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Cellular Automata

e Spatially distributed dynamical systems;
e Local interactions;

e Spatially homogeneous rules.
CA are the ‘discrete’ analog of partial differential equations:

e Space is a lattice M (eg. Z" or NP).
e Local state of each lattice point is in finite alphabet A.

e Global state: M-indexed configuration of elements in A;
the space of such configurations is AM.

e Evolution map ® : AM — AM computed by applying a
‘local rule’ at each lattice point.



Preliminaries

A: a finite set, with the discrete topology.

M: a lattice (for example, M = N, Z, N¢ x Z"2).
AM: " a compact space under the Tychonoff topology.
An element of AM will be written as a = [a,,]mem.

M acts on itself by translation. This induces a shift action of
M on AM: for all w € M, and a € AM define

o'la] = [bul,em] Where, Vm, by = agpim)




Cellular Automata

Neighbourhood: = e -

nfnE

U C M (finite set)

by e, 4

Local transformation rule:

o: AV — A

The CA induced by ¢ is function ®: AM, > so that, for any
(@] mena] 0 AM,

(I)(a) - [bm|meM] , where, Vm € M, b, = ¢ [a(u+m)|uEU} :

Equivalently:
A CA is a continuous transformation commuting with all shifts:

VmeM, dooc™ = oc"od



Example: Nearest-neighbour XOR
Lattice: M = Z;

Neighbourhood: U= {-1,+1};
Alphabet: A ={0,1} = Z;

Local Map: ¢(a) = a_1+a; (mod 2).

{— Space —

o . 0O
o1 .
1 . 1 .
1 . . 1 .
1 1 . 1 1 .
1 . .. 1
1 1 . 1 .1
1 o1 . 1 1
1 .1 1 1 . 1 1 1 1
1 . . . 1
1 1 . . 1
1 .1 1

Time



Initial Conditions: Point mass



Initial Conditions: Isolated point masses
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Initial Conditions: Random
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_ Example: John H. Conway’s Game of Life

Lattice: M = 7Z?;
Neighbourhood: U = [-1..1] x [-1..1]; T
Alphabet: A= {0,1};
(1 ifap=1land Y a,=3,4
uelU
Local Map: 1 if gy =0 and Zau = 3,
uelU
| 0 otherwise.
Blinker:
1. . 1 :
.. 1 . 1 1 1 — 1 11 e
1. .. 1 .

Glider:
.. 1 . .1 .1 . 1 . .
1 1 1 . . 11 .1 . — .11

1 . 1 1 . 1 1 .

1 L

.. B e e

1 1 . .1 1 .

.. .1 L.

e Fmergence of large scale, coherent structure.

e Universal computation.



Linear Cellular Automata

A: finite abelian group (eg. A =7,,)

AM: compact abelian group (Tychonoff topology & pointwise
addition)

Cellular automaton @ is linear if it is a group endomorphism.

Equivalently: ¢ : AY, — A is a homomorphism.

Product
group

Fact: A = Z,, is a ring under multiplication. Any LCA can be
written as a ‘polynomial of shift maps’:

b = Z Dy * o’u’ (Where {Spu}UEU are in Z/n)

uel
That is, for any a € AM: &(a) = Z ©y - o'(a).
uel
Example: (Nearest-Neighbour XOR) & =o' + o'
a: (0f1]of1[1]1]0[1]1]0]1]

o(@: [0]1]0[1]1][1]0[1]1[0]1]«=
o '(a): = [0[1]0]1[1[1]0[1][1]0]1]
®(a) : j0joj1]0]1]0[1]1]0]

(a
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( LCA composition ) — ( Polynomial multiplication )
¢(x) = Z Oy - T (formal polynomial with ‘powers’ in M)

¢ = ngu-a“ = ¢(o) (corresponding LCA).

Then: ®od = (¢p-@p)(o), Podod = ¢*(o), etc.

Example: A=7Z,; M=1Z; ¢(a)=ay+a (mod2).

d = (6"+oM) = o +o!
O? — (o + o) = of g
3 = (6'+ 0! = o' +o! +0? +0o3
ot = (e + o)t = of g
&5 — (6% ') = oV +o! 1ot 4ot
0 = (6" +0o!) = o +o? +ot +0°
7" = (6 +0o!) = o' +o! +0?+0d +o! +0° +ob +oT
% — (e + o)t = of g

e Pascal’s triangle, mod 2.



® = o'+ o!; Initial Conditions: Point mass

P
Py

P W P
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Py

Affine Cellular Automata

= =

d(a) = ¥(a) + c, where

e U is a linear CA (the linear part of ®);

e c € AM is a constant configuration (Vm € M, ¢, = c).

