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1 Background in Symbolic Dynamics

Let A be a finite alphabet of symbols. Usually, A = [0..4) = {0,1,..., A — 1}, which we
will sometimes identify with the group Z 4.

Let L be a lattice, such as Z, N, or Z”. Then A" is the set of all functions L — A; these
are called configurations. For example, if L = N, then a configuration is just an infinite
sequence a = [as|2,] = [ao, a1, a9, as, - . .].

1.1 Topology and Metric Structure

If A has the discrete topology, we can endow A" = H A with the corresponding Tychonoff
Lell

product topology. A" is then a compact, totally disconnected space.

Let U C L be some finite subset, and let .AY denote the set of all fragments of the form
W = [wyl,eyl]- For example, if L = Z or N, and U = [n..m], then an element of A" is a word
of the form w = [wy,, Wpi1, ..., W

If a € A", then a|, = [au|,cy] denotes the restriction of a to an element of AY. In
particular, for any R > 0, let [R = [-R..R]"” if L = ZP, and let [R = [0..R]" if L = N?.
Then CI is the restriction of a to a radius-R ‘neighbourhood’ of the origin. For example, if
L = Z, then ajp = [a_g,a1 R,-..,aR|.

Suppose L. = Z, and let U = [0..U]. Let w = [wq, wy, - -.,wy] be an element of AY; then
w determines a cylinder set:

4w = {aEAZ;aozwo, a1=w1,...,aU=wU}

(see Figure 1). More generally, if U C L is any finite subset, and w € A", the corresponding
cylinder set is defined:

awp> = {aEAH‘; a|U:w}
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Figure 1: The cylinder set <1101101t>; here, U = [0..5] and w = [101101].

The cylinder sets are clopen (both closed and open) in the Tychonoff topology, and form
a basis for it. Thus, to establish results about this topology, it is usually sufficient to prove
them for cylinder sets. For example, it is not hard to prove the following:

Lemma 1:

1. Let ¢ : AY — A be continuous (w.r.t. the discrete topology on A); then for any
a € A, ¢~{a} is a finite disjoint union of cylinder sets.

2. Let @ : .A]LD be continuous. Then the preimage of any cylinder set is a finite disjoint
union of cylinder sets.

Proof: Exercise 1 O

The Tychonoff topology is metrizable. If a,b € A", then the usual metric is defined:
d(a,b) = 27F where R =min{|{|; ap # bs}

Thus, a and b are ‘close’ if they agree in a large region around the origin of L.

As a consequence, a sequence al),a(® ... of configurations converges to a € A" if
elements of the sequence agree with a in larger and larger regions around the origin. For
example, if L = Z, then

n—ro0

( a® —— a) = ( a(")|M = a|p, where R, <=5 00 )

(see Figure 2).
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Figure 2: Convergence of configurations.
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Figure 3: The shift map. Here, L = Z? and v = (2, 1).
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a= [..0,1,2,1,2,0,0,0,0,1,20,0,1,2,1,21,2,0,0,..]

Figure 4: A topological Markov chain.

1.2 Shifts and Subshifts
If v € L, then the shift by v is the map o : AL@ defined:
c’(a) = b where by = apy,, VL EL

These maps are continuous with respect to the topology of A", and determines an action of
the monoid L on A"

If L = Z or N, then a configuration a € A" can be thought of as a bi-infinite ‘ticker
tape’, and the map o = o' just moves the ticker tape forward by one symbol. Thus, o can
be thought of as a sort of ‘time evolution’ operator, and (A%, &) is a compact topological
dynamical system; it is called the full shift, and is an example of a shift dynamical
system.

If L = Z, then o is invertible, meaning that information about the past is preserved;
(AZ o) is called the two-sided (or bilateral) shift. If L = N, then o is many-to-one,
meaning that information about the past is forgotten; (AY,a) is called the one-sided (or
unilateral) shift.

A subshift is any closed subset X C AY“ which is closed under all shifts —that is,
of(X) C X for any £ € L. Since X is compact, (X,o) is then a compact topological
dynamical system; the study of such dynamical systems is called symbolic dynamics.
Below are some important examples of subshifts. In what follows, “I” refers to either N or
Z. We will usually specify the case for L = Z, and leave the case L. = N for the reader.

Topological Markov Chains: Consider a directed graph whose vertices are the ele-
ments of A (Figure 4). Any infinite, directed path through this graph determines a se-

quence a = lag, a1, ay,...] in AY; likewise, a bi-infinite directed path defines a sequence
Here, if £ = (f1,...,€p), then |[¢| = sup |lg]-
defl..D]

A topologically equivalent metric can be defined using any decreasing function of R, and using any other
‘reasonable’ norm on L.
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0 if a=0
1 if a=1

®a) = 2
a 1 if a=2
a=1[..0,1,2,1,2,0,0,0,0,1,2,0,0,1,2,1,2,1,2,0,0,...]
®(a) =b =[...0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,1,1,1,1,0,0,...]

Figure 5: The even shift is an example of a sofic shift.

a=1[..,a_9,a_1,a9,a1,0a9,...] in AZ. For L = Z or N, let X C A" be the set of all
sequences which arise in this fashion; then X is a subshift of A".

Notice that the symbol a,, can only follow the symbol a,,_; if there is an edge a,,_; — a,
in the graph. Let M = [mab|a,b€A} be a matrix of 0’s and 1’s such that mg, = 1 if and only
if there is an edge a — b. Thus, symbol b can only follow the symbol a if mg,, = 1. If
we imagine M as a matrix of Boolean ‘transition probabilities’, then sequences in X can be
thought of as arising from the corresponding Markov chain; because of this, X is sometimes
called a topological Markov chain.

Subshifts of finite Type: Let U= {0,1}, and let 9t C AV be the set of all pairs (a, )
so that there is an edge a — b in the digraph. Then clearly, a € X if and only if, for any
¢ € L, the pair [ag, agy1] is an element of IN.

This is an example of a more general construction. Let U = [0..U], and let 9t C AY be
a set of admissable words on U. Imagine a sequence a € A" so that, for any ¢ € L, the

word [ag, Ggi1, ..., aperp] is an element of 9; such a sequence is called 9-admissable. The
set of all 9-admissable sequences is denoted (9) C A", and forms a subshift of finite
type (SFT).

The previous example shows that any topological Markov chain is a subshift of finite
type. Conversely, by ‘recoding’ each element of A" as an element of BY (where B = AY),
we can represent any subshift of finite type on A as a topological Markov chain over B. The
details are an exercise.

Sofic Shifts: Consider again a labeled digraph, but now suppose that we assign the same
label to more than one vertex, as in Figure 5. Again, any (bi)-infinite directed path through
the graph yields a sequence of symbols in AN (or AZ); this is an example of a sofic shift.

Formally, a sofic shift is the image ) = ®(X) of a subshift of finite type X C A" under
a cellular automaton ®.
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Figure 6: Some 2-dimensional subshifts of finite type, visualized as tilings.

For example, given any topological Markov chain X, and an endomorphism ¢ : A D,
we can apply ¢ componentwise to an element x € X to get an element y = ¢(x) € 9. For
example, the sofic shift in Figure 5 is obtained from the SFT in Figure 4 by applying the
map ¢ defined: ¢(0) =0 and ¢(1) = ¢(2) = 1. This is called the Even Shift, because any
contiguous block of 1’s must be of even length.

Multidimensional Subshifts of Finite Type: The definition of SFTs generalizes to
higher dimensional lattices. Let I = Z? or N, and let U C L be some finite subset. Let
M C AY be a set of admissable fragments on U; a configuration a € A" is called M-
admissable if for any ¢ € L, the fragment [as4y|,cy] is an element of 9. The set of all
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Figure 7: Another 2-dimensional subshift of finite type. (c) shows a defect.



9M-admissable sequences is again denoted (9M) C A", and is (multidimensional) subshift of
finite type.

