Eigenvalues and Eigenvectors

Prerequisites:

- Linear Functions
- Determinants

Definition 1: Eigenvalue, Eigenvector, Spectrum

Let $\mathbb V$ be a vector space, and $f:\mathbb V\longrightarrow\mathbb V$ a linear transformation. Let $\vec v\in\mathbb V$. $\vec v$ is an **eigenvector** of f if there is some $\lambda\in\mathbb R$ so that

$$f(\vec{v}) = \lambda . \vec{v}$$

The number λ is called the **eigenvalue** associated with \vec{v} .

(The eigenvectors are sometimes called the **characteristic** vectors of f; the eigenvalues are sometimes called the **characteristic** values of f.)

The set of all eigenvalues of f is called the **spectrum** of f.

If \overline{A} is a $N \times N$ matrix, then the eigenvalues, eigenvectors and spectrum of \overline{A} are simply those of linear transformation $f(\vec{v}) = \overline{A} \cdot \vec{v}$.

Example 2: Identity map

If $\mathbf{Id}_{\mathbb{V}}: \mathbb{V} \longrightarrow \mathbb{V}$ is the identity map, then for any $\vec{v} \in \mathbb{V}$, $\mathbf{Id}_{\mathbb{V}}(\vec{v}) = \vec{v}$. Thus, $every \ \vec{v} \in \mathbb{V}$ is an eigenvector, all with eigenvalue 1.

Example 3: Diagonal Matrices

Suppose
$$\boxed{\mathbf{A}} = \begin{bmatrix} a_1 & 0 & 0 & \dots & 0 \\ 0 & a_2 & 0 & \dots & 0 \\ 0 & 0 & a_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_N \end{bmatrix}$$
, and let $f: \mathbb{R}^N \longrightarrow \mathbb{R}^N$ be

multiplication-by-A . Thus, if

if
$$\mathbf{e}_n = \left(\underbrace{\underbrace{0,\dots,0}_{(n-1)},1,0,\dots,0}^{N}\right),$$

then $f(\mathbf{e}_n) = \mathbf{A} \cdot \mathbf{e}_n = a_n \mathbf{e}_n$

Thus, \mathbf{e}_n is an eigenvector of f, with eigenvalue a_n .

Figure 1: The Eigenvectors of projection

Example 4: Orthogonal Projection

Let $\mathbb{V} \subset \mathbb{R}^N$ be some subspace, and let $\mathbf{pr}_{\mathbb{V}} : \mathbb{R}^N \longrightarrow \mathbb{R}^N$ be the **orthogonal projection** onto \mathbb{V} .

- For every $\vec{v} \in \mathbb{V}$, $\mathbf{pr}_{\mathbb{V}}(\vec{v}) = \vec{v}$, so \vec{v} is an eigenvector of $\mathbf{pr}_{\mathbb{V}}$, with eigenvalue 1. (see **Part** (**A**) of Figure 1 on the facing page)
- For every $\vec{w} \in \mathbb{V}^{\perp}$, $\mathbf{pr}_{\mathbb{V}}(\vec{w}) = 0$, so \vec{w} is an eigenvector of $\mathbf{pr}_{\mathbb{V}}$, with eigenvalue 0. (see **Part** (**B**) of Figure 1 on the preceding page)

Example 5: Reflection

Let $\mathbb{V} \subset \mathbb{R}^N$ be some subspace, and let $f: \mathbb{R}^N \longrightarrow \mathbb{R}^N$ be the **reflection** across \mathbb{V} .

Figure 2: The Eigenvectors of reflection

- For every $\vec{v} \in \mathbb{V}$, $f(\vec{v}) = \vec{v}$, so \vec{v} is an eigenvector of f, with eigenvalue 1. (see Part (A) of Figure 2)
- For every $\vec{w} \in \mathbb{V}^{\perp}$, $f(\vec{w}) = -\vec{w}$, so \vec{w} is an eigenvector of f, with eigenvalue -1. (see **Part** (**B**) of Figure 2)

Example 6: Permutation

Let $f:\mathbb{R}^4\longrightarrow\mathbb{R}^4$ be the function corresponding to multiplication by the matrix

$$\boxed{\mathbf{A}} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

and let $\vec{v}=(1,\ -1,\ 1,\ -1$). Then $\boxed{\mathbf{A}}\cdot\vec{v}=-\vec{v},$ so \vec{v} is an eigenvector of f with eigenvalue -1.

