Eigenvalues and Eigenvectors

Prerequisites:

e Linear Functions

e Determinants

Definition 1: Figenvalue, Eigenvector, Spectrum

Let V be a vector space, and f : V — V a linear transformation. Let ¥ € V.

7 is an eigenvector of f if there is some A € R so that
f@) = A7

The number ) is called the eigenvalue associated with .

(The eigenvectors are sometimes called the characteristic vectors of f; the
eigenvalues are sometimes called the characteristic values of f.)

The set of all eigenvalues of f is called the spectrum of f.

If is a N x N matrix, then the eigenvalues, eigenvectors and spectrum
of are simply those of linear transformation f(¢) =|A |- 7.

Example 2: Identity map
If Idy : V — V is the identity map, then for any ¢ € V, Idy(d) = 4.
Thus, every ¥ € V is an eigenvector, all with eigenvalue 1.

Example 3: Diagonal Matrices

aa 0 0 ... O
0 ag 0 0

Suppose =10 0 a ... 0 | andlet f:RY — RN be
0O 0 0 ... an

multiplication—by—. Thus, if

N
if e, = [0,...,0,1,0,...,0
N——r
(n—1)

then f(e,) = -en = ape,

?

Thus, e, is an eigenvector of f, with eigenvalue a,.
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Figure 1: The Eigenvectors of projection



Example 4: Orthogonal Projection
Let V C RM be some subspace, and let pry : RY — RY be the orthogonal
projection onto V.

e Forevery 7 € V, pry(¥) = ¥, so ¥'is an eigenvector of pry, with eigenvalue
1. (see Part (A) of Figure 1 on the facing page)

e For every @ € V1, pry(@) = 0, so @ is an eigenvector of pry, with

eigenvalue 0. (see Part (B) of Figure 1 on the preceding page)

Example 5: Reflection
Let V C RY be some subspace, and let f : RY —s RN be the reflection
across V.
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Figure 2: The Eigenvectors of reflection

e Forevery 7€V, f(?¥) =

¥, so ¥ is an eigenvector of f, with eigenvalue 1.
(see Part (A) of Figure 2)

e For every W € V+, f(W) = —, so  is an eigenvector of f, with
eigenvalue -1. (see Part (B) of Figure 2)



Example 6: Permutation
Let f : R* — R* be the function corresponding to multiplication by the
matrix

[A] =

SO = O
o= OO
= o o O
S OO

and let ¥= (1, —1, 1, —1). Then - ¥ = —, so ¥ is an eigenvector of f
with eigenvalue —1.
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Figure 3: The Eigenvectors of rotation

Example 7: Rotation
Let f : R2 — R? be rotation by 180 degrees. Then for every ¥ € R2,

(%) = —7, so every element of R? is an eigenvector of f, all with eigenvalue
—1. (see Figure 3)

Definition 8: Figenspace

Suppose that f : V — V is a linear transformation, and A € R is an eigenvalue
of f. The eigenspace of A and f is the set of all eigenvectors of f which
have ) as their eigenvalue:

Ex(f) = {veV; f() = A}

Proposition 9: If f: V — V is a linear transformation, and A € R is an
eigenvalue of f, then the eigenspace of f and ) is a linear subspace



Proof: Suppose ¢ and @ are \-eigenvectors, and r € R. We want to show that
W+ o and 7.7 are also A-eigenvectors. But

f@+@) = fO+fW@) = AT+AT = A\(T+ D),
and f(r.o) = r.f(0) = rAT = A(r.0)

O [Proposition 9]

Example 10: Orthogonal Projection

Let V C RV be some subspace, and let pry : R — R" be the orthogonal
projection onto RV .

The eigenvalues of pry are 0 and 1.

e The eigenspace corresponding to 1 is V.

e The eigenspace corresponding to 0 is V*.

There is a close relationship between eigenvalues and determinants.

Theorem 11: Let f : V — V be a linear transformation, and A € R. The
following are equivalent:

1. Xis an eigenvalue of f.
2. f(¥) — A.¥ = 0 for some nonzero ¥ € V.

3. The linear transformation (f — A.Idy) has a nontrivial kernel, and is there-
fore not invertible.

4. The linear transformation (f — A.Idy) has zero determinant.

Thus, if f corresponds to multiplication by the matrix , then, for any A € R,

Ais an eigenvalue of f | < | det ( — /\.) =0

Proof: Exercise

O [Theorem 11]

Now, for any fixed real number A, the determinant det <)\. — ) is
another real number. This allows us to define a function from R to R....



