much of the energy they consumed was converted into work, and
how much was wasted as heat. In the ‘macroscopic’ regime of thermodynamics, there is
a clear distinction between the work and heat. In the microscopic regime, however, this
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distinction breaks down, and it is precisely this regime which interests a theoretical biologist
like Kauffman.

Cellular metabolism uses energy from exothermic reactions (eg. the oxidation of sugars)
to drive endothermic reactions (eg. protein synthesis), and these processes explicitly involve
microstates, not macrostates, so macroscopic concepts like ‘entropy’ are not applicable. In-
deed, the metabolic chemistry is driven by thermal energy, so that ‘heat’ actually becomes
‘work’ (hence the importance of body temperature in homeothermic animals).

In the long term, we can watch an organism eat and metabolize, and conclude that its
survival and growth constitute ‘work’, while its radiated heat and excreta are ‘heat’. But
when we look closely, this distinction, like so many others, becomes fuzzy.

It seems that ‘work’ is energy that is ordered, while ‘heat’ is energy that is disordered.
But the terms ‘order’ and ‘disorder’ are subjective, and really just describe the information
content of a percept. Hence, we can reformulate the distinction between work and heat in
subjective, informational terms:

• Work is energy whose form and structure is known. In other words, it is energy
accompanied by information.

• Heat is energy whose form and structure is unknown. It is energy without information.

Obviously these are extremes; any quantity of energy lies somewhere between ‘pure work’
(about which we know everything), and ‘pure heat’ (about which we know nothing).

Thus, lifting a brick is ‘work’ because we have precise information about the form of the
energy (gravitational potential), from which we can draw useful consequences. The thermal
energy of a fallen brick is ‘heat’ because we no longer have any precise information about its
form (only that it somehow involves the thermal vibrations of 1025 brick molecules).

(viii) Disorder vs. Complexity

The perception of disorder is closely related to perceived complexity. We perceive a
system as ‘ordered’ if it is amenable to a ‘simple’ description, and ‘disordered’ if it is not.
For example, the sequence

01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01

is ‘ordered’, because we can simply describe it as ‘Thirty repetitions of 01’. The sequence

16437 32478 95956 25040 43543 20394 32039 34950 34550 23030 23303 23430

is ‘disordered’, because it seems to admit no description shorter than merely enumerating
the entire sequence verbatim.
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(A) (B)

Figure 3.3: Order seems related to complexity.

Another example: Figure 3.3(A) seems ‘ordered’ and ‘simple’ because it admits a simple
description: ‘A 10 × 10 array of circles.’ Figure 3.3(B) seems ‘disordered’ and ‘complex’
because the only (apparent) description is the picture itself.

Here, we are implicitly identifying the complexity of an object with the length of our
description of that object. Hence, we are really observing:

The perceived disorder of a state is proportional to the size of a complete
description of that state.

This makes sense. Things appear ‘ordered’ if they fit well into our mental categories. Since
our language is adapted to our mental categories, things which fit well into mental cate-
gories will be easily (ie. concisely) expressible in language. Things which defy easy mental
categorization will also defy easy verbal description.

Note that, just as ‘disorder’ is observer-dependent, ‘complexity’ is language dependent;
things which are very difficult to describe in one language may have a very simple description
in others. The goal of science is in large part the search for the ‘right language’ to describe
natural phenomena; a language in which an accurate description will be as simple as possible.
This is the intuition behind Occam’s razor: If your theory necessitates verbose explanations
or descriptions of phenomena, then you are probably using the wrong language, and perhaps
the wrong theory (see §(vii)).

Kolmogorov-Chaitin complexity: This characterization of ‘complexity’ in terms of
‘minimum description length’ is called Kolmogorov-Chaitin complexity [5, 6, 42]. Given
a language L and a system S, the KC-complexity of S, relative to L, is the minimum length
of a complete description of S in L. We write this as KCL (S)

KC-complexity thus seems entirely language-specific, and thus, rather meaningless. How-
ever, the KC-complexity in any two languages L1 and L2 are asymptotically equivalent in the
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following sense: there is some constant c so that, for any object S, the difference between
KC1 (S) and KC2 (S) will always be less than c. Thus, in theory, if S is an ‘extremely
complex’ object (so that KC1 (S) is much larger than c), then KC1 (S) and KC2 (S) will
be roughly equal in size.

This seems to contradict my earlier assertion that complexity (and with it, perceived
disorder) are observer-dependent. However, you should keep in mind that the constant c is
extremely large; to be precise, it is the complexity of a complete translation scheme from L1

to L2 and vice versa. Hence, the ‘asymptotic equivalence’ KC1 (S) and KC2 (S) should be
treated like statement, ‘One thousand monkeys pounding on typewriters will, after sufficient
time, produce Hamlet,’ or like the Poincaré Recurrence Theorem, which states that, ‘after
sufficient time’, an ergodic system (say, a mixture of ink an water) will return to its original
state (ie. spontaneously unmix). In all three cases, the statement, although true, involves
such unimaginably vast timescales or complexities as to be meaningless for practical purposes.

Appendix: Examples of Thermodynamic Entropy

To see that our ‘informational’ definition of thermodynamic entropy is equivalent to the
‘textbook’ definition, we will look at some simple examples. Recall that I(m0) = − log(P0),
where P0 is the probability of macrostate m0. Thus,

h(m1)−h(m0) = N ·
(

I(m0)− I(m1)
)

= N ·
(

log(P1)− log(P0)
)

= N ·log

(

P1

P0

)

Let S be a system of N identical gas molecules. In this case, the microstate of the sys-
tem specifies the 3-dimensional positions and velocities of N particles; hence, it is a vector
containing 6N coordinates. Thus, W = R6N .

Let X ⊂ R3 be some region of three dimensional space, and let m be the macrostate
corresponding to the assertion, ‘The gas is in region X’. This tells us nothing about the
position of any individual particle —only that all particles are in X. Thus, if p ∈ R3N is the
3N -dimensional vector specifying the positions of all particles, then we know: p ∈ XN . If
X has volume V , then the volume of XN in R3N is just V N .

If a particle s (of mass 1) has velocity v(s) = (v1(s), v2(s), v3(s)), then its kinetic energy
is e(s) = v2

1(s) + v2
2(s) + v2

3(s). The total kinetic energy of system S is then:

E =
∑

s∈S

e(s) =
∑

s∈S

v2
1(s) + v2

2(s) + v2
3(s)

Represent the velocities of all particles in S with a 3N -dimensional ‘collective velocity vector’
V = [V1, V2, . . . , V3N ], containing v1(s), v2(s), v3(s) for all s ∈ S. Then

E = V 2
1 + V 2

2 + . . . V 2
3N
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The temperature T is the average kinetic energy: T = E/N . Hence E(S) = N · T .
If m is the macrostate corresponding to the assertion, ‘The gas has temperature T ’, then

we know nothing of the velocity individual particles —only that their total kinetic energy is
N · T . We don’t know how the energy is distributed amongst the particles —all we know is
that V ∈ S(N · T ), where S is the sphere of radius

√
N · T in R3N . Observe that the surface

area of this sphere in R3N is CN · (N · T )3N/2, where CN is a constant8.
Now consider the following scenarios:

Adiabatic Expansion: Suppose the gas originally occupies a region X0 of volume V0, and
we allow it to expand to occupy a region X1 of volume V1, without changing temperature.

Then its thermodynamic entropy will increase by an amount proportional to N · log

(

V1

V0

)

To see this, suppose m0 is the macrostate ‘S is contained in X0 at temperature T ’, then
the corresponding family of microstates is C(m0) = XN

0 × S(N · T ), a region of volume
V N

0 ·CN ·(N ·T )3N/2. Assuming the system is ergodic, the probability of this region is directly
proportional to this volume, we conclude that P0 = V N

0 · CN · (N · T )3N/2

Likewise, if m1 is the macrostate ‘S is contained in X1 at temperature T ’, then C(m1) =
XN

0 × S(N · T ) is a region of probability P1 = V N
1 · CN · (N · T )3N/2. Thus, the ratio of the

two probabilities is just:

P1

P2

=
V N

1 · CN · (N · T )3N/2

V N
0 · CN · (N · T )3N/2

=

(

V1

V2

)N

(because all other terms cancel). Thus, according to our definition:

h(m1)− h(m0) = log

(

P1

P0

)

= N log

(

V1

V2

)

Heating: Suppose the gas is contained in a region X0, and originally has temperature T0.
If we heat the gas to temperature T1 without allowing it to leave X0, then its thermodynamic

entropy will increase by an amount proportional to
3

2
N · log

(

T1

T0

)

.

To see this, suppose m0 is the macrostate ‘S is contained in X at temperature T0’, and
m1 is the macrostate ‘S is contained in X at temperature T1’. Then:

C(m0) = XN × S(N · T0) has probability P0 = V N · CN · (N · T0)3N/2,
and C(m0) = XN × S(N · T1) has probability P1 = V N · CN · (N · T1)3N/2,

So that
P1

P2

=
V N · CN · (N · T1)3N/2

V N · CN · (N · T0)3N/2
=

(

T1

T0

)3N/2

8To be precise, CN = 2π3N/2

Γ(3N/2) , where Γ is the Gamma function. For example, C8 = 2π12

Γ(12) = 2
11!π

12.
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and thus,

h(m1)− h(m0) = log

(

P1

P0

)

=
3N

2
log

(

T1

T2

)

Similar reasoning can be applied to standard thermodynamic scenarios, like:

Combination: If S1 and S2 are two disjoint systems, and S is their aggregate, then the
entropy of S is the sum of the entropies of S1 and S2.

Thermal Equilibration: If S1 and S2 are at different initial temperatures and are placed
in thermal contact, they will exchange energy until they reach the same temperature,
which is the macrostate of maximal entropy.

Pressure Equilibration: If S1 and S2 are at different initial pressures and are allowed to
interact through a piston, they will move the piston until they reach the same pressure,
which is the macrostate of maximal entropy.

4 Language and Discourse

What is a language? In Chapter 2, I vaguely described language as the arrangement of
sequences of ‘signifiers’ (verbal utterances, written symbols, pictures, gestures, facial expres-
sions, movements of gaming tokens, etc.) to convey meaning. To be more precise, let A be
the set of all signifiers. For example:

• In a written language, A consists of all letters, punctuation marks, and other written
characters.

• In a spoken language,A is the set of all phonemes. Amay also include verbal inflections,
facial expressions, or gestures, to the extent that these convey semantic content.

A speech act is then some finite sequence a0, a1, . . . , an of these signifiers. The set of all
such finite sequences is denoted A∗. Speech acts are not just words or sentences because we
rarely communicates in single sentences. Instead, we usually communicate by long series of
sentences: paragraphs, monologues, essays, novels, etc. Hence, the sequence a0, a1, . . . , an
may be quite long.
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(i) Constraints and Formal Languages

Of course, not all sequences are allowed; some are ruled out as ‘ungrammatical’ or
‘nonsensical’. For example ‘ewjd asdf. wae, asd’ is not a valid speech act in written English.
Thus, we might start by saying:

A language is some subset L ⊂ A∗.

The there is an extensive mathematical theory of ‘formal languages’ of this kind[18]. The
‘rules’ of the language constrain which sequences in A∗ are admissible to L.

For example, the written English language imposes constraints at several levels:

Spelling constrains the juxtaposition of individual letters: ‘piece’ is admissible, but ‘pees’
is not.

Grammar constrains the arrangement of words into sentences: ‘The moon was a ghostly
galleon’ is admissible, while ‘crepuscular exegete lugubrious’ is not.

Semantics requires these sentences to be meaningful. Hence, ‘Green ideas dream furiously’
is inadmissible1.

Coherence requires successive sentences to be semantically related. There should be a
clear progression of ideas. Pronouns in later sentences should have clear references in
earlier sentences.

Note that, while Spelling and Grammar can be formally specified, Semantics cannot.
Nonetheless, there is no doubt that semantic restrictions exist; everyone will immediately
agree that ‘Green ideas dream furiously’ is nonsensical. The Coherence constraint is even
vaguer, but is somehow related to the semantics of the language.

Thus, we see that the meaning of language is intimately related to the constraints that
determine which speech acts are admissible.

The Language of Mathematics Let A be the alphabet of mathematics, containing
Greek and Roman letters, quantifiers like “∃” and “∀”, brackets, logical relation symbols, etc.
Let Lmath ⊂ A∗ be the Language of Mathematics. Sequences in Lmath must be collections of
sentences satisfying the constraint:

WFF: Each sentence must be a well-formed formula (ie. ‘grammatically correct’ in a
mathematical sense). thus, ‘}2{{}5x∀∃}’, is inadmissible, but a formula like ‘2+2 = 5’
is admissible (even if it is false!)

1This example is due to Chomsky.
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According to the ‘Platonist’ school of mathematical ontology, mathematical objects exist
independent of our imaginations. As such, there are certain statements about them which
are true, and others which are false, regardless of whether we recognize them as such. For
example, it was true that Olympus Mons was the highest mountain on Mars, even before we
discovered this fact by launching spacecraft to that planet. In the same way, it was true that
there are an infinity of prime numbers, even before there were hominids who understood
numbers.

Let Ltrue ⊂ Lmath be the Language of true mathematics. Sequences in Ltrue must be
collections of sentences satisfying two constraints:

WFF: Each sentence must be a well-formed formula

Truth: Each sentence must be true. Thus, ‘2 + 2 = 5’ is now inadmissible.

Ltrue isn’t very practical, since we often don’t know what is true. Indeed we often can’t
know, since we can’t make ‘direct mental contact’ with complex mathematical objects. It
seems possible to appreciate the truth of ‘2+2=4’ by simply imagining 4 objects; that is, by
making ‘direct mental contact’ with the objects ‘2’ and ‘4’. However, it is seems impossible
to appreciate the truth of abstract mathematical propositions in this manner. For example,
I can’t appreciate the truth of the assertion, ‘There is no largest prime number’ simply by
‘imagining all the prime numbers’ in my mind. Instead, I can only recognize the truth of
this proposition by constructing a proof of it.

Indeed, according to the ‘Formalist’ school of mathematical ontology, mathematical ob-
jects do not exist independent of our imagination of them. Our ‘subjective experience’ of
these objects is just the experience of manipulating formal symbols according to formal rules.
Thus, for example, when you contemplate the number 2 you are not making ‘direct mental
contact’ with some abstract Platonic ideal of ‘twoness’; you are simply manipulating certain
symbols according to certain conventions. What is ‘true’ about mathematics is simply what
is true about these symbols.

So now consider Lpr, the Language of provable mathematics. Sequences in Lpr must be
collections of sentences in Lmath satisfying two constraints:

WFF: Each sentence must be a well-formed formula

Logic: Each sentences is either an axiom, or follows from previous sentences according to
explicit formal deductive rules.

According to the Formalist school, the meaning of formulae in Lmath is determined not
by their ‘truth’ or ‘falsehood’, but by their ‘provability’ —ie. by their membership or non-
membership in Lpr. It is hard to argue with this view, because as mathematicians, we can
rarely directly apprehend ‘truth’; all we can perceive is provability.
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(ii) Probabilistic Constraints
So far we’re defining a language as a subset L ⊂ A∗, consisting of all ‘admissible speech

acts’. However, the distinction between ‘admissible’ and ‘inadmissible’ is not black and
white. For example, not all English writing satisfies Grammar. Inadvertent grammatical
mistakes are commonplace, and many authors deliberately flout grammatical conventions.
The constraint of Spelling is violated either by mistake or by the introduction of neologisms
(eg. Derrida’s ‘differance’). Finally, the Semantics constraints is clearly ambiguous and
subjective: what is a ‘sensible’ sentence, anyway? ‘The moon was a ghostly galleon’ is not
‘sensible’ if interpreted literally, but ‘makes sense’ if we understand it metaphorically.

So, we should regard language constraints as absolute, but only as probabilistic. To call
a certain speech act ‘inadmissible’ only means that it is extremely improbable in ordinary
speech, except perhaps within certain specific contexts. We thus get a probability distribution
µ on A∗.

Each person speaks a unique language, reflecting her personal instantiation of Grammar
and Spelling constraints. For example, some people chronically misspell particular words
(eg. ‘peice’ vs. ‘piece’), or are prone to a particular grammatical error (‘John and me went
for lunch’). Also, different people have different conceptions of what is semantically sensible.
Thus, each person’s language dictates a different probability measure on A∗.

By assigning a probability to every speech act a person may perform, we implicitly
encode her beliefs and values. She is highly unlikely to say things she does not believe. The
statistical regularities of a speaker’s language embody not only the syntax of the language,
but the speaker’s entire world view.

Suppose you were observing a speaker of an alien language, and making a record of sta-
tistical regularities in her speech. You notice that certain words never appear in certain
relations to each other, whereas other words often do. Without understanding the language,
however, it is impossible to determine which statistical regularities are due to formal, syn-
tactic considerations, and which are due to the speaker’s belief system. This raises the
question: if the two are not empirically distinguishable, is there really a clear distinction
between them?

In Lpr (the Language of Provable Math), the admissibility criteria were entirely formal.
There was no distinction between exclusion based upon nebulous ‘semantic’ properties, and
exclusion based upon explicit ‘syntactic’ properties —they were one and the same. Indeed,
this is the defining property of formal systems.

(iii) Discourse and Ideology
Each speaker speaks her own language, with its own unique stochastic properties. How-

ever, speakers belonging to the same social group (tribe, nation, social class, political party,
profession, academic specialty, etc.) can be expected to speak ‘similar’ languages. The statis-
tical properties of their languages will be similar, which means that their languages embody
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roughly the same syntactic regularities, and also roughly the same values and beliefs. In
other words, common statistical properties can reflect the prevailing ideology or culture of a
social group.

Semioticians refer to the common language of a social group as a discourse. The idea
is not that all members of the group display exactly the same statistical properties in their
speech; clearly, this is false, since each person speaks a unique language. Instead the
discourse of a social group is the probability measure on A∗ obtained by averaging over all
members of the group. If the group is relatively homogeneous, then this average process will
be a good approximation of the behaviour of any member of the group

A recurring theme in semiotics is the embodiment of ideology within discourse. The
statistical properties of the discourse reflect not only the conscious beliefs of the speakers,
but also their unconscious assumptions. From this premise, some people draw a radical
and disturbing conclusion: since the discourse manifests as formal restrictions upon what
speech acts are ‘admissible’, the discourse places limits upon what can be said, and thus,
inadvertently reinforces the ideology it embodies. If you must articulate your ideas within the
constraints of the discourse, then those constraints can make it difficult —maybe impossible
—to articulate ideas which contravene the ideology embodied by that discourse. For example:

Political discourse is often manipulated to reinforce ideology. Orwell imagined a totalitar-
ian state which systematically manipulated the English language until only ‘doubles-
peak’ was possible. However, Chomsky [28] has argued that a totalitarian apparatus is
unnecessary, and that even in democratic societies, the political discourse is controlled
by and for the ruling elite.

Military propaganda provides the most transparent example of discourse manipulation.
Military operations are always ‘defensive’. Every country has a Department of Defense
—no one has a Department of Aggression. Insurgents are ‘freedom fighters’ if they
work for you, but ‘terrorists’ if they work for the opposition.

Scientific discourse embodies Kuhnian paradigms: implicit judgements about what method-
ologies are ‘scientific’, which questions are ‘interesting’, and which assertions are ‘sen-
sible’. These paradigms reinforce acceptance of the orthodox theories. Unorthodox
theories are rejected because they are literally unspeakable within the discourse.

Technological discourse is especially vulnerable to manipulation, because no preexisting
language exists to describe new technology. Language must be invented —usually by
the very people who want to sell products. For example, while a ‘80386-SX’ chip sounds
more powerful than a ‘80386’, it is actually less so. An ‘80486 DX4’ sounds ‘four times’
faster than an ‘80486’; actually, it is one fourth the speed. The acronym ‘RISC’ sounds
flashy, but it would be less impressive if people knew it stood for ‘Reduced Instruction
Set Chip’.
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Gender roles manifest in subtle ways in our discourse. Feminine titles are often obtained
by ‘feminizing’ a default masculine form (eg. ‘host’ vs. ‘hostess’, ‘prince’ vs. ‘princess’);
this suggests the male is the ‘rule’ and the female the ‘exception’. Worse, ‘feminine’
words often have diminutive or patronizing connotations (eg. ‘suffragette’.) Some
words have such strong gender connotations that we only specify gender when these
connotations are contradicted (eg. ‘male nurse’, ‘lady doctor’; no one feels it necessary
to say ‘female nurse’ or ‘male doctor’).

