Linear Transformations

Definition 1: Linear Transformation

Let $\mathbb V$ and $\mathbb W$ be vector spaces. A linear transformation from $\mathbb V$ to $\mathbb W$ is a function $f:\mathbb V\longrightarrow \mathbb W$, such that:

- 1. For all $\vec{v}_1, \vec{v}_2 \in \mathbb{V}$, $f(\vec{v}_1 + \vec{v}_2) = f(\vec{v}_1) + f(\vec{v}_2)$.
- 2. For all $\vec{v} \in \mathbb{V}$ and $r \in \mathbb{R}$ $f(r.\vec{v}) = r.f(\vec{v_1})$.

Example 2: Linear Transformations from \mathbb{R}^3 to itself

Heuristically, a linear transformation $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ can be thought of as a way of "warping" 3-dimensional space, in a manner such that many geometric properties are preserved. **Straight lines** are transformed into **straight lines**, and **flat planes** into **flat planes**. Two lines (or planes) which were **parallel** before the transformation will remain **parallel** afterwards. Finally, the **origin** point is unmoved by the transformation.

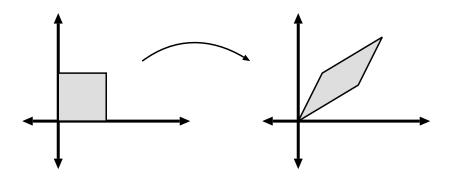


Figure 1: Linear functions send parallelograms to parallelograms, and send zero to itself

Thus, a rectilinear 3-dimensional "box" with one corner at the origin will get transformed, under the action of f, into a rather squashed looking box (with parallelograms for sides), still with one corner at the origin.

Example 3: Matrix Multiplication

Let $\overline{\mathbf{A}} \in \mathcal{M}_{D \times M}$. We can define a linear transformation $f : \mathbb{R}^M \longrightarrow \mathbb{R}^D$ via **multiplication by** $\overline{\mathbf{A}}$: for any $\vec{v} \in \mathbb{R}^M$, define:

$$f(\vec{v}) = \boxed{\mathbf{A} \cdot \vec{v}}$$

Explicitly, suppose that
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1M} \\ a_{21} & a_{22} & \dots & a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{D1} & a_{D2} & \dots & a_{DM} \end{bmatrix}$$
, and $\vec{v} = \begin{bmatrix} v_1 & v_2 & \dots & v_M \end{bmatrix}$.

Then

$$f(\vec{v}) = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1M} \\ a_{21} & a_{22} & \dots & a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{D1} & a_{D2} & \dots & a_{DM} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_M \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}v_1 + a_{12}v_2 + \dots + a_{1M}v_M \\ a_{21}v_1 + a_{22}v_2 + \dots + a_{2M}v_M \\ \vdots \\ a_{D1}v_1 + a_{D,2}v_2 + \dots + a_{D,M}v_M \end{bmatrix}$$

Theorem 4: A linear transformation is determined by its action on a Basis

Let V be a finite dimensional vector space.

Let $\{\mathbf{a}_1,\ldots,\mathbf{a}_K\}$ be any spanning set for \mathbb{V} . Suppose that $f,g:\mathbb{V}\longrightarrow\mathbb{W}$ are two linear transformations. If $f(\mathbf{a}_k)=g(\mathbf{a}_k)$ for all of $\{\mathbf{a}_1,\ldots,\mathbf{a}_K\}$, then f and g are equal everywhere.

Proof: Let $\vec{v} \in \mathbb{V}$ be arbitrary. Since $\{\mathbf{a}_1, \ldots, \mathbf{a}_K\}$ is a spanning set, write:

$$\vec{v} = \sum_{k=1}^{K} v_k \mathbf{a}_k$$

for some numbers $v_1, \ldots, v_k \in \mathbb{R}$. Then

$$f(\vec{v}) =_{(1)} f\left(\sum_{k=1}^{K} v_k \mathbf{a}_k\right)$$

$$=_{(2)} \sum_{k=1}^{K} f(v_k \mathbf{a}_k)$$

$$=_{(3)} \sum_{k=1}^{K} v_k f(\mathbf{a}_k)$$

$$=_{(4)} \sum_{k=1}^{K} v_k g(\mathbf{a}_k)$$

$$=_{(5)} \sum_{k=1}^{K} g(v_k \mathbf{a}_k)$$

$$=_{(6)} g\left(\sum_{k=1}^{K} v_k \mathbf{a}_k\right)$$

$$=_{(7)} g(\vec{v})$$

here, (1) and (7) are because $\vec{v} = \sum_{k=1}^{K} v_k \mathbf{a}_k$,

- (2),(3) are because f is linear.
- (4) is because f and g agree on $\{\mathbf{a}_1, \ldots, \mathbf{a}_K\}$.
- (5),(6) are because g is linear.

