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Dynamical Systems,
Stochastic Processes,
and Information Theory

1 Dynamical Systems

1.1 Dynamical Systems

A dynamical system is a mathematical object used to model physical systems
which evolve deterministically in time.

The state of the physical system is represented by a point in a state space.

As time passes, the state of the system changes in a deterministic way. Thus,
the point moves around the state space in a predictable fashion.

The movement of the point through the statespace therefore defines a endo-
morphism from the statespace to itself.

1.2 Dynamical Systems

Definition 1.1
A dynamical system! is a pair (X,7'), where:
e X is a set (the statespace )
e T:X — X is a function (the transformation ) .

Usually T is a bijection; ie. the flow of time in the system is reversible .

1Here, we consider only discrete time dynamical systems, to keep things simple.



2 Flows and Vector Fields

2.1 Flows on Manifolds

Let M be a smooth manifold , and V a vector field on M.

V defines a flow on the manifold.

Starting at any point x € M, imagine being dragged through M along a
trajectory

Yz i (ag,by) — M

dictated by V.
Here, (az,b;) is some time-interval where v, is well-defined.

2.2 Integral Curves

The trajectory =y, satisfies the conditions:

e The trajectory passes through z at time 0; that is:

Y2 (0) = z.
e The welocity vector of a particle moving along the trajectory is always

equal to the value of the vector field at that point. That is: For all times
t € (ag,bg), we have

YV (t) = V(’Yw (t))

2.3 The Exponential Map

For “nice” vector fields, V, the path =, is well-defined for all times; the trajectory
does not “run off the edge of the manifold” in finite time.

Hence, we get a trajectory v, : R — M.

Do this for all x € M. This collection of trajectories defines a map F :
RxM-—M

Fz,t) = ()



This is the exponential map associated with the vector field V. We denote
it by exp(V), as in:

exp(t-V)(z) = (1)

2.4 The Exponential Map

The exponential map is a smooth group action of the real numbers on the
manifold. That is:

e For all t € R, the map exp(t.V) : M — M is a diffeomorphism.

e exp((t+s)-V) = exp(t-V)oexp(s-V).

e exp(0-V) = Idy.

o exp(t-s-V) = exp(t-(s.V)).

To create a discrete-time dynamical system, look at the time-one map :
T := exp(l-V)

T is a diffeomorphism from M to itself, and therefore defines a dynamical
System.

3 Flows and Differential Equations

3.1 Ordinary Differential Equations

Any system of ordinary differential equations on R” induces a vector field.
The flow defined by the vector field provides the solution for the ODE.




3.2 ODEs and Vector Fields

Consider an ordinary differential equation concerning a function u : R — RP ,

given by:

Q

tN u, aa 8t27 ) 8tN_1

QD

Let M :=RP x ... x RP.
N———

N
Define vector field V on M by:

3.3 ODEs and Vector Fields

Thus,
o .
a = Ty,
0%, .
at = :L.27
o7, .
a -
aa—:rN—l -
8t = mNJ
oz Lo S
and 8—tN = F(4,%,...,%y),

which is what we want.




4 Ergodic Theory

4.1 Invariant Measures

Definition 4.1 Invariant Measure

An invariant measure for (X,T) is a measure g on X which is invariant
under the action of the transformation.
That is, for any measurable set U C X :

plU] = p[r7'U].

Normally, u is a probability measure.

4.2 Invariant Measures

Start at some point z € X, and follow its orbit through X over time:
L Tz), T™N(a), 2, T(x), TX(x), T*(@),...

The orbit spends “a lot of time” in some parts of X, and “very little time”
in other parts of X.

An invariant measure tells you “how much time” the average point spends
in different parts of the space.

4.3 Measure Preserving Dynamical System

A dynamical system (X, T), together with a T-invariant measure u, is called a
measure-preserving dynamical system (MPDS).

Formally, a measure-preserving dynamical system consists of a quadru-
ple (X, X,u; T). Here,

e X is a set.
o X is a sigma-algebra on X.

e 4 is a measure defined over X.



e T : X — X is a function which is measurable with respect to X, and
preserves the measure p. (ie. p is invariant with respect to T' .)

