Quadratic Forms
Definition 1: Quadratic Form

A quadratic form on RY is a polynomial in the variables z1,zs,...,zn, so
that all terms have degree 2. In other words, it is a function

¢:RY —R
of the form
_ 2
¢(x) = anzi + aer1z2 + a13Tirs  +  auarT1Ts + + aiNT1ZN
+ 02237% + a23T2r3 +  A24%2Xs  + + GaNT2TN
+ a33m§ +  G34%3T4 + + as3NT3TN

+  annTy
where the a; ; € R are arbitrary constants.
Example 2:

o f(z1,72) = 27 — 3x172 + 573 is a quadratic form on R?.

o g(z1,72,73) = 23 — Tx170 + %xlwg —V2z013 — 222 + 6x§ is a quadratic

form on R3.
2 _ 2 2 2 . - N
e For any N, |x|° = xi{+ x5+ ...+ zx is a quadratic form on R™.
e For any N, and any ay,az,...,any € R, h(x) = a1zi+aszi+...+anzd

is a quadratic form on RY.

There is a close relationship between quadratic forms and N x N matrices
as described by the following theorem.

Proposition 3: Quadratic Forms and Matrices

1. If is any N x N matrix, then the function p : RY — R defined:

p(x) = x*-[A]-x

T

is a quadratic form (where we regard x = | x| as a column-vector).

!



_If f: RV — RN is a linear transformation, then the function p : RV — R
defined:

p(x) = xe f(x)
is a quadratic form.

. If ¢ : RN — R is any quadratic form, then there is a N x N matrix SO
that ¢(x) = xt--x, and a linear transformation f so that ¢(x) = xe f(x).

. A matrix and its transpose determine the same quadratic form. In other words,
if |[A]is an N x N matrix, and we define quadratic forms p(x) = x* - - X

and ¢(x) = x* - tX. then p(x) = ¢(x).
. Suppose and M are N x N matrices, with = + .
we d quad

Suppose efine ratic forms:

nE = x[Ax
p2(x) = x' 'X
p(x) = x' -x

Then p(x) = p1(x) + p2(x).

6. There is a unique symmetric N x N matrix , so that g(x) = x! --x.
This is called the matrix of the form gq.

Proof:
ail ai2 e aiN
Z1
asy a22 - as N
Proof of Part 1:  Let = . . . . ,and x =
. TN
anNi an2 ... OGNN
Then
ail ai2 N aiN I
‘ a1 a2 N asN I
xt-Al'x = [z ... an ] ; . ) )
aNi anN2 ... QNN TN

a;1T1 + a12T2 + ... + aINTN
(2121 + Q2222 + ...+ QNTN

| aN1Z1 + aNp2Z2 + ... + GN NIN
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Proof of Part 2:  Let be the standard matrix representation of f. Then

x o f(x) =xt--x.

Proof of Part 3:  Suppose that

q(X) = auﬂ,‘% +  ai2x1x2 + G132123 + + aiNT1ZN
+ a22x§ + ag3x9223 + + asNZT2ITN
+  as3r3 + + asNT3TN
+ CINN.Z’?V
ai1  aiz2 G013 ai,N
0 az ass ai,N
Then let [A] = 0 0 ass a3.N |, and let f: RV — RN
0 0 0 aN,N
be the corresponding linear transformation.
Proof of Part 4: Exercise. Hint: for any ¢ and j, note that z;-z; = =z;-;.
Proof of Part 5: Exercise.
Proof of Part 6: Existence: Let ¢ : RY — R be a quadratic form, and,

by Part 3, find some N x N
by Part 4, we also have ¢(x)

then x’- x

matrix so that ¢(x) = x* - -x. Then

= x'-[A]"x. Now define

1 1
JA] + oAl
xt-%-x + xt-%t-x

1

éxt--x + %xt-t-x

5069 + 54

q(x)

Uniqueness: Suppose and are two symmetric, NV x N matrices

so that

q(x)



We want to show that = . Thus, if = — , we want

to show | Z | = 0. But for any x € RV,

xt[Zk = xt- (5] -[5]) -
= x5 x - x[5]x

= q(x) —q(x)
=0 (A4)
In particular, for any i, j, let
N N
e; = |0,...,0,1,0,...,0 and e; = |0,...,0,1,0,...,0
S—— N——
(i-1) (5-1)

be standard basis vectors, and let x = e; + e;. Then
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(1) and (2) follow from Equation (A).
(3) Because | Z | is symmetric
(4)
(

4) A scalar is a 1 x 1 matrix, so it is automatically equal to its transpose.
5) Where z;; is the (4, j)th element of .
Hence, we conclude: for all 4, j, z;; = 0. In other words, = 0; in other

words = .