Definition 12: Characteristic Polynomial

Suppose is an N x N matrix. Define the function c :R — R as

follows: for any z € R,

c (x) = det (:17 — )

It turns out that this function is a polynomial in the variable x (convince yourself
of this with some examples). It is called the characteristic polynomial of

the matrix .

Thus, the preceeding theorem can be rephrased:

Corollary 13: Let f: RY — R" be a linear transformation determined by
multiplication by the matrix . Then for any A € R,

Xis an eigenvalue of f | < | Alisarootof c (a:)

The multiplicity of eigenvalue A is its multiplicity as a root of the charac-
teristic polynomial —ie. the number of times the factor (z — ) divides ¢ — (z).

Example 14: The Identity Matriz
The characteristic polynomial of the N x N identity matrix is given:

1 0 0 0 1 0 0 0]
010 ... 0 010 ... 0
c—(z) = det|a. o001 ... 0]_1001...0
Idy L. . .. .
0 0 O 1 0 0 O 1 ]
z 0 O 0 1 0 0 0
0 = O 0 010 0
— det 0 0 =z 0O)l_]10 01 0
0 0 0 T 0 0 O 1
[z —1 0 0 0
0 z—1 0 0
| O 0 0 z—1




Thus, we can see that the only eigenvalue of is 1, and this eigenvalue
has multiplicity N. Thus, the spectrum of is the singleton set {1}.

Example 15: Reflection
Suppose f : R2 —s R? is reflection across the horizontal axis. Thus, f

has matrix
1 0
- [ 0 -1 ]

The characteristic polynomial of is thus:

c(:c) = det (:c—)
- det[$61 a:i)tl]
= (z-1)-(x+1)
= z2-1.

The only eigenvalues of are therefor +1 and —1; each having multiplic-
ity 1. The spectrum of f is the set {+1, —1}.

Example 16: Upper - Triangular Matriz
Suppose that is a diagonal matrix of the form:

ay *
0 as * % ... %
: 0 0 a3 * ... =
0O 0 0 O an
Thus,
1 00 0 a; *x k% ... %
010 0 0 axy * x
c(m) = det|z. |0 01 01— 0 0 as * *
0 0 O 1 0O 0 0 0 an
[z —a; * * * *
0 T — Qs * *
= det 0 0 T —as *
. 0 0 0 0 ... z—an




= (#-a)-(z—az)-...-(z —an)

Thus, the eigenvalues of are just aj, as,...,ay. The multiplicity
of each eigenvalue is simply the number of times it appears in this list. The
spectrum of | A |is the set {a1,...,an} (where each element only appears once
in the set, even if it has multiplicity greater than 1).

(Of course, exactly the same result is true for lower diagonal matrices.)

3 -1 1/6
Example 17: If =|0 3 +2 |,thenthespectrum of is the
0 0 -4

set {3,—4}. The eigenvalue 3 has multiplicity 2, while the eigenvalue —4 has
multiplicity 1.

Example 18: Block-Diagonal Matriz

Suppose has “block decomposition” so that the “diagonal blocks” are all
square and nonzero, and all other blocks are zero. In other words

AL JO0]O0]...]0
0 |[4] 0 ]...] 0
A= [0 [0 [A [ [0 |,
0101 0]...|Ax

y ey

where ‘ A | [ A
ferent sizes). Then

AN ‘ are square matrices (although possible of dif-

c(:z:) = c(:z:)c(:v) c(a:)
Proof: Exercise.
O
Example 19:
1 3 0 0 0 B 0 0O
5 70 0 0 0 00
f[A] = |00 1 V6 5| = 00 :
000 = 23 0 0 C
000 0 V2 00
V5 =5



then ¢ _(z) = ¢

Example 20: Companion Matrices, Rational Canonical Form

0 0 O 0 ag
1 0 0 0 a1
010 0 as
(Al = |0 0 1 0 a3 |-
| 0 0 0 ... 1 an |
= a:N+1+aN:UN+aN_1:I:N71+...+a1:1:+a0.

then ¢ (:1:)

Proof: Exercise.

