Matrix Representations (Optional)

Prerequisites:

- Linear Transformations
- Change of Basis

Suppose $\overline{\mathbf{A}}$ is an $N \times M$ matrix. Consider the linear function $f : \mathbb{R}^M \longrightarrow \mathbb{R}^N$ determined by multiplication-by- $\overline{\mathbf{A}}$:

$$f(\vec{x}) = \boxed{\mathbf{A}}.\vec{x}$$

Suppose that $\mathcal{E} = \{\mathbf{e}_1, \dots, \mathbf{e}_M\}$ is the "standard basis" for \mathbb{R}^M , and $\mathcal{E}' = \{\mathbf{e}_1', \dots, \mathbf{e}_N'\}$ is the "standard basis" for \mathbb{R}^N . That is,

for all
$$m \in [1..M]$$
, $\mathbf{e}_{m} = \begin{pmatrix} \underbrace{0, \dots, 0, 1, 0, \dots, 0}_{(m-1)} \end{pmatrix}$ and, for all $n \in [1..N]$, $\mathbf{e}'_{n} = \begin{pmatrix} \underbrace{0, \dots, 0, 1, 0, \dots, 0}_{(n-1)} \end{pmatrix}$

Thus, if
$$\boxed{\mathbf{A}} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1M} \\ a_{21} & a_{22} & \dots & a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NM} \end{bmatrix}$$
, then, for all $m \in [1..M]$,

$$f(\mathbf{e}_m) = \sum_{n=1}^N a_{n,m} \mathbf{e}'_n$$

In other words, the matrix A describes the f-images of the standard basis elements of \mathbb{R}^M , as linear combinations of the standard basis elements of \mathbb{R}^N . We could say that A is the **matrix representation** of f "in terms of" the bases \mathcal{E} and \mathcal{E}' .

This is convenient, because it allows easy computation of f. Suppose $\vec{x} = (x_1, \ldots, x_M)$. Thus,

$$\vec{x} = \sum_{m=1}^{M} x_m \mathbf{e}_m$$

therefore, $f(\vec{x}) = f\left(\sum_{m=1}^{M} x_m \mathbf{e}_m\right)$

$$= \sum_{m=1}^{M} x_m f(\mathbf{e}_m)$$

$$= \sum_{m=1}^{M} x_m \sum_{n=1}^{N} a_{n,m} \mathbf{e}'_n$$

$$= \sum_{n=1}^{N} \left(\sum_{m=1}^{M} x_m a_{n,m} \right) \mathbf{e}'_n$$

In other words, $f(\vec{x}) = (y_1, \dots, y_N)$, where

$$y_n = \sum_{m=1}^{M} x_m a_{n,m}, \text{ for each } n \in [1...N].$$

Of course, this is just another way of saying:

$$f(\vec{x}) = A \cdot \vec{x}$$

which is something we already knew.

Now suppose that $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_M\}$ was some *other* basis of \mathbb{R}^M , and $\mathcal{C}' = \{\mathbf{c}_1', \dots, \mathbf{c}_N'\}$ was some other basis of \mathbb{R}^N . We would like to find a matrix representation for f in terms of \mathcal{C} and \mathcal{C}' . In other words, we would like to find

a matrix
$$\boxed{\mathbf{B}} = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1M} \\ b_{21} & b_{22} & \dots & b_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ b_{N1} & b_{N2} & \dots & b_{NM} \end{bmatrix}$$
, so that, for all $m \in [1..M]$,

$$f(\mathbf{c}_m) = \sum_{n=1}^N b_{n,m} \mathbf{c}'_n$$

Example 1: Let $\mathbb{L} \subset \mathbb{R}^2$ be the line through the origin at an angle of -45 degrees (ie. $\frac{-\pi}{4}$ radians). \mathbb{L} is a linear subspace, with equation:

$$\mathbb{L} = \left\{ (x_1, x_2) \in \mathbb{R}^2 \; ; \; x_1 = -x_2 \right\}$$

Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the **orthogonal projection** onto \mathbb{L} . Now,

$$f(1,0) = \left(\frac{1}{2}, \frac{-1}{2}\right),$$
 and $f(0,1) = \left(\frac{-1}{2}, \frac{1}{2}\right)$

so, with respect to the standard basis, the matrix representation of f is

$$\boxed{\mathbf{A}} = \begin{bmatrix} \frac{1}{2} & \frac{-1}{2} \\ \frac{-1}{2} & \frac{1}{2} \end{bmatrix}$$

Figure 1: Projecting onto the line through 0 at angle $\frac{-\pi}{4}$.