Philosophy itself, according to Jacques Derrida, is just another literary genre, whose texts
should be ‘deconstructed’ to uncover the subtext of ideological assumptions beneath
superficially rational arguments.

But are speakers really ‘constrained’ by their discourse? This is the question of agency:
is the discourse a voluntary product of the speakers, or are the speakers merely vehicles
through which the discourse is realized? Do I speak the discourse, or does the discourse
instead get spoken by me?

A similar question could be asked of mathematics. Is the Language of the Provable a
voluntary product of mathematicians, or are we instead merely the instruments by which the
Language is realized? Do I prove theorems, or do they get proved by me? This is reminiscent
of the question: are mathematical truths ‘discovered’ or ‘invented’? One thing seems clear:
although I am ‘free’ to try to prove any theorems I like, I am constrained to write proofs
which are deemed ‘rigorous’ according to certain formal standards. If I do not satisfy these
standards, then my ‘proof’ will be rejected by the mathematical community as inadmissible.

In a similar way, every social group enforces an ideology by rejecting as ‘inadmissible’
those speech acts which do not satisfy the constraints of a certain discourse. These constraints
are usually unwritten and largely unconscious (indeed, by definition, if the admissibility
constraints could be explicitly codified, then the discourse would be a form of mathematics).
However, in every discourse, the constraints reflect prevailing assumptions about what is
‘true’ or ‘rational’ or ‘coherent’, what is an ‘empirical fact’; what is ‘virtuous’; etc, and thus,
can enforce ideology.

(iv) Discourse and Thought
To the extent that I form my thoughts within the discourse, my thoughts are constrained

by it. This is the Sapir-Whorf hypothesis [36, 37, 44]. The ‘strong’ version of this hypothesis
says that I simply cannot think outside of the discourse. This is clearly nonsense: it assumes
that I think in English (or in some discourse), which I clearly do not. For example, when
contemplating mathematics, I think nonlinguistically, in terms of pictures, spatial intuitions
or logical abstractions.

However, it is näıve to think that I develop a complete and perfect idea in ‘purely mental’
form and then ‘translate’ it into verbal discourse. In reality, my thoughts become fully formed
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only when I attempt to verbalize them, and it is then that I often realize what I ‘really mean’.
What seems like a rigorous proof or a precise definition often disintegrates when I attempt to
articulate it. By the time I’ve obtained a satisfactory written expression, the proof is often
much different than the ‘mental’ version I began with.

Likewise, in philosophy, I often figure out what I ‘really think’ in the process of trying to
explain it to someone else. Again, the discourse (and its limitations) are explicitly involved
in the formulation of the idea.

Furthermore, intellectual activity does not take place in a vacuum, but rather, in a
community. Most of what I ‘know’, I learned from someone else. Most of what I think is
shaped by the ideas of others. But when we learn or teach ideas within the medium of a
discourse, it shapes those ideas. Most obviously, the expressive limitations of the discourse
(see Chapter 2) fundamentally limit the ideas we can learn or teach within it.

In a debate, our judgements of the logic of an argument are unconsciously shaped by
discourse. We tend to accept an argument that ‘sounds good’. Indeed, making an argument
‘sound good’ has a name: it’s called rhetoric. Even fallacy can be made to appear logical
by manipulation of language; this is called sophistry.

Conversely, we tend to automatically dismiss assertions that ‘sound incoherent’. For
example, academic ‘outsiders’ are often ignored or dismissed because they don’t know the
‘right jargon’. Even knowing the jargon isn’t enough: there are subtle and intangible stylistic
conventions which function as shibboleths for each academic culture; an ‘insider’ can spot a
paper written by an ‘outsider’ literally within a paragraph, by (unconsciously) noticing the
violation of these conventions. Overworked or lazy academics tend to dismiss outsiders as
‘cranks’, without carefully considering their ideas.

(v) Abstraction Levels in Computation

Computers must ultimately be usable by human beings, and thus, must be able to ex-
change information with humans. Since the binary machine code of a computer is incom-
prehensible to humans, and since human languages are likewise incomprehensible to ma-
chines, some mechanism must exist to translate machine-readable information into human-
comprehensible form, and vice versa. This translation mechanism is called an interface.

It is not merely users who must interact with machines, but also programmers. Pro-
grammers also need to speak to the machine through intermediaries, which translate from
human-level languages to machine-level code. These intermediaries are variously called pro-
gramming languages, environments, platforms, or operating systems.

Machines must also exchange information with one another. Different machines speak
different internal “languages”, and the information must pass through physical channels with
physical limitations. Thus, it is necessary to use some encoding scheme to take information
from one machine, pass it through a channel, and deliver it in usable form to another machine.
This is encoding scheme is called a protocol.
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In short: since the fundamental purpose of a computer is to receive, process, and transmit
information, a fundamental part of computer design is the design of signifier systems for the
reception and transmission of this information.

In general, there are many “layers” of translation between any human user and a com-
puter. Each of these layers translates from one “language” to another. The “lowest” level
language is the binary language of the machine: bits moving through memory registers,
processed mindlessly by the CPU. At the “highest” level is the language spoken by the user
(often, this is not really a “language” at all, but rather, a visual interface). In between is a hi-
erarchy: languages are increasingly abstract, human comprehensible, and “purpose-oriented”
as one rises to the top, and increasingly concrete, mechanical, and “structure-oriented” as
one descends to the bottom.

These layers are called abstraction levels. There are many reasons why so many
abstraction levels are interposed between human and machine. A few of them are:

• Different languages are suited to different purposes. The language which is ideal for a
novice user to speak is not ideal for someone who wants detailed and precise control
of the machine.

• The use of abstraction levels allows us to specify how a certain program should work at
a “high” level of abstraction, and then implement this specification at a “lower” level
of abstraction. This has two advantages:

– She who constructs the specification at the high level need not have any knowledge
of how the lower level works. This allows her to focus on her area of expertise.

– The lower-level implementation can be modified without requiring any modifica-
tion of the higher level specification. This means that a program can be repaired
or optimised without any visible change in functionality from the user’s perspec-
tive.

Machine-to-machine communication is mediated through protocols which are also nor-
mally layered in a hierarchy of abstraction levels, for similar reasons.

In short: an abstraction level is a language —a representation system. It exhibits con-
straints like any other discourse, and is subject to the same issues of expressive completeness,
incommensurability, and reification which affect any representation system. If a language
makes certain kinds of information difficult or impossible to communicate, then it can can
distort its speakers’ communicative intent. If a person’s experience of the world, or of other
people, is mediated through her computer, then the limitations of that medium have a di-
rect impact on her experience. To the extent that the computer mediates her reality, the
computer is her reality. The limitations inherent in the computer’s communication systems
become the limitations of her reality.
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A well-designed hierarchy of abstraction levels imposes no real limitations on the infor-
mation which can be transmitted through its layers of translation. However, many computer
systems are badly designed, and severely restrict the ways the humans can interface with
the machine —and, through the machine, with one another. This is often simply due to
incompetent engineering, but it sometimes embodies ideology. Some examples:

Interoperability: When two programs can exchange information and work cooperatively
—in other words, when the speak the same language(s) —they are called interoperable. When
the maker of the leading software package W wants to eliminate competitor U in the same
market niche, it will often deliberately design W to be noninteroperable with U software.
This marginalizes the minority who use U, and coerces users to switch to W, just so that
they can communicate with the W-using majority.

Indeed, suppose W is made by company M, which also makes several other programs
–say, O and E. Then M will enhance interoperability between W, O, and E, while simul-
taneously sabotaging interoperability with rival programs. Thus, the market dominance of
one product —say, W —can be used to coerce users to chose E over rival product N, even
if, all things being equal, they prefer N to E.

Programs communicate with one another in many ways and at different levels, and the
web of transactions within a computer is quite complex. Issues of interoperability are often
subtle and multifaceted, and many users do not realize the extent to which the functionality
of their software —and thus, their ability to use it —is dictated by these issues.

Front Ends: Fischer-Price vs. Fighter Jet: The front end of software is the interface
most users deal with. The job of a front end is twofold:

Format the information about the current operating state of the software so that the user
can quickly and easily extract essential information.

Facilitate the easy and rapid execution of complex tasks.

To achieve the first goal, the front end suppresses the majority of information, and only
presents the ‘relevant’ details. To achieve the second, the front end expedites ‘important’
tasks with obvious buttons or easily accessible menus.

This judgement of ‘relevancy’ or ‘importance’ clearly depends upon the user and on her
goals. Thus, a good front end can be configured by the user to display whatever information
she desires, and suppress the rest. It can be modified to expedite exactly those tasks which
the user most often performs.

A bad front end insists on hiding certain facts, and forces others into prominence, re-
gardless of the user’s priorities. It makes certain tasks easy, at the expense of making others
arcane or impossible. Instead of the machine adapting to the user, the user must adapt to
the machine. The user learns to avoid attempting certain tasks. This avoidance becomes
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habit, and the habit becomes unconscious. The user has internalized the limitations of the
machine.

In other words, a bad front end imposes value judgements about what the user’s rela-
tionship to the technology should be. Two extremes:

• The ‘Fischer-Price’ front end treats the user like an infant, hiding almost all infor-
mation, and providing a facile, ‘idiot proof’ control structure. The interface is both
patronizing and disempowering. It engenders a false sense of technical mastery in the
incompetent, while actually hindering the performance of complex tasks. Metaphori-
cally, the interface is like a child’s toy mixmaster, with only one button: if there’s only
one button, you can never press the wrong one.

• The ‘Fighter Jet’ front end overwhelms the user with a barrage of irrelevant technical
information, and presents a cryptic and baroque control structure. By intimidating
anyone unwilling or unable to invest hours studying instruction manuals, the interface
feeds technophobia and ‘learned helplessness’, while concentrating power in a techno-
cratic elite.

Ethnocentric Encoding: Sometimes, data encoding standards embody ethnocentric world-
views. Two examples:

Mailing Addresses: Software often has a datastructure to represent a mailing address.
Some of these datastructures can only accept addresses from certain countries (usually
the United States). For example, the datastructure may only accept a 5 digit numerical
‘Zip code’ (as found in the U.S.), rather than a 6 digit alphanumeric postal code (as
in the U.K. and Canada), or it may require a 2-letter ‘state code’. Indeed, often, it
isn’t even possible to specify a country. The design thereby embodies an implicitly
‘Americocentric’ worldview.

Language support: Most computer software was developed by and for English-speaking
people, and until recently, could not properly represent the accents and non-English
characters (eg. ‘ L’, ‘æ’, ‘ø’) found in many European languages. Even when Eu-
ropean languages are properly supported, languages employing non-Latin alphabets
often aren’t.
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5 Mind and Meaning

What is meaning? Loosely speaking, this question splits into three parts:

1. How do languages convey meaning? How do words mean? This is the problem of
semantics.

2. How do thoughts contain meaning? This is the problem of intentionality.

3. How do signs in general (eg. gestures, behaviours, cultural artifacts) convey meaning?
This is the problem of semiotics.

Semiotics investigates meaning in an explicitly social or cultural context, by examining how
signs convey meaning in a particular community or cultural milieu. I explore semiotics a bit
in Chapter 8. In this chapter, I will consider semantics and intentionality.

Näıvely, words (and thoughts) contain meaning by ‘representing’ things. In chapter 2 I
presented a simple model of ‘representation’: a language L represents ideas by means of
a function s : M−→L, where M is the space of mental states. I proposed this ‘Function
Model’ to examine issues like ‘ineffability’. The Function Model was presented without
justification, and indeed is flawed, in several ways:

• The Function Model does not explain how a sentence represents a particular idea. Take
the sentence, ‘Gödel showed that we can never know if the Zermelo-Fraenkel Axioms
are consistent.’ What, exactly, makes this a sentence ‘about’ someone named Gödel,
and not about Heraclitus?

• The Function Model can be sensibly applied to perception (via a map p : W−→M)
and to speech (s :M−→L), but it doesn’t address other, equally ‘meaningful’ mental
representations. For example:

Speculation concerning hypothetical worlds. For example, ‘If Turing’s group had not
cracked the ENIGMA cipher, the Nazis would have won the war.’ How can we make
a ‘meaningful’ statement about an event that never happened, or a universe that
doesn’t exist?

Mathematics, which concerns real but abstract entities. For example, the sentence,
‘There are an infinity of prime numbers’ seems to be ‘about’ things called ‘prime
numbers’. But these do not live in the physical world. Perhaps this sentence is
about an idea in my mind. But then what is the idea about?

Fantasy about unreal but concrete entities. For example, what is a Sherlock Holmes
story really ‘about’?
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For the Function Model to account for these forms of representation, we must postulate
ontologically dubious objects such as the ‘space of all possible mathematical universes’
or the ‘space of all possible Sherlock Holmes stories’.

• The Function Model posits a direct, unambiguous correspondence between individual
speech acts and subsets of mental state space. In other words, when someone performs
the same speech act, she is always in the same ‘family of mental states’. But this is
contradicted by instances of dishonesty or confusion, and by metaphorical, ceremonial,
or narrative uses of speech.

For example, if I say, ‘I see a storm approaching’, this could mean several things:

– I honestly believe I see an oncoming storm.

– I am hallucinating.

– I am lying.

– I am quoting someone.

– I am acting in a drama, or part of a ritual, and this is one of my ‘lines’.

– I am speaking metaphorically of an imminent (nonmeteorological) disaster.

Rather than a direct correspondence, it seems there is only a probabilistic correlation
between my mental states and my speech acts.

(i) Mentation as Mechanism

The operation of the mind can be loosely described as follows:

Each moment, I experience sensations.
(1) These sensations combine with my current mental state, causing a new

mental state.
(2) My new mental state then possibly causes me to behave in some way.

Formally, we can represent process (1) by a transformation (i,m0) 7→ m1, where i is the
sensory input, m0 is my current mental state, m1 is my subsequent state. We can then
represent process (2) by a transformation m1 7→ o, where and o is my behavioural output.

If I is the space of all sensory ‘inputs’,M is the space of mental states, and O the space
of behavioural ‘outputs’, we have a pair of functions:

(1) φ : I ×M−→M, so that m1 = φ(i,m0).

(2) ψ :M−→O, so that o = ψ(m1).
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However, we can’t assume that a particular mental state will always react to a particular
sensory input in the same way. We must allow some randomness. Rather than a ‘fixed’ value
in M, we will let φ(i,m0) be a random value, determined by some probability distribution
onM, which we will denote Φ(i,m0). The special case when φ(i,m0) is a fixed value is just
the case where Φ(i,m0) is a ‘point mass’: a distribution concentrating all its probability at
a single point m1 in M.

Thus, Φ is a function from I ×M into P(M), where P(M) is the space of all probability
distributions on M. We say that φ is a stochastic function from I ×M into M.

Likewise, instead of a function ψ : M−→O, we must represent the ‘behavioural out-
put’ with a stochastic function Φ : I × M−→P(O), where P(O) space of all probability
distributions on O.

Note that I am not asserting that a human mind ‘is’ a stochastic function —this is
obviously ridiculous. I am only saying that the mind can be modeled by a stochastic function,
for our present purposes. Note also that this model does not commit us to any position on
issues like materialism vs. dualism, free will vs. determinism, or computationalism vs.
noncomputationalism. The model can accommodate each of these ‘isms’ as follows:

• Materialism is equivalent to asserting thatM is the statespace of some physical system
(ie. the brain). Dualism is the assertion thatM is the statespace of some nonphysical
system (ie. the ‘soul’).

• Determinism is the assertion that the function φ is deterministic —ie. that Φ(i,m0) is
a point mass in M×O for every i ∈ I and m0 ∈M.

• Computationalism is the assertion that I,M, and O are all countable sets (ie. we can
identify them with the set {0, 1, 2, 3, . . .}) and that φ : I×M−→M×O is deterministic
and computable —ie. there exists a Turing machine which computes φ.

Our sensations are caused by the state of the world, and our actions change the world’s state.
We represent this with a pair of (stochastic) functions P : W−→I and A : O ×W−→W.
Perception is described by P ; if the world is in state w ∈ W, then I will experience (ie.
perceive) the (random) sensation P (w) ∈ I. Action is described by A; if the world is in
state w0 and my behaviour is o ∈ O, then this will change the (random) worldstate to
w1 = A(w, o).

Thus, the cycle of interaction between myself and the world is described by the following
diagram:
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(ii) Semantics and Correlation

The semantics of language is determined by the correlation between utterances, thoughts,
and events in the world. If Aletheia is speaking to Boromeo, we must distinguish between
three kinds of semantics in Aletheia’s utterances.

Intended Semantics correlates Aletheia’s utterances with her own mental states.

Perceived Semantics correlates Aletheia’s utterances with Boromeo’s mental states.

Effective Semantics correlates Aletheia’s utterances with the state of the world.

To be precise: let LA be the set of possible utterances Aletheia could make, and let ` ∈ LA
be a particular utterance; for example, the words, ‘Il y a un chien.’ Let mA ∈ MA be
Aletheia’s (unknown) mental state, let mB ∈ MB be Boromeo’s (unknown) mental state,
and let w ∈ W be the (unknown) state of the world.

• Let SA ⊂ MA be a certain subset of Aletheia’s mental states —for example, the set
of all mental states where Aletheia believes she is seeing a dog. Then SA is the the
intended semantics of ` if the conditional probability that mA ∈ SA is very high, given
that Aletheia has just uttered `.
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• Let SB ⊂ MB be a subset of Boromeo’s mental states —for example, the set of all
mental states where Boromeo believes Aletheia thinks she is seeing a dog. Then SB
is the the perceived semantics of ` if the conditional probability that mB ∈ SB is very
high, given that Boromeo has just heard Aletheia utter `.

• Let SW ⊂ W be a subset of worldstates —for example, the set of worldstates where a
dog is present. Then SW is the the effective semantics of ` if the conditional probability
that w ∈ SW is very high, given that Aletheia has just uttered `.

An utterance may have some semantics without others. For example, If Boromeo doesn’t
understand French, then ‘Il y a un chien’ has no perceived semantics for him. Also, utter-
ances concerning Aletheia’s mental states (‘I feel sad’), mathematical abstractions (‘5 is a
prime number’), hypothetical scenarios, memories, or predictions need not correlate with the
current world state, and thus, may have no effective semantics. Also, if Aletheia is delusional
(for example, she frequently hallucinates dogs) then even an apparently concrete utterance
need not have effective semantics.

(iii) Intentionality and Correlation

If the semantics of an abstract utterance (‘5 is a prime number’) is defined by correlating
it with mental states, then we must next define the intentionality of mental states. Like
semantics, intentionality is determined by correlations between mental states, perceptions,
actions, and events in the world. We can distinguish five kinds of intentionality.

Sensory Intentionality correlates states of the world with sensations (ie. ‘percepts’). The
sensory intentionality of a percept is, loosely speaking, the set of worldstates which tend
to coincide with that percept being experienced. It is determined by the stochastic
function P .

Perceptual Intentionality correlates sensations with mental states. The perceptual in-
tentionality of a concept is, loosely speaking, the set of percepts which tend to coincide
with that concept coming to mind. It is determined by the stochastic function Φ.

Conceptual Intentionality correlates mental states (‘concepts’) with other mental states.
The conceptual intentionality of a concept m is, loosely, the set of preceding concepts
which can trigger concept m, and the set of succeeding concepts which might be trig-
gered by concept m. Conceptual intentionality is determined by the stochastic function
Φ.

Inceptional Intentionality correlates mental states with an intent or will to act (we will
use the word ‘incept’ to mean an intent to act, since unfortunately the word ‘intention’
already means something else in this discourse). The inceptional intentionality of a
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concept is the set of incepts it tends to trigger. Inceptional intentionality is determined
by stochastic function Ψ.

Behavioural Intentionality correlates incepts with behaviours, where a ‘behaviour’ is
something which changes the state of the world in some way. It is determined by
stochastic function A.

