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Abstract

A coupled cell system is a network of dynamical systems, or ‘cells’, coupled to-
gether. Such systems can be represented schematically by a directed graph whose
nodes correspond to cells and whose edges represent couplings. A symmetry of a cou-
pled cell system is a permutation of the cells that preserves all internal dynamics and all
couplings. Symmetry can lead to patterns of synchronized cells, rotating waves, mul-
tirhythms, and synchronized chaos. We ask whether symmetry is the only mechanism
that can create such states in a coupled cell system, and show that it is not.

The key idea is to replace the symmetry group by the symmetry groupoid, which
encodes information about the input sets of cells. (The input set of a cell consists
of that cell and all cells connected to that cell.) The admissible vector fields for a
given graph — the dynamical systems with the corresponding internal dynamics and
couplings — are precisely those that are equivariant under the symmetry groupoid.
A pattern of synchrony is ‘robust’ if it arises for all admissible vector fields. The
first main result shows that robust patterns of synchrony (invariance of ‘polydiagonal’
subspaces under all admissible vector fields) is equivalent to the combinatorial condition
that an equivalence relation on cells is ‘balanced’. The second main result shows that
admissible vector fields restricted to polydiagonal subspaces are themselves admissible
vector fields for a new coupled cell network, the ‘quotient network’. The existence of
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quotient networks has surprising implications for synchronous dynamics in coupled cell
systems.

In a final section we develop the local bifurcation theory of coupled cell systems, by
analogy with symmetric bifurcation theory, using the concept of an ‘interior symmetry’,
which is closely related to the groupoid structure. We prove analogs of the Equivariant
Branching Lemma for steady-state bifurcation, and the Equivariant Hopf Theorem for
bifurcation to time-periodic states for ‘synchrony-breaking’ bifurcations. We end by
suggesting analogous contexts in which symmetry groupoids can be defined and may
prove useful.

1 Introduction

We use the term cell to indicate a system of ODEs. A coupled cell system is a set of cells
with coupling, that is, a dynamical system whose variables correspond to cells, such that
the output of certain cells affects the time-evolution of other cells. The salient feature of a
coupled cell system is that the output from each cell is considered to be significant in its
own right. A coupled cell system is not merely a system of ODEs, but a system of ODEs
equipped with canonical observables — the individual cells (see [9]). From a mathematical
point of view these output signals can be compared, and this observation leads to a variety
of notions of ‘synchrony’. For surveys, see Boccaletti et al. [2] and Wang [15].

In this paper we discuss the architecture of a coupled cell system: which cells influence
which, which cells are ‘identical’, and which couplings are ‘identical’. We focus on how the
system architecture leads naturally to synchrony. To do this, we must define carefully when
two cells or two couplings are ‘identical’ or ‘equivalent’. Indeed, the main point of this paper
is to provide a general mathematical foundation for these ideas. This foundation uses the
algebraic structure of groupoids, see Brandt [1], Higgins [11], and greatly generalizes the
uses of symmetry in coupled cell systems that we have explored previously [8, 9]. We mention
that coupled cell systems are used to model a variety of physically interesting systems. For
examples, see [9] and references therein. In this section we illustrate the issues through
several examples.

Two-Cell Systems

We begin with the simplest system of two identical cells (with coordinates x1 and x2 in Rk).
Without making any specific assumption of the form of the ‘internal dynamics’ of each cell
or the form of the ‘coupling between cells’, the differential equations for the coupled system
have the form

ẋ1 = f(x1, x2)
ẋ2 = f(x2, x1)

(1.1)

that is, the same function f governs the dynamics of both cells. There are three issues that
we discuss concerning system (1.1): the graph (diagram, network) associated to a coupled
cell system, symmetry, and synchrony.
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Informally, the ‘network’ of a coupled cell system is a finite directed graph whose nodes
represent cells and whose edges represent couplings. Nodes are labeled to indicate ‘equivalent’
cells, which have the same phase space and the same internal dynamic. Edges are labeled
to indicate ‘equivalent’ couplings. The graph associated to system (1.1) is given in Figure 1.
We think of this graph as representing a pair of systems of differential equations in the
following way. The two cells are indicated by identical symbols — so they have the same
state variables. That is, the coordinates x1 of cell 1 and x2 of cell 2 lie in the same phase
space Rk. Since we can interchange cells 1 and 2 without changing the graph, we assume
that the same is true for the system of differential equations and that they must have the
form (1.1). Note that for this interchange to work, the arrow 1 → 2 must be the same as
the arrow 2→ 1.

1 2

Figure 1: A two-cell network.

The discussion in the previous paragraph can be summarized by: the permutation
σ(x1, x2) = (x2, x1) is a symmetry of the system (1.1). Indeed, more is true: every sys-
tem of differential equations on Rk ×Rk that is equivariant with respect to σ has the form
(1.1). That is, abstractly the study of pairs of identical cells that are identically coupled is
the same as the study of σ-equivariant systems. Two consequences follow from this remark.
First, synchrony in two-cell systems (solutions such that x1(t) = x2(t) for all time t) is a
robust phenomenon and should not be viewed as surprising. Second, time-periodic solutions
can exhibit a kind of generalized synchrony, in which the two cells oscillate a half-period out
of phase.

The first remark can be restated: the diagonal subspace V = {x1 = x2} ⊂ Rk ×Rk is
flow-invariant for every system (1.1). This remark can be verified in two ways. By inspection
restrict (1.1) to V , obtaining

ẋ1 = f(x1, x1)
ẋ1 = f(x1, x1)

It follows that if the initial conditions for a solution satisfy x1(0) = x2(0), then x1(t) = x2(t)
for all time t, and V is flow-invariant. Alternately, we can observe that V is the fixed-point
subspace Fix(σ), and fixed-point subspaces are well-known to be flow-invariant.

The second remark is related to general theorems about spatio-temporal symmetries of
time-periodic solutions to symmetric systems of ODEs. The H/K Theorem ([4, 8]) implies
the existence of functions f having time-periodic solutions of period T satisfying

x2(t) = x1(t+ T/2) (1.2)

as long as the phase space of each cell has dimension k ≥ 2. Indeed, in this case, such
solutions can be found by Hopf bifurcation. (Note that when k = 1, nonconstant periodic
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solutions satisfying (1.2) must intersect the diagonal V , and hence be in V for all time: a
contradiction.)

A Three-Cell Network

Consider the three-cell network illustrated in Figure 2. The systems of differential equations

1 2 3

Figure 2: A three-cell network with transposition symmetry.

corresponding to this network have the form

ẋ1 = f(x1, x2)
ẋ2 = g(x2, x1, x3)
ẋ3 = f(x3, x2)

(1.3)

where g(x2, x1, x3) = g(x2, x3, x1), x1, x3 ∈ Rk, and x2 ∈ R`. Note that all such systems are
equivariant with respect to the permutation τ(x1, x2, x3) = (x3, x2, x1), and that synchronous
solutions (where x1(t) = x3(t) for all time t) occur robustly because the ‘polydiagonal’
subspace W = {x : x1 = x3} is flow-invariant for (1.3).

There are two differences between the three-cell network in Figure 2 and the two-cell
network in Figure 1. First, not all τ -equivariant systems on Rk × R` × Rk have the form
(1.3), since in the general τ -equivariant system f can depend nontrivially on both x1 and
x3. So there can be additional structure in coupled cell systems that does not correspond
directly to symmetry. Second, the half-period out of phase time-periodic solutions satisfy

x3(t) = x1(t+ T/2) and x2(t) = x2(t+ T/2) (1.4)

In particular, the oscillations in cell 2 are forced by symmetry to occur at twice the frequency
of those in cells 1 and 3. So multirhythms [8] can be forced by the architecture of coupled
cell networks.

Another Three-Cell Network

We now show that robust synchrony is possible in networks that have no symmetry. Consider
the three-cell network in Figure 3. This network has no symmetry, but the network structure
forces the ‘polydiagonal’ subspace Y = {x : x1 = x2} to be flow-invariant. To verify this
point observe that the coupled cell systems associated with this network have the form

ẋ1 = f(x1, x2, x3)
ẋ2 = f(x2, x1, x3)
ẋ3 = g(x3, x1)

(1.5)
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1 2

3

Figure 3: A three-cell network without symmetry.

where x1, x2 ∈ Rk and x3 ∈ R`. Restricting the first two equations to Y yields

ẋ1 = f(x1, x1, x3)
ẋ1 = f(x1, x1, x3)

implying that Y is a flow-invariant subspace.
There is a precise sense in which cells 1 and 2 are identical within this network, and it

is this observation that will enable us to prove the flow-invariance of subspaces like Y in a
more abstract (and general) setting. Define the ‘input set’ of a cell j to be the cell j and all
cells i that connect to cell j. Also include the arrows from cells i to j.