Equivalently: Local map ¢ = v + ¢, where ¢ : AY — A is
a homomorphism, and ¢ € A is a constant.



Invariant Measure
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Let 1+ be a probability measure on AM.

e 4 is stationary if " pu = p for all m € M.

e 4 is P-invariant if du = p.

Question: What stationary measures are ®-invariant?

Cesaro Averages

If it exists, po = WwWk'—Ilim —Z@” is ®-invariant.

N—soo N

Question: Does o, exist? What is it?
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The Haar Measure

LC M finite set; b e AL
[b] = {aE.AM; forall £ €L, ap=bs};
This is a cylinder set of size L = card [LL].
If A = card [A], then there are A cylinder sets of size L.
Haar measure: Probability measure H on AM assigning mass

A~ to all cylinder sets of size L.

e o is the ‘most random’ measure on AM.

e Hor is ®-invariant for any affine CA .

Question: When does jio, = Ho ?

(‘Asymptotic randomization’.)
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Cesaro Limit Measures for ACA

Theorem (Lind, 1984) A=7Z;; M=27Z; ®=0"'+0o"
If i is a nontrivial Bernoulli measure, then p,, = H*.

Lind showed that the stronger limit, ‘wk*~lim ®Vp = H=’, is

n—oo
not true. The subsequence {<I>(2n) R eN} does not converge to He.

Theorem (P. Ferrari, P. Ney, A. Maass & S. Martinez, 1998)
e g =p", with p prime; A=7%Z,; M=N.
e & =y-0"+ ¢ -al, (g, relatively prime to p).
e 1 a Markov measure; all transition probabilities nonzero.

Then po, = H*.

(Ferrari et al. have a similar result when p is a g-measure)

Theorem (A. Maass & S. Martinez, 1999)

e ¢ has local map ¢ [(3707 Yo); (1, yl)] = (Y0, Zo+y1)-
e 1 a Markov measure; all transition probabilities nonzero.

Then po = Hw.
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Limit Measures for ACA

Theorem 1: (Yassawi & P, 2001)
e A=Z;, meN). M=Z° xN (d,D>0).

e & : AM > affine CA so that, for each prime divisor p of n,
at least two coefficients of ® are prime to p.

e /1 a stationary Markov random field with full support.
Then po = H*.

Examples:

e n = p is prime; ® has two or more nontrivial coefficients.
e 1, a Bernoulli measure; all a € A have nonzero probability.

e M = Z and p is an N-step Markov measure; all (N+1)-words
have nonzero probability.

It suffices to prove Theorem 1 in the linear case:

Lemma: Let ¥ be an ACA with linear part ®.

( —]&EI;NZ‘” H) (Wk—ﬂwz“
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Bernoulli Measures

Let p be a probability distribution on A.
The corresponding Bernoulli measure on A? is defined:
For any b = (by, by, ..., by) € AN
ulb] = p(bo) - p(b1) - ...~ p(b).
(‘Rolling dice’.)

Markov Measures

For all a € A, let p, be a transition probability distribution
over A. Let p be another probability distribution such that

> pla)-pa = p.

acA

The corresponding Markov measure on A? is defined:
For any b = (by, by, . .., by) € AN,

plb] = p(bo) - Pog(b1) - Poy(b2) - - - - Poy_, (bN)
(‘Weak causality’.)
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Markov Random Fields

M = 7P x N¢.

Uc M finite ‘neighbourhood of 0’ e.g. U = [—1...1]" x {0,1}%.

A

If VC M is any subset, define:
—V e ‘Closure cl(V)=V+U
e ‘Boundary”: 0(V) =¢l(V)\ V.

A
\/

i is a Markov random field if, for any V C M, and any
ac A%V events occuring inside V are independent of events out-
side, relative to conditional measure p,. That is:

It e W, CV and b, € AW
| e W,,, CM\cl(V) and b, AWeut:

Then: Ha [bm ~ bout] = Ha [bm] * Ha [bout]-

e 4 is stationary if it is invariant under all shifts.

e 1 has full support if u[a] > 0 for every a € AY.
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The Characters of AM

T': The unit circle group {z € C; |z| = 1}.
Character: A continuous homomorphism x : AM — T*.

Example: (A =Z/) Characters of A%:
) = (1) Ela) = (~1)frestes)

Example: (A = Z,,) For any m € M and ¢ € Zj,, the map

o
x(a) = exp (%1 ‘c- am> = &(c-ay) is a character of AM.

Lemma: All characters of AM are products of the form

x(a) = exp <% > xmam> = £ (Z xmam>

meM

(coefficients x,, € Z,; all but finitely many are zero).

The rank of y is the number of nonzero coefficients.