For example, consider a scenario where Aletheia, viewing some goats in the distance, remarks,
‘Look at those ugly sheep.’ We can interpret this remark in several ways:

• Aletheia does not mentally distinguish goats from sheep. She can see a difference (and
hence, perceives goats as ‘ugly’ sheep). But there is only a single goat/sheep concept
in her mind, whose (sensory) intentionality correlates it to percepts of both normal
sheep and ugly sheep, and whose (inceptional) intentionality correlates it with the
verbalization “sheep”.
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• Aletheia does mentally distinguish goats from sheep, but has poor eyesight. She has
distinct concepts of goat and sheep, with distinct perceptual intentionalities (correlating
respectively to percepts of goat and of sheep), and distinct inceptional intentionalities
(the verbalizations “goat” and “sheep”). Hence, her perceptual and conceptual inten-
tionalities are like ours, but her sensory intentionality correlates the sheep percept to
worldstates manifesting either sheep or goats (because of poor eyesight).
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• Aletheia has good eyesight and mentally distinguishes goats from sheep, but she speaks
a unique dialect of English where the word sheep is an abstract term (like ‘ungulate’
or ‘mammal’) which applies equally well to goats or sheep. Hence, her sensory, per-
ceptual, and conceptual intentionalities are like ours, but her inceptional intentionality
correlates both the goat concept and the sheep concept with the verbalization sheep.
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• Aletheia has good eyesight and distinguishes goats from sheep both mentally and
linguistically. However, she has a rare speech impediment which causes her to often
mix up certain words. In particular, she often says “sheep” when she means to say
“goats”. Hence, her sensory, perceptual, conceptual, and inceptional intentionalities
are like ours, but her behavioural intentionality correlates the utterance “sheep” with
both the desire (ie. incept) to say sheep and the incept to say goat.
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This ‘pentapartite’ account of intentionality obviates some of the problems of standard
‘causal’ accounts of mental representation. In the standard account, we say a particular
the mental state represents sheep if it is caused by the sight of sheep, or causes utterances
involving sheep. This account is unsatisfactory because it cannot account for perceptual or
verbal errors.

For example, suppose that, at a particular distance D, under particular light conditions
L, Aletheia always mistakes goats for sheep. Then the causal account says that Aletheia’s
sheep concept has the intentionality, ‘either sheep, or goats-seen-at-distance-D-under-light-
conditions-L’. This absurd conclusion is called the disjunction problem[7]. With pentapartite
intentionality, we can assign disjunctive perceptual intentionality to Aletheia (perhaps due
to poor eyesight), while still allowing her other four intentionalities to be the same as ours.

For example, Aletheia believes sheep only eat grass; this is part of her conceptional intention-
ality involving her sheep concept (it somehow involves correlations with to her grass concept).
Aletheia also believes goats eat everything —this is part of the conceptional intentionality of
her goat concept. Her goat concept is (perceptually) correlated with her goat percept, and
the sheep concept is (perceptually) correlated with her sheep percept, which is (sensorily)
correlated with both sheep and goats-seen-at-distance-D-under-light-conditions-L. However,
this does not mean that Aletheia believes that ‘goats-seen-at-distance-D-under-light-conditions-L
only eat grass.’

Of these five kinds of intentionality, conceptual intentionality plays a special role, because
it is the only way we can assign meaning to abstract or imaginary concepts. Aletheia’s
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concepts of prime number or dragon obtain their intentionality from their relationships to
other concepts in her mind, not from relationships with real world states. We might assign
perceptual intentionalities to the prime number and dragon concepts (for example, the sight of
the numerals ‘2’,‘3’,‘5’,‘7’,‘11’, etc. or pictures of dragons), but Aletheia may still have these
concepts even if she has never seen a numeral or a picture (for example, she is blind, or lives
in a preliterate society).

Likewise, we might characterize prime number or dragon with behavioural intentionalities
(for example, Aletheia’s tendency to verbally agree with statements like, ‘13 is a prime
number’ or ‘Dragons breath fire’, and verbally disagree with statements like ‘9 is a prime
number’ or ‘Dragons have pink feathers’). But Aletheia may still think about prime numbers
and dragons even if she is entirely paralyzed by a neuromuscular disease. We might dodge
the ‘paralysis’ quibble by looking at inceptional intentionalities. But an entirely inceptional
characterization is unsatisfactory, since it fails to describe the cascade of mental activity
which seems to be an essential part of the ‘meaning’ of the prime number or dragon concepts.
For example, Aletheia may mentally prove a theorem about prime numbers, or daydream a
story about dragons, without ever entertaining the desire to express this theorem or story
to another person.

So far I have vaguely described intentionality as ‘correlation’. To get more precise, recall
diagram (??) on page ??. In terms of this diagram, percepts are subsets of I, concepts are
subsets of M, and incepts are subsets of O. Recall from Chapter ?? that macrostates are
subsets of W. Then:

Sensory Intentionality correlates macrostates (subsets of W) to percepts (subsets of I),
via P .

Perceptual Intentionality correlates percepts (subsets of I) to concepts (subsets of M)
via Φ.

Conceptual Intentionality correlates concepts other concepts via Φ.

Inceptional Intentionality correlates concepts (subsets of M) to incepts (subsets of O)
via Ψ.

Behavioural Intentionality correlates incepts (subsets of O) to macrostates (subsets of
W) via A.

I can’t be more specific than this. For example, we cannot say, ‘The perceptual intentionality
of mental state m1 ∈ M is percept i ∈ I’. Recall that percepts trigger mental states in
combination with preexisting mental states. Thus, we can’t say, ‘Percept i ∈ I causes mental
state m1 ∈M’. Instead, we must say ‘Percept i, together with mental state m0, causes m1’
—in other words, φ(i,m0) = (m1, o) (where o ∈ O is some incept). But since φ is a stochastic
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function, we can’t even rightly say this; we can only say, ‘Percept i, together with mental
state m0, has a high probability of triggering a mental state inside the subsetM1 ⊂M’ —in
other words, the probability of the subsetM1×O ⊂M×O is (relatively) high, with respect
to the distribution Φ(i,m0). Even this is a hedge, since ‘relatively high’ is a necessarily vague
term.

In short, the ‘intentionality’ of a mental state m1 is not a set of clear and distinct ‘links’
between m1 and specific percepts, incepts, or other mental states. Instead, the intentionality
of m1 is the entire context of correlations —both strong and weak —which exist between m1

and every percept, every incept, and every concept, both prior and subsequent

I have said that a ‘concept’ is a subset of M. For example, the concept of the num-
ber 2 is just the set C(Two) ⊂ M of all mental states where I am thinking about the
number 2. Specific propositions involving the number 2 are subsets of C(Two) —for ex-
ample, the concept of the proposition ‘Two is an even number’ corresponds to the subset
C(‘Two is an even number’) ⊂ C(Two) of all mental states where I am thinking about this
proposition. Attitudes towards this proposition (ie. ‘propositional attitudes’) are then fur-
ther subsets. For example, the propositional attitude, ‘I believe that two is an even number’
is a subset of C(‘Two is an even number’) —the set of all mental states where I believe 2 is
even.

This notion of ‘concept’ seems too liberal, because any subset of M qualifies, including
bizarre and arbitrary ones. For example, one ‘concept’ is the set C of all mental states where
a particular, arbitrary family of ten million neurons in my brain are firing. To put it another
way: if an alien were examining my mental dynamics, how would she know which subsets of
M to identify as ‘real’ concepts, and which to ignore?

One solution is to call subset C ⊂ M a ‘concept’ only if inceptional intentionality cor-
relates C strongly to specific speech acts (ie. the utterance, ‘Two is an even number’).
This is too restrictive, however, because we all possess ‘private’ concepts we find difficult or
impossible to articulate in language.

Another solution is to recognize that only certain subsets of M qualify as predictively
useful concepts, in the sense that they strongly correlated with particular percepts, incepts,
worldstates, or other mental states. The ‘concept’ involving the arbitrary ten million neurons
is probably not useful: depending on the activity of the other ten billion neurons in my brain,
this ‘concept’ could precede or succeed pretty much any mental state, and could coincide
with any percept or incept. However, a concept like the number 2 is likely to be noticeably
correlated with certain percepts (ie. the perception of pairs of objects), verbalizations (‘You
two make a nice couple’) or even other concepts (integer, even, prime, etc.)

This criterion of ‘predictively useful’ is vague, because the concept of ‘strongly correlated’
is vague. Depending upon what sorts of correlations you want, different concepts may appear
to be the ‘predictively useful’ ones.
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6 What is Identity?

You will soon die. That is, the person you are today is not the person you will be
tomorrow. The ‘you’ of today will be replaced by someone slightly different. Everything
you learn or experience changes you, and every time you change, you lose who you were and
become someone else.

On short timescales, these changes are negligible, and do not challenge our sense of iden-
tity. On longer timescales, though, the little changes accumulate. Consider the experience of
meeting an old friend after many years apart, and suffering a dismaying unfamiliarity. They
aren’t the same person at all, it seems. Or perhaps you aren’t. These changes in identity
are especially pronounced when someone undergoes a traumatizing experience, like a bout
of mental illness or drug addiction.

Languages also evolve over time, to the dismay of those defending their linguistic identity
against ‘foreign influence’. The Institute de la Langue Français decries the ‘corruption’ of the
French language by anglicisms like le hamburger and le cellphone. But languages exchange
words as promiscuously as bacteria trade plasmids. English began as a hybrid of Gaelic,
Anglo-Saxon and Norman French, and virtually all ‘literary’ English vocabulary derives from
French parlance. Furthermore, almost all our technical jargon and neologisms are Greek or
Latin imports. Does English become ‘less English’ when we import words like samizdat,
zeitgeist, bazaar or hibachi?

Cultures have even more fluid identities. Are cultures susceptible to ‘engineering’? Can
mass ideology be molded through propaganda? Can demand be ‘manufactured’ by adver-
tising? Does ‘American cultural imperialism’ (MTV, Hollywood, McDonalds, etc.) threaten
other cultures with extinction, or merely influence their evolution?

Our intuitive sense of a persistent identity (personal, linguistic, or cultural) seems real
and incontrovertible. How can we reconcile this sense with the reality of continual change?
Given two systems S and S ′ (say, two persons, two languages, etc.), we ask: how similar
need they be in order to be deemed ‘the same’? And how can S remain ‘the same’ while
evolving in response to external influences?

To preserve its identity, it seems that S must change autonomously in response to external
influence. For example, learning a new fact changes you but does not disrupt your identity,
because the change is autonomously controlled. Brain damage, surgical intervention, or
narcotics, however, do disrupt your identity because you cannot control the change they
inflict.

A dynamical control system is a system which changes its internal state autonomously,
in a response to external input. The system has a space of internal states M, and a space
of inputs, I; if the system is in state m ∈ M and experiences input i ∈ I, it will change
to some new state m′, which is entirely determined by i and m. Mathematically, this is
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described by a function

φ : I ×M−→M so that m′ = φ(i,m)

(we already introduced this function in Chapter 5 §(i) —see page 46).
For example, the system might be a car; in this case, M is the current position and

velocity of the car, and I is the set ‘inputs’ (steering wheel position, pressure on brake
pedal, etc.) which the driver controls. The car’s position and velocity evolve in response to
the input signals sent by the driver.

In our model, M is the space of all personalities and mental states of all possible hu-
man beings, and I is the space of all possible sensory inputs. At any moment in time,
your entire ‘state of mind’ is a point m0 ∈ M. As you experience sensations i0, i1, i2, . . .
from your environment, your mind evolves through a succession of states m1,m2,m3, . . ..
Diagrammatically:

i0 i1 i2 i3 . . .
↓ ↓ ↓ ↓
m0 =⇒ m1 =⇒ m2 =⇒ m3 =⇒ . . .

The important point is that, although the state m1 is ‘caused’ by sensation i0, it is also
determined by your current mindstate m0. A different person (in state m′0) experiencing the
same sensation, would respond in a different way (changing to state m′1).

A state m∗ is said to be reachable from m0 if there is a sequence of inputs i0, . . . , in−1

so that:
i0 i1 i2 i3 . . . . . . . . . in−1

↓ ↓ ↓ ↓ ↓
m0 =⇒ m1 =⇒ m2 =⇒ m3 =⇒ . . . =⇒ mn−1 =⇒ m∗

Thus, m∗ is reachable from m0 if it represents a person who you could potentially become,
under the right circumstances. We will indicate this by writing m ; m∗. The set of all
points reachable from m is called the reachable set of m.

Not all states are reachable from m0. Indeed, it is safe to say that the reachable sets
of any two people are disjoint, because no sequence of experiences could lead one person to
actually become another. And this is the touchstone of identity. We can say that a mindstate
(ie. person) m∗ ∈ M is ‘the same person’ as you if m ; m∗ (ie. m∗ is a possible ‘future
self’) or if m∗ ; m (ie. m∗ is a possible ‘past self’). In either case, we write m! m∗.
More generally, we could say that m and m∗ share the same identity if there is any chain
m! m′! m′′! . . .! m∗.

Clearly, the longer such a chain must be (or the greater the distance in time separating
successive links in the chain), the more tenuous the relationship of identity. Nonetheless, it
seems a universal article of faith that no two distinct human beings could ever be connected
by such a chain; all of us are unique, and no one could ever ‘become’ someone else. This is
not something we can prove, but it is something we certainly like to believe.
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Notice that invasive changes (surgery, trauma, etc.) will move the point m to a new point
m′ which is probably not reachable from m; hence, they disrupt the continuity of identity.

The same formalism is applicable to culture, but this entity is far more amorphous. Let’s
say that a society is a population of individuals, each having her own personality. Thus, a
society is a set of points in M. Thus, in a society of P individuals can be described by a
point in MP .

Each of these people evolves over time, in response to external influences, and one of the
most important of these is her interaction with other people in the society. Other factors
also influence the society, such as natural events, or interaction with other societies. Thus,
the society as a whole can be described by a dynamical control system:

Φ : I ×MP−→MP

One disadvantage of this model is that we must fix a specific population, P (thus, we are
excluding births and deaths). A more versatile model is to represent a society as a probability
distribution over M, which represents the distribution of some very large (but nonspecific)
number of points in M. If P(M) is the set of distributions, then society is described by a
dynamical control system of the form

Φ : I × P(M)−→P(M)

Of course, we can’t even begin to suggest equations to describe such a complex system.
We expect, however, that the probability distribution describing society will exhibit a some
degree of clustering (like a Gaussian). The reason is that individuals in a society tend to
imitate one another, so that their personalities will stay relatively similar over time.

Thus, a culture is an (evolving) probability distribution onM, the ‘space of personalities’.
We can again use the concept of reachability to decide whether two cultures are ‘the same’,
and to decide when cultural change is a process of autonomous evolution (analogous to a
person learning something), and when it is a traumatic and discontinuous event (analogous
to brain damage or surgery).

We could probably develop a similar model of collective linguistic evolution: a population
of ‘speakers’, determining an evolving probability distribution on the ‘space of all possible
languages’.
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7 Science

(i) What Science is Not

A lot of metascientific discourse arises from näıve and idealized misconceptions of science.
In philosophy of science, these misconceptions yield absurd conclusions. When questions of
‘scientific validity’ have ideological consequences (eg. creationism vs. evolution, behaviorism
vs. cognitivism, economics vs. ecology), these misconceptions become pernicious. Thus, it
is important to first identify some things which science generally isn’t:

Science is not exact: Scientific models are never exact, for three reasons:

System complexity: Most real systems are far to complex for us to have an exact model.
If you’re studying a living organism, a weather system, or an economy, the best you
can hope for is a macroscopic, qualitative model which accounts for the large-scale
features of the data. Thus, medicine, meteorology, and macroeconomics are inherently
‘inexact’ sciences.

Computational Complexity: Even if an exact model exists, rigorous computation within
this model is usually impossibly complex. You must always make approximations and
idealizations to get any kind of answer. For example, we habitually throw away ‘small
terms’ in an equation. Functions are often approximated via Taylor series1, and the
higher-order terms are then discarded.

Measurement error: Physical measurements are always imprecise. The best you can do
is quantify the expected error.

Science yields not exactitudes, but approximations. In special cases (eg. celestial mechanics),
these approximations are in fact incredibly accurate. But it spurious to extrapolate from
celestial mechanics to the rest of science.

1 A Taylor series is way of representing a function as an infinite polynomial. For example, the sine
function has Taylor series:

sin(x) = x− x3
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It is common to approximate this infinite series with a ‘truncated’ finite polynomial. For example:
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Science is not deterministic: Classical mechanics is perfectly deterministic, but
more recent scientific models are not. There are three reasons:

System complexity: Imagine a one metre cube, filled with rapidly colliding ping pong
balls. There is a hatch at the top, through which one ball can escape at a time.

In principle, this system is deterministic (the collisions and trajectories of the balls
obey classical mechanics). Thus, we could, in principle, predict the next ball to escape
the hatch. In practice, the system is far to complex to explicitly model, and we instead
treat the next escaping ball as a random event. Indeed, this is often how the random
winning number is generated in televised lotteries.

Chaos: Even if you constructed an explicit, deterministic model of the ping pong box, this
model would be chaotic, in the sense that slightly different initial conditions diverge
exponentially and lead to totally different outcomes. Thus, a tiny measurement error
(which is inevitable) will rapidly ruin the accuracy of your predictions. Hence, although
the model is in principle deterministic, it must in practice be treated as stochastic; this
is the motivation for the ergodic theory [30, 43] of dynamical systems.

Intrinsic Randomness: Quantum mechanics says that microphysical processes are intrin-
sically stochastic. It follows: if large scale phenomena are grounded in microphysical
processes, then they are also intrinsically random. For example, biological evolution
is driven by mutation. The mutation of single nucleotide is a microphysical process,
subject to quantum indeterminacy.

Science is not syllogistic: In contrast to the ‘logico-deductive’ examples common
in philosophy of science literature, syllogisms rarely appear in real scientific discourse. Only
in the simplest models can you unambiguously ‘deduce’ conclusions from premises in a syl-
logistic manner. Instead, usually you take a ‘toy model’ of the system under consideration,
perform some rough calculations, and obtain some numbers which —after suitable interpre-
tation —yield tentative predictions about the original system.

Logico-deductive philosophers of science often offer medical diagnosis as a prototypical
example of ‘scientific syllogism’. For example:

(

Wet cough & Yellow sputum
)

=⇒
(

Strep throat
)

.

The problem is, this is not a syllogism; it is a purely probabilistic statement, which employs
an observed statistical correlation between symptoms and syndromes. A syllogism can never
be wrong: it can never lead from true premises to false conclusions. But medical diagnoses
can be wrong, and often are.
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Science is not strongly predictive: Notwithstanding the Logical Positivist ideal,
real science often does not —indeed, cannot —make bold predictions. Part of the reason is
that science is often inexact and probabilistic, as we’ve already seen. For example, meteo-
rologists still can’t correctly predict weather more than a few days into the future. This is
not because meteorology is ‘unscientific’ —it’s because the atmosphere is a vastly complex
chaotic dynamical system.

Some scientific theories do not even attempt prediction. For example, Darwin’s theory of
Natural Selection is not a predictive theory. It does not predict how organisms will evolve,
except in the vague sense that they will either adapt to changing environmental conditions,
or die out2. Instead, Darwin’s theory is ‘retrodictive’ theory, which explains natural history
as a story of adaptation to various selection pressures.

I’ll discuss the relationship between prediction and explanation more in §(iv).

Science is not ontological: Scientific theories make no claims about the existence
of theoretical entities. Theoretical entities come in three flavours:

Elementary units: Scientists often hypothesize elementary units (eg. electrons, voltages)
whose properties and interaction are the basis of the theory. Do these really exist?

The ontological status of electrons is as unknowable as it is irrelevant. ‘Electron’ is the
name of a mathematical construct, a component of a model. It is a ‘conceptual handle’
which we attach to certain variables in our equations, to facilitate our intuitions. The
value of the ‘electron’ construct is measured by the explanations and predictions we can
obtain with it. Physicists do not ‘believe in’ electrons; they believe in the usefulness
of the ‘electron’ concept.

