Kernels and Injectivity

Definition 1: Kernel

Let $f: \mathbb{V} \longrightarrow \mathbb{W}$ be a linear transformation. The **kernel** of f is the set of all vectors *mapped to zero* by f:

$$\ker[f] = \{ \vec{v} \in \mathbb{V} ; f(\vec{v}) = 0 \}$$

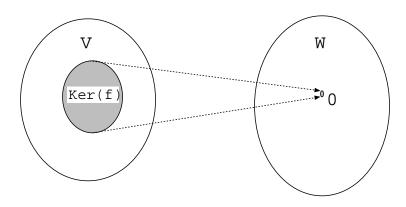


Figure 1: The **kernel** of f is the set of all vectors mapped to zero by f

Example 2: Matrix Multiplication

If
$$\boxed{\mathbf{A}} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1M} \\ a_{21} & a_{22} & \dots & a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NM} \end{bmatrix}$$
, and $f: \mathbb{R}^M \longrightarrow \mathbb{R}^N$ is the map

$$f(\vec{v}) = \boxed{\mathbf{A}} \cdot \vec{v},$$

then

$$\begin{aligned} & \ker[f] \\ &= & \left\{ \vec{v} \in \mathbb{R}^M \; ; \; \boxed{\mathbf{A}} \cdot \vec{v} = 0 \right\} \end{aligned}$$

$$= \text{ null } \begin{bmatrix} A \end{bmatrix}$$

$$= \left\{ \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_M \end{bmatrix} \text{ ; solutions of } \begin{bmatrix} a_{11}v_1 + a_{12}v_2 + \ldots + a_{1M}v_M \\ a_{21}v_1 + a_{22}v_2 + \ldots + a_{2M}v_M \\ \vdots \\ a_{N1}v_1 + a_{N,2}v_2 + \ldots + a_{N,M}v_M \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \right\}$$

Example 3: Orthogonal Projection Suppose $\mathbb{V} \subset \mathbb{R}^N$ is a subspace. Then

$$\ker[\mathbf{pr}_{\mathbb{V}}] = \left\{ \vec{v} \in \mathbb{R}^M \; ; \; \mathbf{pr}_{\mathbb{V}}(\vec{v}) \; = \; 0 \right\} = \mathbb{V}^{\perp}$$

Proposition 4: The kernel of a linear transformation is always a linear subspace.

Proof: If $f: \mathbb{V} \longrightarrow \mathbb{W}$ is a linear transformation, and $\vec{x}, \vec{y} \in \ker[f]$, then

$$f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y}) = 0 + 0 = 0,$$

thus, $\vec{x} + \vec{y} \in \ker[f]$. Also, for any $r \in \mathbb{R}$,

$$f(r.\vec{x}) = r.f(\vec{x}) = r.0 = 0,$$

thus $r.\vec{x} \in \ker[f]$.

______ [Proposition 4]

Proposition 5: Kernel of Matrix Multiplication Suppose $\boxed{\mathbf{A}}$ is a matrix, and $f: \mathbb{R}^M \longrightarrow \mathbb{R}^N$ is the map $f(\vec{v}) = \boxed{\mathbf{A}} \cdot \vec{v}$. The kernel of f is the orthogonal complement of the row space of

A._____

Definition 6: Nullity

Let $f: \mathbb{V} \longrightarrow \mathbb{W}$ be a linear transformation. The **nullity** of f is the **dimension** of $\ker[f]$.

Example 7: If \overline{A} is a matrix, and $f : \mathbb{R}^M \longrightarrow \mathbb{R}^N$ is the map $f(\vec{v}) = \overline{A} \cdot \vec{v}$, then the **nullity** of f is the **nullity** of \overline{A} .

Definition 8: One-to-one, injective

 $f: \mathbb{V} \longrightarrow \mathbb{W}$ is called **one-to-one** (or **injective**) if different elements of \mathbb{V} always map to different elements of \mathbb{W} . Formally: for any $\vec{x}, \vec{y} \in \mathbb{V}$

$$\left(\vec{x} \neq \vec{y}\right) \Longrightarrow \left(f(\vec{x}) \neq f(\vec{y})\right)$$

Example 9:

- The **identity map Id**_{\mathbb{V}} : $\mathbb{V} \longrightarrow \mathbb{V}$ is injective.
- Rotations and Reflections in \mathbb{R}^2 are injective.
- If $\mathbb{V} \subset \mathbb{R}^D$, then **orthogonal projection** onto \mathbb{V} not injective.

