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Abstract

Stable probability distributions (SPDs) are generalizations of the familiar
Gaussian distribution, but have infinite variance. Thus, statistical tech-
niques relying on finite variance are inapplicable to SPDs. In particular,
the correlation structure of multivariate SPDs is much more complex than
a Gaussian; it is described by a measure on the sphere, called a spectral
measure, and is poorly understood.

In this work, the relationship between multivariate SPDs and their spec-
tral measures is illuminated, and tools are developed for the statistical anal-
ysis of multivariate SPDs. Methods from nonabelian harmonic analysis are
applied to express the spectral measure using spherical Fourier series; this
leads to an efficient and practical method for estimating spectral measures
from empirical data, even in very high dimensions. Formulae are computed
which relate the estimation error of a spectral measure back to the estimation
error of the original SPD. These results are then applied to the identification
and analysis of stable stochastic processes.
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Chapter 1

Introduction

1.1 Introducing Stable Random Variables

Stable probability distributions are the natural generalizations of the
normal distribution, and share with it two key properties:

e Stability: The normal distribution is stable in the sense that, if
X and Y are independent random variables, with identical normal
distributions, then X 4 Y is also normal, and its distribution is the
same as X and Y once it is “renormalized” by multiplying by 2-1/2,
Formally, we can write:

1 ~

W (X + Y) distr X » Y
In a similar fashion, if X and Y are independent, identically dis-
tributed (i.i.d) stable random variables, then X +7Y is also stable, and
its distribution is the same as X and Y when renormalized by 21/
(see Theorem 74 on page 130). The stability exponent « ranges
from 0 to 2. When a = 2, we have the familiar normal distribution.

e Renormalization Limit: The Central Limit Theorem says that the
normal distribution is the natural limiting distribution of a “suitably
renormalized” infinite sum of independent random variables with finite
variance. If X1, Xo, ... is a sequence of such variables, then the random

variables
1 XN
N1/2 Z Xn
n=1

1



2 CHAPTER 1. INTRODUCTION

converge, in density, to a normal distribution. Similarly, if Y1,Y2,Y3,...
are independent random variables whose distributions decay according
to a power law with exponent —1 — o, then the random variables

N

1
wi7a 2 Yn

n=1

converge, in distribution, to an a-stable distribution (see Theorem 74
on page 130).

Thus, stable distributions model random aggregations of many small,
independent perturbations. For example, stable distributions may model
the motions of Markovian stochastic processes whose increments exhibit
power laws. Power law distributions arise with surprising frequency in cer-
tain systems, especially those involving many independent interacting units
with sensitive dependencies between them (see Appendix A.3 on page 137,
Appendix B.2 on page 146, or Appendix C on page 153). A better un-
derstanding of stable distributions may be important to the study of such
phenomena.

1.2 Statement of the Problem

Although one-dimensional stable distributions are well-understood, there are
many open questions in the multivariate regime. The simplicity of the mul-
tivariate Gaussian universe does not extend to non-Gaussian multivariate
stable distributions. An N-dimensional Gaussian distribution is completely
determined by its N x N covariance matrix, which transforms nicely under
linear changes of coordinates. In particular, by orthogonally diagonalizing
the matrix, we can find an orthonormal basis for RY, relative to which the
multivariate normal variable is revealed as a sum of independent univariate
normal variables —this is the so-called Principal Component Analysis.

For a general multivariate stable distribution, however, the situation is
much more complex. Since the marginals do not have finite variance, it does
not make sense to define a “covariance matrix” in the usual way; none of
the integrals would converge. Various modified notions of “covariance” have
been proposed (see, for example, [154]), but these do not transform in any
simple way under changes of coordinates. In particular, there is nothing
analogous to a “principal components analysis”.

The correlation structure of a stable distribution on RP is determined
by an arbitrary measure on the sphere S?~1, called the spectral measure
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(see Theorem 77 on page 143). This measure is essentially an “infinite-
dimensional” data-structure, so it is clear that, in general, no N x N matrix
can possibly be adequate for representing it. A “principal components”
type decomposition is only valid when the spectral measure consists of 2D
antipodaly positioned atoms.

The goal of the present work is to illuminate the relationship between
multivariate stable distributions and their spectral measures, and to develop
tools for statistical analysis in the multivariate stable universe.

1.3 Organization of this Work

All relevant mathematical background material is developed in the appen-
dices, and frequent reference is made to these throughout the text. I have
attempted to maintain consistent notational conventions; an index of nota-
tion appears on page 271.

In Part I, I develop efficient methods for estimating the spectral measure
of a multivariate stable distribution from empirical sample data.

In Chapter 3, I develop bounds relating the distance between two stable
probability distributions to the distance between their respective spectral
measures. In Chapter 4, I deal with the characteristic function, and its
image, the spherical log-characteristic function. In Chapters 5 and 6,
I develop “convolution” style methods to extract the spectral measure from
information about the spherical log characteristic function.

In Part II, I briefly explore some other statistical methods in the stable
universe. In Chapter 7, I investigate applications of of normal rank corre-
lation analysis to multivariate stable distributions, and demonstrate that
NRC analysis clearly distinguishes between distributions with independent
coordinates and those with correlated coordinates.

In Chapter 8, I explore the problem of analyzing data from “mixed”
stable distributions: that is, the distributions of sums of independent mul-
tivariate stable random variables X, ..., Xy, where X,, has stability expo-
nent a,, and a3 < ... < an.

In Chapter 9, I develop techniques for identifying a stable stochastic
process from empirical data. I consider the case where the process is defined
via a stochastic integral over random a-stable noise. I show how to recover
the stability exponent « of the noise and (if the noise is multidimensional) its
spectral measure (§9.2). In the case of a moving average process, I show how
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to reconstruct the shape of the averaging kernel from the spectral measure of
marginals of the process (§9.1). Finally, in §9.3 T show how to decompose a
broad class of moving average process into linear combinations of Ornstein-
Uhlenbeck type processes, thereby providing a simple physical mechanism
for them.

Statement of Originality

Material in the appendices is not original, but is provided as background
material. All results proved in the numbered chapters are, to the best of
my knowledge, original work, unless explicitly stated otherwise. When non
original results appear in the numbered chapters, they will be indicated
explicitly by a (x).



Part 1

Estimation of Spectral
Measures






Chapter 2

Motivation and Context

A multivariate stable probability distribution is completely described by its
shift parameter ji (which, for a > 1, is the mean of the distribution) and
a spectral measure I', a measure on the sphere SP~! which describes the
multivariate correlation structure of the distribution. Estimation of ji can
be performed componentwise, by simply applying the assorted estimation
procedures developed in the univariate case (see Appendix A.4 on page 140).
Estimation of I' is more difficult. T' is not a parameter, or even a finite
collection of parameters, but is, in a sense, an “infinite-dimensional” data
structure. Furthermore, I is only indirectly visible; the image of T under a
sort of “spherical convolution” appears in the logarithm of the characteristic
function of the distribution, and there is no more direct way to observe it.

2.1 Summary of Previous results

Early on, Press [141] developed an estimation scheme for multivariate stable
distributions, through a straightforward generalization of his one-dimensional
method. Press’s method, however, only works for “pseudo-Gaussian” distri-
butions', with log-characteristic functions of the form:

ox@ = (Ea)i+ (£08)"

where (2 is some symmetric, positive semidefinite “covariance matrix”. If
2 has unit eigenvectors &i,...,dp, with eigenvalues Ai,...Ap (le. as a
covariance matrix, we have “principal components” A&y, ..., A1&1), then

!Note: “Pseudo-Gaussian” distributions are not the same as a sub-Gaussian distribu-
tions; indeed, in a qualitative sense, they are almost opposite.

7
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the spectral measure of this distribution is symmetric and atomic, with

atoms at each of £&1,...,+dp, with masses Aq,... A\p —in other words:
D
I'=> Xi(ds,+05-3,)
d=1

Press proposes to solve for the components of the matrix Q by empirically
estimating the log characteristic function at some collection of frequencies
{El, e ,EN}, where N = D(D +1)/2, and then solving a system of N linear
equations. He claims that his method will generalize to a sum of pseudo-

Gaussians:
- N M - a/2
ox(@ = (Ea)i+ Y (£
m=1

(where Qy,...,Q)s are linearly independent, symmetric, positive semidefi-
nite matrices). However, in this case, one no longer ends up with a system of
linear equations, so it is not clear that the method is tractable. In any event,
Press’s method only applies to multivariate distributions with particularly
simple atomic spectral measures, which furthermore must be symmetrically
distributed. Empirical evidence (see, for example, [17]) suggests that the
stable distributions found in financial data are significantly skewed; sym-
metry is not a reasonable assumption.

Cheng, Rachev and Xin [166],[19] develop a more sophisticated method,
by expressing a stable random vector in polar coordinates, and then examin-
ing the order statistics of the radial component, as a function of the angular
component. They utilize the theorem of Araujo and Giné (Theorem 78 on
page 145) stating that the radial distribution decays most slowly in those
angular directions with the heaviest concentration of spectral mass; these
differences in decay rate are then used to estimate the density distribution
of the spectral measure.

More generally, Hurd et al. [113] consider any multivariate, infinitely-
divisible distribution p whose Lévy-Khintchine measure A takes the form

d\[r.0) = f(r) dr dI'[6]

where § € SP~! and T is some “spectral measure” on SP~! while r € [0, 00),
and f : [0,00) — [0,00) is some function asymptotically of order f(r) ~
O (r~@7!). A result similar to that of Araujo and Giné (Theorem 78 on
page 145) is shown for this class of distributions, providing a mechanism for
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estimating I' from empirical data by looking at the angular distribution of
extremal events.

Nolan, Panorska, and McCulloch [81] develop a method based upon a
discrete approximation of the spectral measure. If the spectral measure is
treated as a sum of a finite number of atoms,

I = Z'}’a(saa

acA

then, for any fixed s € SP~1, the “convolution kernel” 75 (see Section 4.1 on
page 43) can be restricted to a function 7 : A —> C. The set of all discrete
measures supported on A is a finite-dimensional vector space, which we can
identify with C*, and 75 is just a linear functional on this vector space. If
E C SP~1 is some finite set, then we can define a linear map:

F:CA —CF

where, for each s € £,
FI)s = @(s) = / ns dI’
SD-1

The image F'(T') is really just the restriction of the spherical log-characteristic
function g introduced in Section 4.1.

The method of Nolan et al. then comes down to inverting this linear
transformation to recover I' from an empirical estimate of g = ® =. They
explicitly implemented their method in the two-dimensional case (ie. when
the spectral measure lives on a circle), and tested it against a variety of
distributions. They found that it worked fairly well for a variety of measures
on the circle, and consistently outperformed the method of Chen et al.

Nonetheless, the method of Nolan et al. is limited for a number of rea-
sons. First, it depends upon a discrete approximation of the spectral mea-
sure. Although error bounds on such discrete approximations are available
(see, for example, Section 3.3 on page 34, and also [174]), it is unsatisfactory
to always have to resort to such an approximation. In particular, because of
the aforementioned theorem of Araujo and Giné [1], the asymptotic decay of
the probability distribution is distinctly slower along rays passing through
atoms of a spectral measure than it is along the rays in between them. This
angular fluctuation in asymptotic decay rate will not be seen in a stable
distribution with a continuous spectral measure. Hence, in approximating a
continuous measure by a discrete one, we may introduce anomalous asymp-
totic behaviour to the distribution.
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Furthermore, since the method of Nolan et al. involves matrix inversion,
it is extremely numerically expensive in a high-dimensional space; a good
approximation of the spectral measure may require a large number of atoms,
so high dimensionality may be unavoidable. Suppose that, to approximate
the spectral measure with a certain accuracy, we need a set of atoms with
density e ~ 1/N over the surface of SP~1. Such a set has cardinality of order
@ (N b *1), thus, we are looking at inverting a matrix with O (N b *1) TOWS
and columns —a computation of order O (N 3(D *1)). Applying the inverse
matrix to the vector g is a further computation of order O (N «D *1)).

Finally, the “convolution kernel” n has a strongly “smoothing” effect
when transforming I into g (see § 4.3 on page 45, for example). This means
that the linear transformation F' has many small eigenvalues, which means
that the inverse operation is extremely sensitive; small estimation errors
in g can blow up into big errors in I'. (Indeed, we must be careful when
positioning our estimator atoms, or the transformation will not be invertible
at all.) These issues are addressed in [78]. The methods of Chen et al. and
Nolan et al. are also discussed in section 5 of [128].

Finally, J. Nolan [130], also develops techniques for identifying when a
multivariate distribution is stable, by applying maximum likelihood estima-
tion techniques (see also [127]) to the parameters of the one-dimensional
marginals. He also provides a complete parameter estimation scheme in the
special case of sub-Gaussian distributions, but does not address the issue of
spectral measures in general.

2.2 Overview of Part I:

We will now explore the problem of estimating a multivariate stable distri-
bution from empirical sample data.

In Chapter 3, I develop bounds relating the distance (relative to a vari-
ety of different norms) between two stable probability distributions to the
distance between their respective spectral measures. These bounds can be
used to compute the rate-of-convergence of some approximating series of
measures, and to get explicit bounds on estimation errors.

In Chapter 4, we examine the spherical log-characteristic function,
normally indicated as “g” (see §4.1 for definition). In § 4.3 on page 45 we
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characterize the smoothness properties of g, and in § 4.4 on page 47, we use
this smoothness to develop estimation procedures for g.

Knowledge of the g is sufficient to describe the characteristic function of
X. However, g is not very convenient if we want to simulate X —for this,
we need explicit knowledge of the spectral measure I'. However, I' is not
directly visible in empirical data; instead, all we see is g, which is the image
of I" via the linear transformation described in §4.1. The problem, then is
to recover I' from g, by reversing this linear transformation.

The theorems in §4.3 reveal the essential problem: g is much “smoother”
than I'. The “high frequency” or highly “singular” parts of I' are very much
suppressed when it is converted into g. Hence, the transform I' — g has
many very small eigenvalues; this is exhibited explicitly in Proposition 23
on page 45. Hence, the inverse transform g — I" will have many very large
eigenvalues, associated to the “high frequency” parts of I'. This means that
small errors in our empirical estimate of g may get blown up into very large
errors in our estimation of I' —or at least, of its high frequency part. The
“low frequency” part of I' should be fairly easy to estimate.

In §4.1, we describe the equation

g0 = [ n°6c0) arfo (4)

as a kind of “convolution” of the measure I' with the kernel n*. We could
reconstruct I' from the empirical estimate of g if we could somehow “decon-
volve” the n out.

Of course, the expression (A) is not “really” a convolution, because, if
D #1,2,4, then SP~! is not a topological group [6]. However, we can make
sense of this “pseudoconvolution” in at least two ways, and each provides a
method of “deconvolution” for recovering I'.

In Chapter 5, by treating SP~! as a homogeneous Riemannian manifold,
and recognizing that the value n®(x, #) depends only on the distance between
x and 0, we can compute the (de)convolution of n* with an arbitrary function
on SP~1 in terms of the eigenfunctions of the Laplacian on SP~!. It
turns out that the eigenfunctions of the Laplacian on SP~! are functions
known as spherical harmonics; they span L?(SP~!), and behave nicely
under convolution.

In Chapter 6, by considering the action of SO” [R] on SP~!, and the fact
that n® is “nicely behaved” under this action, we can “pull back” equation
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(A) to a true convolution on SO [R]. At this point, we can employ the
machinery of nonabelian group representation theory. The Peter-Weyl
Theorem says that L? (S@D [R]) has an orthonormal basis given by the
matrix coeflicients of its irreducible unitary representations. A function
in L? can thus be represented as a linear combination of these coefficient
functions, in a direct generalization of the Fourier series of classical abelian
harmonic analysis. Convolution of two functions corresponds to matrix-wise
multiplication of these coefficients, in direct generalization to the familiar
multiplication formula for classical Fourier convolution. Hence, we can “de-
convolve” by multiplying by suitable matrix inverses.



Chapter 3

Error Propagation: From
Spectral Measure to
Probability Distribution

Suppose p1 and ps are stable probability measures with spectral measures
I’y and T'y, respectively. If I'; is a “good approximation” of 'y, then is p; a
“good approximation” of po?

In this chapter we develop bounds relating the distance between I'y and
I’y to that between p; and po, relative to a variety of different norms. These
bounds can be used to compute the rate of convergence of an approximating
series of measures, and to get explicit bounds on estimation errors.

The basic strategy is as follows: Suppose that, for k = 1,2, p; is a stable
probability measure on RP, with characteristic function x; : R — C, log-
characteristic function ®; : R — C, and spectral measure I'y, on SP~L
Thus:

e &, is a function of T'; via the transformation given by equation (B.1)

of Theorem 77 on page 143.

—

e X is a function of ®y:  xx(€) = eXP[Qk(E)]-

e pyi is a function of x4 via inverse Fourier-transform.

IfI'y is “close” to I'o, we want to establish that p; is “close” to ps. Our
general strategy will be:

e First show that, if x1 is “close” to x2, then p; is “close” to ps.

e Next, if @1 is “close” to @y, then x; is “close” to xa2.

13



14 CHAPTER 3. ERROR PROPAGATION: T — p

e Finally, if 'y is “close” to I's, then ®; is “close” to ®,.

Here “close” will be interpreted in several ways. First, in §3.1, we con-
sider convergence in the weak* topology. Then, in §3.2, we will simultane-
ously consider L! and L*™ convergence.

3.1 Weak* Convergence

Proposition 1: Let p and {Pn|neN} be stable probability measures on
RP, with spectral measures T' and {F”|nEN} on SP~1, respectively.

If T, ——=T in the weak* topology on Meus [SD _1]

n—roo

then p, —==>p in the weak* topology on Mes [R"] .

Proof: Let py, (respectively p) have Fourier transform x, (respectively
X), and log-Fourier transform ®,, (respectively ®).

Claim 1: &, — @, pointwise.

Proof:  Define 77 : R? x SP~1 — C by n(€,s) — KE s>‘a n
- \ (@ - > -
Ba <§,s> Y. Let {€RP. Then &, (5) - / n(f,s) dT,[3]) —
§D-1
—= / n(f, s) dr[s] = @(E), by weak*-convergence ...... O
SD—l

[Claim 1]
Thus, since x, = exp (®,), we conclude that x, ——=— X, pointwise.
Now apply the Lévy Continuity Theorem ([46] or [177], Thm. 2.5.1) and
conclude that p, -2 p. 0

3.2 L? Convergence

Suppose p; and p, are two stable probability measures on R” with density
functions Fy, Fy : RP — [0,00) and spectral measures I'; and T'y. The
goal of this section is to establish bounds on the distance ||Fy — Fy||,, (for
p € [1,0¢0]) in terms of the distance between their spectral measures. The
formal statements of this result are Corollary 14 and Corollary 15 on page 33.
First there is a lot of machinery, however.
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3.2.1 Consequences of Fourier Convergence

Suppose that the Fourier transform of p; is “close” to that of po with respect
to the LP norm, for some p € [1,00]. First, how close is p; to p2? Second,
what conditions on I'y and I'y can make this happen?

Notation: EngeRDghmw%pr—%(ﬂw:%ﬁﬂzzwppﬂb<éxﬂ.
If g: RP — C, then §: RP — C is the Fourier Transform of g: for

11 D g€ = x) - Ex(x) dx.
MEER, €)= [ alx) e

Lemma 2: (Consequences of L™ Fourier Convergence)

Let p1, p2 be two probability measures on RP , having Fourier transforms
X1, X2 respectively, and log-Fourier transforms ®1, ®y respectively.

Let € > 0. If ||x1 — x2llo <€, then:

1. Let é,...,gN € RP and fAl,...,:N € C, and consider the trigono-
metric polynomial f(Z) = Ei:]:l fn€g . For any p,q € [1,00] so that

Te=1
B 1] - B ) < |FuFo P N

(where we interpret N'/® = 1).
2. For any f € LY(RP) with f € L'(R”), |EZ[f]-EZ[f]] <
|7
Proof:
Proof of Part 1:  Let p = p; — p2, so that p has Fourier transform y =

N N
xi—x2. Then BF*[f] = (f,0) = Y Far(&o ) = D Farx(&n).

- €.
1

N
Thus, [BF [f]-EE [fll = [EFF = Yo x(&)

n=1
p q

< ﬁ,...,fN .NY. max {‘X(&)

p 1<n<N

}

< f/l\la"'apr'Nl/q'e
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where step (1) is just Holder’s inequality.

Proof of Part 2:  E [f] = (f,p) = <f ,’;> = {7,
by Parseval’s Formula (see [84], p.132). Thus, | EX[f1-EZ[f]l =
E A = [(Fox)| < Hﬂ\ I < 7] & by Holders
inequality. O

Lemma 3: (Consequences of L' Fourier Convergence)

Let { pnl, EN} be a sequence of probability measures on RP | with density
functions {Fn|n€N} and Fourier transforms {Xn|neN} , and let p be another
probability measure on R” with density function F and Fourier transform
X-

Suppose that {xn|,.y} and x are all in L'[RP].

1. ForallneN, ||F,—-F| < |xn—Xl;-

2. If lim ||F,— F|, = 0, then lim |F,—F|l, = 0, and thus,
n—oo n—oo
lim ||F, — F|, = 0, forall p € [1,00].
n—oo

Proof:

Proof of Part 1: Since {xnl|,.y} and x are all in L'(RP), use the
Fourier Inversion formula to write:

~

F, = X, and F = ¥

Thus, By = Flloe = I~ %l = [ —x|_ < I =xl-

Proof of Part 2 (Convergence in L') : Fix € > 0. Since p is a
probability distribution, let K C RP be some large compact set so that
plK] > 1— § and thus, p[R” \ K] < g

Let K = [=[K], and let N be large enough so that, for all n > N,

|F = Fyl. < <. Thus, pu[K] = /Fn dce /Fd/:bes -
8K . Jx
|F—Foll - PK > 1—-- - —K = 1- and therefore,

8 8K 4’

€

pn[RD \]K] < Z

Thus, ||F,—F|, = / |F, — F| d(
RD
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_ /|Fn—F| dcm +/ \F, — F| de
K RP\K

< NF-Floto + [ (mldos + [ |F] acs
RP\K RP\K
< € -|— € + € € <
- t+-+- = = €.

= 84 4 2

Proof of Convergence in LP: Let 1 < p < oo. Then for any n € N,

(F, — F) € L' NL®(RP) c LP(RP), and furthermore,
|Fu = Fll, < |[Fn—F|{" - |[F, = |07

(see, for example, [48], Theorem 6.10, p. 177).

Thus, convergence in L' and L entails convergence in every LP. ___ O

3.2.2 Sufficient conditions for Fourier Convergence, via log-
Fourier convergence

Proposition 4: (A Sufficient condition for L Fourier Convergence)
Let p1, p2 be two probability measures on RP , having Fourier transforms
X1, X2 respectively, and log-Fourier transforms ®1, ®y respectively.
Let a € [0,2), and suppose Cy > 0 so that, for all £ € R,
re[0:(8)], re[®:(d)] < -—colde.

1. Ifa # 1, and there is C; > 0 such that ‘@1(5) — 3, < €118,

Ci
then: — .
e e < (55)
2. If o =1, and there are C;,Cs > 0 such that

“IH(E) - ‘1’2(5)‘ < Cr-|€]+C-[€]log €],

01 — Cz log(Co) CQ 4
hen: — < -
then ||X1 X2||oo < ( e- CO + CO e2

Proof:
Claim 1: For any z,z € C, withre[z] < re|z],
lexp(z) — exp(z)| < exp(re[z]) - [z — 2|.
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Proof: By the Intermediate Value Theorem, we can find a point
y on the line segment between z and z, so that (exp(z) —exp(z)) =
exp'(y) - (z — z). But since re [z] < re[y] < re|z], therefore |exp’(y)| =
exp()| = exp(rely]) < exp(re[s]). Thus, lexp(z) — exp(z)| =
lexp’(y)| - |z — 2| < exp(re[z])-|z—z|. ..coviiii.n. O [Claim 1]

Proof of Part 1:  For any £ € R?,

i@ —x@| = [exp(@(§)) - exp(@2(§))
<(1) exp (max re [@1(5)], re [@2(—3] }) . “I)l(—') — By(€)
<(2) exp (—Co ‘5 a) -Ch ma
C1
=(3) aexp(—z) "z
< Gmaxfexn(-2) 2}
<() %%

(1) By Claim 1.

(2) By the hypotheses.

(3) Here, we define z = C ‘{Tx

(4) Consider the first term. The function exp (—z) - z is maximized when

0= 2rep(-2) = (1-2)exp(~2), ()

which occurs when z = 1. (Expression () is positive when z < 1 and
negative when z > 1, so we know this is a maximum.) At z = 1, the
expression exp (—z) - z has the value 1/e.

Proof of Part 2: For any EG RP,
i@ =@ = |en@() - exp(@:(E)))
<(@1) exp (max {re [@1(5)], re [%(E)] }) . “1’1(5) - ‘I>2(§?)‘

< e (~Cold])- (€1-[f + Co- [ g )

C C
=(3) 6;exp<—z)-z + éexp(—z)-z[log(z)—logwo)]
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e
[50 a)log(Co)] exp (—z) -z

+ e exp (—z) - zlog(z)
Co

Ch1 — Cylog(C C
< ( 1 — Calog( 0)) n j‘exp(_z).zbg(z)

C() -€ C()
01 - 02 log(CO) Cg 4
< — .
=0) ( Cp-e + Cy e2

(1) By Claim 1.

(2) By the hypotheses.

(3) Here, we define z = C H

(4) As in the proof of Part 1.

(5) Let f(z) = |exp(—z)zlog(z)|. Now, if z € [0,1], then |zlog(z)| <
é < eiz' On the other hand, if z > 1, then |zlog(z)| < 2%, so f(z) <
g(z) = exp(—=z) - 2. The function g(z) takes its extremal values when
0 = ¢'(2) = exp(—2)(2z — 2%), which happens when z =0or 2. z=0

is a minimum, while z = 2 is a maximum; the value of g(2) is —. O
e

Now we want to find sufficient conditions for L' convergence of the
Fourier transforms. This will require a little more machinery.

Definition 5: g

For any EE RP, Iet Mg SP-! — C be defined:

1) = [(Es)" + B (85) s

Definition 6: K(p)

Let p be a probability measure on RP with Fourier transform x.

Define K(p) = min log|x(0)\‘ (3.1)

fesD-1
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Remark 7: Since p is a probability measure, [x({ ?)| < 1forall £ € RD,
with equality at £ = 0. If [x(£)| = 1 for some & # 0, this means that the
probability measure p is totally “flat” in the dimension spanned by f, in
other words, the support of p lies entirely in some affine subspace of R”
perpendicular to E

Hence, the following conditions are equivalent:

1. K(p) > 0.
2. |x(8)| < 1, for every § € SP— L.

3. supp [p] is a large enough subset of R” that its affine closure is all of
RP.

If p is an a-stable probability measure, with log-characteristic function
® and spectral measure I', then notice that, for any E eRP, log ‘X(E)‘ =

re [@({7)] Thus,

Klp) = min [re[#(0)] (3.2)

By thinking of a random vector with distribution p as a stochastic integral
of the a-stable noise on SP~! with intensity I (see Example 98 on page 188)
, it is easy to see that the linear span of supp [p| is the same as the linear
span of supp [I']. Thus, the following conditions are equivalent:

1. K(p) > 0.
2. re[®(0)] <0, for every § € SP 1.

3. supp [['] is a large enough subset of SP~! that its linear span is all of
RP.

Proposition 8: (A Sufficient condition for L' Fourier Convergence)

Let o € [0,2), and let p1,p2 be two a-stable probability distributions
on RP, having Fourier transforms x1, x2, log-Fourier transforms ®,, ®,, and
spectral measures I'1,T'9, respectively. Let K = min{K(p1), K(p2)}.

Ca

L a1, then |x1-x:h < rpa

N w2,

2. If a =1, then

c
b =2l < || (@1 = ®2) gos| + IBU-AF GO Ty - T

var *
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where we define A = Area [SD _1]

o0
Ca = [ ep(=s)- Pt ds,
0

[e.e]
(thus, C; = / exp (—s) - sP ds),
0

and .7:(1(:) = %‘f‘Cl‘maX{

1 Ilog(iC)I}
e-(D+1)" KbP+L |~

o
where £ = / exp (—s) - sP - [log(s)| ds.
0

Proof:
Claim 1: Let £ € RP, and let 6 =

1|fN

™

-

Ifa £ 1, then [x1() = x2(8)| < exp (re[®mae®)] |¢]")-[€] " 121(6) — @2(0)1

If a =1, then ‘Xl _"
exp( mam 9 ] ‘ﬂ) ‘ﬂ (“bl (1)2 | + ‘Bl log|§|‘ |CF1 CF2|)7
where ®,,4,(0) is whichever of {®(0), ®1(0)} has the larger real part, and

where, for k = 1,2,
cry, = / u dl'g[u]
sDb-1

is the centroid of T'y,.

Proof:
Claim 1.1: re [@k(_)] = Hare [k (0)].

Proof: First, note that re [ng(s)] = ‘<_:s>

‘E‘are [ng(s)]. Thus, fork =1,2, re [(I)k(
Ha /SD_lre [ne(s)] dl'[s] = ‘ﬂare [®(0)]. ..... O [Claim 1.1]

Claim 1.2:  Ifa # 1, then im [Q) _'] = Ha im [$4(0)].

Ifa—lthenlm[q)k] ‘ﬂ( [B1(0 +Bllog|a<0,ch)).
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Proof: Ifa # 1, then the proof is just like Claim 1.1. im [ng(s)] =
- \ (@ @ o
Ba(£s) " =Ba ﬂ (0,8)@ = M im [9(s)]. Thus, for k = 1,2,

im [0(@)] = [ im[nge)] sl = | [ mp(s) arls
— 8] im (@0
If o = 1, however,
o] (6 ()

= B M (0,s) (log |(0,s)| + log H)

= |&] (im ()1 + By (6.5) - 105 €]
Hence, im [@k(f)] = /SDlim [775(5)] dT'[s]
/S _ (im(s)) +B1(0,5) - 1og]é]) arls]
(im (@) + Bilogld]- /S s) dI‘[s])

(im [@x(6)] + Bilog|é](6,er,))
................................................. O [Claim 1.2]

Claim 1.3: Ifa #1, then |0:(8) — 3.(8)| < ‘ﬂa|<1>1(9)—<1>2(0)|
If « =1, then

I
sy

@1(§) ~ @2(8)] < [§]"-[[9:16) ~ 2200 + |B-1og ]| [er, —er].

Proof: By Claim 1.1,

@, (€) — @5(¢)
= re[21(§)] —re (@] + i(im |8:1()] - im [2:(0)))
m (2

qa (re[@1(6)) — re[@>(0)]) + i(im [@1(8)] i

Now, when a # 1, use Claim 1.2 to conclude:

D1(E) — ®a(€)

@)
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- ‘gf[(re[¢1(0)]—re[<1>2(0)]) + i(im[<1>1(9)]—im[<1>z(0)])]
= & (210 - 2200))

whereas, when a = 1, Claim 1.2 tells us:

—

@1(8) - @3(8)
= |¢]- [re(@:10) —rel@260)) + i(im[@1(6)] — im[25(0)

+ B log|g| (0, cr, _CF2>)]
_ H : [(@1(9) —®y(0)) + iBiloglé] (8, cr, —m)]

................................................. O [Claim 1.3]

Now, recall Claim 1 of Proposition 4 on page 17: For any z,y € C, if
re [z] < re[y|, then |exp(z) —exp(y)| < exp(re[y]) - |z — y|- Hence,
by Claim 1.1,

-

@ x| < exp (re(@ma®)]€]) - |21(6) - 22(8)]

Now use Claim 1.3 to substitute the appropriate expression for

() —@z(f)‘,

and Claim 1 is proved. ......coiiiiiiiiiiiiaan. O [Claim 1]
So, when a # 1, we have:
Ix1 = xally
= / ‘Xl(g) —Xz(g)‘ df
RD
o
=q) / / Ix1(7.0) — x2(r.0)| rP=1 do dr
0 Jsp-1

<o [ /SD exp (1€ [@pas (6)] - 7) - [©1(8) — Bo(8)] - 1 -+ 1 df dr
0 -1

- / @M%@MNf2@®@mwﬁmwm”WM9 (4)
SD-1 0

(1) is just changing to spherical coordinates.
(2) follows from Claim 1.

But for any § € SP~1,

/ exp (re [®yan(0)] - 72) - rOHo=1 dp
0
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1 * D+a—1
- - (0)]|1+D/a/0 exp (—s®) - sPTe 1 gs
max
1

- v (@ (0] 707 - Cas (B)

where we make the substitution:
s = |re[@mar(0)]r
thus, dr = |re[®pmaz(0)]| /% ds
Thus, substituting (B) into (A), we get:

21(6) = B200)
<

Ix: = xall; < :
D=1 |re [Bynqz ()] T/

o

where @,,,,(0) € {®1(0),P2(0)} is chosen at each § € SP~! so as to

maximize re [®,,,;] —or, equivalently, since re [®;] < 0 for &k = 1,2, we
can say that @4, is chosen to minimize |re [®;,.;]|- But by equation

(3.2) , for all § € SP~L,

re[®,u]0)] 2 K,

|@1(6) — D2(0)]
§D-1 }C1—|—D/a

' H((bl B Qz)‘SD_I 1

do

hence, |x1—x2ll; < Cao-

Co
]Cl—l—D/a

This proves the theorem when « # 1.

When o =1, use Claim 1 to get:

llx1 — xz2ll;

—

= [ @ -x@)| &
=) /000 /SD1 X1(r-0) — x2(r.0)| TP~ df dr

<@) /Ooo /SD_lexp (re [@rmaz()]r) - 7 -
[121(0) — ©2(0)] + |By - log(r)] |er, — ery|| dorPdr

= /SDl |®1(0) — ®2(0)] (/000 exp (re @,z (0)]7) - 7P dr) do
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b [ 1B ey = el ([ exp (e @nac @) 17 g ar ) ao

=@ ICD‘H H ~ @) ISPl

w18 ey = enal- [ ([ o (e Bnas @) 12 hog(r)] ) ap.

(1) is again a change to spherical coordinates.
(2) By Claim 1.

(3) follows exactly as in the a # 1 case.

Now, for fixed 6, let P = |re[®nq.(0)],
and r = P ls.
Thus, dr = P 'ds,
and |log(r)] = [log(s)—log(P)|.

(e o]
Thus, / exp (—=Pr) - P - [log(r)| dr
0 . ~ i
= m/ﬂ exp (—s) - s” - log(s)—log(P)‘ ds

1 [ |log(P)[ [
< W/O exp (—s) - sP - [log(s)| ds + PO /0 exp (—s) - sP ds

£ log (P)|
~—  pD+l + pD+1 G

g |log(P)|
<q) KD+1 + pD+1 ¢

£ 1 [log(K)]|
=) go-1 * Cl'ma”‘{e-(nﬂ)’ [
=  F(K).

(1) Recall that P =
any 6.

(2) Let f(z) = BE. Then f'(z) = Lol — 0 when z = e!/(P+1),
and f takes a maximum at this point. Thus, for any P > 1, we have

FP) > 0. so that [f(P)] = f(P) < f( 1/D+1)) = e(Dli+1)' On

re [q)mm(ﬁ)]‘. Thus, by equation (3.2), £ < P for
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the other hand, if P < 1, but K < P, then 0 > f(P) > f(K), therefore
|f(P)| < f(K)].

Hence,
il ler, —enil [ ([ e (re @ @) log)] ar ) a9

Byl - fer, —ers) / F(K) ds
sD-1

F(K) - |Bi||er, —cr,| - Area [SD_l]
< F(K) - By - IT1 = Tl g, - A

INA

var

3.2.3 Convergence of the Log-Fourier Transform

We now have explicit bounds on the L distance between the Fourier Trans-
forms x; and xo, in terms of the distance between log-Fourier transforms
®; and ®5. Now we seek bounds on this distance, in turn, in terms of the
distance between spectral measures I'; and T's.

Lemma 9: Let a € [0,2), and, for any 5 € RP, let Ng be defined as
before. Then

(+1Ba e is a1
e = g (e fomel]) o o
For any p € [L, o0, ‘775 - { (14 Bal) Ham/p if a#l
P H(1+‘Bllog‘ﬂ)-¢41/p if a=1
where A is the surface area of the (D — 1)-sphere.
Proof: The bounds in LP follow immediately from the L* bounds, so

we will prove these.

Case (o # 1): For any s € SP~1,
)] < Jd" + e

@ < |(Es)
g = a+sl

_|_

|Bal
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Case (o = 1): For any s € SP~1

(és}m‘ < |8 + 1Bl

GOl (GO

ﬂlogm. |

|B1]

Lemma 10: Let a € [0,2), and let x,® : R® — C be the Fourier
transform and log-Fourier transform, respectively, of an a-stable probability
distribution p, with spectral measure ', and let K = K(p).

-

For every £ e RP, re [Q)( )] < —K- €

Proof:  Let g be as previously defined. If 5 ERP let § = %, and note
that, for any s € SP~1, re [775(5)] = ‘f‘a re [ny(s)].
- -
Thus re [@( )] —ay |€] re[@(0)],
-
= [§] log|x(0)|
-
< [§]  max log|x(s)
-
- 4.
(1) By Claim 1.1 of Proposition 8 on page 20. O

One way to make the Fourier transforms of p; and py close is to make
I’y and T’y close relative to some norm. Which norm to use depends on the
structure of I'y and I's.

Definition 11:  Nice Measure, ||o||;,

Let T' be a measure on SP~'. We say I' is a nice measure if ' is
a sum of a “purely atomic” component, and a component absolutely
continuous with respect to Lebesgue measure. Formally:

' = g-L% + Z’Yaéaa
achA

where g € L (SP~1, %), where A C SP~! is some finite set, and where
{7a; a € A} are real numbers.
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IfT is a nice measure, then for any q € [1,00], we can define the
[g]-norm of T':

Il = A7 -llgll, + > |7al-
acA
where p € [1,00] is chosen so that %4— % =1, and A = Area [SD—I] (if
p = o0, we formally define Al — 1).

Remark 12:

o Notice that ||T'[|;;; = [[T|

var*

e If I'1 and I'y are both nice measures, then so is I'y — I's. Indeed,

suppose that, for ¥ = 1,2, Ty = g - L + Z Vk,ala, Where
achy

g1,92 € LY(SP~L ), where A, C SP~! are finite sets, and where

{Vk,a; @ € Ay} are real values. If we define A = A; U Ay, then we can

write [y = g - L% + Z’yk,aéa, where we simply define ;o = 0 for

acA
alla € A\ Ag. Then

Iy —Ty=(g1—g2) L% + Y (71,0~ V2a) da-
acA

e In this case, for any g € [1, oo,

Ty = Tolly =AY - llg1 = g2ll, + Y Ia—"2al
acA

Proposition 13: (Convergence of Spectral Measure: Consequences)
Let pi and py be a-stable probability measures on RP, with spectral
measures I'1 and 'y, and characteristic functions x1 and 2, respectively.

Let A = Area[SP7!],

D 14 |By| if a#1
@ 1 if a=1

and K = min{/C(Pl)a }C(pQ)},

and let Cy, £, and F(K) be defined the same as in Proposition 8 on page 20.
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1. First supposeI'; and I'y are arbitrary measures. Then:

1+ |Ba
() a1, then i — ol < LDy gy
If a =1, then
1—[Bi|log(K) [Bi] 4
_ 2 =1y,
o —xalle < (2L BUEY ey
CoAD
() Ta# 1, then [ —xoll; < AP |0y~ Tyl

If a =1, then

D
I =xall < A- |k + 181l ()] - IT) = Tall

2. Next suppose that I'1 and 'y are nice measures, with I'y = g - L% +
Z Yk a0a, where g1, go € L1(SP~1, L), where A C SP~! is some finite

acA
set, and where {7y, ; a € A} are nonnegative values (some possibly

zero). Then for any p € [1, 0]

(1+[Bal)

If 1, th —
(a) Ifa # 1, then ||x1 — x2lloo < Ke

If a =1, then

“|IT1 = Tl

1—|Bi|log(K) | |Bi| 4
X1 = x2lloe < ( e K T2 [Ty = T2l -

CaAD,
K1+D/e

(b) If @ # 1, then [x1 — x2ll; <
If a =1, then

[Ty = Tally-

CiD
I —xell; < A [W ITy = Tallyy + [Bi] - F(K) - [Ty — Tl |

Proof: Let ®; and ®, be the log-Fourier transforms of p; and ps.
Claim 1: For any EE RP,

(L+1Ba) €] if az1

&1 () — @2(6)| < [Ty —Tallyg, - 8 (1+ [Brtogel]) i a=1
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= (1) = (1)
= K”s’rl r)|

< |T1 Lol

var

<1y IT1=Tallyg { ‘

Here, inequality (1) follows from Lemma 9 on page 26. O [Claim 1]

Claim 2: IfT'; and I'y are nice, as described in Part 2 of the theorem,
then, for any ¢ € RP,

oo < s { ) 2

Proof: When a #1,

18 - 28| = (ng,rl )
< < >‘ + ~(a)‘ *[Yas1 — Va2l
acA
< Al llgr — Al Yan — Ya:
=(1) 3 » ||gl 92||q €l oo |'7a,1 'Ya,2|

<) L+ 1Ba) AP & g1 - gall,
L+ 1Ba) [€] 3" 1rra =22l

acA
= (1+|Bal) [-Al/p “llgr — 92||q + Z 71,2 — 72,4l
achA
= (1+Bal) ITs = Tallyy - ¢]

e (1) is Holder’s inequality.
e (2) follows from Lemma 9 on page 26.