Example: rank [{] = 1 and rank[€] = 3.
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Characters and Measures

If x is a character and p is a measure on A™, then define

axl = (mx) = / X dp.
AM
These Fourier Coefficients completely identify .

1 ifx=1

Example: If y = Hw then Hw|x] = { 0 otherwise

Theorem 2: i1, o, . . . a sequence of measures on A™;

(Wk*—lim Wy = H"”’) = (lim Lnlx] = 0, for all x # ]l)

n—oo n—oo
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Harmonic Mixing

1 is harmonically mixing if, for all e > 0, 4 R € N so that:

For all characters x, < rank [x] > R ) — ( Zx]| < € )

Example: He is obviously harmonically mixing.

Theorem 3.0: The set of HM measures is an ideal of the Ba-
nach algebra (./\/laas [AM; C} .+, *), closed under the total varia-
tion norm, but dense in the weak™ topology.

Theorem 3.1: Suppose:
o M = 7P x N¢;

e 1 is a stationary Markov random field on AM with full
support;

Then p is harmonically mixing.

Example: A fully supported N-step Markov process on A% is HM.
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Harmonic Mixing

A special case of Theorem 3.1 is:

Theorem: Suppose:
o A= 17, p prime;

e /1 is a Bernoulli measure; pla] > 0 for all a € A.

Then p is harmonically mixing.

Proof: If x(a H E (Xmam) and p = ® Lo, then

meM meM

/ xla] dula
( (Xmam) duo[am]) ‘

AN

ulx]| =

meM

. | / Xmam d,UO[am]
Xm#o

< c = CK
Xm%o

where C' := max
ce[l..p|

[ &) dua

Thus, as R — oo, |f[x]|] < CR — 0. O

< 1, and R = rank [x].
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Characters and LCA

e x(a) = & <Z Xmam> is a character.

meM

’

Suppose:  «

e d = ngu-a“isalinearCA.

\ uelU

Then:

e =x0®d: AM — T! is also a character.

e Obtain coefficients of £ by ‘convolving’ coefficients of x and &:

VYm e M, let & = Z Xn Pm- Then &(a) =& (Z fmam> .

Definition: ¢ is diffusive if, for all nontrivial characters x,
there is a set J C N of Cesaro density 1, so that
lim rank [x o <I>-71 = 00

j—00
j€el
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Cesaro Density

If J] C N, the Cesaro density of J is the limit

1
lim Ncard[jGJ;jSN

N—oo

(if the limit exists)
Examples:

e {3n; n € N}; density 1/3.

° {n2 ' n e N}; density 0.

e {2": n € N}; density 0.

e Prime Numbers: density 0.

e Composite Numbers: density 1.
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Theorem 4: Let A be a finite abelian group.
o &: A diffusive linear CA on AM;

e 1: A harmonically mixing measure on AM.

Then 3 J C N of Cesaro density 1 so that wk*dim &'y = He.
.7.7230
Thus, —A}gnoo — Z Oy = Hw.

Proof: Follows from Theorem 2 and definitions of ‘diffusive’ and
‘harmonic mixing’. O

Theorem 5: M =7 x N,  A=17Z,,.
For each prime divisor p of n, suppose at least two coefficients of

® are prime to p. Then ® is diffusive.

Theorem 1 follows from Theorems 3.1, 4, and 5.



Every n € N has a p-ary expansion: P(n) = { nll }>, € [0..p

such that n = Z n[i]pi.
i=0

Proof Sketch for Theorem 5:

25

)N

)

Vm € N, let [m], be the congruence class of m, mod p.

Lucas’ Theorem:

N

For any N, n € N, [
n

where (8) = 1 and <Z> = 0 for any b>a > 0.

[

k]

p

)

Write “n < N” whenever nl!l < Nl for each i € N.

Consequence: ([N] +# O> = <n<<N )
mlp

Proof Sketch for Theorem 5: Suppose (for simplicity) A = Z/,,
M=27 and® = % + o 4+ o forl; < ly < /l3inZ

Then: & = ®yoc®, where &y = Id + o™ (Id + o™),
with 1 = o +mq and €y = £y + mq + mes.

Composing with o does not affect the diffusion property; hence,

assume WOLOG that & = &,
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(Recall: d—Td + o™ (Id + o™) )

N

By Lucas’ Theorem, [
n

_J1if ngKN
2_{02']“717(]\7'

N - N mik mo\k1
Thus, " = )~ | e 4™
o LM12

_ E ok E L

ki< N ko< kq

— E E 0-m1k1+m2k2.

k1<€N kokk

If  is not diffusive, 3 x so that rank [x o ®"] is bounded by some
R € N on a subset BC N of nonzero density.

