Similarity of Matrices

Prerequisites:

• Matrix Representations of Linear Transformations

Definition 1: Similarity, (Conjugacy)

Suppose that \fbox{A} and $\widetilde{\fbox{A}}$ are two $N\times N$ matrices. We say that \fbox{A} and $\widetilde{\fbox{A}}$ are similar (or conjugate), and write

$$A \sim \widetilde{A}$$

if there is an invertible $N \times N$ matrix $\boxed{\mathsf{B}}$ so that

$$\widetilde{\mathsf{A}} = \mathsf{B}^{-1} \cdot \mathsf{A} \cdot \mathsf{B}$$

Example 2: $\boxed{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is similar to $\boxed{\widetilde{A}} = \begin{bmatrix} 5 & 1 \\ 2 & 0 \end{bmatrix}$. To see this, let $\boxed{B} = \begin{bmatrix} \frac{1}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$. Then $\boxed{B}^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$. Thus,

$$\begin{array}{ccc}
\mathbf{B}^{-1} \cdot \overline{\mathbf{A}} \cdot \overline{\mathbf{B}} &=& \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \\
&=& \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{7}{2} & \frac{1}{2} \end{bmatrix} \\
&=& \begin{bmatrix} 5 & 1 \\ 2 & 0 \end{bmatrix} \\
&=& \widetilde{\mathbf{A}}
\end{array}$$

Remark 3:

1. In other words, $\boxed{\mathbf{A}} \sim \boxed{\widehat{\mathbf{A}}}$ if there is an invertible $N \times N$ matrix $\boxed{\mathbf{B}}$ so that

$$\boxed{\mathbf{B} \cdot \boxed{\widetilde{\mathbf{A}}}} = \boxed{\mathbf{A} \cdot \boxed{\mathbf{B}}}$$

2. Notice that

• Any matrix A is similar to itself, because

$$\boxed{\mathbf{A}} = \boxed{\mathbf{Id}}^{-1} \cdot \boxed{\mathbf{A}} \cdot \boxed{\mathbf{Id}}$$

• If $A \sim \widetilde{A}$, then $\widetilde{A} \sim A$, because

$$\operatorname{if} \ \widetilde{\overline{A}} \ = \ \overline{B}^{-1} \cdot \overline{A} \cdot \overline{B}$$
 then $\overline{B} \cdot \widetilde{\overline{A}} \cdot \overline{B}^{-1} \ = \ \overline{A}$

• If $X \sim Y$ and $Y \sim Z$, then $X \sim Z$:

if
$$Y = B^{-1} \cdot X \cdot B$$

and $Z = C^{-1} \cdot Y \cdot C$
then $Z = C^{-1} \cdot B^{-1} X \cdot B \cdot C$
 $= (B \cdot C)^{-1} X \cdot (B \cdot C)$

Matrix similarity is important because of its relationship to the *representation* of **linear transformations...**

Proposition 4: Similarity of Matrix Representations for Linear Transformations

Let $\mathbb V$ be a finite-dimensional vector spaces, and $f:\mathbb V\longrightarrow\mathbb V$ a linear transformation.

- 1. Suppose that \mathcal{A} and $\widetilde{\mathcal{A}}$ are two bases for \mathbb{V} . Let $\boxed{\mathsf{F}}$ be the matrix representation of f with respect to $\widetilde{\mathcal{A}}$. Then $\boxed{\mathsf{F}}$ and $\boxed{\mathsf{F}}$ are similar matrices.
- 2. Suppose $\mathcal A$ is any basis of $\mathbb V$, and $\overline{\mathbb F}$ is the matrix of f with respect to $\mathcal A$. If $\widetilde{\mathbb F}$ is any matrix similar to $\overline{\mathbb F}$, then there is a basis $\widetilde{\mathcal A}$ for $\mathbb V$ so that $\widetilde{\mathbb F}$ is the matrix of f with respect to $\widetilde{\mathcal A}$.