When a = 1, the proof follows in the same way. ...... O [Claim 2]

(+1Ba) €] if az1
ﬂ(1+‘3110g‘ﬂ) if a=1

[1er
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Proof of Part 1(a): When a # 1, apply Part 1 of Proposition 4 on
page 17, with

Ch = K, (By Lemma 10 on page 27)
and C; = [T —T2l,, (14+(Bal), (by Claim 1)
C 1+ |B
to conclude: |[|x1 — X2l < ﬁ = % IT1 — T2l yar -

To prove Part 1(a) when o = 1, apply Part 2 of Proposition 4 on
page 17, with

Co = K, (By Lemma 10 on page 27)
Ci = T —Tallyg
and Co = |[Bi|-||T1 — ol 0 (by Claim 1)
Cy — Cylog(Cy) Cy 4
t Iude: — Z =
o conclude: |x1 —xoll, < o Co + Co &2

1—|Bi|log(K) |Bi]| 4
= = |-|I't—T .
( e K + K 2 || 1 2||var

Proof of Part 2(a): When a # 1, again apply Proposition 4 on page 17,
now with

Ch = K (By Lemma 10 on page 27)
and C; = [Ty =Tl (14 |Bal) (by Claim 2)
C 1+ |B
to conclude: [[x1 — X2/l < ﬁ = % [Ty = Lol -

To prove Part 2(a) when o = 1, apply Part 2 of Proposition 4 on
page 17, with

C = K, By Lemma 10 on page 27
Ci = [Ty —Tall,
and CQ = |Bl| . ||P1 — PQHM, (by Claim 2)
01 - 02 log(Co) 02 4
to conclude ||x1 — X2/l o C + G
_ (1= |Bi[log(K) | [Bi] 4
- ( ek Tk e) T Tely

Proof of Part 1(b): We use Proposition 8 on page 20. By applying
Claim 1 with ‘5‘ =1, we have:

14 |By| if a#1

H(q)l_cpz)'SD,l < ||P1—F2||W'{ 1 if a=1
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= [[T1 = T2||ygr - Pa-

therefore, H(cbl—@g)‘SD_l < Py = Tl A De

var

Thus, when « # 1, Proposition 8 on page 20 says:

Ca
Ix1— x2ll; < KiiDa H(qh — ®3) 51 X
C
B K1+%/a T = P2||11a7" - A-Daq.

When a = 1, Proposition 8 on page 20 says:

i =l < i [ = @2)gons]| + 1B F () - Ty T,
C
= o7 0 = Tallygy - A-Dio 4 A-[Bi] - F(O) - 01 = Dol
1D
— A (R B F00) P - Tl

Proof of Part 2(b): Again we’ll use Proposition 8 on page 20. By
applying Claim 2 with ‘E‘ =1, we again have:

|@: = @2)50-1

o < IPi=Tzlg Do,
both when o # 1 and when o = 1. Thus,

H(q)l B (PQ)‘SD_l 1

< A ||P1 —F2||[q] 'Da.

When a # 1, Proposition 8 on page 20 says:

Ca
Ix1 —xz2l; < Ki+D/a H(‘IH — ®9) 501 .
C
< ,CTC;)/Q + A1 = T2l - Da-

When a = 1, Proposition 8 on page 20 says:

C

b=l < g [(@0— @2)gnar]|, + AIBil - F(K) - 71 =Tl
C

< oy AT =Tally Dy + AlBi - F(K) - [Ty = Tal,,

O
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Corollary 14: Let a € [0,2), and, for k = 1,2, let p be stable prob-
ability measures on RP with density functions Fy : RP — [0,00) and
spectral measures T'y. Let K = min{K(p1),K(p2)} where K(py) is as in
equation (3.1) on page 19. Then there is a constant G, (K) > 0 so that

L |[F1 — Bl < Ga(K) [T — Ty

var”’

2. IfT'1,Ty are nice measures and « # 1, then, for any p € [1,00],

[F1 = Follog < Ga(K) - |IT1 = T2, -

CoADy . C1AD
Proof: Set Go(K) = 75, ifa#1, and Gi(K) = ﬁﬂlﬂ-
F(K).

Apply Part 1(b) and Part 2(b) of Theorem 13 on page 28 to translate
bounds ||I'; — I'g||, (for * = [p] or var) into bounds on ||x; — x2l|;, where
Xk is the characteristic function of px. Then use Part 1 of Lemma 3 on
page 16 to translate these into boundson ||F} — F| . — [

Corollary 15: Suppose a € [0,2), and that [pg|32,] is a sequence of
a-stable probability measures on RP, with density functions [Fr|32,] and
spectral measures [['y|?°,]. Let po, be some other a-stable measure with
density Fy, and spectral measure I'o,. Suppose that klg[rll irg] K(px) > 0.

If: (kILIEO||Fk_P°°||var = 0)

or: (a;é 1 and lim ||[I'y — Lol = 0, for somep € [1,00]),
k—o0

then, for every q € [1,00], | Fy — FOOHq = 0.

lim
k—00

Proof:  This follows from the previous Corollary, and from Part 2 of
Lemma 3 on page 16. O
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3.3 Spectral Approximation by Atoms

Now suppose that I'; is an arbitrary measure on SP~!, and I'y is some
“approximation” of I'1 by a sum of atoms. From a computational point of
view, it would be very convenient to approximate I'y in this fashion. Of
course, we can approximate I'y as closely as we like in the weak* topology
with atoms; hence, we can apply the results of §3.1. However, ['s will still
probably be very far from I'; in total variation norm. For example, if 'y
is absolutely continuous with respect to the Lebesgue measure [, then
the total variation distance between I'y and Ty will always be ||T'y|| + ||T2||-
Thus, we cannot apply the results of §3.2. However, the kernels 1z which we
are integrating against ['; are very “smooth”, so this does not matter too
much.

Lemma 16: Let g be defined as on page 19, and let s,u € SP~L
Then

‘775(5) - ng(u)‘ < Aq (E s — u)
Where,

ifa>1, then A, (5 s—u) a1+ |Bal) ‘ﬂ“\s—u\;

o |s—u|2 (a—1)/2
o (1+|Bal) [¢] (1— - ) Js — ul;

if « <1, then A, (E, s—u)

Proof:
Claim 1: Suppose a # 1,2. Then for any § € SP~1,

Vnelo) = ((s )" + B, (s“,e}\“_li)-f

Proof: First note that, fa(ﬂﬂ) |z|%, and go(z) = z{®), then
fo(x) = g(a—1), while ga T) = f(a—1)- For any d € [1..D], apply the
Chain Rule to n§ ( o ) + i Baga (<§7, °>) to get:

ound®) = a(€0)" (2 (8e)) 0)

+ Baa|(€6) i(au(8e)) @
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-« ((E,e><a_1) + B, <E, 0> a_li) £

SO,if €y = (O,...,O,l,...,O),

then Vng(H) = Z@d 775(9) €4
JEON) e
a—1 N

i) ¥

..................................................... O [Claim 1]

If s and u are close together, then by the Mean Value Theorem
ng(s) —ng(n) = Vng(Z) - (s —u)

for some Z on the line segment between u and s. But by Claim 1,
_' - 07
V(@] < o \(f,x> (1+|Bal) - €]
aldl"™ e 1+ 1) [

IN

Case (o > 1): In this case, a — 1 > 0, and |Z| < 1 so we can conclude

that |Z|*~" < 1, and thus, get |Vne(Z)| < a‘f‘ (1+1|Bal) - ‘E‘

Case (@ < 1): Now a—1 < 0, so things are more complicated; instead
of bounding |Z| above, we must must bound it below. By construction,
Z=As+ (1 — A)u for some A € [0,1]; and |u| =1 = |s|. Thus, |Z| takes
on the minimum value when A = 1/2. Hence, |Z] > |s + u| /2. Now apply
the Parallelogram Law ([33], Theorem 2.3):

s+u’+ls—u? = 2js?+2[u]® =

Thus, |2-Z|* > |s+u|> = 4—|s —ul?, so we conclude that

1/2 —1)/2
B} s—u)” s—u?)
|Z] > [1-— 1 , and thus, |Z| < |1- 1 .

a
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Theorem 17: (Approzimation by Atoms)

Suppose o # 1. Let T'; be a measure on SP~!. Let 1 > ¢ > 0, and sup-
pose that A C SP~1 is a finite set, and suppose that {Z/{a cSP-l:ac A} is
a partition of SP~! into disjoint measurable subsets, so that, for all a € A,

® acU,,

o Foralluel,, |u—al<e

Let T'y be the discrete measure defined: Ty = Z Ty [Ua] - d0a, and sup-

achA
pose that x1 and xo are the Fourier Transforms of the a-stable probability

measures on RP induced by I'y and T's, respectively. Then:

1T ]
1 Ix1 — x2llee < Coe - Fo - €.
IT1]| CaA
2. ||X1_X2||1 < }CTD;“O['J:Q'E
where |T4| = Ty [SP7,
A = Area [SD_l] ,
Co is as in Proposition 8 on page 20,

K = K(p1), (Definition 6 on page 19)
a(l+]Bs|) if a>1

d where F, =
and Waere Ja {a(1+|zs’a|)(g)1/2 if a<l1

Proof: Let ®; and @9 be the log-Fourier transforms associated to I'y
and T'y, respectively.

Claim 1: For any £ € RP, ‘@1(5) —@2(5)‘ < Fore: ‘ﬂa I

Proof: Let a € A. Then

| metw arsgul — [ ngtw v

= ‘/u ng(u) dI‘l[u] - I [ua] '775(3)

|, (retw = ng) arifu
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<

|, Inew = e

dP1 [u]

< /u Ao, u—a) dTy[u]

where (1) follows from Lemma 16 on page 34. But, when o > 1,

Ao(€, u—a) dl'[u]

Ua

/ aF,
Ua

aF,

IN

aF,

e

while, when a < 1, if u € U,, then

Ag(€, u—a)

Hence, /
Ua

Thus,

a(1+[Bal)

IA

a(1+[Bal)

IA

a(1+[Bal)

a (1 +|Bal)

a(1+[Bal)
{‘a

Aq(€, u—a) dl'y[u]

fa.e.

[, mew aniul = [ araful

D

acA

/ UCEATEDS

achA

ﬂa lu—a| dT;[u]

ﬂa/ae dT [u]

I [ua] 3

| netw drfu

37
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< 3|/ new dril = [ o) avial
< Zfa-e‘ﬂaf‘l[ua]

acA
= Fo-eld Imul.

..................................................... O [Claim 1]

The prove Part 1, use Proposition 4 on page 17, with C; = F, - € - ||T'{]]
as in Claim 1, and with Cy = K, as given by Lemma 10 on page 27.

To prove Part 2, use Proposition 8 on page 20. By applying Claim 1
with H = 1, we have:

(@1 = @2)g0-1

and thus, H(q)l — @2)|SD,1 .

< |IPull Fo - €

o

< |ITy|| AFy - €.

Remark 18: The set A of atoms in the previous theorem must be

e-dense in SP~1. To do this will require a the set A to have a cardinality
greater than:
1/2 (D-1
2/ (%5 )'.GI—D
5 .
(7 -1
Proof: If € is small, then an e-sized “disk” on the surface of SP~1 is

approximately flat, so its surface area is approximately the (D —1)-volume
of a (D — 1)-sphere of radius ¢; by [48], p. 76, this is

(D=1)/2 P
D—1
(%!
(here, for any real 7 € R, 7! =I'(r+1) is the I'-function of ; we are using

the notation “r!” to avoid confusion with the prior use of I" as a spectral
measure.)

-1

27 D/2

Meanwhile, the surface area of SP~1 is m.
7 - -
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Hence, the minimum number of e-disks necessary to cover SP~1 is
1/2 (D=1
2!/ ( 5 )!
D
(7 - 1)!

D

This is in fact a very crude lower bound, because it assumes a “perfect”
packing of SP~! by disks, which is of course impossible. The actual cardi-
nality of A will probably be several times this amount. However, it will be
proportional to NP~1,

Theorem 17 is somewhat inconvenient, since it requires one to evaluate I’
on subsets of SP~! before one can build an approximation, thereby “putting
the cart before the horse”. However, when the spectral measure is absolutely
continuous, and its Radon-Nikodym derivative is Lipschitz, there is a more
convenient weak* atomic approximation we can use.

Lemma 19: Suppose I' is a measure on SP~1. For all N € N, let
An C SP~! be a finite subset, and, for k= 0,1, and all N € N, Iet

FEcN] = Z ’Yk,ada

aEAN

be a discrete measure, with v o € R, for all a € Ay . Suppose that there is
some C' > 0 so that, for all N € N and all a € Ay,

C

a a < A4 A T
|70, M, | N -Cou [AN]

Then: (wk*—lim Yl = r) = (wk*— lim TtV = r).
N—o0 N—oo

Proof: Let f: SP~! — C be continuous, with |f|,, = M. Then for
large enough N,

) E) - » H1 = a)Y0,a — a)V1,a
(5, T8) = (5, 1) > f@ > f@)

aEAN aEAN

< Z [f@)] - oa— 7.l

aEAN
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C
= ZM'N-GM[AN]

aEAN
M-C
— Al Y
Coa [An ] N -G [An]
< M-C
- N
5= O

Thus, for every continuous function,

lim <f, I‘[IN]> = Tim <f, rgN]> = (f, T).

n—oo

Definition 20: Mesh Sequence

A mesh sequence in SP~! is sequence of finite subsets {Ay C SP~1; N € N},
accompanied by a collection of measurable sets {U, ; a € Ay} for each
N €N, and a constant C > 0 so that, for all N,

1. Cu[AN] < C-NDP-!
2. Ay is (C/N)-dense in SP~1.
3. For alla € Ay,
(a) For allu € U,, dist[a,u] < C/N.
(b) L [Us) < A/NP~! (where A = Area[SP1].
4. 877 = || tha

acAy

Lemma 21: For every D > 2, a mesh sequence exists on SP~1.

Proof: Let I” = [~1,1] x ... x [-1,1], and let J = OIP. There is a
natural projection ¢ : J] — SP-1 where d(x) = ﬁ

¢ is clearly a bijective contraction mapping. Thus, a mesh sequence de-
fined on J will clearly project to a mesh sequence on SP~1. To define a
mesh sequence on J, simply represent J as a union of 2D distinct cubes
of dimension D — 1 and edge length 2; defining a mesh sequence on each
of these is straightforward. O
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Proposition 22: (Approzimation by Atoms for Lipschitz Measures)

Suppose a # 1. Suppose I' is absolutely continuous with respect to
Lebesgue measure, with dI' = g dL, and suppose that g is a Lipschitz
function. Let [{AN csSP1: Ne N} i {Ua; a€ Ay, N € N} ; C] deter-
mine a mesh sequence on S©~

Let F[lN] = Z Yi,a0a, where,Va€ A, via = g(a)- - L9[Ua).

acAy
Then wk*— hm P[N] = T.

Proof: Define I‘E [ Z Y0,a0a, where v9a = T'[Ua]. Thus,
aclAy
wk*—lim TIV = T.
N—oo

Claim 1: There is a constant ¢ > 0 so that, for any N € N and

ac AN,
Noa —T1al < ¢
Y™ Ta N - G [AN]

Proof: Since g is Lipschitz, there is some constant L > 0 so that, for
any close enough x,y € SP~1 g(x) —g(y) < L-dist[x,y]. Thus,

va—val = [g(a) L% [Ua] — T [Ua|
= | s@ acotu - [ gw) aceu
= | 5@~ 8w oo
< [ le@ - g dcvf
<u) uaL-dist [a,u] dCo [u]
<w [ oo
_ LNC o]
=@3) %4
=(4) m-

(1) By the Lipschitz condition.



42 CHAPTER 3. ERROR PROPAGATION: T — p

(2) By mesh sequence condition 3(a).
(3) By mesh sequence condition 3(b).
(4) Where Cu [Ax] < C - NP~! by mesh sequence condition 1, and
where c:= L-C?- A oot O [Claim 1]

Now apply Lemma, 19. O

Prior Research: A different approach to the problem of approximating a
spectral measure by atoms is developed in [174]. The authors show how, for
any uniform e error bound on the probability density function, it is possi-
ble to approximate the spectral measure of an arbitrary multivariate stable
distribution by a finite sum of atoms so as to satisfy this error bound. They
prove the same result if we now measure the uniform error when treating
the probability measure and its approximation as functionals on the space
of Borel subsets of RP. These results are then utilized in [79], where the
authors develop a method for simulation of multivariate stable random vari-
ables similar to that described in Appendix B.5; they use the results of
[174] to bound the error of this simulation method.



Chapter 4

The Spherical
Log-Characteristic Function

4.1 Preliminaries

Let X be a D—dimensional a—stable random vector, and assume for sim-
plicity that X has mean zero, so that we have log-characteristic function:

dx(§) = — /SD_I <‘<és>‘a+3a<§:s><a>i) dl'[s]

For any E € RP, let 0 := ﬁ be the unit vector pointing in the same

direction as E We can then rewrite the log-characteristic function:

—

ax@ = — [d [ (.90 +Bat0.91) ar
- o0
where g : SP~! — C is defined:
g0) = [, (1080 +5.0.91) arfs
If we define:  np(s) = |(0,s)|* + Ba (6,5)( i
then we can rewrite this: g(f) = / ne(s) dI'[s].
§D-1

43
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Abusing notation, we might write, “g(f) = 17 xI'(f)”, where 7 :
SP=1 — C is defined:

n(s) = |(e1,s)|* + Bq (e1,8){ i

If D=2or D =4, then SP~! is a topological group [179], and this “convo-
lution” can be interpreted literally, via the formula:

n+T(0) = /S _n(es7") drfs

In other dimensions, however, S~ is not a topological group [6], and there-
fore, “convolution” per se is not well-defined. We can still conceive of g as
a “convolution”; in order to do so, however, we must think of SP~! as
a homogeneous manifold under the action of SOP [R], and “pull back” T,
g, and 7 to measures and functions on SOP [R], where we can apply the
methods of nonabelian harmonic analysis. This is dealt with in more detail
in chapters 5 and 6.

g is really just the restriction to SP~! of the log-characteristic func-
tion of the distribution. Thus, we will refer to g as the spherical log-
characteristic function, or SLCF.

4.2 Properties of the SLCF

Clearly, I' completely determines g. The converse is also true: g completely
describes the characteristic function of X, and thus, the probability distri-
bution of X, and which is associated to a unique spectral measure. Thus, in
principal, I" and g provide equal information about the structural properties
of the multivariate distribution (ie. correlation, symmetries, etc.). However,
because of the very “smoothing” nature of the transformation I' — g, the
information in g is displayed in a more subtle form.
For example, the following facts are not hard to verify:

e g detects whether X is sub-Gaussian (see Example 81 on page 147).
I' is uniformly distributed on SP~! if and only if g is constant.

e Suppose that X = 01X e1 + 09Xge2 + ... + opXpep is a sum of
independent, symmetric, a—stable random variables in separate di-
mensions, so that

D s

d

D=2 5 (es+3cen)-

=1
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Then for all @ € SP~1,  g@) = |0, where |||, is the special
¢%—norm on RP defined:

D 1/a
||£17 R 7£D||a' = (Z Oq 53)
d=1

4.3 Smoothness of the SLCF

Although T" may be highly singular, g is quite “smooth”, since it is the result
of “convolving” I' with a very smooth function.

In the case when D = 2, we can take advantage of the compact abelian
group structure of S!, and characterize this smoothness by comparing the
Fourier series of g and T

Proposition 23: Suppose X is an a-stable random vector in R?, with
spectral measure I' on SY, and Iet g : S' — C be the SLCF. Then, for all
n€Z, 8 = iy, where'

n(0) = |cos(8)|* + B, cos(0){¥i
As |n| — o0, || — 0 exponentially.

Proof: It is easy to verify that g = 7 *I['. The multiplication formula
follows from elementary harmonic analysis [84],[48],[33]. The Fourier co-
efficients of 7 decay exponentially because 7 is analytic (see [84], Section
1.4, p.26). 0

Another way to to characterize the “smoothing” nature of the transfor-
mation I' — g is to observe that, whereas I' is an arbitrary measure, g is a
continuous function on the sphere. Indeed, if & > 1, then g is even Lipschitz.

Proposition 24: Suppose X is an a-stable random vector in R” | with
spectral measure T on SP~1. Let G :=T [SD_I], and let g : SP~1 — C be
the SLCF.

For any « € (0,2), the function g is continuous, in a manner depending
only on the values of & and G (and not on the structure of T'). To be specific:

'Here, ., %, and T, are the nth Fourier coefficients of g, n and T respectively, for

2m
n € Z. For example, g, = / g(0)e "% d6, where we identify S* = [0, 27) in the obvious
0

way.
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1. If @« < 1, then there is a function 6, : [0,00) — [0,00) so that, for
any e, if 61,09 € SP~! are within 6,(¢), then |g(61) —g(62)] <G -e.

2. If a > 1, g is (locally) Lipschitz?: for any 0,0, € SP—1, sufficiently
close together,

g8(01) —g(02)] < Co-G-|01 — 02 +O(|01 — 65 (4.1)
where Co = a - (1+ B,).

Proof:
Proof of Part 2:  Suppose a > 1.

Claim 1: If 6, and 6, are sufficiently close, then ||ng, —ng,|l,, <
Cq |61 — 62].

Proof: Let s € SP~1. Notice that

01,80 = [(62,8)]| <q) | (615) = (62.5)

= ‘(91 —92,5)‘
< 01— 0o - s
= |61 — 69

(1) follows from the fact that, for any z and y, ||z| — |y|| < |z —y|.

Let f(z) := |z|%, so that f'(z) = a-2* !. Thus, for small h, f(z+h)—
f@) = f'(2)-h+O(h?) = a-z*~'h+O(h?); hence |f(z+h)—f(z)| <
a - |z|* k| + O(h?). Thus,

Ire [ng, (s) —me.(8)]| = [f({01,8)) — f ({62,8))]
< a-|(0,8)| 10— 0| + O (|91 —92|2)
<@ a-61—06|+0 (|91 - 92I2)

(1) 61,8 € SP~1 so |(61,s)| < 1, and thus, |(61,s)|* ' < 1, because
a>1.

*Equation (4.1) is only a local Lipschitz property, yielding a linear bound on
|g(61) — g(02)| for 61,602 close together. For our purposes in the proof of Proposition
25, this is sufficient. Actually, since S?~! is compact, (4.1) is equivalent to the usual
Lipschitz condition, albeit with a constant larger than C,.
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By a similar argument, we have:

[im[ng, (s) —mg,(s)]] < a-Bal0r—62|+0O (|91 — 02|2)

Thus, |ng, (s) —ne,(s)| = |[re[ng, (s) —ne,(s)]| + |[im [ng, (s) — 7o, (s)]|
< a-(1+By) |0 — 6| + O (|91 - 92|2) .

.................................................... O [Claim 1]

/ng (19, (S) — 79, (s)) dL's]

s/'n%—%Mdm]
§D-1

< TSP Y- Cy- (01— o] + O (|01 - 92|2) by Claim 1.

Proof of Part 1: The proof is similar to that of Part 2.
Claim 2: For any € > 0, there is a d,(€) > 0 so that, if 6; and 0y are
within 6q(€), then |ng, —ne,| < €.

SD_1

Proof:  The function 7 : x SP=1 — C is uniformly continuous.

O [Claim 2]

The proof now proceeds as before: if 6; and 6, are within ¢, (€), then

AN

500 —£@) < [l —mll, 08

< T[SP7!].¢ by Claim 2.

4.4 Estimating the SLCF from Empirical data

Suppose that X1,...,Xy are N independent samples of the random vector
X. Let § € SP~!, and Suppose we estimate x(6) with the empirical value

xn(0) = %Zexp(?wi(Xmﬁ)) (4.2)

n=1
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We can then estimate g(#) by the value gn(0) = log(xn(6)). If we
do this for each 6 in some suitably fine “mesh” on SP~! then, since g is
relatively “smooth”, we can linearly interpolate the values of g between these
mesh points, to get a good empirical estimate of g everywhere on SP~1. Call
this empirical estimator gy.

Suppose €,k > 0, and we want |gn — g||, < €, with a probability greater
than 1 — k. How big must N be?

Proposition 25: Let X be a random vector in RP , with spectral mea-
sure T, and let G = T[SP~!]. Let x be the characteristic function of X, and

let m > 0 be such that min |x(6)] > —.3
fesP-1 m

Let X1, X3, X3, ..., bea collection of independent random samples drawn
from X.
Let {01,...,0;} c SP~L. Fix N € N, and, for each j € [1..J], define
1 X
gn(0;) = log [N Zlexp (27 (X, 6;)) (4.3)
n=

and then define gy : SP~1 — C to be peicewise constant: for any
s €SP~ gn(s) = gn(0;), where 0; is the element of © closest to s.
Let e < %m\@ and let k > 0 be “small”.

40m? 4
1. IfN > OT log [?J] then with probability greater than 1 — k:
€
. €
Vi€ l.Jl len () —8(0;) <5 (4.4)
2. Define ¢
5G O ifa>1
T = ,
€
- ) <
Oa <2G) ifa<l1
where 6, : [0,00) —> [0,00) and C, are as in Proposition 24 on
page 45.

If (4.4) holds, and {61, ...,0,} is Y-dense in SP~, then ||gn — g||, <
€.

3Since x is everywhere nonzero, and SP~! is compact, we can always find such an
m > 0.
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3. To get such an Y-dense set will require J ~ O [TI_D] mesh points.

4. To estimate g with a uniform accuracy of e everywhere on SP~!, with
confidence greater than 1 — k, it suffices to have a sample of size

4Om2 2D—|—1GD710D71 b
o 1 = if 1
[ 2 og( D1 ) 1 a>
N > -
40m? 4
o |2n log< Dl) if a<1
€ ) (L) -
k0o \3q |
Proof:
1 1
Proof of Part 1: =~ We assume that |x(6;)| > —. Recall that, if z > —,
m m

d . o .
then — log(z) < m. Thus, the error in the estimation of log(z) is always
smaller than m times the error in the estimation of z.

Thus, the problem of estimating ®x(6;) with accuracy % is reduced to

the problem of estimating x(6#;) with accuracy 2i Since it ranges over
m
the unit circle, the random variable exp (27i (X, #)) has variance less than
2
2 always. Thus, the random variable xn(6;) has variance less than N

and mean x(6;), and has magnitude bounded by 1/N. At this point, we
employ:

Bernstein’s Inequality*: Ifyi,...,yny are independent real random
N

variables with range [—R, R] and zero mean, and Y y := Z ¥n has vari-
n=1

-T2
ance o, then for any T > 0, Puw [[Yn|>T] < 2-exp {ﬁ]

O[175]

~ _ 1 ~ 1 e ~ ~ _ .
In our case, y, = wre[Xs] or xim[xy,], where x, = exp (27i (X,,0)).
Thus, R = %, o= %, T= ﬁ’ and the theorem says

2
- (55) 2
€ 2my/2 —N-e
P 0,) —x(0)]] > ——| < 2.exp|—22) | .
| Ire e (65) = x(09)] 2mﬁ] = Bee )|\ T e e"P(5.8m2>
—N - € .
= 2.exp (740-7112)’ (since € < 3m/2)

1d like to thank Keith Knight for suggesting this use of Bernstein’s Inequality.
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and likewise for im [xn(6;) — x(6;)]. Thus,
€ J €
Po (3 € [LJ], hov(8) —x(6))] > 5| < > P [ (6) = x(6 <)l > 5]
j:

—N -2

Hence, if we want the probability of failure to be less than x, then it
—40m? 40m? 4
suffices to have N > 672m log [%] = e—gnlog [—]

Proof of Part 2: Let s € SP~! be arbitrary, and find an element 0;
so that dist [s,0;] < Y. If @ > 1 (resp. o < 1), apply the local Lipschitz
property (resp. continuity) of g described by Proposition 24 to conclude

€
that |g(s) — g(6;)| < 3" Thus,

lg(s) —gn(s)| < lg(s) —g(6;) + Ig(6;) — gn(s)l
< 5 +186) —gn(6)]  (n(s) = gn(6) by construction)
< € (with probability > 1 — k, by Part 1).

Proof of Part 3:  This is because S’~! is (D — 1)-dimensional.
Proof of Part 4:  This follows from combining Part 1 through Part 3.
O




Chapter 5

Estimating spectral measures
via Convolutions on Spheres

In this chapter, I develop a method of recovering the spectral measure, I', of
a stable distribution from its empirical characteristic function by developing
a notion of “convolution” on spheres, and interpreting the spherical log-
characteristic function (section 4.1) as a result of convolving I with a certain
kernel. Recovering I' from g then consists of “undoing” this convolution,
which can be accomplished through a generalization to spheres of methods
from classical harmonic analysis on compact abelian groups.

5.1 Eigenspaces of the Laplacian on Homogeneous
Riemannian Manifolds (x)

[(*) The discussion of background theory given here loosely follows the theoretical
development in [171] chapter 3, section 3. The results in this section are not original,
but the proofs presented here are my own.]

Let M be a compact Riemannian manifold, and let G be a compact Lie
group acting transitively and isometrically on M. For example, consider
M = SP~1 and G = SOP [R]. In fact, for our applications, SP~! and
SOP [R)] is actually the only pair we are interested in. It is interesting that
much of the following theory can be developed in a more general setting,
but the reader may find it helpful to read “M” as “SP~1”, and “G’ as
“SOP [R]” throughout what follows.

Let £ be the canonical volume measure! induced on M by its Riemann

!see Definition 141 on page 221.

o1
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structure. For example, if M = SP~1, then £ is the usual “surface area”
measure on SP~1. M is compact, so £ is finite —assume £ is normalized
to have total mass 1. Let L2(M) = L2(M,L; C). The action of G on
M induces a linear G-action on L2(M) in the obvious way: if ¢ € L2(M)
and g € G, then g.¢ : M — C is defined: g.¢(m) = ¢(g.m).

Let C*°(M) be the space of smooth, complex-valued functions on M.
Now, L= is finite, therefore C°*°(M) is a linear subspace of L?(M) (though
not a closed subspace). G acts smoothly on M, so C*°(M) is G-invariant.
We consider the restricted action of G on C*®(M).

If A : C®(M) — C®(M) is the Laplacian operator? (relative to the
given Riemannian structure), then the A commutes with the isometric G
action: for all g € G,

Algd) = g.(00)
Let A = {A € C; —\ is an eigenvalue of A}, and for each A € A, let V) =
Va(M) = {¢ € C®(M) ; Ap = —\¢} be the corresponding eigenspace. Thus,
Vy is a G-invariant subspace.
Fix e € M, and define

Ge = {9€G; ge = e},

a compact subgroup of G. The action of G upon C*(M) restricts to an
action of G, and the spaces V) remain invariant under this new action.

Example 26: (The action of SOP [R] on SP~1)

Suppose M = SP~1 G = SO [R], and e = e; = (1,0,...,0). Then
SO” [R],, is the set of all orthogonal transformations of R fixing the
ei-axis. In other words, it is the set of all “rotations” of the remaining
(D —1) dimensions about this axis; hence, there is a natural isomorphism
SO” [R],, = SOP~! [R].

Definition 27: Zonal function

A function ( € C*°(M) is called zonal (relative to G and the fixed
point e € M) if it is invariant under the action of G.. Formally, for any
Ge -invariant subspace V.C C*°(M), define

Z,(V) == {{eV;VgeG., g( = (}

2See Definition 149 on page 225; for the concrete formulae of Laplacians on spheres of
various dimensions, see example 39 on page 62.
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Figure 5.1: A zonal function on SP~1

Example 28: (Zonal functions on SP~1)

In the case of SP~1, SOP [R], and e, the zonal elements of C*°(SP~!) are
smooth functions rotationally invariant about the e; axis. Clearly, any
such function must be of the form

((x) = Gil=1)

where (; : [—1,1] — C, and where x = (21, z2,...,Zp) is any element of
SP~1 (see Figure 5.1).

Proposition 29:

1. If V C C(M) is a nontrivial G-invariant subspace, then Z,(V) is non-
trivial.

2. If dim(Z,(V)) = 1, then V is an irreducible G-module®.
Proof:

Proof of Part 1:
Claim 1: V contains an element ¢ such that ¢(e) # 0.

Proof:  Since V is nontrivial, there is some ¢ € V which is nonzero
somewhere —say 1(z) # 0. Since G acts transitively on M, find g € G

3See Definition 152 on page 227.
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so that g.e = z. Thus, if ¢ = g¢.¢, then ¢(e) = ¥(g.e) = ¥(z) # 0.
Since V is G-invariant, ¢ € V is the element we seek. O [Claim 1]

Now, G, is a closed subgroup of the compact group G; thus, G, is com-
pact, so it has a finite Haar measure Hg . Define

¢ = [ geangls
Ge

Since H{ is finite, this integral is well-defined. Since V is a closed, G-

invariant subspace, the element ( is in V. Furthermore, since ((e) = ¢(e),

and ¢(e) # 0, we conclude that ¢ is nontrivial. Finally, note that ( is

Ge-invariant by construction —in other words, it is zonal.

Proof of Part 2:  Suppose V=V; & Vy, where V;,Vy are G-invariant.
Then by Part 1, we can construct linearly independent zonal functions
(1 € Z.(V1) and (o € Z.(V3). Since (1,{2 € Z.(V), this contradicts the
hypothesis that dim(Z.(V)) = 1. O

Since G, fixes e, the isometric action of G, on M induces a linear,
isometric action upon T, M. If ¥ € T, M is the derivative of a path ~ :
(—e,6) — M with y(0) = e, then g¢.7 is the derivative of the path (g.7) :
(—€,€) — M.

Definition 30: Rank One Action

The manifold M is of rank one (relative to G and e) if G, acts tran-
sitively on the set of unit tangent vectors T M.

For example, it is clear that SP~! is rank one, relative to SO [R] and
€1.

The following lemmas are obvious in the case of SP~!, but we include a
general proof.

Lemma 31: For all r, G, acts transitively on 0B (e,r) in M.

Proof: The Riemann structure on M allows us to define an exponential
map* exp, : T, M — M, where, for any 7 € T, M, exp,(7) = v3(1),
where 7z is the unique geodesic passing through e with derivative .

Claim 1:  The action of G commutes with the exponential map: for

any g€ Gandvde T, M, exp,(9.0) = g.exp,(?)

“see Definition 136 on page 220.
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Proof: If v : (—e,e) — M is a geodesic with y(0) = e, then for
all g € Ge, the function g.y : (—e,e) — M is also a geodesic (since
Ge acts isometrically), and g.y(0) = e (since G, fixes e). Thus, 7'(0)
and (g.7)'(0) are both in T, M, and (g.7)'(0) = g¢.[y(0)]. It follows
that, for any ¥ € Te M, g.v¢ = (4. Thus, exp.(9.7) = g5 (1) =

975(1) = g.exp (V). i O [Claim 1]

Now, note that, for any ¥ € U, dist[exp.(y7), ¢] = ||¥]|. (see Propo-
sition 137 on page 220). By the Hopf-Rinow theorem®, the exponential
map exp, : le M — M is surjective. Thus, for every R > 0, if B, [0, R]
is the ball of radius R about 0 in T, M, then

0B (e, R) = exp,[0B.[0, R]]

Now, G acts transitively on 9B, [0,1] in T, M, and thus, transitively on
0B [0, R] for every R > 0. Thus, by commuting with exp,, we conclude
that G, must act transitively on OB (e, R) in M. i

Corollary 32: If( € Z,, then ((u) is a function only of the distance
from u to e.

Proof: If ¢ is zonal (thus, Ge-invariant), then Lemma 31 on the facing
page implies ¢ must be constant on 9B (e, R) for every R > 0 —in other
words, (u) depends only on the distance between v ande. O

Proposition 33: If M is of rank one, then each eigenspace Vy of A\
is an irreducible G-module.

Proof: By Proposition 29 on page 53, it suffices to show that dim[Z,. (V) )] =
1. So, suppose that (1,{s € Z.(V),) are linearly independent. By Corol-
lary 32, ¢1(u) and (o(u) are functions only of the distance from u to e. So,
for some u € M with dist [u,e] = r, define z; := (1 (u) and z2 := (a(u),
and let ¢ := 29(; — 21(2. Thus, ( is also zonal. We aim to show that ( is
the zero function; thus, {1 and (o are just scalar multiples of one another.

Claim 1: ( is a (—\)-eigenfunctions of A.

Proof: ( is a linear combination of two elements of V}; hence, it is also
50 T PP 0O [Claim 1]

STheorem 139 on page 220.



56 CHAPTER 5. ESTIMATING T: CONVOLUTIONS ON SP-1

Now, by construction, ¢(u) = 0, and thus, ¢ = 0 on OBM (e;r). Let
€ (B (uir) i= { € C™ (B (7)) ; flon(ur) = 0. Hence,

¢ €C§° (B (u;r)). Now, for any r > 0, let A, be the smallest nontrivial el-
ement of A(B (u;r)) so that Vi yNCG® (B (u;7)) # @ —in other words, the
smallest eigenvalue of Ap(,.) admitting the Dirichlet boundary condition
J1oB(ur) = 0.

Claim 2: )\, - o0 asr — 0.

Proof: (Sketch) We'll prove this when M = R” and u = 0. In this case,
there is an isometry ¢ : z — 2z between B (0; r) and B (0; 2r), inducing
an isometry ¢, : L2(B (0; 2r)) — L2(B (0; 7)), so that f + f o ¢.
Clearly, ¢, restricts to a map from C§°(B (0; 2r)) to C§°(B (0; r)), and
for any f € Cg°(B (0; 2r)), we have A(¢.f) = 4- ¢ (Af). Thus,
every A-eigenfunction of C§° (B (0; 2r)) maps to a A-eigenfunction of
C§° (B (0; 7)) whose eigenvalue is 4 times the size. Thus, in particular,
Ar = 4+ Xop. Thus, as 7 — 0, \, increases to infinity with order 1/r2.
The general case for B (u;r) C M now follows by approximating the
manifold locally by T, M. ... .....cooiiiii... O [Claim 2]

So, fix A, and let r get small. If r is made small enough, then, by Claim
2, the Dirichlet boundary condition (gpr e,y = 0 forces the smallest
eigenvalue of A to be larger in absolute value than A, contradicting Claim
1. O

Example: (Zonal Eigenfunctions on SP~1)
Explicit formulae for the zonal eigenfunctions of the Laplacian on spheres
of various dimensions are given by Proposition 44 on page 68.

Now consider M = TP, acting transitively on itself by translation, and
equipped with the standard equivariant metric. The eigenfunctions of the
Laplacian are the periodic functions of the form En(x) = exp(27i- (n,x)),
with n € T2 2P, where x € [0,1)” and [0,1)” is identified with TP

in the obvious way. These eigenfunctions form an orthonormal basis for
L2(TP, *r5). This has the following generalization to arbitrary homoge-
neous Riemannian manifolds:

Theorem 34:

1. If \y # )Xo, then the eigenspaces Vy, and V), are orthogonal as subsets
of LZ(M).
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2. The eigenspaces of /A span L2(M). In other words: L*(M) = @ V.
AEA

N
3. Thus, if f € L2(M), and, for all N € N, we define fy := ZprVA(f),
n=1

then || fx — flly <= 0.

N—oo

4. Furthermore, if f € C*°(M), then ||fy — fll w==> 0.

o0 N—oo

Proof: For Part 1, 2 and 3, see [179], chapter 6, p. 255; or [27], Theorem
3.21, p. 156. Or treat A as an elliptic differential operator, and use [40],
§6.5, Theorem 1, p. 335. Alternately, employ the Spectral Theorem for
unbounded self-adjoint operators (see [33], chapter X, section 4, p. 319).

For Part 4, see [179], chapter 6, p. 256. O

Definition 35: FEgquivariant Function

Ifn: M x M — C, then say that n is a G-equivariant if, for all
m,n € M and g € G,

n(g-m,g.n) = n(m,n)

Since G acts isometrically and transitively on M, this is equivalent to
saying that n(x,y) is a function only of the distance dist [x,y].

Example: If the function 7(® : SP~1 x SP~1 — C is defined:

1@ x,y) = |(x¥)* + Ba-i{x,y),

then 7(® is SOP [R]-equivariant.
G-equivariant functions are interesting because we can define a sort of
convolution with them.

Definition 36: Convolution

If n is G-equivariant, ¢ : M — C, and both are L= -integrable, then
definen x ¢ : M — C by

(n+ $)(m) = /M n(m, n)g(n) A0 [n)
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For example, if T' is a spectral measure on SP~!, with Radon-Nikodym
derivative y : SP~1 — C, then n(® %~ : SP~1 — C is defined

10 = [ a@on@ aeo) = [ o) - g

gD—l

where g is the spherical log-characteristic function introduced in section 4.1
on page 43.