Proposition 10: Let $f: \mathbb{V} \longrightarrow \mathbb{W}$ be a linear transformation. Then

$$\left(f \text{ is one-to-one } \right) \iff \left(\text{ nullity } [f] = 0 \right).$$

Proof:

Proof of "\Longrightarrow": Suppose $\vec{x} \in \ker[f]$. Then $f(\vec{x}) = 0 = f(0)$. But f is one-to-one, therefor $\vec{x} = 0$. Conclusion: $\ker[f] = \{0\}$.

Proof of "\Leftarrow": Suppose $f(\vec{x}) = f(\vec{y})$. Then

$$f(\vec{x} - \vec{y}) = f(\vec{x}) - f(\vec{y}) = 0$$

Thus, $(\vec{x} - \vec{y}) \in \ker[f]$.

But nullity [f] = 0, therefor $(\vec{x} - \vec{y})$ must be 0, so $\vec{x} = \vec{y}$. Conclusion: f is one-to-one.

_____ \square [Proposition 10]

Images and Surjectivity

Definition 11: Range

Let $f: \mathbb{V} \longrightarrow \mathbb{W}$ be a linear transformation. The range of f is the set \mathbb{W} .

Remark 12: Notice that the "range" of a function is largely an artifact of how we define the function; in other words, it is a matter of perspective.

For example, suppose $\mathbb{P} \subset \mathbb{R}^3$ is a plane, and $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ is the **orthogonal projection** onto \mathbb{P} . Thus, the **range** of f is all of \mathbb{R}^3 . However, we could just as easily have **defined** f with the expression " $f: \mathbb{R}^3 \longrightarrow \mathbb{P}$ ". In this case, the range of f would be \mathbb{P} , since " \mathbb{P} " is what appears on the right hand side of the arrow. We have changed our "perspective" on f, and the meaning of the word "range" must change in a corresponding fashion.

Definition 13: Image

Let $f: \mathbb{V} \longrightarrow \mathbb{W}$ be a linear transformation. The \mathbf{image} of f is the set

$$image[f] = \{\vec{w} \in \mathbb{W} ; \vec{w} = f(\vec{v}) \text{ for some } \vec{v} \in \mathbb{V}\}$$

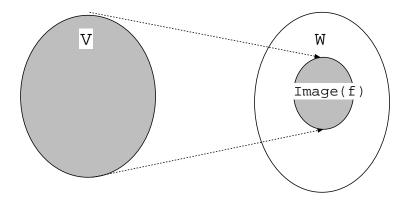


Figure 2: The **image** of f

Example 14: Matrix Multiplication

If
$$A = \begin{bmatrix} \uparrow & \uparrow & \dots & \uparrow \\ a_1 & a_2 & \dots & a_M \\ \downarrow & \downarrow & \dots & \downarrow \end{bmatrix}$$
, and $f : \mathbb{R}^M \longrightarrow \mathbb{R}^N$ is the map

$$f(\vec{v}) = \boxed{\mathbf{A}} \cdot \vec{v},$$

then

$$\begin{split} \mathrm{image}\,[f] &= \; \left\{ \boxed{\mathbf{A}} \cdot \vec{v} \; ; \; \vec{v} \in \mathbb{R}^M \right\} \\ &= \; \left\{ v_1 \left[\begin{array}{c} \uparrow \\ \mathbf{a}_1 \\ \downarrow \end{array} \right] + v_2 \left[\begin{array}{c} \uparrow \\ \mathbf{a}_2 \\ \downarrow \end{array} \right] + \ldots + v_M \left[\begin{array}{c} \uparrow \\ \mathbf{a}_M \\ \downarrow \end{array} \right] \; ; \; v_1, \ldots, v_M \in \mathbb{R} \right\} \\ &= \; \mathrm{colspace}\left[\boxed{\mathbf{A}} \right] \end{split}$$

Example 15: Orthogonal Projection Suppose $\mathbb{V} \subset \mathbb{R}^N$ is a subspace. Then

$$\operatorname{image}\left[\mathbf{pr}_{\mathbb{V}}\right] \ = \ \left\{\mathbf{pr}_{\mathbb{V}}(\vec{v}) \; ; \; \vec{v} \in \mathbb{R}^{M} \right\} \ = \ \mathbb{V}$$

Proposition 16: The **image** of a linear transformation is always a linear subspace.

