Limit Measures for Affine Cellular Automata

Marcus Pivato (University of Houston)

Reem Yassawi (Trent University)

Cellular Automata _____

- Spatially distributed dynamical systems;
- *Local* interactions;
- Spatially homogeneous rules.

CA are the 'discrete' analog of partial differential equations:

- Space is a lattice \mathbb{M} (eg. \mathbb{Z}^D or \mathbb{N}^D).
- Local state of each lattice point is in finite alphabet A.
- Global state: M-indexed configuration of elements in \mathcal{A} ; the space of such configurations is $\mathcal{A}^{\mathbb{M}}$.
- Evolution map $\Phi : \mathcal{A}^{\mathbb{M}} \longrightarrow \mathcal{A}^{\mathbb{M}}$, computed by applying a 'local rule' at each lattice point.

Preliminaries _____

 \mathcal{A} : a finite set, with the discrete topology.

 \mathbb{M} : a **lattice** (for example, $\mathbb{M} = \mathbb{N}, \mathbb{Z}, \mathbb{N}^d \times \mathbb{Z}^{D_2}$).

 $\mathcal{A}^{\mathbb{M}}$: a compact space under the Tychonoff topology.

An element of $\mathcal{A}^{\mathbb{M}}$ will be written as $\mathbf{a} = [a_m]_{m \in \mathbb{M}}$.

 \mathbb{M} acts on itself by **translation**. This induces a **shift action** of \mathbb{M} on $\mathcal{A}^{\mathbb{M}}$: for all $u \in \mathbb{M}$, and $\mathbf{a} \in \mathcal{A}^{\mathbb{M}}$, define

$$\boldsymbol{\sigma}^{u}[\mathbf{a}] = [b_{m}|_{m \in \mathbb{M}}]$$
 where, $\forall m, b_{m} = a_{(u+m)}$.

Cellular Automata

Neighbourhood:

 $U \subset M$ (finite set)

Local transformation rule:

$$\phi: \mathcal{A}^{\mathbb{U}} \longrightarrow \mathcal{A}$$

The CA **induced by** ϕ is function Φ : $\mathcal{A}^{\mathbb{M}} \longrightarrow$ so that, for any $[a_m|_{m\in\mathbb{M}}]$ in $\mathcal{A}^{\mathbb{M}}$,

$$\Phi(\mathbf{a}) = [b_m|_{m \in \mathbb{M}}], \text{ where, } \forall m \in \mathbb{M}, b_m = \phi[a_{(u+m)}|_{u \in \mathbb{U}}].$$

Equivalently:

A CA is a continuous transformation commuting with all shifts:

$$\forall m \in \mathbb{M}, \quad \Phi \circ \boldsymbol{\sigma}^m = \boldsymbol{\sigma}^m \circ \Phi$$

oxdots Example: $Nearest ext{-}neighbour\ XOR\ oxdots$

Lattice: $M = \mathbb{Z}$;

Neighbourhood: $\mathbb{U} = \{-1, +1\};$

Alphabet: $A = \{0,1\} \cong \mathbb{Z}_{/2};$

Local Map: $\phi(\mathbf{a}) = a_{-1} + a_1 \pmod{2}$.

\longleftarrow Space \longrightarrow

$\overline{\mathbb{U}}$:																								•
•	•	•		•	•	•	•		•	•		1					•	•	•	•	•	•		•
	•										1		1			•			•		•			•
										1	•			1										•
	•		•				•	•	1		1		1	•	1				•		•		•	
					•		٠	1								1	•							
							1		1						1		1							
						1				1				1				1						
					1		1		1		1		1		1		1		1					
				1																1				
			1		1														1		1			
		1				1												1				1		
	1	•	1		1		1	•				•	•	•	•	•	1		1		1	•	1	

Time

Initial Conditions: Point mass

 ${\bf Initial\ Conditions:}\ {\it Isolated\ point\ masses}$

${\bf Initial\ Conditions:}\ {\it Random}$

____ Example: John H. Conway's Game of Life ____

Lattice: $\mathbb{M} = \mathbb{Z}^2$;

Neighbourhood:
$$\mathbb{U} = [-1..1] \times [-1..1];$$

Alphabet: $A = \{0, 1\};$

Local Map:
$$\phi(\mathbf{a}) = \begin{cases} 1 & \text{if } a_0 = 1 \text{ and } \sum_{u \in \mathbb{U}} a_u = 3, 4 \\ 1 & \text{if } a_0 = 0 \text{ and } \sum_{u \in \mathbb{U}} a_u = 3, \\ 0 & \text{otherwise.} \end{cases}$$

Blinker:

Glider

- Emergence of large scale, coherent structure.
- Universal computation.