Theorist’s fictions: Do physicists believe in gravity? The näıve response is, ‘Of course
they do.’ But actually, they don’t. Relativistically speaking, there is no ‘force of
gravity’; there is curved spacetime. Yet the ‘force of gravity’ is ubiquitous in the
discourse of (nonrelativistic) physics. Again, the ‘existence’ of gravity is irrelevant; its
utility as a concept is the issue.

Electrons may not exist ‘in reality’, but at least electrons exist in the standard model
of physics. Gravity doesn’t even exist in the model. Gravity is a ‘fictitious force’; an
artifact of a noninertial reference frame, similar to centrifugal force (which keeps the
water in a swinging bucket), Coriolis force (which makes hurricanes spiral), and the
‘G-force’ felt in an accelerating airplane.

These are examples of theorist’s fictions: entities which we ‘know’ don’t exist, but
which are useful as conceptual aids. Some other common theorist’s fictions:

2One exception: biologists now confidently predict that pathogenic bacteria will eventually evolve resis-
tance to any antibiotic we develop.
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Phonons are quanta of mechanical energy which propagate through a crystal lattice.
Mathematically, it is convenient to treat them as particles.

Point particles do not exist in quantum mechanics. A quantum ‘particle’ is, by defi-
nition, a spatially distributed object defined by a sort of ‘complex probability field’
(the wavefunction). Nevertheless, it is often intuitively convenient for physicists
to pretend that electrons, photons, etc. are point particles.

Rational Maximizers are the agents of microeconomic models. No one believes that
real people behave this way.

Selection pressure is the stress of a hostile environment, which ‘pushes’ a species to
evolve in certain directions.

Selfish Genes are genes anthropomorphised with the ‘desire’ to replicate, and the
‘cunning’ to innovate and adapt. Of course, real genes are mindless, but the
selfish gene is a powerful in the discourse of evolutionary biology.

Anthropomorphisms: The Selfish Gene is one example of a class of theorist’s fictions
where we attribute mindless objects with desires or beliefs. For example, we
commonly say that a thermodynamic system ‘wants’ to attain the state of minimal
free energy. A moth ‘wants’ to fly in a straight line; it keeps circling the lamp
because it ‘thinks’ the light is the sun.

The value of a theorist’s fiction lies in compressing a complex bundle of ideas into an
easily managed abstraction.

Collective/emergent entities: Systems with many interacting components often exhibit
emergent phenomena which persist in time and entrain the coherent collective activity
of millions of units. It is useful to give names to these collective phenomena, and
develop models of their behaviour. Consider the following examples. In each case,
the reality of the entity seems incontrovertible from a distance, but becomes fuzzy up
close.

Statistical mechanics: Temperature, pressure, and current are collective quantities,
obtained by averaging over large populations of molecules:

• ‘Temperature’ is average kinetic energy of a population of molecules. Individ-
ual molecules do not have a ‘temperature’ in a thermodynamically meaningful
way.

• ‘Current’ is average velocity of a population of molecules; ‘pressure’ is pro-
portional to the average deviation from this average velocity. An individual
water molecule has a velocity, but it does not have a ‘current’ or ‘pressure’ in
a hydrodynamically meaningful way.
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Hurricanes: Where, exactly, is the physical boundary of a hurricane? When does it
stop being a hurricane, and revert to a mere tropical storm?

Species: A ‘species’ is a population of organisms with similar genomes. But what is
‘similar’? For sexually reproducing species, we can apply the test of ‘mating to
yield fertile offspring’, but this is inapplicable for asexual species. On evolutionary
timescales, when exactly does an old species cede to its successor?

Ecosystems: An ‘ecosystem’ is a self-contained web of interacting organisms. But
how do we delimit this web? Any two species on earth are connected by some
chain of interactions, so the smallest ‘self-contained’ ecosystem is in fact the whole
biosphere.

Organisms: Even organisms are fuzzy, up close. Where is the boundary between self
and nonself? When does the food you eat stop being ‘foreign matter’ and become
part of you? Are your gut bacteria part of you? What about the mitochondria
living symbiotically in your cells? Is an endogenous retrovirus ‘part’ of its host
bacterium? Is a plasmid? What if it confers resistance to an antibiotic?

Life: Are memes alive? It seems not, since they can only exist and replicate within a
suitable host: the mind of a human. But by the same argument, a bacteriophage
virus is not alive, since it can only replicate in the context of as host bacterium.
Likewise, mitochondria are not alive, since they can only exist and replicate within
a host eukaryote. But by the same argument, humans aren’t alive, since we can
only exist and replicate in the context of our host organism, the biosphere.

These questions probably do not have meaningful answers. We are looking too closely
at the boundaries of inherently fuzzy concepts. I am certainly not saying that tem-
perature or species or hurricanes ‘don’t exist’. They do exist, as collective phenomena
—in other words, as abstractions. But they don’t exist in the same precise, concrete,
delimited fashion as, say, electrons (to the extent that electrons exist).

Collective entities are just a particular kind of theorist’s fiction; a white lie which facilitates
comprehension of a complex theory. Indeed, even elementary units —being mere ‘conceptual
handles’ for certain variables —are a theorist’s fiction. And that is exactly the point.

Science is not neatly causal: The classic model of scientific explanation involves
a ‘causal process’ leading inextricably from initial conditions to observed consequences. Real
science never works this way, for three reasons.

Indeterminism: Causality is usually seen as a kind of logical necessity:

(

Cause
)

=⇒
(

Effect
)
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But science is usually probabilistic; initial conditions do not logically necessitate final
outcomes, but at most influence their probability. We might develop a ‘probabilistic’
version of causality, as advanced by Suppes[41], but we then lose the neat distinction
between causation and correlation.

A tangled skien: Causal processes are imagined as having an unambiguous ‘path of prop-
agation’. In simple physics models, you can sometimes trace the propagation of energy
and information unambiguously from a ‘cause’ to an ‘effect’. In more complex models,
however, everything impinges upon everything else, and the causal web is so tangled
as to render meaningless assertions of the form ‘A caused B’.

For example, in chaotic systems, tiny perturbations can ‘cause’ radically divergent out-
comes. Can we really blame the proverbial butterfly in Rio for ‘causing’ the hurricane
in Bermuda? A million other perturbations could also have ‘caused’ it. And further
million could have prevented it, or exacerbated it, or delayed it, etc. At a certain point,
it is meaningless to ask what ‘caused’ the hurricane.

Achronality: ‘Causality’ implies a process unfolding in time. As we will see in §(ii), many
scientific models are achronal: there is no notion of time, hence, no notion of temporal
causality.

Science is not reductionist: Science exhibits a rough hierarchy of abstraction lev-
els, with lower levels providing the conceptual foundations for higher levels3 (Figure ??A).
In theory, the ‘axioms’ of any biochemistry theory should be deducible as ‘theorems’ of
quantum physics. In practice, however, this vision is impractical to realize. Even the sim-
plest chemical system —say, a single water molecule —is far too complex to be rigorously
mathematically analyzed when expressed in quantum terms.

We will probably never reduce theoretical biochemistry to a mere ‘logical corollary’ of
physics. But this is unnecessary for the coherence and success of the scientific project.
Biochemists don’t need physics; their theories are intended to predict and explain biochemical
phenomena. It would be intellectually satisfying to precisely formulate biochemistry in terms
of physics, but it is not necessary for biochemists to do their job. It is useful, however, to at
least roughly situate biochemical phenomena in the framework of quantum physics, so that
biochemists can lean on this framework when necessary. For example, it is useful to know
that, in principle, a DNA molecule can be modelled as a quantum system, even if such a
model is far to complex to analyze in practice.

3This may seem rather backwards; after all, isn’t physics more abstract than biology? But I am using
‘abstraction level’ in the sense of computer science, where software at a lower abstraction level (eg. the
operating system) provides the ‘platform’ to build software at higher abstraction levels (eg. the word
processor). In this sense, quantum physics is the ‘platform’ for quantum chemistry.
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This separation of abstraction levels is crucial, because it allows theoretical evolution and
revolution to occur independently at various levels. It is not necessary to have a completely
articulated quantum theory to begin formulating a biochemical theory; nor is it necessary to
understand all the minutiae of molecular biology before one can study the biology of cells.
Furthermore, a scientific revolution at one level (say, the rejection of the Standard Model in
physics) need not shatter the intellectual paradigms at other levels.

(ii) Scientific Models

It is important to distinguish between theories and models. A model is a mathematical
construct used to explain, predict, or describe a specific system. A theory is a framework
for the construction of models. I will discuss scientific theories later. Since theories exist to
create models, it is useful to first discuss the kinds of models which exist in science.

I will describe these models as mathematical objects. This is not to say that all scientific
models are formulated mathematically, or even that they should be, but only that, in prin-
ciple, they could be. Note that ‘mathematical’ does not mean ‘quantitative’. Mathematical
models do not necessarily involve equations and numbers; they may instead involve precisely
defined qualitative concepts, linked by relationships of logical implication or probabilistic
correlation. For example, diseases and symptoms are (usually) not numbers; however, a
medical diagnostic model could be formulated in terms of the correlations between certain
symptoms and certain diseases4.

Scientific theories fall into four broad (and nonexclusive) categories: dynamical systems,
stochastic processes, equilibrium models, and achronal models.

1. Dynamical Systems are deterministic models of a system evolving in time. The
initial conditions of the system define a point in a statespace W. Each point in W lies on a
unique trajectory, which tells us exactly how the future will unfold (Figure 7.1A).

‘Events’ correspond to subsets ofW. ‘Causality’ manifests as follows: an event A at time
0 ‘causes’ an event B at time t if every point in A has a trajectory that passes through B at
time t (Figure 7.1B)

Dynamical systems are usually formulated in terms of ordinary differential equations –the
prototypical example is classical mechanics —or in terms of partial differential equations,
eg. the Heat Equation or Navier-Stokes Equations.

2. Stochastic Processes are nondeterministic models of a system evolving in time.
Stochastic processes are defined by assigning a probability to every possible ‘history’ the

4Of course, this is not how doctors think about medical diagnosis. However, this is exactly how com-
puterised ‘expert systems’ perform medical diagnosis, and some of these systems perform as well, or better,
than human doctors.
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Figure 7.1: (A) In a dynamical system, each point x in the state space W has a unique
trajectory, which describes its past and future. (B) Causality: Subset A flows into
subset B.
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Figure 7.2: (A) In a stochastic process, each point x in the state space W has a probability
distribution of possible trajectory, which describes its possible pasts and futures. (B)
Causality: ‘Most’ of the probability from subset A flows into subset B.



(II). SCIENTIFIC MODELS 65

system’s evolution over time –in other words, to every possible trajectory in W (Figure
7.2A).

There is only a vague notion of ‘causality’ in a stochastic process. An event A at time
0 ‘causes’ an event B at time t if a trajectory which passes through A at time 0 is highly
probable to pass through B at time t (Figure 7.2B).

For example:

Quantum mechanics is a deterministic theory (described by the Schrödinger equation)
until the moment a measurement is taken, at which point the wavefunction ‘collapses’
in a random manner.

Natural selection is a stochastic process where a large population of genetically distinct
replicators experience random mutations, which enhance or degrade their replication
abilities. Over time the population as a whole evolves to favour genomes of greater ‘fit-
ness’ (ie. replication ability), but which adaptations will be favoured is unpredictable,
except on the most trivial ‘fitness landscapes’.

A dynamical systems is special case of a stochastic process: one where all trajectories
have probability 0 or 1.

3. Equilibrium models describe a system which has attained a final rest state, and
is not evolving in time. There is usually only a vague qualitative description of how the
system arrived at equilibrium, how long it took, or what path it followed. For example:

Laplace’s Equation describes the equilibrium concentration of a diffusing chemical, or an
equilibrium temperature distribution.

Classical thermodynamics describes the final state of a closed thermodynamic system.

Microeconomics describes equilibrium allocation of resources and the prices of goods in a
perfect market.

Kirchoff’s Laws determine the currents and voltage gaps through the components of an
electric circuit, and yield a static model of circuits made from simple components
(eg. resistors, batteries) which converge to equilibrium ‘almost instantaneously’. (Kir-
choff’s laws yield a dynamical model when we include slowly equilibrating units like
capacitors).

Natural Selection, in Darwin’s original formulation, can be seen as an ‘equilibrium’ model,
because (unlike the ‘stochastic’ model) it provided only a vague qualitative descrip-
tion of how organisms evolve. The focus was on explaining their current form as the
equilibria of a process of adaptation.
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Many scientific fallacies arise from applying equilibrium models to nonequilibrium situations.
For example:

• Classical thermodynamics does not apply to systems displaced from equilibrium, such
as living organisms. Nevertheless, ‘creation scientists’ spuriously apply the Second Law
of Thermodynamics to ‘refute’ Darwinism.

• The relevance of ‘long term’ market equilibria in real economies is questionable; this
‘long term’ may be too long a wait for the victims of market imperfections, and indeed
may be so long that market conditions themselves change before the equilibrium is
reached. As Keynes said, ‘In the long term, we’re all dead.’

4. Achronal models involve no explicit representation of time. An equilibrium
model is obviously achronal. Other examples include:

Fermat’s Principle: In this formulation of optics, a light ray travelling through an optical
medium always ‘chooses’ the path which minimizes total travel time. From this premise,
you can derive the usual laws of refraction, reflection, etc. Fermat’s Principle seems
‘chronal’ (since it explicitly involves ‘travel time’). However, it describes the light
ray as an entity living ‘outside of time’, which first computes the travel time of all
possible trajectories, and then picks the minimal one. Applying Fermat’s Principle is
more like solving a (timeless) optimization problem, rather than observing an unfolding
evolution. (Of course, once we have the solution, we interpret it as a chronal trajectory.)

Lagrangian mechanics extends Fermat’s principle to classical mechanics. In this formula-
tion, a mechanical system ‘chooses’ the trajectory through statespace which minimizes
an aggregate quantity called the action. Again, the formalism is inherently achronal,
(although the solution describes a chronal process).

General relativity: A relativistic four-manifold possesses only a vague notion of ‘time’.
When we impose a local coordinate system on the manifold, we often identify a certain
coordinate as ‘time’, but this is just a conceptual aid, and has no physical meaning.
There is only a ‘local’ notion of time:

• At every point in spacetime, there is a forward lightcone, which confines the
trajectory of any particle. This enforces a weak form of causality, by preventing
particles from travelling ‘backwards in time’ and colliding with their past selves
or otherwise ‘changing history’.

• Each particle has its own ‘subjective time’: the flow of time you would experience
if you ‘were’ that particle.
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Figure 7.3: The space V of models (A) The constraints of a deterministic theory delimit a
subset V∗ of ‘admissible’ models. (B) If these constraints take the form of equations,
then V∗ will be a smooth variety within of V . (C) The constraints of a probabilistic
theory determine a probability measure on V .

However, there is no global absolute measure of time.

In this model, matter and spacetime interact in an achronal manner. Contrary to
popular belief, matter does not ‘cause’ spacetime to curve, nor does curved space-
time ‘deflect’ the trajectory of matter. Instead, the distribution of matter and energy
throughout spacetime (described by the stress-energy tensor) must be ‘compatible’
with the curvature of spacetime (described by the Einstein tensor). The compatibility
condition is the Einstein field equation. This equation has certain solutions (eg. the
Robertson-Walker model), which we can interpret as an ‘evolution in time’. But it is
often more natural to view a solution as a four-dimensional, ‘timeless’ object.

(iii) Scientific Theories

A scientific theory provides a ‘conceptual vocabulary’ with which we construct models.
This vocabulary usually consists of a collection of prototypical objects (eg. particles and
fields; consumers and firms, etc.), each of which is defined by a (possibly infinite) bundle
of (usually numerical) attributes (eg. mass, energy, vector fields, supply/demand curves).
We define a model by postulating relationships between these prototypical objects —ie. by
arranging them in some configuration. Let V be the space of all possible configurations;
hence, V is the space of models of the theory. Each point in V corresponds to a specific,
concrete model, a sort of ‘virtual universe’.

The theory also imposes constraints on the interactions between objects. The con-
straints are usually equations or ‘laws’, which rule out most configurations (ie. elements
in V) as ‘impossible’. Thus, the constraints define a subset V∗ ⊂ V of ‘admissible models’
(Figure 7.3A). For example:
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• In a numerically quantified theory (eg. particles with quantitative attributes like po-
sition, momentum, energy, etc.), a model is specified by a (possibly infinite) list of
numerical parameters. Thus, we imagine V as an infinite-dimensional space. The
constraints form an (infinite) system of equations relating these parameters (eg. con-
servation laws), and V∗ is the solution set to these equations; thus, V∗ is a smooth
variety (like a curve or a surface) inside V (Figure 7.3B).

If we know the values of some attributes (eg. the momentum of object x), we can use
the constraint equations to solve for other attributes (eg. the momentum of y). This
is an example of scientific inference (see §(iv)).

• In a time-dependent theory (eg. a dynamical system or stochastic process) a point
in V does not represent a single moment, but instead an entire trajectory —that is,
a complete ‘history of events’. Thus, V is the ‘space of all possible histories’. The
constraints impose relationships between earlier events and later ones, so that we can
predict the future (or retrodict the past) through scientific inference.

• In a probabilistic theory (eg. a stochastic process), the constraints manifest as a prob-
ability distribution on V (Figure 7.3C). This distribution dictates, that certain config-
urations are much more likely than others. A deterministic model is the special case
when all models are assigned either probability zero or one.

• Although most models are defined using ‘objects’ and ‘attributes’, this is not necessary.
What’s important is that the theory defines a space V of possible models; the language
of objects and attributes simply provides one ‘coordinate system’ whereby we can
identify points or regions in V .

Finally, the theory provides correspondence rules to relate the models to empirical
phenomena (for example, via ‘operational definitions’). The correspondence rules tell us how
to translate data from real measurements into the theory vocabulary, and how to translate
inferences in the theory back into empirically testable predictions.

Example: (Newtonian mechanics)
The objects of this model are particles and force fields. A particle is described by one

constant (its mass) and 6 variables (three position, three momentum). Thus a ‘particle’ is
an element of R × (R3 × R3), and its trajectory is a function from R into R3 × R3 = R6.
The force field between two particles i and j is a 3-dimensional vector, which changes as a
function of their respective positions and velocities, and also of time; hence, it is a function
fij : R× R6 × R6−→R3.

A model with n particles thus consists of n trajectories in R6 —or equivalently, one
trajectory in R6n —along with n2 force fields fij : R× R6 × R6−→R3.
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Figure 7.4: The process of scientific inference

Let T be the space of all system trajectories5, and let F be the space of all interparticle
force fields6. Thus, a model of n interacting particles consists of an element t ∈ T , and n2

force fields fij ∈ F ; hence if Vn is the space of n-particle models, then Vn = T × Fn×n.

Hence, the space of all models (having any finite number of particles) is V =
∞
⋃

n=1

Vn.

The constraints are Newton’s Three Laws. The Third Law says that any particles i
and j exert equal but opposite forces on one another: fij = −fji. The other two Laws
dictate the particle trajectories; once the force fields and initial positions and velocities of
the particles are specified, their trajectories are uniquely determined for all time. Hence, the
vast majority of trajectories (elements of T ) are impossible; the set of ‘admissible’ trajectories
is small enough that we can use the state of the particles at time zero to infer their state at
later times.

The correspondence rules are pretty physically intuitive (‘A force is a push or a pull’,
etc.). Toy models include: the simple pendulum and the two-body gravitational system.

(iv) Scientific Inference
The process of scientific inference involves four steps, represented in Figure 7.4

1. Begin with initial data from past observations or experiments.

2. Apply the correspondence rules to isolate the set of models in V which fit this data.

5Trajectories are smooth functions from R into R6n, so formally, T = C∞
(

R; R6n
)

.
6A force field is a smooth functions from R× R6 × R6 = R13 into R3, so formally, F = C∞

(

R13; R3
)

.
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Figure 7.5: Given empirical data d (with experimental error ε), we consider the subset
D = {v ∈ V ; d− ε < O(v) < d+ ε} of all possible models consistent with this data.