Figure 3: The Eigenvectors of rotation

Example 7: Rotation

Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be **rotation by 180 degrees**. Then for every $\vec{v} \in \mathbb{R}^2$, $f(\vec{v}) = -\vec{v}$, so *every* element of \mathbb{R}^2 is an eigenvector of f, all with eigenvalue -1. (see Figure 3)

$\textbf{Definition 8:} \quad \textit{Eigenspace}$

Suppose that $f: \mathbb{V} \longrightarrow \mathbb{V}$ is a linear transformation, and $\lambda \in \mathbb{R}$ is an eigenvalue of f. The **eigenspace** of λ and f is the set of *all eigenvectors* of f which have λ as their eigenvalue:

$$\mathbb{E}_{\lambda}(f) = \{ \vec{v} \in \mathbb{V} ; f(\vec{v}) = \lambda . \vec{v} \}$$

Proposition 9: If $f: \mathbb{V} \longrightarrow \mathbb{V}$ is a linear transformation, and $\lambda \in \mathbb{R}$ is an eigenvalue of f, then the eigenspace of f and λ is a linear subspace

Proof: Suppose \vec{v} and \vec{w} are λ -eigenvectors, and $r \in \mathbb{R}$. We want to show that $\vec{w} + \vec{w}$ and $r.\vec{v}$ are also λ -eigenvectors. But

_____ [Proposition 9]

Example 10: Orthogonal Projection

Let $\mathbb{V} \subset \mathbb{R}^N$ be some subspace, and let $\mathbf{pr}_{\mathbb{V}} : \mathbb{R}^N \longrightarrow \mathbb{R}^N$ be the **orthogonal projection** onto \mathbb{R}^N .

The eigenvalues of $\mathbf{pr}_{\mathbb{V}}$ are 0 and 1.

- The **eigenspace** corresponding to 1 is \mathbb{V} .
- The **eigenspace** corresponding to 0 is \mathbb{V}^{\perp} .

There is a close relationship between eigenvalues and determinants.

Theorem 11: Let $f: \mathbb{V} \longrightarrow \mathbb{V}$ be a linear transformation, and $\lambda \in \mathbb{R}$. The following are equivalent:

- 1. λ is an eigenvalue of f.
- 2. $f(\vec{v}) \lambda \cdot \vec{v} = 0$ for some nonzero $\vec{v} \in \mathbb{V}$.
- 3. The linear transformation $(f \lambda. \mathbf{Id}_{\mathbb{V}})$ has a **nontrivial kernel**, and is therefore **not invertible**.
- 4. The linear transformation $(f \lambda.\mathbf{Id}_{\mathbb{V}})$ has **zero determinant**.

Thus, if f corresponds to multiplication by the matrix A, then, for any $\lambda \in \mathbb{R}$,

$$\left(\begin{array}{c} \lambda \text{ is an eigenvalue of } f \end{array}\right) \iff \left(\begin{array}{c} \det\left(\boxed{\mathbf{A}} - \lambda.\boxed{\mathbf{Id}}\right) \ = \ 0. \end{array}\right)$$

Proof: Exercise

_____ [Theorem 11]

Now, for any fixed real number λ , the determinant $\det \left(\lambda. \operatorname{Id} - A\right)$ is another real number. This allows us to define a function from \mathbb{R} to \mathbb{R} ...

Definition 12: Characteristic Polynomial

Suppose $\boxed{\mathbf{A}}$ is an $N \times N$ matrix. Define the function $c \ \boxed{\underline{A}} : \mathbb{R} \longrightarrow \mathbb{R}$ as follows: for any $x \in \mathbb{R}$,

$$c_{\underline{A}}(x) = \det (x.\underline{\mathbf{Id}} - \underline{\mathbf{A}})$$

It turns out that this function is a *polynomial* in the variable x (convince yourself of this with some examples). It is called the **characteristic polynomial** of the matrix A.