For example, the set of all possible spacetime diagrams for a D-dimensional CA defines
a (D + 1)-dimensional subshift of finite type.

A one-dimensional SF'T can be recoded as a topological Markov chain, determined by a
transition matrix of 0’s and 1’s; in the same way, a D dimensional SFT can be recoded
as a ‘topological Markov mesh’, determined by D distinct transition matrices of 0’s and 1’s,
which encode the allowed transitions in each of the D directions of the lattice.

Another way to interpret this is in terms of tiling (Figures 6 and 7). If D = 2, we visualize
the symbols of the alphabet as square tiles; each tile’s edges are toothed or notched so as
to impose edge-matching constraints on tiles which can appear above, below, right, or left
of that tile. The transition matrices then encode these constraints. (If D > 3, visualize
the symbols as (hyper)cubical building blocks, whose (hyper)faces are grooved to introduce
‘face-matching’ constraints.)

The theory of one-dimensional SF'Ts is pretty complete, but higher dimensional SFTs
are very poorly understood. Indeed, most interesting questions can be shown to be formally
undecidable, meaning that there cannot exist any single, general-purpose theorem or algo-
rithm for answering them (although in specific cases, the answer may be available through
ad hoc methods). For example, consider the Nontriviality problem:

Given a domain U C L and a set MM C AY of allowed fragments, is the resulting SFT
(M) nonempty?

In one dimension, this problem is easy: to build a sequence inside X, we begin with a
single-symbol word, and extend this word by adding one symbol at a time, so that each
symbol is an admissable successor of the previous symbol. In higher dimensions, however,
building an X-admissable configuration is highly nontrivial. Figure 7 illustrates the problem:
it is possible to accidentally construct ‘defects’ which cannot be filled in any admissable
fashion. The Nontriviality Problem basically asks: is it possible to avoid such defects, or are
they inevitable?

Theorem 2: (Robinson) [26]
If D > 2, then the nontriviality problem is formally undecidable O

Further Reading

An excellent introduction to symbolic dynamics is [17]; another reference is [14]. The
connections between symbolic dynamics and formal languages are explored in [1]. The
extensive and beautiful theory of symbolic systems with additional algebraic structure is
exposited in [28]. Symbolic systems can be used to represent other topological dynamical



Figure 8: The Curtis-Hedlund-Lyndon theorem. In this case, L = Z? and U =

{(_1’0)7 (_1’_1); (Oal)’ (0’0)’ (0’_1); (171)’ (1’0)’ (1’_1)}'

systems via the thermodynamic formalism; approachable expositions can be found in [30, 19].

2 Cellular Automata

A cellular automaton (CA) is a continuous transformation @ : A > that commutes with
all shift maps —that is,
doot(a) = ofod(a)

for any ¢ € L and a € A". For example, clearly, all shift maps are cellular automata.

Proposition 3: (Curtis, Hedlund, Lyndon) [9]
D : AL@ is a cellular automaton if and only if there is some finite subset U C I and a
map ¢ : AY — A so that, for any a € A%, and any ¢ € L,

d(a), = ¢(3|U+z>

Proof: Combine Lemma 1 with the requirement that ® commutes with shifts. 0O

U can be thought of as a ‘neighbourhood of the origin’ in I, and ¢ is called the local
map associated with the cellular automaton. Because of this, cellular automata are thought
of as spatially extended dynamical systems governed by local interactions. Here, the ‘space’
is I, and the ‘local interactions’ are defined by the map ¢.

Example 4:



Figure 9: A spacetime diagram for the nearest neighbour XOR map. Here, °.

‘0.

(a)

(b)

(©)

<— Space —

Time

‘. represents a

Shift map: Suppose L. = Z, and let ® = o be the shift map. Then U = {0, 1}, and
¢ : A% — Ais just defined: ¢(ag,a1) = a;.

Nearest neighbour XOR: Let L. = Z and U = {-1,0,1}. Suppose A = Z,
regarded as a cyclic group, and define ¢(a_1,a9,a1) = a_1 +a; (mod 2). Figure 9
shows a spacetime diagram for this automaton.

Linear Cellular Automata: If A = Z 4 is regarded as a ring under multiplication
and addition, mod A, then a linear cellular automaton is one with a local rule of the
form:

oa) = Zcpuau (mod A)

uelU

where {¢, }ucu are constants in Z,4. Thus, for example, the Nearest Neighbour XOR
is a linear CA, with ¢_; = ¢; =1 and ¢y = 0.

John H. Conway’s Game of Life: Now L = Z? U = [-1..1] x [-1..1], and
A =1{0,1}; The local map is defined:

1 if ag=1 and Zau:3,4
0#uelU
p(a) = 1 if ap =0 and Z Gy = 3,
0#u€elU
0 otherwise.

Figure 10 shows some examples of ‘organisms’ from Life.
Majority Voter Automata: Let A = {0,1} and U = [-L..R]; let U = Card [U] =

R
R+ L+1. Forany a= (a_g,a1_r,...,ag) € AY, let #(a) = Z as be the number of
=1L
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Figure 10: Some ‘organisms’ from the Game of Life
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Figure 11: The nearest neighbour voter rule.
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Figure 12: The two-dimensional nearest neighbour voter converges to a ‘cow patch’ config-
uration.

1’s in a, and define the majority voter rule:
b(a) = 1 if #(a) > |U/2]
0 if #(a) < [U/2]
For example, if L = Z and U = {—1,0, 1}, then we get the one-dimensional nearest
neighbour voter rule (see Figure 11)

1 if#(a) > 1
d(a) = {0 if#ga;;

IfL =72%and U = [_11]2 = {(_L_l); (_150); (_171); (0,_1); (an)a (051)7
(1,-1); (1,0); (1,1)}, then we get the two-dimensional nearest neighbour voter

rule
1 if #(a) >4
d(a) = {0 if #(a) < 4

11



As Figure 12 illustrates, the 2D voter rule evolves initial configurations into ‘cow patch’
patterns, which is are stable fixed point for the dynamics.

Totalistic automata If 4 = {0,1,..., N}, then ® is totalistic if with the local map
¢ has the form:

¢(a) = o(#(a))

where #(a) = Zau, and ¢ : [0...NU] — A is some function.
u€lU

Thus, for example, voter models are totalistic.

Digital Multiplication: Let A = [0..K), where K = k; - ky. For every a € A, there

are thus unique ¢, € [0..k2) and r, € [0..k;) so that a = q, - k1 + 7.

If L = N, then an element a = [agaias...] can be thought of as the K-ary expansion
o0

of the number « € [0, 1] defined: o = Z a, K"

n=0

Let U = {0, 1}, and consider the local map:

¢(a0:a1) = kl'T(ao) + Q(al)

It is not hard to verify (Exercise 2) that, if b = ®(a), then b is the K-ary expansion
of the number § = k; -« (mod 1). In other words, the automaton ® ‘simulates’ the
action of multiplication-by-k; on the unit interval.

More generally, for any integer J such that J divides some power of K, it is possible
to construct a CA on AN which simulates multiplication-by-.J; see [2].

Particle-preserving CA: In particle-preserving cellular automata, the elements of
A play the roles of ‘particles’, which propagate through space and interact with one
another. We will give a specific example of such an automaton, due to Choffrut and
Culick [3, 5].

Here, A = {0, 1, 2a,2b, 3a, 3b,3c} and L. = Z. The rules are as follows:

(0) ...represents the ‘vacuum’ or background state.
(1) ...represents a ‘barrier’ particle with velocity 0.

(2) ...represents a ‘bouncing’ particle with velocity 1. The (2a) particle moves to the
right, until it encounters a (2b) or a (3) particle, at which point it ‘reflects’ and
becomes a (2b) particle, which propagates to the left, until it bounces off another
particle and becomes a (2a) again.

