Orthogonal Diagonalization: The Spectral Theo-
rem

Prerequisites:

e Orthogonal transformations

e Diagonalization

Definition 1: Orthogonal Diagonalization

Let be an N x N matrix. We say that is orthogonally diagonal-
izable if there is an orthogonal matrix so that

_1.. (which is equal to t")

is a diagonal matrix.
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Figure 1: f has orthonormal eigenvectors by, bs, and bs, with eigenvalues 3,
—1, and 0.2, respectively

Recall that diagonalization is useful because it reveals the existence of a
basis of eigenvectors for a transformation. Orthogonal diagonalization is even
better: it reveals the existence of a orthonormal basis of eigenvectors for the
transformation. (see Figure 1).

First we will prove the following partial result



Theorem 2: Triangulation Theorem

Let | F |be a N x N matrix whose characteristic polynomial factors completely
—that is:

c(:v) = (z—=X)-(z=X) ...-(z = ),

where A1,..., Ay are real numbers. Then there is an orthogonal matrix E
so that

PI[Fl-[P]
is upper triangular.

Proof: We will prove this by induction on N.

Base Case (N =1): A 1 x 1 matrix is automatically upper triangular,
so this is trivial.

Induction: Suppose, inductively, that the theorem is true for RV 1.

Let f : RY — RYM be the linear map: f(x) = -x. Let \; be the
first eigenvalue for f. Let by be a corresponding eigenvector. Let B =
{b1,ba,...,by} be an orthonormal basis for RV, with b; as its first

element. Let . be the change-of-basis matrix from the standard basis
into B. Then we know:

) is an orthogonal matrix.

. = -- - is the matrix representation of f relative to B.

Thus, since by is an eigenvector of f with eigenvalue A\, the matrix
must have the form:

where isan (N—1)x (N —1), matrix, having eigenvalues A2, A3, ..., AN-
Thus, by the induction hypothesis, there is an (IV —1) x (N — 1) orthogonal
matrix so that

v] =[] [F]-[C]




isan (N — 1) x (N — 1), upper triangular matrix.
Now define
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Then is also an orthogonal matrix (Why?), and

[c]-[E]-[c]" -

is an upper-triangular matrix. But of course,

-1
(@) [ (@ [B)

and ( - ) is the product of two orthogonal matrices, therefor itself
orthogonal, so this constitutes an orthogonal upper-triangulation of

[F].

O [Theorem 2]

Theorem 3: Spectral Theorem! for Symmetric Matrices
Let f: RY — RY be a linear transformation, equivalent to multiplication by
the matrix . The following are equivalent:

1. RN has an orthonormal basis given by eigenvectors of f.

2, is orthogonally diagonalizable.

3. is a symmetric matrix.

Proof:
Proof of “(1)=-(2)”:  Suppose that B = {by,...,bn} is an orthonormal
(N .|
basis of RV. If = | by by ... by [, then we know that the
bl

matriz representation of f relative to B is given by

1 Also known as the “Orthogonal Diagonalization Theorem”, or the “Principal Axis Theo-
rem”



[¢] = [B] 7 [E])-[B]
which is equal to ! - . , since is an orthogonal matrix. But

if by,...,by are all eigenvectors of f, then we know that must be

diagonal.
Proof of “(2)=(1)”:  Suppose that is an orthogonal matrix such that
Tt .1
= t-- is diagonal. Suppose that =] by by ... by
b

and let B = {by,...,by}. Then B is an orthonormal basis, and is

the matrix representation of f relative to B. The fact that is diagonal
means that by, ..., by must be eigenvectors of f.

Proof of “(2)=—>(3)”:  Suppose that is an orthogonal matrix such that

= - -- is diagonal. Then
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(1) is diagonal, therefore symmetric.

hence is symmetric.
Proof of “(3)=(2)”:

Claim 1: The characteristic polynomial of factors completely.

Proof:  The proof of this claim involves the use of complex numbers, and
hence, is not covered in this course. A sketch is as follows:
If ¢ (m) is the characteristic polynomial of, then we know that ¢
factors completely over the complex numbers; in other words,

(x)

c(w) = (z—A) - (z—A2)-...-(x — An),
where A1, ..., An are compler numbers. These numbers are then complex

eigenvalues of . (It turns out that, for a symmetric matriz, all these
eigenvalues will be real, but we don’t know this yet).



The proof which follows can then be carried out using these complez eigen-
values. We can therefor diagonalize into the matriz

A1 0 0o ... 0
0 A 0o ... 0
— 0 0 A3 ... 0
0 0 0 ... An

-1
But E s a real-valued matriz, and = - - for some (real-
valued) matriz ; hence, must also be a real-valued matriz, which
means that A1, ..., An must be real numbers.

......................................................... O [Claim 1]

Now, to prove “(3)==-(2)”, use the Triangulation Theorem to find an an
orthogonal matrix @ so that

-1
[]-[F]-[?]
is upper triangular. But @@ o E@ ! is also symmet-

ric (why?); thus, if it is upper triangular, it must actually be diagonal.
Hence, this constitutes an orthogonal diagonalization of , so we’re done.

O [Theorem 3]

Example 4: (wantonly plagiarised from Nicholson)

1 0 -1
If = 01 2 1, then has characteristic polynomial
-1 2 5
1-2z 0 -1
c(x) = det 0 1—-=z 2 | = z(x—1)(z—6),

-1 2 5—=x

hence, eigenvalues 0, 1 and 6.
The corresponding eigenvectors (normalized to have all have norm 1) are:

1 1 1|2 1| L
by = — | =2 |, by = — | 1], by = — | 2|,
RV SRV TR0

and B = {by, bz, b3} is an orthonormal basis (check). Hence, if we define
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Then is an orthogonal matrix, and

B]"-[a)-[B] -

is a diagonal matrix.