Thus, the preceding theorem can be rephrased:

Corollary 13: Let $f: \mathbb{R}^N \longrightarrow \mathbb{R}^N$ be a linear transformation determined by multiplication by the matrix A. Then for any $\lambda \in \mathbb{R}$,

$$\left(\begin{array}{c} \lambda \text{ is an eigenvalue of } f \end{array}\right) \iff \left(\begin{array}{c} \lambda \text{ is a root of } c \\ \underline{\overline{A}}(x). \end{array}\right)$$

The **multiplicity** of eigenvalue λ is its multiplicity as a root of the characteristic polynomial —ie. the number of times the factor $(x - \lambda)$ divides $c_{\frac{1}{4}}(x)$.

Example 14: The Identity Matrix

The characteristic polynomial of the $N \times N$ identity matrix is given:

$$c_{\boxed{\text{Id}_N}}(x) = \det \left(x. \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix} \right)$$

$$= \det \left(\begin{bmatrix} x & 0 & 0 & \dots & 0 \\ 0 & x & 0 & \dots & 0 \\ 0 & 0 & x & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & x \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix} \right)$$

$$= \det \begin{bmatrix} x - 1 & 0 & 0 & \dots & 0 \\ 0 & x - 1 & 0 & \dots & 0 \\ 0 & 0 & x - 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & x - 1 \end{bmatrix}$$

$$= (x - 1)^N$$

Thus, we can see that the only eigenvalue of $\boxed{\mathbf{Id}_N}$ is 1, and this eigenvalue has **multiplicity** N. Thus, the **spectrum** of $\boxed{\mathbf{Id}_N}$ is the singleton set $\{1\}$.

Example 15: Reflection

Suppose $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is reflection across the horizontal axis. Thus, f has matrix

$$\boxed{\mathbf{A}} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

The characteristic polynomial of A is thus:

$$c_{\overline{\underline{A}}}(x) = \det \left(x.\overline{\underline{\mathbf{Id}}} - \overline{\underline{\mathbf{A}}}\right)$$

$$= \det \begin{bmatrix} x - 1 & 0 \\ 0 & x + 1 \end{bmatrix}$$

$$= (x - 1) \cdot (x + 1)$$

$$= x^2 - 1.$$

The only eigenvalues of $\boxed{\mathbf{A}}$ are therefor +1 and -1; each having multiplicity 1. The **spectrum** of f is the set $\{+1, -1\}$.

Example 16: Upper - Triangular Matrix
Suppose that A is a diagonal matrix of the form:

$$\boxed{\mathbf{A}} = \begin{bmatrix}
a_1 & * & * & * & \dots & * \\
0 & a_2 & * & * & \dots & * \\
0 & 0 & a_3 & * & \dots & * \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \dots & a_N
\end{bmatrix}$$

Thus,

$$c_{\boxed{A}}(x) = \det \begin{pmatrix} x & \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix} - \begin{bmatrix} a_1 & * & * & * & \dots & * \\ 0 & a_2 & * & * & \dots & * \\ 0 & 0 & a_3 & * & \dots & * \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & a_N \end{bmatrix} \right)$$

$$= \det \begin{bmatrix} x - a_1 & * & * & * & * & \dots & * \\ 0 & x - a_2 & * & * & \dots & * \\ 0 & 0 & x - a_3 & * & \dots & * \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & x - a_N \end{bmatrix}$$

$$= (x-a_1)\cdot(x-a_2)\cdot\ldots\cdot(x-a_N)$$

Thus, the **eigenvalues** of A are just $a_1, a_2, ..., a_N$. The **multiplicity** of each eigenvalue is simply the number of times it appears in this list. The **spectrum** of A is the set $\{a_1, ..., a_N\}$ (where each element only appears once in the set, even if it has multiplicity greater than 1).

(Of course, exactly the same result is true for *lower* diagonal matrices.)

Example 17: If
$$A = \begin{bmatrix} 3 & -1 & 1/6 \\ 0 & 3 & \sqrt{2} \\ 0 & 0 & -4 \end{bmatrix}$$
, then the **spectrum** of A is the

set $\{3, -4\}$. The eigenvalue 3 has multiplicity 2, while the eigenvalue -4 has multiplicity 1.

Example 18: Block-Diagonal Matrix

Suppose A has "block decomposition" so that the "diagonal blocks" are all square and nonzero, and all other blocks are zero. In other words

[A_1	0	0		0	ħ
	0	A_2	0		0	
$\overline{\mathbf{A}} =$	0	0	A_3		0	
	:	:	:	٠	:	
	0	0	0		A_N	

where A_1 , A_2 , ..., A_N are square matrices (although possible of different sizes). Then

$$c_{\overline{A}}(x) = c_{\overline{A_1}}(x) \cdot c_{\overline{A_2}}(x) \cdot \dots \cdot c_{\overline{A_N}}(x)$$

П

Proof: Exercise.