3. Apply the constraints to determine/estimate the unknown parameters of these models.

4. Apply the correspondence rules to translate these estimates into empirical predictions.

To represent this mathematically, let’s start with an example. Imagine an empirical measure-
ment which produces a single real number as output (say, a temperature). For any possible
model v ∈ V, the interpretation scheme should predict a value for this measurement. In
other words, the interpretation scheme defines a function O : V−→R. If O(v) = d, this
means, ‘If the universe is in the state corresponding to the point v ∈ V, and you perform
this measurement, you will get value d.’

In this way, every possible measurement, test, or observation is identified with a function
O : V−→R, which we will call an observable7. The correspondence rules therefore take
the form of an (infinite) collection of observables (O1,O2,O3, . . .) which correspond to our
repertoire of empirical tests and measurements.

Our initial data is a a set of measurements, which fixes the value of some of these
observables. For example, if we made three measurements, corresponding to observables O1,
O2, and O3, and obtained measurement values d1, d2, and d3, then our initial our initial data
consists of the equations:

O1(v) = d1; O2(v) = d2; and O3(v) = d3.

7For simplicity, we assume the observable yields numerical output —ie. that O(v) is a real number. But
this is hardly necessary, and we could replace R with any other space.
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Figure 7.6: (A) Deterministic constraints restrict D to a subset D∗. (B) Probabilistic
constraints yield a probability measure δ on D.

This data picks out a subset of V –namely, the set D of all models v ∈ V satisfying these
equations. That is,

D =
{

v ∈ V ; O1(v) = d1, O2(v) = d2, and O3(v) = d3

}

In other words, D is the set of all possible models which could have yielded the measurements
(d1, d2, d3). Realistically, however, measurements never yield exact values, but always come
with some error. In other words, our data will have the form:

O1(v) = d1 ± ε1; O2(v) = d2 ± ε2; and O3(v) = d3 ± ε3.

where ε1, ε2, ε3 are worst-case measurement errors. Hence, the correct collection of models is
the set

D =
{

v ∈ V; (d1 − ε1) < O1(v) < (d1 + ε1), (d2 − ε2) < O2(v) < (d2 + ε2),

and (d3 − ε3) < O3(v) < (d3 + ε3)
}

(see Figure 7.5).

Now we apply the constraints.

• In a deterministic theory, the constraints will exclude most elements of D as ‘impossi-
ble’, leaving us with a subset D∗ ⊂ D (see Figure 7.6A). This is the set of models of
the initial data which are compatible with the theory.

• In a probabilistic theory, the constraints will determine a probability distribution δ on
D (see Figure 7.6B). The distribution δ says that some models in D are ‘more likely’
than others.
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Figure 7.7: (A) Apply the observable O to D∗ to get a range P of predicted measurement
outcomes. (B) Apply the observable O to δ to predict a probability distribution ρ over
the possible measurement outcomes.

Now, suppose we wanted to predict the value of some other observable, O.

• In a deterministic theory, let P = O(D) ⊂ R; this is the range of predicted measurement
outcomes (see Figure 7.7A). That is, P is the set of measurement outcomes for O which
are compatible with the initial data. If P is a very small set, this means the data
(d1, d2, d3) yields a good prediction of O. If P is large, then (d1, d2, d3) does little to
predict O.

• In a probabilistic theory, let ρ = O(δ). Then ρ is a probability distribution on R,
assigning a probability to every possible measurement outcomes (see Figure 7.7B). If
ρ is highly concentrated in a small interval, this means that (d1, d2, d3) yields a good
prediction of O.

(v) Description, Explanation, and Prediction

The three most common forms of scientific inference are:

Description: We take a collection of known facts and plug them into the theory. Manipu-
lation of constraints allows us to infer these facts from one another, thus showing that
they are mutually consistent. The chains of scientific inferences connecting the facts to
each other can be translated into a story —a description of how these facts are related.

Explanation: We begin with a ‘mysterious’ or puzzling phenomenon (the explanandum),
and a set of ‘mundane’ known facts (ie. initial data). By plugging the initial data into
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the theory and manipulating constraints, we are able to infer the explanandum. Thus,
we explain it by showing how it is entailed by the known facts.

Prediction: We plug a collection of known facts into the theory. We manipulate con-
straints, and make an inferences about as-yet unobserved phenomena or as-yet untried
experiments. This yields experimentally testable predictions.

Notice that, at the formal level of the theory, all three forms of inference are identical:

• Description is inference between unsurprising and well-known facts.

• Explanation is inference from known ‘mundane’ facts to a known but ‘mysterious’ fact.

• Prediction is inference from known facts to yield a currently unconfirmed assertion.

To corroborate a theory, it is generally felt explaining a mystery is more impressive than
merely redescribing known facts. And making a bold prediction (if empirically confirmed)
is much more convincing than merely providing an explanation (even an explanation of a
mystery). What justifies this ranking?

Why explanation is better than description: Explanation and description are
formally identical exercises; the only difference is our subjective feeling that the explanandum
is ‘mysterious’. Why should a this make for a more impressive verification? The reason is
that a fact is ‘nonmysterious’ if there are already plausible explanations for it (in terms of
other theories). A fact is ‘mysterious’ if it so far has no good explanation. Thus, in describing
known facts, a new theory does not distinguish itself from its rivals. In explaining a mystery,
it demonstrates a clear superiority.

Why prediction is better than explanation: Once it is empirically confirmed,
a prediction is indistinguishable an explanation. The theory agrees with the data in both
cases. The only difference is in the order of events: in an ‘explanation’, the data arrived
before the theory, in a ‘prediction’, the data arrived after. This is just an accident of history;
why should it affect the extent to which the theory is ‘validated’ by the data?

If science were exact, then explanation and prediction really would be identical exercises,
with a mere accident of history distinguishing them. But science is never exact. As we saw
in §(i), approximations, ‘guestimates’, Taylor series truncations, ‘scaling arguments’, and
other white lies are ubiquitous in scientific inference. These are tolerated out of practical
necessity, and are vindicated when they correctly predict unknown phenomena. Explaining
known phenomena using such inexact inference is less impressive; there is a suspicion that,
with judicious approximations and truncations, you can ‘rig’ the calculations to ‘explain’
pretty much anything you want. Predicting the unknown provides an airtight alibi; you
can’t ‘rig’ the calculations to get the right answer, because you don’t know what the right
answer is, until after the prediction is tested.
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(vi) Empirical theory validation

We trust scientific theories which have a long history of good agreement with experiment.
What justifies this? When the empirical data agrees with a theory, in exactly what sense
has the theory been ‘validated’?

Suppose we are studying some system S, which we will imagine is some stochastic process
(special case: dynamical system). Our job as scientists is to develop a good model of this
system. This model will be another stochastic process, which ‘mimics’ the first. A stochastic
process is defined by assigning probabilities to trajectories through statespace, so our job is
to estimate the trajectory probabilities of S.

After observing the behaviour of S for a long time, we begin to notice certain correlations
in its behaviour; a certain state at time 1 is strongly correlated with another state at time
2, certain trajectories are highly improbable, and so on. In other words, we accumulate a
body of empirical probability estimates, based upon our sample of the behaviour of S. If we
are clever, we can subsume these estimates within some plausible model, T .

We then proceed to ‘test’ T , by taking further observations (‘samples’) of S, and checking
the empirically measured probability estimates against the theoretically predicted ones. They
seem to agree. The question now becomes: how much trust should we place in our empirical
probability estimates?

The probability theorists have developed ‘sampling theorems’ which answer this question.
The simplest is the Law of Large Numbers, which basically says: if you flip a coin ten
thousand times, and it comes up heads 5001 times, then it is extremely likely to be a fair
coin. But if it comes up heads 8000 times, then it is extremely likely that it is an unfair
coin, with a 30% bias in favour of heads.

A far-reaching generalization is the Ergodic Theorem, which roughly says:

Let S be an ergodic8 stochastic process, and let s = (s1, s2, s3, . . . , sn) be part
of a trajectory of S. Let E be some event, and empirically estimate the probability
of E by c/n, where c is the number of times the trajectory s passes through E.

If n is large enough, then (with extremely high probability) c/n will be close
to the true probability of E.

Here n is some large number, say, one million. ‘Extremely high probability’ means ‘as close
to probability one as you want’, and ‘close to the true probability’ means ‘with an error as
close to zero as you want’, where, in both cases, you may have to make n very large to get
what you ‘want’.

So, if you wait long enough, it is extremely unlikely that your empirically measured
probability for E will be in error. Keep in mind that E can be any ‘event’, including, for
example, events of the form, ‘The system was in state A at time 0 and in state B at time t’.

8This is a technical assumption.
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Hence, we can use this to estimate correlations in time, and indeed, any statistical property
we want. Hence, we can estimate the ‘true’ trajectory probabilities of S to within any desired
accuracy.

The Ergodic Theorem says that a sufficiently large body of empirical verification for your
model virtually assures its correctness. There are two drawbacks:

• The Ergodic Theorem does not specify just how large n must be. A ‘sufficiently large’
body of verification may take a million years to acquire.

• The Ergodic Theorem says nothing about generalizing from our model of this one
system to get models of other similar systems. In particular, it does not tell us how to
extrapolate form a specific model to a general theory.

(vii) Occam’s Razor; or, What is a good theory?

Suppose two scientific theories are equally compatible with the available empirical data.
What makes one theory better than the other?

Robustness: Measurements are never precise, and calculations inevitably require approxi-
mations. In a good theory, small errors shouldn’t rapidly magnify into large ones.

Computational Simplicity: In simpler models, solutions are easier to compute, and less
likely to be wrong.

Amenability to Analogy: Reasoning by analogy is ubiquitous in science, and a good the-
ory facilitates this, by allowing us to take an unfamiliar system and understand it by
arguing that, in the important respects, it is ‘isomorphic’ with a familiar one.

These three considerations entail the following desiderata:

Minimal number of relevant variables: This clearly facilitates Computational Simplic-
ity, because less variables means less computation. It also increases Robustness, because
there are less opportunities for measurement error to corrupt the results.

Most importantly, it makes the theory Amenable to Analogy. The fewer the relevant
variables, the more likely it is that two very different systems will be isomorphic. For
example, Newtonian gravitation is powerful because, to model the behaviour of an
object in a gravitational field, the only relevant variable is its mass. Thus, a stone and
a potato of identical mass will exhibit identical behaviour, so we can reason by analogy
from one to the other.
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Decorrelation with distance: It is useful to know an event occurring far away or long
ago will not influence the phenomenon you are studying. This radically reduces the
number of relevant variables, because it means we can ignore most of the universe.
Thus, for example, gravitational and electric fields obey inverse square laws, which
means the influence of far away masses or charges is negligible.

Invariance and covariance: A theory is invariant if changing certain variables doesn’t af-
fect the application of the theory. This helps minimize the number of relevant variables.
For example:

• An essential property of all scientific theories is translation invariance, which just
means, ‘The same scientific laws hold everywhere in space and time.’

• Classical mechanics also features Galilean invariance, which says, ‘The laws of
classical mechanics are the same, regardless of your velocity.’

• Special relativity in addition assumes Lorenz invariance, which says, ‘The laws of
electrodynamics (and in particular, the speed of light) are the same regardless of
your velocity.’

A theory is covariant if changing a certain variable changes the application of the
theory in a simple and predictable way. This makes the theory Amenable to Analogy.
A good example is scaling. It is possible to apply the same equations to a rock falling
to earth and an asteroid hurtling through space, despite the fact that they differ wildly
in mass, velocity, and ambient gravitational field. The reason is because the equations
of classical mechanics scale in very simple ways with changing mass, velocity, etc.

Differentiability and Continuity A good theory lends itself to approximation. This is
clearly necessary for Robustness, and often crucial for Computational Simplicity, since it
lets us get away with minor mathematical sleight-of-hand. It is also enhances Amenabil-
ity to Analogy, because we can construct a useful analogy between two systems even
when they aren’t exactly the same. For example, a stone falling to Earth is not the same
as an asteroid travelling through space, because the stone is subject to air resistance.
However, this is a small error, which we can neglect for most purposes.

To approximate, we need functions which are continuous and hopefully differentiable.
Continuity means that a small input error produces a small output error. Differentia-
bility —a stronger condition —allows us to extrapolate observed trends.

For example, suppose a rocket is at position x, and is travelling at velocity v. It is
firing its engines, so it has acceleration a. However, it is cutting back the thrust to
these engines at rate r. In this case, we can extrapolate the position of the rocket at
some time t in the near future as

x + v · t +
a

2
t2 − r

6
t3 + ε
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where ε is an error which we can guarantee is small, as long as t is small. This Taylor
polynomial9 extrapolation implicitly exploits differentiability.

In summary, a scientist building a theory has strong incentive to minimize the number
of relevant variables and long-distance correlations, while maximizing the invariance, co-
variance, continuity, and differentiability of the theory. If we identify these properties with
‘simplicity’, then we can say that she has good reason to seek the simplest theory possible.
This is perhaps a good formulation of Occam’s Razor.

8 The Games People Play

In this chapter, I’ll develop a model of social, political, and economic interactions as
a ‘game’ between two or more players, and use this framework to investigate the nature
of power, freedom, and political stability. The most important ‘moves’ in a social game
are often ‘communicative’ —ie. attempts to manipulate other people’s beliefs. Thus, the
semiotics of communication is deeply implicated in game strategy, as is demonstrated by the
role of advertising in the ‘game’ of economics, and the role of diplomatic posturing in the
‘game’ of international relations.

(i) Social Games

Let W be the set of all possible worldstates. Thus, the space of all possible futures is the
space of all infinite sequences the form w = (w1, w2, w3, . . .), where w1, w2 . . . are all elements
of W. The sequence x describes a future where the world is in state w1 tomorrow, state w2

the day after, and so on. The space of all such w is denoted WN.

Utility: Let’s consider a particular player, called Xander. Xander has a utility func-
tion, which assigns to every possible future in WN a numerical value, indicating its relative
level of “happiness” for him. In other words, we have a function:

U :WN−→R

Thus, if w,v ∈ WN and U(w) > U(v), this means that Xander prefers the future w to
the future v (since it would make him happier). Thus, U encodes all of Xander’s desires
and values, including the relative importance of short-term vs. long-term happiness for him

9See footnote 1 on page 57 of §(i).
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(what economists call his discount rate). Different people have different utility functions,
since they have different values and desires.

We will assume that Xander always attempts to maximise U . This does not mean that
Xander is ‘selfish’. For example, if Xander loves Ysolde, then her future happiness will be
one of the variables determining the value of U . If Ysolde is happy in the future w, but sad
in the future v, then U(w) will be much larger than U(v). Xander will try hard to make
Ysolde happy.

We will also assume that utility is cardinal. This means that, if U(w) = 2 · U(v), then
w has ‘twice’ the utility of v. This may seem meaningless: after all, what exactly does
‘twice as happy’ mean? To understand the meaning of cardinal utility, imagine a gambling
scenario. You can choose one of two lottery tickets, (A) and (B):

(A) offers you an all-expenses-paid, 14-day trip to Argentina, with a 1% chance of winning.

(B) offers an all-expenses-paid, 14-day trip to Brazil.

Which ticket do you want? If the ticket (B) offers a 99% chance of winning, you would
probably take (B). But if (B) offered a 0.0001% chance of winning, you’d take ticket (A).
Somewhere in the middle is a probability where the two tickets are equally desirable to you.
Let’s suppose that, when ticket (B) is at 3%, you’d choose it, but if it was 2.9%, you’d go
for (A). This means that a 1% chance of the Argentina trip is worth about the same to you
as a 3% chance of the Brazil trip. Hence, the Argentina trip has three times as much value
to you.

I am assuming that your decisions are ‘rational’. For example, if a 3% Brazil ticket
equals a 1% Argentina ticket, then a 6% Argentina ticket should equal a 2% Argentina ticket.
Likewise, if a 1% Brazil ticket equals a 5% chance of a trip to Chile, then, ‘rationally’, a 1%
Argentina ticket should equal a 15% Chile ticket. If your wagers are rational in this fashion, it
follows that you are valuing the trips with a cardinal utility function (albeit unconsciously).

The relevance is this: in real social games, outcomes are never certain; all decisions are
wagers. A ‘perfectly rational’ Xander will makes his decisions by trading off the utilities of
the various outcomes against their relative probabilities. Of course, none of us are perfectly
rational in this sense, but I’ll use this approximation here in order to build a mathematical
model. In the ‘ticket’ example, the probabilities were given to you; in real life, you have
to estimate them. You estimate probabilities by means of a vast (and mostly unconscious)
body of knowledge and intuition about which events are likely and which are not and how
they are correlated —in short, by means of your ‘worldview’.

Worldviews: Xander also has a worldview, ξ, which reflects his beliefs about what
sorts of events are likely or unlikely, what sorts of correlations one can expect between events,
how other people are likely to behave, and so on. In the language of Chapter 7§(ii), ξ is a sort
of personal scientific model of the universe. We will treat this model as a stochastic process
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(page 63). In other words, ξ assigns a probability to every possible history —every trajec-
tory of the universe through its statespace W. Such a trajectory has a future (a sequence
(w1, w2, w3, . . .) in WN), a present (a single element w0 ∈ W), and also a past (a sequence
(. . . , w−3, w−2, w−1); we will assume the past is infinite, for simplicity). Together, the past,
present, and future form a bi-infinite sequence (. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .). The
space of such sequences is calledWZ, and ξ is a probability distribution onWZ, which assigns
a probability to every possible sequence of events. Thus, ξ implicitly encodes any logical
relationships or statistical regularities in which Xander believes (often unconsciously).

Xander might be deluded. The real logical relationships and statistical regularities of the
universe (ie. the ‘Laws of Nature’) are given by another probability measure, ρ. Xander
clearly believes and hopes that ρ is close to ξ; his ‘delusions’ are just the disparities between
ρ and ξ.

Obviously, real people do not make decisions by consciously assigning probabilities to
various scenarios (“There is a 0.734 probability that buying this car will make me 20%
happier”). Even when we do estimate likelihoods, we don’t employ some conscious, logically
consistent theory, but instead resort to intuition (or prejudice). Thus, I’m not saying that ξ
is a consciously articulated, ‘scientific’ model in Xander’s mind. Instead, I’m saying we can
model Xander’s decisions as if they were the result of some worldview ξ, which arises from
largely unconscious, often ‘irrational’ mental processes. Thus, ξ implicitly encodes the full
human complexity of Xander’s psychology.

Information: Xander has some information about the present (his sensations) and
some information about the past (his memories). This information determines a subset
I ⊂ WZ; the set of all sequences (. . . , w−2, w−1, w0, w1, w2, . . .) consistent with Xander’s
memories and sensations. Note: I is not a ‘set of facts’ —rather, it is the ‘set of possible
worlds’ that are consistent with Xander’s facts. Thus, the smaller I is (ie. the more restricted
the set of possible worlds), the more Xander (thinks he) knows about the state of the word.

From I and ξ, Xander can tentatively predict the future. He estimates the probability
of future events by applying the distribution ξ, conditioned on I. For example, if E ⊂ WZ

is some event, then Xander’s estimates the likelihood of E as the conditional probability
ξ [E 〈〈 I]. If ξ [E 〈〈 I] = 0, then Xander ‘deduces’ from the information I, that E is
impossible. If ξ [E 〈〈 I] = 1, then he ‘deduces’ from I that E is a certainty.

An important prediction for Xander is his expected utility level:

Eξ [U 〈〈 I]

This is the average utility Xander can expect to obtain in all possible futures consistent with
I, with probabilities given by ξ. For example, suppose there were only two possible futures
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in WN that were consistent with I —call them v and w. Suppose that:

ξ[v 〈〈 I] = 0.7; U(v) = 5
ξ[w 〈〈 I] = 0.3; and U(w) = 10.

Then Xander’s expected utility is:

Eξ [U 〈〈 I] = ξ[v 〈〈 I] · U(v) + ξ[w 〈〈 I] · U(w) = (0.7) · 5 + (0.3) · 10

= 3.5 + 3.0 = 6.5.

More generally, suppose there were N possible futures, say w1,w2, . . . ,wN , having condi-
tional probabilities

ξ[w1 〈〈 I] = p1; ξ[w2 〈〈 I] = p2; . . . ξ[wN 〈〈 I] = p2.

and utilities

U(w1) = u1; U(w2) = u2; . . . U(wN) = uN

Then Xander’s expected utility is:

Eξ [U 〈〈 I] = p1 · u1 + p2 · u2 + . . . + pN · uN .