4.4 Constructing Invariant Measures

Let X be a topological space, T : X — X a homeomorphism. Let x € X.
Define the measure p, by:
For any open subset U C X,

1 = .
palU] 1= Jim =310 [T7@)] ()
n=0

(here, 1y is the characteristic function of U. )

The measure assigned to U is the long term average frequency with which
the orbit of z enters U.

An average like (1) is called an ergodic average .

4.5 Krylov-Bogolioubov Theorem

If X is a compact topological space and T : X — X is a homeomorphism,
then the ergodic average (1) will always produce an invariant measure. More
generally...

Theorem 4.2 Krylov and Bogolioubov

Let v be a probability measure, on X. Consider the sequence of measures:
V1, V2, ..., where

1= .
vy = NT;O(VOT)

1. The sequence {Vn|" EN} always has cluster points in the weak topology
on M(X).

2. Any cluster point is a T-invariant measure.



4.6 Constructing Invariant Measures

If 4 is an ergodic measure, then the Birkhoff Ergodic Theorem says that y is
always defined by an ergodic average.

The Ergodic Decomposition Theorem says that any T —invariant measure can
be decomposed as a convex integral combination of ergodic measures.

Thus, in a sense, every invariant measure can be built out of ergodic averages.

4.7 FErgodic Measures

Definition 4.3 Ergodic

Let (X,T) be a dynamical system. A T —invariant probability measure p
is called ergodic if all T—invariant subsets of X have trivial measure. In other
words, if U C X is such that

then either

o u[U] = 0, (ie. psays U is “almost nothing”),

or

o u[U] = 1 (ie. psays U is “almost everything”).

4.8 Ergodic Theorems

Ergodic measures have very nice behaviour with respect to ergodic averages.

Theorem 4.4 Birkhoff Ergodic Theorem



Let (X,T) be a dynamical system and p be a T—invariant, ergodic measure.

e Let U C X be measurable. Then for y—almost all z € X,

N—oo

W] = lim %Jgn,] 7" (@)]

e More generally, let f : U — € be an L! function. Then for y—almost all
e X,

oo = g 35 sl

4.9 Ergodic Theorems

The Birkhoff Ergodic Theorem is the starting point of an entire branch of ergodic
theory; the study of ergodic averages.

There are many other ergodic theorems, describing the convergence of differ-
ent kinds of ergodic averages in different kinds of dynamical systems.

5 Stochastic Processes

5.1 Stochastic Processes

Stochastic processes are used to model the evolution of systems which do not
behave deterministically in time.

Some systems appear to behave “randomly” merely because we lack complete
information about their internal state or dynamics.

Others are genuinely random in their evolution.

In either case, the appropriate tool to model the system is a stochastic
process.




5.2 Stochastic Processes

In a dynamical system (X, T), each point x had a unique orbit through X :
T2, T Y (x), =, T(zx), T*(z), T*(x),...

Now, however, starting at z, there are many possible future paths the system
could travel through, and many possible past histories it could conceivably have
had.

Hence, in a stochastic process, we want to put a probability distribution on
the space of all possible orbits through z.

5.3 Stochastic Processes

So, we want a probability distribution on the space of all orbits in the space
X.

Every orbit corresponds to some particular “history” for the system. Intu-
itively, we are saying that some “histories” are more likely than others.

5.4 Stochastic Processes
An orbit in X is a Z—indexed sequence of points
-e.T 3, T2, -1, Lo, T1, T2, T3,-..

Thus, the space of all such possible orbits is XZ. This is called sequence
space .

Definition 5.1 Stochastic Process

Let X be a set. A stochastic process with statespace X is a probability
measure on X7,




5.5 Events as Subsets of Statespace

Intuitively, a subset of state space corresponds to an “event”.
For example, if the X is the weather statespace, then the event

corresponds to the set

‘ U:={x € X; It is raining in state « }. ‘

5.6 Causality and Physical Law

Science consists of trying to find physical laws which describe relationships of
cause and effect between events occuring at different times.