Proof:

Proof of Part 1: Recall: if \boxed{B} is the **change-of-basis** matrix from \mathcal{A} to $\widetilde{\mathcal{A}}$, then

$$\widetilde{\mathbf{F}} = \mathbf{B} \cdot \mathbf{F} \cdot \mathbf{B}^{-1}$$

is the matrix representation of f with respect to \mathcal{B} . Thus, $\boxed{\mathbf{F}}$ and $\boxed{\mathbf{F}}$ are similar

Proof of Part 2: Suppose that $\stackrel{\frown}{F} = \stackrel{\frown}{B} \cdot \stackrel{\frown}{F} \cdot \stackrel{\frown}{B}^{-1}$ for some matrix $\stackrel{\frown}{B}$. Thus, we want to find a basis $\widetilde{\mathcal{A}}$ so that that $\stackrel{\frown}{B}$ is the change-of-basis matrix from \mathcal{A} to $\widetilde{\mathcal{A}}$. Thus, $\stackrel{\frown}{B}^{-1}$ should be the change-of-basis matrix from $\widetilde{\mathcal{A}}$ to \mathcal{A} . Thus means that the column-vectors of $\stackrel{\frown}{B}^{-1}$ should be the coordinates of the elements of $\widetilde{\mathcal{A}}$, relative to \mathcal{A} .

So, suppose
$$A = \{\mathbf{a}_1, \dots, \mathbf{a}_N\}$$
, and suppose $\boxed{\mathbf{B}}^{-1} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1N} \\ c_{21} & c_{22} & \dots & c_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ c_{N1} & c_{N2} & \dots & c_{NN} \end{bmatrix}$,

then, for all $k \in [1...N]$, simply define

$$\widetilde{\mathbf{a}}_k = \sum_{n=1}^N c_{nk} \mathbf{a}_n$$

and let $\widetilde{\mathcal{A}} = \{\widetilde{\mathbf{a}}_1, \dots, \widetilde{\mathbf{a}}_N\}$. Then $\widetilde{\mathcal{A}}$ is the basis we seek.

 \Box [Proposition 4]

Similarity Invariants

In general, it is quite difficult to tell if two matrices \overline{A} and $\overline{\overline{A}}$ are similar. We need a matrix \overline{B} so that $\overline{B} \cdot \overline{\overline{A}} = \overline{A} \cdot \overline{B}$. But how can we find such a \overline{B} , assuming it exists? We might spend a long time looking, only to realize that the two matrices are *not* similar; thus, there *is* no such \overline{B} , and we are wasting our time.

It would be nice if there was a quick way to tell when two matrices are *not* similar. This is the purpose of a *similarity invariant*.

Definition 5: Similarity Invariant

A similarity invariant is a function $f: \mathcal{M}_{N\times N} \longrightarrow \mathbb{S}$ (where \mathbb{S} is some set) so that, for any matrices A and A,

$$\left(\begin{array}{c} \boxed{\textbf{A}} \text{ and } \overbrace{\boxed{\textbf{A}}} \text{ are similar} \end{array} \right) \Longrightarrow \left(\begin{array}{c} f\left(\boxed{\textbf{A}} \right) \end{array} \right) = f\left(\overbrace{\boxed{\textbf{A}}} \right) \right)$$

Hence, if $f(\overline{A}) \neq f(\overline{\overline{A}})$ then we know right away that \overline{A} and $\overline{\overline{A}}$ are *not* similar; there is no point looking for \overline{B} .

Note: If $f(\overline{A}) = f(\overline{A})$, this does *not* automatically mean that \overline{A} and \overline{A} are similar. It only means that they *might* be similar.

Theorem 6: Some Similarity Invariants
Suppose A and A are $A \times A$ matrices. If A is similar to A, then:

$$1. \ \mathsf{rank}\left[\boxed{A} \right] = \mathsf{rank}\left[\widetilde{\boxed{A}} \right].$$

$$2. \ \, \mathsf{nullity}\left[\overline{\mathbf{A}} \right] = \mathsf{nullity}\left[\overline{\widetilde{\mathbf{A}}} \right].$$

$$3. \, \det\left(\boxed{A} \right) = \det\left(\widetilde{\boxed{A}} \right).$$

4. A and A have the same characteristic polynomial.

In other words, the rank, nullity, determinant, and characteristic polynomial of a matrix are all *similarity invariants*.

