Kernels and Injectivity

Definition 1: Kernel

Let f: V — W be a linear transformation. The kernel of f is the set of
all vectors mapped to zero by f:

ker[f] = {7 € V; f(7) =0}

Figure 1: The kernel of f is the set of all vectors mapped to zero by f
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Example 3: Orthogonal Projection Suppose V C RV is a subspace.
Then

kerlpry] = {7eRY; pry(¥) = 0} = V*

Proposition 4: The kernel of a linear transformation is always a linear
subspace.

Proof: If f:V — W is a linear transformation, and &, i € ker[f], then

f@+9) = f@)+fH) = 0+0 =0,

thus, ¥ + 7 € ker[f]. Also, for any r € R,

fr@d) = r.f(&) =r0 = 0,

thus 7.7 € ker[f].

O [Proposition 4]

Proposition 5: Kernel of Matriz Multiplication
Suppose is a matrix, and f : R® — RY is the map f(¥) =|A|- 7.
The kernel of f is the orthogonal complement of the row space of

[A]

|




Definition 6: Nullity

Let f : V — W be a linear transformation. The nullity of f is the
dimension of ker[f].

Example 7: If | A|is a matrix, and f : R®Y — R¥ is the map f(¥) =
- U, then the nullity of f is the nullity of .
Definition 8: One-to-one, injective

f:V — W is called one-to-one (or injective) if different elements of
V always map to different elements of W. Formally: for any Z,i/ € V

(f#ﬁ):<f(f)#f(?7)>

Example 9:
o The identity map Idy : V — V is injective.
¢ Rotations and Reflections in R? are injective.

e If V C R”, then orthogonal projection onto V not injective.

Proposition 10: Let f: V — W be a linear transformation. Then

( f is one-to-one ) = ( nullity [f] =0 ) )
Proof:

Proof of “=—":  Suppose Z € ker[f]. Then f(Z¥) =0 = f(0). But f is
one-to-one, therefor ¥ = 0. Conclusion: ker[f] = {0}.

Proof of “<=”":  Suppose f(Z) = f(¥). Then



Thus, (Z — §) € ker[f].

But nullity [f] = 0, therefor (& — ¢) must be 0, so & = . Conclusion: f
is one-to-one.

O [Proposition 10]

Images and Surjectivity

Definition 11: Range

Let f : V— W be a linear transformation. The range of f is the set W.

Remark 12: Notice that the “range” of a function is largely an artifact
of how we define the function; in other words, it is a matter of perspective.

For example, suppose P C R?® is a plane, and f : R® — R® is the
orthogonal projection onto P. Thus, the range of f is all of R®*. However,
we could just as easily have defined f with the expression “f : R® —s P”.
In this case, the range of f would be P, since “P” is what appears on the
right hand side of the arrow. We have changed our “perspective” on f, and
the meaning of the word “range” must change in a corresponding fashion.

Definition 13: Image

Let f:V — W be a linear transformation. The image of f is the set

image [f] = {W € W ; @ = f(¥) for some ¢ € V}



Figure 2: The image of f

Example 14: Matriz Multiplication
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Example 15: Orthogonal Projection
Suppose V C RV is a subspace. Then

image [pry] = {pry(?); 7eR"} = V



Proposition 16: The image of a linear transformation is always a linear
subspace.

Proof: If f:V — W is a linear transformation, and Z,7 € image|[f],
then

@)+ ) = f(Z+7) € image[f].

and, for any r € R,

r.f(Z) = f(r.Z) € image[f].

O [Proposition 16]

Definition 17: Rank

Let f: V — W be a linear transformation. The rank of f is the dimen-
sion of image [f].

Remark 18: If {by,..., by} is a basis for V, then {f(by),..., f(bx)}
is a spanning set for image [f] (check this). Hence

rank [f] < dim[V].

Example 19: If is a matrix, and f : RY — R" is the map f(v) =
- U, then the rank of f is the rank of .

Definition 20: Onto, surjective

f:V — W is called onto (or surjective) if every element of W is in
the image of f. Formally: for any @ € W there is some ¢ € V so that

f(@) = .

In other words, a function is onto if its image is equal to its range. Hence,
whether f is onto depends on what we have defined its range to be. To avoid
ambiguity, we sometimes say, “f is onto W’, to make it explicit that we
regard W as the range, rather than some superset of W.



Example 21:
e The identity map Idy : V — V is surjective.

¢ Rotations and Reflections in R? are surjective.

Remark 22: Suppose f:V — W is linear.

1. f is onto if, and only if rank [f] = dim[W].

2. If f is equivalent to multiplication by the matrix , then f is onto
if, and only if rank [] = dim[W].

3. But rank [} < dim[V] so if dim[V] < dim[W], then f can never be

onto.

Theorem 23: Dimension Theorem
Suppose f : V — W is linear, and that ker[f] and image[f] are both
finite-dimensional. Then

1. V is finite-dimensional.
2. dim[V] = dim[ker[f]] + dim[image[f]] = nullity [f] + rank [f]

Proof: (When dim[V] is finite)

Since V is finite-dimensional, every linear transformation corresponds to
multiplication by some matrix. So, let be the matrix corresponding
to f. Then

rank [f] = rank [}
nullity [f] = dim[null []]

But we know that M = dim[null [} |+rank [] . (Theorem 5, section
5.5, p.234) In other words, dim[RY| = nullity [f] + rank [f].

O [Theorem 23]




Example 24: Define f: Myyy — Mnyxn by

F(®) - A+ [

Note: ker[f] = {§ = _}

= {antisymmetric matrices}.

I claim that image [f] = {symmetric matrices}. To see this, note:

1. If € image|[f], then = + t for some . But then
= t + = . Hence, is symmetric.

2. Suppose is a symmetric matrix. Then so is % But then

1 1
_ 1) 1)
1 1
= §+§t
1
= f(§)

so | B] € image [f].

Consequence: If Symm,, is the set of symmetric matrices, and Antisymm,,
is the set of antisymmetric matrices, then both Symm, and Antisymmj
are linear subspaces of My, and

dim[Symm ] + dim[Antisymm,] = dim[My.y] = N?

Example 25:

1. Define f : R® — R® by f(x1,%2,73) = (z1,Z,73,0,0) Then f is
one-to-one but not onto.

3 = 0+3 = dim[ker[f]] + dim[image [f]].



2. Define f : R® — R® by f(z1,...,25) = (z1,%2,73). Then f is onto
but not one-to-one, and

5 = 2+ 3 = dimlker[f]] + dim[image [f]].

Isomorphisms

Definition 26: Isomorphism, bijective

f:V — Wis called a linear isomorphism (or bijective) if f is both
one-to-one and onto.

Examples 27:
1. If Idy : V — V is the identity map, then Idy is an isomorphism.
2. Rotation about the origin in R? by any angle is an isomorphism.

3. Compression/Reflection/Expansion in some dimension of RV is
an isomorphism (unless you annihilate the dimension).

4. Reflection across a subspace of RY is an isomorphism.

5. The transposition map: If f : Mywy — Mpuyxny is the map

f () = t, then f is an isomorphism.