In other words, science is about discovering relationships of causality .

In a stochastic process, causality manifests through correlations in probability
between events occuring at different times.

5.7 Causality and Physical Law

Example:
Consider a physical law of the form:

If event A happens today, then
event B will happen tommorrow.

Mathematically:

The conditional probability of event B
happening at time 1, given that event A
happened at time 0, is 1.

5.8 Causality and Physical Law

As an equation:

Po [Battimel| Aattime0O| = 1.

10



If A and B are treated as subsets of the statespace X, then we can rewrite
this:

Po |T(z) e B| z€ Al = 1.

5.9 Nondeterministic Causality

In a deterministic setting, causal relationships are always of this simple, “all-

or-nothing” variety.
In real science, however, things are rarely so simple. Normally, scientific

“laws” take a more probabilistic form:

If event A happens today, then event B
is very likely to happen tommorrow.

Mathematically:

Po [T(x)eB| z€A|l > 1—¢

(where € is “small”) .

5.10 Nondeterministic Causality

Sometimes we may even have a weaker statement:

If event A happens today, then event B is
more likely to happen tommorrow.

which can be written mathematically:

Pe |T(z)eB| z€ Al > Pw[T(z) € B].

Stochastic processes thus define a kind of nondeterministic causality, via
causal relationships which are not completely deterministic in nature.

11



5.11 Nondeterministic Causality and the Philosophy of
Science

In the Philosophy of Science , there has long been dispute over how the scien-
tific desideratum of causality can be meaningful in a possibly nondeterministic
universe.

The emergence of quantum mechanics as a fundamentally nondeterministic
theory of nature has made this issue particularly pressing.

The nondeterministic causality found in stochastic processes can help resolve
this controversy.

5.12 The Shift Map

Intuitively, the “flow of time” in a stochastic process can be simulated in se-
quence space by the map which shifts each sequence “forward” by one time unit.
In other words, we define the map:

so that, if
T = (...33,3, T2, T_1, , I, T2, mg,...)

(where the “zeroth element” is in the box)
Then:

S (@) = (w2, 21, 30, 1) @2, 79,74 )

This is called the shift map .

5.13 Examples of Shifts

The sequences illustrated here takes its values on the Roman Alphabet, 4 :=
{A,B,C,...,Z}

The sequence @
..... 41-3|-2(-1|0]|1
..... G|V|J I Q|E|H K|X|Z]|...

[\
w
I
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The sequence S,y (@)
..... 41-3|-2|-1{0|1|2]|3]|4]...
..... V|J|Q|E|H|K|X|Z]|D]|..

The sequence S,,,° (@)

5.14 Stationary Stochastic Processes

A basic tenet of modern science is that physical laws are unchanging over time.

In a stochastic process, physical laws are represented by probability correla-
tions between events occuring at different times.

Thus, we would like these correlations to be unchanging over time.

We want the probability of a certain event, or sequence of events, to be
invariant under the action of the shift map .

Definition 5.2 Stationary Process

Let u be a probability measure on XZ, determining a stochastic process. The
stochastic process is called stationary if p is §,x —invariant. In other words,
for all measurable U C X7,

uU] = p[SnU].

5.15 Stationary Stochastic Processes as Measure Preserv-
ing Dynamical Systems

Any stationary stochastic process is thus a measure-preserving dynamical system

Suppose we have a stationary stochastic process on the statespace X. This
is a shift-invariant probability measure , j1, on the sequence space X%.

If we think of X% as a new statespace, then S, : X4 — X7 is a bijection,
and p is nvariant with respect to S,y .

Thus, (X%, pu; Sir) is a measure-preserving dynamical system.

13



5.16 Measure Preserving Dynamical Systems as Station-
ary Stochastic Processes

We can also go in the reverse direction.

Any measure preserving dynamical system can be represented as a stationary
stochastic process .

This is best understood through the concept of a time series .

6 Time Series

6.1 Time Series

Suppose we continuously observe some physical system, like the sun. Over time
we collect data. This data does not provide complete information about the
sun, but does provide us with some predictive capability .