If a (2a) particle collides with a (1) particle, it is annihilated.

12
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Figure 13: A particle-preserving cellular automaton. Notice that the times at which the (2)
particle strikes the (1) form powers of two.

(3) ...represents a particle with velocity 1/3. The (3) particle cycles through three
states, (3a), (3b) and (3c). A (3a) particle moves one unit to the right, and
becomes a (3b). A (3b) particle remains where it is, and becomes (3c), and a
(3c) particle remains where it is, but becomes a (3a). Thus, the (3) particle
effectively moves one unit every three time intervals.

If a (3) particle collides with a (1) particle, it is annihilated.

Notice that, starting from the initial configuration in Figure 13, the times at which the
(2) particle strikes the (1) form powers of two.

One convenient way of visualizing cellular automata is through a spacetime diagrams. If
a € A" then for all £ € L and n € N, define a} = ®(a),. Then the D + 1-dimensional
matrix A = [a}[}§]] is called the spacetime diagram with initial conditions a. If L = Z
or N, then this is a 2-dimensional array such as in Figure 14. Sometimes the arrow of time
points upwards, and sometimes downwards. For example, Figure 9 is a spacetime diagram
for the Nearest Neighbour XOR automaton.

Cellular automata are approached from several directions:

1. Physics Perspective: Cellular automata are used to model spatially extended phys-
ical systems, in a manner analogous to partial differential equations. In a sense, CA

13
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Figure 14: A schematic spacetime diagram.

are ‘totally discretized’ PDEs. In a PDE, time, space, and the local state information
are all continuously parameterized, while in a CA, all these quantities are discrete.

For example, in particle-preserving CA such as Example 4h, the cellular automaton
simulates the interaction of particles. Alternately, the lattice elements (‘cells’) in a
CA can be thought of as immobile atoms of a crystal lattice; the local map ¢ then
describes the ‘physics’ by which these atoms interact.

. Computation Perspective: Each of ‘cells’ in a CA can be thought of as a miniature
computer, whose memory is so small that it is only capable of storing a single symbol
from the alphabet A. These computers interact with one another, and each executes an
identical program, changing its memory state in response to the states of its immediate
neighbours. The local map ¢ then describes the program executed by each cell. Thus, a
CA can be seen as a model of massively parallel computation. For example, the particle-
preserving CA of Example 4h can be seen as a machine for enumerating the powers
of two. Meanwhile, the CA in Example 4g performs an infinite-precision arithmetic
operation (multiplication by k).

. Symbolic Dynamics & Coding Perspective: If (A" o) is a dynamical system,
then & : AL@ is an endomorphism of this dynamical system. If a sequence a =
[...,a_1,0a9,0a1,...|is thought of as a ‘ticker tape’ containing some message, then ®(a)
is a way of ‘encoding’ this message, for the data compression, error detection, error
correction, or encryption. In this context, the linear cellular automata of Example 4c
are sometimes called convolutional encoders.

. Dynamical Systems Perspective: (A", ®) is a discrete-time topological dynami-
cal system, so it makes sense to try to characterize its fixed points, periodic points,

14
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Figure 15: A nearest-neighbour, one-dimensional CA.

attractors, invariant measures, etc.

If L =7 or N, then ® is called a one-dimensional cellular automaton. If . = Z,
then we can assume U = [~L..R], and the local map takes the form ¢ : A=L-Bl — A
Then @ is called a two-sided (or bilateral) CA, and L and R are its left radius and right
radius.

If L = N, then we can assume U = [0..R], and the local map takes the form ¢ : AL —
A. Then & is called a one-sided (or unilateral) CA, and R is its radius. To simplify the
discussion, we will sometimes treat one-sided CA as two-sided CA, with L = 0.

If R=L =1, then & is said to be a nearest neighbour CA (see Figure 15). Through
suitable recoding, any CA can be represented by a nearest neighbour CA. To be precise,
suppose L. = Z. Let U = Card[U] = R+ L + 1, and B = AY, and define the map
U A — B by

a_y-L a_rg, AR+1

A1-Uy-L a1-r1, AR+2
V) = |..., : , : , : ,

a_1-r1 agR AR+U

(This is called a higher power presentation. If L = N, set L = 0 and perform a similar
construction). Then it is not hard to verify:

Proposition 5:
1. U : A — B is a bijection, and ooV = WogVl.

2. If ®: AM@ is any cellular automaton, then there exists a unique cellular automaton
@ : BM D so that ®o ¥ = To d.

Thus, the dynamical system (A%, ®) is isomorphic to the dynamical system (B, ).

Proof: Exercise 3 O

Because of this, we will assume from now on that all one-dimensional CA are of nearest-
neighbour type, unless the contrary is explicitly specified.
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3 Surjectivity and Injectivity

We say @ is surjective if ®(AY) = AL, We say @ is finite-to-one if ® '{a} is a finite set
for any a € A",

The uniform measure is the probability measure 7 on A" so that, for any subset U C L
with Card [U], and any w € AY, the cylinder set <lwi> has probability A=Y.

Proposition 6:
1. If ® is finite-to-one, then it is surjective.

2. If ® is surjective, then the uniform measure is ®-invariant.

Proof: (1) See [17]. (2) See [9]. O

If ® is not surjective, then there are some configurations a € A" such that ®~'{a} = (.
These are sometimes (poetically) called garden-of-Eden configurations (since they can only
occur at the “beginning of time”).

Proposition 7:
1. The only injective cellular automata on AN are the trivial ones —ie. those of radius 0.

2. If & : A D is injective, then it is bijective, and ® ! is also a cellular automaton.

Proof: Exercise 4 O

Injectivity and surjectivity for one-dimensional CA are well-understood, and have been
completely characterized [27]. For higher dimensional CA, however, the problem is unsolv-
able...

Proposition 8: (J. Kari) [13]  Let L be a lattice of dimension D > 2. There exist
cellular automata on A" whose injectivity and/or surjectivity is formally undecidable. .00

4 Equicontinuity

Let (X, d) be a metric space. If z,y € X, write = ~yif d(z,y) < e.

16
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Figure 16: Equicontinuity.

Let f : XD be a continuous self-map. A point z € X is called a point of equiconti-
nuity of f if, given any y sufficiently close to z, the f-orbits of z and y will remain close
together for all time. Formally: for every € > 0, there is some § > 0 so that, for any y € X,

(v50)= (1@ @ forannen)

If X = A" and f = ® is a CA, then a configuration a € A" is a point of equicontinuity
if, for every r > 0, there is some R > 0 so that, for any b € A",

( b‘ = ay ) = ( @n(b)‘ = @N(a)| for all n € N)
For example, for a two-sided, one-dimensional CA, we have:

( [bea bl*Ra R bR] = [a*R, A1-R;-- -, U,R] ) — ( @n(b)’[_r'/‘] - (pN(a)h—T--T} foralln €N )
(1)

Heuristically speaking, (1) means that the word [a_g,a1_g,--.,a_,| constitutes an ‘impen-
etrable barrier’; no alteration of a to the left of this barrier can ever affect what happens
to the right of it. Likewise, [a,,ar41...,ag| is an impenetrable barrier, which blocks all

17



perturbations from the right. Hence, equicontinuity in a one-dimensional CA manifests as
the blocking of information-transmission through the lattice.

Let £q[®] C A" be the set of all points of equicontinuity for A¥. We say that ® is
equicontinuous if £¢q [®] = AV

Example 9:

(a) The identity map is equicontinuous, as is any constant map.

(b) If R=L = 0, then ® is a function of the form ®(a), = ¢(as), where ¢ : A — A is
some self-map. Such cellular automata are clearly equicontinuous.

CA which halt in finite time

A configuration a € A" is a fixed point of ® if ®(a) = a; the set of all fixed points is
denoted Fix[®]. We say ® halts in finite time if & (AY) = Fix [®] for some M. It follows
easily:

Lemma 10: If ® halts in finite time, then ® is equicontinuous.