We can now explain why Y is flow-invariant, in terms of a permutation that acts on the
network. This permutation is not a symmetry of the whole network, but it preserves enough
structure to create a flow-invariant subspace. The key property is that the input sets of cells
1 and 2 are isomorphic via the permutation σ that maps (1 2 3)→ (2 1 3).

If the system (1.5) were equivariant with respect to σ, then the fixed-point space of σ
would be flow-invariant by [10, 8]. Moreover, the fixed-point space of σ is Y . However, (1.5)
is not equivariant with respect to σ. Indeed, if we apply σ, then the equation transforms
into

ẋ2 = f(x2, x1, x3)
ẋ1 = f(x1, x2, x3)
ẋ3 = g(x3, x2)

(1.6)

The first two equations are the same as in (1.5), but the third equation is not. However, the
third is the same on the space Y , where x2 = x1. So the restriction of the equations to Y is
σ-equivariant, and this is enough to make Y flow-invariant.

1 2

3

1 2

3

1

3

Figure 4: Input sets for three-cell network without symmetry.
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Traveling Waves in a Seven-Cell Network

Consider the seven-cell linear network in Figure 5. The corresponding differential equations
have the general form

ẋ1 = B(x1) ẋ2 = A(x2, x1) ẋ3 = A(x3, x2)
ẋ4 = A(x4, x3) ẋ5 = A(x5, x4) ẋ6 = A(x6, x5)

ẋ7 = A(x7, x6)
(1.7)

1 2 3 4 5 6 7

Figure 5: Seven-cell linear network.

It does not seem to be a simple matter to determine whether traveling waves are present
in this network. If the cell phase spaces are all 1-dimensional, there are no nontrivial time-
periodic states, so no traveling waves. With higher-dimensional phase spaces, special as-
sumptions are needed to produce traveling waves. However, if we introduce back coupling
from cell 3 to cell 1, as shown in Figure 6, traveling waves can typically be expected, even
in the 1-dimensional case, as explained below. This is curious, because informally Figure 6
would normally be considered as being less regular in form than Figure 5. So the issue of
‘regular form’ for a coupled cell network is fairly subtle. The key feature here is that all
input sets for cells in the network in Figure 6 are isomorphic, whereas as this is not true
for the cells in Figure 5. It is this additional ‘symmetry’ on the groupoid level that makes
traveling waves typical. Indeed, Figure 6 has many groupoid symmetries (42 in all).

1 2 3 4 5 6 7

Figure 6: Seven-cell linear network with back connection.

We discuss why traveling wave solutions arise, in two ways. First, the assumption that
all of the cells and arrows in Figure 6 are identical implies that the first equation in (1.7) is
now

ẋ1 = A(x1, x3)

If we set
x7 = x4 = x1 = y1

x6 = x3 = y3

x5 = x2 = y2

(1.8)

then the system of seven equations reduces to a three-equation system

ẏ1 = A(y1, y3)
ẏ2 = A(y2, y1)
ẏ3 = A(y3, y2)

(1.9)
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which is the general form associated with the directed ring of coupled cells in Figure 7. It is
not hard to show using Hopf bifurcation that the system (1.9) can support a discrete rotating
wave y(t), where

y2(t) = y1

(

t− T

3

)

y3(t) = y2

(

t− T

3

)

and y1 is periodic of period T . This solution yields a traveling wave solution for the network
in Figure 5. See a sample simulation in Figure 8. (The number 7 is not significant here: the
same ideas work for any chain containing 3 or more cells and with feedback from any cell
other than the first.)

1

2 3

Figure 7: Three-cell directed ring: quotient of the network in Figure 6
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Figure 8: Traveling wave solution in seven-cell chain.

More importantly, the three-cell ring in Figure 7 is a quotient network of the one in
Figure 6, where the quotient map β takes x1, x4, x7 to y1; x2, x5 to y2; and x3, x6 to y3.
We define ‘quotient’ in Section 8, but the key point is that solutions for the three-cell ring
naturally ‘lift’ to solutions for the seven-cell network, via (1.8). The crucial features here are
that β induces an isomorphism from each input set in the first network to an input set in
the second network, and every coupled cell system of differential equations in the quotient
lifts to a coupled cell system in the first network.

We seek to isolate the abstract structural features that are responsible for the behavior
described in the above examples, and to place the discussion in a rigorous, formal context.
We structure the paper as follows. Coupled cell networks are rigorously defined in terms
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of nodes and arrows in Section 2. The key concept, the groupoid structure of a coupled
cell network, is defined in Section 3 in terms of input sets. The phase space and admissible
vector fields associated to a coupled cell network are discussed in Section 4. Basically, the
intuitive ideas presented in this introduction are formalized as equivariance with respect to
the symmetry groupoid of the network. Section 5 describes an extended example, which
motivates the rest of the paper. In Section 6 we introduce three different notions of robust
synchrony: flow-invariant subspaces, fixed-point subspaces of subgroupoids, and balanced
equivalence relations. We prove that these notions are all equivalent. Quotient maps and
quotient networks, which constitute a fourth equivalent notion for synchrony, are discussed
in Section 8. Quotient networks are an especially useful concept because they illuminate the
generic dynamics of vector fields restricted to synchronous invariant subspaces, which can
include phase-locked states and synchronized chaos. Examples illustrating these points are
discussed in Section 7. The relationship between the dynamics on a synchronous subspace
and the induced dynamics on the quotient network is discussed in Section 9. Section 10
initiates the ‘synchrony-breaking’ bifurcation theory of not necessarily symmetric coupled
cell systems by introducing the notion of ‘interior symmetry’ and applies it to prove analogs
of the Equivariant Branching Lemma and the Equivariant Hopf Theorem [10, 8].

2 Coupled Cell Networks

We begin by formally defining a coupled cell network.

Definition 2.1 A coupled cell network G consists of:

(a) A finite set C = {1, . . . , N} of nodes or cells.

(b) A finite set of ordered pairs E ⊆ C × C of directed edges or arrows.

Each edge (c, d) has a tail c and a head d.

(c) An equivalence relation ∼C on cells in C.
The type or cell label of cell c is the ∼C-equivalence class [c]C of c.

(d) An equivalence relation ∼E on edges in E .

The type or coupling label of edge e is the ∼E-equivalence class [e]E of e.

An edge (c, c) is an internal edge; a cell is active if it has an internal edge. We assume
that every cell is active, that is,

∆C = {(c, c) : c ∈ C} ⊂ E . (2.1)

In addition, we require the following compatibility conditions:

(e) Equivalent edges have equivalent tails and heads. That is,

if (i, c) ∼E (j, d) then i ∼C j and c ∼C d.
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(f) Internal edges are equivalent if their tails are equivalent. Internal edges and non-
internal edges are never equivalent. That is, for all c, d, d′ ∈ C

(c, c) ∼E (d, d′) ⇐⇒ d = d′ and d ∼C c

Formally, the coupled cell network G is the quadruple G = (C, E ,∼C ,∼E). 3

We represent a coupled cell network G by a diagram constructed as follows.

1) For each ∼C-equivalence class of cells choose a distinct node symbol ©,2,4, and so
on.

2) For each ∼E-equivalence class of non-internal edges, choose a distinct arrow→,⇒,;,
and so on.

The compatibility conditions in Definition 2.1 state that arrows between distinct cells
can be identical only when the nodes at the heads are identical and the nodes at the tails
are identical, and that node symbols can be interpreted as arrows from a cell to itself.

The above definition is essentially the standard concept of a directed graph (or digraph)
in graph theory (see for example Tutte [14], Wilson [17]), modified to incorporate labeling
of nodes and edges. We assume that the graph is finite because this makes the associated
dynamical systems (discussed in Section 4) finite-dimensional. However, most of the theory
generalizes to infinite graphs. The assumption that all cells are active can be removed, at
the expense of notational complications, but the details are routine and we do not treat this
case here.

Example 2.2 Suppose that the network G is defined by:

C = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 4), (3, 1), (3, 4)(4, 1)}
∼C has equivalence classes {1}, {2, 3}, {4}
∼E has equivalence classes {(1, 2), (1, 3)}, {(2, 4), (3, 4)}, {(3, 1)}, {(4, 1)}

and all nodes are active. Then the diagram of G has the form shown in Figure 9 for the
given choices of symbols. 3

3 Input Sets and Groupoids

In this section we define the basic algebraic structure of a coupled cell network — its sym-
metry groupoid. Some preliminary concepts are required.
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1 2

3

Figure 9: Example of the diagram of a coupled cell network.

Input Sets

As discussed in more detail in Section 4 the variables that appear in a given component fc
of the vector fields f associated to a coupled cell network depend only on those cells that
are linked to cell c by an arrow. This observation is abstracted as:

Definition 3.1 The input set I(c) of a cell c is

I(c) = {i ∈ C : (i, c) ∈ E}

Since all cells are active, c ∈ I(c). We call c the base cell of I(c). 3

Two cells are considered to be identical within the network if they have isomorphic input
sets. We call such cells ‘input equivalent’.