_____ Linear Cellular Automata _____

 \mathcal{A} : finite abelian group (eg. $\mathcal{A} = \mathbb{Z}_{/n}$)

 $\mathcal{A}^{\mathbb{M}}$: **compact abelian group** (Tychonoff topology & pointwise addition)

Cellular automaton Φ is **linear** if it is a group endomorphism.

Equivalently:
$$\phi: \underbrace{\mathcal{A}^{\mathbb{U}}}_{\text{Product group}} \longrightarrow \mathcal{A}$$
 is a homomorphism.

Fact: $\mathcal{A} = \mathbb{Z}_{/n}$ is a ring under multiplication. Any LCA can be written as a 'polynomial of shift maps':

$$\Phi = \sum_{u \in \mathbb{U}} \varphi_u \cdot \boldsymbol{\sigma}^u$$
, (where $\{\boldsymbol{\varphi}_u\}_{u \in \mathbb{U}}$ are in $\mathbb{Z}_{/n}$)

That is, for any
$$\mathbf{a} \in \mathcal{A}^{\mathbb{M}}$$
: $\Phi(\mathbf{a}) = \sum_{u \in \mathbb{U}} \varphi_u \cdot \boldsymbol{\sigma}^u(\mathbf{a})$.

Example: (Nearest-Neighbour XOR) $\Phi = \sigma^{-1} + \sigma^{1}$.

a :	0	1	0	1	1	1	0	1	1	0	1	
$oldsymbol{\sigma}(\mathbf{a})$:	0 1	0	1	1	1	0	1	1	0	1	\leftarrow	=
$oldsymbol{\sigma}^{-1}(\mathbf{a})$:	\Longrightarrow	0	1	0	1	1	1	0	1	1	0	1
$\Phi(\mathbf{a})$:		0	0	1	0	1	0	1	1	0		

$\Big(\ \operatorname{LCA} \ \operatorname{composition} \Big) \Longleftrightarrow \Big(\ \operatorname{Polynomial} \ \operatorname{multiplication} \Big)$

$$\phi(x) = \sum_{u \in \mathbb{U}} \varphi_u \cdot x^u$$
 (formal polynomial with 'powers' in M)

$$\Phi = \sum_{u \in \mathbb{U}} \varphi_u \cdot \boldsymbol{\sigma}^u = \boldsymbol{\phi}(\boldsymbol{\sigma})$$
 (corresponding LCA).

Then:
$$\Phi \circ \Phi = (\boldsymbol{\phi} \cdot \boldsymbol{\phi})(\boldsymbol{\sigma}), \quad \Phi \circ \Phi \circ \Phi = \boldsymbol{\phi}^3(\boldsymbol{\sigma}), \text{ etc.}$$

Example:
$$\mathcal{A} = \mathbb{Z}_{/2}$$
; $\mathbb{M} = \mathbb{Z}$; $\phi(\mathbf{a}) = a_0 + a_1 \pmod{2}$.

$$\Phi = (\sigma^{0} + \sigma^{1})^{1} = \sigma^{0} + \sigma^{1}$$

$$\Phi^{\circ 2} = (\sigma^{0} + \sigma^{1})^{2} = \sigma^{0} + \sigma^{2}$$

$$\Phi^{\circ 3} = (\sigma^{0} + \sigma^{1})^{3} = \sigma^{0} + \sigma^{1} + \sigma^{2} + \sigma^{3}$$

$$\Phi^{\circ 4} = (\sigma^{0} + \sigma^{1})^{4} = \sigma^{0} + \sigma^{4}$$

$$\Phi^{\circ 5} = (\sigma^{0} + \sigma^{1})^{5} = \sigma^{0} + \sigma^{1} + \sigma^{4} + \sigma^{5}$$

$$\Phi^{\circ 6} = (\sigma^{0} + \sigma^{1})^{6} = \sigma^{0} + \sigma^{2} + \sigma^{4} + \sigma^{6}$$

$$\Phi^{\circ 7} = (\sigma^{0} + \sigma^{1})^{7} = \sigma^{0} + \sigma^{1} + \sigma^{2} + \sigma^{3} + \sigma^{4} + \sigma^{5} + \sigma^{6} + \sigma^{7}$$

$$\Phi^{\circ 8} = (\sigma^{0} + \sigma^{1})^{8} = \sigma^{0} + \sigma^{1} + \sigma^{2} + \sigma^{3} + \sigma^{4} + \sigma^{5} + \sigma^{6} + \sigma^{7}$$

$$+\sigma^{8}$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

• Pascal's triangle, mod 2.

 $\Phi = \sigma^0 + \sigma^1$; Initial Conditions: Point mass

Affine Cellular Automata _

$$\Phi(\mathbf{a}) = \Psi(\mathbf{a}) + \mathbf{c}$$
, where

- Ψ is a linear CA (the **linear part** of Φ);
- $\mathbf{c} \in \mathcal{A}^{\mathbb{M}}$ is a constant configuration $(\forall m \in \mathbb{M}, c_m = c)$.