However, suppose we use the basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$, where

$$\mathbf{b}_1 = \left(\frac{1}{2}, \frac{1}{2}\right)$$

$$\mathbf{b}_2 = \left(\frac{-1}{2}, \frac{1}{2}\right)$$

In that case,
$$f(\mathbf{b}_1) = 0,$$

 $f(\mathbf{b}_2) = \mathbf{b}_2,$

Hence, the matrix representation of f with respect to \mathcal{B} is

$$\left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right]$$

Notice how, with respect to this basis, the action of f as a "projection" is much more clearly visible.

Matrix Representations in Abstract Vector Spaces

We can generalize these considerations to any finite dimensional vector space. If $f: \mathbb{W} \longrightarrow \mathbb{V}$ is a linear transformation, and $\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_N\}$ is a **basis** for \mathcal{V} , then, for any $\mathbf{w} \in \mathbb{W}$, we can write the **coordinates** of $f(\mathbf{w})$ with respect to $\{\mathbf{v}_1, \dots, \mathbf{v}_N\}$:

$$f(\mathbf{w}) = \sum_{n=1}^{N} a_n \mathbf{v}_n$$

for some set of coefficients $\{a_1, \ldots, a_N\}$. If $\mathcal{W} = \{\mathbf{w}_1, \ldots, \mathbf{w}_M\}$ is a basis for \mathbb{W} , and we do this for each element of this basis, then we can make a matrix.....

Definition 2: Matrix Representation

Let \mathbb{W} and \mathbb{V} be finite-dimensional vector spaces, and $f:\mathbb{W}\longrightarrow\mathbb{V}$ be a linear transformation.

Suppose that $\mathcal{W} = \{\mathbf{w}_1, \dots, \mathbf{w}_M\}$ is a basis for \mathbb{W} , and $\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_N\}$ is a basis for \mathbb{V} . The **matrix representation** of f with respect to the bases \mathcal{W} and \mathcal{V} is the $N \times M$ matrix $\boxed{\mathbf{A}}$ so that, for all $m \in [1..M]$, the mth column of $\boxed{\mathbf{A}}$ is the coordinates of $f(\mathbf{w}_m)$ with respect to the basis \mathcal{V} . In other words, if

$$\boxed{\mathsf{A}} = \left[\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1M} \\ a_{21} & a_{22} & \dots & a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NM} \end{array} \right]$$

then, for all $m \in [1..M]$,

$$f(\mathbf{w}_m) = \sum_{n=1}^N a_{n,m} \mathbf{v}_n$$

Remark 3: Suppose that $\mathbf{x} \in \mathbb{W}$ is any vector, and suppose that \mathbf{x} has coordinates $\vec{x} = (x_1, \dots, x_M)$ with respect to the basis \mathcal{W} . In other words,

$$\mathbf{x} = \sum_{m=1}^{M} x_m \mathbf{w}_m$$

Then, using the matrix A, it is easy to compute the coordinates of $f(\vec{x})$ with respect to the basis V:

$$f(\vec{x}) = f\left(\sum_{m=1}^{M} x_m \mathbf{w}_m\right)$$
$$= \sum_{m=1}^{M} x_m f(\mathbf{w}_m)$$

$$= \sum_{m=1}^{M} x_m \left(\sum_{n=1}^{N} a_{n,m} \mathbf{v}_n \right)$$

$$= \sum_{n=1}^{N} \left(\sum_{m=1}^{M} x_m a_{n,m} \right) \mathbf{v}_n$$

$$= \sum_{n=1}^{N} y_n \mathbf{v}_n$$

where $y_n = \sum_{m=1}^M x_m a_{n,m}$. Thus, if $f(\mathbf{x}) = \mathbf{y}$, then \mathbf{y} has coordinates $\vec{y} = (y_1, \dots, y_N)$ with respect to the basis \mathcal{V} . But it is easy to see that the previous computation is equivalent to writing:

$$\vec{y} = A \cdot \vec{x}$$

Thus, given a basis \mathcal{W} for \mathbb{W} , and a basis \mathcal{V} for \mathbb{V} , any linear transformation f from \mathbb{W} to \mathbb{V} can be represented as matrix multiplication, simply by computing the matrix representation of f with respect to \mathcal{W} and \mathcal{V} .