Example 3.2 We return to Example 2.2 whose diagram is shown in Figure 9. The input
sets are shown in Figure 10. There are three ∼I-equivalence classes: {1}, {2, 3}, and {4}.
The isomorphism between I(2) and I(3) is the bijection τ : {2, 1} → {3, 1} for which τ(2) = 3
and τ(1) = 1. 3

4

3

4

21 1

1

3

2

3

Figure 10: Input sets for Figure 9.
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Definition 3.3 The relation ∼I of input equivalence on C is defined by c ∼I d if and only if
there exists a base cell preserving bijection

β : I(c)→ I(d) (3.1)

(by which we mean that β(c) = d), such that for all i ∈ I(c)

(i, c) ∼E (β(i), d) (3.2)

Any such bijection β is called an input isomorphism from cell c to cell d. The set B(c, d)
denotes the collection of all input isomorphisms from cell c to cell d. 3

On setting i = c in (3.2), we see that c and d have the same type (c ∼C d) if they are input
equivalent (c ∼I d). The converse is easily seen to be false. Moreover, B(c, d) is empty unless
c ∼I d.

The Symmetry Groupoid

We now introduce the central concept of this paper, the ‘symmetry groupoid’ of a coupled cell
network. The symmetry groupoid is a generalization of the symmetry group of a symmetric
network. It includes not just symmetries of the whole network, but symmetries between
particular subgraphs — namely, the input sets.

Definition 3.4 The symmetry groupoid of a coupled cell network G is the disjoint union

BG =
˙⋃

c,d∈C
B(c, d)

3

The term ‘groupoid’ was introduced by Brandt [1] and is developed at length in Hig-
gins [11]. The term refers to an algebraic structure that is similar to a group, with the
exception that products of elements may not always be defined. Different authors formalize
groupoids in slightly different (but mostly equivalent) ways. Essentially, a groupoid must
satisfy three conditions:

1) The product operation is associative in the sense that whenever one of α(βγ) and
(αβ)γ is defined, then so is the other, and they are equal.

2) There are distinguished elements εj that act as identity elements, in the sense that
εjα = α and αεj = α whenever these are defined. (Here the indices j correspond to
the ‘objects’ of the groupoid, which in our case are the cells.)

3) Every element α has an inverse α−1, in the sense that both αα−1 and α−1α are iden-
tities.
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In the case of BG, the groupoid structure is captured by the following.

1) We define the product of β1 ∈ B(c, d) and β2 ∈ B(c′, d′) if and only if c′ = d, and then
we set β2β1 = β2◦β1 ∈ B(c, d′) where ◦ denotes composition of maps. Composition is
of course associative when it is defined.

2) The identity elements idI(c) for c ∈ C are the groupoid identity elements.

3) For inverses, observe that β ∈ B(c, d) if and only if β−1 ∈ B(d, c).

It follows in particular that B(c, c) is a group, the vertex group corresponding to c. Vertex
groups are important in groupoid theory, and play a key role in this paper.

Remark 3.5 The term ‘disjoint union’ in Definition 3.4 is used in a technical sense. The
sets B(c, d) for different pairs (c, d) are not necessarily disjoint. For example, if C = {1, 2}
where cells 1 and 2 are inequivalent, each coupled to the other by inequivalent arrows, then
B(1, 1) and B(2, 2) both consist of the identity map on {1, 2}. It is convenient to make
them disjoint. One way to do this is to replace each bijection β ∈ B(c, d) by the triple
(β, c, d). Then β defines the permutation, c is an index specifying its ‘domain’, and d is an
index specifying its ‘range’. As far as the groupoid structure is concerned, the product β2β1 is
defined only when c′ = d. This occurs when the ‘range’ of β1 is equal to the ‘domain’ of β2, in
the sense just specified. However, the set-theoretic ranges and domains of the corresponding
bijections may permit the composition of β1 and β2 as functions in cases where we do not
wish to permit them to be multiplied in the groupoid.

The point here is that we are not dealing merely with bijections on sets, but with base-
point preserving bijections on based sets. Composition must respect the base points as well
as the sets.

For simplicity, we use β to denote an input isomorphism, rather than the cumbersome
(β, c, d), because the appropriate c, d are usually obvious. 3

Example 3.6 Again, we return to Example 2.2. The non-empty sets B(c, d) are:
B(1, 1): The identity map on {1, 3, 4}.
B(2, 2): The identity map on {2, 1}.
B(3, 3): The identity map on {3, 1}.
B(4, 4): The identity map on {4, 2, 3}, and the permutation σ on {4, 2, 3} for which

σ(2) = 3, σ(3) = 2, σ(4) = 4.
B(2, 3): The map τ : {2, 1} → {3, 1} for which τ(1) = 1, τ(2) = 3.
B(3, 2): The inverse τ−1 of τ . 3

Subgroupoids and Connected Components

For the basics of groupoids see Brandt [1], Brown [3], Higgins [11], and MacLane [12]. For
applications see Weinstein [16]. Groupoids combine several features of groups with features of
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graphs, and we discuss one of each now. The group-theoretic notion is that of a subgroupoid;
the graph-theoretic one is that of a connected component.

A subset S ⊂ BG is a subgroupoid if S is closed under products (when defined) and taking
inverses.

The connected components of the groupoid BG are in one-to-one correspondence with ∼I-
equivalence classes on C. Specifically, let A be a ∼I-equivalence class. Then the subgroupoid

S(A) =
˙⋃

c,d∈A
B(c, d) (3.3)

is a connected component of BG. Moreover:

Lemma 3.7 The groupoid BG is the disjoint union of its connected components. That is,

BG =
˙⋃

A
S(A)

where A runs through the ∼I-equivalence classes in C. Moreover, if A,A′ are two distinct
such classes, and β ∈ S(A), β′ ∈ S(A′), then the product ββ′ is not defined. 2

We say that two cells c, d ∈ C are in the same connected component of BG if and only
if c ∼I d. The mental image here is that associated with any groupoid there is a graph,
whose elements are the vertices of the groupoid and whose (directed) edges are the groupoid
elements. It is the connected components of this graph that are being described. See
Higgins [11] chapter 3.

If c, d belong to the same connected component, then the vertex groups B(c, c) and
B(d, d) are conjugate, in the sense that there exists γ ∈ B(c, d) such that

B(c, c) = γ−1B(d, d)γ

In particular, B(c, c) and B(d, d) are isomorphic groups.

Structure of B(c, d)

For later use, we determine the general structure of the sets B(c, d).

1) If c 6∼I d then B(c, d) = ∅.

2) If c = d then we define an equivalence relation ≡c on I(c) by

j1 ≡c j2 ⇐⇒ (j1, c) ∼E (j2, c)

for j1, j2 ∈ I(c). Let the ≡c-equivalence classes of I(c) be K0, . . . , Kr, for r = r(c), so
that

I(c) = K0 ∪̇ · · · ∪̇Kr (3.4)
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We may choose K0 = {c} by Definition 2.1(f). Let

ks = |Ks| (0 ≤ s ≤ r)

Then B(c, c) is a group, given by

B(c, c) = Sk1 × · · · × Skr

where each Sks comprises all permutations of Ks, extended by the identity on I(c)\Ks.

3) If c ∼I d and c 6= d, define ≡d on I(d) in the same way. Let β ∈ B(c, d), and let

Ls = β(Ks) (0 ≤ s ≤ r(c))

Then β and β−1 preserve ∼E, so the ≡d-equivalence classes of I(d) are the Ls(0 ≤ s ≤
r(c)), and r(d) = r(c).

Choose a fixed but arbitrary β0 ∈ B(c, d), having the above property. Then

B(c, d) = B(d, d)β0 = β0B(c, c)

Conversely, any β0 : I(c)→ I(d) such that Ls = β0(Ks) for 0 ≤ s ≤ r(c) lies in B(c, d).

4 Vector Fields on a Coupled Cell Network

We now define the class FPG of vector fields corresponding to a given coupled cell network G.
This class consists of all vector fields that are ‘compatible’ with the labeled graph structure,
or equivalently are ‘symmetric’ under the groupoid BG. It also depends on a choice of ‘total
phase space’ P , which we assume is fixed throughout the subsequent discussion. For example,
in the two-cell system (1.1) we have P = Rk ×Rk, which depends on the choice of k.

For each cell in C define a cell phase space Pc. This must be a smooth manifold of
dimension ≥ 1, which for simplicity we assume is a nonzero finite-dimensional real vector
space. We require

c ∼C d =⇒ Pc = Pd

and we employ the same coordinate systems on Pc and Pd. Only these identifications are
canonical. If Pc = Pd or Pc is isomorphic to Pd when c 6∼C d, then the identification of Pc
and Pd will be deemed accidental, and will have no significance for our present purposes. In
other words, the relation c ∼C d means that cells c and d have the same phase space, but
not that they have isomorphic dynamics.