Equivalently: Local map $\phi = \psi + c$, where $\psi : \mathcal{A}^{\mathbb{U}} \longrightarrow \mathcal{A}$ is a homomorphism, and $c \in \mathcal{A}$ is a constant.

Invariant Measure _____

Let μ be a probability measure on $\mathcal{A}^{\mathbb{M}}$.

- μ is **stationary** if $\sigma^m \mu = \mu$ for all $m \in \mathbb{M}$.
- μ is Φ -invariant if $\Phi \mu = \mu$.

Question: What stationary measures are Φ -invariant?

_____ Cesàro Averages _____

If it exists, $\mu_{\infty} = \mathbf{w}\mathbf{k}^* - \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \Phi^n \mu$ is Φ -invariant.

Question: Does μ_{∞} exist? What is it?

The Haar Measure _____

 $\mathbb{L}\subset\mathbb{M}$ finite set; $\mathbf{b}\in\mathcal{A}^{\mathbb{L}}$.

$$[\mathbf{b}] = \{ \mathbf{a} \in \mathcal{A}^{\mathbb{M}} ; \text{ for all } \ell \in \mathbb{L}, \ a_{\ell} = b_{\ell} \};$$

This is a **cylinder set** of **size** $L = \operatorname{card} [\mathbb{L}]$.

If $\mathbf{A} = \operatorname{card} [\mathbf{A}]$, then there are \mathbf{A}^L cylinder sets of size L.

Haar measure: Probability measure \mathcal{H}^{ar} on $\mathcal{A}^{\mathbb{M}}$ assigning mass A^{-L} to all cylinder sets of size L.

- \mathcal{H}^{aar} is the 'most random' measure on $\mathcal{A}^{\mathbb{M}}$.
- \mathcal{H}^{ar} is Φ -invariant for any affine CA Φ .

Question: When does $\mu_{\infty} = \mathcal{H}^{aar}$?

('Asymptotic randomization'.)

____ Cesàro Limit Measures for ACA ____

Theorem (Lind, 1984) $\mathcal{A} = \mathbb{Z}_{/2}$; $\mathbb{M} = \mathbb{Z}$; $\Phi = \boldsymbol{\sigma}^{-1} + \boldsymbol{\sigma}^{1}$. If μ is a nontrivial Bernoulli measure, then $\mu_{\infty} = \mathcal{H}^{\alpha r}$.

Lind showed that the stronger limit, ' $\mathbf{w}\mathbf{k}^*$ - $\lim_{n\to\infty} \Phi^N \mu = \mathcal{H}^{\alpha r}$ ', is not true. The subsequence $\{\Phi^{(2^n)}\mu|_{n\in\mathbb{N}}\}$ does not converge to $\mathcal{H}^{\alpha r}$.

Theorem (P. Ferrari, P. Ney, A. Maass & S. Martinez, 1998)

- $q = p^n$, with p prime; $\mathcal{A} = \mathbb{Z}_{/q}$; $\mathbb{M} = \mathbb{N}$.
- $\Phi = \varphi_0 \cdot \boldsymbol{\sigma}^0 + \varphi_1 \cdot \boldsymbol{\sigma}^1$, $(\varphi_0, \varphi_1 \text{ relatively prime to } p)$.
- μ a Markov measure; all transition probabilities nonzero.

Then $\mu_{\infty} = \mathcal{H}^{\alpha r}$.

(Ferrari et al. have a similar result when μ is a **g**-measure)

Theorem (A. Maass & S. Martinez, 1999)

- $\mathcal{A} = \mathbb{Z}_{/2} \oplus \mathbb{Z}_{/2}; \quad \mathbb{M} = \mathbb{N}.$
- Φ has local map $\phi \left[(x_0, y_0); (x_1, y_1) \right] = (y_0, x_0 + y_1).$
- μ a Markov measure; all transition probabilities nonzero.

Then $\mu_{\infty} = \mathcal{H}^{\alpha r}$

Limit Measures for ACA ___

Theorem 1: (Yassawi & P, 2001)

- $\mathcal{A} = \mathbb{Z}_{/n} \ (n \in \mathbb{N}).$ $\mathbb{M} = \mathbb{Z}^D \times \mathbb{N}^d \ (d, D \ge 0).$
- $\Phi: \mathcal{A}^{\mathbb{M}} \longrightarrow$ affine CA so that, for each prime divisor p of n, at least two coefficients of Φ are prime to p.
- μ a stationary Markov random field with full support.

Then $\mu_{\infty} = \mathcal{H}^{\alpha r}$.

Examples:

- n = p is prime; Φ has two or more nontrivial coefficients.
- μ a Bernoulli measure; all $a \in \mathcal{A}$ have nonzero probability.
- $\mathbb{M} = \mathbb{Z}$ and μ is an N-step Markov measure; all (N+1)-words have nonzero probability.