Recall that, in the case of TP, with the standard equivariant metric,
the eigenfunctions of the Laplacian are {En :neZP } These functions are
well-behaved under convolution: classical harmonic analysis tells us that

Y anba(x) | x| D bna®) | = D (an-bn)&a(x)

nezD nezDp neZbP

It turns out that this phenomenon generalizes to arbitrary homogeneous
Riemannian manifolds.

Proposition 37: (Convolution and FEigenfunctions)
Let M be a rank-one G-space, and let n : M x M — C be G-
equivariant. Fix A € A; there is a constant Ay € C so that, for any ¢ € V,,

nx¢ = Ax-¢.

(n+Q)(e)

To compute Ay, let ( € Z,(Vy) with ((e) # 0; then Ay := ‘®
e

Proof: Let T, : C*°(M) — C*°(M) be defined: T;(¢) =7 * ¢.

Claim 1: The operator T, commutes with the G-action: for all g € G,
Tylg-¢] = 9.1, 4.

Proof: For any m € M,
Thlg-9l(m) = [n*(g-¢)] (m)
— [ ammtgn) dowin
M

= / n(m, g~ .n")p(n') dl=[n'] (where n' :=g.n)
M
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= /M n(g.m,n’)p(n') dL=[n'] (n is G-equivariant)

= (nx¢)(g.m)

= g.(nx*¢)(m).
.................................................... O [Claim 1]

Claim 2: T, commutes with A.

Proof:  For each y € M, define ny, : M — C by ny(z) = n(y,z) =
n(z,y). Thus,

(n+$)(x) = /M n(e,y) - $ly) dCw [y
= / B(y) - ny(z) dL=[y]
M
Hence, A(n+¢)(x) = O /M¢(y)-ny<x) dc [y

- / B(y) - Any(z) dw[y) (+)
M

because A is a differential operator (see, for example [48], Theorem
2.27, p. 54).
Claim 2.1: Any(z) = Ang(y).

Proof:

Claim 2.1.1: There is some g € G so that g.x =y and g.y = x.

Proof: By the Hopf-Rinow Theorem®, there is a geodesic v :
[0,1] — M so that v(0) = z and y(1) = y. Now let z = y(1/2).
Then dist [z,z] = R = dist [y, 2] for some R > 0. Recall that
Lemma 31 on page 54 says that G, acts transitively on B (z; R).
Thus, there is some element g € G, so that g.z = y. We want to
show that also, g.y = .
Since g € G,, we know that g.z = z. Also, since G acts isometri-
cally, the geodesic v must get sent to another geodesic, g.y. But

now
gy(0) =y = ~(Q)
g7(3) = =z = 7(3)
Hence, we conclude that g.y : [0,1] — M must be the geodesic
defined

g(t) = ~(1-1)

5Theorem 139 on page 220.
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Thus,

O [Claim 2.1.1]

Let g be the element provided by this claim.
Claim 2.1.2: Ne = g-Ny
Proof: For any m € M, ny(m) = n(z,m) = n(g.x, gom) =

n(y, gm) = ny(g.m) = (g.ny)(m). ....... O [Claim 2.1.2]
Thus, Ang = Algny) = g.(Amy).
In particular, Ang(y) = g.(Omy)(y) = Amylgy) = Diy(x).

O [Claim 2.1]

Hence, we can rewrite expression () as:

/ B(y) - Aialy) dw [y
M

But M is a manifold without boundary, so A is self-adjoint, by Propo-
sition 150 on page 225. Hence,

/ $(y) - Analy) dwly] = / AY(y) - 1a(y) dOw[y]
M M

_ /M n(x,y) - Adly) dL=[y)
= nx(Ad)(z)

O [Claim 2]
It follows from Claim 2 that T, must leave invariant all eigenspaces of
A; in other words, for all A € A, V), is invariant under T5,.

But by Claim 1, the restricted map
(TW)| : V)\ — V)\

is then an isomorphism of linear G-modules. Since G acts irreducibly on
V) (by Proposition 33 on page 55), it follows from Schur’s Lemma’ that
T, must act on V) by scalar multiplication: thus, there is some Ay € C
so that, for all ¢ € V,,

Tn(¢) = Ax-¢
....in other words, n * ¢ = A, - ¢. In particular, if ( € Z,(V,), then
n*( = Ay -(; hence we must have Ay = "Zg)@) O

"Theorem 153 on page 228.
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Corollary 38: Let M be a rank-one G-space, Let {( € Z.(V)) be a
zonal eigenfunction, normalized so that |||, = 1. Define Z: M xM — C
by

Z(z,y) = Clgzy)

where g, € G is any element so that g;.e = x. Then Z is well-defined,
independent of the choice of g,, and is G-equivariant. If we then define
Py : L2 (M) — L%(M) by

Px(¢) = ((e)- (£ %)
then Py is the orthogonal projection from L?(M) onto the eigenspace
V.

Proof:
Proof of “Well Defined”: If g1,92 € G so that g;.e = go.e = z, then
91_1.92.6 = e; thus, gl_l.gg € Ge.Thus, since ( is zonal about e,
(g2 y) = Clgrt92.90 ) = Clor ')
Proof of “Equivariant”: Let z,y € M, and h € G. Note that we can
pick g(h.z) = h.gz- Thus,
Z(ha, hy) = (g5 -hy) = C(hge) " hy) = Clgz b hy)
= (o' )
= Z(z, y)

Proof of “Orthogonal Projection”: Since P, is defined by a convo-
lution integral, it is clearly a linear operator. It then suffices to show that
Py fixes V), and annihilates V/{.

If ¢ € V), then by Proposition 37 on page 58,
zvp = EL00 s, R = (24004

so it suffices to show that (Z «()(e) = 1. But:
z2+0) = [ ) dovy
- / Clgzty) - Cly) dLm[y]
M

= / C(y) - ¢(y) dL=[y] (since g. = Id)
M

= <li3
=1 (by hypothesis)
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On the other hand, if ¢ € V3, then for all z € M,
Zale) = /M Clgsty) - Bly) dowly]
- /M (6:13) () - $(y) diy]
= <g;1'§, ¢>
0

since g;l.g_“ €V, L ¢. O

5.2 Spherical Harmonics, and Harmonic Polyno-
mials on SP!

[The development of background theory given here loosely follows the theoretical
development in [171] chapter 4, section 3. Further information on spherical har-
monics can be found in chapter II of [13]; chapters 3 and 5 of [59]; chapters 7 and
8 of [96]; §11 and §12 of [168]; and also in [144, 146, 57, 2, 25, 165, 169], and [176].

Theorems with a (x) are known results, although the proofs presented here are
original. All other results are original. ]

The material developed so far suggests that identifying the eigenspaces
of the Laplacian can greatly simplify computation of (de)convolutions. We
will now apply this to convolution on spheres.

Let Agp denote the Laplacian on RP, and Agp-1 the Laplacian on SP~1,
Let RP have spherical coordinates (r,6), where r € [0,00), and 8 € SP~ 1.

Example 39: (x) (Laplacians on Spheres )

Consider the case D = 2. Endow the circle S! with the angular coordi-
nate system 6 € (0,27), so that any point on S, = S!— {(1,0)} has
coordinates

(cos(8), sin(0))
If f : SL, — C, then, relative to this coordinate system, we have:

o f
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Figure 5.2: S%4 = S?\(Rx[0,0) x {0}) (shaded area indicates the removed
slice)

Now consider the case D = 3. Endow the sphere S? with the polar
coordinate system (8, ¢) € (0,27) x (0,7), so that any point on S% =
SZ\ (R x [0,00) x {0}) (see Figure 5.2) has coordinates®:

[cos(¢), sin(¢)cos(f), sin(¢)sin(6)]

Figure 5.3: The coordinate system [cos(¢), sin(¢)cos(f), sin(¢)sin(0)] =
[cos(¢), sin(¢) - s]

81f S is the globe, then the x; axis passes through the North Pole, and these are the
Mercator coordinates: ¢ is latitude and 0 is longitude.
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If f : S% — C, then, relative to this coordinate system, we have:

_O*f of 1 0’f
ASZf = W + COt((ﬁ)% WW
(see, for example, [13], p. 87)

If we reinterpret the (6, ) coordinate system as diffeomorphism S, x
(0,7) = S2 (see Figure 5.3), then we can rewrite this equation:

o?f of 1
= — = ——— Ag1 f.
Ase f 5¢° + COt(¢)8¢ + sin()? st f
More generally, define S7, = SP\ (RP~! x [0, 00) x {0}), and then define
the diffeomorphism
sPL x (0,7) — SP

(s,¢) = [cos(#); sin(¢)-s]

Then we have the following inductive formula:

0? 0 1
ASDf ?é + (D — ].) COt(Qb)% + W AsD—l f (51)
(see [168], p. 212) O

If F: RP — C is such that AF = 0, then F is called harmonic.
The eigenfunctions of the Laplacian on the sphere SP ! are called spher-
ical harmonics. We will now attempt to characterize these eigenfunctions.

Proposition 40: (x) Relative to the aforementioned spherical coor-
dinate system on RP

9? D-190 1
A = — _— — Ngp-1.
RD or? + r Or p2 TSP
Proof: This is a straightforward computation. O

Now, Agp-1 is an self-adjoint operator (Proposition 150 on page 225),
thus, normal. Hence, employing the Spectral Theorem for unbounded nor-
mal operators and the associated functional calculus (see, for example [33],
chapter X, §4), we can well-define the operator

(=2 4, )"
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Corollary 41: ()  Suppose that f : SP~! — C is smooth, and
define F : RP — C by:

. _ 0\2 1/2
F(e', ) = exp [t- (2 2D+((D42) —ASD_1> )] (F)(0).

Then F is harmonic, and Figp-1 = f.

Proof: This follows from Proposition 40. a

Corollary 42: (%) Let —\ be an eigenvalue of Agp-1, and define:

N - [2—D+<(D_2)2+/\>1/2] 52)

2 4

1. If F : RP — C is harmonic and a homogeneous polynomial of degree
Ny, then f := Fjgp-1 is an eigenfunction of Agp-1, with eigenvalue
-

2. Conversely, if f € C*°(SP~1) is an eigenfunction of Agp-1 with eigen-
value —\, and F : RP — C is defined as in Corollary 41, then F is a
homogeneous polynomial of degree Ny, and is a harmonic function
satistying Dirichlet boundary condition Figp-1 = f.

3. Ny must be an integer. Thus, the only allowable eigenvalues of Agp-1

1
are those —\ such that (% + /\) * is an integer (if D is even) or
half-integer (if D is odd). In particular, this means

e if D is even, then all eigenvalues of Agp-1 are integers.

e if D is odd, then eigenvalues of Agp-1 are half-integers.

Proof:

Proof of Part 1: If N, is defined in the manner shown, then it is a
straightforward computation to show that

Ny-(Nx+D-2) = A\ (5.3)
Now, if F' is homogeneous of degree Ny, then F has the form

F(r,0) = ™. f()
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for some f : SP~1 — C. But if F is harmonic, then

O - ARDF
0? D-19 1
= WF + r EF + ']‘_2 ASD—I F
D

= Ny (=12 f0) + D0 Ny ()

1
+ T._QTN/\ . ASD—lf(O)

— a2, [N,\(N,\ +D—-2)-f(0) + Asp_lf(H)] )

hence, 0 = N)(Ny+D—2)-f(0) + Agp-1f(0)
thus, ASD—1f = —N)\(N)\-I—D—2) - f
= —A-f.
Proof of Part 2:  Suppose Agp-1f = —Af. Then

.  9\2 1/2
F(r, 0) = exp [ln(r)-(z 2D+<(D42) —ASD_I) )](f)(e)

.  9\2 1/2
exp [ln(r)' (2 2D+ ((D 42) +)\> )] (£)(0)

exp [In(r)N,] - £(0)
= 1)

Thus, F' is homogeneous of degree N,. It remains to show that F' is
actually a polynomial.

But by the previous Corollary, F' is harmonic. Thus, F' is real-analytic
on RP (see, for example, [40], §2.2, Theorem 10, p. 31). In particular,
F must be real-analytic around the origin, which means the exponent N
must be a (non negative) integer. (This establishes Part 3).

Being analytic, F' has a Taylor-series expansion around zero. But since
F' is homogeneous of degree N, this means all nontrivial terms in the
Taylor series have degree exactly Ny —in other words, F' is a homogeneous
polynomial of degree N). O

We have thus clearly identified what all the eigenvalues and correspond-
ing eigenspaces must look like. In order for these results to be non vacuous,
however, we must show that these eigenspaces are nontrivial.
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Notation: Let HV(RP) denote the set of all harmonic homoge-
neous polynomials on R” of degree N. Let #" (SP~!) denote the set of
all eigenfunctions of the Laplacian operator Agp—1 on SP~! having eigen-
value Ay, where the relationship between Ay and N is as in formulae (5.2)
and (5.3). The previous Corollary thus shows that

V/\N (SDfl) — xHN(SDfl)
= {F|SD—1 ;s F e HN(]RD)},
and HY(RP) = {F(ro)=r"-f0); feHN(S"N}.

We next show that these sets are nontrivial.

Proposition 43: (%)

D
Let ¢ = (¢1,...,cp) € CP, with chi = 0, and define pY : RP — C by
d=1
pN(x) = (az +czo+ ... +cepzp) = (e, x)V

Then:

1. For any such c, the polynomial pY is in H™ (RP).

2. HN(RP) is the linear span of all polynomials of this form.
Proof:

Proof of Part 1: pY is clearly homogeneous of degree N. It is a
straightforward computation to show that Ap, =

Proof of Part 2: The span of the polynomials {pY} is clearly a
linear subspace of HY (RP). Since V) = HM (SP~1), and since SOP [R]
acts irreducibly on V) (by Proposition 33 on page 55), it suffices to show
that this span is invariant under the action of SOP [R]. But for any
g € SOP [R], and any ¢ € CP and x € R,

(90Y) %) = p(9-x)
= (¢, gx)"
= <g_1.c, x>N (since g is orthogonal)
= 9@—1..:) (x)
In other words, g.pY = gg 1) hence, the set {pN} itself is actually

invariant under the action of SO” [R]. O
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Now, Proposition 38 on page 61 provides a method for computing the
orthogonal projection onto the eigenspace HY (SD _1) by convolution with
a zonal function in this space. Hence, to explicitly compute orthogonal
projections, we need an explicit formula for the zonal functions.

We will take as our fixed point e; = (1,0,...,0) € R”. Thus, SO” [R],
is the group of rotations of RP about the e; axis. The zonal functions (rela-
tive to SOP [R] and e;) are those which are invariant under these rotations
— ie. functions which depend only upon the first coordinate:

((x) = Gifz1)

for some ¢; : [-1,1] — C.

If ¢ is also an eigenfunction of Agp-1, then the previous results say
that ¢ is the restriction to SP~! of a harmonic homogeneous polynomial
Z :RP — C. Of course, the fact that ¢ is a function only of z; on the
sphere does not mean that Z is a function only of z; everywhere on RP.
However, it does mean that we should be able to write ( as a polynomial in
z1 only, as long as we confine ourselves to the sphere. And indeed, this is
the case.

Proposition 44: (x) (Zonal Eigenfunctions of /\ on SP~1)
Let N € N. Let (i be a corresponding eigenfunction, and assume that
(n is zonal (relative to SOP [R] and e1).

Case D =2: Modulo multiplication by some normalizing constant,
(n(B) = cos(N -6)

where we use the coordinate system (0,2m) > 6 (cos(9), sin(f)) € SL. If
we write ( in terms of Cartesian coordinates x = (x1,z3) on R?, we get
the CebySev polynomials:

¥ )

N /(N-n-1 on

Cn(x) = 2N-DgN | Z(—l)”2(1\’—1—2n);( n )ng ).
n=1

n—1

(5.4)

Case D = 3: Modulo multiplication by some constant, (n is a Legendre
Polynomial:

[V/2] Tt

(v = 3 (-1

n=0
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General Case: Assume that ( is of unit norm. Then (y is a normalized
Gegenbauer polynomial:

(NE) = —o5 OV (@)
WY
N/2]
where C’](\',j) () = Z (—=1)n2N—2m. cg\',/,)n N2
n=0
. (v) _ r (V + (N — n))
IR N = T )l (N - 2n)]

and where (K](\l;))2 = /SDI

_ 2-|N/2]
_ 2w A : Z (—1)k . 22N=2k | L (N—k+3)
k

r(N-

k=0

: (v) (v)
’ (Z CN;ncN;(k—n)) ’

n=0

where v = ==

Proof:

Proof of Case D = 2: It is clear from the definition of the Laplacian
on S! (see Theorem 39) that the function (y is an eigenfunction of AS™.
The subgroup of SO? [R] fixing e; is just the two-element group of maps
(z1,22) — (x1, £x2); since the function (x is symmetric relative to the
xo variable, it is zonal relative to these maps.

The formula (5.4) is then just a standard trigonometric identity, where
we identify 1 = cos(); see, for example [66], §1.33 #3, p. 27.

Proof of Case D = 3: This is just the Gegenbauer polynomial when
D = 3. For a direct proof, see, for example [13], Theorem 1, §2.1, p. 90,
where there is unfortunately an error in the definition of the Legendre
functions —see [168], §1, p.2, for a correct definition.

Proof of General Case: Since (ny(x) depends only on the first coordi-
nate z1, it is clearly zonal, relative to SO [R] and e;. It remains to show
(n is an eigenfunction of Agp-1, with eigenvalue —\y defined in formula
(5.3).

We will use the coordinate system on SP~1 described in Example 39 on
page 62, and the formula (5.1) of that example for the Laplacian. Relative
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to this coordinate system, we have the identity

1 = COS(¢);
and, for any M € N,
% cos(p)M = —Msin(¢)cos(¢p)M!
and 887; cos(p)M = —M?cos(¢) + M(M —1)cos(¢)™

so that

AepgM = sl cos(p)™ + (D —2) cot ((,25)3 cos(¢) M

sP-1dy - 3¢2 0¢
1
+ g Agp-2 cos(p)M

=(1) —M?%cos(¢)M + M(M — 1) cos(p)™ 2
cos(9) ) Mo1
+(D-2) Snd (—M) sin(g) cos(¢b)
=@ — (M2 + 2M1/) cos(p)M + M(M — 1) cos(¢p)M 2
= —(M*+2Mv)z}" + M(M — 1)z >

(1) the differential operator Agp» is independent of the variable ¢, and
therefore trivial for this function.
(2) Since D — 2 = 2v.

Now, if CX(z1) = T(v)-C%(z1)
LN/2]
= Z R T
n=0
_on L' [V + (N —n)]
) _ noN—2n
where ¢} = (—1)"2 Al (N = 2n)!
then ASD_16K7($1)
LN/2]
== Z C?V ASD—I CC:]LV_Qn
n=0
LN/2]

= Z cy [— ((N — 2n)2 + 2(N — Qn)y) x{vfm
n=0

+ (N —2n)(N —2n — 1)${V_2"_2]
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Note that, when n = |[N/2|, then the second term in the summand is
trivial, because either N — 2n = 0 or N — 2n — 1 = 0. Reindexing the
second term in the summand for all n < |N/2|, we can rewrite this
expression as

|N/2]
Z [—C”N ((N —2n)? +2(N — 2n)u> N2
n=1
+ YN - 20+ 2)(N — 20+ 1)] gN-2n
~c (N2 =2 aff
[V/2]
= Y AV~ el
n=0
where
cn—l
/\5\7]1) _ ((N— 2n)? + 2(N — 2n)y> — NT(N —2n+2)(N —2n+1)
‘N

((N—Zn)2+2(N—2n)u) -

(v+N-n+1) nl (N —2n)!
'v+N-n) (n—1!(N—-2n+2)
- ((N—2n)2—|—2(N—2n)y) + 4+ N—n)-n
= N? —4nN 4 2Nv —4nv +4n® + 4nv +4nN — 4n?
= N?242Nv

= N(N+D-2) (sincerv=2:2)

= Ay

_1.22.P

where Ay is as in equation (5.3), and similarly,
A= N2 _any
= AN

We have thus showed that A{” = Ay for all n, which implies that C%
is an eigenfunction with eigenvalue —Ax; thus, so is C;

The Norm of the Gegenbauer Polynomial: Fix v and N, and, for
all n =0...|N/2], define
F'(v+ (N —n))

e = ) N o)t

!(N—2n+2)(N—2n+1)
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IN/2) 2

2
thus, (C](\',/)(x)) = Z Cn N
n=0
Lv/2]
_ Z e - O - 2N —202m
n,m=0

Meanwhile, by Exercise 2.56 (p.77) of [48], for any &,

/ — 2T (AR (1 /2) P
T X =
SD-1

(N—k)+D
r(25)
_ gp (D12 NN —-k+1/2)
N —k+ D/2)
Thus,
m)?* _ ()
(&) = [, (W) o
LNv/2]
_ ch_cm/ 2N—2n-2m g
n,m=0 sp-t
2-|N/2| k
= Z . ch'cn—k / w%NﬁZk dx
k=0  \n=0 st
2-|N/2|
N k +D/2 ook
which, when simplified, is the formula of the theorem statement. O

The awful expression given in Proposition 44 for the norm of the Gegen-
bauer polynomial does not appear to admit further simplification, even when
attacked with MAPLE. The expression for the Gegenbauer polynomials is far
from transparent; some intuition about their behaviour can be gleaned from
the plots provided in Appendix I on page 241.

5.3 Spherical Fourier Series in L? and C*®

Theorem 45: (Spherical Fourier Analysis)
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For alln € N, let ¢, : SP~! — C be the zonal harmonic polynomials
defined by Proposition 44, and then define Z, : SP~! x SP~! — C by
Zp(x,y) = (uler) - Gu((x,y)). Then Z, is rotationally equivariant.

Now, suppose v € L2(SP~1 C). If we define 7yv\n := Z, *y then
é\n e H" (SD _1), and ~y has the orthogonal decomposition:

w ~
Y= A (5.5)
n=1

N
Thus, if, for all N € N, we define vy := Z%’\"’ then ||yn — 7|l 55 0.

N —o00
n=1

Furthermore, if y € C*°(M), then ||ynv — ¥l w5 0-

o0 N—oo

Proof: This follows from Theorem 34 on page 56, and Corollary 38 on

page 61, using the zonal functions provided by Proposition 44 on page 68.
O

Definition 46: Spherical Fourier Coefficients

Ify € L?(SP~% C), then the spherical Fourier Coefficients of y are
the functions 5, := Z, xy, forn € N.

The spherical Fourier series for 7y is then the orthogonal decompo-

o0
sition vy = Z ?n

n=1

Remark: Notice that the spherical Fourier “coefficients” are themselves
functions, not numbers. These functions can be written as linear combina-
tions of the elements provided by Proposition 43 on page 67

Corollary 47: ((De)convolution on Spheres)
Supposen : SP~1xSP~1 5 Cis rotationally equivariant, and suppose
that g := n*~. Then for alln € N, g, = A, -7%,, where we define
n - - L, <~ .
Cn(e1)

Conversely, suppose that v is unknown, but we know n and g. We can

1 <
reconstruct vy via the formula: v = Z A—gn.
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Proof: This follows from the previous theorem, and Proposition 37 on
page 58. O

Example 48: (Spherical Fourier series on S!)
Let for N € N, let {5 : S' — C be as in Part 1 of Proposition 44 on
page 68: .
(n(@) = cos(NO) = 3 (5N(0) —I—E(_N)(B))
where we identify S=Y0,27), and define £x(0) := exp(K0 -1i). Let
Zy : S'x S —s C be defined from ¢ as in Theorem 47 on the preceding
page. Then, for any v : S! — R,

X

IN = 2nN*7
=) Y*CN
1
= E('y*EN + 7*5(,]\/))
1. ~
=) 3 (FN)-En + A(=N)-ECny)
1 /.. ———
=@ 3 (’Y(N) &N+ 'Y(N)'EN)
= re[y(N)-&n].

(1) where the convolution is now meant in the “usual” sense on the group
St = T!.

(2) here, ¥ is the (classical) Fourier transform of y as a function on the
circle.

(3) because 7y is real-valued.

Now, if we write ¥(N) = ryexp(¢n - 1), where ry € [0,00) and ¢y €
[0,27), then, for any 6 € S = [0,27), we have:

InO) = re[ry -exp(pni) - En(0)]
= ry-relexp(¢ni) - exp(N -6 -1)]

 yereforn (v (022) )
-

= rN-(N (9+¢WN)
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In other words, convolving (x by <y is equivalent to multiplying the mag-
nitude of (x by ry, and rotating the phase by ¢n/N.

For any function f : S' — C, and ¢ € S!, we define the function ¢, f :
St — C by ¢.f(0) = f(6+¢). Then the equation (5.5) on page 73 can

be written:
_ ZOO oN

5.4 Asymptotic Decay and Convergence Rates

In classical harmonic analysis, the infinitesimal properties of a function f are
in many ways reflected in the asymptotic behaviour of its Fourier transform,
and vice versa. Generally, the smoother f is, the more rapidly fdecays near
infinity. Conversely, if f is very “jaggy”, undifferentiable, or discontinuous,
then fdecays slowly or not at all near infinity, reflecting a concentration of
the “energy” of f in high frequency Fourier components.

Hence, when approximating f by a partial Fourier sum, the more jaggy f
is, the more slowly the sum converges, and the more terms we must include
to ensure ourselves of a good approximation.

A similar phenomenon manifests when approximating a functions v :
SP=1 — C by a spherical Fourier series. By relating the decay rate of the
spherical Fourier series to the smoothness of v, we will be able to estimate
the error introduced by approximating v with a partial spherical Fourier
sum. Intuitively, the more “singular” v becomes, the greater the proportion
of its energy we will find in the “high frequency” eigenspaces —that is, those
associated with large magnitude eigenvalues.

Formally, say that a sequence of functions [':Yn 20:1] is of order less than

L2 = .

k.
O(n~®) if lim
n—oo N
Theorem 49: Lety:SP~1 — C, and suppose that ~y is continuously
2M -differentiable. Then the sequence [%7” |$l°:1] is of order less than or equal

to O(n~(2M+1)

Proof: First suppose that 7 is twice continuously differentiable. Thus,
using formula (5.1) on page 64, we can apply Agp-1 toy. Let @ = Agp-17.
Since « is a continuous function, it is in LZ(SP~1), and we can compute
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the spherical Fourier coefficients On = 2 * a, for all n, and conclude:
o0

a:E&n.

n=1
In particular, since this sum converges absolutely in L?(S”~1), we know

that the sequence [én|g°:1] is of order less than O(n~1).

By construction, we know that ?n = Z, x 7 is an eigenfunction of Agp-1,
with eigenvalue A\, = n(n + D — 2). By Claim 2 on page 59 of Propo-
sition 37 on page 58, the Laplacian operator commutes with convolution
operators. Thus,

n(n+ D — 2)?71 = Asp_ﬁn
Agp-1(Zy +7)
Zp * (Agp-17)

Z,*a

= a,n

Since this is true for all n, we conclude that [&V\nh"f:l] is of order less than

0 (m) Om ) = Om?).

Proceed inductively to prove the general case. O

Corollary 50: (Application to Spectral Measures)
Let o € [0,2), a # 1, and suppose p is an a-stable probability measure

on RP with density function F : RP — [0,00) and spectral measure T,
and spherical log-characteristic function g, with IISIiDIl X g(x) > 0. Suppose
XE -

that I" is absolutely continuous relative to £, and that dI' = v d(», with

v € L2(SP~L Ow).

N
For all N € N, let AV = Zﬁm let TNl = 4Nl tro and let pl]
n=1

be the corresponding a-stable pr(;babﬂity measure, with density function

F!

N RP — [0,00). Then:

= 0.

1. Forallp € [1,00], lim ‘F—F["]
p

n—oo

2. If y € C2M (SPY), then HF _ pl)

is of order less than O (Tf2

p M)
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Proof: We will apply Corollaries 14 and 15 on page 33. First we must
establish:
Claim 1: 111311 inf] K (p[”]) > 0, where K is as in Definition 6 on page 19,
ne|l...oo
and where pl®! = p.

Proof: By hypothesis, K(p) = min g(x) > 0. We will show that

XESD_I

liminf C (p") > K(p)/2.

n—oo

Let Gl := T[SP~1], and, for all n > 0, let G := TSP, Tet
G=2 Gl

Claim 1.1: There is some N € N so that, for all n € [N...00],
Gl <@G.

Proof: Let 1 be the unit function on SP~1. Thus, G = (4, 1)
and, for all n € N, GI"l = (’y["], 1). Since A"~ in L2, we

n— oo

conclude that GI™ = <fy["1, ]1> —= (y, 1) = Gl Thus, if n is

large enough, then G < 2. GI®l ... .. ... ... O [Claim 1.1]
Let gl = (@ s« "], Thus, K (p["]) = xérsliDn_lg[”] (x).
Claim 1.2: There is some finite subset © C SP~! so that, if
g’ — s g for all § € ©, then K (pI™) > K(p)/2.

Proof: We will employ the smoothness properties of g and g™
K(p)

described by Proposition 24 on page 45. Let € = , and then let

€

— ifa>1
Ca'G
T =

S (e/é) ifa<1

(where 04(e) and C, are as in Proposition 24). Let © be a finite,
T-dense subset of SP~1.

Let N be as in Claim 1.1. Assumen > N, and suppose |g["1 @) — g(9)| <
e for all @ € ©. Then for any s € SP~! find a nearby 6 € © and use

Proposition 24 to conclude: ‘g[n}(s) — g(s)‘ < ‘g[”] (s) — g[n}(ﬁ)‘ +

IC n
£7(0) — 8(0)] +18(0) —s(s)] < 3¢ = TP Thus, g7 g <
@; this implies that X (p["]) > @. ....... O [Claim 1.2]
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It remains to show:
Claim 1.3: Forallfe©, g"(0) —= g(0).

Proof:  Let néa) € L? (SP~1) be defined: néa) (s) = 7@ ((8,s)).

Then g70) = [ o atls = (o o) <=
<77§a), 7> = g(6), because ¥ -y in L2, .. O [Claim 1.3]
.................................................... O [Claim 1]

Proof of Part 1:  Note first that Hr _rln]

— A2 H7 ]
2]
[[®]lz; is the norm from Definition 11 on page 27, and A = Area [SP=1)),

(where
2

and that, by Proposition 45 on page 72, H'y — 7["]
Corollary 15.

, 7=e® 0. Now apply

Proof of Part 2: Use Theorem 49 to conclude that H7 — 7[”]H2 is of
order less than O (n*QM ) Thus, HF — F["]||[2] is also of order less than
(@) (n_2M ) Thus, applying Corollary 14, we conclude that HF — Flnl ”p is
of order less than O (n™2M). O

5.5 Spherical Fourier Series for Arbitrary Mea-
sures

Although the classical theory of spherical harmonics was developed in L2, it

is relatively easy to extend these ideas to arbitrary Borel measures on SP~1.
Suppose I' € Mess [SP~1C] is a complex-valued measure.

Definition 51: Conwvolution

If Z: SP~1 x SP~1 — C is a rotationally equivariant function, then
define Z+T : SP~1 — C by:

(Z+T)(s) = /@ 2(6,9) drfl
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Definition 52: Spherical Fourier Coefficients of a Measure
For alln € N, Ilet (, : SP~1 — C be the zonal spherical harmonics of
Proposition 44, and define 2, : SP~1 x SP~! — C by Z,(x,y) =
Cn(e1)-Cu((x,y)). Then define the nth spherical Fourier coefficient
of T':

T, = Z,+T.

Lemma 53: If¢eC (SD_l;(C), then, for alln € N,

6 dT, = ¢ dr

§p-1 §p-1

Proof:

émqs V= [, ], ez ael = [ 5.6

N ~
Proposition 54: Forall N €N, define Ty := Y T',. Then I'yzsz

N—o0
n=1

[ in the weak* topology
Proof: Since C*° [SD_I} is dense in C [SD_l} in the uniform norm, it is

sufficient to prove that, for all ¢ € C*® [SD _1], ¢(s) dT'y converges

SD—I

to ¢(s) dT" as N — oo. But

§D-1

N
[ s s = 32 [ o) diy

N N
= > / $,(s) dT' (by Lemma 53)
nel sD-1

N ~
where ¢y = Z(Zn By Theorem 45 on page 72, ¢y —==> ¢ in the

n=1

uniform norm so that / on d' ==+ ¢ dr. O

§D-1 sD-1
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Corollary 55: (Application to Spectral Measures)
Let a € [0,2), and let p be an a-stable probability measure on RP with
spectral measure T'.

N

For all N € N, let TN = an, and let p[N I be the corresponding
n=1

a-stable probability measure. Then py ——=> p in the weak* topology on

Mess [R].

Proof: This follows immediately from Proposition 54 and Proposition 1
on page 14. O




Chapter 6

Estimating spectral measures
via Convolution on Special
Orthogonal Groups

In this chapter, I sketch a method of recovering the spectral measure, I', of
a stable distribution from its empirical characteristic function by “pulling
back” the spectral measure I' and the spherical log-characteristic function
g (section 4.1 on page 43) to the Lie group SOP [R], which acts transitively
on the sphere SP~L. Once inside the Lie group, we can write g as the result
of convolving T with a certain kernel on SO [R]. Recovering I from g then
consists of “undoing” this convolution, which can be accomplished through
methods from noncommutative harmonic analysis.

This chapter assumes some familiarity with the representation theory of
compact groups. Background is provided in Appendix H.

6.1 Pulling back from SP~! to SO? [R].

The compact Lie group SO [R] has a natural structure as a smooth fibre
bundle'! over SP~!, with generic fibre SOP~! [R]. Fix e € SP~!, and define
P:SOP R — sP!

g = gle

Suppose £ = {ey,...,ep} is an orthonormal basis for R”, with e; = e.
Given the value of P(g) = g(e1), the values of {g(e2),...,g(ep)} completely

'See [32] §5.5 or [179], §3.65 for more on SP”~! as a SO [R]-manifold. The definitive
reference on fibre bundles in general is [65].
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determine g; For a fixed value of P(g) = x, the (D — 1)-tuple of vectors

{g(e2),...,g(ep)} can range freely over any orthonormal basis of x*. If we

fix a specific orthonormal basis of x1, then all other orthonormal bases can

be seen as images of this one under orthogonal transforms; hence, there

is a diffeomorphic correspondence between the elements of P~!{x} and the

elements of SO [xﬂ: sOP-1 []RD].

This shows that the generic fibre of the map P : SOP [R] — SP-!

is diffeomorphic to SOP~! []RD]. It is not difficult to show that the fibre
bundle structure is smooth.

Let Hgy, D[R] be the Haar measure on SO [R], and £ the Lebesgue

Measure on SP~! (normalized to have total mass one). Then the projec-
tion P : SOP [R] — SP~! is measurable and measure-preserving, and the
aforementioned fibre bundle structure provides us with a natural disinte-
gration? of measures:

agr@D [R] = Ha;(” dLw [X]

SD—I

where Har is the “fibre” Haar measure on P~!{x} = SOP! [RP].
We can generalize this construction. If " is any measure on SP=1 then
define the measufeon SO [R] via the disintegration

r = Her dT'[x]

sD-1

If p : SP~1 — C is any function, then define 7 = noP : SOP [R] — C.

Example 56:
Suppose € = (1,0,...,0), and that that 5(®) : SP~! — C is defined

n@(x) = [(x,e)|* + Bai(x,e)®.
Then 7(® : SOP [R] — C is the function
g = |gu|* + Ba'i'QYiQ-
gi1 912 --- 41D

921 g22 --- Gg2D
where g € SOP [R] is represented by the matrix ] . )

gp1 9gp2 --- 9DD

%See [159] or [50] for good introductions to measure disintegration.
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Lemma 57: For any n:SP~! — C and any measure T on SP~1,

/ ndl = / 7 dT
sp-1 SOP[R)

Proof:

/ Fdb = / / flg] dHer [g] dT[x]
SOP[R] sP-1.JP-1{x}

= fos fony, PO @5 e
_ /§D_1/P_l{x}n(x) dHer dT[x]
- /S () ( /P " w) dr'[x]

= [, @) o

Because ||He || = 1 for all x € SP~1L, 0

Now we reintroduce a concept important from Chapter 5.

Definition 58: Zonal Function

A function n : SP~! — C is zonal about e € SP~! if, for any
T € SOP [R] such that T(e) = e,

neol =n

If this is the case, then, for any x € SP~1, define 1, to be equal to
noTgl, where Ty € SOP [R] is any transform so that T(e) = x (ie.

X

T € P-1{x}).

Recall that 7 is zonal about e if and only if, for any x € SP~1, n(x) is
a function only of the distance from x to e.

Lemma 59: Ifn is zonal about e, then ny is well-defined, independent

of the choice of Ty.
Proof:  Suppose T1,T € SOP [R], so that Ti(e) = x = T»(x). Then
Tl_1 oTs(e) = e; hence, since 1 is zonal, 7o T1_1 oTy = n, hence
770T1_1 = noTQ_l. O
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Example 60:
For any a € [0,2], n(® : SP~! — C is zonal.

For any § € SP~1, nga) is the function:

) = [(x,0|% + Ba-i-(x,0).

Recall the following from Chapter 5:

Definition 61: Convolution (on a sphere)

IfT is any measure on SP~1 and n: SP~1 — C is zonal, define T'* 7 :
SP~1 5 Chy vVxeSPL, (Txn)(x) = (9, T) = / 7y dI.
sD-1

Example 62:

If 17(0‘) is as in the previous example, and I' is a spectral measure on
SP=1, then I n(® is the spherical log-characteristic function g (§ 4.1 on
page 43).

Definition 63: Convolution (on SOP [R])

If 77 : SOP [R — C, and T is a measure on SO [R], we define the
convolution T * 77 : SOP [R] — C:

Vg eSOP R, (Fxi)g) = / (ht - g) dT[h).
SOP [R]

It can be shown (Lemma 166 on page 233) that this somewhat peculiar
formula is equivalent to the “usual” definition of convolution on a compact
group.

We would like to show that the two convolutions are “the same” in some
sense. To do this we need 7 to satisfy an additional requirement
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Lemma 64: If7:SP~! — C is zonal about e, then it is reflection-
ally symmetric about e: for any T € SO [R],

noT(e) = noT '(e)

Proof:  If 7 is zonal, then, for any x, 7(x) = f(dist[x,e]) for some

function f : [0,00) — C. Thus, noT(e) = f(dist[e,T'(e)]) =

f(dist [e,T7'(e)]) = noT '(e). O

For example, 7@ (x) = [(x,e)|* + Bq-i-(x,e)? is reflectionally
symmetric.

Lemma 65: Ifn: SP~1 — C is zonal about e, and T is some measure
on SP~1 then

Proof:
Claim 1: For any x,y € SP71, ni(y) = ny(x).

Proof:

w(y) = noTy'(y)
= noT{loTy(e)

=) no (Tt oTy) ™ (e)

(1) by the previous lemma. ........cccoiiiiiiiiiii.. O [Claim 1]

Hence, by Claim 1, we can rewrite

Do) = [ @) dlb] = [ b dlly] = [ oy ) aTly)
sD-1 §D-1 sD-1

Thus, for any g € SO? [R],

—~—

Lxnlg) = (T*n)[P(9)]
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= (Cen)gle)
= [, neTy ale) driy)

= /Sm” o (Ty" 0 g) (e) dTly).
0 [ fo, 70 o] g
=y [, 707 o)) Tl

-/ o 1O P 0 Tl

- / (b - g) dE[H]
SO

(1) For all h € P~{y}, we have h.e = y by definition, so any h € P~{y}
could be Ty. It does not matter which h € P~1{y} we pick.

(2) This is the definition of T'.

6.2 Deconvolution on SO? [R]

At this point, we can employ the following method to reconstruct the spec-
tral measure I'.

1. Pull back the spherical log-characteristic function (section 4.1 on page 43)
g :SP~! — C to a function g : SO” [R] — C.

2. Pull back the kernel 7(® : SP~! — C to a function 7(®) : SO” [R] —
C.

3. Let I be the (unknown) pullback of the (unknown) spectral measure
T to a measure on SO [R]. Since g = 7{® % T,, we have

g = ﬁ(a)*fa

by Lemma 65 on the preceding page.
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4. Now we look at the matrix-valued Fourier coefficients (Defini-
tions 163 on page 232 and 169 on page 234) of 7, g, and I'. Suppose

7@ has matrix-valued Fourier coefficients {%a) ;P € M[G]}, g has
matrix-valued Fourier coefficients {g4 ; ¢ € U[G]}, and I has matrix-
valued Fourier coefficients {f¢ ; ¢ e UG } Then, by Corollary 172

on page 235, for any ¢ € U[G], if ﬁ((ba) is an invertible matrix, then:
S s (A !

5. By the Peter-Weyl theorem (Theorem 162 on page 231), the one-
dimensional components of the matrix-valued functions determining
the irreducible unitary representations (Definition 154 on page 229)
of SOP [R] form an orthonormal basis for L? (SO [R]). Thus, in prin-
cipal, knowledge of the Fourier coefficients of r completely determines
it.

6. Given f, we can reconstruct I' by projection:
r=PpPT

where P : SOP [R] — SP~!is the function defined at the beginning
of this chapter.

Although this method is good in theory, there is a serious practical dif-
ficulty: we need to have an explicit enumeration of the irreducible uni-
tary representations of SOP [R], and explicit expressions for the component
functions. We need these explicit expressions in the first place to actually
compute the Fourier coefficients of 7 and g, and in the second place, to re-
construct T from it’s Fourier coefficients by means of an infinite summation
of orthogonal components.

