Diagonalization

Prerequisites:

- Eigenvectors and Eigenvalues
- Matrix Similarity

A diagonal matrix like

$$\boxed{\mathbf{D}} = \begin{bmatrix} a_1 & 0 & 0 & \dots & 0 \\ 0 & a_2 & 0 & \dots & 0 \\ 0 & 0 & a_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_N \end{bmatrix}$$

is especially easy to work with. One can see immediately that the **eigenvalues** are a_1, \ldots, a_N , and the corresponding **eigenvectors** are $\mathbf{e}_1, \ldots, \mathbf{e}_N$.

Given an arbitrary matrix A, it would be nice if we could show that A was **similar** to a diagonal matrix like D. This process is called *diagonalization*.

Definition 1: Diagonalizable, Diagonalization

Let $\boxed{\mathbf{A}}$ be an $N \times N$ matrix. $\boxed{\mathbf{A}}$ is called **diagonalizable** if it is similar to a diagonal matrix $\boxed{\mathbf{D}}$.

Finding an invertible matrix B and a diagonal matrix D so that

$$A = B \cdot D \cdot B^{-1}$$

is called diagonalizing A.

Example 2:

Suppose
$$\boxed{A} = \begin{bmatrix} -6 & -6 & -28 \\ 3 & -\frac{5}{2} \\ 5 \end{bmatrix}$$
 and let $\boxed{B} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 \\ 6 \end{bmatrix}$ so that $\boxed{B}^{-1} = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{12} \\ \frac{1}{4} & -\frac{5}{24} \\ \frac{1}{6} \end{bmatrix}$

(blank spaces indicate zeroes). Then

$$\begin{array}{ccc}
\boxed{\mathbf{B}} \cdot \boxed{\mathbf{A}} \cdot \boxed{\mathbf{B}}^{-1} & = & \begin{bmatrix} -6 & -12 & -18 \\ & 12 & 15 \\ & & 30 \end{bmatrix} \cdot \boxed{\mathbf{B}}^{-1} \\
= & \begin{bmatrix} -6 & \\ & 3 \\ & & 5 \end{bmatrix}.$$

Remark 3: Suppose \mathbb{V} was a finite-dimensional vector space, and $f: \mathbb{V} \longrightarrow \mathbb{V}$ was a linear transformation. Suppose that $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_N\}$ was a basis for \mathbb{V} , so that, with respect to \mathcal{B} , f had **matrix representation**

$$\begin{bmatrix} a_1 & 0 & 0 & \dots & 0 \\ 0 & a_2 & 0 & \dots & 0 \\ 0 & 0 & a_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_N \end{bmatrix}$$

Thus, it is clear $\mathbf{b}_1, \ldots, \mathbf{b}_N$ are all **eigenvectors** of f, with corresponding **eigenvalues** a_1, \ldots, a_N . We say that \mathbb{V} has a **basis of eigenvectors of** f.

Theorem 4: Diagonalization and Bases of Eigenvectors

Suppose $\mathbb V$ is a finite-dimensional vector space, and $f:\mathbb V\longrightarrow\mathbb V$ is a linear transformation. Suppose that f has $\mathbf{matrix}\ \mathbf{representation}\ \mathsf{F}$ with respect to some basis $\mathcal A$ of $\mathbb V$. Then:

$$\left(\begin{array}{c} \text{There is a basis of } \mathbb{V} \text{ consisting} \\ \text{of eigenvectors for } f \end{array}\right) \iff \left(\begin{array}{c} \mathbb{F} \text{ is diagonalizable} \end{array}\right).$$

Proof:

Proof of "\Longrightarrow": Suppose \mathcal{B} is a basis of eigenvectors for f. Let $\boxed{\mathbf{B}}$ be the change-of-basis matrix from \mathcal{A} to \mathcal{B} . Thus,

$$\boxed{\mathbf{D}} = \boxed{\mathbf{B}} \cdot \boxed{\mathbf{F}} \cdot \boxed{\mathbf{B}}^{-1}$$

is the **matrix representation** of f with respect to \mathcal{B} ; hence, $\boxed{\mathbf{D}}$ must be a diagonal matrix, hence, $\boxed{\mathbf{F}}$ must be diagonalizable.