It suffices to prove Theorem 1 in the linear case:

Lemma: Let Ψ be an ACA with linear part Φ .

$$\left(\mathbf{w}\mathbf{k}^* - \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \Phi^n \mu = \mathcal{H}^{\alpha r}\right) \implies \left(\mathbf{w}\mathbf{k}^* - \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \Psi^n \mu = \mathcal{H}^{\alpha r}\right).$$

Bernoulli Measures _____

Let ρ be a probability distribution on \mathcal{A} .

The corresponding **Bernoulli measure** on $\mathcal{A}^{\mathbb{Z}}$ is defined:

For any
$$\mathbf{b} = (b_0, b_1, \dots, b_N) \in \mathcal{A}^{[0..N]},$$

$$\mu[\mathbf{b}] = \rho(b_0) \cdot \rho(b_1) \cdot \dots \cdot \rho(b_N).$$

('Rolling dice'.)

Markov Measures .

For all $a \in \mathcal{A}$, let \mathbf{p}_a be a **transition probability** distribution over \mathcal{A} . Let ρ be another probability distribution such that

$$\sum_{a \in \mathcal{A}} \rho(a) \cdot \mathbf{p}_a = \rho.$$

The corresponding **Markov measure** on $\mathcal{A}^{\mathbb{Z}}$ is defined:

For any
$$\mathbf{b} = (b_0, b_1, \dots, b_N) \in \mathcal{A}^{[0..N]},$$

$$\mu[\mathbf{b}] = \rho(b_0) \cdot \mathbf{p}_{b_0}(b_1) \cdot \mathbf{p}_{b_1}(b_2) \cdot \dots \cdot \mathbf{p}_{b_{N-1}}(b_N)$$
('Weak causality'.)

Markov Random Fields _

$$\mathbb{M} = \mathbb{Z}^D \times \mathbb{N}^d.$$

 $\mathbb{U}\subset\mathbb{M}$ finite 'neighbourhood of 0' e.g. $\mathbb{U}=[-1...1]^D\times\{0,1\}^d$.

 $- \partial \mathbf{V}$ If $\mathbf{V} \subset \mathbf{M}$ is any subset, define:

- 'Closure': $cl(\mathbb{V}) = \mathbb{V} + \mathbb{U}$
- 'Boundary': $\partial(\mathbb{V}) = cl(\mathbb{V}) \setminus \mathbb{V}$.

 μ is a **Markov random field** if, for any $\mathbb{V} \subset \mathbb{M}$, and any $\mathbf{a} \in \mathcal{A}^{\partial(\mathbb{V})}$, events occurring *inside* \mathbb{V} are independent of events *out-side*, relative to conditional measure $\mu_{\mathbf{a}}$. That is:

If:
$$\begin{cases} \bullet W_{in} \subset V \text{ and } \mathbf{b}_{in} \in \mathcal{A}^{W_{in}}; \\ \bullet W_{out} \subset M \setminus cl(V) \text{ and } \mathbf{b}_{out} \in \mathcal{A}^{W_{out}}; \end{cases}$$

Then: $\mu_{\mathbf{a}} \left[\mathbf{b}_{in} \smile \mathbf{b}_{out} \right] = \mu_{\mathbf{a}} \left[\mathbf{b}_{in} \right] \cdot \mu_{\mathbf{a}} \left[\mathbf{b}_{out} \right].$

- μ is **stationary** if it is invariant under all shifts.
- μ has **full support** if $\mu[\mathbf{a}] > 0$ for every $\mathbf{a} \in \mathcal{A}^{\mathbb{U}}$.

The Characters of $\mathcal{A}^{\mathbb{M}}$ ____

 \mathbb{T}^1 : The unit circle group $\{z \in \mathbb{C} ; |z| = 1\}$.

Character: A continuous homomorphism $\chi: \mathcal{A}^{\mathbb{M}} \longrightarrow \mathbb{T}^1$.

Example: $(\mathcal{A} = \mathbb{Z}_{/2})$ Characters of $\mathcal{A}^{\mathbb{Z}}$:

$$\zeta(\mathbf{a}) = (-1)^{a_0}; \qquad \qquad \xi(\mathbf{a}) = (-1)^{(a_0 + a_3 + a_5)}.$$

Example: $(\mathcal{A} = \mathbb{Z}_{/n})$ For any $m \in \mathbb{M}$ and $c \in \mathbb{Z}_{/n}$, the map $\chi(\mathbf{a}) = \exp\left(\frac{2\pi \mathbf{i}}{n} \cdot c \cdot a_m\right) = \mathcal{E}(c \cdot a_m)$ is a character of $\mathcal{A}^{\mathbb{M}}$.