Proof: Exercise 5 O

Eventual Periodicity
If P €N, then a € A" is a P-periodic point of ® if ®”(a) = a; the set of all such points
is denoted Per” [®]. Thus Per” [®] = Fix [@"].

Lemma 11: Fix[®] is a subshift of finite type.

For any P, Per” [®] is a subshift of finite type.

Proof: Exercise 6 O

® is called eventually periodic if there are some M, P € N so that, for any a € A",
®M(a) is P-periodic; thus ®™*F(a) = ®™(a), for any m > M. Equivalently, ®¥(AY) C
Per” [®].
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Proposition 12: Let ® be a one-dimensional CA. Then:

( ® is eventually periodic ) — ( ® is equicontinuous )

Proof: ‘=’: (first proof) Clearly, ® is eventually P-periodic iff ®¥ halts in finite time.
Thus, ®7 is equicontinuous; it follows from this that ® is equicontinous.

(second proof) Let a € AY, and let a? = ®"(a)y, for n € N . Since @ is eventually

periodic, the sequence [a, ay, a3 . ..] is wholly determined by its first N = M + P elements.
But the elements [af, ..., al’], in turn, are determined by CI where W =U+... 4+ U.
\\ ————

N
For example, if U =[1]= {—1,0,1}, then W = [-N...N]; thus, [ad, a},a?...] is determined

by [a-n,a1-N,-..,an]

By shift-invariance, this means that, for any ¢ € L, the sequence a} = ®"(a),, for
n € Z, is entirely determined by [as—n, @14¢-N, - - -, Gern]|. Thus, for any r, the sequence
®(a) <I>2(a)|, <I>3(a)‘, ... is determined by [a_g,a; g,-..,ag], where R =7+ N. In

other words, if b|@ then ®"(a)| = ®"(a)| for alln € N.

=g (@ (&

‘“=": Find R > 0 so that, for any a,b € A", if a|p = b|p, then af =5 foralln € N,

Let w = am, and let W = *w>® = [...www...|. It follows that, for any b € <wp>,
bf = wg for alln € N.

Claim 1: The sequence {w}}$ , is eventually periodic.

Thus, there is some M,, and P,, so that w{"t™ = wj for any m > M,,. Hence by ™ = by’
for any b € <w>> and m > M,,.

Now define

M = max M,, and P=Icm P,
weAB we AR

Then for any b € A¥, and m > M, we have bJ*** = b7. For any £ € L, we can replace
b by ¢ = af(b), to alsoget b]"t" = " = " = b*. Hence, ®™+F(b) = ®™(b) for any
b € A* and any m > M. O

CA that eventually halt
Note that A D ®(A") > ®%(A") O .... The eventual image of @ is defined:

(I)oo(A]L) — m @n(AL)
n=1
In other words, ®>®(A") is the global attracting set for ®.
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Figure 17: The Maass-Boyle automaton

Lemma 13: (Lyman Hurd) [11, 12]
Let X C A" be an SFT, and ® a CA.
If @ (AY) = X, then there is some N so that ®" (AY) = X.

Proof: Exercise 7 O

Note that Fix [®] C ®*°(A"); say that ® eventually halts if ®>°(A") = Fix[®]. The
set X = Fix [®] is a subshift of finite type, called the halting set for &.

Proposition 14: If & eventually halts, then it halts in finite time, and ® is equicon-
tinuous.

Proof: Combine Lemma 13 with Lemma 11 on page 18 and Lemma 10 on page 18. _O

When is an SFT X be the halting sets of some CA? In one dimension, the answer is
known.

A configuration ¢ € A" is spatially constant if ¢, = a for all £ € L, where a € A is
some fixed element. Notice that, if ® is a CA, and c is a constant configuration, then ®(c)
is also constant.

Theorem 15: (Mike Boyle; Alejandro Maass) [18]
If X C A% is an SFT, then X is the halting set of a cellular automaton if and only if:

e X has a spatially constant configuration.
e X is topologically mixing.

Proof: By Hurd’s lemma, X is the eventual image of ® iff ®" (A") = X for some finite
L

N. By replacing ® with ®" we can assume WOLOG that ®(A X.
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‘—": Since A" contains constant configurations, X must, also. Likewise, since A" is
topologically mixing, X must also be mixing.

‘=": Suppose that X is a topological Markov chain. Let X have mixing radius R and
constant configuration ¢ = |...cccc. . ].

For any any vy, z € X, topological mixing implies that there is a transition word w(y, z) =
[wiws . .. wg| so that the fragment [ywiws ... wgz] is X-admissable.

We define the local map ¢ : AlZ#~1E+1] s A so that, for any a in AE-1-FH 0 g(a) is
given by the following rules (see Figure 17):

1. If a is X-admissable at r for every r € [R], then ¢(a) = aq.

2. If a is X-inadmissable at 0, then ¢(a) = c.

3. If ais X-admissable at 0, but inadmissable at some ng € [—R..0) and some n; € (0..R],
then ¢(a) = c.

4. If a is X-admissable for every r € [—n..R], but inadmissable at —n, where n > 0,
then ¢(a) = wy,, where m = R —n and w = [wyws ... wg| = wW(c, an).

5. If a is X-admissable for every r € [—R..n], but inadmissable at n, where n > 0, then
¢(a) = wy,, where m = R —n and w = [wyws . .. wg| = W(a_m, ¢).

O

Remark: An extension of this result to higher dimensions has recently been announced
by Sam Lightwood [16].

5 Partial Equicontinuity

® is partially equicontinuous if () # £q [®] # AL, For example, if ® contains at a stable
fixed (or periodic) point a and an unstable fixed (or periodic) point b, then it is partially
equicontinuous, because a € £¢[®], but b & ¢ [P].

Example 16:
(a) Contagion: Let A= {0,1}and U= [-1..1] C L = Z, and define
p(a_1,a0,a1) =a_1-ap-a

Then °0%®° = (...00000...) is a stable fixed point, but *1*° = (...11111...) is
unstable, because it can be ‘invaded’ by 0% (see Figure 18).
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Figure 18: The contagion rule.

(b) Voter rules: The majority voter rules from Example 4e are partially equicontinuous.
To see this, consider the one-dimensional nearest neighbour voter model. Notice that
the sequence °1*° = (...11111...) is a stable fixed point, as is the point °0®° =
(...00000...). Hence, both are points of equicontinuity for the system. For the nearest
neighbour voter model, the point °(01)*® = (...0101010101...) is a 2-periodic point,
but is unstable, because it can be ‘invaded’ from either side by either *1°° or °0*®
(see Figure 11). Hence, it is not a point of equicontinuity. For other, longer range
voter models, other unstable points can be found.

Recall that voter rules are totalistic.

Question: What are the equicontinuity properties of other totalistic cellular automata?

6 Positive Expansiveness

Let (X, d) be a metric space, and let f : X, D be a continuous self-map. The dynamical
system (X, f) is positively expansive if any two points in X, no matter how close, even-
tually diverge in their trajectories. Formally, there is some expansion constant ¢ > 0 so

that, for any two z,y € X, there is some n € N such that d (f”(a:), f"(y)) > €.

If you were trying to ‘predict’ the future trajectory of x, this means that any initial
measurement error (mistaking y for x), no matter how small, would eventually blow up to
produce an error of magnitude at least e.

If X = A" and f = ® is a cellular automaton, then ® is positively expansive if there is
some expansion radius r > 0 so that, for any a, b € A", there is some n € N with

(@), # V(b

Heuristically speaking, this means that any difference between a and b, no matter how far
away from the origin of I, will eventually ‘propagate’ through IL until it creates a disturbance
within distance r of the origin. Thus, positive expansiveness manifests in CA as an ability
for ‘information’ to inexorably propagate through the space.
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Figure 19: Positive expansiveness.