Proof of "\Leftarrow=": Let $\mathcal{A} = \{\mathbf{a}_1, \dots, \mathbf{a}_N\}$ be the basis of \mathbb{V} so that $\boxed{\mathbf{F}}$ is the representation of f with respect to \mathcal{A} .

$$\text{Let} \begin{bmatrix} \mathbf{B} \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1N} \\ b_{21} & b_{22} & \dots & b_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ b_{N1} & b_{N2} & \dots & b_{NN} \end{bmatrix} \text{ be a matrix so that } \boxed{\mathbf{D}} = \boxed{\mathbf{B}}^{-1} \cdot$$

F B is diagonal¹.

For all $k \in [1..N]$, define $\mathbf{b}_k = \sum_{n=1}^N b_{n,k} \cdot \mathbf{a}_n$. It is left as an **exercise** to check that:

- $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_N\}$ is a basis for \mathbb{V} ,
- B is the change-of-basis matrix from \mathcal{B} to \mathcal{A} .
- For all $n \in [1...N]$, \mathbf{b}_n is an **eigenvector** of f.

 \Box [Theorem 4]

Example 5:

Suppose
$$\boxed{\mathbf{A}} = \begin{bmatrix} \frac{3}{4} & \frac{5}{4} \\ \frac{5}{4} & \frac{3}{4} \end{bmatrix}$$
, and $\mathbf{b_1} = (1,1)$ $\mathbf{b_2} = (-1,1)$

thus
$$\boxed{\mathbf{A}} \cdot \mathbf{b}_1 = \begin{bmatrix} \frac{3}{4} & \frac{5}{4} \\ \frac{5}{4} & \frac{3}{4} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 2.\mathbf{b}_1$$

and, similarly,
$$\boxed{\mathbf{A}} \cdot \mathbf{b}_2 = \frac{1}{2} \mathbf{b}_2$$

Thus, $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ is a **basis of eigenvectors** for $\boxed{\mathbf{A}}$; the corresponding eigenvalues are $\lambda_1 = 2$ and $\lambda_2 = \frac{1}{2}$.

Suppose $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2\}$ is the "standard" basis for \mathbb{R}^2 . Then

$$\mathbf{b}_1 = \mathbf{e}_1 + \mathbf{e}_2 \quad \text{and} \quad \mathbf{b}_2 = -\mathbf{e}_1 + \mathbf{e}_2$$

so the change-of-basis matrix from $\mathcal B$ to $\mathcal E$ is $\boxed{\mathbf B} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$.

 $^{^1}$ Note that we have reversed the positions of "B" and "B $^{-1}$ " here. Of course, this makes no difference to the definition of diagonalization.

while
$$\mathbf{e}_1 = \frac{1}{2}\mathbf{b}_1 - \frac{1}{2}\mathbf{b}_2$$
 and $\mathbf{e}_2 = \frac{1}{2}\mathbf{b}_1 + \frac{1}{2}\mathbf{b}_2$

so the change-of-basis matrix from $\mathcal E$ to $\mathcal B$ is $\boxed{\mathbf B}^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{1}{2} \end{bmatrix}$.

Hence
$$\boxed{\mathbf{B}}^{-1} \cdot \boxed{\mathbf{A}} \cdot \boxed{\mathbf{B}} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} \frac{3}{4} & \frac{5}{4} \\ \frac{5}{4} & \frac{3}{4} \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$$

Remark 6: Consequences of Diagonalizability Suppose that $\boxed{\mathbf{A}}$ is a diagonalizable $N \times N$ matrix. Then

- Any matrix **similar** to A is diagonalizable.
- A is diagonalizable.
- The characteristic polynomial of A factors completely:

$$c_{\overline{A}}(x) = (x - \lambda_1)^{N_1} \cdot (x - \lambda_2)^{N_2} \cdot \dots \cdot (x - \lambda_K)^{N_K}$$

and thus,
$$\det \left(\boxed{\mathbf{A}} \right) = \lambda_1^{N_1} \cdot \lambda_2^{N_2} \cdot \dots \lambda_K^{N_K}$$
.

The proofs of these facts are exercises.

The following theorem provides useful tools for determining whether a matrix is diagonalizable —ie. whether the eigenvectors form a basis.