Define the corresponding total phase space to be

P =
∏

c∈C

Pc

and employ the coordinate system
x = (xc)c∈C
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on P .
The cell projection corresponding to cell c is the natural projection

πc : P → Pc

More generally, suppose that D is any subset of C. Define

PD =
∏

c∈D

Pc

and let
πD : P → PD

be the natural projection. Further, write

xD = πD(x)

and suppress braces when D is a singleton. That is, πc(x) = xc = x{c}.
Finally, suppose that D1,D2 are subsets of C, and that there is a bijection β : D1 → D2

such that β(d) ∼C d for all d ∈ D1. Define the pullback map

β∗ : PD2 → PD1

by
(β∗(z))j = zβ(j) ∀j ∈ D1, z ∈ PD2 (4.1)

By direct calculation it is easy to verify three simple properties of the pullback:

(βγ)∗ = γ∗β∗

id∗ = id
(γ−1)∗ = (γ∗)−1

(4.2)

Note the reversed order in the first of these equations.
We use pullback maps to relate different components of the vector field associated with

a given coupled cell network. Specifically, the class of vector fields that is encoded by a
coupled cell network will be defined using the following concept:

Definition 4.1 A vector field f : P → P is BG-equivariant or G-admissible if:

(a) For all c ∈ C the component fc(x) depends only on xI(c); that is, there exists f̂c :
PI(c) → Pc such that

fc(x) = f̂c(xI(c)) (4.3)

(b) For all c, d ∈ C and β ∈ B(c, d) (so that in particular d = β(c))

f̂d(xI(d)) = f̂c(β
∗(xI(d))) ∀x ∈ P (4.4)
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For brevity, we write this condition as

fβ(c)(x) = fc(β
∗(x)) ∀x ∈ P (4.5)

However, when using (4.5) it is necessary to check that fd(x) depends only on xI(d).
Otherwise, β∗(x) is not defined. 3

We call (a) the domain condition and (b) the equivariance condition on f .

Remark 4.2 If β belongs to the vertex group B(c, c) then (4.5) implies that

fc(β
∗(x)) = fc(x) ∀x ∈ P (4.6)

That is, fc is B(c, c)-invariant. It is easy to check that this property is the same as the usual
property of invariance under a group, provided we consider B(c, c) as acting on PI(c). 3

Definition 4.3 For a given choice of the Pc we define the class FPG to consist of all G-
admissible vector fields on P . 3

These are the most general vector fields on P that are consistent with the coupled cell
network.

Example 4.4 We describe FPG for the diagram of Figure 9. There are three cell types
(©,2,4) and we choose three corresponding phase spaces U, V,W . Then the state variable
is x = (x1, x2, x3, x4) where x1 ∈ U ; x2, x3 ∈ V ; x4 ∈ W . There are four arrow types. We
claim that the G-admissible vector fields f are those of the form:

f1(x) = A(x1, x3, x4) where A : U × V ×W → U
f2(x) = B(x2, x1) where B : V × U → V
f3(x) = B(x3, x1)
f4(x) = C(x4, x2, x3) where C : W × V × V → U

and C is symmetric in x2, x3.
To prove this, we consider the equivariance condition (4.5) for all the bijections β listed

in Example 3.6. There are two nontrivial cases: B(2, 3) and B(4, 4). First, suppose that
c = 2, d = 3 and consider the bijection τ : I(2)→ I(3) for which τ(2) = 3, τ(1) = 1. Suppose
that we define the function B : PI(2) → P2 by

B(x2, x1) = f2(x)

so that B = f̂2. Then f3(x) = f̂3(x3, x1) and we wish to express this in terms of B.
It is easy to work out the pullback of τ . If we write the elements of PI(3) in the form

x = (x3, x1), then y = τ ∗(x) takes the form y = (y2, y1) ∈ PI(2) where

y2 = (x)τ(2) = x3

y1 = (x)τ(1) = x1
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Then
τ ∗(x3, x1) = (x3, x1)

and condition (4.5) tells us that
f̂3(x) = B(x3, x1)

as claimed. (The pullback τ ∗ is not the identity, because its range and domain are different.
It is an identification.)

Similarly, if we consider σ ∈ B(4, 4) then we have a function C defined by f4(x) =
C(x4, x2, x3). Now the pullback σ∗ : PI(4) → PI(4) acts as

σ∗(x4, x2, x3) = (x4, x3, x2)

and condition (4.5) tells us that

C(x4, x2, x3) = f̂4(x) = C(x4, x3, x2)

so that C is symmetric in x2, x3. 3

Here and from now on we adopt the convention that xc is the first variable listed in the
argument of f̂c. We can show that f̂c is symmetric in some subset of variables by putting a
bar over that set, so that here

f4(x) = C(x4, x2, x3)

(To do this, we have to order the variables suitably, and in some cases this cannot be done
consistently. The use of a bar is convenient for the purposes of this paper.) Note that the
network G is not symmetric under the 2-cycle (2 3), because the arrow from cell 3 to cell 1
does not correspond to an arrow from cell 2 to cell 1.

Admissible Vector Fields

The proofs of the main theorems of this paper rely on the construction of certain special
G-admissible vector fields. In this subsection we describe these constructions.

As motivation, consider Example 4.4. Here, the most general G-admissible vector field
is specified by three functions A,B,C. These functions can be assigned independently of
each other. There is one such function for each ∼I-equivalence class of cells, that is, each
connected component of BG. If c ∈ C then fc is B(c, c)-invariant; if d ∼I c then fd is uniquely
defined by fc through the condition of BG-equivariance. We now give a formal statement of
these properties and show that they are valid in general.

The main point is that Lemma 3.7 implies that BG-equivariance imposes conditions re-
lating components fc, fd of f when c, d lie in the same connected component of BG, but not
otherwise. We can therefore construct G-admissible vector fields g on P whose components
gc are zero for all c outside a fixed ∼I-equivalence class. We will prove that such vector fields
span FPG .
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Let Q ⊆ C be a ∼I-equivalence class. Define

FPG (Q) = {f ∈ FPG : fs(x) = 0 ∀ s 6∈ Q} (4.7)

Vector fields in FPG (Q) are supported on Q. The subset FPG (Q) is a linear subspace of FPG .
The key constraint on a vector field in FPG (Q) is B(q, q)-equivariance for some fixed but

arbitrary q ∈ Q. In fact:

Lemma 4.5 Given a ∼I-equivalence class Q ⊆ C, let q ∈ Q and let gq : PI(q) → Pq be any
B(q, q)-invariant mapping. Then gq extends uniquely to a vector field in FPG (Q).

Proof For any r ∈ Q, choose β0 ∈ B(q, r) (which exists since r ∼I q) so that β0(q) = r.
Equivariance forces us to define

gr(y) = gq(β
∗
0(y)) ∀y ∈ PI(r) (4.8)

so the extension to r ∈ Q is unique if it exists. It is easy to show that gr does not depend
on the choice of β0. Finally, if r 6∈ Q we define gr(x) = 0.

We have now extended gq to a vector field g on the whole of P . We claim that g ∈ FPG (Q).
Clearly, the components gr of g with r 6∈ Q vanish. It is therefore sufficient to show that if
γ ∈ B(r, s) and z ∈ PI(s) then

gs(z) = gr(γ
∗(z)) (4.9)

The component gs is defined by choosing β1 ∈ B(q, s) and setting

gs(y) = gq(β
∗
1(y)) ∀y ∈ PI(s) (4.10)

To establish (4.9), let
δ = β−1

1 γβ0 ∈ B(q, q)

so that
γ = β1δβ

−1
0

Then, using (4.2), we compute:

gr(γ
∗(z)) = gr((β1δβ

−1
0 )∗(z))

= gr((β
∗
0)−1δ∗β∗1(z))

= gq(β
∗
0(β∗0)−1δ∗β∗1(z))

= gq((δ
∗(β∗1(z))

= gq(β
∗
1(z))

= gs(z)

(where δ∗(β∗1(z)) = β∗1(z) because β∗1(z) ∈ I(q) and gq is B(q, q)-invariant). This calculation
proves (4.9). 2

The importance of such vector fields g stems from:
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Proposition 4.6

FPG =
⊕

Q

FPG (Q)

where Q runs over the ∼I-equivalence classes of G.

Proof Suppose that f ∈ FPG , so that f is BG-equivariant. Let Q be a ∼I-equivalence class,
and pick q ∈ Q. Define g ∈ FPG (Q) by setting

gq(x) = fq(x) ∀x ∈ P

which is B(q, q)-invariant since f is BG-equivariant. For the same reason,

gr(x) = fr(x) ∀x ∈ P, r ∈ Q

where gr is defined as in Lemma 4.5. Recall that gs(x) = 0 for all s 6∈ Q. Repeating this
construction for all ∼I-equivalence classes Q we see that

FPG =
∑

FPG (Q)

But the definition of FPG (Q) shows that

FPG (Q) ∩
∑

R 6=Q

FPG (R) = {0}

(where R ranges over ∼I-equivalence classes other than Q), so the sum is direct. 2

5 Patterns of Synchrony: Example

There are many kinds of synchrony in coupled cell systems: for surveys see Boccaletti et
al. [2] and Wang [15]. Most notions of synchrony depend on specific dynamics of cells and
couplings. Some notions are model-independent; that is, they are valid for any vector field
consistent with the given cell architecture. It is important to distinguish model-independent
properties from model-dependent ones; otherwise model-independent features of a system
may inadvertently be used as evidence for specific equations.