Lemma: All characters of $\mathcal{A}^{\mathbb{M}}$ are products of the form

$$\chi(\mathbf{a}) = \exp\left(\frac{2\pi \mathbf{i}}{n} \sum_{m \in \mathbb{M}} \chi_m a_m\right) = \mathcal{E}\left(\sum_{m \in \mathbb{M}} \chi_m a_m\right)$$

(coefficients $\chi_m \in \mathbb{Z}_{/n}$; all but finitely many are zero).

The **rank** of χ is the number of nonzero coefficients.

Example: rank $[\zeta] = 1$ and rank $[\xi] = 3$.

Characters and Measures

If $\boldsymbol{\chi}$ is a character and μ is a measure on $\mathcal{A}^{\mathbb{M}}$, then define

$$\widehat{\mu}[oldsymbol{\chi}] = \langle \mu, oldsymbol{\chi}
angle = \int_{\mathcal{A}^{\mathbb{M}}} oldsymbol{\chi} \ d\mu.$$

These Fourier Coefficients completely identify μ .

Example: If
$$\mu = \mathcal{H}^{ar}$$
, then $\widehat{\mathcal{H}^{ar}}[\boldsymbol{\chi}] = \begin{cases} 1 & \text{if } \boldsymbol{\chi} = \mathbf{1} \\ 0 & \text{otherwise} \end{cases}$.

Theorem 2: μ_1, μ_2, \ldots a sequence of measures on $\mathcal{A}^{\mathbb{M}}$;

$$\left(\mathbf{w}\mathbf{k}^* - \lim_{n \to \infty} \mu_n = \mathcal{H}^{aar}\right) \iff \left(\lim_{n \to \infty} \widehat{\mu}_n[\boldsymbol{\chi}] = 0, \text{ for all } \boldsymbol{\chi} \neq \mathbf{1}\right)$$

Harmonic Mixing

 μ is **harmonically mixing** if, for all $\epsilon > 0$, $\exists R \in \mathbb{N}$ so that:

For all characters
$$\chi$$
, $\left(\operatorname{rank}\left[\chi\right]>R\right)\Longrightarrow\left(\left|\widehat{\mu}\left[\chi\right]\right|<\epsilon\right)$

Example: \mathcal{H}^{aar} is obviously harmonically mixing.

Theorem 3.0: The set of HM measures is an **ideal** of the Banach algebra $(\mathcal{M}_{\mathcal{E}\!\!A\!\!S} \left[\mathcal{A}^{\mathbb{M}}; \mathbb{C}\right], +, *)$, closed under the total variation norm, but dense in the weak* topology.

Theorem 3.1: Suppose:

- $\mathbb{M} = \mathbb{Z}^D \times \mathbb{N}^d$;
- μ is a stationary Markov random field on $\mathcal{A}^{\mathbb{M}}$ with full support;

Then μ is harmonically mixing.

Example: A fully supported N-step Markov process on $\mathcal{A}^{\mathbb{Z}}$ is HM.

Harmonic Mixing

A special case of **Theorem 3.1** is:

Theorem: Suppose:

- $\mathcal{A} = \mathbb{Z}_{/p}$, p prime;
- μ is a Bernoulli measure; $\mu[a] > 0$ for all $a \in \mathcal{A}$.

Then μ is harmonically mixing.

Proof: If
$$\chi(\mathbf{a}) = \prod_{m \in \mathbb{M}} \mathcal{E}(\chi_m a_m)$$
 and $\mu = \bigotimes_{m \in \mathbb{M}} \mu_0$, then
$$|\widehat{\mu}[\chi]| = \left| \int_{\mathcal{A}^{\mathbb{M}}} \chi[\mathbf{a}] \ d\mu[\mathbf{a}] \right|$$

$$= \left| \prod_{m \in \mathbb{M}} \left(\int_{\mathcal{A}} \mathcal{E}(\chi_m a_m) \ d\mu_0[a_m] \right) \right|$$

$$= \prod_{\chi_m \neq 0} \left| \int_{\mathcal{A}} \mathcal{E}(\chi_m a_m) \ d\mu_0[a_m] \right|$$

$$\leq \prod_{\chi_m \neq 0} C = C^{\mathbb{R}},$$

where
$$C := \max_{c \in [1..p]} \left| \int_{\mathcal{A}} \mathcal{E}\left(c \cdot a\right) \ d\mu_0[a] \right| < 1$$
, and $\mathsf{R} = \mathsf{rank}\left[\boldsymbol{\chi}\right]$.

Thus, as $R \to \infty$, $|\widehat{\mu}[\chi]| \leq C^R \to 0$.