For example, we might formulate a correlation like:

A fluctuation in the solar magnetic field
will be followed soon after by a burst of
solar radiation.

6.2 Time Series: Measurements as Functions

Mathematically, a measurement is like a function:
f: X —Y,
where:

e X is the statespace of the sun.

e Y is the statespace of our measurement apparatus.

Example: Measuring the luminosity of the sun is a function f : X —
[0, 00).

14



If the measurement provides full information about the sun, then f is an
injective map.

Normally our measurements provide only partial information, so f is many-
to-one .

6.3 Time Series

If we make a record of this data over time, we get an infinite sequence of data
points. This is called a time series .

Let (X,T) be a dynamical system.

Let f: X — Y be a measurement.

If the system is in state x € X at time zero, its orbit is

oy T73(2), T7%(2), T~ '(2),
z, T(z), T*(2), T*(x),-..

Thus, we would get the time series:

(T3 (@), F(T2(), f(T (),
f@), f(T(), f(T*=), f(T32)),...

6.4 Time Series

Thus, any initial state z € X induces a Z—indexed sequence of measurement
values in Y.
The measurement function f induces a map

F: X —Y?

where



is the time series of data generated by the state x.

6.5 Time Series as Stochastic Processes

Past measurements can help predict future measurements.

Example 6.1

The data points:

L F(T7 @), F(T7%(@), £ (T (2)

should help predict the value of f(z).
It seems that a time series is like a stochastic process.
Indeed it is.

6.6 Time Series as Stochastic Processes

To interpret a time series as a stochastic process, we need a probability measure
onYZ.

Let u be a invariant probability measure on the statespace X.

Use the function F to push forward? the measure u to a probability measure
vonYZ

For any subset U C Y4, define:

20f course, U and F must be measurable with respect to some suitably chosen sigma-
algebra on YZ.

16



6.7 Time Series as Dynamical Systems

Because p is T—invariant, the measure v is §,; —invariant.

Thus, the time series induces a stationary stochastic process.

But every stationary stochastic process is a measure preserving dynamical
system.

Thus, a time series is a measure preserving dynamical system.

6.8 Time Series as Representations

The function F : X — YZ is actually a homomorphism of measure-preserving
dynamical systems:

FoT = SiuoF

In other words, we have a commuting diagram:

x 5 x

YyZ — YZ
Sust

6.9 Time Series as Representations

The time series thus acts as a representation of the MPDS (X, u; T).

When is this representation “faithful”? When does it contain all information
about (X, u; T)?

In general, f is not injective; it does not pass “full information” about the
state of X.

F passes much more information: all past measurements ever made by f,
and all future measurements that ever will be made.

Is it possible that F' provides complete information about X7

17



6.10 Generating Time Series

Suppose that the chronological record of measurements provides total informa-
tion about the current state of the system.

Thus, the function F : X — YZ is injective®.

Thus, F is an isomorphism from the MPDS (X,u; T) to the MPDS
(YZ,v; Sip)-

We can completely reconstruct the dynamical system (X,T') from the prob-
ability distribution v on YZ2.

We say that the time series generates the dynamical system.

6.11 Partitions

If the space Y is finite, then a function f : X — Y is called a partition.

f cuts X up into finitely many “pieces”, and “labels” them with the different
elements of Y.

Think of Y as an “alphabet” of “letters”. Sequences in Y are thus
written with these letters.

If z € X, then the sequence of letters:

“words”

o F(T72(@), F(T7H(@), fla),

f(T@), f(T*=), f(T@=),...

is called the name of z.

6.12 Generating partitions

Let f: X — Y be a partition.
If the time series of f generates (X, u;T), then we say it is a generating
partition.

3Actually, F need only be “almost” injective, in the sense that, for any measurable sets
U,V C X,if F(U) = F(V), then U AV has measure zero.

18



Theorem 6.2 Krieger Generator Theorem

If (X, u; T) is a MPDS with finite entropy, then it has a generating partition.