Lemma 17: If ® is a one-sided CA with radius R, then r < R.
If ® is a two-sided CA with left radius L and right radius R, then r < min{L, R}.

Proof: Exercise 8 O

Here are some examples:

6.1 Linear CA

Suppose A = Z/,, regarded as a cyclic group, and recall the nearest neighbour XOR
automaton, with local map ¢(a_1,ap,a;) = a1 +a; (mod 2). Figure 9 on page 9 shows
how information propagates through the lattice, and suggests that this map is expansive.

More generally, suppose A = Z/y, as a cyclic group. A linear cellular automaton
(LCA) is one with a local map of the form:

R
¢(a-r,a1-1,...,ar) = Z cear  (mod N) (2)

=—
where c_p,...,cg € Z/y are constants. If c_; and c, g are relatively prime to N, then such

a cellular automaton will be positively expansive (Exercise 9).
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6.2 Multiplicative CA

Suppose (A, -) is some (nonabelian) group, and consider a cellular automaton with local map

dla_y1,a0,a1) = a*;-(c'-ag-c)-ar’ (3)

Assuming A has no elements of order 2, this automaton is positively expansive.

More generally, let ug, u1,...,uy € U = [-L..R], and let ¢y, ¢1,...,0; € End[A] be
group endomorphisms of A. A multiplicative cellular automaton is one with a local
map of the form

(b(afL; ai—L,-- -,CLR) = wo(auo) : <P1(au1) . --QOJ(GUJ)'

For example, the MCA (3) is recovered by setting ug = u; = —1, uy = 0, and ug = uy =
. = un42 = 1, where A is a group of order N (so that ™! = a™! for any a € A). The
endomorphisms ¢; are the identity maps for all j # 2, and 2(a) =c¢'-a-c
If (A, +) was a cyclic group, then a the LCA (2) is obtained by defining J = L+ R+ 1,
and defining u; = j — L and ¢j(a) =c¢;_r-a for all j € [1...J].
Suppose that u; = —L and u; = R, and no other u;, take on either value; if ¢; and ¢; are
automorphisms of A, then ® is positively expansive (Exercise 10).

6.3 Permutative CA

If b e AR and a € A, then let a.b denote the element [a, b;_1,bo_p, ..., bg], and define
op : A—> A by:
¢v(a) = ¢(a.b)
The cellular automaton @ is called left-permutative if ¢y, : A D is a bijection for every
b € A-L-El For example, the LCA (2) is left-permutative iff c_;, is relatively prime to N.
Likewise, if b € A=) and c € A, then let b.c denote the element [b_7,b_1,...,bz_1,c].
If ¢ : A-2+Bl —5 Ais a local map define ¢ : A — A by:

b(c) = ¢(b.c)

Then @ is right-permutative if ,¢ : A D is a bijection for every b € A=4®). For example,
the LCA (2) is right-permutative iff cg is relatively prime to N.

If L = Z, then ® is bipermutative if it is both left- and right-permutative. For example,
the preceeding examples of positively expansive LCA and MCA are all bipermutative.

If L =N, then ® is called bipermutative if it is right-permutative. We will develop
the theory of bipermutative automata below for the case . = Z; the case . = N is similar.
Note that, when . = N, the correct analog of bipermutativity is right-permutativity; the
consequences of left-permutativity for one-sided automata are much different.

Any bipermutative cellular automaton is positively expansive. Indeed, not only do dis-
turbances propagate inexorably through space, but they do so with constant speed. To be
precise, it is not hard to prove:
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Figure 20: The brickwall decomposition.

Lemma 18: LetL =7

e Suppose a‘(_oo__nR) = b|(_oo__nR), but a,r # bpr. If ® is right-permutative, then
<I>”(a)0 ?é (D”(b)o
e Likewise, if a|(_n_L__oo) = b|(_nL o)’ but a_,;, # b_,1, and ® is left-permutative, then

<I>"(a)0 ?é on (b)o

Proof: Exercise 11 O

Multiplicative CA provide natural examples of bipermutative CA. Conversely, any per-

mutative CA can be recoded to be ‘quasimultiplicative’. For simplicity, suppose L = R = 1.
Let a € A%, and let a? = ®"(a), for any z € Z and n € N. Let A = [a?[’5)] be the

2z 12€Z

space-time diagram for a. Suppose we decompose A into two-element blocks as in Figure
20. This brickwall decomposition represents a recoding of ® as a cellular automaton over
the alphabet B = A? as follows:

Define the maps ¥ : A* — B% and = : A — B” by

=[] [ (2]
wi =@ = L[] (] T

S

Intuitively, the brickwall decomposition of A is obtained by applying ¥ and = to alternate
rows of A.

25



Now, define ¢ : B2 — B by

(WD - Ty

and let @ : B% > be the corresponding cellular automaton. Then for any a € A%, we have:
doU(a) = Eod(a)

Via the brickwall recoding, we can represent ® by ;5 We then interpret 5 as a binary operator
x on B, defined a x b = ¢(a,b).

Let B be a set with binary operator x. The pair (B, x) is called a loop if x-multiplication
is left- and right-invertible; in other words, given any b and d in B, there is a unique a so
that a x b = d, and a unique c so that bxc = d.

The multiplication table for (B, x) is just the B x B-indexed matrix M = [mas|, 4e5]
where my, = axb. A B x B-indexed matrix M of elements in B is called a Latin square if
every element of B appears exactly once in each row of M and exactly once in each column
of M. For example, the following is a Latin Square on B = {0, 1, 2, 3}.

=W N O N
N —=| O W W

Proposition 19: Let ® : A — A be an arbitrary one-dimensional CA, and let ® be
the brickwall recoding of ®, with local map ¢ : B> — B, defining binary operator x. Then
the following are equivalent:

1. ® is bipermutative.

2. ®is bipermutative.

3. (B,x) is a loop.

4. The multiplication table of (B,*) is a Latin square.

Proof: Exercise 12 O
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Figure 21: The conjugacy between a bipermutative CA and the full shift.

In this sense, every permutative CA is a sort of ‘generalized multiplicative cellular au-
tomaton’. Note that (B,*) is not necessarily associative. Indeed, it is not hard to show:

Any associative finite loop must actually be a group. (Exercise 13)

It is easy to find loops which are not groups; simply construct a Latin square. The
number of such loops grows quickly with the size of B:

If Card [B] = B, then the number of B x B Latin squares is B! = B!- (B —1)!- (B —2)!-
...2-1. (Exercise 14)

Permutative cellular automata were first studied by Hedlund [9], who proved the follow-
ing:

Proposition 20: [9] Let ® : A* D be a one-dimensional, bipermutative cellular au-
tomaton with local map ¢ : Al72Bl — A, Let B = A1) Then (A%, ®) is topologically
conjugate to the one-sided shift (BY, o), via the map ¥ : AZ —s BY defined:

Ua) = [a| st 2@, @ P@| ]

Proof: For simplicity, suppose that L = R = 1 so that B = A1"10} = A2 Consider the
fragmentary spacetime diagram shown in Figure 21. The horizontal shaded strip represents
an element a € A%, and the vertical shaded strip is the image ¥(a) € B".

We claim that the map ¥ from A” to BY is bijective. We will leave the details as an
exercise, but sketch the general idea here.
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First, note that, because of right-permutativity, the elements a$ and a] uniquely deter-
mine al; similarly, by left-permutativity, a§ and af uniquely determine a” ;. Proceeding
inductively in this fashion, it is possible to reconstruct the entire triangle in the picture,
just from the data in the vertical shaded strip. In particular, it is possible to recon-
struct the horizontal shaded strip from the vertical shaded strip in a unique fashion. This

demonstrates two things:

1. The vertical shaded strip (that is, ¥(a)) uniquely determines the horizontal strip
(that is, a); hence, ¥ is injective.