We now approach the central issue of this paper: conditions under which certain cells in a
coupled cell network can synchronize as a consequence of the network architecture. Because
the theoretical issues are somewhat abstract, we first discuss a motivating example.

Example 5.1 Consider the ten-cell network G1 of Figure 11. There are two cell types. Cells
0 and 1 have type ©, cells 2, 3, 4, 5, 6, 7, 8, 9 have type 2. There are three arrow types
−→,=⇒,−−−.. The shading on the nodes divides C into three classes

{0, 1}, {2, 3, 6, 8}, {4, 5, 7, 9} (5.1)
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0 1

3 4 5 6 7 8 9

Figure 11: A 10-cell system. The shading indicates a possible pattern of synchronous cells.

Figure 12: Input types for the 10-cell system, including shading.

There are three distinct input types, illustrated in Figure 12. Cells 2, 3, 6, 8 have no
inputs except themselves. Cells 4, 5, 7, 9 have two inputs: one of type ©, the other of type
2 and in the class {2, 3, 6, 8}. Cells 0, 1 have four inputs, all of type 2; of these, two are in
the class {2, 3, 6, 8} and the other two are in the class {4, 5, 7, 9}.

With appropriate choice of phase spaces, a vector field f ∈ FPG1
takes the form:

f0 = A(x0, x2, x3, x4, x5) f5 = C(x5, x0, x2)
f1 = A(x1, x6, x7, x8, x9) f6 = B(x6)
f2 = B(x2) f7 = C(x7, x0, x8)
f3 = B(x3) f8 = B(x8)
f4 = C(x4, x1, x3) f9 = C(x9, x1, x8)

(5.2)

Consider the space
Y = {(u, u, v, v, w, w, v, w, v, w)}

determined by making entries constant on the classes (5.1). On Y the vector field f restricts
to:

g0 = A(u, v, v, w, w) g5 = C(w, u, v)
g1 = A(u, v, w, v, w) g6 = B(v)
g2 = B(v) g7 = C(w, u, v)
g3 = B(v) g8 = B(v)
g4 = C(w, u, v) g9 = C(w, u, v)

(5.3)

By symmetry g0, g1 are identical. Bearing this in mind, we see that Y is flow-invariant for
f .
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Identifying elements of Y with triples (u, v, w) we obtain an induced vector field f of the
form

f 0 = A′(u, v, w)

f 1 = B(v)

f 3 = C(w, u, v)

where
A′(u, v, w) = A(u, v, v, w, w)

This is the class of admissible vector fields for the simpler coupled cell network G2 shown
in Figure 13. Here cells v, w have the same type, but we have shaded cell v to show which
equivalence class it corresponds to. 3

The coupled cell network G2 is an example of a quotient network. What structure in G1

makes Y flow-invariant for all f ∈ FPG1
, and permits this reduction to G2 on Y ? The key

feature is how the three classes (5.1) relate to input isomorphisms. In Section 6 we develop
the theory of flow-invariant subspaces, and in Section 8 we develop the general theory of
such reductions.

wv

u

Figure 13: Quotient network G2 of the 10-cell system G1. Shading relates cells to those in
G1.

6 Patterns of Synchrony: Theory

We now isolate the abstract features of Example 5.1 that make Y flow-invariant. The classes
(5.1) can be represented as the equivalence classes corresponding to an equivalence relation.
The properties of this equivalence relation, relative to the symmetry groupoid of the network,
turn out to control the existence of the flow-invariant subspace Y and the quotient network
G2. We begin by considering the equivalence relation.

Let G = (C, E ,∼C ,∼E) be a coupled cell network. Choose a total phase space P , and let
./ be an equivalence relation on C, partitioning the cells into equivalence classes. We assume
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that ./ is a refinement of ∼C; that is, if c ./ d, then c and d have the same cell labels. It
follows that the polydiagonal subspace

∆./ = {x ∈ P : xc = xd whenever c ./ d ∀c, d ∈ C}

is well defined since xc and xd lie in the same space Pc = Pd. The polydiagonal ∆./ is a
linear subspace of P .

For instance, in Example 5.1 we can define ./ to have equivalence classes (5.1), in which
case ∆./ = Y .

Definition 6.1 A trajectory x(t) of f ∈ FPG is ./-polysynchronous if its components are
constant on ./-equivalence classes. That is,

c ./ d =⇒ xc(t) = xd(t) ∀t ∈ R

or x(t) ∈ ∆./ for all t ∈ R. 3

Polysynchronous states are patterns of synchrony. Trivially, any trajectory is polysyn-
chronous with respect to the relation of equality (which partitions C into its individual cells).
Only nontrivial polysynchrony is interesting.

Robust Polysynchrony

Definition 6.2 Let ./ be an equivalence relation on C. Then ./ is robustly polysynchronous
if ∆./ is invariant under every vector field f ∈ FPG . That is,

f(∆./) ⊆ ∆./ ∀f ∈ FPG

Equivalently, if x(t) is a trajectory of any f ∈ FPG , with initial condition x(0) ∈ ∆./, then
x(t) ∈ ∆./ for all t ∈ R. 3

We now find necessary and sufficient conditions on ./ to ensure that ./ is robustly polysyn-
chronous. We begin by showing that robust polysynchrony can occur only between cells that
have isomorphic input sets. This is intuitively clear because these are the only cells that
involve the ‘same’ function in the corresponding components of admissible vector fields, and
the proof bears out this intuition.

Lemma 6.3 If ./ is robustly polysynchronous, then ./ refines ∼I . That is, for all c, d ∈ C

c ./ d =⇒ c ∼I d

Proof By the discussion immediately preceding Lemma 3.7 we need to show that if c ./ d,
then c and d are in the same connected component Q of BG. Suppose they are not; then
we will show that ∆./ is not flow-invariant. Choose x(0) ∈ ∆./ so that xc(0) = xd(0) 6= 0
and choose f ∈ FPG (Q) where d 6∈ Q. Let x(t) be the solution to the differential equation f .
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Since f ∈ FPG (Q) implies that fd vanishes, xd(t) = xd(0) for all t. If we can choose f so that
fc(x(0)) 6= 0, then xc(t) 6= xc(0) for small t, so ∆./ is not flow-invariant and we are finished.

It remains to choose such an f . By Lemma 4.5 we need only find a B(c, c)-invariant
mapping gc : PI(c) → Pc such that gc(x(0)) 6= 0, since such an invariant mapping extends
to a vector field in FPG (Q). For example, we may take gc(x) = xc(0) 6= 0, which is B(c, c)-
invariant. 2

Balanced Equivalence Relations

In order to motivate our characterization of robustly synchronous equivalence relations ./,
we repeat the analysis of Example 5.1 with a slightly different equivalence relation. Suppose
that we partition the ten cells into the classes

{0, 1}, {2, 3, 8}, {4, 5, 6, 7, 9}

so that the color of cell 6 changes from gray to white. Now the associated polydiagonal is

Y ′ = {(u, u, v, v, w, w, w,w, v, w)}

The general vector field (5.2) remains unchanged, but its restriction (5.3) to Y changes in
just one component: now

g1 = A(u,w,w, v, w)

This is no longer the same as g0, so no reduction to the three-cell network is possible.
What is the source of this difference? The symmetry property of A (that is, its B(1, 1)-

invariance) implies that the order of the v’s and w’s does not matter, but there are three
occurrences of w in g1 and only two occurrences in g0. Similarly there is one occurrence of
v in g1 but there are two occurrences in g0. This difference in ‘multiplicity’ makes g1 differ
from g0, and so destroys the possibility of Y ′ being an invariant subspace.

This and similar examples lead to the following concept:

Definition 6.4 An equivalence relation ./ on C is balanced if for all c, d ∈ C with c ./ d and
c 6= d, there exists γ ∈ B(c, d) such that i ./ γ(i) for all i ∈ I(c). 3

In particular, B(c, d) 6= ∅ implies c ∼I d. Therefore, balanced equivalence relations refine
∼I .

The equivalence relation for Example 5.1 is balanced; the modified equivalence relation
is not balanced. It turns out that this is the crucial distinction when it comes to constructing
a quotient network: see Theorem 6.5 below.