Example 19:

where
$$\boxed{\mathbf{B}} = \begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix}$$
 and $\boxed{\mathbf{C}} = \begin{bmatrix} 1 & \sqrt{5} & -5 \\ 0 & \pi & 23 \\ 0 & 0 & \sqrt{2} \end{bmatrix}$,

then
$$c_{|\overline{A}|}(x) = c_{|\overline{B}|}(x) \cdot c_{|\overline{C}|}(x)$$

= $\left[(x-1) \cdot (x-7) - 5 \cdot 3 \right] \cdot \left[(x-1)(x-\pi)(x-\sqrt{2}) \right]$

Example 20: Companion Matrices, Rational Canonical Form

$$\text{If } \boxed{\mathbf{A}} \ = \ \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & a_0 \\ 1 & 0 & 0 & \dots & 0 & a_1 \\ 0 & 1 & 0 & \dots & 0 & a_2 \\ 0 & 0 & 1 & \dots & 0 & a_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & a_N \end{bmatrix},$$
 then $c_{\boxed{\underline{A}}}(x) = x^{N+1} + a_N x^N + a_{N-1} x^{N-1} + \dots + a_1 x + a_0.$

Proof: Exercise.

The matrix A is called the **companion matrix** of the polynomial $p(x) = x^{N+1} + a_N x^N + a_{N-1} x^{N-1} + \ldots + a_1 x + a_0$.

Suppose $p_1(x)$, $p_2(x)$, ..., $p_K(x)$ are polynomials, with companion matrices A_1 , A_2 , ..., A_K , and

$$\begin{bmatrix}
 A_1 & 0 & 0 & \dots & 0 \\
 0 & A_2 & 0 & \dots & 0 \\
 0 & 0 & A_3 & \dots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \dots & A_K
 \end{bmatrix}$$

then
$$c_{|\overline{A}|} = p_1(x) \cdot p_2(x) \cdot \ldots \cdot p_K(x)$$
.

A matrix of this type is said to be in **rational canonical form**.

(Although it is beyond the scope of this course, a powerful theorem in linear algebra says that *every* matrix is similar to a unique matrix in rational canonical form.)

Example 21: Jordan Matrix

Let \overline{A} be an $N \times N$ matrix of the form:

$$\begin{bmatrix} \mathbf{A} & 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & \lambda & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 & \lambda \end{bmatrix}.$$

$$c_{\boxed{A}}(x) = (x - \lambda)^{N}.$$

Proof: Exercise.

A matrix of this type is called a **Jordan Matrix**. Note that the only **eigenvalue** of this matrix is λ , and λ has **multiplicity** N. However, if $f: \mathbb{R}^N \longrightarrow \mathbb{R}^N$ is the linear transformation associated with multiplication by A, then the λ -eigenspace of f associated with λ is only *one*-dimensional, *not* N-dimensional, as you might expect.

This shows that the *eigenspace-dimension* of an eigenvalue is not necessarily the same as the *multiplicity* of that eigenvalue.

Example 22: Jordan Canonical Form

If A_1 , A_2 , ..., A_K are Jordan matrices, with eigenvalues $\lambda_1, \ldots, \lambda_K$, respectively, and

$$\begin{bmatrix} A \\ A \end{bmatrix} = \begin{bmatrix} A_1 & 0 & 0 & \dots & 0 \\ 0 & A_2 & 0 & \dots & 0 \\ 0 & 0 & A_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & A_K \end{bmatrix}$$

then
$$c_{\overline{|A|}} = (x - \lambda_1)^{N_1} \cdot (x - \lambda_2)^{N_2} \cdot \dots (x - \lambda_K)^{N_K}$$

A matrix like A is said to be in **Jordan canonical form**.

(Although it is beyond the scope of this course, a powerful theorem in linear algebra says that *any* matrix whose characteristic polynomial completely factors is similar to a unique matrix in Jordan canonical form.)