A complete and explicit enumeration of the irreducible unitary represen-
tations of SO? [R] is known, and can be found in any book on nonabelian
harmonic analysis (for example, [172] or [180]). In higher dimensions, how-
ever, the picture is not so clear. Thus, for practical purposes, the method of
spherical Fourier analysis, developed in Chapter 5, is probably preferable.

Prior Work: Prior applications of harmonic analysis on SOP [R] have
primarily concentrated on the case when D = 3, with concrete applications;
see for example [83] or [178]. In particular, Healy, Hendriks, and Kim [58]
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combine harmonics on SQ? [R] with spherical harmonics on S? to develop a
method of “deconvolution” for probability distributions on S?, which they
propose as a mechanism of “denoising” a S*valued “signal” being corrupted
by “random rotations” in the form of SO? [R]-valued noise.
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Other Statistical Methods
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Chapter 7

Normal Rank Correlation
Analysis

7.1 Preliminaries

The statistical theory of multivariate normal distributions is extremely well-
developed. Unfortunately, the same methods do not generally apply in the
non-Gaussian regime. Normal Rank Correlation (NRC) analysis [60] is a
“trick” for making non-Gaussian distributions amenable to Gaussian ana-
lytic methods. The method is as follows:

1. Given any absolutely continuous, univariate probability distribution p
on R, there exists a nondecreasing, measurable bijection f : R — R
so that the image measure' f*p is a normal distribution with mean 0
and variance 1. In other words, f defines a “change of coordinate sys-
tems” so that, relative to the new coordinate system, the distribution
p “appears” Gaussian.

The construction of f is actually quite simple. Let C : R — [0, 1] be
the cumulative distribution function of p:

T
Clz) = / o(t) dt.
—00
Thus, the probability distribution C*p is simply the uniform distribu-
tion on [0, 1]. Similarly, if D : R — [0, 1] is the cumulative distribu-
tion of / \_[0,1], and £ is the uniform distribution on [0,1], then

(DY) o = S\ [051].

'Here, if S C R is measurable, then f*u[S] = p [f~'(S)].
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CHAPTER 7. NORMAL RANK CORRELATION ANALYSIS
Combining these facts, we conclude:
(D7) ¢ = S\ [0;1]

hence, we define f := (Dil) o(C.

. Now suppose p is a multivariate probability distribution on RY, with

univariate marginals p1, p2,...,pn (note that p is not necessarily the
product of its marginals). We can find functions fi,...,fv : R — R
so that, for all n € [1..N], f}pn has distribution /" \_[0;1]. Define
F:RYN — RN by

F(zi,...,zn) = (fi(z1), ..., fn(zN))

and consider the distribution y = F*p.

. Each univariate marginal of y is normal. Of course, this does not

means that y itself is a multivariate normal distribution, merely that
it is a N-fold coupling of univariate normal distributions. However,
we can hope that, if p is some “reasonable” distribution, then y is rea-
sonably “close” to a multivariate normal distribution —close enough
that we can apply Gaussian statistical methods to p and get useful
information.

. In particular, we hope that the covariance matrix of y can tell us

something about the correlations between the different dimensions of
the original distribution p.

Of course, this methodology rests upon the assumption that u is “close to

normal” in some sense®. If this assumption is false, then the whole method-
ology falls apart. Many Gaussian statistical methods depend upon the fact
that the covariance matrices of multivariate normal distributions transform
in a particularly nice way under linear changes of coordinates; this is crucial,
for example, for Principal Component Analysis. The distribution y may
not have the same kinds of symmetry properties, and therefore an analogous
“principal components analysis” of y may prove misleading.

There are many ways of coupling univariate normal distributions to-

gether to form a multivariate distribution that is quite far from normal.
However, the multivariate normal represents the coupling with maximum

2For example, in total variation norm.
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entropy ([173], Example 11.2.8, p.270), and thus, seems natural from the
perspective of “maximum-entropy” statistical methodologies?.

Our goal in this chapter is to test, empirically, whether normal rank
correlation analysis is a useful methodology for the analysis of multivariate
stable distributions. Of course, in general, a spectral measure of a stable
distribution is an “infinite-dimensional” datastructure, whereas a correlation
matrix has only N (N +1)/2 degrees of freedom. Hence, we expect the latter
to be a rather inadequate representation of the former. The question is:

To what extent does NRC analysis reflect the correlation struc-
ture of a multivariate stable distribution?

7.2 Experimental Method:

1. Large datasets of pseudo-random vectors are generated, according to
particular multivariate stable distributions with specified spectral mea-
sures.

2. NRC analysis is performed on these datasets, to construct covariance
matrices.

3. These covariance matrices are compared to the correlation structure
of the original stable distribution.

To perform step 1, I developed a C software package capable of gen-
erating stably distributed pseudo-random vectors with a specified spectral
measure, in any number of dimensions (see Section B.5 on page 151 for
an explanation of the methodology). To perform step 2, I made use of a
C++ software library, designed by Gustavo Comezana of the University
of Toronto RiskLab, which performed NRC analysis on the datasets and
produced covariance matrices as output.

Step 3 is vaguely formulated; part of the problem was to determine just
what sort of “comparison” is appropriate. I settled for a simple methodol-
ogy, wherein four families of datasets were generated, two with very high
correlation, and the other two with zero correlation. The hope was that the

3 “Maximum-entropy” methods were first developed by Jaynes [73, 71, 69], and have
been applied to statistical thermodynamics [72, 70], the theory of random space-filling
patterns [90, 170, 123, 34], and geophysics [22], among other things. See Chapter 11 of
[173] for a good introduction.
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NRC matrices would clearly exhibit high correlation in the first two families,
and very low correlation in the second two families.

In each of the four families, datasets were generated in dimensions D =
2,3,4 and 5. Within each dimension, stable data was generated for stabil-
ity exponents ranging from a = 2.0 (ie. Gaussian) down to a = 0.4, in
decrements of size 0.1, excluding o = 1.0. Thus, each family contained 14
datasets in each of 4 dimensions*. Each dataset contained 10 000 randomly
generated vectors drawn from the relevant distribution.

The four families used were the following:

High Correlation:

e Purely Atomic Spectral Measure: In dimension D, atoms aj, ag, ..

SP=1 with weights w1, ws,...,wp > 0 were chosen so that, when ar-

ranged as a matrix of row vectors,

— wipra; — 1 11 1
<— wWwo-ay — 011 1
<— w3z-az — — 0 01 1
<—— wp-ap — 0 0O 1

e Subgaussian: In dimension D, a subgaussian stable distribution
(see Example 81 on page 147) was generated. The underlying Gaussian
had principle components xi, X2, ...,Xxp such that, when arranged as
a matrix of row vectors,

— X3 — 1 11 1
— X9 —> 011 1
+— X3 —> — 0 1 1
+— Xp — 0 00 ... 1

“The cases @ = 1.0 and o < 0.4 were excluded simply because the NRC algorithm
crashed or hung when processing these datasets, probably due to the large number of
extreme values. For the same reason, a few other data points are missing; however, the
trends in the data are obvious even with these gaps.

.,ap €
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Low Correlation:

e Purely Atomic Spectral Measure: In dimension D, we used mutu-
ally orthogonal atoms aj,ay,...,ap € SP~! with unit weights. Thus,
when arranged as a matrix of row vectors,

— wi-ai — 1 0 0
+— w2.32 e ]_ 0 0
<—— w3-az3 — — 0 01 0
_(— wp *ap —)_ _0 0 0 ... 1_

e Subgaussian: In dimension D, the underlying Gaussian had mutu-
ally orthogonal principle components xi1,X2,...,xp. That is, when
arranged as a matrix of row vectors,

— x; — 1 0 0
— X9 — 010 0
+— X3 — — 0 01 0
+— Xp — 0 00 1

When a = 2.0, the subgaussian and purely atomic datasets in each family
are drawn from identical normal distributions. For a < 2.0, however, sub-
gaussian distributions are the “opposite” of purely atomic ones: the spectral
measure of a subgaussian is absolutely continuous relative to the Lebesgue
measure. Thus, the subgaussian stable datasets should be qualitatively dif-
ferent from the purely atomic spectral datasets; one goal of the experiment
was to see if this qualitative difference was reflected in the NRC analysis.

7.3 Plots

For each family, and each dimenson, the different components of the NRC
matrix were plotted as functions of the exponent «. In the plots which
follow, a ranges from 0.3 to 2.0 along the horizontal axis. The covariance
matrix of a multivariate Gaussian is symmetric, and the diagonal entries
(the variances) are all equal to one, due to the normalization performed by
NRC analysis. Hence, only the superdiagonal entries are plotted.



96 CHAPTER 7. NORMAL RANK CORRELATION ANALYSIS

| | | |

1r [11] ©—
[1,2] +-

0.8 - -

I

ot eqo e

0.6 - -
0.4 - -
0.2 |- -
0 e oo —

| | | |

0 0.5 1 15 2 2.5
Figure 7.1: Dimension: 2........... Atomic: High Correlation

| | | |

1r [1.1] ©— 7
[1.2] —+-

0.8 |- -
0.6 - -
04 -
0.2 -
oF L e e Attt SVISRRFEE o S TR -

] ] ] ]

0 0.5 1 15 2 25

Figure 7.2: Dimension: 2........... Atomic: Zero Correlation



7.3. PLOTS 97
| | T T
T [L1] ©—
[1,2] +-
[113] -E"
08 1= T D A Pt S e e G A i) VS
_ B
0.6 PR 1
' H.5-0-8-B-8828
sngaEEg--a8EE
0.4 i
0.2 -
o b .
| | | |
0 0.5 1 1.5 2 25
Figure 7.3: Dimension: 3........... Atomic: High Correlation
| | T T
T 1,1] o -
[112] —+-
[113] -
0.8 - [2,3] > —
0.6 —
04 |
02 _
0 | B R i T i o B B R 4
| | | |
0 0.5 1 15 2 25



98 CHAPTER 7. NORMAL RANK CORRELATION ANALYSIS
| | | |
1 [11] ©— -
o [1,2] —+-
e O OD D - - 1,3] [+
o g IR LLLERR [T
_ -%  [2.3] A-
0.6 o kKK HHOK TR AT )
: 5 - 4] o
oo-8-p-88888E [3.4] -©
[ G e X e XX X
0.4 S Koy x -
0.2 -
0 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, —
| | | |
0 0.5 1 15 2 25
Figure 7.5: Dimension: 4........... Atomic: High Correlation
| | | |
1 [1,1] ©—
[1,2] —+-
[1,3] =
0.8 [1.4] X
[2.3] -
[2,4] -
0.6 [3.4] -©-- -
0.4 -
0.2 -
0 o e W el -
] ] ] ]
0 0.5 1 15 2 2.5



99

7.3. PLOTS

$tixd kbt

AANMNMSTONOIN T

el A A A NNANM

[BK 4 48 X9
% &iuxg
[k Amfbe_
_H_wm $+BXA
[k @ﬁé
Ewr $+_H_v2
_uw_m ¢+Bv$_
[k & 40 X4
_ux $+Bxﬁ_
[ @:BXA
__ ____ .
ok @IEXA_
[ @iuvﬁ_

\ '

NE Av:m_xA_

¥ ® xA_
MES A+ +B xé
LK Mw +o x%_

0¥ &+ @O Xd

0.8 -
0.6
04

0.2

2.5

15

0.5

Figure 7.7: Dimension: 5..........

Atomic: High Correlation

$tixqgkotn

ANMNMSTONMSIOY

A A A AN NNM

1
0.8
0.6

0.4 |-
0.2 |
0

25

Figure 7.8: Dimension: 5..........

Atomic: Zero Correlation



100 CHAPTER 7. NORMAL RANK CORRELATION ANALYSIS

| | | |
1r [11] ©—
[1,2] +-
0.8 - -
A
L - R o e -
0.6 +_+,+—+—4/+‘+’“ T
04 -
0.2 -
0 e oo —
| | | |
0 0.5 1 15 2 2.5
Figure 7.9: Dimension: 2........... SubGaussian: High Correlation
| | | |
1r [1.1] ©— 7
[1.2] —+-
0.8 - -
0.6 -
04 | -
0.2 -
oF R T I ~
] ] ] ]
0 0.5 1 15 2 25

Figure 7.10:

Dimension: 2



7.3. PLOTS 101

| | | |
1 [11] ©—
[1.2] —+-
[1,3] CF-
0.8 X [2,3] e
0.6 _|(,+__|___|_—'|-~+’+“'|-—'|“+’++—+—+—+/, ]
EI_E|-E-E—E-E}‘E’"E‘I‘E‘I’E—E-B_B_B'B
0.4 -
0.2 -
0 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, —
| | | |
0.5 1 15 2 25
Figure 7.11: Dimension: 3........... SubGaussian: High Correlation
| | | |
1 [1,1] o— -
[1.2] —+-
[1.3] = -
0.8 [2.3] >
0.6 —
0.4 -
0.2 -
________ ;
Of e = - = B -
] ] ]
0.5 1 15 2 2.5



2.5

bbbk

— A —

bk

———e e e —ee e e e

.SubGaussian: High Correlation

25

1.5
.SubGaussian: Zero Correlation

BB AR

CHAPTER 7. NORMAL RANK CORRELATION ANALYSIS

102

0.8 -
0.6 -
04
0.2

0.5

Dimension: 4..........

Figure 7.13:

3

0.5

0.8
0.6

04

0.2

Dimension: 4..........

Figure 7.14:



103

$tixd kbt

AANMNMSTONOIN T

el A A A NNANM

[k & +01 X<
[k oilvw_

_H_% AWE_XA_
(3K Aﬂvtw_x%_
e Mvﬁ_xg
Ew_m $+ np%
L% Lwﬁ_xA_
[k x4
B% A,,»+_H_XA_
_uw__m @mv&

T _
Ex *IBXAW_
m_x &Lﬁ_xé
B% ®+B V&
Em Av._._H_XA
X &40

7.3. PLOTS

08
06
04

0.2

2.5

15

0.5

.SubGaussian: High Correlation

Dimension: §..........

Figure 7.15:

$tixqgkotn

ANMNMSTONMSIOY

A A A AN NNM

15

S aa s sl

z
e

0.5

wh

1
0.8
0.6

04

0.2

25

.SubGaussian: Zero Correlation

Dimension: ..........

Figure 7.16:



104 CHAPTER 7. NORMAL RANK CORRELATION ANALYSIS

7.4 Observations

When a = 2.0, the datasets really are Gaussian; hence, the NRC analysis
is a trivial operation, and the NRC matrix should be identical with the
covariance matrix of the original data. Hence, for each plot, a = 2.0 is the
“control” case, against which we compare other values.

Note that, like real-world empirical data, the data from these computer
experiments is noisy, and the plots are bumpy. Theoretically, were an infi-
nite number of datapoints generated, and an infinite-precision NRC analysis
performed, we would plot perfectly smooth lines. Since only 10 000 points
were generated for each dataset, however, there is a small amount of “ex-
perimental error”. Nevertheless, the trends in the data are clear.

The following qualitative observations are apparent from inspection of
these figures:

e In all cases, the correlation coefficients for a < 2.0 are comparable in
magnitude to the corresponding coefficients when a = 2.0.

e In particular, if a certain coefficient is “large” when o = 2.0 (indicating
large correlation), then it is comparably large for all @ < 2.0, meaning
that NRC analysis detects this correlation.

Conversely, if a certain coefficient is zero when a = 2.0 (indicating zero
correlation), then it is very small (basically zero, plus experimental
error) for all @ < 2.0, meaning that NRC analysis detects this absence
of correlation.

e As a decreases, all nonzero correlation coefficients gradually and mono-
tonically decrease. In other words, as the stable distribution gets far-
ther away from a Gaussian, the degree of correlation between coordi-
nates measured by NRC analysis slowly dwindles. Nonetheless, this
effect is quite gradual.

e This dwindling of correlation coefficients is slightly more pronounced
in the subgaussian family than in the pure-atomic spectral measure
family. This is the only visible qualitative difference between the sub-
gaussian and pure-atomic families.

Questions: These results indicate that NRC analysis is capable of detect-
ing correlation between the different coordinates of a multivariate a-stable
distribution, but it is unclear exactly what sort of correlation information
NRC is extracting. In particular, what is the relationship between the NRC
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matrix components and other measures of dependency, such as covariation,
codifference, Kendall’s 7 parameter, or James orthogonality?
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Chapter 8

Mixed Stable Distributions

Empirically measured stability exponents from real data seldom take on
“mathematically canonical” values like 1, 2, or 1/2, which would suggest
some mathematical principal forcing the exponent towards a particular value.
Instead, they seem to have arbitrary values like 1.83 or 1.72 (see [122], [121],
[181], [107], [112]). Indeed, there is wide variation in the measured values of
these exponents even within particular market sectors.

This suggests that different stable stochastic phenomena (for example,
different financial markets) may exhibit different exponents, and that a the
stability exponent of a single phenomena (say, market sector) may evolve
over time. More troubling, however, is the possibility that the values we
measure may in fact represent a mizture of stability exponents. A single
observable is usually a linear combination of many unobservable factors;
if these unobservables are stable random variables with different exponents,
then the exponent we measure will somehow be a combination of all of these.
How can we separate out the different effects? The calibration tools we have
developed so far were directed at a “pure” stable distribution; can we adapt
these tools to a “mixture” of distributions?

Heuristic definition of mixed stable random vector: The general
“mixed stable random vector” can be written heuristically as an “integral”:

2
X:/Xada
0

where, for all a € (0,2], X, is an a-stable random vector, and all these
random vectors are mutually independent. Suppose that X, had spectral
measure I',. Then we could write this as a stochastic integral (see Exam-
ple 98 on page 188):

107
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X = /02/SD_1XQ(9)-0dI‘a[0] da

where, for all « € (0,2] and 0 € SP~!, X,(#) are independent random
scalars with distribution /" \ [1;1;0].

Let SP=1(0,2] be the closed ball around 0 of radius 2, with the origin
removed. Then we could define the measure I' on SP~1(0,2], in spherical

coordinates, by:
2
r:// 50 @ Tal6] da
0 Jsp-t

X = / X,(6)0 o, 0]
SD-1(0,2]

and then write:

I" is then the mixed spectral measure of X.
Now we can formalize this intuition.

Definition 66: Mized Stable Distribution

A mixed stable probability distribution in RP is a probability
measure p, so that, if ® is the log-characteristic function of p, then ®
is of the form:

o) =~ [ 0E) drla,d
sD-1(0,2]
where n(®) : SP~Y(0, 2] x SP=1 — C is defined so that, for all a, 8, E,

2E0) = [(£6)|" +Bai (E0)

The Estimation problem for a mixed stable random vector is this:

Given enough random samples drawn from distribution p, es-
timate the mized spectral measure T'.
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Mixed Stable Distributions on R

N
We will start with a simpler problem. Suppose that X = ZX N, wWhere
n=1
X1,..., Xy are stable random variables with stability exponents a; < ag <
. < ap, respectively, and spectral measures I',...,I';y. We need to de-

termine the number of components, and their relative stability exponents,
and then separately estimate each of their spectral measures.
If @ is the log-characteristic function of X, then

N
d = Z@N
n=1

where ®p is the log-characteristic function of X . Thus,

ro[o(6] = 3| -relo. 0]

where 0 = é: If we fix # € SP~1, we thus have:
N
re(®(r.0)] = —» r* -re[d, (0)]
n=1

When r is large, the summand with the largest exponent dominates the
rest. When r is very close to zero, summands with larger exponents get
small more quickly; hence, it is the summand with the smallest exponent

which dominates:

re [3(r.0)]

—— —— re[dy(0)]
re [_CI;(;-H)] —  re[D(0)]

This becomes visible explicitly when we go to a log-log plot. If we define
s = log(r), then ®(r.0) = ®(e’.0), and we have:

log[-re[®(e®.0)]] =< an-s as s = +00
log [-re[®(e’.0)]] =< ai-s as § = —00
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Log(y)

f 00 v

Log(x)

f,00

Figure 8.1: g(z) = e“z™ + 2z, with a; < ag, filz) = etz
fa(z) = e“2x*2.

As s — o0, the function log [—re [®(e®.0)]] will become asymptotic to
the line ay - s + ¢y, where ¢y = log [—re[®x(0)]]. Similarly, as s — oo,
the log [—re [®(e®.0)]] will become asymptotic to the line a; - s + ¢1, where
c1 = log[—re [®1(0)]]. (see Figure 8.1)

Log(y)
A

(%)

Figure 8.2: g(z) = el +e?2x* +... 4Nz, withay < ae < ... < ay,
filz) = 5™, fy(z) = evgen

If ¢; and cny are relatively “large” compared to the values of ¢, =
log [—re [®,(0)]] for n = 2...N — 1, then the log-log plot takes a sharp “cor-
ner” at zero, and converges very rapidly to the two linear asymptotes. If ¢;
and cy are relatively “small” compared to {cz,...,cn_1}, however, the plot
curves very gradually from one asymptote to the other (see Figure 8.2). In
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particular, it will linger at the slope s if ¢1 is very small relative to ¢ (see
Figure 8.3). Similarly, it will linger at the slope ay_1 if cy is very small
relative to cy_1.

Log(y)

Figure 8.3: g(z) = e z® +e®2z* +...+e Nz witha; < ag < ... < ap,
fi(z) = ez, fo(z) =Nz,  fn(z) =Nz

Hence, we can identify the largest and smallest exponents by looking at
the linear asymptotics of the log-log plot of Uy(r) = —re[®(r.6)]. We can
then estimate a1, apy, c1, and c¢y. Suppose we remove all or most of these
summands from the log-characteristic function, and consider the function
Us(r) = —re[®(r.0)] — elr*t —eNr2N . If we look at the log-log plot of Ws,
we can then identify as, ay_1, ¢, and cy_1. We can then remove these
summands, and consider V3, etc.

Proceeding this way we should be able to isolate each of a1,...,an and
ci,--.,cn- Of course, identifying the value of ¢, and «, from a log-log plot
of U, will require already having a very accurate estimate of ¢,_1 and ay,_1,
so the success of each stage of this procedure depends upon the previous
stage.

Also, to build good log-log plots, we must have an extremely accurate
estimate of re [®]. Since re[®] = log|x|, and |x| < 1 and tending to zero,
small errors in the estimation of x can become large errors in the estimation
of re [®]. Fortunately, estimates of x converge relatively quickly (see § 4.4
on page 47 for a brief discussion). Nonetheless, this will still be a problem.
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Mixed Stable Distributions on RP

So, suppose that we are able to accurately estimate a1,...,ay and ¢1,...,cn
at some point # € SP~!. We can repeat this procedure for all elements
6 € ©, where © C SP~! is some finite mesh, to get a;(f),... ;an() () and
c1(0),-..,cn)(0) for each § € O©. Furthermore, for each § € ©, we can
extract the values ®1(0),..., @y () (f) by similar means,

Let A = {ax(0); 0 € ©; k € N} be the set of all stability exponents
detected. For each a € 2, let ©, be the set of all points where o appeared,
and let V, be the linear span of ©,. Thus, an a-stable random vector
Xq “lives in” the subspace V, and we have samples {®,(6) ; 6 € O,} of its
SLCF. At this point, we can apply the methods of Part II to estimate the
spectral measure of X,,.



Chapter 9

Statistical Analysis of Stable
Stochastic Processes

In previous chapters, we developed methods for estimating a multivari-
ate stable probability distribution from sample data. However, stably dis-
tributed data rarely appears as a sequence of independent random variables
drawn from a common distribution. More often, it appears as the output of
a stable stochastic process, with a potentially complex temporal correlation
structure. Even if the datapoints of such a process are identically stably
distributed, they are unlikely to be independent. Thus, to understand such
a process, we must estimate not only the multivariate distribution of in-
dividual data points in isolation, but also their correlation structure over
time.

In this chapter, we will show how the “static” methods developed in
previous chapters for estimating a single multivariate distribution can be
applied to the “dynamic” problem of identifying a stable stochastic process.
The key idea is that a finite-dimensional marginal of such a stochastic pro-
cess can itself be regarded as a (very high-dimensional) multivariate stable
distribution; by studying the correlation structure of this distribution, we
gain insight into the dynamics of the process.

Stable stochastic processes usually arise as stochastic integrals. We as-
sume that there is a unknown source of random, uncorrelated, stably dis-
tributed “noise”, and that the stochastic process in question is the output of
some mechanism driven by this noise. If the process is treated as a random

113
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function X : R — RP then we can write:

X(T) = / " (T 1) AN

where N'® is a “random measure” representing the noise, and ¢ is some
integral kernel describing the way the noise drives the process. For example,
if B is classical Brownian motion, then we can write:

T
VT >0, B(T) :/ dN?
0

where N2 is Gaussian “white noise”. In this case, the integral kernel is triv-
ial, indicating that the Brownian particle is memoryless and its dynamics are
spacially homogeneous. A more complex process is the Ornstein-Uhlenbeck
process X: .
VT €R, B(T) = / e M0 N2
o

which describes the behaviour of a Brownian particle trapped in an expo-
nential potential well. The Ornstein-Uhlenbeck process is mean-reverting;
the particle rarely wanders far from zero.

Brownian motion and the Ornstein-Uhlenbeck process are attractive be-
cause they are the solutions of simple stochastic differential equations having
natural physical intepretations. The SDE for Brownian motion is

dB = N?

which basically says that the Brownian particle is randomly kicked around
by independent, normally distributed perturbations, and moves for no other
reason. The SDE for Ornstein-Uhlenbeck is

dX = —\X +N?

which says that the Ornstein-Uhlenbeck process is a simple linear dynamical
system with an attractor at zero, being jostled by independent normally dis-
tributed perturbations. Other stochastic processes have more complicated
stochastic integral formulations, which are harder to explain in terms of
simple physical models. Thus, it is desirable to find ways of decomposing
more complex processes into simple components like Brownian or Ornstein-
Uhlenbeck processes. We will return to this in §9.3.

The a-stable analog of Brownian motion is called Lévy -stable motion,
and arises by replacing Gaussian white noise with a-stable noise in the
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aforementioned stochastic integral. Likewise, there is an a-stable analog to
the Ornstein-Uhlenbeck process. A more detailed and lengthy introduction
to stable stochastic processes can be found in Appendix D on page 177.

So, suppose X : R — RP is a stochastic process, determined by stochas-
tically integrating a kernel ¢ against random noise. Given a discrete-time
empirical sample {X,, ; —N < n < N} of the process, we might wish to de-
termine whether X is an a-stable process, and if so, which process it is. The
following are natural questions:

1. What is the shape of the integration kernel ¢? (This is the topic of
§9.1).

2. What is the value of the stability exponent « (if any)?

3. If X is a multivariate process, generated by a-stable multivariate noise,
then what does the spectral measure of the generating a-stable noise
look like?

(These two questions are addressed in §9.2.)

4. Can we find a natural representation of the process as a combination
of “elementary” processes, having simple physical explanations? (This
is the topic of §9.3.)

9.1 Reconstructing the Kernel of a Moving Aver-
age Process

Suppose X : R — R is a univariate stable stochastic process, defined by a
moving average' stochastic integral:

X(T) = /R B(T — 1) dN°[1]

where @ : R — R is some integrable “convolution kernel”, and N'* is a
totally skewed (ie. 8 = 1), a-stable random noise on R of constant intensity.
We want to reconstruct ® from sample data.

First, we will simplify the problem by replacing X by a discrete-time
approximation (see Appendix D.4 on page 196 for details). This is not
only much simpler, mathematically speaking, but is also reasonable from a

'See § D.3 on page 193.
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pragmatic point of view: all real-life computations will be performed using
discrete-time data and discrete-time approximations of the process.

So, let X : Z — R be a discrete-time, stationary, stable stochastic
process, given by the moving average:

VI €Z, X(T) = Y ¢(T —n)-Na(n)

neZ

where [No(n)|,cz] is an i.i.d. sequence of a-stable random variables with
skewness = 1 (the discrete time analog of a totally skewed a-stable noise),
and where ¢ : Z — R is some “convolution kernel”.

Kernel Reconstruction Problem: Given empirical measurements of X,
can we reconstruct the convolution kernel ¢?

9.1.1 The Spectral Measure of a Process Marginal
Fix M € N, and for all t € Z, define

XM(t) = [X(t), X(t+1), ...,X(t+ M)] € RM+L,

the (M+1)-dimensional marginal of X at time ¢. Thus, X[M(#) is an (M+1)-
dimensional a-stable random vector. Since the process is stationary, the
distribution of X[MI(#) is the same for all ¢, and has some spectral measure
'™l What does I''™] look like? Fix ¢ = 0, and recall Example 98 on
page 188, which says

XM = [ s Nl

where Npp[s] is the a-stable random noise on SM having intensity measure
I'™] and skewness 3 = 1. Thus, we can write:

/SdNr[MJ[S] = x™o)
SM
= [X(0), ..., X(M)]

— quf)(—n)-Na(n), ey DM =) Na(n)

neEL nezZ

= Y [¢(=n), ..., $(M —n)]-Na(n)

nez
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=q) Y r(n)s(n) Na(n)

nez
o /S YA
(1) Here, r(n) = [|¢(—n), ..., (M —n)ll,,
wd s(n) = s [d(on), oo, 0T ).
(2) Where A = Z 7(n)ds(n) is a sum of point masses.
neEZ
Hence, we conclude: riM = A = Zr(n)&s(n) (9.1)

Example 67: (Ornstein-Uhlenbeck Process)

Consider the discrete-time analog of an Ornstein-Uhlenbeck process (see
§ D.3 on page 192), where the kernel is defined

_ J exp(=A-n) if n>0
$(n) '_{ 0 if n<0 "

Thus, for any n > M,
T(n) = ||¢(_n)a R ¢(M - ’I’L)||2
_ (672,\-71 4o A 4y 672)\-(n7M))

1/2
eZA-M) :

1/2

= e*’\'"(l e

while s(n) = Tln)[q’)(—n), ey (M —n)]

[67)‘%, e*/\-(nfl)’ L ef)\-(nfM)]

e A (1 + e + ...+ 62’\'M)1/2
[1,62’\, cey e”"M]

(1 4+ e + ... + et/

Thus, s(M) =s(M +1) =s(M +2)=....
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Meanwhile, if n < 0, then r(n) = 0 and s(n) is not well-defined; effectively,
there are no atoms corresponding to these points.

Finally, if n € [0..M], then

r(n) = ll¢g(=n), ..., (M —n)ll,
= H [e_A'”, e~ M=1), ...,6_2)‘,1,0,...,0] H2

— (e*”'" + e 4 ey 1)1/2,

while s(n) = %[d)(—n), ) (M — )]

[67,\%’ 67)‘-(77,71)’ "'7672)\71’07""0]

(e=2An 4 e=2¢(n=1) 4 . 4 -2\ 4 1)1/2'

9.1.2 Recovering the kernel from the spectral measure
So, if a large set of samples of XM is analyzed using the methods of Part II,
and a spectral measure ['M] ig extracted, it should appear to be a countable
sum of point masses, as in expression (9.1). The Kernel Reconstruction

Problem can then be reformulated:
Given TM! can we reconstruct ¢?

To go about doing this, observe the following properties of the points
s(n) (n € Z) defined in §9.1.1.

Lemma 68: Foralln € Z, let s(n) = (so(n), s1(n),...,sm(n)). Then:

L s()lly = 1.

Sm(n+1) sm_l(n).

2. F 11 1.M =
or allm € | ) s1(n+1) so(n)
. . 5m—1(n)
3. Thus, if we define &,,(n) = “soln) for allm € Z and m € [1..M],
so(n
then we can write:
s(n+1) = [so(n+1), si(n+1), si(n+1)&(n), si(n+1)&(n),

-y s1(n 4+ 1)&um(n)]
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or, deﬁnlng&(n) = (51(”’)752(”)’a£M(n)) = (1,52(71),...,5]\/[(’”)),

we can write:
s(n+1) = [so(n+1), si(n+1)-&(n)]
4. Thus, given so(n + 1), we have:

1— (so(n+1))?

si(n+1))? =
N TTOT

Proof: Part 1 is because s € SM by definition.
Proof of Part 2: By definition, s,,(n) = ﬁ(/)(m —n), hence

smn+1) _ mamem—n-1

s1(n+1) mﬁﬁa1—n—n

dp(m—n—1)
$(—n)
@qbl(m —1—mn)
mﬁb(—n)
Sm—1(n)
so(n)

Part 3 follows immediately from Part 2.

Part 4 follows from Part 3 and Part 1.

So, suppose that A C S¥ is a countable collection of atoms, y: A — R
is some function, and

I'=> ~(a)a

acA

An inductive algorithm to reconstruct ¢ from I is as follows:

1. Choose s(0) € A arbitrarily, and define 7(0) = v(s(0)).

2. Suppose inductively that you have s(n) for some n € N. Define £(n)
as in the previous lemma. To identify s(n + 1), search for an element
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ag € [—1,1] so that, if we define

_ 1 —a?
! 1€m)1I3’
and a = [ag, ai1-&(n),

then a € A.

If such an element exists, define s(n+1) = a, and then define r(n+1) =
(s(n +1).

If more than one such element exists, pick one arbitrarily. If no such el-
ement exists, then s(n), as currently defined, cannot be correct; back-
track and choose another value for s(n).

If only one choice for s(n) is available at each stage, then this algorithm
is simply an inductive construction. If more than one element is available,
then this algorithm takes on the character of a depth-first search. This latter
possibility is unlikely, however, because the unknown element a has only one
free parameter, ag, plus a choice of sign for a;.

One can construct the values for s(n) and r(n) for n < 0 in a similar
fashion. When the construction is finished, one should have “used up” all
the elements in A; in other words, we should have:

A = {s(n); neZ}.

If this is not the case, then a wrong choice of s(n) was made at some stage,
or possibly we are wrong in the hypothesis that IT" is the spectral measure of
a moving average process.

Note that, if we are dealing with an Ornstein-Uhlenbeck process, as in
Example 67 on page 117, then we will end up with a situation where

1. For n < 0, s(n) does not exist.

2. s(0), s(1), ..., s(M) are distinct.
3.s(M)=s(M+1)=s(M+2)=....
In general,

e Condition (1) will occur if and only if ¢(n) = 0, ¥n < 0 —in other
words, whenever the process is “nonanticipating”, in the sense that
the integration kernel ¢ only “sees” past noise, not future noise.
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$(n) _ ¢(ntl)
Y $ntl) T p(nt+2)
—in other words, if ¢(n) = c¢ - £™ for some constants ¢ and £. Setting
A = —In(¢), we see that ¢ is just a scalar multiple of the Ornstein-

Uhlenbeck kernel.

e Condition (3) will occur if and only if, for all n > 0

Conclusion: The spectral measure TV immediately gives us a method

for recognizing nonanticipating processes in general, and the Ornstein-
Uhlenbeck method in particular. For any other arbitrary moving-average
process, '™ provides us with a dataset which we can use to reconstruct an
approximation of the convolution kernel ¢ through an inductive, depth-first
search algorithm.

Previous Research: John Nolan ([128], §6) briefly discusses the relation-
ship between the convolution kernel and the spectral measure of a 2-time
marginal of a process, concentrating on the example of a real harmoniz-
able process:

X(T) = re [ /R ¢ d/\/a[t]]

where N is a complex-valued, rotationally invariant spectral measure. He
makes reference to further results in [126], but this literature is not yet
available.

9.2 Finding the Stability Exponent and Spectral
measure:

Proposition 69: Let o € (0,2), let T be a spectral measure on SP~1,
and let N be the corresponding a-stable noise. Let ¢ : Rx R — R be any
integration kernel, and let X be the RP -valued stochastic process so that,
for all T,

X(T) = / T (T ) AN,

Then for all T € R, X(T) is an a-stable random vector, whose spectral
measure is
CH(T)-T + C_(T)-T,

where I' _ is the spherical inversion of I', defined

VU cCSP™, T_[U]=T[-U]
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and where C,(T) and C_(T) are the real constants:

/ H(T, 1) C.(T) = /_Z¢(T,t)idt

z if >0 -z if <0
(Where :1:+:{0 z§ <0 and w_:{ 0 z§ ;1720)

Proof: This follows immediately from Proposition 100 on page 189. O

Corollary 70: (Symmetric Noise)
Suppose that I" is symmetric (ie. I'_ =T'). Then for all T € R, X(T)
is an a-stable random vector with spectral measure C(T') - I', where

cm = [leaor a

—0o0

Corollary 71: (Spectral measure of moving-average process)
Suppose X is a moving average process of the form:

- / (T — 1) anels

where ¢ : R — [0,00) is nonnegative. Then for any T € R, the random
vector X (T') is a-stable, with spectral measure C - I", where

-/ Z H(1)°

Corollary 72: (Spectral measure and kernel of accumulation process)
Suppose X is an accumulation process of the form:

T
- / B(t) AN

where ¢ : R — [0,00) is nonnegative. Then for any T € R, the random
vector X(T') is a-stable, with spectral measure I'(T') = C(T)-T', where

= [ sy
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Knowing C(T'), we can reconstruct ¢:

H(T) = (%(T))w

Conclusion: Given sufficient sample data of the random vector X (7T), we
can use the methods of Chapter 8 to determine the stability exponent «, if
any. We can then use the methods of Part ITI to reconstruct the spectral
measure of X' (7). In all three of the cases described above, this information
is sufficient to reconstruct the spectral measure of the underlying noise, up
to a scalar multiple.

9.3 Harmonic Decomposition of Integral Kernels

Harmonic analysis provides methods for representing functions on the real
line as “linear combinations” of simple functions. The Laplace transform
allows us to represent a function as a linear combination of functions of the
form exp [(A1 + A2i)t], with A; > 0 and A9 € R, while the Fourier Transform
provides a representation in terms of periodic functions exp(iAt), where A €
R

Given a “moving average” stochastic process X, determined by convo-
lution with respect to some kernel ¢, we can use these “harmonic decompo-
sitions” of ¢ to represent X as a linear combination of stochastic processes
with exponential kernels.

This is good news if we want to find a “natural explanation” for the
process X. Exponential-kernel processes (such as the Ornstein-Uhlenbeck
process) have very natural origins as the solutions to linear stochastic dif-
ferential equations. However, given an arbitrary moving-average process X,
determined by some arbitrary convolution kernel ¢, it is difficult to postu-
late a natural mechanism to generate it. The decomposition sketched here
suggests a mechanism: X arises as a linear combination of (not necessar-
ily independent) exponential-kernel processes. In other words, the system
which generates X' is a combination of subsystems which evolve according
to linear stochastic differential equations with various time constants.

Inverse Laplace Transforms and Ornstein-Uhlenbeck Processes:
Suppose that X : R — R is a nonanticipating, moving average process. In
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other words, X is determined by a stochastic integral of the form:

T
X(T) = / ST — 1) AN

where N is a random noise, and ¢ : [0,00) — R is some “convolution
kernel” describing how past perturbations influence the present. If ¢ decays
sufficiently rapidly, then we can realize it as the Laplace transform of some
other function. So, suppose that ¢ is the Laplace Transform of the function
® : [0,00) — R. In other words, for all ¢ € [0, 00),

#(1) = /0 " o(s)e " ds

Thus, we can write:

T

X(T) = H(T —t) dNTt]

/.
/

T 00
= / B(s)e~ "D ds dNTt]
—00 J0

)

)
_ /O ~ a(s) /_ 1 ST AN ds
_ /Ooocp(s)xs(t) ds

where X is an Ornstein-Uhlenbeck process with time constant s:

T
Xs(T) = / e Tt dNTt] ds

—oQ

In other words, by representing the kernel ¢ as a Laplace Transform, we
can represent the stochastic process X as a linear combination of (non-
independent) Ornstein-Uhlenbeck processes with various time constants.
The coefficient ®(s) measures the “influence” of the subsystem X on the
motion of X.

Fourier Transforms and Periodic-Kernel Processes: Now suppose
that X : R — R is a finite history nonanticipating moving average process:

T
X(T) = /0 S(T — 1) AN
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where A is a random noise, and ¢ : [0, 00) — R is some convolution kernel.
Extend ¢ to all of R by symmetry, defining:

P(=s) = ¢(s)

If ¢ € L'(R), then we can take its Fourier Transform, qu If <Z € LY(R) also,
then the Fourier Inversion Formula says

b = / T A8 de

where &(t) = exp(2mi&t).
Thus, we can write:

X(T) = /0 H(T — 1) dN']
T o
- /O /_ HOE(T — 1) de N
ovoo T
- [ G /0 E(T — 1) dNT1]
- / B(6) Xe(t) de

where A} is a nonanticipating moving average process with periodic ker-

nel:
T
Xe(T) = / ™I N ds
0

In other words, by representing the kernel ¢ as the inverse Fourier transform
of ¢, we can represent the stochastic process X as a linear combination of
(non-independent) periodic kernel process with various frequencies.