Characters and LCA _____

Suppose:
$$\begin{cases} \bullet \ \boldsymbol{\chi}(\mathbf{a}) = \mathcal{E}\left(\sum_{m \in \mathbb{M}} \chi_m a_m\right) \text{ is a character.} \\ \bullet \ \Phi = \sum_{u \in \mathbb{U}} \varphi_u \cdot \boldsymbol{\sigma}^u \text{ is a linear CA.} \end{cases}$$

Then:

- $\boldsymbol{\xi} = \boldsymbol{\chi} \circ \Phi : \mathcal{A}^{\mathbb{M}} \longrightarrow \mathbb{T}^1$ is also a character.
- Obtain coefficients of $\boldsymbol{\xi}$ by 'convolving' coefficients of $\boldsymbol{\chi}$ and $\boldsymbol{\Phi}$:

$$\forall m \in \mathbb{M}, \text{ let } \xi_k = \sum_{\substack{m,n \in \mathbb{M} \\ n+m=k}} \chi_n \cdot \varphi_m.$$
 Then $\boldsymbol{\xi}(\mathbf{a}) = \mathcal{E}\left(\sum_{m \in \mathbb{M}} \xi_m a_m\right).$

Definition: Φ is **diffusive** if, for all nontrivial characters χ , there is a set $\mathbb{J} \subset \mathbb{N}$ of Cesàro density 1, so that

$$\lim_{\substack{j\to\infty\\j\in\mathbb{J}}}\operatorname{rank}\left[\boldsymbol{\chi}\circ\Phi^j\right]\ =\ \infty$$

Cesàro Density

If $\mathbb{J} \subset \mathbb{N}$, the **Cesàro density** of \mathbb{J} is the limit

$$\lim_{N \to \infty} \frac{1}{N} \operatorname{card} \left[j \in \mathbb{J} \; ; \; j \le N \right]$$

(if the limit exists)

Examples:

- $\{3n ; n \in \mathbb{N}\}; \text{ density } 1/3.$
- $\{n^2 ; n \in \mathbb{N}\}; \text{ density } 0.$
- $\{2^n ; n \in \mathbb{N}\};$ density 0.
- Prime Numbers: density 0.
- Composite Numbers: density 1.

Theorem 4: Let \mathcal{A} be a finite abelian group.

- Φ : A diffusive linear CA on $\mathcal{A}^{\mathbb{M}}$;
- μ : A harmonically mixing measure on $\mathcal{A}^{\mathbb{M}}$.

Then $\exists \ \mathbb{J} \subset \mathbb{N} \ of \ Ces\`{a}ro \ density \ 1 \ so \ that \quad \mathbf{wk}^* - \lim_{\substack{j \to \infty \\ j \in \mathbb{J}}} \Phi^j \mu = \mathcal{H}^{\alpha ar}.$

Thus, $\mathbf{wk}^* - \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \Phi^n \mu = \mathcal{H}^{\alpha a}$.

Proof: Follows from Theorem 2 and definitions of 'diffusive' and 'harmonic mixing'.

Theorem 5: $\mathbb{M} = \mathbb{Z}^D \times \mathbb{N}^d$; $\mathcal{A} = \mathbb{Z}_{/n}$.

For each prime divisor p of n, suppose at least two coefficients of Φ are prime to p. Then Φ is diffusive.

Theorem 1 follows from Theorems 3.1, 4, and 5.

$___$ Proof Sketch for Theorem 5: $_$

Every $n \in \mathbb{N}$ has a p-ary expansion: $\mathbb{P}(n) = \{ n^{[i]} \}_{i=0}^{\infty} \in [0..p)^{\mathbb{N}}$, such that $n = \sum_{i=0}^{\infty} n^{[i]} p^i$.

 $\forall m \in \mathbb{N}$, let $[m]_p$ be the **congruence class** of m, mod p.

Lucas' Theorem:

For any
$$N, n \in \mathbb{N}, \begin{bmatrix} N \\ n \end{bmatrix}_p = \prod_{k=0}^{\infty} \begin{bmatrix} N^{[k]} \\ n^{[k]} \end{bmatrix}_p,$$

where
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 := 1 and $\begin{pmatrix} a \\ b \end{pmatrix}$:= 0 for any $b > a > 0$.

Write " $n \ll N$ " whenever $n^{[i]} \leq N^{[i]}$ for each $i \in \mathbb{N}$.

Consequence:
$$\left(\begin{bmatrix} N \\ n \end{bmatrix}_p \neq 0 \right) \iff \left(n \ll N \right).$$

Proof Sketch for Theorem 5: Suppose (for simplicity) $\mathcal{A} = \mathbb{Z}_{/2}$, $\mathbb{M} = \mathbb{Z}$, and $\Phi = \boldsymbol{\sigma}^{\ell_0} + \boldsymbol{\sigma}^{\ell_1} + \boldsymbol{\sigma}^{\ell_2}$, for $\ell_1 < \ell_2 < \ell_3$ in \mathbb{Z} . Then: $\Phi = \Phi_0 \circ \boldsymbol{\sigma}^{\ell_0}$, where $\Phi_0 = \mathbf{Id} + \boldsymbol{\sigma}^{m_1} (\mathbf{Id} + \boldsymbol{\sigma}^{m_2})$, with $\ell_1 = \ell_0 + m_1$ and $\ell_2 = \ell_0 + m_1 + m_2$.