(A similar formula holds for an infinity of possible futures, but involves some technicalities
which we will forego).

Xander may also speculate on possible scenarios; for example, he may hypothesise some
state of current/future affairs, represented by a subset H ∈ WZ; and then consider the
expected utility

Eµ [U 〈〈 I ∩ H]

This is Xander’s expected utility consistent with the information I and the hypothesis H. If
Eµ [U 〈〈 I ∩ H] > Eµ [U 〈〈 I], this means that the hypothetical state of affairs represented
by H is desirable to Xander. Conversely, if Eµ [U 〈〈 I ∩ H] < Eµ [U 〈〈 I], this means H
is undesirable to him.

Action: Xander also has a repertoire of actions. He can perform one action during
each moment of the game, and it will modify the current game state. To be precise, there is
a partition of W into a collection of subsets X1,X2, . . . ,XN such that:

(i) These sets are disjoint: for any i and j which are not equal, Xi ∩ Xj = ∅.

(ii) These sets together cover W; that is, W =
N
⋃

n=1

Xn.
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Figure 8.1: (A) Xander’s actions partition W into X1,X2, . . . ,X6. (B) Ysolde’s actions
partition W into Y1,Y2, . . . ,Y6. (C) If Xander chooses X5, and Ysolde chooses Y2, then
w0 ∈ X5 ∩ Y2.

In other words, the family X1,X2, . . . ,XN represents a collection of alternatives which are
(i) mutually exclusive and (ii) exhaustive (see Figure 8.1A).

Xander’s action during any round is to choose one of the sets X1, . . . ,XN ; this forces the
current world-state to be a member of that subset.

The actions of each player partition the space in a different way. For example, suppose
that Ysolde’s actions determine a partition Y1, . . . ,YM (Figure 8.1B). If Xander chooses
action X5, and Ysolde chooses Y2, then we know that w0 ∈ X5 ∩ Y2 (see Figure 8.1C).
If, in addition, Zarathustra has partition Z1, . . . ,ZL, and Zarathustra chooses Z7, then
w0 ∈ X5 ∩ Y2 ∩ Z7. The actions of other players will further constrain w0.

Some remarks:

• I have assumed that Xander has a finite repertoire of actions (ie. that the partition
X1, . . . ,XN is finite) for simplicity of illustration. In principle, Xander’s partition
could be infinite or even uncountable1. Even if finite, we can assume the repertoire is
extremely large.

• The intersection X5 ∩ Y2 is always nonempty. If it were empty, this would mean that
Xander action X5 somehow ‘preempts’ Ysolde’s ability to choose Y2, which makes no
sense, since they act simultaneously. Similarly X5 ∩ Y2 ∩ Z7 is nonempty, etc.

For example, in a model of economic behaviour, Xander’s repertoire might include the fol-
lowing actions:

• Production (eg. making a shoe).

1In this case, rather than a partition, we would use a sigma-algebra —see Appendix D
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• Research (eg. looking for a good strudel).

• Communication (eg. advertising the shoe to Ysolde)

• Exchange (eg. exchanging shoe for money, exchanging money for strudel)

• Consumption (eg. eating the strudel)

We assume that Xander is rational, meaning that he will always choose the sequence of
future actions (ie. the strategy) which yield the greatest expected utility according to his
worldview ξ, utility function U , and current information I.

Communication: Communication is any action whose purpose is to change the
information state of other players. For example, if Ysolde chooses action Y1, then Xander’s
information-state goes from I to I ∩ Y1. He has just learned something new (namely, that
Ysolde chose Y1).

The significance of action Y1 to Xander is how it affects his conditional probability esti-
mates. For example, if E is some event, and ξ [E 〈〈 Y1 ∩ I] is much smaller than ξ [E 〈〈 I],
then, through action Y1, Ysolde has ‘informed’ Xander that E is much less likely than he
previously thought it was.

Most of Ysolde’s actions carry little ‘information’, and will not strongly affect Xander’s
conditional probability estimates. Those that do can be divided into several (vague and
overlapping) classes:

• Explicit communication: Ysolde speaks directly to Xander, and the meaning she in-
tends, the literal meaning of her words, and the meaning Xander perceives all coincide.
This is the simplest form of communication, and the most often studied in the philos-
ophy of language.

• Deception: Ysolde speaks falsely, but intends that Xander should believe her (ie. that
his perceived meaning should be the literal meaning of her words.)

• Miscommunication: Xander’s perceived meaning differs from Ysolde’s intended mean-
ing.

• Coded communication: Ysolde speaks to Xander, and her intended meaning coincides
with his perceived meaning, but differs from the literal meaning.

For example, the spies in cloak-and-dagger stories often employ various code phrases
(“The dog barks at midnight.” = “We act tonight.”, etc.)

• Metacommunication: Ysolde speaks to Xander, and her words carry an explicit mean-
ing, but also imply an additional ‘coded’ meaning.
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For example, when a reference letter excessively praises a job candidate’s punctuality
and sartorial sensibilities, but conspicuously fails to discuss his intellectual abilities
or work habits, it metacommunicates a poor opinion him, while explicitly seeming to
praise him.

• Nonverbal communication: Ysolde performs an action involving no overt verbal com-
munication, but fraught with communicative significance nonetheless.

In social settings, the crucial example is eye contact. By meeting someone’s eyes, you
implicitly communicate that you are aware of them, and aware that they are aware of
you, and aware that they are aware that you are aware of them, etc. Eye contact opens
a ‘channel’ over which to transmit other nonverbal signals. It tells the recipient, ‘I know
you are watching, and thus, my gestures are not random —they are are intended to be
seen and interpreted.’

For example, at a cocktail party, Xander catches Ysolde’s glance. If either looks away
immediately, this says the eye contact was accidental, with no communicative intent.
But each holds eye contact, and a channel is established. With an inquiring arch
of his eyebrows, Xander (nonverbally) communicates a romantic interest. Ysolde’s
expression (nonverbally) acknowledges her awareness of his interest. Without breaking
eye contact, she raises her glass and drinks, clearly displaying the wedding ring on her
hand, and (nonverbally) communicating her disinterest in him.

• Inadvertent Revelation: Ysolde’s actions unintentionally reveal information to Xander
(for example, she blushes or stammers when certain topics arise in conversation).

• Dissimulation: This is like Deception, but rather than speaking a sentence whose
literal meaning is false, Ysolde instead acts in a way which she intends Xander to
perceive as an Inadvertent Revelation. A lot of emotionally manipulative behaviour in
dysfunctional human relationships is of this kind.

Social, political, and diplomatic communication is complicated because the participants
(legitimately) assume that almost all explicit communication is deceptive, and that the real
communication is coded or nonverbal. For example, consider the following description of the
1911 ‘Moroccan crisis’:

When a rebellion against the sultan... resulted in a French expedition to occupy
Fez,... the German government protested. ...A German warship was sent to the
Moroccan port of Agadir, ostensibly to protect German nationals there (there were
none). The real aim was to show that Germany meant business and to frighten
France into agreeing to compensation for her.

...A government in Paris which had recently been disposed to be conciliatory
now found it very difficult... to make concessions to Germany....; it could not
allow itself to appear to be weak in defending French interests.
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....It was felt by London that a gesture was needed to show British concern.
A speech was made by a minister, which, whatever it was intended to mean, was
taken as a warning that if France found herself at war with Germany, Great
Britain would support her. [33, pp.201-202]

Here, the Germans interpret the French occupation of Fez as inadvertently revealing French
intentions to encroach upon Morocco. The German protestations explicitly communicate that
they will not tolerate such encroachment. To make sure that their protest is not misinter-
preted as a bluff (ie. deception), the Germans send a warship is to nonverbally communicate
that they are serious. Ironically, the German actions actually increase French intransigence;
the French feel they cannot ‘climb down’, lest this be interpreted as inadvertently revealing
vulnerability. The British minister’s speech is then interpreted by Germany as metacommu-
nicating British support for the French.

In social, political, and diplomatic ‘games’, we must treat the players’ actions as signs.
The interpretation of these signs is semiotics. Thus, semiotics is deeply implicated in political
and social issues. I’ll return to this in §(iii).

(ii) Power and Reciprocity

Power is the central concept of political philosophy. But what exactly is Power? Where
does it come from? How is it acquired, and how is it maintained? ‘Power comes from the
barrel of a gun,’ said Mao. But this can’t be its only source. Is the economic power of the
wealthy really just a disguised threat of violence? If Power always comes from the threat of
violence, then why don’t all governments devolve into military dictatorships?

I argue that power is a consequence of reciprocity in player interactions. For example,
Ysolde interacts with Xander mainly through bargaining, which means influencing his be-
haviour by manipulating his incentives. Xander’s incentives are determined by his expected
future utility. In this analysis, Ysolde’s power is her (perceived) ability to affect Xander’s
future utility.

Incentive: Xander has incentive to choose action X1 when he decides that expected
utility, if he chooses X1, is greater than his expected utility for any other action. Formally:

Eξ [U 〈〈 X1 ∩ I] ≥ Eξ [U 〈〈 Xk ∩ I] , for all k 6= 1 (8.1)

We assume that Xander is a ‘rational maximiser’, and chooses the action which maximises
his expected utility. Note that this is a very weak notion of ‘rationality’: the inequality in
(8.1) depends on Xander’s worldview ξ and on his information I. If he has a highly demented
worldview, or is wildly misinformed, then his choice may be neither rational nor maximal,
according to our estimation.
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The value Umax = Eξ [U 〈〈 X1 ∩ I] is Xander’s maximal expected utility under any course
of action; we will call this his prospect. Note that Xander’s prospect is determined by his
current information I. In other words:

Umax[I] = max
k

Eξ [U 〈〈 Xk ∩ I]

Power: Ysolde may be able to affect Xander’s prospect. If Ysolde takes action Y+,
perhaps she can improve Xander’s prospect:

Umax[I ∩ Y+] > Umax[I]

This is benevolent power. Conversely, if she takes action Y−, perhaps she can diminish
Xander’s prospects:

Umax[I ∩ Y−] < Umax[I]

This is malevolent power.

Bargaining and Influence: By offering benevolent power, and/or threatening with
malevolent power, Ysolde can influence Xander, by creating incentive for him to act in
certain ways. For example, suppose she wants him to choose action X∗. If Eξ [U 〈〈 X∗ ∩ I] =
Umax[I], then X∗ is already an optimal choice for Xander, so she need not intervene. However,
suppose that

Eξ [U 〈〈 X∗ ∩ Y+ ∩ I] > Umax[I] (8.2)

Hence, Ysolde can offer action Y+ in exchange for Xander choosing X∗, and it is clearly
preferable for him to comply. In economic terminology, Ysolde’s benevolent power is her
buying power. The exercise of this power is either a purchase or a bribe (depending on
context).

Conversely, suppose that

Eξ [U 〈〈 X∗ ∩ I] > Eξ [U 〈〈 Y− ∩ I] (8.3)

Then Ysolde can threaten action Y− unless Xander chooses X∗; again, it is clearly preferable
for him to comply. Malevolent power usually manifests as military strength; its exercise is
usually called extortion.

(iii) The Semiotics of Action
Note that the inequalities (8.2) and (8.3) both involve Xander’s worldview ξ and current

information I. Hence, Ysolde’s influence over Xander is determined by his worldview and
information —ie. his beliefs. For her bargaining to succeed, it is not important whether
Ysolde can (or will) actually improve/diminish Xander’s utility; what is important is that
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he believes she can (and will). Ysolde’s key strategy is to manipulate Xander’s information
state I (through ‘communication’) to create the image of power, and to maintain a credible
reputation. To do this, she must have some model of Xander’s mental processes —ie. some
kind of psychology.

Public Image It is more important to create a credible illusion of power than it is to
actually have it. Let’s look at some examples of how this is done.

Diplomacy and Disinformation: States dissimulate through military ‘feints’ and deceive
with disinformation. Almost all diplomatic speech is coded or deceptive, and every
policy decision has implicit (nonverbal) communicative intent. Information is crucial;
hence the importance of espionage and counterespionage.

The ‘Morocco crisis’ example (page 83) already showed the role of semiotics in diplo-
matic communication. Another episode from the same era illustrates the crucial im-
portance of credibility in diplomacy.

...there at last appeared to have been a slight improvement in Anglo-
German relations as the two powers worked together in the London Con-
ference.... [and] negotiated secretly over a proposed railway from Berlin to
Baghdad and the possible fate of [the Portuguese Empire]. ....Taking the re-
sponsiveness of the British on these matters to mean they lacked confidence,
[Germany] hopefully speculated that Great Britain might not, after all, be
serious about backing France, should Germany attack her. [33, p.205]

Thus, British support for France (though genuine) lacked credibility from a German
perspective. This (mistaken) assessment later made the Germans more willing to
pursue the disastrous Schlieffen Plan2, thereby igniting the First World War. Perhaps,
had the British threat been more credible, Germany would have been less willing to
support Austria-Hungary in the Balkan brinkmanship which lead to hostilities with
Russia, and the war might have been forestalled.

Advertising: In a free markets, firms gain economic influence by manipulating consumers’
beliefs about the benevolent power of their products or services. Everyone agrees that
deliberately deceptive advertising should be illegal. However, even advertising which
is not literally false can still mislead or manipulate.

The ‘neoconservative’ view is that, if advertising makes no false assertions, then it is at
worst ‘informationally neutral’, and cannot be pernicious. However, this view reflects

2In the Schlieffen Plan, the Germans (having declared war on Russia) invaded Belgium in order to
preemptively attack France (Russia’s ally), so as to ‘prevent’ a two-front war. Britain declared war on
Germany (ironically, in defense of Belgian, not French, territorial integrity) and thus, the war began.
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When the advertisement shows It wants to associate the product with
Happy children playing, mother relaxing Good parenting
Yee-haw adventuring in the rugged outback Freedom, individualism, self-reliance
Ostentatious luxury Wealth, status, ‘success’
Nubile, scantily clad beautiful people Sex
Tranquil sunset on a beach Contentment, personal fulfillment

Table 8.1: Advertising translation table

a facile, overly literal notion of communication. As we’ve seen, much communication
(and in some contexts, most communication) is implicit, not explicit. Deception is a
crude and primitive kind of dishonesty. Dissimulation is much more effective and has
the advantage of plausible deniability (no one can prove you intended to dissimulate).

Advertisers rarely try to manipulate you through literally false assertions. Instead, ef-
fective advertising manipulates your information-state in subtle and unconscious ways,
to change your assessment of conditional probabilities, and thus, your incentives and
decisions. We often say that ads try to associate a product with some (often totally
unrelated) emotion or goal (Table 8.1). What this means is that the advertiser is trying
to boost your (unconscious) estimate of the correlation between (buying) the product
and (obtaining) the goal.

Indeed, Klein claims that, in media-saturated, post-industrial societies, marketing is
less about selling physical products, and more about selling intangible brands:

What was changing [in the 1990s] was the idea of what... was being sold.
The old paradigm had it that all marketing was selling a product. In the new
model, however, the product always takes a back seat to the real product, the
brand....

...[A] new consensus was born: the products that will flourish in the future
will be the ones presented not as “commodities” but as concepts: the brand
as experience, as lifestyle.

Ever since, a select group of corporations has been attempting to free itself
from the corporeal world of commodities, manufacturing, and products....
Anyone can manufacture a product... Such menial tasks, therefore, can and
should be farmed out to contractors and subcontractors ....(ideally in the
Third World, where labour is dirt cheap, laws are lax and tax breaks come by
the bushel). Headquarters, meanwhile, is free to focus on the real business
at hand —creating a corporate mythology powerful enough to infuse meaning
into these raw objects just by signing its name. [22, pp.21-22]

This analysis is fascinating, because a brand is an entirely cultural construct. A brand
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is nothing more than a widely shared belief that a certain name or logo is strongly
correlated with certain positive values, emotions, or experience. The job of advertising
is to disseminate and cultivate this belief —to create a ‘corporate mythology’ which
becomes an enduring feature of the collective cultural landscape.

The power of the brand has nothing to do with the concrete qualities of a particular
product. Indeed, advertisers prefer not to cultivate psychological associations between
the brand and concrete qualities, but instead, to cultivate associations with abstract
intangibles like ‘love’, ‘freedom’, or ‘rebellion’. The more abstract and intangible these
positive associations become, the less vulnerable they are to rational scrutiny and
deconstruction.

For example, it is suboptimal to cultivate a belief that ‘Coke tastes good’ or ‘Chryslers
are reliable’. These are concrete, specific statements which can be empirically tested
and disproved (either you like the taste of Coke or you don’t; either your Chrysler
breaks down or it doesn’t). It is much more effective to cultivate an association that
‘Coke is passion’ or ‘Chrysler is freedom’. These associations (I won’t call them ‘beliefs’
since they make no literal sense) connect the brand with intangible qualities, and are
unfalsifiable (because they are, in fact, nonsensical).

Nevertheless, they profoundly affect people’s buying decisions. In 1989, global cor-
porate spending on advertising exceeded $240 billion ([32, pp.171-172], cited in [23,
p.155]); in the same year, United States companies alone spent $125 billion [22, p.11].
By 1997, the United States spent $185 billion/annum on advertising [22, p.11]. If real
corporations even vaguely resemble the profit-maximizers of microeconomic textbook
fiction, this indicates that advertising is overwhelmingly important to sales. In other
words, the manipulation of people’s beliefs and expectations (primarily at an irrational
level) has enormous influence on their purchasing habits.

In the mathematical framework of classical economics, advertising has no effect on
economic behaviour. The ‘rational maximiser’ of the classical framework is a priori
unsusceptible to psychological manipulation, because she has no ‘psychology’ to ma-
nipulate. However, the ‘Social Game’ framework of this chapter provides a model of
a ‘rational maximiser’ who is susceptible to advertising3. Advertising changes her in-
formation state I, thereby altering her estimation of her expected utility under various
strategies (according to her worldview ξ), and potentially changing her optimal strat-
egy (so that, for example, it includes buying a Coke). For advertising to be effective, it
must take advantage of preexisting irrationality within ξ. But ξ is a model of human
psychology, which contains irrationality aplenty.

3The flipside is that classical economic models are simple enough to be explicitly formulated and even
solved, whereas the Social Game model is far to complex for practical purposes.
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When the propaganda shows It wants to associate the party with
Conspicuously ethnic people Racial tolerance and diversity
Grandparents playing with babies Tradition, conservatism, ‘family values’
Pastoral landscapes Commitment to the environment
Lab-coated workers in a clean, Economic prosperity, ‘good jobs at good wages’
high-tech workplace
Big guys working in heavy industry ‘Labour’ values: respect for the hardworking man
Soft-focus shots of babies and Pro-life policies
happy, pregnant women

Table 8.2: Political propaganda translation table

Propaganda: Politicians gain political influence by manipulating voters’ beliefs about the
benefits of a party or policy. As with corporate advertising, overt deception is rare, but
dissimulation is ubiquitous. Political speech is often coded (eg. talk of ‘immigration
reform’ is often a coded appeal to racist sentiments) or nonverbal (eg. projecting an
‘image’ of competence, integrity, and ‘leadership’). Some examples of implicit commu-
nication appear in Table 8.2.

Poseurs: We all cultivate a personal image. Our clothing, possessions, and physical posture
are all forms of nonverbal communication: actions which are intended to manipulate
other’s beliefs about us —ie. to manipulate their information state. Even speech
often communicates implicitly as well as explicitly: if Felipe conspicuously displays his
erudition about Derrida and Foucault at a party, we conclude he is educated (but we
also suspect that he wants to appear educated).

It is a good strategy to nonverbally communicate certain aspects of one’s ‘identity’. For
example, clothing communicates a lot about our class (labour, professional, academic,
business, etc.), values (materialism vs. spiritualism, conservatism vs. liberalism, tradi-
tionalism vs. futurism, etc.) and personality (conformity vs. individualism, playfulness
vs. sobriety, etc.). Our wardrobe thus attracts other people with similar values: po-
tential collaborators, friends, or lovers. Other aspects of our identity we conceal: we
don’t to reveal anxiety or insecurity, or declare our ideology in a hostile context.