Laplace Transforms and Exponential Kernel processes: Now sup-
pose ¢ : [0,00) — R is any function with a well-defined Laplace Transform
®:Ct — C. Here, C" = {X € C; re[)] > 0}, and for all such A,

B(\) = /O ~ b(t) exp(=t) dt

If @ is meromorphic, with all poles of order k or less, for some fixed k € N,
and r € R is larger than the real parts of all poles of ®, then ¢ can be
recovered via the Laplace Inversion Integral:

d(r) = /00 B(r + si)e? 50 ds

—0oQ
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Thus,
T

X(T) = </> —t) dNt]

o
= / / B(r + si)eT DO+ gg dAt]

oo

3 g

T
/ B(r + si / eT-00-+5) GNe] ds
o0 o
o0
| v X0 ds
—00
where ¥(s) = ®(r+si), and where A{, ;) is an stochastic process with a ker-
nel that oscillates in phase with frequency s, while increasing exponentially
in magnitude at rate 7:

T
X(r —|—si)(T) = /0 e(T=t)(r+si) AN

These integrals clearly diverge as T' — o0, indicating that this process is very
unstable. Over time, the effects of small perturbations are exponentially
magnified; as T — oo, the process X' (T') will “explode off to infinity” in an
unpredictable direction.
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Appendix A

Univariate Stable
Distributions

[For more information on univariate stable probability distributions, the definitive
reference is Zolatarev [190]. Other excellent introductions are chapter 1 of Tagqu
and Samorodnitsky [154] and a forthcoming book by John Nolan [129]. Other
recent references are [51], [143], and [3]; slightly older references are [46] and [1]. ]

A.1 Introduction

Why is the normal distribution considered the “canonical” distribution in
probability theory? Why are Gaussian processes used as the “generic” mod-
els for almost any stochastic dynamics? The reason: the normal distribution
has two properties:

e Stability: The normal distribution is stable in the sense that, if
X and Y are independent random variables, each having a normal
distribution, then X + Y also has a normal distribution.

e Renormalization Limit: The Central Limit Theorem says that the
normal distribution is the natural “limiting distribution” of a “suitably
renoralized” infinite sum of independent random variables with finite
variance.

Hence, the normal is the distribution we expect to see for any quantity
which is generated by an infinite sequence of small perturbations; in par-
ticular, it is the distribution we expect in a stochastic process driven by
independent increments of finite variance.

129
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These properties uniquely characterize the normal distribution:

Theorem 73: Characterization of Normal Distributions in R
Let p be a probability measure on R. The following are equivalent:

1. p has Radon-Nikodym derivative _/ \_[u; 0], where i € R and o > 0
are constants, and

N\ o] (@) = ﬁexp ("5”07_2’”2) Vz € R

2. p has Fourier Transform:
xl€] = exp(uéi — |o-¢°), VEER

3. Let po = —pu{T)p; hence, pg is the probability distribution of random
variable (Y — p), where Y has distribution p.

If X4, ..., Xy are independent random variables, identically distributed
according to pg, and X = Xy + ...+ Xy, then

(G - ~

4. Again, let pg = —pHp. If X1,X4, X3, ... are independent identically
distributed random variables, with mean 0 and variance o2, and for
all N, we define:

1 N
Yy = N1/2 ZXN
n=1

then Distr [Y n] w==> po in the weak* topology.

The exponent 1/2 is a recurring theme in this theorem. If we replace
this with the exponent 1/a, where a € [0,2), then we can state an analogous
theorem, which characterises the so-called a-stable distribution.

Theorem 74: Characterization of Stable Distributions in R
Let p be a probability measure on R, and let o € [0,2] be a constant.
The following are equivalent:
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. p has Fourier Transform

xlg] =exp (nti — |o-¢[* — Bafo®ei)
where:
e neR,

e g€ [0,00),
e () € [—1,+1],

are constants, and we define:

glo) = {Sign(ﬁ)-\ﬁl‘* if a#l
§-loglé] if a=1

and B, — {tan(%) if a#l

—% if a=
p has Log-Fourier Transform

O[e] =log x[€] = péi — |o-€|* — Bafoei (A1)

Let pg = —u{p; hence, py is the probability distribution of random
variable (Y — p), where Y has distribution p. If X1,...,Xy are in-
dependent random variables, identically distributed according to po,
and X = X1+ ...+ Xy, then

, 1
ot A [E

(1)
Ifa=1: Distr l(l) X — Byiop (i) ] = po
N N ’

The displacement term Biof3 (%)(1) in the a = 1 scenario is a function
of the “skewedness”, 3, of the distribution, it is trivial when 8 = Q.

Again, let py = —pu(P) p; If X1, X9, X3, ... are independent identically
distributed random variables with density w such that

w(z)

= C#0,0

e300 [2[HT

Furthermore...
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e _..if @ > 1, then suppose X1, X9, X3, ... all have mean zero.

o ..if @« < 1, then assume X1,Xy, X3,... are symmetrically dis-
tributed around zero.

For all N, define:
N
c
Yy = Sim 2 X
n=1

Then Distr [Y y] w5 po in the weak* topology, for some suitably
chosen constant ¢ > 0.

A random variable possessing the distribution p described by this theo-
rem is called an a-stable random variable.

Note: In Part 2 of the theorem, we are “abusing notation”. Strictly
speaking, to define the logarithm of the (complex-valued) Fourier transform
in Part 1, we would need to pick a “branch” of the multivalued log function,
along with a “cut” in the complex plane, etc. When treated as a function
on R, this “log Fourier Transform” would be discontinuous, arbitrary in
definition, and unnatural. Instead, we are simply defining the “log Fourier
Transform” of p as the argument of the exponential function in Part1.

We will employ this convention whenever we speak of “log-characteristic
functions” in the discussion that follows.

Proof:
Proof of 1 <— 2: This is immediate.
Proof of 2—3:

Suppose py is an arbitrary probability distribution, with log Fourier trans-
form ¢. If X4,...,Xy are independently distributed according to p, and
X =Xj +...4+ Xy, then X has log characteristic function N - ¢, and

thus, ﬁX has log characteristic function

e N6 (5ae) (4

Case 1: a#1
It follows from (x) that py satisfies Part 3 if and only if:

Vo (i) = 4O (4



A.1. INTRODUCTION 133

which clearly happens when ¢ is of the form: ¢(¢) = |o€|* + 7@

_T
0B’
then we can rewrite this: ¢(¢) = |0€|* + 0B Bil®.

where o > 0 and 7 € R. Now, if we define [ =

Case 2: a=1

Let ¢c € R. It follows from () that +X —c (%)(1) has log-characteristic
function

1 1\
Thus, po satisfies Part 3 if, and only if:
1 1\,
(&) = N'¢<N§) + C(ﬁ) 1

N-o (%g) + e (%) log (%) ; (B)

Which clearly happens when ¢ is of the form: ¢(¢) = |o¢| + 7€ log [€]i,

T
oB;’

then we can rewrite this: ¢(§) = |o¢| + oB, Bicth
Proof of 3=—2:  (sketch)

Clearly, distributions satisfying Part 2 will satisfy Part 3. But why
must they necessarily have this form? For example, why is the parameter
B confined to the range [—1,41]? Why is the factor B, defined the way
it is? Most puzzlingly, why is the case a = 1 special, with extra “log |£|”
term, which makes everything so much more complicated?

where ¢ > 0 and 7 € R Now, if we define (8 =

These things all stem from the fact that a stable probability distribution
must be infinitely divisible, and thus, has a log-characteristic function
with Lévy -Khintchine Canonical Form:!

o?|€)? aud
O(&) = p&i — |2£| + /R(exp(f.u.i)—l— 1£—|—u2) dAu] (A.2)

'See [20], §30, p. 149, or, alternately, see [46] XVII.2 for more on the the Lévy -
Khintchine form.
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where A is some measure on R, called the Lévy measure of the distri-
bution. A is absolutely continuous with respect to the Lebesgue measure,
and its Radon-Nikodym derivative L(z) = % must be decreasing at
least inverse-linearly as £ — o0, so that the function zL(z) is nonin-
creasing everywhere.

The proof now proceeds by putting equation ( A.2 on the preceding page)
into either formula (A) or (B) above, and deducing that the function @
must have the form of formula ( A.1 on page 131). For a more detailed
sketch, see [46], XVII.4, p. 540. For a full proof, see [20], §34, p. 164.

Proof of 1 «— 4: See [46], XVIL5, especially the “Concluding
Remark” (p. 547); alternately, see [20], §35, page. 171.

O

Remark 75:

e The parameter « is called the stability exponent. The normal dis-
tribution is the special case when o = 2.

e When « > 1, the parameter p is the mean of the distribution. When
a < 1, the mean is not well-defined. However, u can still be thought
of as defining the “centroid” of the distribution in some sense, and is
called the shift parameter of the distribution.

e When a = 2, the parameter ¢ is the standard deviation of the dis-
tribution. When a < 2, the variance and standard deviation are not
well-defined. However ¢ can still be thought of as defining “fatness”
of the distribution in some sense. ¢ is called the variation or scale
parameter of the distribution.

e When a = 2, the parameter 8 becomes meaningless, since, by defi-
nition, Bo = 0. Hence, § is a feature unique to non-normal stable
random variables. 3 is called the skewness parameter, and measures
measures the asymmetry of the distribution. The smaller « becomes,
the more extreme this asymmetry can be.

— The distribution is symmetric about 4 if and only if 8 = 0.

— Although mean of the distribution (when « > 1) is not affected
by the skewness, the mode is. The mode is y if and only if = 0.
If 8 >0 (B8 < 0), then the mode is greater than (less than) u.



A.1. INTRODUCTION 135

— Let o < 1. If 8 = +1, then the support of the distribution is
confined to [y, 00). If f = —1, then the support of the distribution
is confined to (—oo, .
If @ > 1, then the support of the distribution is all of R, even
when 8 = +1.

e The distribution is symmetric if and only if 4 = 8 = 0. In this case,
the expression for the characteristic function simplifies to:

x[§] = exp (a*[¢]%)
which is recognizably analogous to the Gaussian case.

e When o = 2, the tails of the distribution decay at the exponential rate
of exp (—\:B|2) as £ — 0o. However, when o < 2, the tails decay much
more slowly, at a polynomial rate of |z|~*"! as £ — oc.

Hence, although the normal distribution has well-defined absolute mo-
ments of all degrees, the a-stable distribution (for a < 2) only has well-
defined absolute moments of degrees less than a. If 8 > «, and X is an
a-stable random variable, then the Bth absolute moment E== [|X|]
is “infinite”.

In particular, if @ < 2, then an a-stable random variable has “infinite
variance”.

We will use the notation /" \* [, 8, 0] to denote this distribution.

Proposition 76: (Algebra of Stable Random Variables)

Let a € [0,2). Let X;,X2 € R be independent. a-stable random vari-
ables, with Distr [X{] = S/ \&[u1, 81, 01] and Distr [Xy] = S\ [ug, B2, o).
Then

e X = X;+X, is an a-stable random variable, and Distr [X] = N [, B, 0],
where

Boo= p1+ 2

(0f +a5)t/®

prof + a0
0-05



136 APPENDIX A. UNIVARIATE STABLE DISTRIBUTIONS

e Ifc € R, then ¢.X; is also an a-stable random variable, and Distr [¢.X ] =

Ne (i, B, 0], where:

_ c-ur if a#l
B= c- U + Byt co1f1 if a=1
o = |c-o1

B = sign(c)-p

e Ifci,co € R, then X = ¢1X1 + 90Xy is an a-stable random variable,
and Distr [X] = _/\@ [, 8, 0], where

by o= { crrprteape if a#l
crpr+ o pip+ Biet o1 Bi 4+ Boct) -9 if a=1
o = (a0 +|ez|*0)
g = Bisign(ci)of + Bosign(c1)of
0-05

Proof: Let ®1,®5 be the log characteristic functions of X; and Xo,
respectively, as given by Part 2 of Theorem 74 on page 130. Then the
log characteristic function of X; + X5 is just ®; + ®5. The log charac-
teristic function of ¢.X; is (£ — ®1(c.£)). At this point, the algebra is
straightforward.

(for more detail, see [154], Theorems 1.2.1 and 1.2.2). O

A.2 Examples and Explicit Formulae

In general, there is no explicit formula for the density function of a stable
distribution, except in three special cases

Normal Distribution: When a = 2, we have the normal distribution

Pelelte) = e (F50)

Cauchy Distribution: When o =1, and 8 = 0, we get the Cauchy
Distribution:

N[/L;O;O’](.’L’) = %(lw_/jflg n 0_2)
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Lévy Distribution: When a = %, and 8 = +1, we get the Lévy
distribution:

NPprae = (7)o (5 ) T @

o M)3/2 T —

A.3 Applications and Examples

Stable probability distributions arise naturally in many contexts; for an
excellent overview, see Chapter 1 of [190]. The examples mentioned there
include:

e The limiting distributions of certain branching processes.

e The distribution on a flat screen of impact points of radioactive par-
ticles from a point source.

e The energy distribution for certain unstable systems in quantum me-
chanics, where it is called the Lorentz distribution.

e The distribution for the strength, at a point in space, of a random
“influence field” of generated by a randomly dispersed collection of
particles. For example:

— The Holtsmark distribution [64] for the random gravity field gen-
erated by a suitable random distribution of stellar masses.

The temperature in a radioactive body.

The stresses within a crystal.

The magnetic field generated by a random arrangement of mag-
nets

e The character of noise in certain radio engineering applications.

e The statistics of phylogenetic trees in biological taxonomy, related to
a power law discovered by Willis [74] and Yule [182].

Stable distributions have also found applications in engineering. For
example, Tsakalides and Nikias [132] have suggested using Cauchy distri-
butions to model data from radar sensors. Other researchers have inves-
tigated stable noise in the context of signal processing [30],[31] [150], [28],
[29], telecommunications [23],[145], and even the power distribution of ocean
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waves [135]. In addition, Mandelbrot [105], [108] and Fama [43], [42] have fa-
mously advocated the use of stable distributions to model data from financial
markets, inspiring a variety of researchers to extend classical mathematical
financial methods to the stable universe [155], [44], [187], [142], [10], [11],[38]
[117], [152], [52],[53], [99], [100], [68], [67] [82], [21]; for a short review, see
Appendix C.1 on page 155; for a more extended reference, see [24].

Finally, since stable distributions are the limiting distributions of sums
of independent perturbations following any power law of the form z#, where
—3 < B < 1, they can be expected to arise in any context where power-
law distributions have been observed; for a review of the literature on this
subject, see Appendix C on page 153.

I will only discuss the most basic and obvious instances of stable distri-
butions here.

The Renormalization Semigroup: Fix a € [0,2]. One interpretation
Part 3 of Theorem 74 on page 130 is that the a-stable distributions are the
attracting fixed points of the a-Renormalization Semigroup?, acting on
the space probability measures on R.

Let Mes [R] denote the space of Borel probability measures on the real
line. Mess [R] is a semigroup under the action of convolution: if p and 7
are two probability measures, we define p * 5 to be the probability measure
so that, for any measurable U C R,

prn(U) = /R plU — 2] dlz]

If X and Y are independent random variables with distributions p and 7
respectively, then the random variable X + Y has distribution p * 7.

Now, fix a € [0,2], and, for all N € N, define TY : Mess [R] — Mess [R]
to be the map:

1 X
Tév(p) = (Nl/a) PEPE ... kP

In other words, T.¥ (p) is the distribution of the random variable

1
(W) (X1+X2+...XN)

In physics literature, this is often called the Renormalization Group. Since it is not
actually a group, this terminology is somewhat misleading.
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where X, Xa,..., Xy are independent random variables with distribution
-

The family {7 ; N € N} forms a semigroup, isomorphic to the semi-
group of natural numbers under multiplication, because for any N, M € N,

Ty 0T = TYM

Suppose that p is symmetrically distributed about 0. What is the weak*
limit of 7V p, as N — 00? According to Part 3 of Theorem 74 on page 130,
if p has a density with asymptotic decay rate of order |z| * ! as |z| — oo,
then

lim TNp = S \2[0;B;0]

N—oo

in the weak* topology, for some suitable choice of parameters 5 and o.

Of course, we can generalize this to the case where p is symmetrically
distributed about p # 0, by redefining the action of T to shift the distri-
bution by Nu. The weak* limit would then be _/ \& [u; 8; o].

First Contact Times for Brownian Motion: Suppose that B : [0,00) —
R is a one-dimensional Brownian motion process, and let > 0. Define the
stopping time

7, = min{t > 0; B(t) =a}

Recall the following properties of Brownian Motion:

e (A) Self-affinity: For any A > 0, the process ¢ — B(A.t) is identical
to the process t — vV X.B(t).

e (B) Strong Markov Property: Brownian motion “restarted” at
any stopping time is identical to Brownian motion. Thus, the process
B'(t) = B(t+ 7.) — B(r,) is identical to B.

e (C) The path B is almost-surely continuous. Thus, by the Inter-
mediate Value Theorem, if y > z > 0, then 7, > 7,.
From property (A), it follows that, if & = /), then process B(x%t) is
identical to the process kB(t), so

2 =
KTz 4istr Tz

Suppose 0 < r < s. From property (C), we know that 7; must be larger
than 7. It follows from (B) that 7, — 7, is identically distributed with 7(s_).
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In other words, 7, 75, 7r + T(;_s), treated as a sum of two independent
random variables. Hence, if p, = Dist" [1,], then we have

Ps = Pr * P(s—r)

thus,

px...xp = Distr [T(NI)]
N

—  N2Distr [72]
Nl/ocp

where a@ = 1/2. Hence, we conclude that, for any z, 7, is a (1/2)-stable
random variable. Since 7, must be positive, this variable is furthermore
totally skewed to the right —hence, the skewness parameter 8 must equal 1.
A straightforward computation using properties of Brownian motion reveals

(ie. 0 =z and p = 0). (see [46], P. 171)

A.4 Statistical Methods

The problem of parameter estimation for stable random variables in one
dimension has been well-studied. The earliest methods were developed by
Fama and Roll [39], who developed a method based on the quantiles of
the empirical distribution. Simple heuristic formulae involving these sample
quantiles provided crude but rapid estimates ofparameters; more accurate
estimates could be made using precalculated quantile tables. Unfortunately,
Fama and Roll only addressed the case of symmetric distributions with
a>1,

Next, Press [141] developed a method for estimating the parameters of a
stable distribution, using empirical estimates of the characteristic functions.
Press uses the fact that the log characteristic function follows a power law;
hence, a log-log plot of the log characteristic function will be linear, and
it’s slope will be the stability exponent a. Other parameters are estimated
using similar “linear” methods. Press also extends his method to deal with
a limited class of symmetric multivariate distributions.

Koutrouvelis [92] also uses the linear properties of the log-log plot of
the log characteristic function. He develops a method for estimating the
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parameters based on linear regression. He further refines this method in
[93]. Feuerverger and McDunnogh [9], Arad [10], and Paulson, Holcomb and
Leitch [41] also develop methods using the sample characteristic function.
McCulloch [116] developes a more sophisticated quantile-based method,
which is applicable for asymmetric distributions and a > 0.6. For example

McCulloch uses
T.95 — T .05

T.75 — .25

to estimate «, and
T.95 — 2250 + T.05

Z.95 — T.05
to estimate §. Estimation of parameters is again performed by reference to
precomputed tables of order statistics.

Badahdah and Siddiqui [153] also use the the quantiles of the empirical
sample, along with derived statistics (eg. “Winsorized” means, trimmed
means), to develop robust estimators of the y parameter, and to compute
tables of the Fisher information of stable distributions. DuMouchel [36] also
studies the Fisher information of these distributions.

Nolan [127] developes maximum-likelihood estimation techniques for the
parameters of stable distributions, and together with Fofack [7], performs a
detailed analysis of the modes and Paretian tails of the distributions.

Other estimation methods have been developed by Paulson and Dela-
hanty [12], and Zolatarev [189].



142 APPENDIX A. UNIVARIATE STABLE DISTRIBUTIONS



Appendix B

Multivariate Stable
Distributions

[ For more information on multiivariate stable probability distributions, the best
references are chapter 2 of Taqqu and Samorodnitsky [154], and the review provided
by [128].]

B.1 Characteristic Functions and Spectral Mea-

sures

Theorem 77: Characterization of Stable Distributions in RP
Let p be a probability measure on RP, and let a € [0,2) be a constant.
The following are equivalent:

1. p has Log-Fourier Transform®

o = (mé)i - /Splng@(s) arisl. (B

“ t B, <§_:s><a> i with

where néa)(s) = ‘<és>

gle) = { signg(é-)l(-);ﬁg z}” Zii and B, — { ta,n(% if a#1

Here, T' is some nonegative Borel measure on the unit sphere SP~1 =
{:E'E RP ; ||Z|| = 1}.

!See note after Theorem 74 on page 132, .

143
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2. Let pg = —fi'")p; hence, py is the probability distribution of random

variable Y — i, where Y has distribution p.

IfXy,...,Xy are independent random vectors in R, identically dis-
tributed according to pg, and X = Xy + ...+ Xy, then
, 1
ot o [(12)x] =

Ifa=1: Distr P05

1 1\Y 2

x| (=
() (5) 7
The displacement term ﬁ € RP is a measure of the “asymmetry” of

the spectral measure. If ' is symmetric (ie. I'[-U] = I'[U], for all
U cSPY), then 8 = 0.

3. Again, let py = —i‘)p. If X1, Xy, ..., Xy are independent identically
distributed random vectors in RP with density w such that
w(z)
—— = = C #0,00.
Jall oo |||
1 XN
Furthermore, for all N, define Yy = Neja Z X . If either
n=1
e o> 1, and X1,X5,X3s,... all have mean zero.
or
o a <1, and X1, X3y, X3s,... are symmetrically distributed around
zero,
then Distr [Y n] —y==> po In the weak* topology, for some suitably
chosen scalar ¢ > 0
Proof: See [154], §2.3, p.65, or [95]. |

T is called the spectral measure of the distribution?. What is the

2This terminology has become standard, but is somewhat unfortunate. The “spectral
measure” of a multivariate stable distribution is entirely unrelated to any of the other
spectral measures or other “spectral” objects in mathematics and probability theory. The
“spectrum” of an electromagnetic or acoustic signal, “power spectral density” of a station-
ary stochastic process, the “spectral measure” of a normal operator on a Hilbert space, the
“spectra” of C* algebra, Banach algebras, and commutative rings, and even the energy
spectra of atoms are all loosely related; the spectral measure of a stable distribution is
related to none of them. Perhaps it would be more appropriate to call it a Feldheim
measure, since Feldheim [45] was the first to define it.
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meaning of I'? For all s € SP~1, suppose X, are independent, a—stable

random variables in R, totally “skewed” to the right —ie. having log-
characteristic functions:

Bx,(6) = —[¢|*+ Batli

Recall that, if X and Y are independent random variables, with log-characteristic
functions ®x and ®v, then

Pxiy = Px+ Py

So, if X is a-stable, then:

B x () <ﬁ,f>i - /SD—l <‘<E,s> " + B, <§_',s><a) i) dl'[s]

= i<[j,§> + /SD_I‘I)(XS-S) dl'[s],

Thus, intuitively X can be thought of as an “integral” of a collection of
independent a—stable random variables, indexed by SP~!:

X =p + X, - s dl'[s]
§D-1
This heuristic can be made precise by representing X as the stochastic inte-
gral of a certain multivariate “a-stable noise” on SP~!, with respect to the
measure I'. This is called the stochastic integral representation of X
(see Example 98 on page 188, or [154], Theorem 3.5.6, p. 131).

Thus, if much of mass of the spectral measure is concentrated in some
small region of the sphere, this means that the stable random vector is a
sum of many independent stable perturbations, most of which lie along rays
transecting this small region. Hence, the tails of the multivariate distribution
should decay most slowly within the cone spanned by this region.

More generally, we would expect the radial decay rates of the multivari-
ate distribution in different directions to be somehow proportional to the
concentration of spectral mass in those directions. This indeed is exactly
the content of the following

Theorem 78: (Araujo and Giné, 1980) Let p be a stable probability
distribution in RP | with spectral measure T'; assume that p is centered at
the origin. Let U C SP~! be some measurable subset, and define

Coneld; R] = {ru;uel, r>0}
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For any R >0, let Ap = {x € RP ; |x| > R}.

Then:
lim p[Coneld; RINAg]  T[U]
Ry00 p[AR] - T[sP]

Proof: See Chapter 3, Corollary 6.20, part (b) of [1], on page 152. __ O

Multivariate Stable Densities: Unfortunately, just as in the univariate
case, there is no explicit expression for the density function p of a multivari-
ate stable distribution. Nolan and Abdul-Hamid [80] offer a formula where
p(x) is expressed as an integral over SP~! of a certain function depending
on x and on the skewness and variance parameters characterizing the one-
dimensional marginals of p —this is an improvement of an earlier, similar

formula by Abdul-Hamid [4].

B.2 Examples

Example 79: One dimensional Distributions:

If D =1, then SP~! = {#£1}, so the expression can be rewritten as:

log@x(@) = iug¢ — > (\(€§>a

s==%1

+ Ba(€5) 1) Ty
= i — |0¢|® — oB.BE i

where o = (T{+1} + T{—1})/ is the “variation”, and 3 = %
is the one-dimensional “skewness” parameter. (To see this, use Proposi-
tion 76 on page 135.)

We recover the “symmetric” case by setting § = 0 —that is, ['{+1} =

T{-1}.

Example 80: Symmetric Distributions:

Suppose that I' is a symmetric measure —that is, I'[U] = I'[-U] for any
measurable subset U C SP~!. Then the “skewness” terms all cancel off,
and the log-characteristic function can be rewritten as:

ogax(@ = i(7d) - [ (&) arp
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This is called a symmetric a-stable random vector. For every such vec-
tor, there is a unique symmetric measure I" making the previous formula
true.

Example 81: “Standard” Subgaussian Distribution:

Suppose that G is random vector in R?, with multivariate standard nor-
mal distribution, and Y is an (independent) §-stable random scalar, to-
tally skewed to the right, and let

X = Y/?2.G.

Then X is a-stable random variable. The spectral measure I is a uniform
measure on SP~1 —je. I' = C'- £, where C is a constant, and £ is the
Lebesgue measure on the sphere.

If G has any multivariate normal distribution, then the product Y/2. G
will be a-stable. The formula for the spectral measure is more complicated
when G has nontrivial covariance structure, however.

Example 82: First Contact Point of Multivariate Brownian Motion:

Let

B: [0,00) — RP*! be the “standard” multivariate Brownian motion —
ie. B= (By,B1,...,Bp), where By, B1,...,Bp are independent Brownian
processes on R. For any r > 0, let X, = {r} x RP C RP*! and let X,
be the first contact point of B with the hyperplane X, —in other words,
if , =min{t > 0; By(t) =r}, then X, = (B1,...,Bp)(7)-

We claim that, as a random vector in RP, X, is a subgaussian stable
random variable with stability exponent o = 1. This follows from four
properties of Brownian Motion:

e (A) Self-affinity: For any A > 0, the process > B(\.t) is identi-
cally distributed with the process £+ v X\.B(t).

e (B) Strong Markov Property: Brownian motion “restarted” at
any stopping time is identical to Brownian motion. Thus, the process
B'(t) = B(t+ 7,) — B(7,) is identically distributed with B.

e (C) The path B is almost-surely continuous. Thus, by the Inter-
mediate Value Theorem, if y > z > 0, then 7y, > 7.
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¢ (D) Spherical Symmetry: If F : RP*+! — RP+1 is an orthogonal
linear transformation, then the process F'oB is identically distributed
with B.

Suppose 0 < r < s. By property (C), the first contact of B with Xy must
happen after the first contact with X,.. It follows from (B) that X — &, is
identically distributed with X{,_,). In other words, Xs 7, & +&,_y),
treated as a sum of two independent random variables. Hence, if p, =
Dist [X,], then we have

Ps = Pr*P(s—r)

By the self-affinity of property (A), we can rescale space to conclude that,
for any A > 0,

~

Xnr » A&y

distr

Thus, A} must be stable with stability exponent a = 1. By property (D),
the distribution of X, must be spherically symmetrical in RP. The only
spherically symmetric stable distributions are those which are subgaus-
sian, with an underlying standard normal distribution.

Example 83: A Sum of Principal Components:
Let y1,¥o,...,yn € RP be vectors of unit length, and let X;,...,Xy be
stable random variables in R, independent, with Dist [X] = N [on;1,0].
Suppose X =X1y1 + Xoy2 + ... + XnYnN-

Then the skewness measure I'" for X is defined:

N
r = Zanéyn
n=1

dy,, is the point mass situated at y,.

It may seem peculiar that the sub-Gaussian distribution and the sum
of independent “principal components” have different (indeed, in a sense
“opposite”) spectral measures. After all, shouldn’t the coordinates of a
sub-Gaussian random vector be independent?

Apparently not. One way of seeing this is to compare the probability
density functions of X) = X; + Xy +... + Xp (a sum of independent
a-stable coordinates), versus that of X?) = Y2 . G (a sub-Gaussian).
The contours of equal probability density for X(?) are spheres around
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the origin. The contours of equal probability for X(1) start out roughly
spherical, but, as you move away from the origin, they start to “bulge”
out along the axis of the space, so that, for example, when D = 2, they
begin to look like “fat plus signs” (see [105], p. 387 for a picture).

B.3 Algebraic Properties of Spectral Measures

Proposition 84: (Scalar multiplication of a Stable random vector)
Let a € [0,2), a # 1. Let X € RP be an a-stable random vector, with
spectral measure I'. If c € R, then c¢- X is also a-stable.

1. If ¢ > 0, then c¢- X has spectral measure c® - T.

2. If ¢ < 0, then ¢ - X has spectral measure —c"‘.f, where T is the
spherical inversion of I'; in other words, for all subsets U C sb-1
ry) = rj-vj.

Proof: If @ is the log-characteristic function of X, then the log character-
istic function of ¢.X is (€ — ®1(c.£)). The algebra is now straightforward.
a

Proposition 85: (Sums of Independent Stable Random Vectors®)

Let a € [0,2). Let X1,X2 € RP be independent a-stable random vec-
tors, with spectral measures I'1,I'g, respectively. Let Xg = X1 + Xy have
spectral measure I'g. Then I'g =T'1 + I's.

Proof: Suppose, for k = 0,1, 2, that X has distribution pg, characteristic
function xi, and log-characteristic function ®;. Then

(X0=X1+X2) = (POZPl*Pz) = (X0=X1'X2> - (q’0=¢1+@2)-

But recall from Theorem 77 on page 143 that, for any &€ € RP | & (¢) =
[, 1(8) drsl, where 5 (8) = [{6,8)[° + Ba (€:5)i. Thus, we
§D—1

have:
[, 6 sl = 30(e) = 21(@+0(6) = [ o (s) dTi4T)l8

This is true for every &; this forces I'g = I'y + I's. O

31 am grateful to Jeremy Quastel for pointing out an error in the original statement of
this result.
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(Another way to see this is to use the “stochastic integral” interpretation
of spectral measures given in Example 98 on page 188).

B.4 Marginal Distributions

Theorem 86: Suppose that X has a D-dimensional a-stable random
variable with spectral measure I' and mean ji. If Xy be the dth coordinate
of X, then X is alsp a-stable, with distribution J \® (04, Va, Ba), where

pa if a#l
pa = 3 Jyp-rsalog (s3) dU[8) if a=1>

1/
oq = (/ |3d|a dP[Sd])
sD-1

1
and By = oa SD_lsg dT'[s4]

Vg =

Proof: The general expression for the spectral measure of an N-dimensional
marginal of X, with 1 < N < D, is provided on [154] p. 72. Applying
this in the case when N = 1, we conclude that the distribution of X is

given

ox,6) = it — 3 (I + B (E5) 1) -l

s==1
where
) = [ sl
SD—l
+d
Sfd_l = {5’6 sP-t. sd>0}
SPt = {§esP; s <0}
and

e pa if a#Fl
4= pg— % f§£d_1 salog (s2) dU'[3] if a=1
The parameters o4 and Sy are derived from this “spectral measure” by:
o = (raf{+1} +7af{-1})"*
Ya{+1} —va{-1}
Ba

o-a
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The problem of reconstructing the original distribution from its one-
dimensional marginals is thus the problem of reconstructing the measure I
on SP~! from the 2D points {v4(s) ; d € [1..D], s = £1}. In the Gaussian
case, this is relatively straightforward; all we need to complete the picture
is the “correlation structure”, as represented by the components of the cor-
relation matrix. For the general a-stable case, however, the problem is
far more complicated.

B.5 Simulating a—stable Random Variables

According to [154], p.42, the simplest way to simulate a one-dimensional
a—stable random variable, with o = 1,8 = u = 0, is as follows:

e Let U be a uniform random variable on (%W’ %)

e Let E be an exponentially distributed random variable, with mean 1,
independent of U.

Then

X:= (zz;((%);f/)a . (COS [ an) . U]) e

is an a—stable random variable with o =1 and 8 = p = 0.

Samorodnitzky and Taqqu [154] claim that a “similar” formula exists for
the skewed case (8 # 0), but they do not state it explicitly, although they
refer to [36] and [77] for further information. Instead, they provide source
code for a FORTRAN program called rstab*, which will simulate the skewed
random variable (see [154] Section 1.7, p. 46)

Simulating a—stable Random Vectors

From this, we can simulate an a—stable random vector with skewness mea-
sure I, simply by using a program like rstab to simulate a SP~!—indexed
collection of skewed random variables, and then integrating them together
with the skewness measure I'.

If we wish to simulate a symmetric random vector, our task is even
simpler; in this case, we can use the explicit formula I’ve written above in
terms of random variables E and U.

*Originally by John M. Chambers [77], adapted by John Nolan, 1992, modified by
Vadim Teverovsky, 1993
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I have written C code to simulate multidimensional stable random vec-
tors. The vectors can potentially have arbitrary spectral measures, although
the code is optimized to work for the most commonplace scenarios: purely
atomic spectral measures, subgaussian stable vectors, and linear combina-
tions of these two extremes.

A similar method is described in [79], whose authors have written a
FORTRAN program for generating pseudorandom stable vectors. They confine
themselves to the case when the spectral measure is a sum of atoms, which is
sufficient because any spectral measure can be approximated by such a sum.
The authors use the results of [174] to bound the error of this approximation.
A review of these simulation techniques is provided in section 4 of [128].



Appendix C

The Prevalence of Power
Laws

Most of the phenomena we encounter in nature exhibit probability densities
with rapidly decaying tails. For example, the tails of the ubiquitous normal
distribution decay like exp(—|z|?) as £ — co. Densities with rapidly decaying
tails have finite first and second moments, and hence, have a well-defined
mean and variance. Intuitively, the mean of the distribution represents the
“typical scale” of the phenomenon; the wariation, represents the “typical
degree of deviation” from this typical scale.

The ubiquity of the normal distribution, with its convenient mean and
variation, has engendered a complacent assumption —or perhaps a hope
—within the statistical sciences that, in the “real world”, all distributions
had such rapid tail decay. Hence, the normal distribution is the default used
to model any empirically encountered random variable of unknown distri-
bution, and Gaussian processes are the default model for any empirically
encountered stochastic process.

Increasing evidence exists, however, that many phenomena in the real
world do not exhibit distributions with rapid tail decay. Instead, these
phenomena have tails which decay according to power laws of the form z™¢
as x — 0o, where « is a “scaling exponent”, characteristic of the system. If
a < 3, then the distribution does not have a well-defined variance, and many
of the L%-norm related tools of classical probability theory are rendered
inapplicable. If o < 2, then the distribution does not even have a well-
defined mean.

As a consequence, these phenomena have no “typical scale”; we cannot
identify events of a certain size as being “typical events”. Indeed, if a distri-

153
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bution really closely follows an 2~ power law, then it possesses the property
of scale invariance; the distribution actually looks exactly the same when
we perform a change of scale. Suppose, for example, that we were looking at
the distribution of “lengths” of some object. Scale invariance means that,
were the “tick marks” erased from the X axis, it would be impossible, from
just looking at the graph of the distribution, to discern whether the X axis
was on a scale of millimetres, metres, or kilometres.

Another consequence of power-law decay rates is the surprising frequency
of large events. In a normal distribution, “large” events more than a few
standard deviations away from the mean are so improbable that, for practical
purposes, we can exclude them as impossibilities. In power-law distributions,
however, arbitrarily large events occur with only slowly decaying frequency.
When the phenomena in question have real human impact (such as, for
example, earthquakes or stock market crashes), the frequency of large events
must be modelled accurately enough to formulate sound policies of risk
management.

C.1 Examples

The Gutenberg-Richter Law: The Gutenberg-Richter law is em-
pirically observed power law in the distribution of earthquake sizes. Let
E denote the total energy released during an earthquake event; this re-
flects the “size” of the earthquake. Let P(E) be the the distribution of
earthquake sizes along some particular fault. Gutenberg and Richter found
that P(E) ~ E~%, where « is an exponent which ranges from 1.8 to 2.2,
depending upon the fault being examined [76, 157, 158, 163, 148].

Although the Gutenberg-Richter law is accepted within the geological
community, there is some controversy over its exact range of applicability.
Earthquakes are propagate within the schizosphere, the part of the Earth’s
crust that is rigid enough to be ruptured by earthquake events. A fault
can be imagined as a plane vertically bisecting the schizosphere. Smaller
earthquakes propagate in two dimensions along the fault plane. Larger
earthquakes, however, penetrate all the way to the bottom of the schizo-
sphere; at this point, further earthquake propagation can only occur in one
dimension, along the line of the fault. Thus, although both small and large
earthquakes follow power laws, the exponent is different for small earth-
quakes than for large ones, reflecting the dimension of the fault geometry
within which the earthquake occurs.
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The Pareto Income Exponent: Vilfredo Pareto ([133], reprinted in
[134]) was the first to observe that the distribution of personal incomes seems
to follow a power law distribution, with the exponent o between 2 and 3.
Various other authors have refined this estimate; for example, Mandelbrot
[106] suggests that different exponents may apply to different “sectors” of
the employment market (eg. salaried professionals vs. skilled wage earners
vs. unskilled wage earners), and attempts to offer a theoretical explanation
for why this is not only possible, but plausible. Others have rejected Pareto’s
claims; for example, Macaulay [103] strongly criticized Pareto, while Gibrat
[564] asserted, contrary to Pareto, that the distribution of personal incomes
is better modeled by a log-normal distribution.

Finance: In 1963, Benoit Mandelbrot published a seminal paper
[108], in which he repudiated the classical “Brownian motion” model of
speculative price movement first developed by Bachelier [14], and proposed
instead that, at least in certain markets, the temporal variation of prices
was better modelled using a-stable distributions, which he called “Pareto-
Lévy ” or “L-stable” law. This, for Mandelbrot, was the explanation for the
surprising frequency of very large market events —a frequency which was
inexplicable within Bachelier’s Gaussian framework. In [108], Mandelbrot
explores the theoretical consequences of his conjecture. In a sister paper,
[107], he musters an impressive body of empirical evidence, demonstrating
how empirical data from markets as diverse as cotton, wheat, and railroad
stocks exhibit stable laws.

Although Mandelbrot’s ideas were promulgated by himself and his stu-
dent Fama [43, 42], and generated considerable interest at the time (earning
a mention in Feller’s encyclopaedic introduction to probability theory [46]),
they soon fell out of favour, largely because the Bachelier’s model was far
more computationally tractable. The finite variance of normal distributions
allows us to identify “market risk” with distribution variance: this forms
the basis of the Sharpe-Markovitz theory of risk [161, 114]. The existence of
1t6 integrals for the Brownian process made possible the development of the
Black-Scholes stochastic differential equations [18]. The well-defined mean
of a normal distribution allows sensible discussion of the “expected future
price” of a stock, and therefore allows us to meaningfully hypothesise that
price processes are martingales. The martingale assumption is called the
Rational Ezpectations hypothesis in the mathematical finance community,
and is almost an axiom of financial mathematics.

Stable distributions, in contrast, do not generally have finite variance;
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thus, we must invent a new conception of risk. Although stochastic integra-
tion with respect to stable processes is well-defined, it does not have all the
nice properties of the Itd integral. For example: unlike Brownian motion,
stable processes do not always have almost-surely continuous sample paths
—a highly undesirable, “nonphysical” property. Finally, if the tail exponent
is less than 1, a stable random variable does not even have a mean; a stable
process generated by an accumulation of such random variables thus has no
“expected future value” calling into question the very meaning of “Rational
Expectations.”

Recently, researchers have again started seriously exploring the idea that
financial markets exhibit non-Gaussian price variations. Mandelbrot has
published a book [105], summarising his work in the field over the last forty
years. Inspired by the theory of Self-Organized Criticality (see § C.2 on
page 162) originally suggested by Bak, Tang, and Wiesenfeld [136], many
researchers have begun searching for “critical phenomena” in financial mar-
kets [8, 115], or within the economy in general [94, 137, 156].

New empirical work has confirmed Mandelbrot’s early claims; for ex-
ample, Rosario and Mantegna [112] have observed that the movements of
the Standard & Poor’s 500 index follow a “truncated” a-stable distribution
with a =~ 1.4.

Others have tried generalizing classical portfolio optimization techniques
to this new, non-Gaussian framework. Generalizations of Sharpe-Markowitz
portfolio theory under the hypothesis of stable asset distributions have been
carried out by a variety of authors. As a natural measure of portfolio risk, all
of these authors consider the variation of a stable distribution as the obvious
surrogate for the variance used in the Gaussian regime. All of them work
only with symmetric distributions, because there is no clear interpretation
of “skewness” (8) of an asymetric distribution in terms of portfolio risk or
return.