O
The matrix is called the companion matrix of the polynomial p(z) =
2N paney +anv_12VV+ .o+ a1z + ap.
Suppose p1 (z), p2(x), --., px(x) are polynomials, with companion matrices
| A1}, [42] ...,[Ak] and
A 0 0 ... 0
0 |A | O | ... 0
_ 0 0 | A3 | ... 0
0 0 0 |...| Ak
then ¢ = p1(2) - p2(2) - ... - Pr ().

A matrix of this type is said to be in rational canonical form.

(Although it is beyond the scope of this course, a powerful theorem in linear
algebra says that every matrix is similar to a unique matrix in rational canonical
form.)
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Example 21: Jordan Matriz
Let be an N x N matrix of the form:

X 1 0 0 ... 0 01
0 X1 0 0 0
0 0 X 1 00
= | o Do
0 0 0 0 1 0
0 0 0 0 A1
[0 0 0 0 0 |
Then c(x) = (z-NV.

Proof: Exercise.

A matrix of this type is called a Jordan Matrix. Note that the only
eigenvalue of this matrix is A, and A has multiplicity N. However, if f :
RN — RV is the linear transformation associated with multiplication by ,
then the A-eigenspace of f associated with A is only one-dimensional, not N-
dimensional, as you might expect.

This shows that the eigenspace-dimension of an eigenvalue is not necessarily
the same as the multiplicity of that eigenvalue.

Example 22: Jordan Canonical Form

If ‘ Al [Asl, --.,| Ak ‘ are Jordan matrices, with eigenvalues Aq,..., Ak,
respectively, an
A | O 0| ... 0
0 |Ay | O | ... 0
— 0 0 | As | ... 0
0 0 0 | ... | Ak

then ‘= (=AM (2= X)L (z— Ag) VK

A matrix like is said to be in Jordan canonical form.

(Although it is beyond the scope of this course, a powerful theorem in linear
algebra says that any matrix whose characteristic polynomial completely factors
is similar to a unique matrix in Jordan canonical form.)

Remark 23: The eigenvalues of a linear transformation f : V — V
depend only on f, but the characteristic polynomial for f seems to depend
upon the matrix representation . If V=RY, then there is a “natural”
way to represent any linear transformation as a matrix. However, if V is an
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abstract vector space, then the matrix representation depends upon the
choice of basis (see the material on Matrix Representations) —hence, might
not the characteristic polynomial also depend on the choice of basis?

In fact, it does not; if and are two distinct matrix representations

of the same transformation f, then and have the same characteristic
polynomial. (This fact will be verified in the section on Similarity.)

Hence, we can define the characteristic polynomial of the linear trans-
formation f to be the characteristic polynomial of any (and hence, every)
matrix representation of f.

Proposition 24: Properties of the Characteristic Polynomial
Let be an N x N matrix. Then:

1. The degree of ¢ _(z) is N; in other words,

c (iL‘) = bN.Z'N + belmN_l + ...+ bz + by
for some coefficients by, bn_1,...,b1,bo. Furthermore.....
2. by = 1, always.

3. bp = (—1)V - det () always.
4. by_1 = —trace [] always.

5. Furthermore, suppose that the characteristic polynomial completely fac-

tors:
c(:v) = (=AM (z =)Mo (2= Ag)VEL
Then by = (=D)NAM A2 ARE
and bN—l = —Nl-)\l—Ng-)\Q—...—NK-)\K.

6. In other words if has eigenvalues A1, . . ., Ag, with multiplicities Vy, ..., Nk,
respectively, and Ny + Ny + ...+ Ng = N, then

det() = AN AR

and trace[] = Ni-AM + Ny-Xy + ... + Np-Ag

(where trace [] =a11 +asx+...+ann)
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Proof:
Proof of Part 3.: ‘ c (a:) = byna™N +...+ bz + by, therefore ¢ (0) = by.
But by definition
c (0) = det (O. - )

det (—)
= (=1)¥ det ()

Proof of Part 5: In this case,

c (0) = (0=2)M-(0=2)M ... (0= Ag)V¥
= (=)Wt Ng) AN AN AR
= (DN AN AR

Part 1, Part 2 and Part 3 are left as exercises (simple polynomial
algebra). Part 6 follows immediately from Part 3, Part 4 and Part 5.

O [Proposition 24]