There is a relatively simple graphical way to test whether a given equivalence relation
./ is balanced. Color the cells in a network so that two cells have the same color precisely
when they are in the same ./-equivalence class. Then ./ is balanced if and only if every pair
of ./-equivalent cells is connected by a color-preserving groupoid element.
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For example, consider the seven-cell network in Figure 14. Let ./ be the equivalence
relation with equivalence classes

{1, 4, 7} {2, 5} {3, 6}

as indicated by colors in Figure 14. Observe that the light gray cells have input sets ‘white
to light gray’, the white cells have input sets ‘dark gray to white’, and the dark gray cells
have input sets ‘light gray to dark gray’. So ./ is a balanced equivalence relation, since all
cells in the same equivalence class have identically colored input sets.

1 2 3 4 5 6 7

Figure 14: Seven-cell linear network with ./-equivalence classes indicated by color.

The Main Theorem on Polysynchrony

An examination of these examples leads to the following general result:

Theorem 6.5 Let ./ be an equivalence relation on a coupled cell network. Then ./ is robustly
polysynchronous if and only if ./ is balanced.

Proof If ./ is balanced, then Definition 6.4 implies that ∆./ is invariant under any ad-
missible vector field, that is, ./ is robustly polysynchronous. This is obvious in the ‘color’
interpretation: as we have seen, ./ is balanced if and only if every pair of cells of the same
color are related by a color-preserving input isomorphism. This implies that if f ∈ FPG and
c ./ d, then fc(x) = fd(x) for all x ∈ ∆./. That is, ∆./ is flow-invariant for f .

To prove the converse, suppose that ./ is robustly polysynchronous. Then every f ∈ FPG
maps ∆./ to ∆./. We wish to prove that ./ is balanced; that is, if c ./ d and c 6= d then there
exists γ ∈ B(c, d) such that i ./ γ(i) for all i ∈ I(c). Since ./ refines ∼I (Lemma 6.3), the
set B(c, d) is nonempty.

Define K0, . . . , Kr as in (3.4), so that there is a partition

I(c) = K0 ∪̇ · · · ∪̇ Kr

where i, i′ belong to the same Ks if and only if (i, c) ∼E (i′, c). Similarly, there is a partition

I(d) = L0 ∪̇ · · · ∪̇ Lr

with the corresponding property. We may choose the numbering so that

i ∈ Ks, j ∈ Ls =⇒ (i, c) ∼E (j, d) 1 ≤ s ≤ r (6.1)
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As before, we may take K0 = {c}, L0 = {d}. (Because c ∼I d, the sets Ks and Ls have the
same cardinality for 0 ≤ s ≤ r, and the same r occurs for I(c) and I(d).)

Suppose that we can prove that for any s with 0 ≤ s ≤ r and any ./-equivalence class
U ⊆ C:

|U ∩Ks| = |U ∩ Ls| (6.2)

Then we can define a bijection γ : I(c)→ I(d) such that

γ(U ∩Ks) = U ∩ Ls (0 ≤ s ≤ r) (6.3)

for all U . By (6.1), γ ∈ B(c, d). Moreover, (6.3) implies that γ(i) ./ i for all i ∈ I(c). For
we may take U such that i ∈ U , and then γ(i) ∈ U as well.

Thus it remains to prove the cardinality condition (6.2). To do so, we introduce a BG-
equivariant map h, which depends on s, and apply it to an element y ∈ ∆./ that depends on
U , as follows.

Let M : Pi → Pc be a nonzero linear map where i ∈ Ks. Let hc : PI(c) → Pc be defined
by

hc(x) = M

(

∑

i∈Ks

xi

)

(6.4)

which is B(c, c)-invariant, since Ks is a B(c, c)-orbit. By Lemma 4.5 we may then define, for
all other c′ ∈ C:

hc′(x) = hc(β
∗(x)) =

∑

j∈β(Ks)

M(xj)

where β is some (hence any) element of B(c, c′) and c′ ∼I c, and

hc′(x) = 0

otherwise. Moreover, the resulting h is BG-equivariant. Since ./ is polysynchronous, h maps
∆./ to itself.

Next, define y ∈ P by

yj =

{

v j ∈ U
0 j 6∈ U

for some fixed v ∈ Pa for which M(v) 6= 0, where a ∈ U .
We are assuming that c ∼I d so that B(c, d) 6= ∅. Let β ∈ B(c, d), which implies that

β(Ks) = Ls. Clearly

hd(x) =
∑

j∈Ls

M(xj) ∀x ∈ ∆./ (6.5)

Since h preserves ∆./,
hc(x) = hd(x) ∀x ∈ ∆./ (6.6)

Apply (6.5),(6.6) to y:

hc(y) = |U ∩Ks|M(v)

hd(y) = |U ∩ Ls|M(v)
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By (6.6), since M(v) 6= 0, we deduce that

|U ∩Ks| = |U ∩ Ls|

for all U and all 0 ≤ s ≤ r. But this is (6.2), so ./ is balanced. 2

7 Dynamics on Polysynchronous Subspaces

As illustrated in Example 5.1 the restriction of a coupled cell vector field to a polysynchronous
subspace has itself a special structure. The restriction is an admissible vector field for an
associated ‘quotient’ coupled cell network. In this section we construct the quotient network
for a given polysynchronous subspace and illustrate some of the implications for the dynamics
of the restriction. We begin with an example.

Example 7.1 Consider the five-cell network illustrated in Figure 15 (left). All cells are
identical, so a phase space for this network has the form P = (Rk)5 for some k. Since all
cells are also identical within the network (that is, have isomorphic input sets) the diagonal
(x, x, x, x, x) is polysynchronous.

1

2

3

4

5

1

2

3

4

5

x

yz

Figure 15: A five-cell identical cell network with a balanced relation leading to a quotient
three-cell bidirectional ring.

There is, however, a more interesting 3k-dimensional polysynchronous subspace ∆./ as-
sociated to the balanced relation illustrated in Figure 15 (center). That subspace is

∆./ = {(x, y, x, y, z) : x, y, z ∈ Rk}

Next we discuss the structure of the restriction of an admissible coupled cell vector field
to ∆./. The general admissible vector field has the form

ẋ1 = f(x1, x2, x5)
ẋ2 = f(x2, x3, x5)
ẋ3 = f(x3, x4, x5)
ẋ4 = f(x4, x5, x5)
ẋ5 = f(x5, x1, x2)

(7.1)
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where f : (Rk)3 → Rk is symmetric in the last two arguments. The restriction of (7.1) to
∆./ has the form

ẋ = f(x, y, z)
ẏ = f(y, z, x)
ż = f(z, x, y)

(7.2)

Observe that (7.2) is the general vector field associated to the three-cell bidirectional ring
illustrated in Figure 15 (right). We will show that there is a general construction that leads
to this three-cell quotient; but first we discuss some implications for the dynamics of the
five-cell system.

Observe also that the restriction (7.2) has D3 symmetry and is, in fact, the general D3-
equivariant vector field on (Rk)3. So it is possible for a quotient network to have symmetry
even when the original network has none. It is known that when k ≥ 2 such vector fields
can support discrete rotating waves and solutions where two cells are out of phase while the
third cell has twice the frequency of the other two [10, 8]. These solutions are also solutions
to the original five-cell system. Typical simulations are shown in Figure 16. The middle and
right simulations are obtained just by changing initial conditions.
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Figure 16: Simulations in five-cell identical cell network in Figure 15. (Left) rotating wave;
(middle) double frequency in cells 2 and 4; (right) double frequency in cell 5.

It is also possible for the restricted system to exhibit symmetric chaos, as illustrated in
the five-cell simulations in Figures 17 and 18. 3

Perhaps the simplest example of a network that has no symmetry, but does have a
quotient network with symmetry, is the three-cell network in Figure 19. This network is part
of the same family of networks as the seven-cell network described in Section 1 (Figure 6),
and again in Section 6 (Figure 14).

Construction of the Natural Quotient Network

Let ./ be a balanced equivalence relation on a coupled cell network G = (C,∼C , E ,∼E). In a
series of steps we construct the quotient network G./ corresponding to the polysynchronous
subspace ∆./. To do this we need to define the cells and edges of the quotient network and
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Figure 17: Simulations in five-cell identical cell network in Figure 15. (Left) time series
for chaotic attractor with Z2 symmetry; (middle) phase plane with cells 1,3,5 and cells 2,4
exhibiting symmetry on average; (right) double frequency in cell 5.
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Figure 18: Simulations in five-cell identical cell network in Figure 15. (Left) time series for
chaotic attractor with Z3 symmetry; (right) phase planes with all cells exhibiting symmetry
on average.

the equivalence relations on them; that is, we must define C./,∼C./ , E./,∼E./ . Most steps are
straightforward, but those related to edge-equivalence are more complicated.

(A) Let c denote the ./-equivalence class of c ∈ C. The cells in C./ are the ./-equivalence
classes in C; that is,

C./ = {c : c ∈ C}

Thus we obtain C./ by forming the quotient of C by ./, that is, C./ = C/ ./.