O

Thus, any “nice” dynamical system is isomorphic to a stationary stochastic
process on a finite alphabet.

7 Information Theory

7.1 Information Theory

Information Theory was invented by Claude Shannon in 1948, to address the
problem of efficiently transmitting or encoding large amounts of data.
The idea of information theory is to take advantage of patterns, redundancies,
and statistical regularities in the data to find more efficient ways to encode it.
Modern compression algorithms, such as lhare, gzip, pkzip, are the prod-
ucts of information theory.

7.2 Information Theory

Let A be some alphabet of symbols. Suppose the cardinality of A is A.
A message of length N, written in the alphabet A, is a sequence of
elements of A. In other words, it is an element of AN .
There are AN possible such messages. Not all of them are equally likely
to be sent. Some may never be sent. So why use N symbols to encode each
message?

7.3 Encoding Bitstrings

Suppose A := {0, 1}. Thus, our messages are bit strings .

There are 2'% = 1024 bitstrings of length 10. But maybe only 400 of them
actually correspond to “real” messages.

Since 400 < 512 = 2%, we only need nine bits to encode each message.

19



7.4 English Words as strings of Letters

Suppose we encode English words using bit-strings.
The Roman Alphabet, including capital letters and punctuation, uses around
78 distinct symbols:

e 26 small letters

e 26 capital letters

e 10 digits

o [space],.;: “T1@#§%&*()-=+/{}[]i:

and 78 < 128 = 27, so we need 7 bits to encode each symbol.

7.5 English Sentences as strings of Words

The average length of an English word is 10 letters (include trailing spaces and
punctuation) . Thus, a message containing 100 words will probably be about
1000 letters long. It will thus require 7000 bits.

But the English language only has a vocabulary of around 60,000 words,
and 60,000 < 65,356 = 2'6.

Hence, we only really need 16 bits to encode each English word.

Imagine we assign a unique 16 bit code to each English word. We can
encode a message 100 words in length using only 1600 bits; a savings of almost
70%!

7.6 English Sentences with Syntax

First we broke our message into individual words. Now let’s break it into sen-
tences: strings of words ending in a period.

Most strings of words are impossible as sentences. For example, you would
never see:

20



Travel computer green walking two
hundred, friendly goes tomorrow.

as a sentence in English. Sentences must follow certain basic syntax rules.

7.7 English Sentences with Syntax

A simple English sentence is of the form:

‘ object phrase ‘ ‘ verb phrase ‘ ‘ subject phrase ‘

For example:
John ‘Walked slowly to‘ the store |

|Brad ||loves ||Janice |

A manifold ‘ a topological space ‘

7.8 English sentences with Syntax

English sentences can get much more complicated than this, with prepositional
clauses, conditional clauses, etc.

However, all English sentences follow certain rules of syntax governing how
the words can be assembled into sentences.

This is the subject of the field of Syntax in the science of Linguistics.

7.9 English Sentence with Syntax

Suppose the average word-length of an English sentence is 20 words.
With our previous encoding scheme, the average sentence will require

20 x 16 = 320
bits to encode. There are then 2320 “possible sentences”.

However, the vast majority of these are impossible , since they are syntacti-
cally nonsensical.

21



7.10 English Sentences with Syntax

If we assume? that only one in a million random sequences of words forms a
sentence. Then there are really only

actual English sentences of 20 words’ length.
If we assigned a unique bit-string to each one, then we only need 300 bits to
encode each one.

7.11 Correlation and Compression

These examples illustrate the key ideas of information theory:

1. By looking at statistical correlations between symbols over longerlengths
of time, we can achieve more efficient compression.

2. If we look at very long strings of symbols, we will find that most are either
impossible or “very, very, very unlikely”.
We can thus assign short codes to likely strings, long codes to very un-
likely strings, and no code to impossible strings.

3. However, a Law of Diminishing Returns applies to this strategy.

7.12 Stochastic Signal Sources

Claude Shannon mathematically modelled a message sender as a stochastic
signal source.

Imagine the signal source sending a continuous sequence of symbols in the
alphabet A. For example:

e An undending sequence of English sentences.