This is the power of matrix representations, and one of the chief computational advantages you obtain by constructing explicit bases for \mathbb{W} and \mathbb{V} .

Example 4: Suppose $f: \mathbb{R}^M \longrightarrow \mathbb{R}^N$ a linear transformation, and suppose that f is equivalent to multiplication by the matrix $F \in \mathcal{M}_{N \times M}$.

Then, if \mathcal{E} is the **standard basis** for \mathbb{R}^M and \mathcal{E}' is the standard basis for \mathbb{R}^N , then F is the **matrix representation** of f with respect to \mathcal{E} and \mathcal{V} ,

Change-of-Basis for Matrix Representations

In general, given a "nonstandard" basis \mathcal{B} for \mathbb{R}^M and a basis \mathcal{A} for \mathbb{R}^N , how can we find the matrix representation of f with respect to \mathcal{B} and \mathcal{A} ?

Theorem 5: Change of Matrix Representation in Euclidean Space Suppose $f: \mathbb{R}^M \longrightarrow \mathbb{R}^N$ a linear transformation, equivalent to multiplication by the matrix $\boxed{\mathsf{F}} \in \mathcal{M}_{N \times M}$. (In other words, if \mathcal{E} is the standard basis for \mathbb{R}^M and \mathcal{E}' is the standard basis for \mathbb{R}^N , then $\boxed{\mathsf{F}}$ is the matrix representation of f with respect to \mathcal{E} and \mathcal{E}'),

Suppose that \mathcal{B} is another basis for \mathbb{R}^M , and \mathcal{A} another basis for \mathbb{R}^N . Let $\boxed{\mathsf{B}}$ be the **change-of-basis** matrix from \mathcal{E} to \mathcal{B} , and $\boxed{\mathsf{A}}$ be the **change-of-basis** matrix from \mathcal{E}' to \mathcal{A} . Define

$$\widetilde{\mathsf{F}} = \left[\mathsf{A} \cdot \mathsf{F} \cdot \mathsf{B}\right]^{-1}$$

Then $\boxed{\mathsf{F}}$ is the matrix representation of f with respect to $\mathcal B$ and $\mathcal A$.

Proof: Recall that, if $\boxed{\mathbf{B}}$ is the change-of-basis matrix from \mathcal{E} to \mathcal{B} , then $\boxed{\mathbf{B}}^{-1}$ is the change-of-basis matrix from \mathcal{B} to \mathcal{E} . Thus, if $\mathbf{x} \in \mathbb{R}^M$, and the coordinates of \mathbf{x} with respect to \mathcal{B} are $\vec{x}^{\mathcal{B}} = (x_1^{\mathcal{B}}, \dots, x_M^{\mathcal{B}})$, then the coordinates of \mathbf{x} with respect to \mathcal{E} are $\boxed{\mathbf{B}}^{-1} \cdot \vec{x}^{\mathcal{B}}$ —in other words, as M-tuples of real numbers, $\mathbf{x} = \boxed{\mathbf{B}}^{-1} \cdot \vec{x}^{\mathcal{B}}$.

Now, $\boxed{\mathbf{F}}$ is the matrix representation of f with respect to \mathcal{E} and \mathcal{E}' , so $\mathbf{y} = \boxed{\mathbf{F}} \cdot \mathbf{x}$ is the coordinate N-tuple of $f(\mathbf{x})$, with respect to \mathcal{E}' .

But $\boxed{\mathbf{A}}$ is the change-of-basis matrix from \mathcal{E}' to \mathcal{A} , so $\vec{y}^{\mathcal{A}} = \boxed{\mathbf{A}} \cdot \mathbf{y}$ is the coordinate N-tuple of $f(\mathbf{x})$ with respect to \mathcal{A} .