Proof: If $f: \mathbb{V} \longrightarrow \mathbb{W}$ is a linear transformation, and $\vec{x}, \vec{y} \in \mathsf{image}[f]$, then

$$f(\vec{x}) + f(\vec{y}) = f(\vec{x} + \vec{y}) \in \mathsf{image}[f].$$

and, for any $r \in \mathbb{R}$,

$$r.f(\vec{x}) = f(r.\vec{x}) \in \mathsf{image}[f].$$

 \square [Proposition 16]

Definition 17: Rank

Let $f: \mathbb{V} \longrightarrow \mathbb{W}$ be a linear transformation. The rank of f is the dimension of image [f].

Remark 18: If $\{\mathbf{b}_1, \ldots, \mathbf{b}_N\}$ is a basis for \mathbb{V} , then $\{f(\mathbf{b}_1), \ldots, f(\mathbf{b}_N)\}$ is a spanning set for image [f] (check this). Hence

$$\operatorname{rank}\,[f] \leq \dim[\mathbb{V}].$$

Example 19: If \overline{A} is a matrix, and $f: \mathbb{R}^M \longrightarrow \mathbb{R}^N$ is the map $f(\vec{v}) = \overline{A} \cdot \vec{v}$, then the **rank** of f is the **rank** of \overline{A} .

Definition 20: Onto, surjective

 $f: \mathbb{V} \longrightarrow \mathbb{W}$ is called **onto** (or **surjective**) if *every* element of \mathbb{W} is in the image of f. Formally: for any $\vec{w} \in \mathbb{W}$ there is some $\vec{v} \in \mathbb{V}$ so that $f(\vec{v}) = \vec{w}$.

In other words, a function is **onto** if its image is equal to its range. Hence, whether f is onto depends on what we have defined its range to be. To avoid ambiguity, we sometimes say, "f is **onto** \mathbb{W} ", to make it explicit that we regard \mathbb{W} as the range, rather than some superset of \mathbb{W} .

Example 21:

- The identity map $Id_{\mathbb{V}} : \mathbb{V} \longrightarrow \mathbb{V}$ is surjective.
- Rotations and Reflections in \mathbb{R}^2 are surjective.

Remark 22: Suppose $f: \mathbb{V} \longrightarrow \mathbb{W}$ is linear.

- 1. f is **onto** if, and only if rank[f] = dim[W].
- 2. If f is equivalent to multiplication by the matrix A, then f is **onto** if, and only if rank A = dim[W].
- 3. But $\operatorname{\mathsf{rank}}\left[\overline{\mathbf{A}}\right] \leq \dim[\mathbb{V}]$ so if $\dim[\mathbb{V}] < \dim[\mathbb{W}]$, then f can never be onto.

Theorem 23: Dimension Theorem

Suppose $f:\mathbb{V}\longrightarrow\mathbb{W}$ is linear, and that $\ker[f]$ and image [f] are both finite-dimensional. Then

- 1. V is finite-dimensional.
- $2. \ \dim[\mathbb{V}] \ = \ \dim[\ker[f]] + \dim[\operatorname{image}\,[f]] \ = \ \operatorname{nullity}\,[f] + \operatorname{rank}\,[f]$

Proof: (When $\dim[V]$ is finite)

Since \mathbb{V} is finite-dimensional, every linear transformation corresponds to multiplication by some matrix. So, let \overline{A} be the matrix corresponding to f. Then

$$\begin{aligned} \operatorname{rank}\left[f\right] &=& \operatorname{rank}\left[\overline{\mathbf{A}}\right] \\ \operatorname{nullity}\left[f\right] &=& \operatorname{dim}[\operatorname{null}\left[\overline{\mathbf{A}}\right]] \end{aligned}$$

But we know that $M = \dim[\operatorname{null}\left[\boxed{\mathbf{A}}\right]] + \operatorname{rank}\left[\boxed{\mathbf{A}}\right]$. (Theorem 5, section 5.5, p.234) In other words, $\dim[\mathbb{R}^M] = \operatorname{nullity}[f] + \operatorname{rank}[f]$.