4Very generously!
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¢ An undending computer file.

e A time series from some measuring apparatus.

Of course, in “real life”, all signals end eventually. But we can model an
extremely long signal as being “approximately” endless.

7.13 Stochastic Signal Sources

The future signals sent by the signal source are at least partially predictable
from the past. For example

o If the first 200 pages of a book have been about Winston Churchill, the
next 200 pages will “probably” be about Winston Churchill.

e If a time series has been roughly periodic for the last 2 years, it will
“probably” be roughly periodic for the next two years.

A stochastic signal source is thus a stochastic process ; it is a probability
distribution on the space AZ of all possible messages in the alphabet A.

7.14 Stationary Stochastic Signal Sources

Also, assume that the probability correlations between symbols don’t change
over time. For example:

e English vocabulary and syntax are unchanging over time.
e The subject matter of a book is unchanging over the length of the book.

e The physical laws underlying some time series are unchanging over the
duration of the experiment.

Hence, we can model a signal source as a
stationary stochastic process.
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7.15 Entropy

Some signals are more compressible than others.

e A signal containing English prose is very compressible.

e A signal consisting of a sequence of successive random coin tosses is ex-
tremely uncompressible.

How can we measure how “compressible” a signal is, on average?

7.16 Entropy

Intuitively, for a fixed stochastic signal source X, we want to find a compres-
sion ratio ; a number h € [0,1], so that, we can say

The average uncompressed message of length
N, from the source X, can be compressed
into a code of length h.N.

Does such a constant ratio exist?
It does, and it is called the entropy of the stochastic process.

7.17 Shannon-MacMillan-Briemann Theorem

Let A be an alphabet of A letters, and let X be an ergodic stationary
stochastic process on A.

The Shannon-MacMillan-Briemann theorem (also called the Asymp-
totic Equipartition Theorem) characterises the entropy of the process X.

7.18 Shannon-MacMillan-Briemann Theorem

Let N be some “large” natural number, and let X, := AN be the set of all
words of length N in the alphabet. Thus G [Xn] = AN.

The SMB theorem says that, if IV is large enough, we can identify a very
small subset, ), of X', as words which are “quite likely” to appear.

All other words are “very unlikely”.
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Thus, when making our code, we only need to provide for a small population
of words.

7.19 Shannon-MacMillan-Briemann Theorem

Theorem 7.1

Let X have entropy h.
We can divide X into two subsets: X'y = Yy Ll Zp, so that:

N

1 Gu[Yn] = A"

2. All elements of Yn are roughly equally probable to appear; each having
probability approximately A(hiﬁ

3. The combined probability of all elements in Zy is €.

Here, € is a number which can be made arbitrarily small as N — oc.

7.20 Shannon-MacMaillan-Briemann Theorem

This theorem says that we can approach a compression ratio of h by using
block encoding with sufficiently long blocks.

If we code input blocks of length N, then we only need to use output blocks
of length h.N; for the “vast majority” of messages, this will be enough.

Very rarely, we will encounter an “exception” block (from Zx ) . So allocate
one code, @, of length h.N to mean “exception”. If Z is in Zp, then code Z
with the codeblock “Q, Z”.

7.21 Entropy

There are other ways to define entropy, but the SMB theorem is sufficient to
characterise it, so we will use it as the defining property.
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Definition 7.2 Entropy

Let X be an ergodic stochastic process on a finite alphabet A. Then
there is a unique number h € [0, 1] satisfying the statement of the SMB theorem.
This number is called the entropy of the process. We denote it by:

h(X)

8 Entropy
8.1 The Entropy of a MPDS

We can also talk about the entropy of a measure preserving dynamical

system .
Let (X,pu; T) be a MPDS. Let P be some partition of X. That is,

P: X — A

where A is some finite set .
Consider the time series induced by P and (X, u; T'). This is a stationary
stochastic process on A. Denote this process by (P, T).