O [Proposition 3]



Example 4:

o If f(z1,22) = 2 — 3z122 + 523, then

flar,z) = [21 22 ]
But also, f(z1,22) = [@1 2 |-
and, f(z1,22) = [x1 2 |-

1
| 0

1
3

U O Ut Ww

1

| —3/2

|
N

~3/2

This last matrix is the unique symmetric matrix for f.
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o If g(21,22,23) = 2] — Tw120 + 2123 — V2xyw3 — 223 + 622, then

1

9(x1,22,23) = [ml To m3]. _%

1

8

o If x> = 2} + 23 + ...+ 2%, then

1 00

010

|X|2=[$1 ,q;N]. 0 01

0 00

o If h(x) = a1z} + a223 + ...+ anzy, then
a 0 O
0 a O
h(x) = [21 ... zn |- 0 0 a3
0 0 O

Theorem 5: Principal Axis Theorem for Quadratic Forms

Let ¢ : RY — RY be a quadratic form. Then
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1. If @ is a symmetric matrix so that ¢(x) = x! @ - X, then there is an

orthogonal matrix which diagonalizes @ (ie. @ = . @ . '

is diagonal), and

a) = (%) 0] (%) (4)

2. There is an orthogonal transformation f : RY — RY and a diagonal
matrix @ so that, if we define the new quadratic form

) = xt-@-x

then q(x) = p(f(x)) (B).
3. Thereis an orthonormal basis B = {by,...,bnx}and real numbers dy,...,dy €
R so that, for any x € R, if x has coordinate N-tuple (Z1,...,Zn) relative
to B, then
q(x) = dlf% + dzf% =+ .. dN%%V (C)
Proof:

Proof of Part 1: By the Spectral Theorem for Symmetric Matrices, we can

find an orthogonal matrix diagonalizing . If @ = . . t,
then = ! @ . , and therefor,

00 = <@
t
= x'-[F] -[D][F]-x
t
- (@) B (5
Proof of Part 2: Let f : RN —s RN be the orthogonal transformation

determined by the matrix from Part 1. Then equation (B) is just a
restatement of equation (A).

Proof of Part 3: Let B be the orthonormal basis for RV such that
is the change-of-basis matrix from the standard basis into B. Let @ =

d 0 0 ... 0
0 do 0 ... 0
0 0 d3 ... 0| Then equation (C) is just a restatement of
0 0 0 ... dn

equation (A).



O [Theorem 5]

Definition 6: Principle Axes

Let ¢ : RP — R be a quadratic form, and let B be the orthonormal basis
described in Part 3 of the previous theorem. The elements of B are called the
principal axes of ¢.

Remark 7: If| Q|is the unique symmetric matrix so that g(x) = x* --x,
then the principal axes of ¢ constitute an orthonormal basis for R consisting
of eigenvectors of .

Proof: Exercise

O [Remark 7]

Example 8: (plagiarised from Nicholson)

Let ¢(x)

3 (xf + .CL'% + m% + wi) + 2 (z122 + T324)
+10 (2124 + T2x3 — T1XT3 — T2Xyg)
3 1 —5 5 I
1 3 5 =5 To
-5 5 3 1 T3
5 =5 1 3 T4

= [®1 22 z3 4]
= xt. -x
has eigenvectors

1 1 1 1

1 -1 1] -1 1)1 1 1
b1—§ _1 ;bz—i 17b3—5 1 ,andb4_§ 1
1 -1 1 -1

with corresponding eigenvalues

A1 =12, A2 = =8, Az =X =4

1 1 1 1
1 — _
So, if we define = 5 _} } } _i 7
1 -1 1 -1



then t--

2
-8
4 ?