Proof: Part 1 and Part 2 are left as exercises.

Proof of Part 3: Suppose A and A are similar; thus, there is an invertible matrix B so that $A = B^{-1} \cdot A \cdot B$. Thus,

$$\det\left(\widetilde{\underline{A}}\right) = \det\left(\overline{\underline{B}}^{-1} \cdot \overline{\underline{A}} \cdot \overline{\underline{B}}\right) \\
= \det\left(\overline{\underline{B}}^{-1}\right) \cdot \det\left(\overline{\underline{A}}\right) \cdot \det\left(\overline{\underline{B}}\right) \\
= \det\left(\overline{\underline{B}}\right)^{-1} \cdot \det\left(\overline{\underline{B}}\right) \cdot \det\left(\overline{\underline{A}}\right) \\
= \det\left(\overline{\underline{A}}\right)$$

Proof of Part 4: Suppose \boxed{A} and $\boxed{\widehat{A}}$ are similar; thus, there is an invertible matrix \boxed{B} so that $\boxed{\widehat{A}} = \boxed{B}^{-1} \cdot \boxed{A} \cdot \boxed{B}$. But also notice, for any fixed $\lambda \in \mathbb{R}$,

$$\lambda \cdot \mathbf{Id} = \mathbf{B}^{-1} \cdot \lambda \cdot \mathbf{Id} \cdot \mathbf{B}.$$

Thus, for any fixed λ ,

$$\widetilde{\overline{A}} - \lambda \cdot \overline{\mathbf{Id}} = (\overline{B}^{-1} \cdot \overline{A} \cdot \overline{B}) - (\overline{B}^{-1} \cdot \lambda \cdot \overline{\mathbf{Id}} \cdot \overline{B})$$

$$= \overline{B}^{-1} \cdot (\overline{A} - \lambda \cdot \overline{\mathbf{Id}}) \cdot \overline{B}$$

Thus, by Part 3,

$$\widetilde{c}(\lambda) = \det\left(\widetilde{\underline{\mathbf{A}}} - \lambda.\overline{\mathbf{Id}}\right) = \det\left(\overline{\underline{\mathbf{A}}} - \lambda.\overline{\mathbf{Id}}\right) = c(\lambda)$$

where c and \tilde{c} are the **characteristic polynomials** of A and A, respectively.

Since this is true for all λ , the functions c(x) and $\tilde{c}(x)$ are equal everywhere —they must be the same polynomial:

$$c(x) = \widetilde{c}(x).$$

_____□ [Theorem 6]

Example 7: Recall from example 2 on page 1 that $\boxed{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \sim$ $\begin{bmatrix} 5 & 1 \\ 2 & 0 \end{bmatrix} = \widetilde{A}.$ Thus

$$\begin{array}{lll} \operatorname{nullity}\left[\left[\begin{array}{ccc} 1 & 2 \\ 3 & 4 \end{array}\right]\right] & = & 0 & = & \operatorname{nullity}\left[\left[\begin{array}{ccc} 5 & 1 \\ 2 & 0 \end{array}\right]\right] \\ \operatorname{rank}\left[\left[\begin{array}{ccc} 1 & 2 \\ 3 & 4 \end{array}\right]\right] & = & 2 & = & \operatorname{rank}\left[\left[\begin{array}{ccc} 5 & 1 \\ 2 & 0 \end{array}\right]\right] \\ \operatorname{det}\left[\left[\begin{array}{ccc} 1 & 2 \\ 3 & 4 \end{array}\right]\right] & = & -2 & = & \operatorname{det}\left[\left[\begin{array}{ccc} 5 & 1 \\ 2 & 0 \end{array}\right]\right] \end{array}$$

and both matrices have characteristic polynomial
$$x^2 - 5x + 2$$
. However, if $\boxed{\mathbf{C}} = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$, then

$$\begin{aligned} & \text{nullity} \left[\left[\begin{array}{cc} 1 & 2 \\ 3 & 6 \end{array} \right] \right] &= 1 \\ & \text{rank} \left[\left[\begin{array}{cc} 1 & 2 \\ 3 & 6 \end{array} \right] \right] &= 1 \\ & \det \left[\begin{array}{cc} 1 & 2 \\ 3 & 6 \end{array} \right] &= 0 \end{aligned}$$

and the characteristic polynomial of $\boxed{\mathbf{C}}$ is $x^2 - 7x$. Any single one of these four facts would be enough to prove that $\boxed{\mathbf{C}}$ could not be similar to $\boxed{\mathbf{A}}$.