8.2 The Entropy of an MPDS

The entropy of (P,T) tells us how “complex” the dynamics of (X, u; T') are.
If the behaviour of (X,u; T) is simple, then the past record of P—data
should be an excellent predictor of future behaviour. The stochastic process
will be predictable; its entropy will be low.
If (X, pu; T) is complex, then the past record of P—data is a poor predictor
of future behaviour. The stochastic process will be unpredictable; its entropy
will be high.
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8.3 The Entropy of an MPDS

The entropy of (P,T) depends on the choice of partition P. Different partitions
will may give us very different levels of predictability.

The supremum of the entropy given by any partitions should reveal the
“total complexity” of the MPDS (X, u; T).

Definition 8.1 Entropy

Let (X, u; T) be an MPDS. The entropy of (X, u; T) is defined:

WX, p; T) =
sup {h(P,T) ; P a partition of X}

8.4 Kolmogorov-Sinai Theorem

The Kolmogorov-Sinai theorem lets us actually compute the entropy of a MPDS.

Theorem 8.2 Kolmogorov-Sinai

Let (X, pu; T) be an MPDS, and let P be a partition of X.
If P is a generating partition , then

WX, T) = h(P,T).

8.5 Chaos

In smooth dynamical systems , one often observes a phenomenon called
chaos .

Loosely, a system is chaotic if very small perturbations to the state of the
system very rapidly grow into huge deviations in its behaviour.

Thus, points in statespace very close together can have orbits which rapidly
diverge.
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8.6 Chaos and Prediction

Chaos makes a dynamical system’s behaviour very hard to predict .

A very small measurement error can propagate into a wild innacuracy in
long-term predictions.

Very “crude” measurements, like those obtained through partitions , should
be especially sensitive to this unpredictability.

Is there a connection between chaos and entropy ?

8.7 Lyapunov Exponents

Let (M, T) be a smooth dynamical system
One way to measure the “chaos” of (M, T) is via Lyapunov Exponents.
Positive Lyapunov exponents correspond to dimensions in which T' “spreads
things apart”.
Negative exponents represent dimensions where 7' “mashes things together”.
Thus, any positive Lyapunov exponent suggests some degree of chaos .

8.8 Lyapunov Eigenspaces
For any z € M, let T= M be the tangent space of M at z, and let

D, [T]: 2 M — T’;(m)M
be the derivative of the map T at z.
For almost z, the space T M is a direct sum of Lyapunov eigenspaces,
which are ezpanded or contracted at different rates by the iterated action of T'.
The rates of expansion and contraction are the Lyapunov exponents.

8.9 Regular Points

x is a regular point if we have a decomposition:

oM = E.6E ©...0F.
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into Lyapunov eigenspaces , and a collection of Lyapunov exponents
A () > A (z) > ... > A, (2)
so that, for all m € [1..M], and any vector @ € E_,

lim llog HDJc [T"] ()

n—oo N

The set of all regular points will be denoted by A(M;T)

= A, (z).

8.10 Oseledec’s Theorem

Topologically speaking, the set A(M;T) is usually meager . However, Os-
oledec’s theorem says, from a measure-theory point of view, A(M;T) is more
than big enough.

Theorem 8.3 (Osoledec)

Let (M,T) be smooth dynamical system, with M compact. Then
A(M;T) has total measure . That is, for any T —invariant Radon probability
measure g on M,

u | AM;T| = 1.

8.11 The Ruelle-Pesin Theorem

Ruelle and Pesin succeeded in directly relating the geometric Lyapunov ex-
ponents to the measure-theoretic entropy of a smooth dynamical system.
For any regular point © € M, define

X@ = Y A()-Dn [E]
A; (2)>0

Intuitively, this measures the total rate of expansion at the point x.
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8.12 The Ruelle-Pesin Theorem

Theorem 8.4

Let (M, T) be a compact smooth dynamical system, and let  be any
T —invariant Radon measure.

1. (Ruelle)
h(M,p; T) < / X dp.
M

2. (Pesin) Further, if T is Holder C!, and p is absolutely continuous with
respect to the Lebesgue measure, then

h(M,pu; T) = / X dp.
M
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