4

|

[F]-x
then q(x) = p(y)
where p(y) 12y7 — 8y3 + 4(y3 + v3)-

1

and if we define y

|
=

Definition 9: Index, Rank

Let ¢ : R — R be a quadratic form and let @ be the symmetric matrix so
that g(x) = x? @ - X.

The index of @ is the number of positive eigenvalues of @ The index of
q is the index of @

The rank of ¢ is the rank of the matrix @

Remark 10: Suppose that is the change-of-basis matrix from the prin-
cipal axes basis for g to the standard basis £. Thus, if @ = t --., then
@ will be a diagonal matrix, as described in Theorem 5 on page 5. By suitable
“reordering” of the principal axes, we can ensure that @ is of the form:

+A
+X2

+Ap

—K1
—Ko

—KN

where



e All blank entries indicate zeros.

+MA1,...,+Ap are positive.

® —Ki,...,—KN are negative.

P is the index of ¢,

e P+ N is the rank of ¢,

e P+N+Z=D.

Remark 11: “Complete” Diagonalization

As in the previous remark, let B = {by,...,bp} be the orthonormal

basis of principal axes for the quadratic form ¢q. Now, define a new basis C =
{c1,...,cp} as follows:

Cc; = \/E-bl, ... Cp = \/)\P-bp;

cpty1 = /K1-bpyi, ... cpyn = VEN-bpin;
cpiN+1 = bpiny1, ... cp = bp;

Again, let be the change-of-basis matrix from the principal axes basis

for ¢ to the standard basis £. Thus, if @ = - . , then @ will be a
diagonal matrix of the form

+1
+1

+1

0

| S —
zZ

This procedure is called completely diagonalizing the quadratic form gq.

Definition 12: Signature
The triple (P, N, Z) is called the signature of the quadratic form.
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Definition 13: Positive Definite

Let ¢ : RP — R be a quadratic form. g is called positive definite if, for
everyx € RP, withx #0, ¢(x) > 0.

A 000

0 X O

Example 14: Suppose ¢(x) = x! -@-x, where @ = 0 0 As
0 0 0

Then q is positive definite | < | A,A2,...,Ap >0

This example illustrates a general principle....

Proposition 15: Let ¢ : R° — R be a quadratic form. The following are
equivalent:

e ¢ is positive definite.
e The index of g is D.
e The signature of ¢ is (D, 0,0).

Proof: Exercise.

O [Proposition 15]

Application: Conics and Quadrics (optional)!

Definition 16: Conic

Let g : R2 — R be a quadratic form, let v € R?> be some vector, and 7 € R
some scalar. The set

Sp = {xeR; g(x) +xev = r}

is called an conic. If the term v is zero, the conic is called homogeneous.

o

AD



11




12

Remark 17: There are five basic classes of conics....

e Circles, generated by equations of the form z? + 3 = R, where R > 0.
(Part A of Figure 1 on the page before)

¢ Ellipses, such as those generated by equations of the form a;z? + as22 =
R, for some ai,a2 > 0. where R > 0. (Thus, really, a circle is just a
special kind of ellipse, where a; = as = 1. (Part B of Figure 1 on the
preceding page)

e Hyperbolas, such as those generated by equations of the form a;z? —
a2 = R, for some a;,az > 0, and R € R. (Part C of Figure 1 on the
page before)

e Parabolas, such as those generated by equations of the form aq x%+b2x2 =
R, for nonzero aj,b2 € R and arbitrary R € R. (Part D of Figure 1 on
the preceding page)

e Anything else is called a Degenerate Conic, such as those generated by
equations of the form z7 — 23 = 0 (ie. R =0.) (Part E of Figure 1 on
the page before)

The previous examples are just the special cases when the “principal axes”
of the conic coincide with the standard axes of R2. The actual definitions are
as follows:

Definition 18: FEllipse

Let g : R2 —s R be a positive-definite quadratic form. For any r > 0, the set
of the form

E = {xGRz;q(x)zr}

is called an ellipse (centered at the origin).

Definition 19: Hyperbola

Let ¢ : RZ — R be a quadratic form with index 1 and rank 2. For any r € R,
the set of the form

H={xeR;qx) =r}

is called a hyperbola (centered at the origin).