(B) Define
c ∼C./ d ⇐⇒ c ∼C d

This is well-defined since ./ refines ∼C .
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213

Figure 19: A three-cell network with no symmetry having a quotient two-cell network with
Z2 symmetry.

(C) The edges in the quotient network are the projection of edges in the original network
that do not link distinct but ./-equivalent cells. That is,

E./ = {(i, c) : (i, c) ∈ E , i 6./ c} ∪ {(c, c) : c ∈ C}

(D) We now define ∼E./ . Suppose that (j, d) ∈ E./, and let c ∈ C satisfy c = d. Define

Ωc(j) = {i ∈ I(c) : i = j} (7.3)

Now let (j1, d1), (j2, d2) ∈ E./. We say that

(j1, d1) ∼E./ (j2, d2)

if and only if for some c1, c2 ∈ C with c1 = d1, c2 = d2 there exists γ ∈ B(c1, c2) such that

γ(Ωc1(j1)) = Ωc2(j2) (7.4)

Remark 7.2 We interrupt our discussion to provide a word picture of the construction of
edge equivalence ∼E./ . Suppose that the cells of C are colored by ./-equivalence classes, as
discussed previously. So every cell in C./ can be identified with a unique color. The set Ωc(j)
consists of those cells in the input set I(c) having color j. The edges (j1, d1) and (j2, d2) are
∼E./-equivalent if there is an input equivalence of I(c1) to I(c2) that maps cells of color j1 to
cells of color j2. In particular, the number of cells in I(c1) of color j1 must equal the number
of cells in I(c2) of color j2.

This completes the construction of G./ = (C./, E./,∼C./ ,∼E./), except for one final tech-
nical remark. As stated, the definition of ∼E./ appears to depend on the choice of c1, c2 in
(D). In fact, it does not:

Lemma 7.3 Suppose that ./ is balanced. Let c1, c2, c
′
1, c
′
2 ∈ C, where c1 ./ c

′
1 and c2 ./ c

′
2.

Let j1, j2 ∈ C./. Suppose that there exists β ∈ B(c1, c2) such that

β(Ωc1(j1)) = Ωc2(j2)

Then there exists β′ ∈ B(c′1, c
′
2) such that

β′(Ωc′1
(j1)) = Ωc′2

(j2)
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Proof Since ./ is balanced, there exists (for k = 1, 2) an element γk ∈ B(ck, c
′
k) such that

γk(i) ./ i for all i ∈ I(ck). Therefore

γk(Ωck(jk)) = Ωc′k
(jk)

Clearly β′ = γ2βγ
−1
1 is an input isomorphism and by construction β′(Ωc′1

(j1)) = Ωc′2
(j2). 2

Lemma 7.3 implies that if (D) holds for some choice of c1, c2 satisfying the required
conditions, then it holds for any choice of c1, c2.

Finally, we show that G./ is a coupled cell network. To do so, we must verify the
compatibility conditions in Definition 2.1(e,f).

(E) If (j1, d1) ∼E./ (j2, d2) then j1 ∼C./ j2 and d1 ∼C./ d2.
Choose c1, c2 ∈ C such that c1 = d1 and c2 = d2. The definition of ∼E./ implies there

exists γ ∈ B(c1, c2) such that γ(Ωc1(j1)) = Ωc2(j2). Since γ is an input isomorphism, it
preserves cell type, so c1 ∼C c2. But now the definition of ∼C./ shows that d1 ∼C./ d2. Next
choose any i ∈ Ωc1(j1). Then γ(i) ∈ Ωc2(j2), and i ∼C γ(i). Therefore j1 ∼C./ j2.

(F) Internal edges are never equivalent to non-internal ones; that is,

(j1, j1) ∼E./ (j2, d2) ⇐⇒ j2 = d2 and j2 ∼C./ j1

for all j1, j2, d2 ∈ C./.
We prove =⇒. Assume that (j1, j1) ∼E./ (j2, d2) and choose c1, c2 ∈ C such that c1 = j1

and c2 = d2. The definition of ∼E./ implies that there exists γ ∈ B(c1, c2) satisfying (7.4).
Therefore γ(c1) = c2, so c1 ∼C c2. Moreover, Ωc1(j1) = {c1}, so γ(Ωc1(j1)) = γ({c1}) = {c2}.
Hence Ωc2(j2) = {c2}, so j2 = c2 = d2.

The converse is obtained by direct calculation.
It remains to prove that the restriction of each G-admissible vector field to ∆./ is a G./-

admissible vector field. This result follows from Theorem 9.2, whose proof uses ‘quotient
maps’, which are introduced in Section 8.

Remark 7.4 On the symmetry groupoid of the natural quotient.
It is reasonable to ask for a characterization of the symmetry groupoid of the natural

quotient G/ ./ in terms of the symmetry groupoid of G and its relation to ./.
Define

Σ./(c, d) = {σ ∈ B(c, d) : σ(i) ./ i ∀i ∈ I(c)}
T./(c, d) = {τ ∈ B(c, d) : i ./ j =⇒ τ(i) ./ τ(j) ∀i, j ∈ I(c)}

Then define two subgroupoids of BG by:

Σ./ =
˙⋃

c,d∈C
Σ./(c, d)

T./ =
˙⋃

c,d∈C
T./(c, d)
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Note that T./ consists precisely of the ./-compatible elements of BG. It follows that BG/./
consists precisely of the bijections induced on C/ ./ by the subgroupoid T./ of BG.

Moreover, the elements of Σ./ act as the identity on C/ ./. In fact, they form the isotropy
subgroupoid of any generic element of the polydiagonal ∆./ (that is, an element x ∈ ∆./

such that xi = xj ⇔ i ./ j). By analogy with the group-symmetric case, we expect BG/./
to be equal to the quotient groupoid T.//Σ./. Moreover, T./ ought to be the ‘normalizer
groupoid’ of Σ./ in BG.

Dias and Stewart [5] prove the above statements. We omit the proofs here because they
involve technicalities about quotient groupoids that would take us too far afield. 3

Remark 7.5 On the lifting of G./ admissible vector fields.
In symmetric dynamics the issue of ‘hidden symmetry’ arises. Here, the restriction of

an equivariant vector field onto the fixed-point space of a subgroup Σ is always equivariant
under the normalizer of Σ, but sometimes it obeys extra constraints. See [10, 8]. The next
example shows that the same issue arises in the groupoid context. In particular, vector fields
that are admissible with respect to the quotient network G./ don’t always lift to vector fields
that are admissible with respect to the original coupled cell network G.

Consider the four-cell network in Figure 20 (left). The equivalence relation ./ indicated
by color is balanced, and induces a quotient map φ to the three-cell network in Figure 20
(right).

1

2

3

4

1

2

3
φ

Figure 20: A four-cell example.

Admissible vector fields of the four-cell network have the form

ẋ1 = A(x1, x2, x3, x4)
ẋ2 = B(x2)
ẋ3 = B(x3)
ẋ4 = B(x4)

(7.5)

Admissible vector fields of the three-cell network have the form

u̇1 = f(u1, u2, u3)
u̇2 = g(u2)
u̇3 = g(u3)

(7.6)
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If we identify (x1, x2, x3, x4) with (u1, u2, u3, u3) we induce a vector field from (7.5), and we
thereby obtain one of the form

u̇1 = A(u1, u2, u3, u3)
u̇2 = B(u2)
u̇3 = B(u3)

(7.7)

which is admissible by (7.6).
Note that not every G./-admissible vector field (7.6) can be extended to a G-admissible

vector field. Compare the linear terms in A (namely, αu1 +β(u2 +2u3)) with the linear terms
in f in (7.6) (namely, αu1 + βu2 + γu3). This is a groupoid analog of hidden symmetry, and
raises similar issues. Dias and Stewart [5] give a complete groupoid-theoretic characterization
of the cases when every G./-admissible vector field extends to a G-admissible vector field. 3

8 Quotient Maps

In this section we give a formal definition of a quotient map φ : G1 → G2, where G1 and G2

are coupled cell networks. The definition is purely graph-theoretic.

Definition 8.1 Let Gi = (Ci, Ei,∼Ci ,∼Ei) be coupled cell networks. The map

φ : C1 → C2

is a quotient map if

(a) Cells lift: φ is surjective.

(b) Input arrows lift: If (i, c) ∈ E1, then (φ(i), φ(c)) ∈ E2. Conversely, if (j, d) ∈ E2 and
c ∈ C1 such that φ(c) = d, then there exists i ∈ C1 such that φ(i) = j and (i, c) ∈ E1.