Composing with σ^{ℓ_0} does not affect the diffusion property; hence, assume WOLOG that $\Phi = \Phi_0$.

$$\left(\text{Recall: } \Phi = \text{Id} + \boldsymbol{\sigma}^{m_1} (\text{Id} + \boldsymbol{\sigma}^{m_2}) \right)$$
By Lucas' Theorem,
$$\begin{bmatrix} N \\ n \end{bmatrix}_2 = \begin{cases} 1 & \text{if } n \ll N \\ 0 & \text{if } n \not \ll N \end{cases}.$$
Thus,
$$\Phi^N = \sum_{k_1=0}^N \begin{bmatrix} N \\ k_1 \end{bmatrix}_2 \boldsymbol{\sigma}^{m_1 k_1} (1 + \boldsymbol{\sigma}^{m_2})^{k_1}$$

$$= \sum_{k_1 \ll N} \boldsymbol{\sigma}^{m_1 k_1} \left(\sum_{k_2 \ll k_1} \boldsymbol{\sigma}^{m_2 k_2} \right)$$

$$= \sum_{k_1 \ll N} \sum_{k_2 \ll k_1} \boldsymbol{\sigma}^{m_1 k_1 + m_2 k_2}.$$

If Φ is *not* diffusive, $\exists \chi$ so that $\mathsf{rank} [\chi \circ \Phi^N]$ is bounded by some $\mathsf{R} \in \mathbb{N}$ on a subset $\mathsf{B} \subset \mathbb{N}$ of nonzero density.

Suppose
$$\chi(\mathbf{a}) = \mathcal{E}\left(\sum_{q\in\mathcal{Q}} a_q\right)$$
, $(\mathcal{Q}\subset\mathbb{Z} \text{ finite subset})$.

Thus, for all $N \in \mathbb{N}$,

$$\boldsymbol{\chi} \circ \Phi^{N}(\mathbf{a}) = \mathcal{E} \left[\sum_{q \in \mathcal{Q}} \sum_{k_1 \ll N} \sum_{k_2 \ll k_1} a_{(k_1 m_1 + k_2 m_2 + q)} \right].$$

(here,
$$\mathbf{a} = [a_m|_{m \in \mathbb{M}}] \in \mathcal{A}^{\mathbb{M}}$$
.)

$$\left(\boldsymbol{\chi} \circ \Phi^{N}(\mathbf{a}) = \mathcal{E} \left[\sum_{q \in \mathcal{Q}} \sum_{k_{1} \ll N} \sum_{k_{2} \ll k_{1}} a_{(k_{1}m_{1} + k_{2}m_{2} + q)} \right] \right)$$
 (†)

If $\operatorname{rank} \left[\boldsymbol{\chi} \circ \Phi^N \right] < \mathsf{R}$, then all but R of the terms in (†) must *cancel out*, through equations of the form:

$$k_1 m_1 + k_2 m_2 + q = k_1^* m_1 + k_2^* m_2 + q^*$$
 (*)

for $k_2 \ll k_1 \ll N$, $k_2^* \ll k_1^* \ll N$, and $q, q^* \in \mathcal{Q}$.

Idea: Let $\Gamma \in \mathbb{N}$. If $\mathbb{B} \subset \mathbb{N}$ has nonzero density, then $\exists N \in \mathbb{B}$ such that $\mathbb{P}(N)$ has at least R+1 'gaps' of at least Γ consecutive 0's, ending in a 1. Suppose the terminating 1's in these 'gaps' occur at positions j_0, j_1, \ldots, j_R . Set $q^* = \min[\mathcal{Q}]$. By Pigeonhole Principle, $\exists r \in [0...R]$ so that (*) holds with $k_1^* = 2^{j_r}$ and $k_2^* = 0$; ie.

$$k_1 m_1 + k_2 m_2 + q = 2^{j_r} m_1 + 0 \cdot m_2 + q^*$$

for some $k_2 \ll k_1 \ll N$ and $q \in \mathcal{Q}$. Rewrite this as:

$$m_1 2^{j_r} = k_1 m_1 + k_2 m_2 + (q - q^*)$$
 (**)

Now, $k_2 \ll k_1 \ll N$, and $k_1 < 2^{j_r}$, so, because of the 'gap', we must have $k_2 \leq k_1 < 2^{j_r-\Gamma}$. If Γ is big enough, then (**) is impossible. Contradiction.