Samuelson [155] examined the case when the assets are assumed to be
symmetric and independent (this corresponds to pure-atomic spectral mea-
sure with orthogonal atoms). Fama [44] worked with the Sharpe-Markowitz
diagonal model. Press [142] generalized this to an arbitrary “pseudo-Gaussian”
distribution (pure atomic spectral measure whose atoms are orthogonal rel-
ative to some inner product). These two cases where further studied by
Ziemba [187]. Arad [10, 11] showed that the efficient portfolio set is con-
vex. This allowed Belkacem, Lévy-Vé’hel, and Walter [99, 100, 68, 67] to
extend the Capital Asset Pricing Model (CAPM) to a general multivariate
symmetric distribution, making use of the concept of covariation (origi-
nally developed by [120], and discussed extensively in [154]) to develop an
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equation describing the relationship between risk and return for an optimal
portfolio. These results are extended by Gamba [52, 53], who develops an
interpretation of portfolio minimization as a “norm minimization” problem.
Other studies have been done by Bawa et al. [38] and McCulloch [117]. The
subject has now become extensive enough that Embrechts, Klippelberg,
and Mikosch recently wrote a whole book on it [24].

Bouchaud, Sornette, Walter, and Aguilar [82] propose natural extensions
of portfolio-optimization methodologies to a world where price variations
are not only allowed to be non-Gaussian, but are further only constrained
to satisfy the very weak hypothesis of power-law decay in the tails (see also
[21] §3.3.2). The obervations of Bouchaud et al. therefore not only apply to
stable distributions, but to any other power-law type distribution.

Zipf’s Law: One famous early discussion of power law distributions
was in the book Human behavior and the principal of least effort : an in-
troduction to human ecology by George Kingsley Zipf [188]. Zipf ranked the
major urban centres of the United States in decreasing order of population,
and empirically observed what has come to be known as Zipf’s Law: as
N — o0, the Nth city on the list has a population proportional to 1/N.
Hence, for example, the “30th largest” city in the U.S. has a population
approximately one thirtieth that of the largest city.

This observation has been confirmed many times, using urban population
data from many countries (see [94], 1.3). For small N, the data fits the curve
rather poorly (the “second largest” city is not half as large as the largest).
However, as N becomes large, the fit is almost exact.

Zipf noticed a similar pattern in many other distributions. For example,
one gets an identical curve if one looks at the frequency of appearance of
words in the English language: if one orders the words of the English lan-
guage in decreasing order of frequency, then the Nth word in the list has a
frequency proportionate to 1/N.

To see how Zipf’s Law corresponds to a power law, note that the “rank-
ing” of a city corresponds to the value of the cumulative distribution of its
inverse-population. Let the total number of cities in our sample be N, and
let ¢ be a constant so that, as n gets large, the nth largest city has popu-
lation approximately ¢/n, and thus, has inverse population n/c. Zipf’s law
can then be restated: “For any n, the proportion of cities whose inverse-
population is smaller than ¢/n is approximately n/N.” In other words, if
X is the inverse-population of a randomly chosen city, then the cumulative
distribution of the random variable X is approximately (¢/N)- X !. Thus,
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the probability density function is approximately (—c/2N) - X 2

At this point, the astute reader will realize that Zipf’s law cannot literally
be true for n — oo. In real life, there are a finite number of cities, and thus,
there is a maximum n for which Zipf’s law is meaningful. Stated another
way: the minimum population of an “urban centre” is one person, so the
urban centres of Zipf’s law cannot get smaller than a certain size. Indeed,
if we were to interpret Zipf’s law as literally true for all n € N, we would
end up concluding that the country had an infinite population, because we
would be summing a harmonic series.

This illustrates a difficulty with power law distributions: there are often
physical and mathematical reasons why the power law must become inappli-
cable at some very large scale. Physically, we realize that, although “large
events” are possible, one cannot have events that are bigger than the system
in question. One cannot have earthquakes bigger than the Earth, or Nile
floods bigger than the entire Nile watershed, or market crashes bigger than
the market, or an inverse-population bigger than 1 (and thus, a population
smaller than one person). Mathematically, if we take a power law too lit-
erally, we may end up computing infinite values for quantities which must
obviously be finite, such as total seismic energy dissipation, total volume of
water displaced, total volume traded, or total national population.

The power-law distribution must have a “cut-off” at some point. The ex-
act location of this “cut-off”, and the mathematical consequences it entails,
are subtleties which are not yet properly understood.

Internet Traffic patterns: Design of communications networks in-
volves complex resource-allocation problems concerning the placement of
routers, the capacities of packet-buffers, and the bandwidth of channels. In
addition to these “static” allocation problems, one must confront the “dy-
namic” allocation problem of efficiently routing packets to maximize trans-
mission speed while minimizing congestion and router overload.

Early mathematical models of Internet traffic were based on a simple
extrapolation of the mathematical teletraffic theory which had been used
by engineers to design telephone networks. Teletraphic theory is just a
generalisation of queuing theory, and is based upon two assumptions:

e (A) Clients connect or disconnect to nodes in the network according
to Poisson processes with constant rates.

e (B) Each client, while connected, uses a constant and predictable
amount of network resources.
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Telephone Internet
Clients | Humans Computers
Purpose | Human conversation | Digital data transfer
Connection | Only one Many connections

Behaviour | connection at a time | simultaneously
Load per Client | Constant, predictable | Wildly Varying
Corrolation | Almost none, except | Large and
between clients | during emergencies unpredictable
“Typical” timescale | One timescale Many timescales
of behaviour

Figure C.1: A Comparison of Voice Telephony with Digital Communications

Implicit in (A) is that the behaviour of different clients is independent;
hence, the individual fluctuations in network load are all independent events.
Assumption (B) says that the average total network load will be linearly
proportional to number of clients, and thus, related to the rates of the
Poisson processes of assumption (A) in a simple way.

While this model had served the telephone system well for years, engi-
neers soon found it to be totally inadequate for managing Internet traffic.
Inspection revealed that the statistics of Internet traffic were totally incom-
patible with the Poisson model, while theoretical considerations suggested
that there were fundamental differences between a digital communications
network and a telephone network; these differences are summarized in table

C.1

The “typical” timescale of human-to-human connections is relatively
well-defined and invariant, assuming that most people have roughly similar
telephone conversation styles. This time-scale takes the form of a relatively
constant “rate”, A, for the Poisson processes defining (dis)connection events;
A is proportional to the average call-length. (To be sure, we can refine this
assumption, asserting that there may be one time-scale for “personal” calls
(usually placed during the evening) and another for “business” calls (placed
during business hours). Nonetheless, these two time-scales differ by less than
one order of magnitude.)

In contrast, computer-to-computer connections take place on many dif-
ferent time-scales, depending upon the purpose of the connection and the
nature of the data being transmitted. For example, HTTP connections take
the form of very brief requests, sent from a client to webserver, followed by
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several relatively short but intense bursts of data from webserver to client,
followed usually by a long period of “silence” on both ends. In contrast,
an FTP file-transfer usually takes the form of a much longer, sustained pe-
riod of constant, very high-intensity dataflow. On the other hand, text-based
human-to-computer interactions (for example, via “telnet”) involve an inter-
mittent, very low-intensity stream of packets in one direction (user keyboard
input) alternating with brief bursts in the other direction (server response).
Human-to-human interactions (via ICQ , “talk”, and other “online chat”
mediums) involve intermittent, very low-intensity stream of packets in both
directions.

For similar reasons, the load-per-client on a digital communications net-
work can vary over many orders of magnitude. Consider the range of scales in
the World Wide Web alone. The smallest, simplest web pages are text only,
and occupy perhaps between 1 and 10 kilobytes of space. Larger web pages
make use of inlined graphics, and require perhaps 100 to 1000 kilobytes,
assuming the graphics is stored in some compressed format. The fanciest
“multimedia” webpages make extensive use of sound and animation; even
in highly compressed formats, a ten second soundfile occupies hundreds of
kilobytes, and an interesting animation easily exceeds 10 megabytes. Be-
cause of this, a single mouse-click by a web-browsing individual can trigger
file transfers ranging in scale over 5 orders of magnitude.

In contrast, the load-per-client on a telephone network is constant: each
human-to-human connection occupies one circuit of the circuit-switched net-
work, and requires (and gets) exactly the same amount of bandwidth as
every other connection.

Also, human-to-human telephone connections are usually uncorrelated
with one another, except during events of widespread public importance
(ie. emergencies, breaking news items, etc.). In contrast, the design of
digitial networks often results in “cascading” events. For example, when a
client’s web browser reads an HTML file from a web-server, that HTML file often
contains embedded “links” to many other files, on other servers (containing,
for example, graphics, “banner advertising”, etc.). Hence, a single HTTP
request can trigger a “cascade” of secondary HTTP requests; in this way,
the activity on one webserver actually becomes correlated to that on many
others.

Also, TCP/IP routing algorithms are designed to reroute packets to avoid
congestion. Because of this, congestion in one “region” of a network can ac-
tually affect the routing of packets in neighbouring regions, creating further
correlations. Finally, many forms of networked data are widely “mirrored”.
For example, USENET news data is mirrored on thousands of “news servers”
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all over the network. This means that every USENET message, large or small,
is duplicated thousands of times, resulting in a “multiplication” of any fluc-
tuations in traffic patterns.

Empirical evidence [122, 121] indicates that Internet traffic statistics
exhibit tails with power law decays. As in many other contexts where power
laws manifest, Internet traffic also exhibits long duration correlations in time
and apparent self-similarity on different scales. For a review, see [181].

Other Examples: Mandelbrot [109] catalogs many other cases where
power law distributions have been found in empirical data. These include:

e The population distribution of mutant strains in a bacterial culture
[160].

e The energy distribution of incoming cosmic rays [47].

e The relative frequencies of words in a human language, when words
4

are “ranked” in decreasing order of frequency. This 1/f distribution
was originally called the Zipf-Mandelbrot Law, and was the subject of
much discussion in the early 1950’s [188, 104, 110].

e The property damage caused by fires [97].
e Other financial risk distributions [183, 184, 185, 186].

e The distribution of scientific papers produced by a given scientist fol-
lows a power law with exponent o = 2 ([101], see also p.77 of [105]).

Wentian Li of Rockefeller University maintains an excellent and very
thourough online resource of information on power laws and 1/f systems at

http://linkage.rockefeller.edu/wli/1fnoise/.

In particular, he provides an extensive list of examples of power law
behaviour in:

Electronic Devices Ecological Systems Heartbeats

Biology Network Traffic Traffic Flow
Granular Flow Music and Speech  Neurological Systems
Human Coordination Astronomy Magnetic Systems
DNA Sequences Chemical Systems  Geophysical Records
Number Systems Radioactive Decay = Optical Systems
Leaking Faucets Meteorology Written Language

Work-Related Tardiness Images Financial Data
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C.2 Origins and Causes

The ubiquity of the normal distribution in real phenomena is explained
by the Central Limit Theorem, which basically says that a normal distri-
bution is the inevitable outcome of any accumulation of a large number of
small, independent random perturbations with finite variance. Hence, in the
world of finite-variance processes, the normal distribution is “generic”. We
need a similar “generic” mathematical mechanism to explain the increas-
ingly frequent manifestation of power law distributions in empirical data.
Few mathematical or physical mechanisms have yet been proposed; we will
review some of them here.

Self-Organized Criticality

In 1988, Per Bak, Chao Tang, and Kurt Wiesenfeld published a now fa-
mous paper [136] in which they suggested a novel paradigm they called Self-
Organized Criticality (“SOC”). This term has been much used and abused
since its introduction, and some semantic clarification is in order. To under-
stand the meaning of “self-organized criticality”, we must first understand,
seperately, the terms “self-organized” and “criticality”.

Critical phenomena are familiar to physicists studying condensed matter,
and to mathematicians studying percolation theory and interacting particle
systems. Unfortunately, the term means different things in different con-
texts, so there is some ambiguity attached to its usage. Critical phenomena
usually arise in the context of phase transitions: sudden, discontinuous
qualitative changes in a mathematical or physical system which arise when
a control parameter crosses a certain threshold or critical point.

For example, in percolation theory [56, 89, 37], one randomly assigns
the value of “0” or “1” to each site! in a lattice; one then studies the
distribution of sizes of connected blocks of 1’s in the lattice. Let A € [0,1]
describe the proportion of sites which get the value 1. As A increases from
zero to one, the expected size of a connected block increases nonlinearly, and
as A exceeds a critical value \., the expected size suddenly goes to infinity.
At this critical point, a “phase transition” occurs; the system goes from
a collection of seperate, isolated blocks of finite size, to a single, infinite
connected component (with a few disconnected finite “satellites”).

In solid-state magnetic physics, the canonical mathematical model is the

IStrictly speaking, this is so-called site percolation theory; in bond percolation theory,
one assigns “0” and “1” to the edges connecting sites.
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so-called Ising Ferromagnet [98]. Again, one begins with a lattice of sites;
this time, each represents a micromagnet (say, an atom), which can assume
one of two polarities or “spins” (“up” or “down”). Neighbouring magnets
exert a force on one another which causes them to try to equalize their
polarities: a state where neighbouring magnets have equal polarities has
less potential energy than one where their polarities are opposite.

Left undisturbed, the system as a whole “wants” to assume one of the two
global spin configurations of minimal energy: either all “up”, or all “down”.
Confounding this uniformizing trend, however, is randomness introduced
through thermal noise. We assume that the system is subjected to a certain
amount of “heat”, which causes the micromagnets to occassionally flip their
spins in defiance of their neighbours.

In this model, the parameter X\ represents the “temperature” of the sys-
tem. When A = 0, there is no thermal noise; the system crystalizes into
either an all-up, or an all-down configuration. As A — oo, the interac-
tion between neighbouring sites becomes weaker and weaker, compared to
the degree of thermal perturbation, until, when A\ = oo, the spins at each
site are effectively independent random variables. At this point, the spin-
configuration of the lattice is what, in ergodic theory, is called a Bernoulli
process. In particular, as a stochastic process on ZP, the spin state is ergodic.
Intuitively, this means that, starting from any spin-configuration, we can get
arbitrarily close to any other spin-configuration, simply by translating the
configuration far enough on the lattice.

In contrast, when the A = 0, the system is not ergodic, because there
are two invariant configurations: all-up, and all-down. If you are in the
all-up configuration, you cannot attain the all-down configuration simply by
translating the configuration across the lattice by some large amount.

So, if we “quench” an Ising ferromagnet by continuously decreasing the
temperature parameter A from oo towards 0, at some point, A must cross
a critical value, A., when the system experiences a “breakdown of ergod-
icity”. For large )\, there is really only one “state” the system as a whole
can be in, from a statistical point of view?, whereas for smaller ), there are
many. This breakdown of ergodicity is called a “phase transition” (for more
information, see [98], chapt. IV).

Systems at a phase transition exhibit many interesting properties, which
we collectively refer to as “critical phenomena”. For one thing, as the sys-
tem approaches the phase transition, we find spatial correlations occuring

*Formally speaking, what I mean is that the translation-invariant measure has no
nontrivial invariant subsets.
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over increasingly long distances. Consider the Ising ferromagnet. When
A = o0, there is no correlation between even immediately adjacent sites.
When A\ = 0, there is total correlation between even very distant sites, since
all sites must have identical spins. As X\ goes from co down to 0, the de-
gree of correlation between neighbouring sites must increase. In particular,
when A is near the critical point, we find that the correlation between sites
(as measured by the autocorrelation function of the configuration) decays
over distance according to a power lgw. This is to be contrasted with an
exponential decay rate when X is large compared to the critical point. (For
more information, see [76], sect. 2.4)

The problem, however, is that the critical phenomena are not “generic”.
The parameter A has to be “tuned” to be close to the critical value, so that
the critical state is inherently unstable. The claim of Bak et al. was that,
in certain physical phenomena, the system self-organizes to a critical state,
and, once it arrives there, it hovers on the edge of criticality forever. Thus,
Bak et al. argue, far from being exotic, the critical state is in fact the generic
state for certain systems.

The term self-organization has received a lot of use lately, due to the
burgeoning study of “Complexity”, which originated at the Santa Fe Insti-
tute ([63, 164, 75, 124, 125] etc.). Theorists studying emergent phenomena
in complex systems have identified self-organization as the mystery ingre-
dient needed to explain such enigmas as the origin of life [86, 85, 87, 149]
the evolution of complex organisms [55] or the nature of cognition and con-
sciousness [88]. In the popular science press, the term has assumed almost
mystical connotations, which has hurt its credibility within the academic
scientific community.

“Self-organization” at least the way it is used by Bak et al, however,
simply refers to the existence of an attractor within some dynamical system.
Self-organized criticality is a property of a (stochastic) dynamical system:
it means that the attractor subset consists mainly of critical or near-critical
states.

Bak et al. illustrate this with the famous “Sandpile Model”. The idea is
this: sand falls randomly onto a flat surface, and accumulates into a random
landscape of hills and valleys. As long as the slope of the pile at some point
is below a critical value, the force of friction is sufficient to keep the sand
immobile. If the slope exceeds a certain critical value, however, then gravity
will cause an avalanche to occur until enough sand has flowed from the hills
into the valleys to bring the slope below the critical slope everywhere in the
landscape.
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Intuitively, the system is in a “near-critical” state if the slope is at or
near the critical value at a large number of locations. In such a state,
the addition of a single grain can cause the slope to exceed the critical
value at some locale. A small avalanche will begin, transfering sand from
this locale to neighbouring locales. If the neighbouring locales are also at
the critical point, then they, in turn, will themselves avalanche. In this
way, an avalanche can propagate through the landscape in a chain reaction,
eventually involving a very large amount of sand.

If the landscape is super-critical (ie. the slope exceeds the critical value
at any sites), then it will immediately collapse into widespread avalanche
activity, until the slope is below the critical value everywhere. If the land-
scape is sub-critical (ie. the slope is far below the critical value everywhere),
then the addition of new sand-grains will not trigger any avalanches, but will
instead tend to increase the slopes, bringing the system closer to criticality.
When the system is near-critical, avalanches are frequent events, and occur
with a wide range of sizes. However, none is large enough to take the system
very far away from criticality.

In other words, as sand is continually and randomly added to the system,
it approaches the near-critical region, and then stays there. The system self-
organizes to criticality.

Bak et al. never intended their model to be a description of real sand-
piles3; the “sandpile” metaphor was only intended to stimulate intuition.
Instead, Bak et al. imagined self-organized criticality as being a “universal”
phenomena?, arising, in one form or another, in a wide variety of physical
processes. Since the paradigm was introduced, researchers have attempted
to apply it, with varying degrees of success, to earthquakes [131, 61], eco-
nomics [137, 156, 118, 119], finance [115], evolutionary biology [16], and
superconductivity [151], as well a wide variety of cellular automata, such as
Conway’s famous Game of Life [15].

What does any of this have to do with power law distributions? In

3Hence, the flurry of experiments attempting to “empirically confirm” the “predictions”
of the Sandpile model in real sandpiles [26, 62, 102], and rice-piles [167, 49, 139, 140] are
sort of missing the point. In particular, those researchers who claim [26, 62] that Bak et al.
have been “refuted” because real sand-piles do not exhibit exactly the critical behaviour
described in [136] are definitely missing the point. For a summary of this experimental
activity, see [76], §3.2, 3.3.

“Bak’s own attempt, in his book How Nature Works [15], to promulgate self organizing
criticality as some kind of “universal theory of complexity” are perhaps a little bit too
ambitious in this regard, and have done nothing to assuage the skepticism of the scientific
community about the status of his claims.
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their original papers, Bak et al. describe self-organized criticality as “an
explanation for 1/f noise” —indeed, this is the subtitle of their paper [138]
in Physical Review Letters. “1/f noise” is one of the older terms used
to describe power law distributions®. One of the central theses of Bak et
al. was that self-organized critical systems spontaneously exhibit power-law
distributions in many observables. Their justification is entirely empirical
in nature: they ran extensive computer simulations of the sand-pile model,
along with an analogous “3-dimensional” model, and found that, if one
empirically measured the distribution of avalanche sizes according to any
of a number of criteria (total amount of sand displaced, total physical area
covered by the avalanche, avalanche lifetime, etc.), one recovered power laws
with various exponents.

Bak et al. thus propose SOC as an explanation for the power laws ob-
served in processes such as earthquakes, stock markets, and Nile floods.
Unfortunately, this explanation sometimes seems, to borrow Dennet’s [35]
words, nothing more than a virtus dormitiva® : it merely displaces the prob-
lem, rather than solving it. Now, instead of asking, “What is the origin of
all these power-law distributions?” we ask, “What exactly is self-organized
criticality? What are necessary and sufficient conditions for its manifesta-
tion?” No precise mathematical characterization of self-organized criticality
exists, and thus, although many mathematical models “appear to exhibit”
SOC in computer simulations, it is not clear how to prove rigorously that
any of them do, or even if the question can be rigorously formulated. In-
deed, it is clear from their writings that some researchers seem to consider
“self-organized criticality” as synonymous with “power law distribution”,
hence making any explanation of the latter in terms of the former entirely
circular.

Catastrophic Dissipation of a Constant Energy Influx

Common to many of the mathematical models exhibiting self-organized crit-
icality is the following feature: “stress” or “energy” enters the system at a
constant rate, and builds up within. This stress is periodically dissipated in

5In particular, the term describes the power spectra of certain stochastic process; the
term “1/f” refers to the fact that power is inversely proportional to frequency. For some
reason, the exponent is suppressed; the proper term should be “1/f* noise”, but this just
wasn’t as catchy.

5Dennet derives this term from a comedy by Moliére, called La Malade Imaginaire
(1673), where, during a satirical medical-school exam, a character “explains” opium’s
ability to cause sleep by positing that opium has a virtus dormitiva (Latin: “sleep-causing
power”).



C.2. ORIGINS AND CAUSES 167

“catastrophic” events, and it is in the statistics associated with these catas-
trophic events that we find the power laws. For example, in the Sandpile
Model, stress enters the system as sand piles up in increasingly precarious
slopes; this stress is dissipated by intermittent avalanches. In SOC models
of earthquakes, stress enters the system as two plates move relative to one
another, and mechanical stress builds up along the “sticky” boundary be-
tween them. This stress is dissipated by intermittent slippage events at the
boundary —-that is, earthquakes.

Perhaps we can duplicate the power law statistics of SOC by constructing
a simplified model of this phenomena. We need four ingredients:

e (1) “Energy” enters the system at a constant rate, p. In other words,
if E(t) denotes the energy level at time ¢, then

dE
a 7
except during “catastrophes”.

e (2) “Catastrophe” events occur according to some Poisson process,
with instantaneous rate [J(t), which possibly varies over time.

e (3) When a catastrophe occurs, it dissipates all the energy which has
built up since the last event.

e (4) The “size” of the catastrophe is simply the amount of energy it
dissipates.

We want the size distribution of catastrophes to follow a power law.
What sort of instantaneous rate J(t) will we need to ensure this? By con-
ditions (3) and (4), the size of a catastrophe is equal to the total energy in
the system, at the moment the catastrophe occurs. By condition (1), this
energy is linearly proportional to the length of time since the previous catas-
trophe. Hence, a power-law distribution of catastrophe sizes is equivalent
to a power-law distribution of inter-catastrophe intervals.

It turns out that a necessary and sufficient condition for this is:

e (5) The instantaneous catastrophe rate is inversely proportional to the
energy load in the system, up to some maximum rate M:

Jt) = min{%, M}
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Let C be the (random) size of a catastrophe. Thus, C = p- 7, where 7 is
the (random) length of time that has elapsed since the previous catastrophe.

Thus, assuming that = > 17, we have:

Po[C=2z] = Pu|r=2z/p

where K = (e=%/?(aM)~*/%), and 8 = £ Notice that we must assume that
M is finite; if we let M go to infinity, then the integral of [J(t) is infinite,
which forces catastrophe intervals to have size zero: the system is in a
“permanent state of catastrophe”, and all catastrophe events have size zero.
By making M finite, however, we impose a minimum time-scale on which the
power law applies: for extremely short time scales (ie. extremely “small”
catastrophe events), the distribution of catastrophe sizes is exponentially
decaying, rather than a power law.

Thus, an extremely simple mathematical model can reproduce the power
law phenomena. What physical interpretation can we give to condition (5)7
It seems that, paradoxically, the more energy we load onto the system, the
more stable the system becomes.
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Random Exponential Growth I: Bursting Bubbles

There is a another simple “catastrophe” model which exhibits a power law
distribution. We will describe it in terms of stochastically bursting “bub-

bles”

. These bubbles satisfy the following two axioms:

Bubbles are born, grow, and die in succession. Each bubble is born at
the moment the previous bubble bursts.

When a bubble is born, it has initial size 1.

After a bubble is born, it grows exponentially over time. In other
words, if E(t) is the size of the bubble at time ¢, then E satisfies the

differential equation:
dE

“) =6 E()

so that, if E(0) = 1, then, for any ¢ > 0, E(t) = .

Bubbles burst according to a Poisson process with constant instanta-
neous rate a. In other words, if 7 is the (random) lifetime of a bubble,
then for any ¢ > 0,

d
—Pu[r<t] =a-e™
dtmb[T_t] a-e

When a bubble “bursts”, it releases energy in direct proportion to its
size. These intermittent releases of energy are the “catastrophes” of
the system.

Let’s look at the distribution of “catastrophe sizes”. Let C be the (ran-
dom) size of the catastrophe associated with a particular bubble. Thus,
C = €87, where 7 is the (random) lifetime of the bubble. So, for any = > 1,

d
— <
demb [C < 1]

%Pmb [eﬁT < w]

)

1 g1 [/ d
= — [ - R
¢ 3 (dw ln) (z)
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where K = ﬁ, and v = £ + 1. Note that, again, we must impose a minimal
“cut-off” in order to get sensible results. This time, we do this by assuming
that all bubbles begin with a minimal size of 1.

Random Exponential Growth II: Simon’s Model of Urban Growth’

Another “random exponential growth” model that exhibits power laws is
based on Herbert Simon’s [162], proposed explanation for Zipf’s Law [188]
of urban sizes (see Section C.1 on page 157).

Simon makes the following assumptions:

e New “cities” are created at a constant rate o, and begin with a pop-
ulation of 1.

o New “citizens” arrive in the country one at a time, and each chooses a
city to inhabit. The probability that a given citizen will pick a certain
city as their home is directly proportional to its sizeS.

The growth rate of each individual city is therefore random and roughly
exponential. In Simon uses this to deduce a kind of “discrete Fokker-Planck”
equation for the distribution of city sizes, treated as a probability distri-
bution on N. He concludes that the only stationary distribution of this
Fokker-Planck equation is one satisfying a power law. (Krugman provides
more detailed discussion of Simon’s model in [94].)

Here I will present a generalization of Simon’s model. For simplicity, we
will make the following assumption, which, although ridiculous if interpreted
too literally, are mathematically convenient.

e Instead of parameterizing the “size” of each individual city discretely
(on N), we will parameterize it continuously, (on [0,00)). This will
allow us to make explicit use of the Fokker-Planck formalism.

e Instead of assuming new cities are created at a constant rate, with an
initial “size” of 1, we will assume that there is an infinite “reservoir”
of cities of size zero; all cities begin with zero size and grow over time.

"I am grateful to Don McLeish for pointing out some errors in an earlier version of this
material.

8We can explain this as follows: if new citizens are “born”, then, assuming the birthrate
is the same in all cities, the population growth rate of each city is directly proportional
to its size. If new citizens are “immigrants”, then they are likely to settle in a city where
they already know someone; the probability that a given immigrant has a contact in a
given city is again directly proportional to its size.
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e There are an infinite population of cities; the distribution of their
logarithmic sizes at time t is given by a measure, absolutely continuous
with respect to Lebesgue measure, with Radon-Nikodym derivative
®; : [0,00) —> [0,00). In other words, for any L; < Lo, the number
of cities whose log-population lies between L and Lo is given by:

/ " a0 de

Ly
We will also assume:

e FEach city grows exponentially over time, but each is also subjected to
an white-noise perturbation, in direct proportion to its size. In other
words, if X; represents the size of a city at time ¢, then X satisfies the
stochastic differential equation:

BtXt = CM'Xt + ’)’XtdBt,

where B, is a version of Brownian Motion. Thus, if L; = log(X), then

L; satisfies:
8tLt = o + ’)’dBt

e The white noise processes perturbing each city are independent.
Thus, as a function of time, ® must obey the Fokker-Planck PDE:

8t<I)t = Ot'aL@t—f—’}’A@t (Cl)

Suppose that @ is a fixed point of this PDE. Then ® must satisfy the
ODE:
0=0% =a-0P+7Ad

The general solution to this ODE is:
@
®(L) = ¢ +coexp (—;L) (C.2)

where ¢; and ¢y are arbitrary constants.

Suppose that ¥ : [1,00) — [0, 00) is the Radon-Nikodym derivative of
the distribution of (nonlogarithmic) urban populations ——-in other words,
for any X; < X5, the number of cities whose population lies between X4
and Xs is given by:

X2
/ U(z) dz

X1
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Thus, by a simple change of variables £ = log(z), we must have:

¥o) = Bloga) (5 log) (0

®(log(x))

c1 + coexp (—% log(a:))

C1 C2
PRSIk

a sum of two power-law functions.

Random Partitions

Power law distributions can also arise when studying combinatorial struc-
tures which have a canonical decomposition into “irreducible” components.
Consider, for example:

1. The decomposition of a natural number n into prime factors.

2. The decomposition of a polynomial f(z) in over the field Z, into a
product of irreducible polynomials.

3. The decomposition of a directed graph G into connected components.

4. If f : X — X is a map on a finite space, then we can decompose
X into f-invariant subsets. This is really a special case of #2, where
we think of X as having a digraph structure with edges of the form

z — f(x).
5. The decomposition of a permutation o of {1,2,..., N} into cyclic per-
mutations (this is really a special case of #3).

In all of these examples, the following ingredients are present:

e A natural measure of the “size” of the object in question. In the
examples above, this size is given, respectively, by:
1. In(n).
2. degree|f].
3. Cu [G].
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4. G [X].
5. N.

e A finite set of objects in a given size range: (eg. all graphs on N
vertices, all permutations of N elements, etc.)

e A natural measure of the size of the components of the resulting de-
composition, so that we have the formula:

X = Xy +[Xe| + ...+ |Xn]

where |X| represents the size of the original object, and Xi,...,Xxy
are its component parts.

Suppose Sy is the (finite) set of all objects of size N, and we pick X
randomly from Sy (with a uniform probability distribution). For all n €
[1..N], let #,(X) be the number of components of X of size exactly n. Then
#1(X), #2(X),...,#n~(X) are random variables, satisfying the relation:

#1(X) + 2-#2(X) + 3-#3(X) + ...+ N-#nx(X) = N

Define C[nN] = #n(X), where X is drawn uniformely from Sy.

We can regard C[IN], C[QN], e ,CE{,V] the first N elements of an infinite

sequence of random variables, where we define CLZN] =0 foralln > N. We
might then ask what the limiting distribution of this sequence of random

variables is, as N — oc.
In many cases, it turns out that the random sequence [C%N]Wf:l] con-

verges, in distribution, to a random sequence of the form [C, |02 ;]. If we
then define a random noise

My = ch'5(n/N)
n=1

and let M = limy_,o, M, then, in many cases, M is a scale-invariant
Poisson measure, with intensity p(z) = z~! (ie. the expected number of
points in interval (a,b) is In(b/a).) Hence, once again we see the emergence
of a “1/f” distribution out of a natural and fairly universal class of random
processes.

The discussion here is loosely based on the survey article [5], which
provides an extensive bibliography of related literature.
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Other Explanations:

Mandelbrot [109] catalogs several other explanations for power laws, none
of which he finds particularly satisfactory, perhaps because none of them as-
signs any special role to fractal or self-affine phenomena, which Mandelbrot
himself favours. These include:

e “Trivial” explanations, whereby a power law distribution is an imme-
diate consequence of the mathematical relationships between certain
random distributions. For example:

— The ratio of two independent standard normal random variables
is has a Cauchy stable distribution (hence, the tails decay with
order 1/f).

— The ratio of two independent exponential random variables has
a power law distribution.

Hence, if we can plausible represent the observable in question as a
ratio of two other random quantities with the aforementioned distribu-
tions, then its power law behaviour follows immediately. Mandelbrot
apparently considers such explanations too tautological to be interest-
ing.

e What Mandelbrot calls “elimination of an intrinsic variable between
two intrinisically meaningful quantities”. The “bursting bubbles” model
we provided above (page 169) is an example of this.

e What Mandelbrot calls “random proportionate effect” models, which
involve logarithmic Brownian motion.

Brownian motion is normally explained by imagining the observable X
as a sum of a very large number of microscopic “perturbations”. The
justification for a logarithmic Brownian motion is similar, except that
now, we imagine that the scale of these “perturbations” is growing or
shrinking in size, in proportion to the current scale of X.

For example, we expect the fluctuations in the luminosity of a large star
to occur on a larger scale than those of a small star, or the fluctuations
in the market-capitalization of a large firm to occur on a larger scale
than those of a smaller firm. If a firm has a market capitalization of
$10 billion, then a fluctuation of $50 million is not all that shocking;
on the other hand, if the firm has a capitalization of $80 million, then



C.2. ORIGINS AND CAUSES 175

a fluctuation of $50 million represents either phenomenal growth or a
catastrophic loss of shareholder confidence.

In this context, it seems more sensible to measure fluctuations in terms
of percentage, rather than in terms of absolute numerical figures: for
both the “large” firm and the “small” one, a fluctuation of 2% in
market value has roughly the same significance. Once we switch to
percentages, we are essentially dealing in logarithmic units; hence if
we want to model evolution using a Wiener process, we are essentially
dealing with log-Brownian motion

Notwithstanding this argument, Mandelbrot rejects log Brownian mo-
tion. This seems to be part of a more general rejection ([105], p. 112)
of any distribution obtained obtained by “transforming” the variable
X into a new variable Y = ¢(X), which Mandelbrot makes on three
grounds:

— Suppose we are simultaneously examining several empirical pro-
cesses X1,...,Xy. Aside from the seperate univariate distribu-
tions of Xy, ..., Xy, the other question of interest is the nature
of the dependency, if any, between these observables. If we apply
some transform ¢, to get a new collection of random variables
Y: =¢(Xy), ..., Yy = d(Xn), then we may end up with more
convenient univariate distributions, but we may confound and
distort the dependency structure of the data in the process.

— As previously mentioned, the process X may plausibly be gener-
ated by additive perturbations, if it represents a quantity where
addition is actually physically meaningful (for example: mass, en-
ergy, income, momentum, etc.). Hence, it is sensible to expect
X to evolve according to some Gaussian process, because of the
Central Limit Theorem. However, the quantity Y = n(X) is
probably not additive (what is the physical meaning of adding
log-incomes, or log-momentums?). Hence, there is no plausible
reason to expect Y to have a Gaussian distribution; indeed, hy-
pothesising that Y is Brownian actually raises more questions
than it answers.

— In real science, we never know the distribution of X exactly,
but only “approximately”; we use statistical tests to identify
<

a “neighbourhood” of plausible distributions for the data. If we
apply our statistical methods instead to some transformed data
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Y = ¢(X), then we had best be very aware of how these “dis-
tribution neighbourhoods” are transformed by ¢. Such care is
rarely taken.

e What Mandelbrot calls “random proportionate growth” models. Her-
bert Simon’s model of urban growth (page 170) is an example of this.

C.3 Power Laws and Stable Random Variables

Stable random variables arise naturally as “suitable renormalized limits” of
summations of independent random variables exhibiting power law distri-
butions. If Y1,Y5, Y3, ... are random “perturbations” obeying a power law
with exponent —1 — a (for a € [0,2]) , then the random variables

N

1
Xy = N1l/a ZYR
n=1

converge, in distribution, to a stable random variable with “stability expo-
nent” «. Hence, the ubiquity of power laws in physical phenomena suggests
an important role for stable distributions.



Appendix D

Stable Stochastic Processes

D.1 Preliminaries

Suppose that X(¢) (¢ € Tn) is some real-valued stochastic process, and
imagine that X(¢) evolves by an accumulation of independent perturbations;
that is, for any 7" > 0, and any N, we can write:

N
X(T) = ) AX,

where AX,..., AXy are independent random variables. If we assume that
these random perturbations have finite variance, then, as N gets large, the
variable X(¢) is likely to become Gaussian in distribution.

Because of this, Gaussian processes are the most widely used models
of evolving stochastic phenomena. Two, in particular, are well-known

e The Ornstein-Uhlenbeck process is the unique Gaussian process
X(t) (t € R) which is stationary, Markovian, and has continuous sam-
ple paths.

e The Wiener process (also called Brownian motion) is the unique
Gaussian process X(t) (¢ > 0) having continuous sample paths and
stationary, independent increments. The increments of a process are
the random variables of the form X (¢t — T) = X(T') — X(t), where
t < T. To say that Brownian motion has stationary, independent
increments is to say that, for every § > 0, the random variables

ey, X(—26 = —6), X(=0—0), X(0—>94), X(6—20),...

are independent and identically distributed.
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Gaussian processes have several convenient properties:

For all T' € Tin, the variable X(7') has well-defined, finite mean and
variance.

The increments of X are also Gaussian, and have finite variance.

The increment X(¢ — T') tends to be Fickian as a function of the
time difference (7" — t), in the sense that the variance of X(7T") — X(t)
grows proportionate to /T —t¢. Stated another way, Gaussian pro-
cesses exhibit “very rapid” motion on a short time scale but quite
“slow” motion on longer time scales.

In particular, very “large” movements are extremely rare.

When larger than average movements occur, they are usually quickly
“washed out” by the noise that follows. Short-term behaviour tends
to make little difference in the long term. This is related to the fact
that, in a summation of independent normal variables, no single term
is likely to dominate the whole sum. Because of this property, Man-
delbrot [111] characterises the randomness of Gaussian processes as
“mild”.

For any times t1,ty € T, the covariance E= [X(¢;) - X(t2)] is well-
defined. The autocorrelation function R(t1,t2) = E= [X(t1) - X(t2)]
is easy to compute, and completely characterises the Gaussian process.

The autocorrelation function provides a complete description of the
dependence structure of the process, allowing us to easily quantify the
extent to which the process exhibits long memory.

So familiar are these properties that analysts have come to take them for

granted. It comes as a real surprise, therefore, when empirically observed
processes fail to satisfy them. The increasing evidence for such “anomalous”
behaviour has motivated interest in non- Gaussian processes. The conception
of a natural phenomenon as an “accumulation of perturbations”, however,
still suggests that X(¢) should be a stable random variable. Hence, we are
led to look at stable stochastic processes.

Definition 87: «-stable stochastic process
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Let « € [0,2]. Let X : T — RP be a stochastic process, where Tme
is some space parameterizing “time”. X is an a-stable process if, for
all ty,t9,...,tN € Tinc, the random vector (X(t1), X(to),...,X(tn)) €
RPXN' has an a—stable distribution.

For our purposes, T = R or T = [0, 00).
Stable stochastic processes behave, in many ways, quite differently than

Gaussian processes:

e The random variable X(7') may not have a well-defined variance (if

a < 2) or even mean (if a < 1).
Increments also may not have well-defined mean or variance.

Given t1,t2 € T, the covariance E= [X(t1) - X(¢2)] is no longer well-
defined, and thus, there is no longer a well-defined autocorrelation
function. Formal analogs of the autocorrelation function (for example
R(t1,t2) = E= [X(t;)Y/*-X(t2)'/%]) are not necessarily computa-
tionally tractable, and do not completely describe the process any-
ways.

There is no simple description of the dependence structure of the pro-
cess. Stable processes can exhibits long memory in ways that are subtle
and difficult to quantify.

The increment X(7') — X(¢) is no longer “Fickian” as a function of
the time difference (7" — t). Informally speaking, the “typical size”
of X(T') — X(t) grows proportionate to |T" — t\l/ *. As « decreases
from 2 towards 0, an a—stable process increasingly tends to exhibit
“slower” movements in the short term (relative to the Gaussian), but
“larger” movements in the long term. This seems to require some
sort of “coherence” or “bias” amongst the seperate increments, but
it doesn’t. The seperate increments can be quite independent of one
another; large long-term movements are usually caused by one or
a few increments which are so large (relative to the rest) that they
completely dominate the sum.

In other words, occassionally, short-term behaviour can be “extreme”
enough to have a long-lasting legacy. This is because in a sum of in-
dependent stable random variables, a single summand can often dom-
inate the whole sum. This property defines what Mandelbrot [111]

calls “wild” randomness.
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e As a result, very “large” movements are not uncommon.

Like Gaussian processes, stable processes often have stationary incre-

ments, or and are sometimes stochastically self-affine, and these can be
useful properties.

Definition 88: Stationary Increments

Let X : Tne — RP be a stochastic process, where Tne C R. Assume
for simplicity that 0 € Tire.

X has stationary increments if, for any t,T € Tin, and any s such
that T — t is also in Tiwe, the increment:

Xt—->T) = X(T)— X(t).
is identically distributed with the increment

X(0—(T-1t) = X(T-t)—X(0).
If X is a-stable, with stationary increments, we will say that X is “a-SI”.

Definition 89: Stochastically Identical

Let X be some statespace, Tine some timeline, and let X7 : Tore — X,
and Xo : Tt —> X, be two stochastic processes. X; and X> are
stochastically identical if, for any finite subset {t1,...,tn} C T,
the finite dimensional distributions

Distr [(Xy(t1), ..., Xi(tn)) € X V)
and
Distr [(Xy(t1), ..., Xa(tn)) € XV]
are identical as probability measures on X" .