2. Any possible choice of vertical strip can be used to build a horizontal preimage in
this manner. Hence, ¥ is surjective.

To see that ¥ is a conjugacy of ® with o, notice that applying ¥ to a is equivalent to
shifting the whole picture downwards by one row; this, in turn, is equivalent to applying
the shift operator o to the central shaded column. O

Corollary 21: Let ® be a bipermutative cellular automaton. Then the dynamical
system (AZ, ®) is topologically transitive and mixing. The uniformly distributed measure
on A? is ®-invariant, and the measurable system (A%, ®, 1) is measurable isomorphic to a
Bernoulli shift. O

Further reading:

If A is a group, then multiplicative CA over A are amenable to analysis via group-theoretic
methods. For example, if A4 is abelian, we can apply harmonic analysis [20, 21] to study
the evolution of measures on AY. Even if A is nonabelian, we can still use the structure
theory of A to yield a structural decomposition [25] of MCA on A%, which can be applied
to measurable asymptotics. Algebraic methods can also be used to gauge the computational
complexity the ‘prediction problem’ for such automata [23]. However, when A is an arbitrary
(nonassociative) loop, these methods break down very quickly, and little is known. The
ergodic properties of general bipermutative CA were explored by Shereshevsky [29].

A theory very similar to the one above can be developed for right-permutative CA on
AN. However, left-permutative CA on AY are quite different; in general, they may not even
be expansive. One family of such automata is studied in [4].
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6.4 Quasipermutative CA

J

Let B be a set with binary operator x. We call (B,x) a quasiloop if B = |_| B, where,
7j=1

Bi,...,B; are x-closed subsets, and for each j, (B;,%) is a loop. For example, suppose

B=4{0,1,...,6}, and x has multiplication table:

DD OO WO N —

DD DN | D W W

DU | OO O O =

U O OO O D O

| O x| WD | O *
DO O DN WO
| OO | W N O N
= O O OOy O Of Ot

In this case, the subsets B; = {0,1,2,3} and By = {4, 5,6} are loops, but B itself is not.

If ® is a one-dimensional cellular automaton, we can perform a brickwall coding to
represent ® via a binary operator (B,%). We say ® is quasipermutative if (B,x) is a
quasiloop.

Given some a € B”, we divide Z up into domains I = [n...ng11), where ... < n_; <
ng < my < ..., so that a; belong to the same subalphabet B;, for all i € I;. Within each
domain, the cellular automaton looks like a permutative one; in particular, information
propagates at a constant speed, until it reaches a domain boundary. Information may or
may not be able to propagate across boundaries, depending upon the interaction between
the left-hand subalphabet and the right-hand subalphabet. Also, the domains themselves
may migrate over time, as one domain ‘conquers territory’ from another. Eloranta [7, 6]
showed that, under some conditons the boundaries will move with uniform speed, while
under others, they will perform random walks.

Question: What are the expansiveness properties of quasipermutative CA?

6.5 Nonpermutative Expansive Cellular Automata:

Recall the Digital multiplier automata of Example 4g. In that example, A = [0..K),
where K = ky - ky, and @ : AND is the automaton implementing multiplication-by-k; on
the K-ary representations of numbers in [0,1]. Blanchard and Maass [8] have proved the
following:
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Proposition 22: ( ® is positively expansive ) — ( ko divides some integer power of k;. )

6.6 Column Factors

Fix W > 0, and let B = A". The column factor of width W is the map Hy : A — BY
defined:
Ha) = |apgy 2@ P @) @) -]

For example, if L. = Z, then

Hw(a) = @)y P @) @@y

[a| W W]’ —W. W] —W. W]

The image Xy [®] = Hw (AY) is called the column shift of width W, and is a subshift of
BY. Tt is not hard to show:
Hyo® = ocoHy

Thus, (Zw [®], o) is a factor of (A%, ®). It is not hard to show:

Proposition 23: The following are equivalent:
1. ® is positively expansive, with expansion factor r.
2. H, is injective.

3. (£,[®],0) and (A", ®) are isomorphic, as topological dynamical systems, via the map

H,.

Proof: Exercise 152. O

If @ is a bipermutative one-dimensional CA, then this result just restates Proposition 20.
However, Proposition 20 goes further, in stating:

If ® is bipermutative, then X [®] = BY is the full shift.
If ® is expansive, but not permutative, what sort of subshift is X g [®]?

Theorem 24: If® is a one-dimensional, positively expansive CA, with expansion radius
r. Then X, [®] is a subshift of finite type. Furthermore

1. (Blanchard, Maass) If ® is one-sided (ie. L = N), then X, [®] is mixing. [8]

2. (Nasu, Kirka) if ® is two-sided (ie. . = Z), then X, [®] is conjugate to a full shift.
24, 15] O

2This is actually a special case of a result of Ruelle, true for any expansive topological dynamical system
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Corollary 25: If ® is expansive, then it is surjective, and the uniform measure is
®-invariant.

Proof: Since it is conjugate to a subshift of finite-type, ® is finite-to-one; this guarantees
that it is surjective onto .A"“ by Proposition 6 on page 16. O

Remark: The result of Nasu and Kiirka for two-sided automata is stronger than that of
Blanchard and Maass for one-sided, as it asserts conjugacy with the full shift; one wonders
whether this can be extended to the one-sided case. Boyle, Fiebig and Fiebig [22] have a
counterexample: an expansive one-sided CA such that Xy [®] is not conjugate to a full shift.

Question: Can any subshift of finite type appear as a column shift of some expansive one-
stded cellular automaton? If not, what are necessary conditions?

7 Sensitivity

Let (X, d) be a metric space, and let f : X, D be a continuous self-map. The dynamical
system (X, f) is sensitive to initial conditions (or sensitive, for short) if there is some

€ > 0 so that, for any # € X and any 4, there is some y > z such that d (f"(:c), f"(y)) > €

for some n € N.
A cellular automaton ® is sensitive if there is some r > 0 such that, for any a € A", and

any R > 0, there is some b € A" such that Ay = b , but % (a)ly # 2"(b)

[~ R.R]
for some n € N.
Example 26:
(a) Any positively expansive CA is sensitive.
(b) The shift map ® = o is sensitive, but not expansive. If a| - =b then the

[—N..00) [-N..00)’
o-orbits of a and b will converge; however, if instead a,, # b, for all n > N, then their
o-orbits will diverge, even if a|[_ NN = b|[_ N.N] for some large N.

(¢) Suppose @ is right-permutative, but not left-permutative. For example, suppose ® is
the linear CA with local map ¢(ag,a1) = ag + a;. Then ® is sensitive.

(d) Let @ : A > be an expansive CA, and let ¥ : B“ D be equicontinuous. Let C = AxB;
then there is a canonical identification C* =2 A% x B*. Let ==& x ¥ : o C"; then =
is a sensitive cellular automaton.
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Clearly, if a topological dynamical system (X, f) is sensitive, then £¢[X, f] must be
empty. The converse is not true, in general, but we will see that it does hold for one-
dimensional cellular automata.

Recall that a subset of a topological space is comeager if it is a countable intersection
of dense, open sets. A probability measure on A™ has full support if it assigns nonzero
probability to every cylinder set.

Proposition 27: Let ® be a one-dimensional cellular automaton. If ® is not sensitive,

then £q[®] is a comeager set, and, if u is any probability measure on A" with full support,
then p (Eq[®]) = 1.

Proof: Since ® is not sensitive, there is some a € A“ and some R > 0 so that, if

=3, then for any b € [w], (P”(b)‘ = @”(a)‘ for all n € N.

[-1..1] [-1.1]

Now, for any N, let &y be the set of all b € A" so that b|[n = wand b‘ m =

—R.n+R] —R..m+R]

w for some m < —N and some m > N. Let ¢, = ﬂ €n. The following facts are not
N=1
hard to verify:

¢y is open and dense.