Corollary 8: The spectrum of a matrix is also a similarity invariant.

Proof: If A and A are similar, then they have the same characteristic polynomials. The **spectrum** of A is simply the list of all roots of its characteristic polynomial; thus, A and A must have the same spectrum.

Corollary 9: The characteristic polynomial of a transformation Let $\mathbb V$ be a finite-dimensional vector space, and $f:\mathbb V\longrightarrow \mathbb V$ a linear transformation.

If $\overline{\mathbb{F}}$ and $\overline{\mathbb{F}}$ are two different **matrix representations** of f (with respect to two different bases \mathcal{B} and $\widetilde{\mathcal{B}}$ of \mathbb{V}), then $\overline{\mathbb{F}}$ and $\overline{\mathbb{F}}$ are *similar*, and therefor have the *same determinant* and the *same characteristic polynomial*.

In other words, the *determinant* and *characteristic polynomial* of a linear transformation on an abstract vector space are well-defined, *independent* of the choice of basis.

Proof: Exercise

_____□ [Corollary 9]

Another similarity invariant is a function called the **trace**

Definition 10: Trace

Let \overline{A} be an $N \times N$ matrix. The trace of \overline{A} is the sum of the diagonal entries in \overline{A} . In other words, if $\overline{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1N} \\ a_{21} & a_{22} & \dots & a_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NN} \end{bmatrix}$, then

trace
$$\boxed{\mathbf{A}}$$
 = $a_{11} + a_{22} + \ldots + a_{nn}$

Example 11:

- $\bullet \ \ \mathsf{trace} \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right] \ = \ 1 + 4 \ = \ 5.$
- The trace of the $N \times N$ identity matrix $\boxed{\mathbf{Id}_N}$ is N.

Proposition 12: Properties of the Trace

- 1. $\mathbf{trace}: \mathcal{M}_{N \times N} \longrightarrow \mathbb{R}$ is a linear function. In other words, trace $\begin{bmatrix} A \end{bmatrix} + \begin{bmatrix} B \end{bmatrix} =$ trace $\begin{bmatrix} A \end{bmatrix} +$ trace $\begin{bmatrix} B \end{bmatrix}$, and trace $\begin{bmatrix} r \cdot A \end{bmatrix} = r$.trace $\begin{bmatrix} A \end{bmatrix}$.
- 2. If A and B are two $N \times N$ matrices, then

$$\mathsf{trace}\, \overline{\left[\mathsf{A}\right.} \cdot \overline{\left.\mathsf{B}\right]} \ = \ \mathsf{trace}\, \overline{\left[\mathsf{B}\right.} \cdot \overline{\left.\mathsf{A}\right]}$$

Proof: Part 1 is an exercise. To see Part 2, suppose that

Notice that,

$$\text{for any }n\in[1...N],\ \ c_{nn} = \sum_{k=1}^N a_{nk}b_{kn},$$
 and, for any $k\in[1...N],$
$$\widetilde{c}_{kk} = \sum_{n=1}^N b_{kn}a_{nk},$$

Thus, trace
$$\boxed{\mathbf{A} \cdot \mathbf{B}} = \sum_{n=1}^{N} c_{nn}$$

$$= \sum_{n=1}^{N} \sum_{k=1}^{N} a_{nk} b_{kn}$$

$$= \sum_{k=1}^{N} \sum_{n=1}^{N} b_{kn} a_{nk}$$

$$= \sum_{k=1}^{N} \widetilde{c}_{kk}$$

$$= \operatorname{trace} \boxed{\mathbf{B} \cdot \mathbf{A}}$$

______ [Proposition 12]

Corollary 13: The trace is a similarity invariant.

Proof: Exercise. Use the previous theorem

______□ [Corollary 13]

٠