Hence, image-management is a basic (perhaps the basic) social behaviour. However,
we reserve a special contempt for people who take it too far, whose speech and dress
is nothing but image-management, because we resent their (too obvious) attempt to
manipulate our beliefs

Reputation and ‘Face’ In many a situations, both players must simultaneously com-
mit to a strategy, and neither can act in response to the other. Suppose we have a Prisoner’s
Dilemma situation, as illustrated by the payoff matrices in Table 8.3. Here, each player
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Xander’s Expected Utility
Ysolde

Cooperates
Ysolde
Defects

Xander
Cooperates +9 −1

Xander
Defects +10 0

Ysolde’s Expected Utility
Ysolde

Cooperates
Ysolde
Defects

Xander
Cooperates +9 +10

Xander
Defects −1 0

Table 8.3: Expected utilities for Xander and Ysolde in the Prisoner’s Dilemma

receives a small advantage for Defecting, regardless of the other player’s behaviour. Thus,
it is in the interest of each player to Defect, and hope that the other does not. Hence,
‘rationally’, both players Defect, even though both could do better if they Cooperate.

The mutual Cooperate solution can only be achieved if both players have full information
about the other’s actions. However, whenever there is ambiguity about the other player’s
actions, the result will be mutual Defection. This explains a lot of real life situations, such as
the ‘Tragedy of the Commons’4. For similar reasons, free markets need a judiciary to enforce
contracts, since the parties may otherwise breach the contract in Prisoner’s Dilemma type
situations.

The Prisoner’s Dilemma is somewhat obviated if we include the importance of reputations.
A player’s reputation determines his credibility in future bargaining sessions, and thus,
determines his influence over other players. To be concrete, suppose Ysolde is extremely
powerful, but also known to be completely untrustworthy. Remember that Ysolde’s influence
over Xander is her ability to create a difference in his expected utility Eξ [U ]. But if
Ysolde has no credibility with Xander then, according to ξ, there is no strong probabilistic
correlation between his actions and her reactions. It seems equally likely to Xander that
Ysolde will Cooperate or Defect, regardless of what he does. Thus, he has no real incentive
to cooperate .

Thus, if Ysolde betrays a lot of people, and these betrayals become widely known, then
her bargaining ability will be greatly diminished. Since all influence is exercised through
bargaining, she will lose much of her influence.

Some real-life examples:

• In small communities, the ‘Tragedy of the Commons’ is less likely, because everyone is
aware of your activities, and you face a strong risk of social sanction if your abuse the
collective resource.

• International treaties have no judiciary to enforce them, but signatory nations have

4This is an economic scenario where people degrade a collectively owned resource because, even though
it is in their collective long-term interest to preserve the resource, it is in their individual short-term interest
to despoil it.
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a vested interest in not capriciously abrogating treaty commitments: abrogation will
cost them credibility in future negotiations.

• In a free market, firms have reputations, and the desire to maintain this reputation
motivates them to behave responsibly, and provide consistent quality in their products.

• Axelrod [3] and Danielson [9] have run computer simulations where thousands of vir-
tual agents compete in ‘Iterated Prisoner’s Dilemma’ games. Agents repeatedly play
one another, and the outcome of previous encounters can influence future strategy.
For example, if agent X defected against agent Y in rounds 87 and 88, then this
information may cause Y to defect against X in round 89.

Unsurprisingly, totally unscrupulous agents (who always Defect) did well at the be-
ginning, but badly in the long run, because, metaphorically speaking, they acquired
a ‘bad reputation’, which hurt them in future encounters. On the other hand, more
‘ethical’ agents did better in the long run, where they could benefit by establishing
‘good reputations’ with one another.

In diplomatic or political situations, players are often forced to make clearly suboptimal
decisions, because of the long-term consequences to their reputation. For example:

• In games of military ‘brinkmanship’, both sides find it difficult to ‘climb down’, even
when it becomes clear that the costs of the imminent confrontation far exceed any
possible gain. The reason is that a withdrawal will be seen as a sign of weakness,
decreasing the credibility of future threats.

• Governments refuse to negotiate with terrorists, even when the terrorists’ demands (say,
amnesty for six political prisoners) are trivial compared to their threatened retaliation
(executing one hundred hostages). The reason is that any negotiation will send the
message that terrorism is an effective tool to extract concessions, thereby increasing
the likelihood of future terror acts.

(iv) Psychology

To manipulate Xander, Ysolde must first have a model of his current information-state.
Conversely, when Xander trusts Ysolde because of her ‘reputation’, he is implicitly using a
model of Ysolde to forecast her future behaviour. When Xander forms a long-term strategy
(‘First I’ll get an education, then I’ll get a job, then I’ll get a house’, etc.), he is using a
self-model to forecast his own behaviour. Thus, a complete account of social games must
describe Xander’s psychological models of himself and other players.

Xander has several ways to model Ysolde, none of which is completely satisfactory.
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Behaviorism: Xander can model Ysolde as nothing but an ensemble of (probabilistic) re-
sponses to various inputs. In other words, his model consists of a stochastic function
ΦY ; given any input i, he predicts Ysolde’s response as a random action with proba-
bility distribution ΦY (i).

The problem is that this model doesn’t allow Xander to explicitly represent Ysolde’s
model of him, which he needs in order to reason about issues of ‘reputation’ and ‘face’.
For Xander to reason, ‘I should not defect against Ysolde today, or else she may
defect against me tomorrow.’, his model of Ysolde must be sophisticated enough to
represent her knowledge of him and his past behaviour.

Of course, we could explicitly build this information into the function ΦY , for example:

ΦY (I defect today) = 99% chance that Ysolde defects tomorrow.

But this rather artificial solution becomes unwieldy when we model the enormously
complex reputational reasoning of real social or diplomatic situations.

Infinite Regress: The Social Game model describes Ysolde with three pieces of data: her
utility function UY , her worldview Υ, and her information-state IY . Thus, one näıve
approach is to endow Xander with a ‘simulacrum’ of Ysolde: a triple (U ′Y ,Υ

′, I ′Y ) where
U ′Y is his estimate of UY , etc.

The problem is that this begets an infinite regress of self-reference. Xander’s model of
Ysolde must include a model of her model of him. But then her model should include
a model of his model of her model of him, and so on. While amusing, this is not
strategically useful.

Perfect Empathy: To avoid infinite regress, we can assume that U ′Y = UY , Υ′ = Υ, and
I ′Y = IY . Thus, Xander has perfect knowledge of Ysolde (and vice versa). This makes
the model simple, but is highly unrealistic. In reality, people’s ignorance of each other’s
beliefs and motives is a major factor in their decisions.

‘Like me, only different’: In this model, Xander imagines Ysolde as a copy of himself,
with small deviations. In other words, U ′Y = UX + DY , Υ′ = ξ + δY , and I ′Y =
IX + DY . Here, DY , δY , and DY are small ‘deviations’ which represent (for Xander)
how Ysolde differs from him. As he learns more about her, he modifies DY , δY , and
DY appropriately.

This seems plausible. In real life, a common mistake is to assume others are too
much like ourselves. Communication breakdowns often occur because we assume that
someone else enters the conversation with the same values or background knowledge
as us.
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Sentience: Hominids evolved as social animals, living in tightly knit communities.
Our ancestors have been playing social games for a very long time, and we almost certainly
have evolved specialised neurological ‘wetware’ for reasoning about social situations, mod-
elling other players, etc. As we’ve seen, a crucial part of your model of another player is your
model of their model of you. Thus, this hypothetical wetware must contain self-modelling
capabilities. Perhaps this is the neurological origin of our self-awareness.

(v) Social and Political Stability

Cultures are self-perpetuating: people raised within a certain culture assimilate and
recapitulate its social norms and behavioural codes. Rarely do they challenge convention,
even when it seems obvious that they might personally benefit from doing so. Why? What
enforces social conformity? Indeed why are governments stable? Why don’t democracies
become dictatorships? And why aren’t dictators overthrown by their own henchmen?

To answer these questions, we must model society as a social game, and then model the
game as a dynamical system5.

In every round of a social game, each player has an optimal choice, determined by his
worldview, utility, and current information. If we exactly knew ξ, U , and I, we could
thus predict his behaviour. The past actions of other players have partly determined his
information, and his actions now will influence other players in turn. Nonetheless, the
evolution of the game is (in principle) completely predictable. In other words, the game is a
dynamical system.

This dynamical model of game evolution provides a good model of social stability. We
represent society as a social game in which all citizens participate. Their social, economic,
and political choices are all simply ‘moves’ in this game. If the social game is a dynamical
system, then a dynamical attractor corresponds to a stable society —that is, a stable social,
political, and economic order.

The simplest dynamical attractors are fixed points, limit cycles, and quasiperiodic sys-
tems. A fixed point is a scenario where all players converge upon a single optimal strategy,
which they repeat forever. A limit cycle is a situation where each player reiterates the same
stereotypical sequence of actions forever, in a sort of ‘ritual’. A quasiperiodic system is
similar, except that it allows players some small degree of variation in their ritual.

Clearly, none of these realistic model of society. A real society corresponds to a chaotic
attractor, where small changes can trigger large long-term consequences, and history never
repeats itself. Nevertheless, the attractor as a whole will be resilient to small perturbations.
This means that the society will not collapse or radically transform because of random minor
events.

5See page 63.
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(vi) Freedom

Despite its ubiquity in both philosophy and political rhetoric, ‘freedom’ is a poorly un-
derstood idea. What is freedom? A näıve answer is, ‘Xander is free if he can choose any
action in his repertoire.’ But in this sense, Xander is always free. Unless someone sticks
electrodes in his brain to puppeteer his movements, he is ‘free’ to take any action he is
physically capable of performing. (Of course, being rational, Xander will always act so as to
maximise his expected utility.)

But ‘freedom’ is really much more complicated than this. Consider two situations:

(A) I offer to sell you a used computer for $300.

(B) I point a gun at you and demand $300.

In both situations, you are equally ‘free’ to choose whether or not to give me money. However,
we feel you are ‘more free’ in (A). The difference lies in the consequences of your choice; in
terms of the ‘Game’ model, the difference is in your expected utility.

Extortion: Perhaps when we say ‘freedom’, we really mean freedom from extortion.
Ysolde extorts Xander when she issues an ultimatum which offers him a ‘choice’ between
an bad outcome (complying with her odious demands) and worse outcome (suffering her
retaliation). Formally, if Xander’s ‘compliance’ is X∗ and Ysolde’s ‘retaliation’ is Y−, we
have:

Umax[I] > Eξ [U 〈〈 X∗ ∩ I] > Eξ [U 〈〈 Y− ∩ I] (8.4)

This is ‘extortion’ because Xander’s expected utility under either choice is worse than
Umax[I], which is what his prospect would have been if Ysolde just left him alone.

Let Yu be Ysolde’s communication of the ultimatum. Thus, assuming Xander has no
better options than the two shown in (8.4), we have the inequality:

Umax[I] > Umax[I ∩ Yu] (8.5)

In other words, his prospects after she issues the ultimatum are worse than they were before.
It is the inequality in (8.5) which characterizes extortion.

Exploitation There is more to freedom than freedom from exploitation. Consider
the following situations:

(C) You are hanging from a cliff. For a mere $300, I offer to lift you to safety.

(D) We are standing on a cliff. I threaten to push you over the edge, unless you give me
$300.
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According to our previous analysis, (D) is extortion, but (C) is not. In (C), your prospect
is already bad, and I am actually offering to improve it... for a price. Nonetheless, most
people would find my behaviour in (C) almost as morally repugnant as in (D). I am taking
advantage of your desperation to extract concessions. This is not extortion, but exploitation.

Somehow, exploitation has to do with the difference between wants and needs. Consider
the following scenario:

(E) I own a beautiful painting. You want it. For a mere $300, I offer to sell it to you.

What exactly makes (C) different from (E)? Näıvely, the answer is that you ‘need’ to be
lifted to safety, but you don’t ‘need’ the painting. Here, ‘need’ refers to issues of peril and
safety. In (C), your life is in immediate danger. But what about long-term danger? Here’s
a situation common in places with no public health-care:

(F) You are dying from a terminal illness. For a mere $300 000, I offer you the life-saving
treatment you need.

Is this exploitation? You face certain death, albeit somewhat delayed. But what about the
mere risk of death?

(G) There is a 0.1% chance that you will die in a workplace accident. For a mere $300 000,
I can improve safety conditions in your workplace, and eliminate this risk.

Extortion has an exact definition, but clearly, exploitation is more slippery. Just when is
your situation ‘desperate’ enough that my bargaining is exploitative? This issue divides
political ‘Left’ from ‘Right’. Loosely speaking, ‘Leftist’ economists regard exploitation as a
real phenomenon, and are concerned with its prevention. ‘Rightist’ economists care mainly
about freedom from extortion, and often deny the reality of ‘exploitation’ altogether, because
it lacks a clear definition.

The ‘Right’ thus arrogates intellectual superiority, since ‘Leftists’ cannot even precisely
define their key theoretical concept. For the Left to have intellectual credibility, it must
define ‘exploitation’ as precisely as we’ve defined extortion. Some possible definitions:

Marxist ‘surplus value’ Marx defines the ‘exploitation’ of labour as surplus value: the
difference between the wages that Workers receive to produce commodity C, and the
price at which the Capitalist can sells commodity C. In other words, the measure of
‘exploitation’ is precisely the profit of the capitalist6.

This definition is severely flawed, because ‘surplus value’ plays several important and
legitimate economic roles:

• It covers the cost of overhead (ie. purchasing and maintaining physical capital).

6....hence capitalism is ‘expoitative’ by definition, Q.E.D.
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Figure 8.2: Consumer surplus vs. Producer surplus

• It provides wealth for further investment (making economic growth possible).

• It acts as the ‘wage’ which the Capitalist pays herself for the nontrivial labour
involved in setting up and maintaining an enterprise.

• It provides a reward (ie. incentive) for investing personal wealth into production
capital (thereby creating jobs and goods), instead of spending it on personal
indulgence.

• It compensates the Capitalist for risking personal wealth on uncertain business
ventures (instead of hoarding it).

Consumer Surplus vs. Producer Surplus Suppose a Xander (a consumer) and Ysolde
(a producer) willingly enter a transaction where Xander willingly purchases a quantity
Q of some commodity (say, slices of cake) of p dollars per unit. Both Xander and
Ysolde willingly participate in the transaction, so we assume it is mutually beneficial.
However, we can meaningfully ask the question, ‘Who benefitted more’? One way to
measure this is to compare the consumer surplus to the producer surplus.

In Figure 8.2, Xander’s consumer surplus is the area of the region above the horizontal
line p, and below the ‘Consumer’s Demand Curve’. The idea is this: distance s(q)
between these two curves at the point q on the ‘Quantity’ line is the difference between
the price Xander would be willing to pay for his qth slice of cake, and the actual price
he paid. Thus s(q) measures Xander’s opinion of how ‘good a deal’ he’s getting —his
surplus —for the qth slice. The aggregation of all these s(q) (for q from 0 up to Q) is
Xander’s total surplus.

Likewise, Ysolde’s producer surplus is the area of the region below the horizontal line
p, and above the ‘Producer’s Supply Curve’. The reasoning is similar.
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Figure 8.3: Monopoly exploitation: (A) Supply restriction. (B) Price scheduling

Although it is mutually advantageous, we might characterize this transaction as ‘ex-
ploitative’ if one of the players captures much more of the surplus than the other.
Ysolde can do this if she has a monopoly on the supply of cake. As a monopolist,
Ysolde can capture part of Xander’s consumer surplus using in two ways7:

Figure 8.3(A) By restricting supply (or equivalently, inflating the price), Ysolde can
force Xander to purchase Q∗ units of cake (where Q∗ is less than the equilibrium
quantity Q) at a price p∗, which is higher than the equilibrium price p, and
certainly much higher than pc, which is Ysolde’s real marginal cost for producing
the Q∗th slice of cake. In this way, Ysolde makes her producer surplus much
larger, by making Xander’s smaller, and by imposing an ‘efficiency loss’ on the
market (less units of cake and cash are exchanged in total).

Figure 8.3(B) By price scheduling, Ysolde forces Xander to pay price p1 for his first
q1 slices of cake (which he needs the most), p2 for his next q2 slices of cake (which
he needs slightly less), and so on. In this way, she can ‘chisel’ away almost all of
his surplus.

We can interpret the ‘cliffhanger’ example (C) as a monopoly: I have a monopoly on
the ability to pull you to safety, so I can dictate a price. If several would-be Samaritans
were competing to save you, then we would likely bid one another down to an almost
zero price (since the ‘marginal cost of production’ of pulling you to safety is virtually
zero).

7A third strategy, called market segmentation, involves isolating buyers from each other, and customizing
a price schedule for each buyer’s individual demand curve.
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But this is a rather uncomfortable fit. In the ‘cliffhanger’ example, the ‘commodity’
(ie. safety) cannot be traded in small quantities —it is an ‘all or nothing’. Thus, we
cannot really model the cliffhanger using the standard economic formalism of supply
and demand curves. Also, in the case of a monopoly, the lack of freedom seems to come
first (Xander’s inability to deal with other suppliers), and causes the exploitation. This
doesn’t represent situations where it seems that exploitation causes the lack of freedom.

Finally, there are free market situations where your freedom may still be compromised.
Consider the ‘terminal illness’ example (F). It may be that the marginal cost of produc-
tion of the ‘lifesaving treatment’ really is $300 000; perhaps I am one of five competing
hospitals, and I am offering you a competitive rate. So there is no monopolistic ex-
ploitation per se. Nevertheless, if you simply can’t afford $300 000, we might agree
that your freedom (to live) has been compromised.

One thing is clear. Political rhetoric which focuses on ‘freedom’ as an end in itself is
näıve and spurious. We are all ‘free’. The question is not, ‘Are you free?’ The question is:
‘What are your options?’

Notes

§(i) discussed the semiotics of verbal communication, distinguishing explicit communication from coded com-
munication, metacommunication, etc. This analysis is similar to the speech act theory of Austin [2] and Grice
[15]. See Bechtel [4, pp.28-29] for a discussion; I owe the ‘reference letter’ example to Bechtel.

§(v) presents a model of society as an attractor within a game dynamical system is similar to other
‘strategic equlibria’, such as as the Nash equilibrium of classical game theory [31], or the evolutionarily stable
strategies of evolutionary game theory [19]. The difference is in the nature of the player interactions. In
classical game theory, players have full information about the game state and each other’s motives and
abilities, so the game requires no probabilistic analysis. The Nash equlibrium yields the unique mixed
strategy for each player which maximizes his worst-case (not expected) utility. In evolutionary game theory,
‘mindless’ organisms compete and evolve, and are driven toward an optimal distribution of genotypes (ie.
mixed strategy) by selection pressure, not by stochastically optimizing their utilities based on imperfect
information.

These appendices provide a brief and nontechnical introduction to some mathematical
concepts used in the text. My advice is to read these on a ‘need to know’ basis.
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A Functions

Let P be the set of all people in the world, and let M ⊂ P be the subset of all men.
For any person p ∈ P, let f(p) be the father of p. Thus, f(Penelope) = Michael means that
Penelope is Michael’s daughter.

Now letW ⊂ P be the set of women, and letm(p) be the mother of p. Thus, m
(

f(Penelope)
)

is the mother of the father of Penelope —in other words, the Penelope’s paternal grand-

mother. On the other hand, f
(

m(Penelope)
)

is the father of the mother of Penelope —in

other words, the Penelope’s maternal grandfather.
These are examples of functions. If P and M are two sets, then a function from P to

M is some mechanism which assigns a unique element of M to every element of P. We
normally indicate this by writing “f : P−→M”. In the previous examples:

• P is the set of people,M the set of men, and f : P−→M was the function assigning,
to each p ∈ P, the father of p.

• P is the set of people, W the set of men, and m : P−→W was the function assigning,
to each p ∈ P, the mother of p.

Depending upon their intended application, functions are often given other names, such
as transformations, labellings, representations, or mappings.

• A transformation is a function f : A−→B which ‘transforms’ objects in A into objects
in B.

For example, let A = {a, b, c, . . . z} be the set of lower-case Roman letters, and let
B = {A, B, C, . . . Z} be the set of upper-case letters, and define f(a) = A, f(b) = B, etc.