 \square [Theorem 4]

Theorem 5: All Linear Transformations on \mathbb{R}^N are Matrix Multiplications

Let $\mathcal{E} = \{\mathbf{e}_1, \dots, \mathbf{e}_N\}$ be the "standard basis" for \mathbb{R}^N .

1. If $f:\mathbb{R}^N\longrightarrow\mathbb{R}^D$ is any linear transformation, then f is equivalent to matrix multiplication:

$$f(\vec{v}) = \boxed{\mathbf{A}} \cdot \vec{v}$$

where $\overline{\mathbf{A}}$ is the $D \times N$ matrix whose *columns* are the *images* of $\{\mathbf{e}_1, \dots, \mathbf{e}_N\}$. Formally, let $\mathbf{a}_1 = f(\mathbf{e}_1), \mathbf{a}_2 = f(\mathbf{e}_2), \dots, \mathbf{a}_N = f(\mathbf{e}_N)$. Then

$$\boxed{\mathsf{A}} = \left[\begin{array}{cccc} \uparrow & \uparrow & \dots & \uparrow \\ \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_N \\ \downarrow & \downarrow & \dots & \downarrow \end{array} \right]$$

2. Let $\boxed{\mathbb{B}} = \begin{bmatrix} \uparrow & \uparrow & \dots & \uparrow \\ \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_N \\ \downarrow & \downarrow & \dots & \downarrow \end{bmatrix}$ be an arbitrary $D \times N$ matrix. Then there is a **unique** linear transformation $g: \mathbb{R}^N \longrightarrow \mathbb{R}^D$ so that

$$\mathbf{b}_1 = g(\mathbf{e}_1), \mathbf{b}_2 = g(\mathbf{e}_2), \dots, \mathbf{b}_N = g(\mathbf{e}_N)$$

and this linear transformation is simply multiplication by B

$$g(\vec{v}) = \mathbf{B} \cdot \vec{v}$$

Proof:

$$\mathbf{Proof} \ \mathbf{of} \ \mathbf{Part} \ \mathbf{2:} \quad \mathbf{Suppose} \ \mathbf{that} \ \mathbf{B} = \begin{bmatrix} \uparrow & \uparrow & \dots & \uparrow \\ \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_N \\ \downarrow & \downarrow & \dots & \downarrow \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1N} \\ b_{21} & b_{22} & \dots & b_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ b_{D1} & b_{D2} & \dots & b_{DN} \end{bmatrix}.$$

Then:

$$\boxed{\mathbf{B}} \cdot \vec{v} = \begin{bmatrix}
b_{11}v_1 + b_{12}v_2 + \dots + b_{1N}v_N \\
b_{21}v_1 + b_{22}v_2 + \dots + b_{2N}v_N \\
\vdots \\
b_{D1}v_1 + b_{D,2}v_2 + \dots + b_{D,N}v_N
\end{bmatrix}$$

$$= v_1 \begin{bmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{D1} \end{bmatrix} + v_2 \begin{bmatrix} b_{12} \\ b_{22} \\ \vdots \\ b_{D2} \end{bmatrix} + \dots + v_N \begin{bmatrix} b_{1n} \\ b_{2n} \\ \vdots \\ b_{Dn} \end{bmatrix}$$
$$= v_1 \mathbf{b}_1 + v_2 \mathbf{b}_2 + \dots v_N \mathbf{b}_N$$

In particular, if
$$\mathbf{e}_n = \left(\underbrace{0, \dots, 0}_{n-1}, 1, 0, \dots, 0\right)$$

then $\boxed{\mathbf{B}} \cdot \mathbf{e}_n = \mathbf{b}_n$

Proof of Part 1: This follows from Part 2 and the previous theorem.