Example 24: Define $f: \mathcal{M}_{N \times N} \longrightarrow \mathcal{M}_{N \times N}$ by

$$f\left(\boxed{\mathbf{A}}\right) = \boxed{\mathbf{A}} + \boxed{\mathbf{A}}^t$$

Note:
$$\ker[f] = \left\{ \boxed{\mathbf{A}} ; \boxed{\mathbf{A}}^t = -\boxed{\mathbf{A}} \right\}$$

= $\{ \mathbf{antisymmetric} \text{ matrices} \}.$

I claim that image $[f] = \{$ symmetric matrices $\}$. To see this, note:

- 1. If $\boxed{\mathbf{B}} \in \mathsf{image}[f]$, then $\boxed{\mathbf{B}} = \boxed{\mathbf{A}} + \boxed{\mathbf{A}}^t$ for some $\boxed{\mathbf{A}}$. But then $\boxed{\mathbf{B}}^t = \boxed{\mathbf{A}}^t + \boxed{\mathbf{A}} = \boxed{\mathbf{B}}$. Hence, $\boxed{\mathbf{B}}$ is symmetric.
- 2. Suppose B is a symmetric matrix. Then so is $\frac{1}{2}$ B. But then

$$\begin{array}{rcl}
\mathbf{B} &=& \frac{1}{2} \mathbf{B} + \frac{1}{2} \mathbf{B} \\
&=& \frac{1}{2} \mathbf{B} + \frac{1}{2} \mathbf{B} \\
&=& f \left(\frac{1}{2} \mathbf{B} \right)
\end{array}$$

so $B \in \mathsf{image}[f]$.

Consequence: If \mathbf{Symm}_N is the set of symmetric matrices, and $\mathbf{Antisymm}_N$ is the set of antisymmetric matrices, then both \mathbf{Symm}_N and $\mathbf{Antisymm}_N$ are linear subspaces of $\mathcal{M}_{N\times N}$, and

$$\dim[\mathbf{Symm}_N] + \dim[\mathbf{Antisymm}_N] = \dim[\mathcal{M}_{N \times N}] = N^2$$

Example 25:

1. Define $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^5$ by $f(x_1, x_2, x_3) = (x_1, x_2, x_3, 0, 0)$ Then f is **one-to-one** but *not* **onto**.

$$3 \ = \ 0 + 3 \ = \ \dim[\ker[f]] + \dim[\mathrm{image}\,[f]].$$

2. Define $f: \mathbb{R}^5 \longrightarrow \mathbb{R}^3$ by $f(x_1, \ldots, x_5) = (x_1, x_2, x_3)$. Then f is **onto** but *not* **one-to-one**, and

$$5 = 2 + 3 = \dim[\ker[f]] + \dim[\operatorname{image}[f]].$$

Isomorphisms

Definition 26: Isomorphism, bijective

 $f: \mathbb{V} \longrightarrow \mathbb{W}$ is called a linear isomorphism (or bijective) if f is both one-to-one and onto.

Examples 27:

- 1. If $\mathbf{Id}_{\mathbb{V}}: \mathbb{V} \longrightarrow \mathbb{V}$ is the **identity map**, then $\mathbf{Id}_{\mathbb{V}}$ is an **isomorphism**.
- 2. Rotation about the origin in \mathbb{R}^2 by any angle is an isomorphism.
- 3. Compression/Reflection/Expansion in some dimension of \mathbb{R}^N is an isomorphism (unless you annihilate the dimension).
- 4. **Reflection** across a subspace of \mathbb{R}^N is an isomorphism.
- 5. The transposition map: If $f: \mathcal{M}_{N \times M} \longrightarrow \mathcal{M}_{M \times N}$ is the map $f(\overline{A}) = \overline{A}^t$, then f is an isomorphism.