Determinants

Determinants measure volume in N-dimensional space.

Volumes of Boxes
In one dimension:

Let I! denote the unit interval in R:
I'={z;0<2<1}
The length of T' is 1.

IfL={z; 0 <z <b}is any closed interval in R, then fne [L] = b.

In two dimensions:

" (B

Figure 1: Parallelogram in R?

Let I2 be the unit box in RV :
]IN = {((El,.'EQ) 3 0 le,g‘;Q S 1}

12 has one corner at 0, and 2 edges extend from 0, along the vectors e; =
(1,0) and ez = (0,1). We say I? is the parallelogram spanned by {e;,e>}.
(see Part (A) of Figure 1)

12 has an area of 1.

Suppose we “flip” the two edges of I? ; metaphorically speaking, we now have
the parallelogram “spanned by” {es,e1}; one with opposite “orientation”. To
reflect the reversal of orientation, we say this new parallelepiped has “oriented
area” of “—1".



Suppose P is a parallelogram on R?, with one corner at zero, and edges
along the vectors (v1,v2) and (wy,w2) (see Part (B) of Figure 1 on the page
before) Then the oriented area of PP is given by the formula:

Areai []P] = V1Wy — V2W1

The (unsigned) area of PP is therefor:

Area [P] = V1w — VW1

(check this).
In three dimensions:
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Figure 2: Parallelepipeds in R?

Let I3 be the unit box in RV:
]I3 = {(1'1,.’82,.’11'3) H 0 S L1,T2,T3 S 1}

I® has one corner at 0, and 3 edges extend from 0, along the vectors e; =
(1,0,0), ea = (0,1,0) and e3 = (0,0,1). We say I® is the parallelepiped
spanned by {e1,es, e3}. (see Part (A) of Figure 2)

I® has a volume of 1.



Suppose we “flip” dimensions 1 and 2 of I? ; metaphorically speaking, we
now have the parallelepiped “spanned by” {e2,e;,e3}; one with opposite “ori-
entation”. To reflect the reversal of orientation, we say this new parallelepiped
has an “oriented volume” of “—1".

Question: IfPis a parallelepiped in R?, with one corner at zero, spanned
by the vectors (u1,u2,u3), (v1,v2,v3) and (wi, w2, ws), what is the (oriented)
volume of P? (see Part (B) of Figure 2 on the preceding page)

In N dimensions:

Let IV be the unit box in RV :
]IN = {(mla"'7$N); OS.Z'l,,Z'NSI}

IV has one “corner” at 0, and N “edges”, all of length 1, come out of this
corner, extending in the directions of the “standard basis” vectors ey, ..., en.

Intuitively, we might say that this box has an N-dimensional volume of
1.

Question: If P is a “hyperparallelepiped” in R, with one corner at
zero, and edges along the vectors vy, ..., vy, what is the volume of P?

Determinants of Matrices

The way to compute the oriented volume of an N-dimensional parallelepiped is
with determinants.

Definition 1: Determinant of a Matriz

T st
Let = | a ay ... any |. Thedeterminant of is the oriented
Ll
volume of the N-dimensional parallelepiped P, having one corner at zero, and
edges along the vectors {a;,as,...,an}. The determinant is therefor a real

number, denoted det []

Examples 2:

o If =[a] is a 1 x 1 matrix, then det [] = a.
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Figure 3: Boxes in R?

as1 a2

o If = [ G 12 ] is a 2 X 2 matrix, then

det [] = ai1-a — G21 - 012

1 00 0
010 0
edet| 0 0O 1 ... 0 = 1, because this is just the volume of a
10 0 0 ... 1
1x1x1x...x1cubein RY. (see Part (A) of Figure 3)
[» O O ... O
0 T2 0 . 0
edet| 0 0O m ... 0 = ry-ry-... TN, because this is just the
0 0 0 ... rn

volume of a7y X 1y X 73 X ... x 7y box in RV . (see Part (B) of Figure 3)

Properties of Determinants

We can immediately deduce that det [] must have certain properties.

o 1
Let: a; a, ... ay
Ll

o If r € R, then



T 1 t t
det| a; as ... rap ... apy = r.det []
4 \: \:

because multiplying aj, by r simply corresponds to multiplying the “thick-
ness” in the direction of aj of the parallelepiped by a factor of r.

e Thus, det [r] = rN det [] )

o If we switch two adjacent columns, we reverse the orientation of the par-
allilepiped, and therefor, we negate the sign:

T T T )

det | a; ap ... a; ... a ... apn

14 \ \ \:
T T~ 7 T
= —l-det| a; as ... a ... a; ... an
1 Lo« \

e If two distinct columns of are the same, then the corresponding par-
allelepiped is “flat” in RY, only occupying an (N — 1)-dimensional space.