Remark 23: The **eigenvalues** of a linear transformation $f: \mathbb{V} \longrightarrow \mathbb{V}$ depend only on f, but the **characteristic polynomial** for f seems to depend upon the **matrix representation** F. If $\mathbb{V} = \mathbb{R}^N$, then there is a "natural" way to represent any linear transformation as a matrix. However, if \mathbb{V} is an

abstract vector space, then the matrix representation F depends upon the choice of *basis* (see the material on **Matrix Representations**) —hence, might not the characteristic polynomial also depend on the choice of basis?

In fact, it does not; if \overline{F} and \overline{F} are two distinct matrix representations of the same transformation f, then \overline{F} and \overline{F} have the same characteristic polynomial. (This fact will be verified in the section on **Similarity**.)

Hence, we can define the **characteristic polynomial of the linear transformation** f to be the characteristic polynomial of any (and hence, every) matrix representation of f.

Proposition 24: Properties of the Characteristic Polynomial Let A be an $N \times N$ matrix. Then:

1. The degree of $c_{\overline{|A|}}(x)$ is N; in other words,

$$c_{\overline{A}}(x) = b_N x^N + b_{N-1} x^{N-1} + \dots + b_1 x + b_0$$

for some coefficients $b_N, b_{N-1}, \dots, b_1, b_0$. Furthermore.....

- 2. $b_N = 1$, always.
- 3. $b_0 = (-1)^N \cdot \det\left(\boxed{\mathsf{A}}\right)$, always.
- 4. $b_{N-1} = -\text{trace} \left[A \right]$, always.
- 5. Furthermore, suppose that the characteristic polynomial completely factors:

$$c_{\overline{|A|}}(x) = (x - \lambda_1)^{N_1} \cdot (x - \lambda_2)^{N_2} \cdot \dots \cdot (x - \lambda_K)^{N_K}.$$

Then
$$b_0=(-1)^N\lambda_1^{N_1}\cdot\lambda_2^{N_2}\cdot\ldots\cdot\lambda_K^{N_K},$$
 and $b_{N-1}=-N_1\cdot\lambda_1-N_2\cdot\lambda_2-\ldots-N_K\cdot\lambda_K.$

6. In other words if \fbox{A} has eigenvalues $\lambda_1,\ldots,\lambda_K$, with multiplicities N_1,\ldots,N_K , respectively, and $N_1+N_2+\ldots+N_K = N$, then

$$\det \begin{pmatrix} \boxed{\mathbf{A}} \end{pmatrix} \quad = \quad \lambda_1^{N_1} \cdot \lambda_2^{N_2} \cdot \ldots \lambda_K^{N_K},$$
 and trace
$$\boxed{\boxed{\mathbf{A}}} \quad = \quad N_1 \cdot \lambda_1 \quad + \quad N_2 \cdot \lambda_2 \quad + \quad \ldots \quad + \quad N_k \cdot \lambda_K$$

(where trace
$$\overline{ \left[\mathsf{A} \right] } = a_{11} + a_{22} + \ldots + a_{NN})$$

Proof:

Proof of Part 3: $c_{\boxed{A}}(x) = b_N x^N + \ldots + b_1 x + b_0$, therefore $c_{\boxed{A}}(0) = b_0$. But by definition

$$\begin{array}{rcl} c & & \\ \hline \underline{A} & & \\ \end{array} (0) & = & \det \left(0. \overline{\mathbf{Id}} - \overline{\mathbf{A}} \right) \\ & = & \det \left(-\overline{\mathbf{A}} \right) \\ & = & (-1)^N \det \left(\overline{\mathbf{A}} \right) \end{array}$$

Proof of Part 5: In this case,

$$c_{\underline{A}}(0) = (0 - \lambda_1)^{N_1} \cdot (0 - \lambda_2)^{N_2} \cdot \dots \cdot (0 - \lambda_K)^{N_K}$$

$$= (-1)^{(N_1 + N_2 + \dots + N_K)} \cdot \lambda_1^{N_1} \cdot \lambda_2^{N_2} \cdot \dots \cdot \lambda_K^{N_K}$$

$$= (-1)^N \cdot \lambda_1^{N_1} \cdot \lambda_2^{N_2} \cdot \dots \cdot \lambda_K^{N_K}$$

Part 1, Part 2 and Part 3 are left as exercises (simple polynomial algebra). Part 6 follows immediately from Part 3, Part 4 and Part 5.

____□ [Proposition 24]