Noncyclic Abelian Groups _

Let \mathcal{A} be a *noncyclic* abelian group; eg. $\mathcal{A} = (\mathbb{Z}_{/p^r})^J$, where $r, J \in \mathbb{N}$ and p is prime.

$$\left(\begin{array}{c} \text{Linear CA} \right) \iff \left(\begin{array}{c} \text{polynomials over a ring of matrices} \end{array}\right)$$

$$\left(\begin{array}{c} \text{Composition of LCA} \end{array}\right) \iff \left(\begin{array}{c} \text{Noncommutative} \\ \text{polynomial multiplication} \end{array}\right)$$

- Cannot apply binomial theorem to CA iterates.
- Diffusion is much harder to characterize.
- Ad hoc methods can be used in some cases.

Theorem:
$$\mathcal{A} = \mathbb{Z}_{/2} \oplus \mathbb{Z}_{/2}; \quad \mathbb{M} = \mathbb{N}; \quad \Phi \text{ has local map}$$

$$\phi \left[(x_0, y_0); \ (x_1, y_1) \right] = (y_0, \ x_0 + y_1).$$

Then Φ is diffusive. Thus, if μ is HM, then $\mu_{\infty} = \mathcal{H}^{cor}$.

Nonabelian groups: _____

Let \mathcal{G} be a *nonabelian* group.

Define **multiplicative** CA over $\mathcal{G}^{\mathbb{M}}$, analogous to linear CA.

Structure theory of \mathcal{G} yields structure theory for MCA.

If $\mathcal{N} \subset \mathcal{G}$ is a normal subgroup, and $\mathcal{Q} = \mathcal{G}/\mathcal{N}$, then an MCA on $\mathcal{G}^{\mathbb{M}}$ can be decomposed as a **skew product** of:

- A multiplicative CA Θ : $\mathcal{Q}^{\mathbb{M}} \longrightarrow \mathcal{Q}^{\mathbb{M}}$; and...
- A relative CA: a continuous, shift-invariant map

$$\Psi:\mathcal{Q}^{\mathbb{M}}\times\mathcal{N}^{\mathbb{M}}\longrightarrow\mathcal{N}^{\mathbb{M}}$$

determined by a 'local map' $\psi : \mathcal{Q}^{\mathbb{U}} \times \mathcal{N}^{\mathbb{U}} \longrightarrow \mathcal{N}$.

If Θ is diffusive and Ψ is 'relatively diffusive', then HM measures on $\mathcal{G}^{\mathbb{M}}$ converge to Haar under iteration of Φ .

Example: Quaternions

- $\mathcal{G} = \{\pm 1, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}\}; \quad \mathcal{N} = \{\pm 1\} \cong \mathbb{Z}_{/2}; \quad \mathcal{Q} \cong \mathbb{Z}_{/2} \oplus \mathbb{Z}_{/2}.$
- $\Phi: \mathcal{G}^{\mathbb{Z}} \longrightarrow \mathcal{G}^{\mathbb{Z}}$ has local map $\phi(q_0, q_1, q_3, q_4) = q_3 \cdot q_0^3 \cdot q_2^5 \cdot q_1^{-1}$.
- λ : HM measure on $\mathcal{N}^{\mathbb{Z}}$; ν : HM measure on $\mathcal{Q}^{\mathbb{Z}}$;

If $\mu = \lambda \otimes \nu$, measure on $\mathcal{G}^{\mathbb{Z}}$, then $\mu_{\infty} = \mathcal{H}^{aar}$.

Nonconvergence to Haar oxdot

Harmonic mixing \iff 'randomness' in the initial conditions.

If μ describes initial conditions that are 'highly ordered', then $\Phi^n \mu$ does *not* converge to \mathcal{H}^{ar} in density. For example...

μ has small support:

- Shift-invariant subgroups of $\mathcal{A}^{\mathbb{M}}$.
- Substitution systems (eg. 'q-automata', the Morse sequence)
- 'Regular' **finite rank systems** (eg. many Toeplitz sequences)

μ has strong recurrence properties:

- Some **Sturmian shifts** (ie. quasiperiodic initial conditions).
- 'Recurrent' **finite rank systems** (eg. certain 'Chacon' type systems)

Question: Is *non*convergence to Haar generic when μ is...

- Quasiperiodic?
- Finite rank?
- Singular spectrum?
- Zero entropy?

Open Problems _____

Other Monoids: What if M is nonabelian group/monoid?

- Free group/monoid: no problem.
- Discrete subgroup of Lie group?
- Example: discrete isometry group of hyperbolic space?

Other measures:

- Most Markov random fields are harmonically mixing.
- Weaker 'randomness' conditions are insufficient for HM.
- Example: $\exists \mu$ such that $(\mathcal{A}^{\mathbb{Z}}, \mu, \sigma)$ is a **K**-automorphism, but μ is *not* HM.
- Necessary conditions for harmonic mixing?

Permutative Automata:

- The most 'chaotic' class of cellular automata.
- Affine & multiplicative automata are a subclass.
- Invariant/limit measures of *non*algebraic permutative CA?