Definition 90: Stochastic Self-Affinity

Let H € (0,00). Let X : T — RP be a stochastic process, where
T is some space parameterizing “time”. X is stochastically self
affine with self-affinity exponent H (for short, “H-self-affine”) if
the process A\ X (\t) is a version of X.

If X is H-self affine, we will sometimes say that X is “H-SA”. An H-self
affine, a-stable process with stationary increments will be called H-SA-a-SI.
For example, Brownian motion is %—SA, and 2-SI.
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D.2 Stochastic Integration and Stochastic Noise

Let (X,X,v) be a measure space, and let L(X) be some vector space of
X-measurable functions from X to R. A random noise on X is a “random
measure” on the space X, which we can use to “integrate” elements of L(X).
In other words, a noise is a random linear functional N : L(X) — R

A linear functional is an element of the space RX): hence, the proba-
bility distribution of A is some measure on R(X) . We will use the simplest
sigma-algebra available for RL(X): the sigma-algebra generated by all eval-
uation maps

X — R

N = N(f)

pry: R

According to the Kolmogorov Consistency Theorem, to specify a probability
measure on RUX) it suffices to “consistently” specify its finite-dimensional
marginals. Thus, for any finite subset {f1, f2,...,fn} C L(X), we want
to define the probability measure Py, 1, . ¢y € Mes []RN } where, for all
U,Uz,...,Un CR,

P forn} (U, Uz, ..., UN) = Pu [N(f1) € U1, N(f2) € Us, ... N(fn) € Un]

The Kolmogorov Consistency condition we must satisfy is this: any fo €
L(X),

P{f05f17f25“'7fN}(R’ Ul ? UQ’ st UN) = P{fl,f2,...,fN}(U17 U27 ey UN)

Definition 91: «-stable Noise

Let (X, X,v) be a measure space. If « # 1, then let

L (X) = {f : X — R ; f is measurable, and /X |f|* dv < oo}
whereas, if « = 1, then let

L<1>(X) = {f : X — R, f is measurable, /X|f| dv < o0,

and /X|f|log|f| dl/<00}
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Let 8 € [-1,+1]. An a-stable random noise on X with skewness' 3
is a random linear function N : L{*)(X) — R whose finite dimensional
marginals are multivariate a-stable random variables with the following
characteristic functions.

First, let na.5 : RY x RN — C be defined:

na;ﬁ(é s) = ‘<§—: S> ‘0‘ + B.0 <g, S><a> 1.
If{fi, fa,. .., fn} CL{(X), let F: X — RN be defined:

F(z) = [fi(x),-.., fn(@)],

If @y g, sy} is the log Fourier transform of Py, 1, ¢y = Distr [F],
then, for all E €RN,

Potaati) = = | s (EF(@)) ol (%

Remark 92: v as Intensity Measure

Note that the definition of the noise N' depends upon the measure v on
the space X. Different choices of v will produce different noises. In some
sense, v defines the “loudness” of the noise at each point in X; if v is
concentrated in a certain region of X, then a function f € L(X) supported
in that region will tend to “pick up more noise” than a function g supported
elsewhere, and as a result, N (f) will be have a larger variation than N (g).

If (X,v) is a space parameterising “time” (for example, (R, L)) then
the measure v can be thought of as measuring the rate at which time is
passing. The choice of Lebesgue measure £ corresponds to a “constant flow
of time”; if we chose another measure v with dv = ¢d L=, then, intuitively,
the time periods where ¢ is large are the time-periods when v-relative time
is most “concentrated” compared to Lw-relative time. If ¢(¢) = 60, then,
heuristically speaking, one “second” of L[w-relative time is equivalent to
one “minute” of v-relative time (and hence, one full minute of v-relative
stochastic noise).

Because of this interpretation v is sometimes called the intensity mea-
sure of the noise NV.

In theory, the skewness of this noise can vary as a function of time. The skewness
function (3(t) must satisfy certain conditions. This introduces a lot of technical compli-
cations, however, without adding any clear benefit, so we will assume that 3 is constant.
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Proposition 93: Let @y, 1, . vy be as defined previously.

1. @y 1. fv} 18 the characteristic function of a stable probability mea-
sure on RY .

2. The family of measures {P{fl,fz,...,fzv} c {f1, fos--o, [} CL® (X)}
satisfy the Kolmogorov consistency condition, and therefore define a
eq. (@) (X)
probability measure on R .

3. If N € RE“(X) s a random object with this distribution, then for all
fi, fo € L<°‘>(X), and c1,c0 € R,

N(cifi +cafa) = aN(fi) +cN(f2)

almost surely; in other words, N is a linear functional.

Proof: (for more explanation, see [154], pp.115-118.)

Proof of Part 1:  Fix {f1, f2,...,fn} C L{®(X), and let F : X —
RY be defined as above. We want to make formula (x) look like the
characteristic function of a multivariate stable distribution; to do this,
we need to make the right hand side look like

/ n(E,s) drs]
SD—I

The right hand side of () has almost the right integrand; unfortunately,
we are integrating over the wrong space (X), with the wrong measure (v).
So, to accomplish our goal, we will need to perform a change of variables.

Define the functions © : X — SP?1and R: X — R by

Oz) = R(z) = [F(2)|%

and let Ty = ©*v be the projected probability measure on SP~1. Thus, v
has a “disintegration” into “fibre measures”:

V:/ vy dTo]s] (1)
§D-1

where v is a measure on the fibre ©~1{s}.

When a # 1, =Pt oty = /X Nas;B (é:; F(IE)) dv[z]
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=) /X R(z) - Nayp 6, ()) dvz]
=(2) /S oy /@ l{s} Moy B (é, O(z )) dvs[z] dTg]s]

- /S . ( / . dus[:c]) ass (£,5) dTols]

=3 /S ey (€8) drils

= SD 1[(1+ﬂ)n @ (€5) (#) Mos(1) (Es)] dry[s]
=0 ., 1[(1+ﬁ Mo ( gﬁ)nal(g, )] dT'\[s]
=) /S g (€15) drTs)

e (1) makes use of Claim 1 (see below)
e (2) employs the “disintegration” of v (equation (f)).

e (3) Ty is the measure on SP~! so that, for all s € SP~ 1,

dr’
Bl = [, R duls]

o (4) It is not difficult to verify that ey = (152) meny+(552) meg(n)
e (5) Na;(—1) (Eﬁ s) = Na;(+1) (Ea —s).

e (6) Here, I is the measure on SP~! defined: for any U c SP~!
1+ 1-—
o) = (57 nior+ (57 rieon

The last expression is clearly the formula for the log-characteristic function
of a stable random variable, with I" playing the role of spectral measure.
It remains to justify step (1). This involves the following:

Claim 1: Let E, s € RP, and let c € R. Then

(€ cs) = e* - nags (€, sign(c)5) if a#1
TS O T el mig (€ sign(@) ) + Bip-c (Es)i if a=1"
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Proof: If a#1, then

Naip(€,c8) = ‘<f C-S> ‘a + B.j <E C-S><a> i

< > + |c|aBa,3 <£, Slgn( ) >(a)i
= [e|*nazs(€, sign(c) -s).

= |e*

If @« =1, then

ms(Ecs) = KE c.s>‘ + B <E,c.s> log‘<§—;c.s> i
€l [(&5)] + lel- B (€ sign(c) - s) (1og |(€s)| +1oglel) i
el mip(& sign(c) -s) + Bif-cloglel (&)1
= el ms( sign(c)-s) + BiBV (€s) i

..................................................... O [Claim 1]

The argument in the case when « = 1 is similar, only now we end up with
a dangling constant.

Proof of Part 2: The Kolmogorov Consistency Criterion,

“P{f07f1a'"7fN}(R’ Ul L UN) = P{fI,’fN}(Ul’ Tt UN)
for all fo, f1,..., fv € L{(X) and Uy, ..., Uy C R, is equivalent to the

following condition on the characteristic functions: “For all fy, f1,..., fn €
L{®(X), and all &,...,&y €R,

X{fo,fl,...,fN}(O,fl,"'agN) = X{fl,...,fN}(gla"'1£N)a”
which is equivalent to the condition:
(P{fohfly-":fN}(O’él’...’gN) - (P{fla"'afN}(gl""’fN)

This condition is clearly satisfied by the functions @y, ¢, . ;. as we have
defined them.

Proof of Part 3: Let fo = c1f1 + cof2, and consider the marginal
log-Fourier transform @ r r1. The statement

“Nlerfi +eafa) = aN(fi) +cN(f2)"
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is equivalent to: “For any 5 € R, if E is normal to the subspace V =
{f eR; L =cb + 16252}, then x(s0.11,1,3(€) = 1.7

The orthogonal complement of V' is one-dimensional, and generated by
the vector £ = (—1,c1,¢2), so it suffices to show that x(z 1. ,1(§) = 1,

-

or equivalently, that @z ¢ £3(§) = 0. But

B poursoy (@) = _/X U<€F(z)>‘a+Baﬁ<€,F(a:)><a>i] dvz),

where F(z) = (fo(z), f1(z), f2(z)). By construction of F and £, <E, F(w)> =
0 for any =z € X. O

[

To emphasis the heuristic that A is a
mally use the notation:
/ f N
X

Example 94: The Lévy process

Let £ be the Lebesgue measure on [0,00), and let ' be an a-stable
random noise on the measure space ([0,00), %), with some skewness
g€ [—1,+1].

The a-stable Lévy process with skewness [ is the stochastic process
X :[0,00) — R defined:

X(T) = / Lor AN
R

When a = 2, the parameter ( is irrelevant, and we have the Weiner
process, also called Brownian Motion.

‘random measure”, we will nor-

to denote the value N'(f).

Proposition 95: Properties of the Lévy Process
e X(0) = 0 almost surely.

e For any T > 0, X(T) is an a-stable random variable with distribution
S\ [or; Brs pr] where:
oT Tl/a’

/BT:ﬁa

_ 0 if a#l
and pr = {Blﬁ-T if a=1"
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e X has stationary increments.

Proof: Part 1 and Part 3 are clear from the definition. Part 2 follows
from Corollary 102 on page 191 (see below). O

Example 96: Lévy process with variable-speed time

Let v be a nonnegative measure on [0,00), and let NV be an a-stable
random noise on the measure space ([0,00),v), with some skewness [ €
[—1,+1].

The a-stable Lévy process with skewness § and time measure v is
the stochastic process X : [0,00) — R defined:

X(T) = / Lo dN
R

Proposition 97: Properties of the variable-time Lévy Process
e X(0) =0 almost surely.

e Forany T >0, X(T) is an a-stable random variable with distribution

S\ [or; Br; pr] where:

or = v[0,T)",
/BT = /85
0 if a#l
and pir {Blﬂ-u[O,T] if a#l

e X does not necessarily have stationary increments.

Proof: Part 1 and Part 3 are clear from the definition. Part 2 follows
from Corollary 102 on page 191 (see below). O
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Example 98: Spectral Measures

Let T' € Mes [SD _1], and let N/ be a a-stable random noise on the
measure space (SP~1,T) with skewness 8 = 1. For all d € [1..D], let
pr, : R — R be projection onto the dth coordinate. Define the random
vector

X = (/ prld./\f,/ perN,...,/ pdeN>
SD*I SD*I SD*l

Then X is a-stable, and has spectral measure I'.

Proof: See [154], Theorem 3.5.6, p. 131 O

Stable noise allows us to easily define one-dimensional stochastic pro-
cesses. But suppose we want to define a stochastic process that ranges over
a D-dimensional statespace. It seems we will need “D-dimensional noise”
—in other words, a “random RP-valued measure.”

Definition 99: D-dimensional o-stable noise

Let o € [0,2], and let T' € Mes [SP™!]. Let (X,X,v) be an arbi-
trary measure space. The D-dimensional o-stable random noise
on (X, X,v) with spectral measure I' is defined as follows:

e Let M be an a-stable random noise on the measure space (X x SP-1 v® F),
with skewness 0 = 1.

e Forany f € L{® (X, v), define f1, fa,..., fp € L{® (X x SP—1, I/®I‘)
by:
fa(z,s) = f(z)-pry(s) = f(z)-sq

Now, define the random measure N' on X as follows: for any f €
L{*(X,v) define:

N(f) = (M(f1), M(fa),..., M(fp))
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Proposition 100: For any f € L{® (X, v), the random vector N'(f) €
RP is a-stable, with spectral measure

c,-T' + C_-T_,
where I'_ is the “spherical inversion” of I, defined
VU cSP™t T [U]=T[-U]

and where C; and C_ are the real constants:

= [ 1@ wis), = [ s an,

r if r>0 andr_:{_r if r<0

where, for any r € R, r+:{0 if r<o0’ 0 if r>0

e If a # 1, the shift parameter of N(f) is equal to zero.

e If a =1, the shift parameter of N'(f) is [if = Bq (f)<1> 7,

where 4§ = / s d'[s] is the “centroid” of T,
§D-1

and where (f) = /X (@) log | (z)] dv[a].

Proof:  Let X = N(f) = (M(f1), M(f2),-.., M(fp)), where M and
fi,--., fp are defined as previously. Then the log-characteristic function
of X is just the joint log-characteristic function of (M(f1), M(f2),..., M(fp)),
that is, the log-Fourier transform of the marginal probability distribution
Py;....fp}» Which, according to the definition of the noise M is the func-
tion

goit@ = = [ 1 (EF@9) dv oD
where F : X x SP~! — RP is defined: F(z,s) = f(x)-s, and where
a1 (E5) = ‘<§,s>‘a + B, <§,s> “{. Thus, if @ # 1, then

—

—®f1,f2rnf 0} (E)
= / Na;1 (Ea f(z) - S) d(v @ T)|z, s]
X xSD-1
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o [, / i |ana1(5signf<m)-s) vl drs)

=0 [, ] 1@ (€s) avic) arfy
/g o [ @1 (E-s) dvle] arls
_ /ng (/X+ 1 ()] du[m]) s (&) drfs]
[ ([ 1@ i) s (&) aris
- /SD_IC+'7Ia;1 (Es) dr[s] + /SD_IC—"'M;I (Es) dl'_[s]

= [, e (E5) dciracry
§D-1
e (1) follows from Claim 1 of Proposition 93 on page 183.
e (2) Here, X1 ={z€ X ; f(z) >0} and X_ ={z € X ; f(z) <O0}.

Similarly, when a = 1, apply Claim 1 of Proposition 93 on page 183 to
conclude:

-

—@5 oo} (&) = /XXSD it (f_: f(ﬂU)'S) d(v @ T')[z,s]
= / 7]11(5 ) d(C4T + C_T-)s]
§D-1
+ /XXSD_lzslf(x)<1> (£s)idwer)zs|
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= (€ q)i

Hence, in both cases, the spectral measure is C,.I'+ C_T'_. When o # 1,
the shift parameter is equal to zero. But when « = 1, the shift parameter
is fi.

a

Corollary 101: Let I'y be the spectral measure of the a-stable random
vector [ f dN of Proposition 100 on page 189. Then

Ly [sP71] = lIflaT [s”7]

where the “norm” ||e|, is defined® ||f||, = ([ |f(z)® du[z])l/a.

Proof: Let Cy and C_ be defined as in Proposition 100 on page 189.
Then
ry[SPY = cp-r[sPY + co-T_[sP]
= (C—f- + C*) -T [SD_I] )

and €4 + C- = [ @3 + @2 dle] = [ 1@ dvlal.

Corollary 102: Let (X, X, v) be a measure space, and let f € L{*(X).
Let N be a one-dimensonal, a-stable noise on (X, v), with skewness 3. Then
Jx [ dN is an a-stable random variable having distribution N\ [ 718107,
where

ifa#1, pr = 0,
o = |[flla>
(o)
and B = <f>a B,
g
i)
while if @ = 1, pr = BiB{f)ay
o = |Ifla>

and By = U—i/dey

’If o > 1, this is just the L* norm. If @ < 1, then it is not actually a norm.
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1/a
where, as before, | f||, — (/X|f(x)|°‘ dy[x]) and (£ :/Xf(x)@ dvlz].

Proof: Recall that the “spectral measure” for the one-dimensional
distribution /" \@ [y; B; 0], is the measure T' = 741841 + y_10_1, where
Y41 and y—_; are the unique positive values so that

o = (1+ +’Y—1)1/a
and § = La%l
o
Now apply Proposition 100 on page 189. O

D.3 Examples

Most a-stable stochastic processes can be represented as a stochastic in-
tegral:

X(T) = / T BT, 1) dWa()

where W, (1) is an a-stable noise and ¢(7,t) is some kernel. (For an ex-
cellent introduction to stochastic integration and stochastic noise, see [154],
chapter 7.)

Brownian Motion:
T
X(T) = / dW(t)
0
where W is “Gaussian white noise”. Hence, ¢(T,t) = L 7 (t).

Ornstein-Uhlenbeck Process:
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Fractional Brownian Motion: For any H € [0,1], H # 1/2, define

(@) = [ (- i) awe

—0o0

This gives us H-self-affine fractional Brownian motion.

Now, let a € [0,2]. In contrast to the Gaussian case, there are many
different a-stable noises, determined by different degrees of skewness. For
a one-dimensional process, we must choose a value for the skewness pa-
rameter, 0. For a D-dimensional process, we must choose a spectral
measure®, I'. For a given choice of skewness 3 (or spectral measure T")
we will write the corresponding noise as “W5” (or “WL”). The following
examples are defined in [154] as one-dimensional processes, but clearly, the
same dimension will work in higher dimensions: fix a spectral measure I,
and integrate the kernels with respect to the noise W.. In the following
discussion, we will suppress the “3” (or “I'”?).

Lévy -stable Motion:

X(T) = /0 Walf]

where W,, is an a-stable white noise.

Moving Averages: Let ¢ : R — R The moving average process
generated by ¢ is defined:

2w - [ T (T — 1) dWal]

For example, the Ornstein-Uhlenbeck process is an example of such a pro-
cess.

“Balanced” Fractional Stable Motion: For any H € [0,1], with H #
1

= define

a’?

2@ = [~ (- g gy awg

—0o0

This gives us H-self-affine balanced fractional stable motion.

3Note: Do not confuse the spectral measure of the stable noise WL with the entirely
different “spectral measure” associated with the autocorrelation of a Gaussian process.
This is but one of many reasons why the terminology “spectral measure” is unfortunate
in the realm of stable random variables.
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“Unbalanced” Fractional Stable Motion: More generally, again let
H € [0,1], with H # é, but now, for any a,b € R, with at least one of a or
b nonzero. Let

T, 1) = a(uﬂ—nf;”“—(wf;““)-+ b@jﬁ—ﬂf‘”a—(ﬂ?‘”“)
where

and u_

_ {u if u>0

—u if u<0
YT 10 if u<o

0 if u>0

Then the process
2y = [ oy av

is H-self-affine linear fractional a-stable motion with “coefficients”
(a,b). (see [154], 7.4, p. 343). The coefficients of the motion completely
characterises it, but different coefficients ¢ and b can produce identical pro-
cesses.

Proposition 103: Let a € [0,2), and suppose that aj,a9,b1,bs € R,
and that at least one element of each pair (a1,b1) and (ag,bs) is nonzero.

For k = 1,2, let X(t) be an H-self-affine linear fractional a-stable mo-
tions with coefficients (ay, by). Then X;(t) and X(t) are stochastically iden-
tical up to a multiplicative constant if and only if one of the following con-
ditions obtains:

0,1:0:(12,

a1:0:a27

or & = 2
by by

In this case, X5(t) is a version of C.X1(t), where C = & or C' = Z—; (or
both), depending upon which is well-defined.

Proof: If D = 1, see [154], Theorem 7.4.5, p. 347, for a proof of
the one-dimensional version of this theorem. If D > 1, then any one-
dimensional projection of the process will be a one-dimensional fractional
stable motion; apply the one-dimensional case to extract the unique type
r for this one-dimensional process. O
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According to this theorem, the important property of the coefficients a
and b is the ratio between them, where we generalize the definition of ratio
by defining;:

0 if a=0#b
= a/b if a#0#b
© if aZ0=0D

(and at least one of a or b must be nonzero).

Because of this, if the motion has coefficients a and b, we will say that
it is of type r = §, using this generalized understanding of ratio. We will
use the symbol LF ME 1o represent the H-self-affine linear fractional
a-stable motion of type r, where we assume that the coefficients ¢ and

b are normalized so that |a| + |b] = 1.

SalS]

Remark 104:

o If r =00 —ie. a >0, b =0, then we have nonanticipating fractional
stable motion; the value of X(T') depends only on the noise “before”
time 7T'.

e If r =1 —-e. a = b, then we have well-balanced fractional stable
motion; the value of X(T') depends only on the noise “before” time
T.

e If o = 2, then, in contrast to the previous theorem, all choices of coef-
ficients a and b produce the same process; there is only one “fractional
linear Brownian motion”.

e A fractional linear motion can be thought of, heuristically, as a sum:
X(T) = x(T) — X
where X is the “moving average” process:
X.(T) = / (a (T — )Y 4 p(T - t)’f‘l/“) dW,,
—0oQ
while X is the random vector:
o H-1/a H-1/a
X = [ (a@V"+0@27) aw,
—0oQ

However, these integrals do not converge, so this decomposition makes
no sense, formally.
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Logarithmic Fractional a-stable motion: The definition of fractional
linear motion only really makes sense when H # é What is the natural
extension of the definition to the case when H = é?

Ifa =1 and b =0 (ie. the case of nonanticipating motion), then as
H— é, the kernel

H-1 H-1
bu(t) = ((T-n @)
converges, pointwise, to the kernel

$170(T,t) = Lp7(t)

Hence, the a-stable Lévy process seems the natural limit of nonantici-
pating fractional motion as H — é

However, in the well-balanced case (when ¢ = 1 = b), this argument
no longer works. Instead, as H — é, the kernel

¢H(Ta t) _ ‘T _t|H—1/a _ |t|H—1/a

converges pointwise to zero.

However, suppose that 1 < a < 2, and suppose we “renormalize”
¢ (T,t), multiplying by the value of ¢y = m. Then visually, the kernel
“seems” to converge to the function

P(T,t) = log|T —t| —log|t|

(see, for example, Figure 7.10, p. 354 of [154]).
This motivates the definition of Log-fractional stable motion, which
is the process:

X(T) = /OO (log |T — t| — Tog |t]) dW..

—00

When « € (1,2), the process X is a-stable, and é-self affine.

D.4 Simulation

Given a stochastic integral representation

X(T) = / T (T, 1) WL
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of a stochastic process, it is straightforward to simulate the process on a
computer. First, we must choose some “mesh size”, § > 0, which determines
the resolution of our discrete representation of R. To generate an “instance”
of the process X (T'), we must first simulate the a-stable noise W.. For every
n € Z, let W,, € RP be an a-stable random vector, with spectral measure
I, so that {W,, ; n € Z} are independent (see Section B.5 on page 151 for
the simulation of a-stable variables). Then, for all T' € §.Z, define:

X(T) = Y ¢(T,6n) Wy

n=—oo

Of course, in reality, we cannot compute an infinite sum on a computer, so
we instead compute:

X(T) = Y ¢(T,6n) W,
n=—N

where N is “large”, and {W,, ; —N <n < N} are independent a-stable
variables Assume that |¢(t)| decays rapidly as ¢t — too. Then, as long as T
is far from +0 NN, this approximation should be fairly accurate.
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Appendix E

Tensor Algebra

[An excellent introduction to tensor algebra and its applications to Riemannian
geometry, is [147]]

E.1 Tensor Products

If V and W are two vector spaces over a field F, then the tensor product
of V and W is defined:

VW = {f: V" xW* — F; f a bilinear map}
Inductively, if Vi,...,Vy are vector spaces, then
VieaVe®...0Vy = {f:V] x...xVy — F; f an N-linear map}

If v, € V,, for all n € [1..N], then the element vi ® vo ® ... ® v, €
Vi®Vy®...® Vy is defined to be the N-linear map:

Vi®...0vp:Vix...xVy — F

(Wi,...,wy) = wi(vy) ...-wx(vy)

The operator “®” itself is bilinear: if vi,w; € V; and ve,ws € V3, and
c1,c € C, then

(vi +c1.w1)®(va + c2.W2) = (v ® va)tc1. (W1 @ va)+ca. (Vi @ wa)+ci.co. (W1 @ Wa)

If Vi,...,Vy are inner product spaces (or, equivalently, if we have se-
lected a particular basis of each spaces and defined that basis to be “or-
thonormal”), then there is a canonical isomorphism V 2 V*, and therefore,

199
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a canonical isomorphism;
VieaVe®...Vy =2 {f:V; x...xVy — F; f an N-linear map}

In this case, the element vi ® vo ® ... ® vy, is defined to be the N-linear
map:

ViK...v,: Vi x...xVy — F

(Wl,... WN) — <W1,V1)-...-<WN,VN>

Let’s look specifically at V&V := ® V.

Suppose that £ = {eq,.. e p is an orthonormal basis for V.

Define D = [1.D] x ... x [1..D],

N

and for each d € D, define
€gd] = €4, ®eq ®...Qeq,

Then the set {e wd ; d € ID)} is a linear basis of V¥¥. We can induce a
natural inner product structure on V®V by legislating this basis to be or-
thonormal.

We can identify each element a € V1 ®...® Vy witha D1 x Do X... X Dy
array of numbers = [ad\ de]D)]’ so that

= E aded

In other words, a is the N-linear form on V so that, for each (d1,...,dy) € D,

Q €qy

a(edlaedw s ,edN) = a’(dl,...,dN)
No;v, suppose that vi,...,vy € V are arbitrary elements, with v,, =
> -d—1Vnded- Then the array corresponding to vi ® ... ® v, is computed
as follows:
D D D
ViKR...0v, = Z V1,d; €d, [ Z V92,d,€d, ®R...&® Z UN,dy €dn
di=1 do=1 dy=1
D D D
= ZZ Z Uldl'UQ,dz'---'vN,dN) €1, ey, ®...
di=1d2=1 dy=1
N
= [[vna. | ewa
deD \n=1
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In other words, vi ® ... ® v, has the array = [ad‘deD]’ where, for all
deD,

a4 = UVldy " V2,dy ' ---"UNdy

In other words, can be imagined as the “product” of N one-dimensional

arrays ,...,, where
= ['Un,la--- a'Un,D] .

E.2 Anti-Symmetric Tensors: The Exterior Prod-
uct

Let o (N) denote the permutation group on [1..N]. A tensor a € V&V
is called antisymmetric (or alternating) if, for any vi,...,vy, and any
oc€o(N),

a(va(l),...,vU(N)) = sign[a]-a(vl,...,vN)

N
The linear subspace of antisymmetric tensors in V¥V is denoted by /\ V,
and is called the N-fold exterior product of V. For any vi,...,vy €V,
define

VIAVoA...AVy = Z signfo] - vo(1) ® ... ® V()
o€O0(N)

then vi Ave A... A vy is an antisymmetric tensor. Notice that permuting
Vvi,..., vy does not change the value of vi A vo A ... A vy, except perhaps
in sign.

Let DY) = {(dy,...,dy); 1<d; <dy<...<dy <D}
and for each d € D(<), define

€nd] = €d; Ned, N...Negy

N
then {e[,\d] ;d e ]D)(<)} is a basis for /\V. If we restrict the natural inner

product on V&V (where the elements of {e[®d] ;de ]D)(<)} are orthonor-
N

mal), to an inner product on /\ V, then this is an orthonormal basis.
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E.3 Multilinear Forms

Let V be a D-dimensional vector space, and let N € [0..D].
N
An N-linear form on V is an element of /\V* In other words, an
N-linear form is a function

w:YxVx...xY—)C
N

which is linear in each variable, and antisymmetric under permutation of
the variables.

Think of an element of VV as “frame” of N vectors, and imagine that
this frame “spans” an N-dimensional parallellipiped within V. An N-form
provides a way of measuring the (oriented) N-dimensional “area” of this
parallellipiped.

For example, suppose V is an inner product space, with orthonormal

basis {ei,...,ep} and corresponding dual basis {ef,...,e},}, and suppose
w==ejA...ey. Thus, if (¢,...,7y) is an N-frame spanning parallellipiped
P, then w(@i,...,Un) measures the area of the “shadow” P casts when

projects down onto the subspace spanned by the first N coordinates.

E.4 Hodge Duality

Suppose that V is an D-dimensional vector space equipped with an inner-

product, with orthonormal basis {e1,...,ep} and corresponding dual basis
{e},...,e}} for V*. The D-linear form

Q= elAeSA...Nep
is a natural analog to the determinant on V. Suppose 1,...,9p € V,

where, for each d € [1..D],

Uy = Vig€1 +vag€2+ ...+ vpgepn
Then
V11 V12 V1D
L. . V21 V22 V2D
Q(’Ul,’l)g,...,’UD) = det
Upl1 VYp2 ... VDD

In the same fashion, an N-form can be thought of as a scalar multiple
of a “determinant” type function on some suitably chosen N-dimensional
subspace of V.
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Definition 105: Norm

Let V be a D-dimensional inner product space, and let w be a linear
N-form on V. The norm of w is defined:

|lw| = sup{|w(v1,...,vN)|1/N : (Wi,...,wy) € VY an orthonormal frame}

The reason for the exponent 1/N in the definition of ||w]| is so that | e||
will actually be a norm....

Proposition 106: Properties of the Form Norm
N
1. ||e|| is a norm on the vector space /\V of linear N-forms on V. In
other words:

e If w is an N-linear form and ¢ > 0, then
lewl = c-lwll.
e If o is another N-linear form, then
lw+all < flwll + o -
2. There is an orthonormal frame (w1, ...,wy) € VY so that
w(vi,...,vy) = ||lw|

3. Let W = span{w,...,wx}, with the orientation induced by this or-
dering of the basis elements, and with the inner product structure it
inherits from V. Let SO [W] be the group of orthogonal transforma-
tions of W with determinant 1. Then

o If g € SO[W], then (g9.w1,...,9.wy) is another orthonormal

frame in W such that w(g.w1,...,g.wy) = 1.
e Conversely, if (w, ..., w') is any orthonormal frame in'V so that
w(wh,...,wh) =1, then (w),...,w!) = (g9.w1,...,9.wn) for

some g € SO [W].

4. In particular, if w is any linear D-form, then
w = +c.0

where ) is the determinant D-form on V, and ¢ = ||w|.
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Example 107:

Suppose that w = cje*A...Acyek. Then |w| = (c1-co-...-cn)/N, and w
attains this value when evaluated on the orthonormal frame (eq,...,en),
or on any image of (e1,...,eyn) under an orthogonal transformation of
the space W = span{ey,...,en}.
N
Now, if N € [0..D], and w € /\V* is an N-form, then there is a unique
(D—N)
(D — N)-form, (*w) € /\ V* so that
wA (xw) = ||lw| -2
For example, if w = €] A ... Aey, then xw = ey, | A...Aep.
N (D—N)
The operation * : /\V* — /\ V* is called the Hodge Star Oper-
N (D-N)

ator, and is a canonical linear isomorphism between /\V* and /\ V*.
If course, there is actually a different Hodge Star operator for every
N € [0..D]; however normally, all are refered to simply as “the” Hodge
star.
Since N = D — (D — N), we have dual Hodge star operators

N (D-N)
*N - /\V>i< — /\ v*
(D—N) N
and *(D—N) : A V* — /\V*
It is straightforward to verify:
*(D*N) OxN = (—1)N(D7N) -Id.

In a sense, the Hodge star satisfies a certain sort of self-adjointness prop-
erty...

Proposition 108: Self-Adjointness of Hodge Star
Let V be a D-dimensional inner product space. Let o« andB be linear
N-form, where N < D. Then, as linear D-forms,

(xa) AB = aA(x0)
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Proof: Since the operator “x” is linear, and the operation “A” is bilinear,
N

it suffices to show that this is true for elements from a basis of /\ V. So,
let e1,...,ep be an orthonormal basis of V. For any subset S C [1..D],
with § = {s1 < s9 < ... < sy}, define

€[AS] = €s Nesgy, N... Negy

N
Then {e[,\ s]; Gu [S] =N } is a basis for /\V. Furthermore, for any such
S,

xeps) = (1) e
N
where S¢ =[1..D]\ S, and P = Z(sn —n).
n=1

Thus, for any sets S,T C [1..D] with Gu [S] = Gu [T] = N, notice that, if
S¢ is not disjoint from T, then

(xepns) Aepnry = (—D7epsiAepr = 0
and in this case, T° is not disjoint from S either, so that
ens) A (*e[/\T]) = (—l)Pe[As] ANepre) = 0
On the other hand, since Gu [S] = G [T] = N, it is clear that
( S¢ is disjoint from T' ) = ( S=T )
and in this case,

l)Pe[,\Sc] A €[ag)
1)P*Qe

(xe[as)) A ejas)

[ASeLS]

(_
= (—

Q
where (2 is the determinant D-form, and similarly,

epns) A (repnsy) = 0




206 APPENDIX E. TENSOR ALGEBRA



Appendix F

Differential Geometry

[For an excellent introduction to differential geometry, see [179]. An elegant (though
more abstract) approach can be found in [32], which also contains an excellent
introduction to Riemannian geometry. Another good discussion of Riemannian
geometry, as well as an excellent introduction to tensor algebra, is [147]. For another
approach, see [27]]

F.1 Manifolds
Definition 109: Topological Manifold

A topological manifold of dimension D is a topological space M,
so that, for every m € M, there is an open neighbourhood U,, C M
and an open set V,, C RP, and a homeomorphism ¢, : Vi — Up
(called a chart around m).

The collection {¢y, : Vi, — Uy ; m € M} is called the atlas of the
manifold.

Remark 110: Actually, we don’t even need the set M to be a topolog-
ical space when we begin. If {¢,, : Vi, — U ; m € M} is some collection
of “charts” (where, for each m € M, V,, C RP is open, and U,, C M is
just some subset containing m), then we can define the topology on M to
be the smallest topology so that:

e For every open subset W C V,,, the image ¢,,,(W) C M is open.

207
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e For every m € M, U,, C M is open.

This topology defines a topological manifold structure if and only if the
maps ¢, : Vim — Uy, are all homeomorphisms relative to it. Since the
maps are open by construction, we need only to check continuity. To do
this, it is sufficient to check that, for every m,n € M, the set ¢} (Uy,) is
open in RP.

Remark 111: Normally we impose the additional axiom that the space
M be second countable. This is to exclude “extremely large” spaces such
as the “long line” R X w.

Suppose M is a topological manifold with atlas {¢n, : Vi — U, ; m € M}.
For any m,n € M, with U = Up, NUp # 0, let Vinp = ¢ (U) C Vy, and
Vnm = ¢, ({U) C Vy. Then

brm = (‘ﬁ;l © ¢m)‘ : Vm,n — Vn,m

is a homeomorphism, by construction.

Definition 112: Smooth Manifold

A smooth manifold is a topological manifold equipped with an atlas
{bm 1 Vi — Up, ; m € M} so that, for any n,m € M with U, N\Uy, #
0, the map ¢nm : Vinn — Va,m Is a diffeomorphism.

Such an atlas defines a differentiable structure on M in the following
sense.

Definition 113: Smooth Functions

If f: M — C is continuous, then say that f is smooth if f o ¢n, :
Vi — C is smooth for all m € M. Then the set of smooth functions
forms a C-algebra under pointwise addition and multiplication —call
this algebra C*°(M).

Ify: (—€,e) — M is a continuous function, then say ~y is smooth if
bt o7 : (—€,€) — RN is smooth for all m € M. It is easy to check
that, if v and f are smooth, then f oy is smooth.

If M and N are two manifolds, then a function ¢ : M — N is
smooth if, for every smooth chart ¢., : V;y, — Uy, C M, and every
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smooth chart ¢, : Vyy — U, C N, if W = p(Uy) NU, # 0, and if
X == ¢t~ (W) C Vyy,, then the function

(qﬁ;l oqﬁoqﬁm)' : X — RP~

is smooth (where D is the dimension of N).

F.2 Tangent Vectors

F.2.1 Tangent Spaces
Definition 114: Differentiation functional
A differentiation functional on M is a C-linear functional
0:C*M)—C
which satisfies the Liebniz product rule:

[f -gl(m) = f(m)-0[gl(m) + g(m)-O[f](m).
If m € M, then we say 0 is located at m if, for any f and g, if f and
g agree in some neighbourhood of m, then 0f = 0g.

The set of all differentiation functionals located at m will be denoted
by T,, M. It is not hard to see that T,, M is a vector space.

For example suppose 7y : (—€,€) — M is a smooth curve, with v(0) =
m. The derivative of f at m, in the direction of +, is then defined to be
the real number

0y(f1(m) = (f o 7)'(0)

For fixed v and m, the operation
oy[e](m) : C*(M) — C

is easily seen to be a differentiation on the algebra C*°(M), located at m.
If v1,72 : (—e,€) — M, with 71(0) = m = 72(0), then we say that
and -y, are infinitesimally equivalent, and write y; ~ 7o, if

(ém' ©m)'(0) = (¢ ©72)'(0)

It is easy to see that 71 ~ <2 if and only if the differentiation operations
0, [#](m) and 0,, [¢](m) are identical. It is also straightforward to show that
every differentiation functional located at m arises in this manner.
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Definition 115: Tangent Space

If m € M, then the tangent space of M at m is the set of infinitesmal
equivalence classes of smooth paths v : (—e,¢) — M, with v(0) = m.
Equivalently, it is the set of all differentiation functions located at m,
which we have already denoted by T,, M. This set has a natural vector
space structure.

Elements of T,, M will be referred to as tangent vectors

Definition 116: Tangent Bundle

The tangent bundle of M is a disjoint union containing all tangent
spaces:

TM = {(m,7) ; m e M and 7 € T, M}

The tangent bundle of M can be made into a 2D-dimensional smooth
manifold in a natural way. Suppose {¢y, : Vi, — Uy, ; m € M} is a smooth
atlas for M. For every m € M, define

TU = {(u,7) ; u €U and ¥ € T, M}
and then define v, : V,;, x RP? — TU so that, for any (x,v) € V,,, x RP,
Pm(x,v) = (¢m(x),0)
where @ : C®(M) —s C*°(M) is the differentiation functional defined
O(f) = 05(f © ¢m)(x)

(where 95 indicates the directional derivative in along the vector ¥ in RP)

We have not yet even defined a topology on TM. One can use atlas
{zpm SV xR — TU,, s m € M} to define the topology on T M, as de-
scribed by Remark 110 on page 207, and then use it to define a smooth
structure.

Definition 117: Derivative

Let f : M — N be a smooth map, withm € M and n = f(m) € N.
f induces a linear map

Dinf : TM — T, N
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as follows: if vy : (—e,€) — M is any smooth path with v(0) = m, then

fovy:(—€€) — N is a smooth path with v(0) = n. It is not hard to
check that:

e The map ¥ f o v preserves infinitesmal equivalence, and thus
maps elements of T,, M into elements of T, N

e This map is linear.

D,.f is called the derivative of f at m.

F.2.2 Vector Fields

Prerequisites:

e Tangent Spaces [ F.2.1 on page 209]

Definition 118: (I) Smooth vector field

A smooth vector field is a smooth function X : M — T M so that,
for allm € M, X(m) € T,, M.

The equivalence between tangent vectors and differentiation function-
als, along with the aforementioned smooth structure on T M, immediately
implies that this definition is equivalent to the following one:

Definition 119: (1) Smooth vector field
A smooth vector field is an operator
9:C®(M) — C*(M)

so that for any fixed m € M, the map  0f[m] is a differentiation
functional, located at m.

The set of all smooth vector fields on M will be denoted &T M. It is
not hard to see that

e GTM is a C-vector space, where, for all 91,00 € GTM, ¢ € C, and
f €C®(M), we define (0y + c.02)[f] = Ah[f] + c.2[f]
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¢ STM is a C*(M)-module, where, for all 91,0, € STM, and f,g €
C®(M), we define (8 +g.0)[f] = Bi[f] + g-0u1]

It will often be useful to extend a tangent vector at a point to a vector
field in a neighbourhood of that point.

Lemma 120: Extension Lemma  Let m € M. For any v € T,, M,
there is a smooth vector field V€ 6T M so that V(m) = ¢v. O

F.3 Differential Forms and Integration on Mani-
folds

F.3.1 Differential Forms

Prerequisites:
e Smooth vector fields [ F.2.2 on the preceding page]
N
Let M be a smooth manifold, and for any m € M, let /\T;;M de-
note the vector space of linear N-forms on T,, M (see Appendix E.2 on
page 201). Then define the N-form bundle:

N N
AT M = {(m,w);meM, we/\T;;M}

Definition 121: (1) Differential Form
A differential N-form on M is a map

N
w:M— /\ ™M
N
so that, for allm € M, w(m) € /\T:,; M, and so that, if Vi,...,Vn €
ST M are smooth vector fields, then the function

wVi,...,Vy]: M — C
m +—  w(m) [Vl(m),,VN(m)]
is in C*°(M).

