Linear Transformations

Definition 1: Linear Transformation

Let V and W be vector spaces. A linear transformation from V to W
is a function f:V — W, such that:

1. For all 171, 172 eV, f(171 + 772) = f(’ljl) + f(?j‘g)
2. Foralle Vand r e R f(r.0) =r.f(¥h).

Example 2: Linear Transformations from R® to itself

Heuristically, a linear transformation f : R® — R? can be thought of as a
way of “warping” 3-dimensional space, in a manner such that many geomet-
ric properties are preserved. Straight lines are transformed into straight
lines, and flat planes into flat planes. Two lines (or planes) which were
parallel before the transformation will remain parallel afterwards. Finally,
the origin point is unmoved by the transformation.
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Figure 1: Linear functions send parallelograms to parallelograms, and send
zero to itself

Thus, a rectilinear 3-dimensional “box” with one corner at the origin will
get transformed, under the action of f, into a rather squashed looking box
(with parallelograms for sides), still with one corner at the origin.



Example 3: Matriz Multiplication
Let € Mpyu. We can define a linear transformation f : R — RP

via multiplication by [A ] for any 7 € RM, define:

f@) = [A]l-

a1 a2 ... Qi1pm
. 921 Qoo ... Qopm .
Explicitly, suppose that = ,and U7 = [ V1 Vo
apy Qp2 ... AGpm
Then
’V al aio ... Q1pm -| [ U1 -|
5 o1 Q22 ... Qaopf V2
f0) =
ap1 Qpo2 ... Aapm Vpmr

a11V1 + Q12U + ... + Q1M VUM
Q211 + A22V2 + ... + Qop U

apiv; + ap,2V2 + ...+ ap,MUM

Theorem 4: A linear transformation is determined by its action on a

Basis

Let V be a finite dimensional vector space.

Let {aj,...,ax} be any spanning set for V. Suppose that f,g: V — W
are two linear transformations. If f(ax) = g(ax) for all of {a;,...,ak}, then f
and g are equal everywhere.

Proof: Let ¥ € V be arbitrary. Since {ay,...,ax} is a spanning set,
write:

onr |-



for some numbers vq,...,v; € R. Then

k=1
K
=0 Y f(veay)
k=1
K
=(3) kaf(ak)
k=1
K
=) kag(ak)
k=1
K
=(5) Zg(vkak)
k=1
K
=®) 9 (ZW%)
k=1
=) 9(?)

here, (1) and (7) are because 7 = Y 1 vay,
(2),(3) are because f is linear.
(4) is because f and g agree on {ay,...,ag}.

(5),(6) are because g is linear.

O [Theorem 4]

Theorem 5: All Linear Transformations on RN are Matriz Multiplica-

tions
Let £ = {ei,...,en} be the “standard basis” for RY.

1. If f:RY — RP is any linear transformation, then f is equivalent to
matrix multiplication:



f(@) =

where | A |is the D x N matrix whose columns are the images of {ey, . ..
..,ay = f(en). Then

Formally, let a; = f(e1),a; = f(es),.

T 1

: a; ag

T
T 1T ... 1
2. Let: b1 bg bN
Ll

A7

T
ay

!

be an arbitrary D x N matrix. Then

there is a unique linear transformation g : RY — RP so that

b, = g(e1), by = g(e2),..., by = g(en)

and this linear transformation is simply multiplication by :

9(v) =

Proof:

Proof of Part 2:  Suppose that . =

Then:

bi1v1 + bigvg +
b21’U1 + bQQUQ +

bp1v1 + bp 2v2 +

bll b12
T by b
b, b, by |[=| &
L. {
bDl bDQ
...+b1N’UN
...+b2N’UN

...t bD,NUN

aeN}-

blN
b2N

bDN



bll b12 bl'n

b22 b2n
= U . + V9 . + ...+ VN

bp1 bpo bDn

= Ulbl + ’l)2b2 + .. .’l)NbN

In particular, if e, = 0,...,0,1,0,...,0

then -en = b,

Proof of Part 1: This follows from Part 2 and the previous theorem.

O [Theorem 5]

Example 6: Compression/expansion/reflection in the kth dimension

Let r € R, and consider the transformation f : RY — R that multiplies
the kth dimension of RY by a factor of r:

fo,va, .. Uk, - on) = (V1,V2, 0, TV, -, UN)
( f(e1)=e1=(1,0,0, .,0,...,0) )
f(GQ)ZGQZ(O,].,O, .,0,.. ,0)

Notice: < fer) = rex = (0,0,0,...,7,...,0) >, so the matrix of f is




100 ... 0 0]
10 ...0...0
001 ...0...0
000 ... 7 0
000 ... 0 ... 1]

Geometrically speaking...

e if r = 0, then f annihilates the kth dimension, thereby projecting
RY onto a (N — 1)-dimensional subspace. (see Part A of Fig 2 on the
facing page)

e if 0 < r < 1, then f compresses the kth dimension. (see Part B of
Fig 2 on the next page)

e if r = 1, then f is the identity map. (see Part C of Fig 2 on the
facing page)

e if > 1, then f stretches the kth dimension. (see Part D of Fig 2 on
the next page)

e if r = —1, then f acts to reflect the kth dimension. (see Part E of
Fig 2 on the facing page)

e What happens if —1 <r <07 If r < —17

Example 7: Rotation in R?