Thus, det [] =0.

e Also, if any columns of is zero, then the corresponding parallelepiped
again only occupies (N — 1) dimensions, so, det [] =0.

(A) ' (B)

Figure 4: Adding e; to e2 doesn’t change the area of the parallellogram



e If we add a multiple of one column to another, then the determinant is
unchanged: for any k£ and j, and any real number r € R:

1 t t t
det | ay ap ... (aj+rap) ... a ... an
4 4 4 4 {
1 t t t
= det| a4 a2 ... a; ... a ... an
U { { 4

(This is easiest to see in R?: Imagine beginning with the unit square, and
adding e; to es. See Figure ??7 on page ?7. Convince yourself that the
resulting parallelogram has the same area as the square you started with).

e If b is linearly independent of a,,...,a;_1,a;41,...,an, then
T 1 T T
det | a3 ap ... b+4+a; ... ay
P4 i {
T 1 Tt 1 T
= det| ay ap ... aj_1 a; ajy1 ... ay |+
14 o4l {
T 1 (N N T
det a; a2 ... aj; b aj41 ... an
Pl 14 \

Column Reduction Algorithm For Computing Determinants

This suggests the following algorithm for computing the determinant of :

column-reduce to echelon form, and keep track of the column operations
you perform, and their effect on the determinant.
Suppose that we column-reduce via the sequence:

where is the echelon form. Then

det[] = 01-02-...-CM-det[],

where:

o If — involves exzchanging two columns, then ¢; = —1.



o If - involves adding a multiple of one column to another,

then c; = 1.

o If |A;_1 | = | A;| involves multiplying a column by a constant r, then
:
J T

If is not the identity matrix, then it must have a zero column. Thus,

det [] =0, and thus, det [] =0.

Otherwise, is the identity matrix. Thus, det [] = 1, and thus,

det[] =¢C1- ... CM-

3 2
Example 3: Let =4 3 3 |. Then has column-reduction:
1 0 -1
3 2 [1 2 4
43 3 _CQHi 13 3 (e1 = 1)
1 0 -1 |1 0 -1
1 0 4
_201+—>:C§ 1 1 3 (s = 1)
|1 -2 -1 ]
[1 0 0 ]
_401—H:Ci 1 1 -1 (cs=1)
|1 -2 =5 |
—Cr+— C1 M1 0 0 ]
> 0 1 0 (C4 = ]_)
Co—Cs |3 —2 -7 |
[1 0 0
-1
T 03=> 0 1 0 (cs = =7)
|3 -2 1
-3C3+— C4 1 0 0
) 01 0 (06 = ]_)
2C53+— Cy L 0 01

Thus, det [A]] = -7.

Example 4: Upper Triangular Matrices
Suppose is an upper triangular matrix:



o 8
S =«
* K
* K
*

A]= |0 0 a =

then det [] = a1-ay...aN.

Remark 5:

Second Definition of Determinant

The previous algorithm shows that the determinant is in fact uniquely defined
as the function f: Myxny — R satisfying the following five axioms:

1. If is obtained from by adding a multiple of one column to another,

then £ ([B]) = 7 ([a]).
2. If is obtained from by multiplying a column by r, then f () =

r.f ([a)).

3. If is obtained from by switching two columns, then f () =

)

4. It has a zero column, then f () =0

1

ot
~
o O

0

0
1
0

0

0 ... 0
0 ... 0
1 0| =4
0 ... 1

If f is any function satisfying these five axioms, then we can use the previous
algorithm to compute f...... and we will end up with the determinant! Hence,
f must be the determinant.

Sometimes the determinant is defined as the function satisfying these five

axioms.

The Laplace Expansion

The “Laplace Expansion” is a recursive formula for computing the determinant
of a matrix in terms of the determinants of “submatrices”.