Thus, €, is comeager.

If i has full support, then u(€y) = 1.
Hence, pu(€y) = 1.

Ifb € €y, and c‘[
for alln € N.

AR

~N-R.N+R] _ b|[—N—R...N+R] , then q>n(c)|[—N—1...N+1] - (I)n(b)|[—N—1...N+1]

6. Hence, any element of € is a point of equicontinuity.

Thus £q [®] D €4 is comeager and of measure 1. O

Remark: Note that the one-dimensional nature of the automaton is crucial to this proof.

Corollary 28: Kurka’s Topological Classification
Every one-dimensional cellular automata belongs to exactly one of the following four
classes:

(E1) Equicontinuous.

(E2) Partially equicontinuous.
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(E3) Sensitive, but not positively expansive.

(E4) Positively expansive O

8

Formal Languages

If A is a finite alphabet, let A™ denote all words of length n, and let A* = U A" be the

n=1

set of all finite words. A formal language is some subset of A*.

Example 29:

(a)

(b)

(©)

If L =ZorN, and X C A" is a subshift, then the language of X is the set

LX) = {w e w= a|[n._m] for some x € X and n,m € ]L}

For example, if X is a subshift of finite type or sofic shift, then £(X) consists of all
words w = [wiws ... wy] such that wy — wy — ... — wy is the labeling of some finite
directed path in the labeled digraph defining X.

In particular, if @ is a cellular automaton, and Xy, [®] is a column shift of ® (see §6.6),
then the corresponding column language of @ is defined: Ly [®] = L (2w [®]) C B,
where B = AW,

Powers of Two: Let A = {0,1,2}, and let £ C A* be the set of all words such
that any two consecutive instances of symbol ‘2’ are separated by a distance that
is a power of 2. Thus, ‘012 00 2 1010 2 11011011 2 10 2’ is an element of L, but
‘012 010 2 111010 2 110011 2 110 2’ is not.

Let A ={0,1}, and let £ C A* be the set of all words [wow;w, . .. wy] so that, ifwy | =
1 and wy = 0, then w, = 0 for all n € [N..M], where M = min{2N, L}. Thus, for
example, ‘111 000 11 00000000 1 0000000000000000000 1’ is in £, but ‘111 000 11 000 1’
is not.

Arithmetic Expressions: Let A = {(,),+,e,a,b,¢,d}, and let M be the set of all
valid ‘arithmetic expressions’ in the variables a, b, ¢, d, with the operators + and e, and
with “(” and “)” playing the role of brackets. Thus, “(a+b) e (c+aed)” is an element
of M, but “((ab+)ce)(” is not. In particular, note that, in any element of M, each
“(” symbol must be matched by a “)”.
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One way to generate valid elements of M is through a substitution procedure, as follows.
Let x represent an indeterminate expression, and consider the following substitution

rules:

(0) r = (z) (4) r = b

(1) r = x4z (5) r = c

(2) T = zecr (6) r = d

(3) r = a
For example, we obtain “(a + b) @ (c + a @ d)” through the following sequence of sub-
stitutions:

r =2 ger =20, (x) o (x) L O (x +x)o{x+x)

A (r+z)e(z+z0I) A (a+zx)e(z+zox)

% (a+b)e(rx+ o) % (a+b)ye{c+rex)

U (a+b)e{ct+aex) LN (a+b)ye{c+aed)
Beginning with the symbol z, any valid element of M can be constructed in this
manner.

8.1 Phrase Structure Grammars

Formal languages are usually arise through some computational process. One way to spec-
ify a formal language is via a phrase structure grammar (PSG). A PSG is a 4-tuple
(V,A,S8,7). Here, V is a set of symbols called variables, A is a set of symbols called
terminals, and S is a collection of substitution rules of the form

a—b

where a,b € (VU .A)*. Finally Z is some initial element of V. The language £ is then the
set of all elements of A* which can be obtained by any chain of substitution rules, beginning
from 7.

For example, the previous example gave a phrase structure grammar for the language
M. In this case, V = {z}, A= {(,),+,,a,b,¢,d}, S is the set of rules (0) to (6) indicated
above, and Z = z is the initial state.

We can restrict the complexity of £ by placing restrictions on the sort of substitutions
allowed in its PSG. This leads the Chomsky Heirarchy of linguistic complexity:

(Reg) Regular languages.
(CFL) Context-Free languages.
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(CSL) Context-Sensitive languages.

(Phr) Phrase Structure languages.

We will also introduce the subclass (BP) of bounded periodic languages®. We then
have: (BP) C (Reg) C (CFL) C (CSL) C (Phr) C P(A*), and each inclusion is proper.

Bounded Periodic languages: The language £ is bounded periodic if there are M, P €
N so that, for any w = [wjws ... wy] € L, if N > P+ M, then wy,,p = wy, for all m > M.
In other words, every word in £ longer than M + P has the structure w = uvvv...v, where
u is a ‘prefix’ of length at most M, and v is a word of length P.

Regular languages ...are those whose substitution rules must all take the form v = av’
or v = a, where v,v' €V and a € A*.

Example: Let X C A” be a subshift. Then it is not hard to show:
( L(X) is regular ) = ( X is sofic )

Thus, in a certain sense, the computational theory of regular languages is ‘equivalent’ to the
symbolic dynamical theory of sofic shifts.

Context-Free languages ...are those whose substitution rules must all take the form
v = X where v € V and x is some finite word in A LI V.

For example, the ‘arithmetic expression’ language M of Example 29f is context-free, as
can be seen from the substitution scheme described in that example.

Context-Sensitive languages ...are those whose substitution rules must all take the form
xvX = XxyX where v € V and X,y are finite words in AL V.

For example, the ‘powers-of-two’ language from Example 29d, is context-sensitive (see
[10], Example 9.5, p. 224), as is Example 29e.

Phrase Structure languages ...are languages arising from any phrase structure gram-
mar.

3These are not officially part of the Chomsky heirarchy.
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Figure 22: A finite state machine. Here, S = {0, 1,2}, while Z = O = {0, 1}.

8.2 Machine Models

Various mathematical models of computation exist, with different levels of computational
power. The four classes we will discuss, in increasing order of computational power, are:

(FSM) Finite state machines.
(Stack) Stack machines.
(LBM) Linear bounded machines.

Turing) Turing machines.
g g

Finite State Machines

A finite state machine (FSM) has a finite set of internal states S, finite alphabets of
input symbols Z and output symbols O, and a transition rule of the form

P:ITxS—85x0

If the machine begins in state sy, and receives the input stream ig,41,%9,...,45_1, then
it proceeds progressively through states si,ss,...,sy and produces output oq,01,...,0n,
where, for every n € [0..N)

(Sn—l—la 0n—|—1) = ¢(Sn> ’Ln)
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Figure 23: A stack machine.

Diagramatically:
10 1 19 7 S VS
! ) 1 l l
Sy ™ 81 —» S9 —» 83 — ... — SN—_1 —> SN
N\ N\ N\ N\ N\
01 02 03 04 ON

Finite state machines are the ‘weakest’ model of computation. The finite memory size of
an FSM strictly limits the complexity of computations it can perform.

Stack Machines

A stack machine (or pushdown automaton) is a finite state machine augmented with
a semi-infinite memory system called a stack (Figure 23). The stack is capable of holding
an arbitrarily long finite string of symbols, which we imagine to be arranged vertically, with
the first element at the ‘bottom’, and the last at the ‘top’. During a computation step,
the machine can read the symbol at the top of the stack (but not those underneath), and
use this symbol to decide what to do next. During any computation step, the machine can
also decide to add (“push”) a new symbol onto the top of the stack (thereby obscuring the
symbol below it), or to remove (“pop”) the symbol currently at the top (thereby revealing
the symbol below).
Formally, a stack automaton is described by a function

P IXSEXP —3OxSxP
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Figure 24: A Turing machine. Here, § = {0,1,3} and A = {0,1}.