______ [Theorem 5]

Example 6: Compression/expansion/reflection in the kth dimension Let $r \in \mathbb{R}$, and consider the transformation $f : \mathbb{R}^N \longrightarrow \mathbb{R}^N$ that multiplies the kth dimension of \mathbb{R}^N by a factor of r:

$$f(v_1, v_2, \dots, v_k, \dots, v_N) = (v_1, v_2, \dots, r.v_k, \dots, v_N)$$

$$\begin{cases}
f(\mathbf{e}_1) = \mathbf{e}_1 = (1, 0, 0, \dots, 0, \dots, 0) \\
f(\mathbf{e}_2) = \mathbf{e}_2 = (0, 1, 0, \dots, 0, \dots, 0) \\
\dots \\
f(\mathbf{e}_k) = r.\mathbf{e}_k = (0, 0, 0, \dots, r, \dots, 0) \\
\dots \\
f(\mathbf{e}_N) = \mathbf{e}_N = (0, 0, 0, \dots, 0, \dots, 1)
\end{cases}, \text{ so the matrix of } f \text{ is }$$

```
\begin{bmatrix}
1 & 0 & 0 & \dots & 0 & \dots & 0 \\
0 & 1 & 0 & \dots & 0 & \dots & 0 \\
0 & 0 & 1 & \dots & 0 & \dots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \dots & r & \dots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \dots & 0 & \dots & 1
\end{bmatrix}
```

Geometrically speaking...

- if r = 0, then f annihilates the kth dimension, thereby projecting \mathbb{R}^N onto a (N-1)-dimensional subspace. (see **Part A** of Fig 2 on the facing page)
- if 0 < r < 1, then f compresses the kth dimension. (see Part B of Fig 2 on the next page)
- if r = 1, then f is the **identity map**. (see **Part C** of Fig 2 on the facing page)
- if r > 1, then f stretches the kth dimension. (see Part D of Fig 2 on the next page)
- if r = -1, then f acts to **reflect** the kth dimension. (see **Part E** of Fig 2 on the facing page)
- What happens if -1 < r < 0? If r < -1?

Example 7: Rotation in \mathbb{R}^2

Let θ be an angle between 0 and 2π , and let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ "rotate" the plane about the origin by an angle of θ .

f doesn't change the lengths of vectors, so unit vectors get sent to unit vectors. Thus, $\mathbf{a} = f(\mathbf{e}_1)$ is a unit vector, and makes an angle of θ with the horizontal axis. In other words, the vector \mathbf{a} is the **hypotenuse** of a right-angle triangle with sides of length a_1 and a_2 , and an angle of θ ; by trigonometry, we know that $a_1 = \cos(\theta)$, $a_2 = \sin(\theta)$.

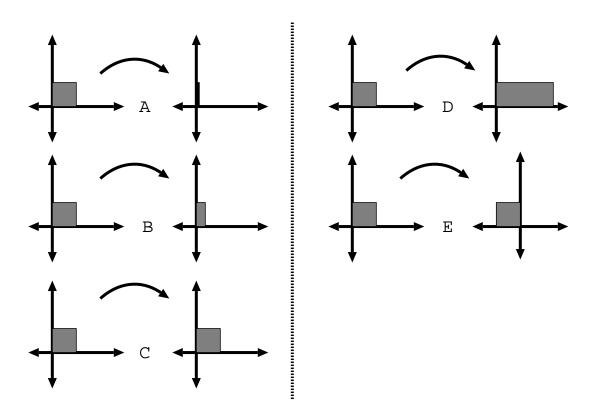


Figure 2: Stretching/Compressing/Reflecting a dimension

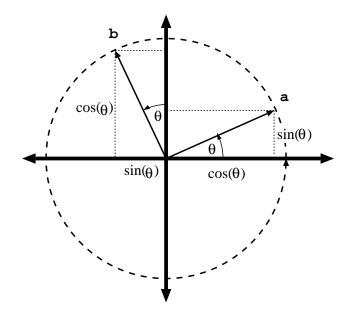


Figure 3: Rotation by θ

Similarly, $\mathbf{b} = f(\mathbf{e}_2)$ is a unit vector which makes an angle of θ with the *vertical* axis, so it is the **hypotenuse** of an upended right-angle triangle with sides of length b_1 and b_2 , and an angle of θ ; by trigonometry, we know that $b_1 = -\sin(\theta)$, $b_1 = \cos(\theta)$.