• A labelling is a function f : A−→B which attaches a ‘label’ in B to each object in A.

For example, let A be a set of people, and let B be the set of their names. For each
person a ∈ A, let f(a) be that person’s names.

• A representation is a function f : A−→B which ‘represents’ objects in A with objects
in B.

For example, let A be the set of countries of the world, and let B be the set of delegates
of the United Nations General Assembly. For each country a ∈ A, let f(a) be the
delegate of that country at the General Assembly.

• A mapping is a function f : A−→B which draws a ‘map’ of A on B.

For example, let A be the set of all points on the Earth’s surface, and let B be the set
of all points on a globe map. For any point a ∈ A, let f(a) be the corresponding point
on the map B.
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On important function is the identity function Id, which simply transforms any object
into itself. That is, for any a,

Id(a) = a.

This may seem kind of stupid, but it is often useful to introduce this function into mathe-
matical expressions, for the same reason that it is often useful to ‘multiply by one’ or ‘add
zero’ when manipulating algebraic expressions.

Function Composition: We can create a new function by applying two functions in
succession. This is called function composition. For example, suppose f : P−→M is the
‘father’ function, and m : P−→W is the ‘mother’ function. We define a new function

h : P−→M by h(p) = f
(

m(p)
)

. Thus, h(p) is the father of the mother of p —that is, the

maternal grandfather of p. We indicate this by writing:

h = f ◦m.

Notice that, in general, f ◦m is not the same function as m◦ f . In the above example, f ◦m
is the maternal grandfather function, whereas m ◦ f is the paternal grandmother function.

Commuting Diagrams: Mathematical arguments often involve composing together net-
works of functions, in various orders. It is often important to know when two different
sequences of compositions produce the same function. We represent this diagrammatically
via a commuting diagram. For example, the diagram:

PSfrag replacements

P

M

W

f
h

m

says that h = f ◦m. The diagram:
PSfrag replacements

A B

C D

f

hg

φ

says:

• A,B, C and D are sets;
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Figure A.1: f−1{b} is the fibre over b

• f : A−→B, g : A−→C, h : B−→D, and φ : C−→D are functions; and

• h ◦ f = φ ◦ g.

Preimages Consider the set of all children of Mary —that is, the set of all people having
Mary as their mother. Symbolically, we write this set:

{p ∈ P ; m(p) = Mary}.

This is called the preimage of Mary under the function m, and is written m−1{Mary}.
Likewise,

f−1{Michael} = {p ∈ P ; f(p) = Michael}.

is the set of Michael’s children, and

f−1
(

f−1{Michael}
)

=
{

p ∈ P ; f
(

f(p)
)

= Michael
}

.

is the set of Michael’s grandchildren through his sons.

If f : A−→B is a function, and b ∈ B, then we sometimes refer to the preimage f−1{b}
as the fibre over b. This is illustrated by Figure A.1.
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X

Y

Figure B.1: Probability Measures: X is the ‘set of all possible worlds’. Y ⊂ X is the set
of all worlds where it is raining in Toronto.

B Probability

Imagine that X is the space of possible states of some “universe” U . For example,
in Figure B.1, U is the weather over Toronto; thus, X is the set of all possible weather
conditions. Subsets of X are called events; each event corresponds to some assertion about
U . For example, in Figure B.1, the assertion “It is raining in Toronto” corresponds to the
event Y ⊂ X; the set of of all states in X where it is, in fact, raining in Toronto.

A probability measure is an object ρ which assigns a ‘size’ to each subset1 of X. The
probability of the assertion, ‘It is raining in Toronto’ is the size of Y, which is denoted ρ [Y].

As a measure of size, ρ must satisfy certain natural properties:

(I: Additivity2) If R and S are disjoint subsets of X (ie. R∩S = ∅), then
ρ [R ∩ S] = ρ [R] + ρ [S].

For example, if R is the event, ‘It is raining in Toronto’, and S is the event ‘It is snowing in
Toronto’, (and we assume that these events are mutually exclusive), then (I) says:

1Technically, ρ must be defined on a sigma-algebra of ‘measurable’ sets, but we will ignore this issue.
2Actually, this is formulated in terms of countable disjoint unions, but I’m suppressing this to keep things

simple.
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The probability that it is either raining or snowing is the probability that it
is raining, plus the probability that it is snowing.

The second property is:

(II: Monotonicity) If R ⊂ P, then ρ [R] ≤ ρ [P].

For example, if R is the event, ‘It is raining in Toronto’, and P is the event ‘There is some
kind of precipitation in Toronto’, then (II) says,

The probability that it is raining is less than or equal to the probability that
there is some kind of precipitation.

Another way to express (II) is as follows:

(II’) If R and W are two events, then ρ [R ∩W] ≤ ρ [R] and ρ [R ∩W] ≤
ρ [W].

For example, if R is the event, ‘It is raining in Toronto’, and W is the event, ‘It is windy in
Toronto’, then (II’) just says

The probability that it is raining and windy is lesser or equal to the probability
that it is raining, and lesser or equal to the probability that it is windy.

Notice that, in a probability space, smaller events correspond to assertions with more in-
formation. The assertion, ‘it is raining and windy’ carries more information than either the
assertion ‘it is raining’ or the assertion ‘it is windy’; hence, the corresponding event R ∩W
is smaller than the events R and W.

Intuitively, then, since X is the largest set in the space, it represents the least information.
Indeed, since X is just the entire space of weather-states of Toronto, the event X is the
vacuous assertion ‘Something is true’.

Conversely, since ∅ is the smallest set, it represents the most information. Indeed, ∅
essentially represents impossibility: an assertion so restrictive that it cannot be true. Hence
we have the third property:

(III) ρ [∅] = 0, and ρ [X] = 1.

If ρ satisfies axioms (I), (II) and (III), it is called a probability measure. The pair (X, ρ)
is then called a probability space. Let’s look at some other examples:

Dice: Imagine a six-sided die. In this case, the X = {1, 2, 3, 4, 5, 6}. The probability
measure ρ is completely determined by the values of ρ{1}, ρ{2}, . . . , ρ{6}. For example,
suppose:

ρ{1} = 1/12 ρ{4} = 1/6
ρ{2} = 1/12 ρ{5} = 1/6
ρ{3} = 1/3 ρ{6} = 1/6

Then the probability of rolling a 2 or a 3 is ρ{2, 3} = 1/12 + 1/3 = 5/12.
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Urns: Imagine a giant clay ‘urn’ full of 10 000 balls of various colours. You reach in and
grab a ball randomly. What is the probability of getting a ball of a particular colour?

In this case, X is the set of balls. If we label the balls with numbers, then we can write
X = {1, 2, 3, . . . , 10 000}. Suppose that the balls come in colours red, green, blue,
and violet. For simplicity, let

R = {1, 2, 3, . . . , 500} be the set of all red balls;
G = {501, 502, 503, . . . , 1500} be the set of all green balls;
B = {1501, 1502, 1503, . . . , 3000} be the set of all blue balls;
V = {3001, 3002, 3003, . . . , 10 00} be the set of all violet balls;

Thus (assuming the urn is ‘well-mixed’ and all balls are equally probable), the proba-
bility of getting a red ball is

ρ [R] =
500

10000
= 0.05

while the probability of getting a green ball or a violet ball is

ρ [G tV] = ρ [G] + ρ [V] =
1000

10000
+

7000

10000
= 0.1 + 0.7 = 0.8

The unit interval: Let X be the set of all real numbers between 0 and 1. Suppose V is
a line-segment inside X; say, the set of all points between 1/8 and 1/2. Then the
probability of V is just it’s length; in this case, 3/8. This is just the odds of picking a
‘random number’ inside V.

Conditional Probability

Suppose that, over a historical period of 10000 days:

• It rained in Toronto on 4500 days.

• It rained in Montréal on 3500 days.

• It rained in Toronto and Montréal on 3000 days.

Assuming this sample accurately reflects the underlying statistics, we can conclude, for
example:

The probability that it will rain in Montréal on any given day is
3500

10000
=

0.35.
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This probability estimate is made assuming ‘total ignorance’. Suppose, however, that you
already knew it was raining in Toronto. This might modify your wager about Montréal. Out
of the 4500 days during which it rained in Toronto, it rained in Montréal on 3500 of those
days. Thus,

Given that it is raining in Toronto, the probability that it will also rain in

Montréal, is
3000

4500
=

2

3
= 0.6666 . . ..

If T is the event “It is raining in Toronto”, and M is the event “It is raining in Montréal”,
then M∩T is the event “It is raining in Toronto and Montréal”. What we have just concluded
is:

ρ [M given T] =
ρ [M ∩T]

ρ [T]

we call this the conditional probability of M, given T.

In the previous example, meteorological information about Toronto modified our wager
about Montréal. Suppose instead that the statistics were as follows: over 10000 days,

• It rained in Toronto on 5000 days.

• It rained in Montréal on 3000 days.

• It rained in Toronto and Montréal on 1500 days.

Then we conclude:

• The probability that it will rain in Montréal on any given day is
3000

10000
= 0.3.

• Given that it is raining in Toronto, the probability that it will also rain in Montréal,

is
1500

5000
= 0.3.

In other words, the rain in Toronto has no influence on the rain in Montréal. Meteorological
information from Toronto is useless to predicting Montréal precipitation. If M and T are as
before, we have:

ρ [M ∩T]

ρ [T]
= ρ [M] .

Another way to write this:

ρ [M ∩T] = ρ [M] · ρ [T] .

We say M and T are independent.
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C Stochastic Processes

A stochastic process is a particular kind of probability measure, which represents a system
randomly evolving in time.

Imagine S is some complex system, evolving randomly. For example, S might be a die
being repeatedly rolled, or a publically traded stock, a weather system. Let X be the set of
all possible states of the system S, and let T be a set representing time. For example:

• If S is a rolling die, then X = {1, 2, 3, 4, 5, 6}, and T = N = {1, 2, 3, 4, 5, 6, 7, 8, 9, . . .}
indexes an infinite sequence of successive dice rolls.

• If S is the weather over Toronto, then X is the ‘space of all weather states.’ Since the
weather evolves continuously, T is the set of all real numbers, denoted R.

We represent the (random) evolution of S by assigning a probability to every possible history
of S. A history is an assignment of a state (in X) to every moment in time (i.e. T); in other
words, it is a function h : T−→X. The set of all possible histories is thus the space H = XT.

An event —an subset of H —thus corresponds to a some collection of possible histories.
Usually we specify such an ‘event’ by stipulating that specific worldstates occurred at specific
points in time. A probability measure on (H,H) is then a way of assigning probabilities to
such assertions. Examples:

Toronto’s weather: Suppose y and t are two points in time —say, yesterday and tomorrow.
Let R and S are two subsets of X —say, the set of ‘raining’ weather states and the set
of ‘snowing’ weather states. Then the event:

E = {h ∈ H ; h(y) ∈ R and h(t) ∈ S}

is the set of all histories described by the assertion, ‘It rained yesterday and will snow
tomorrow.’ Thus, if ρ [E] = 0.2, this means that there is a 0.2 probability that it rained
yesterday and will snow tomorrow.

A (fair) six-sided die: Now X = {1, 2, . . . , 6} and T = N. Thus, H = {1, 2, . . . , 6}N is
the set of all possible infinite sequences x = [x1, x2, x3, . . .] of elements xn ∈ {1, 2, . . . , 6}.
Such a sequence represents a record of an infinite succession of dice throws. The sigma
algebra H is generated by all cylinder sets of the form:

〈y1, y2, . . . , yN〉 =
{

h ∈ {1, 2, . . . , 6}N ; h1 = y1, . . . , hN = yN
}

where N ∈ N and y1, y2, . . . , yN ∈ {1, 2, . . . , 6} are constants. For example,

〈3, 6, 2, 1〉 =
{

h ∈ {1, 2, . . . , 6}N ; h1 = 3, h2 = 6, h3 = 2, h4 = 1
}
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This event corresponds to the assertion, “The first time, you roll a three; the next time;
a six, the third time, a two; and the fourth time, a one”.

Assuming the die is fair, this event should have probability
1

64
=

1

1296
. More

generally, for any y1, y2, . . . , yN ∈ {1, 2, . . . , 6}, we should have:

ρ〈y1, y2, . . . , yN〉 =
1

6N

If the probabilities deviate from these values, we conclude the dice are loaded.

D Boolean Algebras and Information

Let X be a space. A Boolean algebra is a collection B of subsets of X so that, for any
subsets A ⊂ X and B ⊂ X,

(BA1) If A and B are elements of B, then A ∩B is also an element of B.

(BA2) If A and B are elements of B, then A ∪B is also an element of B.

(BA3) If A is elements of B, then X \A is also an element of B.

For example, the power set of X is the set of all subsets of X:

P(X) = {S ; S ⊂ X}

the null algebra contains only two elements: the empty set and all of X:

N = {∅,X}

It is easy to check that both P(X) and N satisfy the properties (BA1), (BA2), and (BA3).
Boolean algebras are a good way to mathematically represent a state of partial knowl-

edge. Suppose we want to know the location of an unknown point x ∈ X. The knowledge
represented by B is the information about x that one obtains from knowing, for every B ∈ B,
whether or not x is an element of B. Thus, if C ⊃ B is a larger Boolean algebra, then C con-
tains ‘more’ information than B. The power set P(X) is the ‘largest’ Boolean algebra, and
thus, contains the ‘most’ information. At the opposite extreme, the null algebra represents
a state of total ignorance.

To understand this, we’ll examine some examples.



108 APPENDIX D. BOOLEAN ALGEBRAS AND INFORMATION

X
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Figure D.1: P is a partition of X.

P P
P P
1 2

3 4

Figure D.2: The Boolean algebra generated by a partition: Partition the square into
four smaller squares, so P = {P1,P2,P3,P4}. The corresponding Boolean algebra contains
16 elements.



109

Figure D.3: Partition Q refines P if every element of P is a union of elements in Q.
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Figure D.4: Finer dyadic partitions reveal more binary digits of α

Partitions: The simplest Boolean algebras are those generated by partitions. Figure
D.1 shows a partition of X: a collection P = {P1,P2, . . . ,PN} of disjoint subsets, such

that X =
N
⊔

n=1

Pn. The sets P1, . . .PN are called the atoms of the partition. Figure D.2

shows the Boolean algebra generated by P: the collection of all possible unions of P-atoms:

σ(P) = {Pn1 tPn2 t . . . tPnk ; n1, n2, . . . , nk ∈ [1..N ]}

Thus, if card [P] = N , then card [σ(P)] = 2N .
If Q is another partition, we say that Q refines P if, for every P ∈ P, there are

Q1, . . . ,QN ∈ Q so that P =
N
⊔

n=1

QP ; see Figure D.3. We then write “P ≺ Q” It follows

that
(

P ≺ Q
)

⇐⇒
(

σ(P) ⊂ σ(Q)
)

.

Dyadic Partitions of the Interval Let R be the real line —the set of all real
numbers (imagined as an infinite, straight line). If a and b are two real numbers, and a < b,
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then the interval from a to b is just the line segment connecting these points. We use the
notation [a, b) to indicate this interval1. Formally,

[a, b) = {r ∈ R ; a ≤ r < b}.

For example, [0, 1) = {r ∈ R ; 0 ≤ r < 1} is the line segment from 0 to 1, which is called
the unit interval.

Let I = [0, 1), and consider the following sequence of dyadic partitions, illustrated in
Figure D.4:

P0 = {I}

P1 =

{[

0,
1

2

)

,

[

1

2
, 1

)}

P2 =

{[

0,
1

4

)

,

[

1

4
,
1

2

)

,

[

1

2
,
3

4

)

,

[

3

4
, 1

)}

P3 =

{[

0,
1

8

)

,

[

1

8
,
1

4

)

,

[

1

4
,
3

8

)

,

[

3

8
,
1

2

)

,

[

1

2
,
5

8

)

,

[

5

8
,
3

4

)

,

[

3

4
,
7

8

)

,

[

7

8
, 1

)}

...
...

...

Suppose α is an unknown element of I. Then:

(

knowing which element of P0 contains α
)

⇐⇒
(

knowing α with precision
1

2

)

.

(

knowing which element of P1 contains α
)

⇐⇒
(

knowing α with precision
1

4

)

.

(

knowing which element of P2 contains α
)

⇐⇒
(

knowing α with precision
1

8

)

.

and, in general,

(

knowing which element of Pn contains α
)

⇐⇒
(

knowing α with precision
1

2n+1

)

.

Thus, the ‘finer’ the partition Pn, the more ‘information’ about α it provides.

Partitions of a Square Let I2 be a unit square, and let P be a partition of I2, with
associated Boolean algebra σ(P). The information contained in σ(P) is the information
about x ∈ I2 you obtain from knowing which atom of P contains x.

1Technically, this is called a half-open interval.
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Figure D.5: A higher resolution grid corresponds to a finer partition.

x = (x , x , x )

x
1

2 31

x
2

x
3

Figure D.6: Our position in the cube is completely specified by three coordinates.

Recall that partition Q refines P if every element of P can be written as a union of
atoms in P, as shown in Figure D.3 on page 109. Thus, σ(Q) contains more information than
σ(P), because it specifies the location of x with greater ‘precision’. For example, suppose
P and Q were grids on I2, as in Figure D.5. If P ≺ Q, then Q is a higher resolution grid,
providing proportionately better information about spatial position.

Projections of the Cube Consider the cube I3 of sidelength 1 (see Figure D.6).
We will imagine this cube to be the set of all points (x1, x2, x3) whose coordinates are all
between 0 and 1. In other words

I3 = {(x1, x2, x3) ; 0 ≤ x1 < 1; 0 ≤ x2 < 1 and 0 ≤ x3 < 1}

Recall that I is the unit interval (see page 110). Then we could also write:

I3 = {(x1, x2, x3) ; x1 ∈ I; x2 ∈ I; and x3 ∈ I}.
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x
1

x

1

Figure D.7: The Boolean algebra X1 consists of “vertical sheets”, and specifies the x1 coor-
dinate.

x
2

x

2

Figure D.8: The Boolean algebra X2 consists of “vertical sheets”, and specifies the x2 coor-
dinate.

As shown in Figure D.6, the position of x ∈ I3 is completely specified by three coordinates
(x1, x2, x3). The information embodied by each coordinate corresponds to a certain Boolean
algebra.

Consider the projection onto the first coordinate, pr1 : I3−→I. In other words, if x :=
(x1, x2, x3) ∈ I3, then pr1(x) = x1 ∈ I.

Consider the pulled back Boolean algebra X1 := pr1
−1(I), (where I is the power set of

I). Roughly speaking, X1 consists of all “vertical sheets” in the cube (Figure D.7). Thus
knowing the coordinate x1 is equivalent to knowing which of these vertical sheets contains
x.

Next, consider the projection onto the second coordinate, pr2 : I−→I. That is, x :=
(x1, x2, x3) ∈ I3, then pr2(x) = x2 ∈ I.

The pulled back Boolean algebra X2 := pr2
−1(I) consists of the ‘vertical sheets’ shown

in Figure D.8. Knowing the coordinate x2 is equivalent to knowing which of these sheets
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x
2

x1

x

12

Figure D.9: The Boolean algebra X12 completely specifies (x1, x2) coordinates of x.

contains x.
Finally, let I2 be the unit square, and consider the projection onto the first two coordi-

nates, pr1,2 : I3−→I2. That is, if x := (x1, x2, x3) ∈ I3, then pr1,2(x) = (x1, x2) ∈ I2.
Let X12 := pr1,2

−1(I2) (where I2 is the power set of I2). Elements of X12 look like
“vertical fibres” in the cube (Figure D.9). Thus, X12-related information specifies exactly
which of these vertical fibres contain x, and exactly which vertical fibres don’t contain x.
From this, we can reconstruct arbitrarily accurate information about the coordinates x1

and x2. In other words, the information contained in X12 is exactly the same information
contained in the (x1, x2) coordinates of x.

Remarks: A sigma algebra is like a Boolean algebra, but it is closed under countable unions and
intersections, not just finite ones. For most applications, mathematicians work with sigma-algebras, not
Boolean algebras. I’ve confined this discussion to Boolean algebras to minimize the technical complexity.
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