Let 6 be an angle between 0 and 27, and let f : R? — R? “rotate” the
plane about the origin by an angle of 6.

f doesn’t change the lengths of vectors, so unit vectors get sent to unit
vectors. Thus, a = f(ey) is a unit vector, and makes an angle of # with
the horizontal axis. In other words, the vector a is the hypotenuse of a
right-angle triangle with sides of length a; and ay, and an angle of 6; by
trigonometry, we know that a; = cos(#), as = sin(6).



Figure 2: Stretching/Compressing/Reflecting a dimension
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Figure 3: Rotation by 6

Similarly, b = f(e;) is a unit vector which makes an angle of 6 with the
vertical axis, so it is the hypotenuse of an upended right-angle triangle with
sides of length b; and by, and an angle of f; by trigonometry, we know that
b; = —sin(#), by = cos(0).

Hence, the matrix of f is:

T [al bl} _ [COSO — sin(6)

fle1) fl(ey) = .
! ! as by sin(f)  cos(#)

Example 8: Orthogonal Projection
Suppose V is a subspace of RY, with orthonormal basis {vi,...,vp}.
Then the orthogonal projection map pry : R® — R, defined

pry(7) = ) (Fva) v

d=1

is a linear transformation. (See Figure 4 on the next page



Figure 4: The projection of Z onto V is pry(7)
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Example 9: Reflection across a Line

Let L be a line in R? passing through zero. Thus, L is a linear subspace.
Define f : R2 — R? by

f(@) = 2-pry(Z) - 2.

This is equivalent to reflecting 7 across the line L.

Figure 5: Reflection across a line

Example 10: Reflection across a Plane

Let P be a plane in R? passing through zero. Thus, P is a linear subspace.
Define f : R?2 — R? by

[(@) = 2-prp(Z) - 7.

This is equivalent to reflecting & across the plane P.
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Example 11: Refilection across a subspace
Let V be a linear subspace in RP passing through zero. Define f : R? —
RP by
(@) = 2-pry(d) — 2.

This is “reflecting” 7 across V.

Example 12: Linear Actions on Matrices
My« s also a vector space, and the following are linear transformations:

e Matrix Multiplication: If € Mnyxu, define f 1 Muywp —

Mnxp by f () = . . Then f is a linear transformation.

e Matrix Transposition: Define f : My;wp — Mpxy by f () =
t. Then f is linear.

e Matrix Trace: Define f : Myny — R by f () = trace [} =
b1 + by + ...+ byn. Then f is linear.

Nonexamples 13: The following are not linear transformations

e Matrix Inversion: Define f : Myyny — Mpyxn by f () = _1-

— f is not defined on all of My ..

— f is not linear, even where it is defined.

e Polynomial Squaring: Define f : Py — Poy by f(p(z)) = p?().
For example, f(x+1) = z? + 2z + 1. It is easy to find counterexamples
to show this is not linear. (Try!)

e Translation: Let v € R? and define f : RP — RP by f(Z) = T+ v.
Then f is not linear because the origin does not remain fixed.

e Rotation about a point other than zero: If x € R? is a point
other than zero, and we rotate R? about x, then this function moves
the origin, so it is not linear.

e Reflection across a line not through zero: If LL is a line in R? that
does not pass through zero, then reflection across . moves the origin,
S0 it is not linear.
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Remark 14: Affine Transformations

The last three examples “would be” linear, except that they move zero.
A map of this kind is called an affine transformation; it is a linear trans-
formation, preceeded and/or followed by a translation.

Example 15: Change of Basis

Suppose B = {by,...,by} is some basis for RV, and ¥ € RY. How can
we find the coordinates for 7 in the basis B?
Tt o7
Let [B]=| by by, ... by |. Bisa basis, so|B]is invertible.
ol d

Let [A]=[B]".
Suppose Z = (z1,...,xy). Let § = -a"c’; with ¥ = (y1,...,yn). I claim
that (y1,...,yn) are the coordinates of & with respect to B. To see this:

v 1 1 1
Z Ynbrn = yi | b1 [ +y2 | bo | +...+yn | bn
= ' I I

ol
o] (=)
=
=)

S

Example 16:

Suppose b; =
b, =

Then =

Thus, =

|
AN
Il
1
w|§w|~
| I



Thus, if £ = (1,2), then

V3
y=12
2