Hence, the matrix of f is:

$$\begin{bmatrix} \uparrow & \uparrow \\ f(\mathbf{e}_1) & f(\mathbf{e}_2) \\ \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Example 8: Orthogonal Projection

Suppose \mathbb{V} is a subspace of \mathbb{R}^N , with orthonormal basis $\{\mathbf{v}_1, \dots, \mathbf{v}_D\}$. Then the **orthogonal projection** map $\mathbf{pr}_{\mathbb{V}} : \mathbb{R}^D \longrightarrow \mathbb{R}^D$, defined

$$\mathbf{pr}_{\mathbb{V}}(\vec{x}) = \sum_{d=1}^{D} \langle \vec{x}, \mathbf{v}_d \rangle \mathbf{v}_d$$

is a linear transformation. (See Figure 4 on the next page

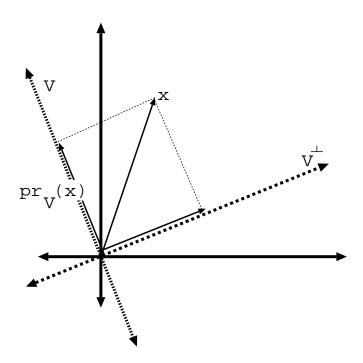


Figure 4: The projection of \vec{x} onto \mathbb{V} is $\mathbf{pr}_{\mathbb{V}}(\vec{x})$

Example 9: Reflection across a Line

Let $\mathbb L$ be a line in $\mathbb R^2$ passing through zero. Thus, $\mathbb L$ is a linear subspace. Define $f:\mathbb R^2\longrightarrow\mathbb R^2$ by

$$f(\vec{x}) = 2 \cdot \mathbf{pr}_{\mathbb{L}}(\vec{x}) - \vec{x}.$$

This is equivalent to **reflecting** \vec{x} across the line \mathbb{L} .

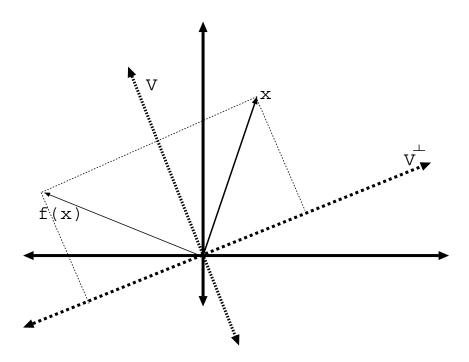


Figure 5: Reflection across a line

Example 10: Reflection across a Plane

Let $\mathbb P$ be a plane in $\mathbb R^3$ passing through zero. Thus, $\mathbb P$ is a linear subspace. Define $f:\mathbb R^2\longrightarrow\mathbb R^2$ by

$$f(\vec{x}) = 2 \cdot \mathbf{pr}_{\mathbb{P}}(\vec{x}) - \vec{x}.$$

This is equivalent to **reflecting** \vec{x} across the plane \mathbb{P} .

Example 11: Reflection across a subspace

Let $\mathbb V$ be a linear subspace in $\mathbb R^D$ passing through zero. Define $f:\mathbb R^D\longrightarrow\mathbb R^D$ by

$$f(\vec{x}) = 2 \cdot \mathbf{pr}_{\mathbb{V}}(\vec{x}) - \vec{x}.$$

This is "**reflecting**" \vec{x} across \mathbb{V} .

Example 12: Linear Actions on Matrices

 $\mathcal{M}_{N\times M}$ is also a vector space, and the following are linear transformations:

- Matrix Multiplication: If $\overline{A} \in \mathcal{M}_{N \times M}$, define $f : \mathcal{M}_{M \times D} \longrightarrow \mathcal{M}_{N \times D}$ by $f(\overline{B}) = \overline{A} \cdot \overline{B}$. Then f is a linear transformation.
- Matrix Transposition: Define $f: \mathcal{M}_{M \times D} \longrightarrow \mathcal{M}_{D \times M}$ by $f(\boxed{\mathbb{B}}) = \boxed{\mathbb{B}}^t$. Then f is linear.
- Matrix Trace: Define $f: \mathcal{M}_{N \times N} \longrightarrow \mathbb{R}$ by $f(\overline{\mathbb{B}}) = \text{trace}[\overline{\mathbb{B}}] = b_{11} + b_{22} + \ldots + b_{NN}$. Then f is linear.