Definition 6: Submatriz, Minor, Cofactor

Let be an N x N matrix. Let ¢,5 € [1...N].

The (i, j)th submatrix of is the (N —1) x (N —1) matrix obtained

by deleting the ith row and the jth column of m In other words,

aii e a1,k—1 ai,k ai,k+1 cee ai,N
aj—1,1 --- Gj-1,k—1 aj—1,k aj—1,k+1 --- Gj—1,N
If = @ji .- Gkt aj.k Qjht1 oo QN
Aj+1,1 --- Gj41,k-1 Aj+1,k Qj+1,k+1 -+ Qj+1,N
ani --- GNk-1 an,k aNk+1 --- OGN,N
aii [N a1,k—1 ai,j+1 PN ai,N
aj-1,1 --- Gj-1,k-1 aj—1,j+41 -+ Qj—1,N
then A[Z,]] = ,
aj+1,1 - Gjtlk-1 @Gjt+1+1 --- GHLN
ani --- GNk—1 an,j+1  --- OGN,N

The (4, 7)th minor of is the determinant of the (i, j)th submatrix:

() = 0 ()

The (i, j)th cofactor of is the (¢, )th minor, subjected to a sign change:
Ci,j () = (-)"My ()

The factor (—1)(7+9) is called the sign of the (i, j)th position.

Example 7: If =

, then

~N =
co Ut N
O W
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- [0
My ([A]) = 8-14 = -6
Co3 () = (1) My () = (-1)(-6) = 6

Example 8: If = [ i ],then

a1 a2

A[1,1] = [as2], A[2,1] = [a12];
My <) = a2z, M 5 () = a12;
+asa, Ci,2 () = —ay;

2
paty
&
Il

Proposition 9: The Laplace Exzpansion

If is an N x N matrix, then we can compute the determinant of via the
following recursive formula:
For any fixed j € [1...N],

det () = ian,jcn,j
n=1

This formula is called the Laplace Expansion (along the jth column) for
the determinant of

o Ut N
O O W

1
Example 10: Let = [ 4 ] , and choose j = 3. Then
7

det [] = a13-Cigs () +  as3-Cogs () +  az3-Cas ()

4 5 1 2
— a.(_1\143 (1243
= 3-(-1) det[78] + 6-(-1) det[78]

1 2
C(_1\343
+ 9-(-1) det[45]



= 3(+1)(-3) + 6(-1)(-6) +

= —9+36-—27

= 0
E le 11: If[A]=| ! “12] th
xample [azl am |’ en
det = an-(—l)1+1det +

2
a1 - (—1)%az +
= ajiaz — Qa21012,
the familiar formula.
ailr a2 a3
Example 12: If: a1  G22  a23
as1 asz ass

det ()
ay - (=1)* det +

11

9(+1)(-3)

ao1 * (—1)2+1 det A[2,1]

asy - (—1)3a12

, then

asy - (—=1)*" det Ap.1

3+1
+ asy - (—1) + det A[3’1]
Q22 Qa23 a2 a3
= aj; det — a9 det
aszz ass a3z Aass
ai2 ais
+ asi det
az2 Qa3
= ai (azza32 - a23a33) - a21 ((1126132 - a13a33)
+ azi(a12a22 — as23as33)
= @11022a32 — @G11G23033 — 021012032 + 21013033
+ asi1a12a22 — @31023033

This formula can be used to compute 3 x 3 determinants quickly....

can remember it.

Proof of “Laplace Expansion” (sketch):

if you

Fix j. Let f: Myxy — R

be the function defined by the Laplace Expansion along the jth column:

N
) = 3 ans(-)" det Az
n=1
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It is straightforward to check that this function satisfies the five axioms
listed in the Second Definition of Determinant. Thus, it must be equal to
the determinant.

O [Laplace Expansion]

The Laplace Expansion also gives us a slick method of computing the inverse.

Definition 13: Cofactor Matriz, Adjoint-Cofactor Matriz

If is an N x N matrix, then the cofactor matrix of is the matrix
whose (i, j)th entry is the (i, 7)th cofactor of :

cu([A) - ow ()
@)= |
Can () ... Cnn ()

The adjoint-cofactor matrix is the transpose of the cofactor matrix:

cu([A]) ... om([A)
adj ([A]) = R
o (&) - Can (&)

(this is often called the adjoint matrix, but this terminology is ambiguous; in
other parts of linear algebra, the “adjoint matrix” means something completely
different).