Suppose x(a) = Z a, |, (Q C Z finite subset).
qeQ

Thus, forall N € N,

XO(I)N — Y Y y: @ (kymq+komao+q)

q€Q k1N kokky

(here, a = [am|, ] € AM)
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(XO‘I)N(a) = ¢ [Z Z Z a(k1m1+k2m2+q)] ) (1)
1€Q k<N ky<h

If rank | x o ] < R, then all but R of the terms in () must cancel
out, through equations of the form:

ktmi + kaomo+q = kTm1 + k;mg + q* (*)

for ks < k1 < N, ki < k*< N, andgq,q* € Q.

— ' —
N:...111 11 1 111111111111 1 111
ky : 11 1 11 1 1 11
ko : 1 1 1 1 11
(g—aq1) : 111 1111
2r 1
T T Tt
Jr .. jr—=T 76543210

Idea: Let I' € N. If B C N has nonzero density, then 3 N € B
such that P(IV) has at least R+ 1 ‘gaps’ of at least I' consecutive 0s,
ending in a 1. Suppose the terminating 1’s in these ‘gaps’ occur at
positions jo, j1, ---,Jjr. Set ¢* = min[Q]. By Pigeonhole Principle,
3 r € [0...R] so that (x) holds with &} = 2’7 and k} = 0; ie.

kimq + koms + qg = 2j"m1 +0-m9+ q*
for some ky < k1 < N and q € Q. Rewrite this as:
mi2" = kymy + kamg + (g —q") (%)

Now, ky < k1 < N, and k; < 2’7, so, because of the ‘gap’, we must
have ky < k; < 271 If T' is big enough, then (%) is impossible.
Contradiction. O
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Noncyclic Abelian Groups

Let A be a noncyclic abelian group; eg. A = (Z/pr)J, where
r,J € N and p is prime.

( Linear CA ) = < polynomials over a ring of matrices )

< Composition of LCA ) — ( Noncommutative )

polynomial multiplication

e Cannot apply binomial theorem to CA iterates.
e Diffusion is much harder to characterize.

e Ad hoc methods can be used in some cases.

Theorem: A =7, ®Z;; M=N; & has local map

¢ | (0, Yo); (331,y1)} = (Yo, To+u1).
Then P is diffusive. Thus, if u is HM, then u,, = He.
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Nonabelian groups:
Let G be a nonabelian group.

Define multiplicative CA over GM analogous to linear CA.
Structure theory of G yields structure theory for MCA.

If N'C G is a normal subgroup, and Q= G/N, then an MCA on
GM can be decomposed as a skew product of:

e A multiplicative CA ©: QM — QM- and...

e A relative CA: a continuous, shift-invariant map
UM MM M
determined by a ‘local map’ ¢ : QU x NV — N

If © is diffusive and W is ‘relatively diffusive’, then HM measures on
gM converge to Haar under iteration of .

Example: Quaternions
o G={=£1,+i,4j,tk}; N={£1}=Z)y; Q=Z)®Zs.
e ®:G% — G has local map (o, q1, 43, 41) = @3- 46 - 43 - 1 -
e \: HM measure on N%;  v: HM measure on Q%;

If u= X\ ® v, measure on G%, then fioo = Hor.
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Nonconvergence to Haar

Harmonic mixing <= ‘randomness’ in the initial conditions.

If 1 describes initial conditions that are ‘highly ordered’, then ®"u
does not converge to H* in density. For example...

1 has small support:

e Shift-invariant subgroups of AM.
e Substitution systems (eg. ‘g-automata’, the Morse sequence)

e ‘Regular’ finite rank systems (eg. many Toeplitz sequences)

1t has strong recurrence properties:

e Some Sturmian shifts (ie. quasiperiodic initial conditions).
e ‘Recurrent’ finite rank systems (eg. certain ‘Chacon’ type
systems)

Question: [s nonconvergence to Haar generic when p is...

e Quasiperiodic?
e Finite rank?
e Singular spectrum?

e Zero entropy?
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Open Problems

Other Monoids: What if M is nonabelian group/monoid?

e Free group/monoid: no problem.
e Discrete subgroup of Lie group?

e Example: discrete isometry group of hyperbolic space?
Other measures:

e Most Markov random fields are harmonically mixing.
e Weaker ‘randomness’ conditions are insufficient for HM.

e Example: 3y such that (AZ, u, o) is a K-automorphism, but
1 is not HM.

e Necessary conditions for harmonic mixing?
Permutative Automata:

e The most ‘chaotic’ class of cellular automata.
e Affine & multiplicative automata are a subclass.

e Invariant/limit measures of nonalgebraic permutative CA?