It is straightforward to show that this is equivalent to:
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Definition 122: (II)Differential Form

Let M be a manifold of dimension D, and let N € [0..D]. A differen-
tial N-form on M is an N-linear map

w:@TMX...XGT./\/L—>C°°M

~"

N

so that:

1. For any vector fields I_/:l,...,VN € 6TM, and any m € M, the
value of

wlVi,...,Vn](m)

depends only upon the values of Vi(m),...,Vp(m). Thus, if we

define 7 := Vi(m), ...,%p := Vp(m), we can define
wm[ﬁla"'a{)’N] = W[Vb.--,VN](m)

2. For every m € M, the function

wm::l'me...me./\/L—>C
N

is an alternating N-linear form

The set of all differentiable N-forms will be writen as:
N
SAT'M

and is clearly a vector space under pointwise addition and scalar multipli-

cation.
0

Note that the space & /\ T* M is basically the same as C*°(M).

A linear N-form provides a way of measuring the “area” of N-dimensional
parallellipipeds. A differential N-form defines a linear N-form at every
point along a manifold; thus, it defines a way of measuring the “area” of
N-dimensional submanifolds.
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Definition 123: Integration of differential N -forms

Let M be a D-dimensional manifold, and let w be a differential N
form, with N € [0..D]. Let V C RN, and let ¢ : V — M be a smooth
embedding, so that N := ¢(V) is a N-dimensional submanifold.

Let {ei,...,en} be the standard orthonormal basis of R .

The integral of w on N is defined:

wWN) = /Nw = /vw[quS(el),...,ngb(eN)] dces N x|

If N is an arbitrary N-dimensional submanifold of M, then we define
the integral of w on N' by partitioning N into locally Euclidean patches
in the obvious way. It is straightforward to show that the resulting
definition is independent of the choice of partition.

F.3.2 Exterior Derivatives

Prerequisites:

¢ Differential Forms [ F.3.1 on page 212]

Definition 124: FEzterior Derivative

Let M be a D-dimensional manifold. For each N € [0..D), we define
N+1

N
the linear maps Iy, : 6/\T* M— 6 /\ T* M, to be the unique
maps satisfying the following axioms:

1. If N =0 (ie. w is an element of C*°(M)), then dgw is the 1-form
defined:
(0[0}(4)) (V) = Vw

(where we treat V € 6TM as a differentiation operator acting on

w.)
N1 N2
2. Foranyw; € 6 \T" M andw; € & \ T* M, with N = Ny + Ny,

O[N] (w1 Awg) = (D[Nl]wl) ANwy + (—1)Nw1 A (D[Nz]u)g).
3. D[N—Fl} OD[N] = 0.

Normally we suppress the subscript “\n)”, and just write “0”. The map
0 is called the exterior derivative.
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Remark 125: The previous axioms completely characterise 9 because
they force it to behave in a unique fashion relative to any coordinate system.
Suppose that V C RP and ¢ : V — U C M is some smooth chart, inducing

local coordinate vector fields ]:]'1, cee Ep € 6TY and corresponding covector
N
fields E*, ... ,ﬁ*D € GT*U. Suppose that w € & /\T*M is defined:
w= > fEpA L AEf
ki=(k1,...kn)

where k ranges over some suitable set of multiindices, and fix € C*°(U) for
all k. Then the previous axioms imply:

w= Y  (fJAE; A...AE},
k:=(k1,...kN)
where, for all k, 0 fy is the 1-form:
D
W = Y _(ufi) Ej
d=1

In the case when w is a O-form (ie. smooth scalar field), the exterior
derivative of w (as a form) corresponds to the gradient of w (as a scalar
field). When w is a vector field, the exterior derivative (in R3) creates an
object analogous to the curl. By composing with the Hodge star (see
Appendix E.4 on page 202), we can also induce an object analogous to the
divergence (see Appendix G.5 on page 223 for more on this).

F.3.3 Gauss, Green, and Stokes

Prerequisites:
e Exterior Derivatives [ F.3.2 on the preceding page]

The utility of exterior differentiation comes from the following far-reaching
generalization of a result of classical integral calculus:

Theorem 126: Gauss, Green, Stokes Theorem

Let M be a D-dimensional manifold, and let w be a differential N form,
with N € [0..D].

Suppose that N is an (N + 1)-dimensional submanifold of M, with
boundary 9N (an N-dimensional submanifold). Then

W) = w(dN)
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Corollary 127: Integration By Parts on Manifolds

Let M be a D-dimensional manifold, and let « and 8 be a differential
A-form and B-form, respectively, where A+ B = D —1. Thus, (d0a) A 8 and
a A (003) are both differential D-forms, and we have:

/M(Da)/\ﬂ - —/aMoz/\ﬁ-l— (—l)A/Ma/\(Dﬁ).

In particular, if M is a manifold without boundary, then
[ waynp = 1t [ anes)
M M

Proof: First note that
WaAB) = Pa)AB + (=1)2aA (08)

Thus, applying Stoke’s theorem,

[ ans = [ vans
.

(da)A B + (—1)A/ a A (dp)

M




Appendix G

Riemannian Geometry

G.1 Riemann Metrics

Prerequisites:

e Smooth vector fields [ F.2.2 on page 211]

If V is any vector space, let ®2 V* denote the set of all bilinear forms
from VXV — R
If M is a manifold, define the bilinear form bundle:

2 2
QRTM = {(m,g) : meMandge(g)T;;M}

Definition 128: (I) Bilinear Form Field
A bilinear form field is a function g : M — @ T* M so that, for
allm e M, g(m) € ®2 T, M, and so that, for any smooth vector
fields X1,Xy : M — T M, the function

g(il,ig)ZM — R
m o~ gl (Zalm), Kolm))

is smooth.

Again, it is straightforward to show this is equivalent to

217
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Definition 129: (II) Bilinear Form Field
A bilinear form field is a C*°(M)-bilinear function:

g: 6TMx 8TM — C®(M)

Definition 130: Riemann Metric

Riemann Metric is a bilinear form field g which is

o Symmetric: g(X1,X;3) = g(X2,X1)

e Positive Definite: g(X,X) > 0 for any X € 6T M that is not
zero everywhere.

A Riemannian Manifold is a manifold equipped with a Riemann
metric.

A Riemann metric endows the tangent space T,, M with an inner prod-
uct in a natural way. If ¥,% € T,, M are two vectors, we can find smooth
vector fields V, W : M —s TM so that V(m) =@ and W(m) = &. Then
we define the inner product of ¥ and @ (relative to g by:

(@) = &(V,W)m
it is straightforward to check that this definition does not depend upon
the choice of “extensions” V and W, and that it defines a positive-definite,
symmetric bilinear form at T,, M.

Thus, g endows each point in the manifold with a “local geometric struc-
ture”, by providing a way to measure the “lengths” and “angles” of tangent
vectors. This, in turn, allows us to define a natural metric structure on M,
by defining a way of measuring path length.

.2 Distance and Geodesics

Prerequisites:

e Riemann metrics [ G.1 on the page before]
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Definition 131: Velocity

Let v : (—e,e) —» M be some smooth path, with v(0) = m. The
velocity of v at 0 is defined:

7O, = /(70,7 (0)g

Definition 132: Path Length
Ify: (A,B) — M is a smooth path, and [a,b] C (A, B), then we
define the length of v between y(a) and «(b) to be:

b
L lr(ab)] = [ Y0,

Definition 133: The Path-Length Metric

The path-length metric on M is then defined as follows: For any
mo, m; € M,

. . ~ 7:(A,B) — M a smooth path, with
dist [mg, m1] = inf {&lgth [v(0,1)]; 7(0) =mo, (1) = my

This metric is compatible with the locally Euclidean topology induced
upon M by the smooth atlas.
Definition 134: Geodesic

A geodesic is a path v : (A,B) — M which has constant velocity,
and which locally minimizes path length. In other words,

e [¥'(®)llg = v for some constant v > 0.

e For every t € (A, B), there is some open interval (a,b) C (A, B),
with t € (a,b), so that

b [v(a,b)] = dist[y(a), ~(b)]
(In other words, vy is the “shortest possible path” from ~y(a) to

(b))
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Lemma 135: Let m € M and ¥ € T,, M. Then there is a unique
geodesic vy : (—€,€) — M so that v3(0) = m and y;(0) = 7.

Definition 136: FEzponential Map
Let m € M and, for each ¥ € T,, M, define vz : (—¢,€) — M as
before. We define the exponential map exp,, : T,, M — M by:
exp,,(U) = 73(1)
whenever v3(1) is well-defined.

(hence, in general, exp,, may only be well-defined on some subset of

T M.)

Proposition 137: Properties of the Exponential Map

e There exists an open neighbourhood V C T,, M around 0, so that,
then exp,y,y is well-defined and injective.

o IfU = exp(V), then the map exp,, : V — U is a diffeomorphism.

e Although the map €XPy,| 1 V — U is not an isometry, it is true that,
for allv € T,, M,

dist [exp,, (v7), m] = [|7][4-

Definition 138: Geodesically Complete

A Riemannian manifold M is called geodesically complete if, for
every mg, m1 € M, there is a geodesic v : [0,1] — M so that v(0) =
mo and y(1) = m;.

Equivalentely, M is geodesically complete if, for any m € M, the ex-
ponential map exp,,, : T, M — M is surjective.

Theorem 139: Hopf-Rinow theorem

A Riemannian manifold is geodesically complete if and only if it is met-
rically complete, relative to the metric defined by geodesic distance between
points.

In particular, any compact manifold is geodesically complete.

Proof: See [32]. O
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G.3 Integration on Riemannian Manifolds

Prerequisites:

e Riemann metrics [ G.1 on page 217]

o Differential forms [ F.3.1 on page 212]

The Riemann metric also induces a natural measure on M.

Definition 140: Canonical volume-form

Let M be a D-dimensional manifold
For any m € M, pick a linear isomorphism between ¢, : T,, M —

RP, which is an isometry relative to the inner product structure (e, e

on T,, M and the standard inner product on RP.
Let Q € ®° RP be the determinant D-linear form on RP .
Define the canonical volume form €, € ®D T,, M* as follows: for
any U1,...,9p € Tpy M,
Qm[th,...,0p] = Q[pm(T1), ..., ¢m (V)]

Although this definition involves a specific coordinate system, the vol-
ume form is actually well-defined, independent of the choice of coordi-
nates.

The linear D-forms {2y, ; m € M} together define a differential D-form

D
QesRT M

called the canonical volume form of M.

Definition 141: Canonical Measure
The canonical volume measure on M is the measure £ », defined
as follows.

Suppose that M has smooth atlas {¢p, : Vi, — Uy ; m € M}. Fix
m € M; we will first define a “local measure”, L ,,, on the set Uy,.

Let e1,...,ep be the standard orthonormal basis of RP, and define
L : V, — R so that, for any v € Vy,, with u = ¢ (v),

L('U) = Qu [Dv¢m(e1)> IRRR Dv¢m(eD)]
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Let B C U,, be Borel-measurable. Let By := ¢,,'(B), and define

L£,,[B] = / L dgsP
Bo

where LD is the standard Lebesgue measure on RP .

Now, if B C M is arbitrary, break B up into disjoint peices which lie
inside different chart domains, and define its measure to be the sums
of the measures of the peices, in terms of the “local measures” just

defined.

It is straightforward to check that this definition is independent of the
manner in which B is broken up, and independent of which charts and
local measures we use.

G.4 Hodge Duality

Prerequisites:

e Riemann metrics [ G.1 on page 217]

e Hodge Duality [ E.4 on page 202]

If M is a D-dimensional Riemannian manifold, then every tangent space
is an inner product space. Hence, for any m € M, and every D € [0..D]
there is a well-defined Hodge star operator

(D—N)

N
*:/\T:,LM—> /\ T, M

(see Appendix E.4 on page 202).
We can extend this to a Hodge star operator

N (D—N)
 ANTM— A\ T'M

N
which is a linear isomorphism from each fibre of the tensor bundle /\ ™M
(D-N)
to the corresponding fibre of /\ T M.
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Proposition 142: The Hodge star operator x defines a canonical iso-
(D—N)

N
morphism between the vector bundles /\ T M and /\ T M.
O
Next, we can extend the Hodge star to operate on any differential N-form
on the manifold. This defines a canonical C*°(M)-linear map:

(D—N)

N
6 A\T'M—6 N\ T'M

Proposition 143: The Hodge star operator = defines a canonical iso-
(D—N)

N
morphism between the C*°(M)-modules bundles & /\ T*Mand& /\ T M.

a

G.5 Divergence, Gradient, and Laplacian

Prerequisites:

e Hodge Duality [ G.4 on the preceding page]
e Exterior derivatives [ 124 on page 214]

Definition 144: Gradient covector Field

If M is an arbitrary smooth manifold, and f € C*(M), then we can
define the gradient of f to be the covector field

V'feST'M
so that, for any vector field V. € 6T M,
(V*HV) = Vi

where we interpret V as a differentiation operator acting on f.

If we interpret f as a differential O-form on M, then it turns out that
Vif = of

where 0 represents exterior-differentiation of f as a differential form.
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Definition 145: Gradient Vector Field

If M is a Riemannian manifold, there is a canonical isomorphism T,, M =
T, M, given by the Riesz Representation theorem. Thus, the gradient
covector field in this case can be transformed into a gradient vector
field.

Formally, for any f € C*(M), define Vf € &TM to be the unique
vector field such that, for any other vector field V € GTM,

(V1 V) = (vH)

Definition 146: Divergence of a covector field

If M is any manifold, and V* € GT* M is a smooth covector field, then
define the divergence of V*:

divV* = %0+ V*

Thus, div V* is a zero-form —ie. another element of C*®(M).

Definition 147: Divergence of a vector field

If M is a Riemannian manifold, and V € 6T M is a smooth vector field,
then we can identify V with a smooth covector field V¥ € GT* M, and
then define the divergence of V:

divV = div (V)

Intu1t1vely, the Laplacian is supposed to measure the rate at Wthh the
vector field V is “spreading” at each point in M. The vector field V defines
a flow on M, and this flow transports the canonical volume form €2 on M.
Thus, the rate at which V is “spreading” should be related to the rate at
which the canonical volume form is being “inflated” or “compressed” by the
flow of V. This is the content of the next theorem.

Proposition 148: Let V be a smooth vector field on M, and let Q
be the canonical volume form. Then
divVv = L

e}
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Definition 149: Laplacian, Laplace-Beltrami Operator

Let f € C*®(M), and treat f as a zero-form. The Laplacian of f is
defined
Af = divV*f = x0x0f

Thus, Af is another zero-form —ie. another element of C*°(M).

(In a similar fashion, we can define the Laplacian of any differential
N-form w to be
Aw = *0*xw — DXV *w

If w is a zero-form, the second term on the right is trivial, so this agrees
with the earlier definition of Aw. In this context, /\ is sometimes called
the Laplace-Beltrami Operator.)

For the concrete formulae of Laplacians on spheres of various dimensions,
see Example 39 on page 62.

Proposition 150: Self-Adjointness of the Laplacian
Let M be a smooth manifold without boundary.
If f,g € C*®°(M), then

/M(Af)-g Al = /Mf-Agdgng

Proof:

/Mf-Agd/:ws - /f-(*D*Dg) dcm

=(4) /M(D*Df)'g
=) /M(*D*Df)-gdﬂ”g

- /M (DF)-g de
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(1) Recall that ? x9g is a linear D-form.

(2), (4) By the Integration by Parts theorem for differential forms (Propo-
sition 127 on page 216), using the fact that M is a manifold without

boundary.

(3) By the self-adjointness of the Hodge operator (Proposition 108 on
page 204)

(5) Again, 9 x0f is a linear D-form.




Appendix H

Representations of Lie
Groups

H.1 Preliminaries

Definition 151: Linear Representation

Let V be a Banach space

Let G be a topological group. A (linear) representation of G is a
continuous group homomorphism:

¢:G— GL [V]

where GL [V] is the set of bounded linear maps on V. The dimension
of the representation is the dimension of V:

dim[¢] = dim[V].

If g € G and v € V, then the action of g on v via ¢ will sometimes be
indicated by “g¢v”.

Definition 152: Invariant Subspace, Reducible, Irreducible

Let V be a Banach space. If $ : G — GL [V] is a linear representation,
an invariant subspace of ¢ is a closed linear subspace W so that, for
all g € G,

gs[W CW

227
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The representation ¢ is reducible if there is a nontrivial invariant sub-
spaces W C V.

Otherwise, ¢ is called irreducible.

If W C V is an invariant subspace, then for all g € G, the map
#(g):V—V

restricts to a map

¢(g)| W —W

hence, the representation ¢ : G — GIL [V] induces a subrepresenta-
tion ¢w : G — GL [W].

One consequence of this irreducibility is

Theorem 153: (Schur’s Lemma)

Let V be a complex Banach space. If V is an irreducible G-module, and
f 'V — V is a continuous, complex-linear map that commutes with the
G-action, then f is multiplication by some scalar.

Proof: Since C is algebraically complete, the characteristic polynomial
of f has a root —ie. f has some eigenvalue A € C. Let ¥ € V be a
corresponding eigenvalue: f(¥) = A.9. Now, let Gy 7 = {g+7; g € G}.
Since clspan[G 7] is a nontrivial, closed, G-invariant subspace, we con-
clude that clspan[Gs 9] = V. Thus, any & € V can be written as a
C-linear combination:

W = Z Wyg ¢ T

9€Go
where Gy C G is some suitably chosen countable subset, and wy, € C, Vg €
Gyp. But then

f@@) = f| D wegev

9€Go
= Y wef(ged) = Y wegef (V)
g€Go g€Gy
= ngg¢)\.17 = A\ nggqsfff
9€Go 9€Go
= AU
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Definition 154: Unitary Representation
Let UP = {f € GL [(CD] i f unitary}.

Let G be a topological group. A unitary representation of G is a
continuous group homomorphism:

$:G—UP

where D = dim[¢].

Example 155:

If G is an abelian group, then all irreducible unitary representations are
1-dimensional; in other words, they are homomorphisms

$:G—TU' = T

Normally, these are called the characters of the group. (In the more
general context of nonabelian representation theory, these would properly
be called the irreducible unitary characters).

Notation 156: The set of all irreducible unitary representations
of G will be denoted by U[G].

Proposition 157: Suppose G is compact, and V is any finite dimen-
sional complex vector space, and ¢ : G — GL [V] is any linear representa-
tion of G on V. There is an inner product (e,e) on 'V so that ¢ is a unitary
representation relative to (e, e).

Proof: Let HE be the Haar measure on G. Since G is compact, H§ is
finite —assume it has total mass 1. Furthermore, the image ¢(G) is some
compact subgroup of GL [V]; thus, for any v € V, the orbit of v under
#(G) is bounded.

Let [e, o] be an arbitrary inner product on V, and define the inner product
(o, 0) as follows:

(v, w) = /@ [Bo)(v), $lo)(w)] dHez g

Since all elements in V have bounded orbits, this integral converges. The
resulting function, (e, e), is also an inner product, and is invariant under
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the action of G. Thus, if we consider V to be an inner-product space
relative to (e, e) then all elements of G act in a unitary fashion on V —in
other words, ¢ has become a unitary representation. O

Remark 158: If ® : G — UP” is a unitary representation, and W C
CP is an invariant subspace, then so is W', and we can write

C = Wo W,

This is indicative of a general pattern.

Proposition 159: IfV is a finite-dimensional vector space, and ¢ :
G — GL [V] is a a reducible representation, then we can write:

V=VieVea...oVy

where Vi,...,Vy are invariant subspaces, and the action of ¢ on each V,
is irreducible.

Proof: Let (o, ) be a G-invariant inner product on V. Thus, if V; C Visa
nontrivial invariant subspace, then so is Vf‘. IfV; and Vf‘ are irreducible,
we are done. Otherwise, proceed inductively. Since V is finite dimensional,
this induction terminates after finitely many steps. O

H.2 Noncommutative Harmonic Analysis

If G is a compact abelian group, then classical harmonic analysis tells us
that the (irreducible unitary) characters of G form an orthonormal basis for
L?(G). We now seek to generalize this result to the nonabelian setting....

Definition 160: Coefficient Function

Suppose ¢ : G — UP is an irreducible unitary representation, and let

& ={ei,...,ep} be the standard orthonormal basis for CP. Thus, for
all g € G, the unitary transformation ¢(g) has a matrix relative to &,
say:

$11(9) - ¢1,n(9)

¢N,.1(g) ¢N,J'V(g)
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For any such representation, and for all i,j € [1...D], the functions
¢ij : G — C are called coeflicient functions.

The coefficient functions are measurable and bounded, and therefore, are
elements of L*(G, Ha).

If G is abelian, then all irreducible unitary representations are one-
dimensional, and the coefficient functions are just the classical characters.
Hence, the following results are somewhat expected.

Theorem 161: Orthogonality relations

Let G be a compact group, and let ¢,4p : G — UP be irreducible
unitary representations.

1. For any i, 75,k,Z,

Ty i =1, i=k andj=¢
o — dim ¢ I ’ ’ J
(¢ijr Yr.e) { 0 otherwise
2. Thus, fori,j, ||¢ijlly = _\/diqub
Proof: See [172] p. 79 .

Theorem 162: Peter-Weyl Theorem
Let

G = {\/dim[qﬁ] - ¢;j ; ¢ any irreducible unitary representation,1 <1i,j < dim[qb]} .
Then

1. G is an orthonormal basis for L?[G, ],

2. G is a linear basis for the Banach space C(G, C).

Proof: See [172] p. 133 O
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Definition 163: Fourier Coefficients

If f € LG, M), then the Peter-Weyl theorem says that

f=> fx

xe@

where f; = (f, x). The coefficients {f; ;X € @} are the (scalar)
Fourier coefficients of f.

We can group these coefficients together into matrices; for every ¢ €
M[G], define fy to be the matrix:

f¢1,1 f¢1,N
fo = L :
f¢N,1 fd’N,N
where, for all i,j € [1..N],
foi; = VN - (fs dij)-

The coefficients {ﬁ ; ¢ € U[G] }, are the matrix-valued Fourier co-

efficients of f. Notice that another way to define f;, is as an integral-
linear combination of matrices:

Jo = \/JV-/G f(g) - ®(g) dH [g]

Where ®(g) € CN*V is the N x N matrix corresponding to the unitary
transformation ¢(g).

Example 164:

In classical harmonic analysis of abelian groups, convolution of functions
on the group corresponds to pointwise multiplication of their Fourier
coefficients. There is an analogous result in the nonabelian case, except
that now the Fourier coefficients are matrix-valued
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Definition 165: Convolution

If G is a compact group, and ¢,n € L?(G, H), then we define ¢ * 1 :
G — C by:

$x1(g /¢g BV (h) dHez [h]

In Chapter 6, we used a rather bizare definition (Definition 61 on page 84)
of convolution. The two definitions are equivalent:

Lemma 166: With G, ¢, and 7 as before,

penlg) = /G n(hL - g)d(h) dHez 1)

Proof:
Lt gom) arginl = [ pg-g mawt-g) drg
= / $lg- (™' -g) (k™" - g) dHZ [h]
—0) / Bg - k() dr ]
= ¢x*n(g
(1) Making the change of variables k = h~!g, since the Haar measure is
invariant under translation and inversion. O

Theorem 167: Convolution of Coefficient Functions
Let G be a compact group, and let ¢, : G — U be irreducible unitary
representations. For any 1,75, k, £,

1 . .
Jima Pit if = ,andj:k,
e {d 6 b=

a 0 otherwise

bi,j *

Proof: See [172] p. 83. O
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Corollary 168: If f,g € L?(G) have matrix-valued Fourier Coeffi-
cients {f;| . e%]} and {§¢| . e%]} , respectively, then the function f % g has

matrix-valued Fourier coefficients {f;, “Gol, ev{@]}'

Definition 169: Fourier Coefficients of a Measure

IfT is a measure on G, then we can define the (scalar) Fourier coef-
ficients of T' as follows: for every N € N, x € G,

fX:/XdI‘
G

The matrix valued Fourier coeflicients are defined in the obvious
way.

Remark 170: Suppose that S; C Sy C ... C U[G] is a sequence of
finite subsets whose union is all of {[G]. Then the partial Fourier sums

Iy = Z Zf@,j “ i

PESn 1,J

are elements of L*(G, #% ) N C(G, C), and, as linear functionals on C(G, C)
they converge in the weak* topology to I'. To see this, it is sufficient to
show that, for any f € L?(G, H% ) N C(G,C),

(f.Tn) ot /Gf ar

Through a similar weak* convergence argument, it is possible to show:

Proposition 171: Ifp € L%(G) and T is a measure on G, having
matrix-valued Fourier coefficients {ﬁ¢| 5 eu[G]} and {f¢| 5 eﬂ[@]}, respectively,

then the function I'+n has matrix-valued Fourier coefficients {f¢ Ml pesge }
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Corollary 172: Suppose g, n € L*(G) are functions with (known)
matrix-valued Fourier transforms {ﬁﬂ . e%]} and {%\ . em]} , respectively,
and T' is a measure on G, having (unknown) matrix-valued Fourier coeffi-

cients {f¢| 5 EJG]}, and suppose furthermore that

g = I'xp

Suppose that, for some ¢ € U[G], 7y is an invertible matrix. Then we
can recover the ¢th Fourier coefficient of I' through the formula:

~

~ ~ \—1
Ly = G- (M) -

H.3 Tensor Products of Group Representations

[See Appendix E.1 on page 199 for background on tensor products]

Suppose that G is a group, and ¢; : G — Aut[Vi] and ¢ : G —
Aut [V3] are two group representations. We can define the tensor product
of these two representations as the map ¢ ® ¢2 : G — Aut [V; ® Vo,
where, for all g € G, vi € V1 and vy € V3,

(Pr1 @ da)gl(vi®V2) = (g941v1) ®(g6V2)
Now suppose V is an inner product space with orthonormal basis & =
{e1,...,ep}, and we canonically identify elements of V¥V with N-dimensional

arrays of numbers in the manner described in Section E.1 on page 199. If
¢1,-..,6n : G—> Aut [V] are N representations of G on V, we would like
to understand the action of ¢ = ¢1 ® ... ® ¢ in terms of these arrays. Let
us adopt the same notation as in section E.1 on page 199.

Proposition 173: Let g € G. Suppose that, relative to the basis &,
the transformation ¢,[g] has matrix gl"l = [gz[z] szl]. (Thus, for any

D
de[l.D], goney = Zgg.tgej.) Then, for any d € D,
i=1

N
go€gd — Z (H g][-:},dn> * €25

JED \n=1
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Proof:

goegxd = (ge1€d)®(9¢2€d,) ®...Q(gon€dy)

D D D
_ (1] (2] (V]
- Z gjladl ejl ® Z gj25d2ej2 ® T ® Z gJNadNe‘]N
ji=1 Jj2=1 JN=1
1 2 N]
= Z (99['1],011 'QE'Z],dQ - 'gg['N,dN) €, ®e;,Q...0¢ej,
jeD

jeD

Corollary 174: If ¢1(g), $2(9),---,Pn(g) are orthogonal (or unitary)
transformations on V, then ¢(g) is an orthogonal (resp. unitary) transfor-
mation on V® | relative to the canonical inner product on this space.

Proof: The elements {egq ; d € D} form an orthonormal basis for V&V ;
it suffices to show that these elements remain orthonormal under trans-
formation by ¢(g)-

Retaining the notation of the previous theorem, we have:

N
geega = Y (H QEZ],dn)  egj
n=1

jeb
Thus, for any d and d in D,

<g¢ €xd, g¢e®a>

- I (I ) (T ) (oo o)

JEDJED n=1
[n] N [
o X (o) ()
jeb \n=1 n=1

N
-2 (Ul e 'gﬁz},aj

jeb
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D [ D
_ (1] 1] 2 (2] (V] (V]
- Z g,]l,dl J1 Jl Z gj2=d2 gJQ da Z g]NadN g]N JN
71=1 J2=1 jn=1
AR AW M| |
1 1 2 N
=(2) < g([111 ’ gd1 > : < g,[jl] ’ gliz > < g¢[jN] ’ ng >
il ol VAR N I I
e N[ 1if i=]
(1) Because <e®‘]’e®j> N { 0 otherwise
T
(2) where g([in] is the dth column vector of the matrix of ¢[™[g].
1

But for any fixed n € [1...N], the column vectors of ¢["[g] are orthogonal.

Thus,

t7 [ L

Ydn | |Ydn 0 otherwise
VLT

Hence, we conclude:

<¢(g)[e®d], ¢(g)[e®a]> - {é i gt;efwise '

In other words, the basis vectors remain orthogonal under the tensored
action of g. O

H.4 Exterior Products of Group Representations

[See Appendix E.2 on page 201 for background on exterior products]

Now suppose that ¢ : G — Aut [V] is a linear representation, and define

the linear representation ¢V : G — Aut [V®V] in the aforementioned
N

fashion. Then /\V is an invariant subspace of G, because

¢®N[g](v1 AoooAVN) = (gevi)A...A(gsVN)
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Hence we can consider the subrepresentation
N

AV

N G — Aut

where ¢"V[g] = ¢®N[g] n .
AV
Suppose that V is an inner product space with orthonormal basis £ =

{e1,...,ep}, and let D<) and e,q be defined as in section E.2 on page 201.
N

We seek to describe the action of G on /\ V in terms of the basis {e/\d :d e D }

Proposition 175: Suppose that g € G, and that the transformation
¢[g] has matrix g = [Qij|5j:1]- Then for any d € D(9)

#"Vig] (ena) = Z det [g3,q1] - €njs
jem<)

where, for all j € D), we define gj; q] to be the N X N submatrix of g:

9i1,d1 Gi1,do 9i1,ds  --- YGi,dy
Giz,d1  Gindy YGiadz ---  Gig,dy
8lj,d] = Giz,di  YGizds  YJizds  --- YGizdn
g’iN,dl giN,dz g’iN,dg e giN,dN

Proof:

¢AN[Q] (ena)

= ¢®Ng] Z sign[o] - eq, ) ® ... ® €q,y,

gEO(N)
= Z sign[a]¢®N[g] (eda(l) ®R...Q edo—(N))
gET(N)
—(1) Z sign[a] Z (le,da(l) el ngada(N)) €, ¥...Qejy
o€O0(N) jeb
= Z Z Sign[a]gjl,da(l) “Gjosdg(a) " Jindony | it e, ...0¢e;5,

JED \o€o(N)
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Z det [g[j,d]] ‘e, Ve, ...0€e;,
jeb

(1) By Proposition 173 on page 235.

(2) This follows from the “permutation formula” for computing determi-
nants.

Now, every element in D can be thought of as a particular element in (<)
acted on by a particular permutation in o (V). Hence, we can rewrite this
expression as:

¢AN[9] (end) = Z Z det 8ls(j).d ] €j. 1 &® €2 ®...0 €, (v
JEIX) oeO(N)

- Z Z sign[o] - det [g[j,d]] "€, B € - B €y
je<) ceo(N)

= Z det g[J Z sign[o] - €0y ® €y ®--- B €j, )

JE) g€0(N)
= Z det [g[j,d]] €5, A €5, AN... A €y

je]D)(<)

In other words:
¢"Vgl(ena) = D det [gya - en
jem<)
|

Proposition 176: If ¢ is an orthogonal (unitary) representation of
N

G on'V, then ¢"V is an orthogonal (unitary) representation of G on /\V.

N
Proof: ¢V is just the restriction to /\V of the action of G on V®V

via the representation ¢®V: we have already shown that this action is
orthogonal/unitary. O
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H.5 The Irreducible Unitary Representations of
SO? [R]

It is desirable to have explicit descriptions of the irreducible, unitary
representations of SO” [R], in terms of orthonormal coordinate systems.

SOP [R] acts upon RP in an obvious fashion. By “complexifying” (that
is, tensoring with C), we can extend this to a complex-linear action of
SOP [R] upon CP. Since the elements of SOP [R] act orthogonally in RP,
they act unitarily on CP, so this is a unitary representation. Since there
clearly can be no invariant subspaces, this action is irreducible. Call this
action ¢.

For every N € [1..D], we can look at the Nth wedge power of ¢ with

N

itself: "V is a linear representation of SOP [R] upon /\ CP, defined:

¢ ™gl(vi AvaA...vn) = Blgl(vi) A Blgl(va) A... A dlgl(va)A

These representations are also irreducible (see [91], p. 83), and are unitary
N

relative to a naturally defined inner product structure on /\ CP. An explicit
description of this action in terms of coordinates is given in Section H.4 on
page 237.

For every N € N, the action of SOP [R] on CP induces a natural right-
action on the space of harmonic homogeneous polynomials of degree
N with complex coefficients, defined:

(p-9)(z) = p(g(z))

and these representations are also irreducible (see [172] p.88 for case D = 3,
or [91], p. 81).



Appendix I

Plots of (Gegenbauer
Polynomials, for D = 5,10, 20

As observed in Proposition 44 on page 68, the zonal eigenfunctions of the
Laplacian on a sphere are the Gegenbauer Polynomials. The explicit
expressions for these polynomials are complicated, and their qualitative
properties are most easily observed graphically. Below are plots of the
Gegenbauer polynomials CI(\',/)(:cl), for N € [1..39] and z; € [-1,1], in to
in dimensions D = 5, 10, and 20.
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APPENDIX I. PLOTS OF GEGENBAUER POLYNOMIALS
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Index of Notation

A C SP~! usually designates a countable set of atoms for some spectral
measure.

A: The area of the unit sphere SP~1.

a: The stability exponent of a stable probability distribution, ranging
from 0 to 2.

B (x;€): The open ball around x of radius e.
BP (x;¢€): The open ball around x of radius €, in R

BM (x;€): The open ball around x of radius €, on the Riemannian manifold

M.
Be(0;7) : The open ball of radius r around 0 in the tangent space T, M.
B, =tan (Z2), if & # 1, while B; = —2.

B: The skewness parameter of a univariate stable probability distribu-
tion, ranging from —1 to +1.

C(X): The space of continuous, complex-valued functions on topological
space X.

CN(M): The space of N-times differentiable complex-valued functions on
manifold M.

C>°(M): The space of smooth, complex-valued functions on manifold M.

x: Usually designates the Fourier transform (ie. characteristic function) of
a probability measure.

D: Usually the dimension of the Euclidean space under discussion, as in
RP.
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D,.f: The derivative of a smooth function f : M — N at m € M, where
M, N are manifolds and Dy : Tpy M — Tg(p) N is a linear map (see
Definition 117 on page 210).

D = [1.D] x...x[1..D] (§ E.1 on page 199).

N

< = {(d1,...,dn); 1 <dy <dy<...<dy <D} (§ E.2 on page 201).

d € [1..D] usually indexes a coordinate in D-dimensional space.

0: The exterior derivative operator on differential forms (§ 124 on page 214).
0a: The point mass at a.

A: The Laplacian operator (see § G.5 on page 223).

dist [z, y]: The distance between two points z and y in a metric space.

Distr [X]: The probability distribution of random variable X.

eq: If d € [1..D], then ey is the dth canonical basis vector of RP:

es = [0,...,0,1,0,...,0
——
d—1
€gd] = €4 ®e€d ® ... ey, where d = (di,...,dy) € D, (§ E.1 on
page 199).
€Ad] = €d; Negy N...\eqy, where d = (dy,...,dy) € (<) (§ E.2 on
page 201).

55 : If EE RP, then 85: RP — C is the periodic function with multifre-
quency E—'fin other words, Eg(x) = exp (27ri . <x, f>)
n(@): If s,0 € S~ then n(@(s,0) = |(s,0)|* + By~ (s,0)( -i.

exp,, (¥): If M is a Riemannian manifold, and m € M, then exp is the ex-
penential map from T,, M into M. (see Definition 136 on page 220).

E;” [f]: The conditional expectation of the function f relative to the
probability measure p.
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E= [X]: The conditional expectation of random variable X.

®: Usually indicates the logarithm of the characteristic function of a prob-
ability measure.

I': Usually indicates the spectral measure of a multivariate stable proba-
bility distribution. (see Theorem 77 on page 143).

~: usually the continuous part of spectral measure I'.

Ya: If a € SP~1 then 7, is usually the weight given to the point mass at a,
as part of spectral measure I'.

Ge: If G is a Lie group acting on manifold M, and e € M, then G} is
the subgroup of G fixing e, and G, is the connected component of G
containing the identity (see Chapter 5).

HE : The Haar measure on compact group G.
iz The square root of —1.

im [z]: The imaginary part of complex number z.

Kp) = m})n ) ‘ log | x(0)|‘, where p is a probability measure, and y its
gesP—-
characteristic function (Definition 6 on page 19).

Lrs: The Lebesgue measure, on RP or a Riemannian manifold.

LP(X,p) = {f : X — C; f is measurable, and / IfIP du < oo} (for any
X
p € [1,00)).

L(X, p) = {f : X — R; f is measurable, and / |f|¢ du < oo}, for
X
any a € [0,2], a# 1 (§ D.2 on page 181).

(f)m> = /xf(x)<a> dp[z], for any a € [0,2], a#1 (§ D.2 on page 181).

a

1/
Wfll, = (/ |f(z)|® du[w]) , for any «a € [0, 2], although this is obvi-
X
ously not really a norm if & < 1 (Corollary 101 on page 191).
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L)X, p) = {f : X — R; f is measurable, / |f| du < o0, and
X

/ |f|log|f| du < oo} (Corollary 102 on page 191).
X

Py = /x F(x)log|f(z)] dufz]. (Proposition 100 on page 189).

AM) ={AeC; —\is an eigenvalue of A} where A is the Laplacian on
Riemannian manifold M (§ 5.1 on page 51).

log(z) is always the natural logarithm of z.

Mess [X]: The space of probability measures on a measurable space X. If X
is a topological space, we assume the Borel sigma algebra, and endow
Mess [X] with the weak™ topology of convergence it inherits as the
dual of C(X).

Mess [X; R]: The space of finite, signed measures on a measurable space
X.

Mess [X; C]: The space of complex-valued measures on a measurable space
X.

u: The center parameter of a stable probability distribution (equivalent
to the mean if @ > 1).

Nt The a-stable random noise (ie. random measure) on some measurable
space X, with intensity measure p (see § D.2 on page 181).

J\_|p;0]: The normal (or “Gaussian”) distribution on R with mean z and
variance o.

J\&[u, B,0]: The a-stable distribution on R with centre parameter u,
skewness (3, and variation o. (see § A.1 on page 129).

prx: If X x Y is a Cartesian product, then prx : X x Y — X is the
projection onto the first coordinate.

pry: If H is a Hilbert space, and V C H a subspace, then pry : HH — V is
the orthogonal projection.

re [z]: The real part of complex number z.

p usually denotes a (stable) probability measure.



Index of Notation 275

STM: The C*®-algebra of smooth tangent vector fields over manifold M
(§ F.2.2 on page 211).

N
G} /\ T* M: The vector space of differential N-forms over manifold M.

SP~1: The unit sphere in R”.

o usually denotes the variation of a univariate stable probability distribu-
tion.

SOQP [R]: The special orthogonal group on RP.

*: The Hodge star operator (§ E.4 on page 202)

supp [#]: The support of the measure p.

Tx M: The tangent space of manifold M at x. (see § F.2 on page 209).
T M: The tangent bundle of manifold M.

TP: The D-dimensional torus, as a topological group. Often, we identify
TP with the unit cube [0, 1)D, via the obvious coordinate system.

UP: The unitary group on C” (Definition 154 on page 229).

M[G]: The set of all irreducible unitary representations of a group G
(Definition 152 on page 227).

Va: In Chapter 5, the eigenspace of the Laplacian corresponding to eigen-
value A.

V*: The dual of vector space V.

N
®V : The N-fold tensor product of a vector space.

N
/\V* : The N-fold exterior product of a dual vector space (see § E.2 on

page 201).
ViAVaA...AVy = Z sign[o]-vy(1)®...®V,(x), where o (N) is the
g€O0(N)
permutation group on [1..N], and vi,...,vy are covectors (see § E.2

on page 201).
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wk*—lim p,: The weak*-limit of the sequence of measures p,.
n—oo

Q,: The canonical volume form on a Riemannian manifold (Definition 140
on page 221).

Z.(V): IfV C C*®(M) is a G-invariant linear subspace, then Z.(V) is the
subspace of zonal elements of V, relative to G and e € M. (see
Definition 27 on page 52).

(: Usually indicates a zonal function.
{® = sign(z)|z|®, if a # 1, while (1) = zlog |z|.

IT||,qr: The total variation norm of measure I'.

var"*

IT[|y: The [p]-norm of nice measure I' (Definition 11 on page 27).

g: Ifg:RP — C, then g : RP — Cis the (classical) Fourier Transform
of g: for all £ € RD, (&) = /R 900) - E) AL [x].

g: If g : TP — C, then g : ZP — C is defined: Vn € Z”, G(n) =
/[0 " g(0) - exp (2ri (x,n)) dL=[6], where we identify TP = [0,1)”
in the obvious way.

If p € Mess [RP], then p is the (classical) Fourier transform p(¢) =
/]R ) dplx].

=

If p € Mess [TP], then § : ZP — C is defined: Vn € ZP, gG(n) =

exp (27i (x,n)) dp[6], where we identify T? = [0,1)” in the
[0,1]
obvious way.

=

T,: The nth spherical Fourier coefficient of measure I (see Definition 46
on page 73 and Definition 52 on page 79).

(x,y): The inner product of vectors x and y.

X o Y means that random variables X and Y have the same distri-

bution.

[1.N] = {1,2,...,N}