Nonexamples 13: The following are *not* linear transformations

- Matrix Inversion: Define $f: \mathcal{M}_{N \times N} \longrightarrow \mathcal{M}_{N \times N}$ by $f(\boxed{\mathbb{B}}) = \boxed{\mathbb{B}}^{-1}$.
 - f is not defined on all of $\mathcal{M}_{N\times N}$.
 - f is not linear, even where it is defined.
- Polynomial Squaring: Define $f: \mathcal{P}_N \longrightarrow \mathcal{P}_{2N}$ by $f(p(x)) = p^2(x)$. For example, $f(x+1) = x^2 + 2x + 1$. It is easy to find counterexamples to show this is not linear. (Try!)
- Translation: Let $\mathbf{v} \in \mathbb{R}^D$, and define $f : \mathbb{R}^D \longrightarrow \mathbb{R}^D$ by $f(\vec{x}) = \vec{x} + \mathbf{v}$. Then f is not linear because the **origin** does not remain fixed.
- Rotation about a point other than zero: If $\mathbf{x} \in \mathbb{R}^2$ is a point other than zero, and we rotate \mathbb{R}^2 about \mathbf{x} , then this function moves the origin, so it is not linear.
- Reflection across a line not through zero: If \mathbb{L} is a line in \mathbb{R}^2 that does not pass through zero, then reflection across \mathbb{L} moves the origin, so it is not linear.

Remark 14: Affine Transformations

The last three examples "would be" linear, except that they move zero. A map of this kind is called an **affine transformation**; it is a linear transformation, preceded and/or followed by a *translation*.

Example 15: Change of Basis

Suppose $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_N\}$ is some **basis** for \mathbb{R}^N , and $\vec{x} \in \mathbb{R}^N$. How can we find the **coordinates** for \vec{x} in the basis \mathcal{B} ?

Let
$$\boxed{\mathbf{B}} = \begin{bmatrix} \uparrow & \uparrow & \dots & \uparrow \\ \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_N \\ \downarrow & \downarrow & \dots & \downarrow \end{bmatrix}$$
. \mathcal{B} is a basis, so $\boxed{\mathbf{B}}$ is **invertible**.

Suppose $\vec{x} = (x_1, \dots, x_N)$. Let $\vec{y} = A \cdot \vec{x}$; with $\vec{y} = (y_1, \dots, y_N)$. I claim that (y_1, \dots, y_N) are the coordinates of \vec{x} with respect to \mathcal{B} . To see this:

$$\sum_{n=1}^{N} y_n \mathbf{b}_n = y_1 \begin{bmatrix} \uparrow \\ \mathbf{b}_1 \\ \downarrow \end{bmatrix} + y_2 \begin{bmatrix} \uparrow \\ \mathbf{b}_2 \\ \downarrow \end{bmatrix} + \dots + y_N \begin{bmatrix} \uparrow \\ \mathbf{b}_N \\ \downarrow \end{bmatrix}$$

$$= \boxed{\mathbf{B}} \cdot \vec{y}$$

$$= \boxed{\mathbf{B}} \cdot \boxed{\mathbf{B}}^{-1} \cdot \vec{x}$$

$$= \vec{x}$$

Example 16:

Suppose
$$\mathbf{b}_1 = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$$
,
$$\mathbf{b}_1 = \left(\frac{-1}{2}, \frac{\sqrt{3}}{2}\right)$$
,
Then $\boxed{\mathbf{B}} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$.
Thus, $\boxed{\mathbf{A}} = \begin{bmatrix} \boxed{\mathbf{B}}^{-1} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$.

Thus, if $\vec{x} = (1, 2)$, then

$$\vec{y} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} + 1 \\ \frac{-1}{2} + \sqrt{3} \end{bmatrix}$$