Theorem 7: Let $\mathbb V$ be an N-dimensional vector space, and $f:\mathbb V\longrightarrow \mathbb V$ be a linear transformation. Suppose that the eigenvalues of f are $\lambda_1,\lambda_2,\ldots,\lambda_K$, having multiplicities n_1,n_2,\ldots,n_K and eigenspaces $\mathbb E_{\lambda_1}$, $\mathbb E_{\lambda_2}$, \ldots , $\mathbb E_{\lambda_K}$, respectively.

- 1. If $\mathbf{v}_1, \dots, \mathbf{v}_K$ are eigenvectors of f, with $\mathbf{v}_1 \in \mathbb{E}_{\lambda_1}$, $\mathbf{v}_1 \in \mathbb{E}_{\lambda_2}$, ..., $\mathbf{v}_1 \in \mathbb{E}_{\lambda_K}$, respectively, then the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_K\}$ is linearly independent.
- 2. For all k, \mathbb{E}_{λ_k} has a basis $\mathcal{E}_k = \{\mathbf{e}_1, \dots, \mathbf{e}_d\}$ consisting of λ_k -eigenvectors of f.
- 3. For all k, $\dim [\mathbb{E}_{\lambda_k}] \leq n_k$.

4. The following are equivalent:

- (a) $\dim [\mathbb{E}_{\lambda_1}] + \dim [\mathbb{E}_{\lambda_2}] + \ldots + \dim [\mathbb{E}_{\lambda_k}] = \dim [\mathbb{V}].$
- (b) For all k, $\dim [\mathbb{E}_{\lambda_k}] = n_k$, and also $n_1 + n_2 + \ldots + n_k = N$.
- (c) \mathbb{V} has a basis consisting of eigenvectors of f.
- (d) If F is any matrix representation of f, then F is diagonalizable.

Proof:

Proof of Part 1: We will prove, by induction, that, for all J < K, the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_K\}$ is linearly independent.

Base Case (J = 1): Clearly, the set $\{\mathbf{v}_1\}$ is linearly independent.

Induction: Suppose, inductively, that $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{J-1}\}$ is linearly independent, and suppose that r_1, \dots, r_J are real coefficients so that

$$r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \ldots + r_J\mathbf{v}_J = 0 \tag{A}$$

We want to show that r_1, r_2, \ldots, r_J must all be equal to zero. So, first, divide equation (A) by λ_J :

$$0 = \frac{r_1}{\lambda_J} \mathbf{v}_1 + \frac{r_2}{\lambda_J} \mathbf{v}_2 + \ldots + \frac{r_J}{\lambda_J} \mathbf{v}_J$$

and then act on it by f:

$$0 = f(0)$$

$$= f\left(\frac{r_1}{\lambda_J}\mathbf{v}_1 + \frac{r_2}{\lambda_J}\mathbf{v}_2 + \dots + \frac{r_J}{\lambda_J}\mathbf{v}_J\right)$$

$$= \frac{r_1}{\lambda_J}f(\mathbf{v}_1) + \frac{r_2}{\lambda_J}f(\mathbf{v}_2) + \dots + \frac{r_{J-1}}{\lambda_J}f(\mathbf{v}_{J-1}) + \frac{r_J}{\lambda_J}f(\mathbf{v}_J)$$

$$= \frac{r_1}{\lambda_J}\lambda_1.\mathbf{v}_1 + \frac{r_2}{\lambda_J}\lambda_2.\mathbf{v}_2 + \dots + \frac{r_{J-1}}{\lambda_J}\lambda_{J-1}.\mathbf{v}_{J-1} + r_J\mathbf{v}_J$$
(B)

Now subtract (A) from (B), to get:

$$0 = \left(\frac{r_1}{\lambda_J}\lambda_1 - r_1\right)\mathbf{v}_1 + \left(\frac{r_2}{\lambda_J}\lambda_2 - r_2\right)\cdot\mathbf{v}_2 + \dots + \left(\frac{r_{J-1}}{\lambda_J}\lambda_{J-1} - r_{J-1}\right)\mathbf{v}_{J-1}$$

Hence, by the induction hypothesis, we must conclude:

$$\begin{array}{rcl} \frac{r_1}{\lambda_J}\lambda_1-r_1&=&0\\ \frac{r_2}{\lambda_J}\lambda_2-r_2&=&0\\ &\vdots\\ \frac{r_{J-1}}{\lambda_J}\lambda_{J-1}-r_{J-1}&=&0 \end{array}$$

In other words,
$$\frac{r_1}{\lambda_J} = \frac{r_1}{\lambda_1}$$

$$\frac{r_2}{\lambda_J} = \frac{r_2}{\lambda_2}$$

$$\vdots$$

$$\frac{r_{J-1}}{\lambda_J} = \frac{r_{J-1}}{\lambda_{J-1}}$$

but since λ_J is different from each of $\lambda_1, \ldots, \lambda_{J-1}$, this can only be true if

$$r_1 = r_2 = \dots = r_{J-1} = 0.$$

Hence, the original equation (A) must read:

$$r_J \mathbf{v}_J = 0$$

which means that r_J must also be zero.