Putting it all together, we conclude that if $\vec{x}^{\mathcal{B}}$ is the coordinate M-tuple of \mathbf{x} with respect to \mathcal{B} , then the coordinate N-tuple of $f(\mathbf{x})$ with respect to \mathcal{A} is $\vec{y}^{\mathcal{A}}$, where

$$\vec{y}^{\mathcal{A}} \ = \ \boxed{\mathbf{A}} \cdot \mathbf{y} \ = \ \boxed{\mathbf{A}} \cdot \boxed{\mathbf{F}} \cdot \mathbf{x} \ = \ \boxed{\mathbf{A}} \cdot \boxed{\mathbf{F}} \cdot \boxed{\mathbf{B}}^{-1} \cdot \vec{x}^{\mathcal{B}} \ = \ \boxed{\mathbf{F}} \cdot \vec{x}^{\mathcal{B}}$$

in other words, \widehat{F} is the matrix representation of f with respect to \mathcal{B} and \mathcal{A} .

_____ [Theorem 5]

Corollary 6: Suppose $f:\mathbb{R}^M\longrightarrow\mathbb{R}^M$ a linear transformation, equivalent to multiplication by the matrix $\boxed{\mathsf{F}}\in\mathcal{M}_{M\times M}$.

Suppose that $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_M\}$ is a basis for \mathbb{R}^M . Let $\boxed{\mathsf{B}}$ be the matrix whose columns are the elements of \mathcal{B} :

$$\begin{bmatrix}
\mathsf{B} \\
 \end{bmatrix} = \begin{bmatrix}
\uparrow & \uparrow & \dots & \uparrow \\
\mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_M \\
\downarrow & \downarrow & \dots & \downarrow
\end{bmatrix}$$

Then $\widetilde{\overline{F}} = \overline{\overline{B}}^{-1} \cdot \overline{\overline{F}} \cdot \overline{\overline{B}}$ is the matrix representation of f with respect to \mathcal{B} .

Proof: $\boxed{\mathbf{F}}$ is the matrix representation of f relative to the standard basis \mathcal{E} . The change-of-basis matrix from \mathcal{B} to \mathcal{E} is the matrix $\boxed{\mathbf{B}}$ (check this). Now apply the previous theorem.

_____ [Corollary 6]

Of course, this theorem can be generalized to abstract vector spaces...

Theorem 7: Let $\mathbb V$ and $\mathbb W$ be finite-dimensional vector spaces, and $f:\mathbb V\longrightarrow \mathbb W$ a linear transformation.

Suppose that \mathcal{V} is a basis for \mathbb{V} , and \mathcal{W} a basis for \mathbb{W} , and suppose that, with respect to \mathcal{V} and \mathcal{W} , the matrix representation for f is $\boxed{\mathsf{F}}$.

Suppose that $\widetilde{\mathcal{V}}$ is another basis for \mathbb{V} , and $\widetilde{\mathcal{W}}$ another basis for \mathbb{W} . Let $\boxed{\mathsf{B}}$ be the **change-of-basis** matrix from \mathcal{V} to $\widetilde{\mathcal{V}}$, and $\boxed{\mathsf{A}}$ be the **change-of-basis** matrix from \mathcal{W} to $\widetilde{\mathcal{W}}$. Define

$$\widetilde{\mathsf{F}} = \mathsf{A} \cdot \mathsf{F} \cdot \mathsf{B}^{-1}$$

Then $\widetilde{\overline{\mathbb{F}}}$ is the matrix representation of f with respect to $\widetilde{\mathcal{V}}$ and $\widetilde{\mathcal{W}}$.

Proof: Exercise. Try to generalize the previous proof.

_____□ [Theorem 7]

Here's the special case when we are only considering transformations from a vector space to itself:

Corollary 8: Let $\mathbb V$ be a finite-dimensional vector space, and $f:\mathbb V\longrightarrow\mathbb V$ a linear transformation. Suppose that $\mathcal A$ and $\widetilde{\mathcal A}$ are two bases for $\mathbb V$, and suppose that the matrix representation of f, with respect to $\mathcal A$, is $\boxed{\mathsf F}$.

If $\overline{\mathbb{B}}$ is the **change-of-basis** matrix from \mathcal{A} to $\widetilde{\mathcal{A}}$, then

$$\widetilde{\mathsf{F}} = \mathsf{B} \cdot \mathsf{F} \cdot \mathsf{B}^{-1}$$

is the matrix representation of f with respect to $\widetilde{\mathcal{A}}$