1For simplicity, in this section we consider only conics centered at the origin.



A

Figure 2: The ellipse 322 — z122 + 322 = 2

A 4

Figure 3: The Hyperbola z125 =1

13
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Definition 20: Parabola

Let ¢ : R2 — R be a quadratic form with rank 1. For any v € R?, the set of
the form

P={xeR;qx)=xev}

is called a parabola (centered at the origin).

A
v

Figure 4: The parabola 27 — 22172 + 73 = 1 + T2

Definition 21: Degenerate Conic

Let ¢ : B2 — R be a quadratic form with rank 0. For any r € R, the set of
the form

D = {xelR; qx)=r}
is called a degenerate conic.

The previous examples suggest that an arbitrary conic can be obtained from
one of the simple examples given in Remark 17 on page 12 through some rotation
of the plane.
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Figure 5: A degenerate conic.

Proposition 22: Principle Azis Theorem For Homogeneous Conics Let
¢ : R — R be any quadratic form, let R € R, and let S, = {x € R? ; ¢(x) = R}
be a homogeneous conic. Then there is an orthogonal transformation 7' : R? — R?
(ie. a rotation and/or reflection of the plane) so that T'(S,) has the form of one of
the standard examples of Remark 17 on page 12.

Proof: Exercise. Use the Principle Axis Theorem for Quadrics described
below (Theorem 27 on the following page).

O [Proposition 22]

The generalizations of conics to higher dimensions are called quadrics....

Definition 23: Quadric

Let ¢ : RP — R be a quadratic form, v € R” a vector, and € R a scalar.
The set

Sy = {xeRP; g(x)+vex = r}

is called an ((D — 1)-dimensional) quadric. If v = 0, the quadric is called
homogeneous.
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Definition 24: FEllipsoid

Let ¢ : RP — R be a quadratic form whose index and rank are both equal to
D. For any r > 0, the set of the form

E = {xeR’;qx)=r}

is called a ellipsoid.

Definition 25: Hyperboloid

Let ¢ : RP — R be a quadratic form of rank D, whose index is less than D
and bigger than 1. For any r € R, the set of the form

H = {xeR’;q(x)=r}

is called a hyperboloid

Definition 26: Paraboloid

Let ¢ : RP — R be a quadratic form, and let v € RP be nonzero. For any
r € R, the set of the form

P={xeR’;qx)+vex = r}

is called a paraboloid. If the index of ¢ is D or 1, then P is called an
elliptical paraboloid; if the index is less than D and greater than 1, then
P then P is called an hyperbolic paraboloid.

Proposition 27: Principle Axis Theorem For Homogeneous Quadrics
Let g : R? — Rbe any quadratic form, let R € R, and letS, = {x € RP ; ¢(x) = R}
be a homogeneous quadric. Then there is an orthogonal transformation T : RP —
RP so that T'(S,) is a “standard” quadric; in other words,

T(S,) = {xeRD; Az o+ i+ ..+ Apzy o }

—K1Th,, — KaTh,, — ... — KpTh,y
where
e (P,N, Z) is the signature of the quadratic form q.

e +A1,...,+An > 0 are the positive eigenvalues of the matrix @ associated
to q.
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1

Figure 6: A hyperboloid in R®, with equation z? + 22 — 23
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Figure 7: The elliptical paraboloid in R®, with equation z? + 23 = x3
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® —K1,...,—kN < 0 are the negative eigenvalues of @

Proof: Exercise. Use the Principal Axis Theorem for Quadratic Forms
(Theorem 5 on page 5).

O [Proposition 27]

Remark 28: There is a corresponding version of this theorem for nonho-
mogenous quadrics, but more algebra is required to prove it.
Definition 29: Principal Azes

Let S C RP be a homogeneous quadric, induced by quadratic form ¢ :
RP — R Let T : R — RP be the orthogonal transformation described

in the previous theorem. Let £ = {e;,...,ep} be the standard orthonormal
basis of R, and let by = T'(ey) for all d € [1..D].
The vectors {by,...,bp} are called the principal axes of Sg.