Proof of Part 2: Exercise.

Proof of Part 3: Suppose that dim $[\mathbb{E}_{\lambda_k}] = d$, and let $\mathcal{A}_k = \{\mathbf{a}_1, \dots, \mathbf{a}_d\}$ be a basis for \mathbb{E}_{λ_k} (consisting of of λ_k -eigenvectors). Recall that we can "complete" \mathcal{A}_k to a basis for all of \mathbb{V} , by adding linearly independent vectors $\mathbf{b}_{d+1}, \mathbf{b}_{d+2}, \dots, \mathbf{b}_N$, so that the set $\mathcal{B} = \{\mathbf{a}_1, \dots, \mathbf{a}_d, \mathbf{b}_{d+1}, \mathbf{b}_{d+2}, \dots, \mathbf{b}_N\}$ is a basis of \mathbb{V} . Let $\widetilde{\mathbb{F}}$ be the **matrix representation** of f relative to \mathcal{B} .

Since \widetilde{F} is **similar** to F, the two matrices have the same characteristic polynomial; hence, all eigenvalues appear with the same multiplicities. So, consider the characteristic polynomial of \widetilde{F} . Since $\mathbf{a}_1, \ldots, \mathbf{a}_d$ are all λ_k -**eigenvectors** of f, it is clear that the matrix \widetilde{F} must be of the form:

$$\widetilde{\mathbf{F}} = \begin{bmatrix} \lambda_k & 0 & 0 & \dots & 0 & ** ** * \dots * \\ 0 & \lambda_k & 0 & \dots & 0 & ** ** * \dots * \\ 0 & 0 & \lambda_k & \dots & 0 & ** ** * \dots * \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_k & ** ** * \dots * \\ 0 & 0 & 0 & \dots & 0 & ** ** * \dots * \\ 0 & 0 & 0 & \dots & 0 & ** ** * \dots * \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 & ** ** * \dots * \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 & ** ** * \dots * \end{bmatrix}$$

Hence, the characteristic polynomial of \widehat{F} is of the form $(x - \lambda_k)^d \cdot p(x)$, where p(x) is some polynomial of degree (N - d); hence the **multiplicity** of the eigenvalue λ_k is at *least* d. In other words, $n_k \geq d$.

Proof of Part 4: " $(a)\Longrightarrow(b)$ ": The characteristic polynomial of $\boxed{\mathbf{F}}$ has degree N (why?), and thus, $n_1+n_2+\ldots+n_k\leq N$ (why?) But by **Part 3**, we know that dim $[\mathbb{E}_{\lambda_k}]\leq n_k$ for all k. Thus,

$$\dim \left[\mathbb{E}_{\lambda_1}\right] + \dim \left[\mathbb{E}_{\lambda_2}\right] + \dots + \dim \left[\mathbb{E}_{\lambda_k}\right] \leq n_1 + n_2 + \dots + n_k,$$

$$\leq N$$

$$= \dim \left[\mathbb{V}\right]$$

But if (a) is true, then the first and last expression are *equal*. The two sides of the equation can only be equal if dim $[\mathbb{E}_{\lambda_k}] = n_k$ for all k, and also $n_1 + n_2 + \ldots + n_k = N$.

- " $(b) \Longrightarrow (a)$ " This is immediate.
- " $(a) \iff (c)$ " This follows from **Part 2**
- " $(c) \iff (d)$ " This is just a restatement of the previous theorem.

_____ [Theorem 7]

Corollary 8: Let $f: \mathbb{R}^N \longrightarrow \mathbb{R}^N$ be the linear transformation corresponding multiplication by matrix $[\mathsf{F}]$.

If f has N different eigenvalues, then \fbox{F} is diagonalizable.

Proof: Exercise

_____ [Corollary 8]