Theorem 14: Adjoint-Cofactor formula for Matriz Inverse
If is a square matrix with adjoint-cofactor matrix adj () , then

adj ([A]) -[A] = det ([A]) -[1du]

As a consequence, if is invertible, then its inverse is given:

" - gy D

Proof: The second assertion follows immediately from the first. The first as-
sertion is an immediate consequence of the Laplace Expansion. The (i, j)th
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entry of the product matrix adj () -, is the dot product of the jth

column of [ A | and the ith row of adj ()

i njChi () .
n=1

e If j = 4, then this is just the Laplace Expansion (along the jth
column) for the determinant of . Hence, the diagonal entries of

adj <) - are all equal to det .

o If j # i, then it is the Laplace expansion for the determinant of a
matrix whose ith column and jth column are identical (check this);
hence the determinant must be zero. Hence, the off-diagonal entries

of adj <) - are all equal to 0.

O [Theorem 14]

Corollary 15: Cramer’s Rule
If is an invertible NV x N matrix, and Y is an N-dimensionl vector, then the
solution to the system of linear equations:

[A]- X = Y

is X = [#1,22,...,ZN], where

det B det det
det ’ "= det ’ det ’
where, for each n, is the matrix obtained by replacing the nth column

of [A]by Y.

O

Products and Inverses

Theorem 16: Product and Inverse Formulae for Determinants Let
be an N x N matrix.

1. is invertible | <= [ det () #0
—1 -1
2. if is invertible, then det ( ) = det () .
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3. If is another N x N matrice then
det ( . ) = det () - det ()

Proof: Let be the column reduced echelon form of . Recall that
we can make into by applying a sequence of elementary column
operations to , which is equivalent to multiplying on the right by

a sequence of elementary column operation matrices. In other words:

- -\XI\-\XZ\-...-\XK\

Where are all invertible matrices defined as follows:

e If the kth step in the reduction involves multiplying column n by r,
then

[@n]
—
(n)
o
o

Xl =000 0 o

Thus, det <) =r.

e If the kth step in the reduction involves switching columns ¢ and j,

then

[ 1 T~ 0

= e e]- ... €y ... €en
|l el !
fr 00 ... 0 ... 0 ... 0 i
010 ... 0 ... 0 ... 0
oo0o1 ... 0 ... 0 ...0
000 0 1 0 [i]
000 ... 1 ... 0 ... 0 [4]
0 00 0 . 0 1
i [2] [J] 1
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Thus, det () = (-1).

e If the kth step in the reduction involves adding r times column 4 to
column j, then

T T T 1
= e (Ej+T.ei) e; . en
L ' I '
(1 0 0 0 0 0 i
010 0 0 0
0 01 0 0 0
00 0 1 0 0 [i]
0 00 r 1 0 [4j]
00 0 .. 0 .00 o1
I [¢] [/ |

Thus, det () =1.

If you look at the column-reduction algorithm for computing determinants,
you will see that it says:

det () = - (@) . (@) -...-det ()

Proof of Part 1¢“=—":

There are two cases:

o If is invertible, then the column-reduced echelon form of

must be the identity; in other words, = , so det () =1,

and therefor,

det () - — () — () e ()

o If is mot invertible, then the column-reduced echelon form of
must contain a zero column (check this). But if has a zero
column, then det () = 0, and therefor,
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= 1 . . 1 . =
det ([A]) = w(m) () 0 0.

Proof of Part 1 “«<=": If det () # 0, then this means that det ()
must be nonzero, which means that E = . Thus, since

- [ - B E) E]

we conclude that is invertible, and - = ‘Xl HXg ‘ -‘XK ‘

?

Proof of Part 2:  First suppose det () = 0. Thus, by Part 1, is not

invertible. Hence, - is also not invertible, hence det ( - ) =0,

again by Part 1.

Likewise, if det () =0, then det ( - ) =0.
Hence, assume that det () and det () are both nonzero —in other

words, that both and are invertible, and their column-reduced
echelon form is the identity matrix.