Here, Z and O are the input and output alphabets, and § is the internal statespace of the
machine. P is the alphabet of stack symbols, and P is P augmented with two special symbols
‘9> and ‘A\’. If the current machine state is s, € S, the current input is ¢ € Z, and the top
of the stack is p € P, and ®(3, s,,, p) = (0, s, p'), then the machine will output symbol o and
change to internal state s'. If p’ = A\, it will pop a symbol off the stack; if p' € P, it will
push the symbol p’ onto the stack, and if p’ = (3, it will do nothing to the stack.

Stack machines are more computationally powerful than finite state machines, because
the stack allows computatations of arbitrary complexity, as long as these computations can
be structured in a recursive* manner. For example, computations involving ‘tree-like’ data
structures can usually be handled with stack automata.

Turing Machines

A Turing machine is a finite state machine equipped with an infinite memory storage
system called a tape. The tape is a bi-infinite sequence of symbols, which the machine can
read and write upon with a head, which, at any moment in time, is located at a specific
position in the tape (see Figure 24).

Instead of having separate input/output channels, we normally assume the machine reads

4Recursion is the computational equivalent of mathematical induction: it is a technique whereby a complex
problem is solved by systematically reducing it to simpler ones, through a process guaranteed to halt in a
finite amount of time.
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its input from the tape, and writes output to it. It can also use the tape as a memory store
for computations. During any computation step, the Turing machine can change its internal
state, overwrite the symbol under the head with a new symbol, and/or move the head one
space forward or back along the tape.

Formally, let A be the tape alphabet, and S the internal statespace of the machine. Then
the machine behaviour is described by a function ® : § x A — S x A x {<, 0, >}, where A
is A augmented with the symbol ‘(’. If the machine is in state s and the current tape symbol
is a, and ®(s,a) = (s',d’,m), then the machine switches to state s’ and writes symbol o’ on
the tape, unless if ¢’ = (), in which case it writes nothing. If m = < (resp. >) the machine
moves the head to the left (resp. right), while if m = O, it remains fixed.

A finite state machine or stack machine will only continue computing until it runs out
of input; a Turing machine, on the other hand, can potentially keep going forever. Because
of this, the statespace & must contain special halt states; if M enters a halt state, it stops
moving, and the computation is finished. The ‘output’ of M then has two components: the
final string written on the tape, and the particular state M halts in (for example, there
might be two halt states, one meaning “yes”, and the other one, “no”.)

Of course, starting from a particular, there is no guarantee that M will ever halt. The
question, “Will machine M ever halt if it starts with tape a?” is called the Halting Problem,
and Turing showed it to be formally undecidable.

Turing machines are the most powerful model of computation?.

Linear Bounded Machines

A linear bounded machine (LBM) is like a Turing machine, but it has a tape of finite
length. An LBM is more powerful than a finite state machine because the length of the tape
is allowed to grow with the complexity of the input.

Formally, a LBM is a Turing machine where the tape alphabet A contains two special
symbols, ‘(" and ). The input of the machine is an arbitrarily long (but finite) stretch of
tape, bounded by ‘(" on one end, and ‘)’ on the other. The machine cannot move its head
past either one of these ‘endmarker’ symbols, but can range freely between them.

8.3 Languages and Machines

The complexity of a language is proportional to the computational power necessary to ‘un-
derstand’ that language. Thus, we can relate the heirarchy of linguistic complexity to the
heirarchy of computational power. There are two ways in which machine M can be said to
‘understand’ language L:

5That is, the most powerful model not involving ‘supernatural’ devices like oracles.
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e M recognizes L if M has two special states, called Accept and Reject, and given any
word w € Z* as input, M halts in state Accept if w € £, and halts in state Reject
otherwise.

e M enumerates L if, given the any word w € Z* as input, M outputs an element
¢(w) € L as output; furthermore, the function ¢ : 78 — L implemented by M is
surjective.

This is called enumeration because we imagine a correspondence between N and Z*
(for example, if Z = {0,1}, then we can represent each element of N by its binary
expansion), so that the function ¢ implicitly implements a surjection ¢ : N — L.

If 90t is a machine class (eg. one of (FSM), (Stack), (LBM), or (Turing)), then we
say language L is 9-recognizable (resp. 9-enumerable) if there is a machine M € 9
that recognizes (resp. enumerates) L.

If £ C A* is 9M-recognizable, then it is 9M-enumerable. To see this, suppose M € 9N
recognizes L; then to enumerate £, we can build a machine M’ € 9t which searches through
all elements of A*, in order, but only yields, as output, those elements which M recognizes
as being in L.

In the case of Turing machines, there is potentially another complication: M may ‘recog-
nize’ words in £, but fail to ‘recognize’ words not in L, in the sense that, on some words not
in £, M never halts. Thus, we may end up waiting an infinite amount of time for M to give
us a definitive answer. Clearly, this is not really a satisfactory form of ‘recognition’. We say
that M accepts language £ if M halts in state Accept on any input in £, and either never
halts, or halts in state Reject on any input not in £. Clearly, acceptance is weaker than
recognition. However, it is equivalent to enumeration. To see this, observe that, if M is a
machine that enumerates £, then we can build a machine M’ which accepts £ very simply:
given any word w, the machine M’ simply runs M, and waits to see if w eventually appears
as an output of M. If it does, then M’ accepts w; if it doesn’t, then M’ just keeps waiting.

The machine classes are related to the Chomsky heirarchy as follows:

Theorem 30: Let L C A* be a formal language.

1. L is regular iff £ is (FSM)-recognizable iff L is (FSM)-enumerable.
2. L is context-free iff L is (Stack)-recognizable.

3. L is context-senstive iff £ is is (LBM)-enumerable.

4. L is a phrase structure language iff £ is (Turing)-enumerable O
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Figure 25: The Gilman automaton
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(1) See [10], Theorems 2.3 and 2.4, p. 30.

(2) See [10], Theorems 5.3 and 5.4, p. 115.

Proof
(4) See [10], Theorems 9.3 and 9.4, p. 221.

(3) See [10], Theorems 9.5 and 9.6, p. 225.

The term recursively enumerable is often used to mean (Turing)-enumerable; note that

this has nothing to do with the kind of ‘recursion’ manifested by (Stack) machines.

8.4 The Column Languages of Cellular Automata

One way to characterize the ‘complexity’ of a cellular automaton is by the complexity of its

column languages.

Theorem 31

(Gilman,)
The column language of any cellular automaton is context-sensitive

There are CA whose languages are context-sensitive, but not context free.
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Example 32: Gilman’s Automaton

Let A = {0,1}, and let ® : AN D have local map ¢(aog, a1, az2) = a1 - az (see Figure 25) .
Then L, [®] is the context-sensitive language of Example 29e.

Kiurka’s Linguistic Classification Let £ be one of the classes (BP), (Reg), (CFL), or
(CSL) of formal languages. Let ® be a cellular automaton. We say ® is in language class
Lif Ly [®] € £ for all W > 0, and there is some Wj so that Ly, [®] ¢ £ for any language
subclass £' C £.

By definition, each cellular automaton is in exactly one of the classes (BP), (Reg),
(CFL), or (CSL). We have the following results:

Proposition 33: Let ® be a one-dimensional CA. Then
1. ® is in class (BP) iff ® is equicontinuous.

2. If ® is positively expansive, then ® is in class (Reg).

Proof: (1) follows from Proposition 12 on page 19, while (2) follows from Theorem 24 on
page 30. O

Gilman’s automaton is in class (CSL). It is unknown whether the class (CFL) is
nonempty —that is, whether there is a CA whose languages are context-free but not regular.

Question: Can any contert-sensitive language appear as a column language of some cel-
lular automaton? If not, what are necessary conditions?
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