Application: Normal Probability Distributions (optional)
Definition 30: Univariate Normal Probability Distribution

A (univariate) normal probability distribution is a function p : R — R of
the form:

where ¢ > 0 is some constant.

This function represents a probability density on R. The parameter o > 0 is
called the standard deviation of the distribution, and represents its “width”;
the smaller o is, the more “sharply peaked” the distribution becomes. The

1 . . _
factor T3z, IS present just to make sure that pr = 1.

Example 31: Standard Normal Distribution
For example, if 0 = 1, we get the standard univariate normal distribution:

p(z) = \/%_W exp [—27].
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Definition 32: Multivariate Normal Probability Distribution

A multivariate normal distribution is a function p : RY — R of the
form:

o) = | S8y [ 2] ],

(2m)

where is a symmetric, N x N positive definite matrix.

Now p represents a probability density on RY .

The condition that be symmetric is not necessary for the definition to make
sense. However, the expression x* - - X is a quadratic form, and thus, we

can always assume that is symmetric —indeed, for any multivariate normal
distribution p, there is a unique symmetric matrix satisfying the formula given
above.

The symmetric matrix = ' is called the covariance matrix of
the distribution. Intuitively, the diagonal terms c11, ¢22, ..., cn N represent the
“width” of the distribution along the dimensions x1,z2,...,zN, while cross-
terms of the form ¢; ; represent the degree of “correlation” between the random
variables z; and z;.

The condition that be positive definite is analogous to the condition that
the standard deviation o be positive in the univariate case.

Example 33: Standard Multivariate Normal Distribution

For example, if = , then

xt--x =x-x = xex = x%—}—m%—}—...—i—m?\,,

and we get the standard multivariate normal distribution:

px) = (%;N/z exp [~ (& + 23 + ... +2%))]
- (%;m exp [~a? - 23 — ... — 23]
B (27T;N/2 exp [~a7] - exp [~a3] - ... - exp [~a}]
= sz exp [—a3] \/——'eXP [—=3] \/%—F'eXP [—2%]
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In other words, the standard normal distribution in RV is a product of N in-
dependent univariate standard normal distributions in the variables z1,...,zxN.
In the language of probability theory, we say that z1,...,zn are independent
random variables, each having a standard normal distribution.

Example 34: A Product of Univariate Distributions

A0 0 ... 0
0 X 0 ... 0

More generally, suppose if = 0 0 A ... 0 ,with A, Ag, ..o, A >
0 0 0 ... An

0. Then:

xt[A]x = Ma? + Xzl 4.+ Anad,

and det [] = M X2 -...-Ax. Thus,

p(x) = ‘ / exp /\13:1 + Xz .+ /\N.ﬁv)]
N 2

= exp[ A cai] )= ep[—)\z-:cg]-...- E-exp[—)\N-mN]

>~

N
it
:]

~—

p1(z1) - pa(z2) - ... - pn(TN

where, for each n, p, : R — R is a univariate normal distribution with

standard deviation o, = ,/ﬁ. In the language of probability theory, we say

that z1,..., 2N are independent random variables, having normal distributions
with standard deviations o1,...,0n-

Given an arbitrary multivariate normal distribution p(x), it would be nice
if we could find some coordinate-system on RY so that, with respect to this
coordinate system, p was clearly the product of independent univariate distri-
butions.

Proposition 35: Principle Azis Theorem for Normal Distributions
Let p: RP — R be a multivariate normal distribution with covariance matrix

[A]

1. There is an orthogonal transformation 7' : RP? — RP so that, if p : RP —
R is defined by n(x) = p(T'(x)), then

n(z1,...,xN) = m(z1) -n2(z2) - ... - Mp(TD),
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where 71, ...,np : R — R are univariate normal distributions with standard
deviations 01,...,0p, Where oy = ,/%. and A1, ..., Ap are the eigenvalues

of .

In the language of probability theory, we can reformulate this result:

2. Let X € RP be a random vector with distribution p. Then X = T(Y),
where Y = (Y4,...,Yp), and where Y4,...,Yp € R are independent
normal random scalars, with standard deviations o1, ...,0p respectively.

Proof: Exercise. Use the Principal Axes Theorem for quadratic forms (The-
orem 5 on page 5).

O [Proposition 35]