Consider the argument concerning the column-reduction of ; we can
apply the same argument to . The column-reduced echelon form of

is E, and is obtained by multiplying by elementary column operation
matrices:

Thus,

det() = det() .det<)

Now consider . . Note that:

)8 (55 5] () (3]

(& [1d)- (%] %)

(A (] [Xx])
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Hence, we can column-reduce . to echelon form by subjecting it
to this sequence of elementary column operations. Hence, by the same
reasoning used earlier to prove the Column reduction formula for computing
the determinant,

w@E) - (om wm) e Em =)

det - det .

Proof of Part 2: If is invertible, then, by Part 3,

et ([&]) et (&) = aet (@A) )

det ()

= 1

O [Theorem 16]

The Amazing Transposition Property

So far, everything we have said about determinants has been in terms of the
columns of the matrix. Amazingly, all the same things are true if we define
determinants in terms of the rows of the matrix.

Theorem 17: Transposition Formula
t
Let be a square matrix, and be its transpose. Then

det = det ( t)

Proof: First suppose that is invertible. Then the column reduced

echelon form of is the identity matrix . Suppose that this is
achieved via the sequence of elementary column operation matrices:

- (&) [%i] (%] [¥a]

Thus, [Xx] o [%] ] =
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In other words, if = _1 for all k, then
-

Therefore, t = t-t-...-t

Now, it is easy to check that, for any elementary column operation
matrix , we have:

Thus,

det(t) = det t-t-...-t)

On the other hand, if | A |is not invertible, then det = 0. Butif| A |is not
invertible, then rank [] < N, which means that also, rank [ t] < N,

which means that ' is also not invertible, which means det ( t) =0.

O [Theorem 17]

Corollary 18: Columns unto Rows
Everything we have said so far about determinants in terms of columns is also
true in terms of rows. In particular:

e The determinant of matrix is also the oriented volume of the parallelepiped
spanned by the row vectors of .
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e The determinant of can also be computed by computing the row reduced

echelon form of , and keeping track of the row operations, in exactly the
same fashion as with columns.

e The determinant of can also be computed by taking the Laplace Expansion
along any row of . In other words, for any fixed i € [1...N],

det = iai,ncz’,n ()
n=1

Determinants of Linear Transformations

Figure 5: f maps the unit box IV into the parallellepiped P

Suppose f : RV — RV is a linear transformation. Let P = f(I%). Since f
is linear, therefor P is a parallelepiped in P.

Definition 19: Determinant

The determinant of f is the oriented volume of P = f(I%)

Remark 20: Suppose f is equivalent to multiplication by the matrix

Tt .7
a; ay ... any |. Then P is the parallelepiped spanned by aj,...,an.
bl
Thus,
(R
det[f] = det | a; a2 ... an

bl
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The determinant of f measures the extent to which f “expands” “com-

presses” and/or “reverses” N-dimensional space.

o If |det (f)| > 1, this means that f (IV) is “bigger” than I, so somehow,
f is “stretching” space.

If |det (f)| < 1, this means that f (IV) is “smaller” than IV, so somehow,
f is “compressing” space.

If |det (f)| = 1, this means that f (IV) has the same volume as I; f is
a volume-preserving deformation of space.

If det (f) > 0, this means that f (I") has the same orientation as I”;
f is an orientation-preserving transformation of space (for example, a
rotation).

If det (f) > 0, this means that f (]IN ) has the opposite orientation as I?;
f is an orientation-reversing transformation of space (for example, a
reflection).

Example 21: Suppose f : RV — RV corresponds to multiplication by
the matrix

ar 0 O 0
0 a O 0
0 0 a3 0
0 0 O an

o If |a,| > 1, this means that f “stretches” the nth dimension of space.
e If |a,| < 1, this means that f “compresses” the nth dimension of space.

e If a, < 0, this means that f “reverses” the nth dimension of space; if
an > 0, then f preserves the orientation of the nth dimension.

Now, det[f] = ay-as-...-ay. This product is positive either if all
of aj,as,...,an are positive, or if an even number are negative (heuristically
speaking, an even number of orientation reversals “cancel out”).

Also, |det[f]] = lai| - |az|--.- - |an|, which is larger than one only if f
“stretches” space in some dimensions more than it “compresses” it in others.