(c) Input isomorphisms lift: Let d, d′ ∈ C2 and β2 ∈ B(d, d′). Choose c, c′ ∈ C1 such that
φ(c) = d and φ(c′) = d′. Then there exists β1 ∈ B(c, c′) such that

β2(φ(i)) = φ(β1(i)) (8.1)

for all i ∈ I(c). 3

There are several observations that follow directly from the definition of a quotient map
φ : C1 → C2. Define the equivalence relation ./φ on C1 by

c ./φ c
′ ⇐⇒ φ(c) = φ(c′) (8.2)

That is, any two cells in C1 that project by φ onto the same cell in C2 have the same color
(that is, are ./φ-equivalent).
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Lemma 8.2 Let φ : C1 → C2 be a quotient map. Then:

(a) If φ(c) = d then
φ(I(c)) = I(d) (8.3)

(b) For every c, c′ ∈ C1 such that φ(c) = φ(c′) there is an input isomorphism β ∈ B(c, c′)
such that

φ(i) = φ(β(i)) (8.4)

for all i ∈ I(c).

(c) The equivalence relation ./φ is balanced.

Proof Part (a) follows directly from Definition 8.1(b). Part (b) follows from Defini-
tion 8.1(c) by setting d = d′ and β2 = id on I(d). The existence of β ∈ B(c, c′) in Part
(b) implies that c ∼I1 c′ and hence c ∼C1 c

′. Using (8.2), identity (8.4) is equivalent to
i ./φ β(i) for all i ∈ I(c), which is the definition of ‘balanced’ in Definition 6.4. Thus Part
(c) holds. 2

Quotient Networks are Examples of Quotient Maps

Theorem 8.3 Assume that ./ is a balanced equivalence relation on C and let C./ be the
natural coupled cell network whose cells are the equivalence classes of ./. Let c denote the
./-equivalence class of the cell c ∈ C. Then the map φ : C → C./ defined by c 7→ c is a
quotient map.

Proof We verify that φ : C → C./ is a quotient map; that is, we verify Definition 8.1 (a-c).

(a) Cells lift since φ is onto by construction.

(b) Input arrows lift by definition. See part (C) in the construction of the network C./.

(c) We show that input isomorphisms lift. Recall that Definition 8.1(c) states: For every
d, d′ ∈ C./, c, c′ ∈ C1 such that c = d, c′ = d′, and β2 ∈ B(d, d′), there exists β1 ∈ B(c, c′)
such that β2(i) = β1(i) for all i ∈ I(c). So we must construct the input isomorphism
β1 : I(c)→ I(c′).

We first show that input sets lift; that is, I(c) = I(c) for each c ∈ C. Suppose that
(j, c) ∈ I(c). Since input arrows lift, there exist i′, c′ ∈ C such that i′ = j, c′ = c, and
(i′, c′) ∈ E . By construction of C./, c′ and c are ./-equivalent. Since ./ is balanced, there
exists γ ∈ B(c′, c) for which i = γ(i′) ./ i′. It follows that γ(i′, c′) = (i, c) ∈ E and that i = j.
Thus each input arrow in I(c) lifts to an input arrow in I(c).
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Next we show that β1 exists. The set Ωc(j), defined in (7.3), consists of cells in I(c) that
are ./-equivalent and project onto the node j ∈ C./. Therefore, we can choose a finite set J
of j such that

I(c) =
˙⋃

j∈J
Ωc(j)

Since input sets lift, the existence of β2 implies that

I(c′) =
˙⋃

j∈J
Ωc′(β2(j))

We construct the permutation β1 by finding bijections

β1|Ωc(j) : Ωc(j)→ Ωc′(β2(j))

for all j ∈ J , and letting β1 be their union. The existence of β2 ∈ B(d, d′) implies that
(j, d) ∼E./ (β2(j), d′). Recall from (7.4) that the definition of ∼E./ implies that there exists
γ ∈ B(c, c′) such that γ(Ωc(j)) = Ωc(β2(j)). Thus β2(i) = γ(i) for all i ∈ Ωc(j). Now set
β1|Ωc(j) = γ. 2

Non-Uniqueness and Universality

Theorem 8.4 Assume that ./ is a balanced equivalence relation on C and let G./ be the
associated natural quotient network with quotient map φ. Then the pair (G./, φ) is universal.
That is, if G′ is a coupled cell network with a quotient map φ′, then there is a quotient map
ξ : G./ → G′ such that φ′(c) = ξ(φ(c)) ∀c ∈ C./.

In this situation we say that (G′, φ′) factors through (G./, φ). Note that with the definition
of φ given in Theorem 8.3, c ./ d if and only if c ./φ d.

First, we give an example to show that quotient networks need not be unique. Then we
prove Theorem 8.4, which shows that the natural quotient is universal. That is, all other
quotient networks are quotients of G./ of a rather trivial kind: distinct cells remain distinct.

Example 8.5 Figure 21 shows three coupled cell networks. The network G is the 7-cell
chain of Figure 6. The network G./ is the 3-cell ring of Figure 7 in which all three arrows are
equivalent. The network G′ is another 3-cell ring, in which the arrows are not equivalent.
It is easy to see that there exist three quotient maps φ : G → G./, φ

′ : G → G′, and
ξ : G./ → G′, shown by the coloring of the figure. Moreover,

φ′(c) = ξ(φ(c)) ∀c ∈ C./

Clearly φ and φ′ induce the same equivalence relation on G; that is, ./φ = ./φ′ . However, G./

and G′ are not isomorphic.
In fact, there are three other quotient networks with the same equivalence relation.

Namely, form a 3-cell ring and define two arrows to be equivalent but the third different.
These three networks can be inserted between G./ and G′. 3
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Figure 21: Two distinct quotients with the same equivalence relation.

The essential point now is that Example 8.5 exhibits the only way in which uniqueness
fails. The natural quotient G./ defined above is the one in which as many arrows as possible
are edge-equivalent. All other quotients are obtained from the natural one by employing the
same cells, and refining ∼E.

It will be helpful to introduce the following concept:

Definition 8.6 Let γ : J → K be a bijection between subsets J,K ⊂ C, and let ./ be an
equivalence relation on C. Say that γ is ./-compatible if for all j1, j2 ∈ J

j1 ./ j2 ⇔ γ(j1) ./ γ(j2) (8.5)

3

Essentially, the point here is that γ permutes ./-equivalence classes. Note that in the defi-
nition of ‘balanced’ we have the stronger condition i ./ γ(i), in which γ fixes ./-equivalence
classes.

Such maps arise for the following reason. Suppose that φ : G → G′ is any quotient
map of coupled cell networks, and let β ∈ BG′ be an input isomorphism. The definition of
‘quotient’ requires there to exist a lift β̃ ∈ BG. The definition of ‘lift’ clearly implies:

β̃ is ./φ -compatible (8.6)

with J = I(c), K = I(d) whence β̃ ∈ B(c, d).

Proof of Theorem 8.4 Suppose that G is a coupled cell network, and ./ is a balanced
equivalence relation on C. Let (G./, φ) be the natural quotient by ./, so that ./φ = ./. Let
(G′, φ′) be any quotient network with ./φ′ = ./. We claim that φ′ factors through φ.

Define ξ : G./ → G′ as follows. Let c ∈ C./ be a cell of G./. Define

ξ(c) = φ′(c)
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The map ξ is well-defined because ./φ′ = ./= ./φ. It is a bijection ξ : C./ → C′.
We claim that ξ is a quotient map. The defining properties are obvious, except for the

condition that input isomorphisms lift from G′ to G./. Suppose that β ∈ BG′ . Then β lifts
from G′ to G, yielding an input isomorphism β̃ ∈ BG. By (8.6), β̃ is ./-compatible. Therefore
it induces a bijection γ on C./ defined by

γ(c) = β̃(c)

The definition of edge-equivalence in the construction of G./ implies that γ is an input
isomorphism in G./. Therefore every β ∈ BG′ lifts to some γ ∈ BG./ . 2

Several other properties follow directly from this proof. To state them, we need:

Definition 8.7 Let ξ : G→ G′ be bijective on cells. Then G′ is an edge-refinement of G if

ξ(i, c) ∼E′ ξ(j, d) ⇒ (i, c) ∼E (j, d)

3

Corollary 8.8 (a) Every quotient network corresponding to a given balanced equivalence
relation ./ is an edge-refinement of the natural quotient G./.

(b) Conversely, every edge-refinement of G./ is a quotient network corresponding to ./.

(c) Let G′, G′′ be edge-refinements of G./. Then G′′ is an edge-refinement of G′ if and only
if BG′ ⊇ BG′′.

(d) The condition BG′ ⊇ BG′′ is equivalent to FPG′ ⊆ FPG′′ for any choice of phase space P
on cells, where cells in G′, G′′ are identified if they correspond to the same ./-class of
cells in G.

The above corollary establishes that the phenomena described in Example 8.5 are typical
of the general case.

9 Induced Vector Fields are Admissible

Now we come to the second main theorem of this paper. We show that any quotient map
φ : G1 → G2 converts G1-admissible vector fields into G2-admissible vector fields in a natural
way.

The basic idea is the following. Let ∆φ denote the polydiagonal subspace correspond-
ing to the equivalence relation ./φ (previously denoted ∆./φ). We claim that the space of
G1-admissible vector fields restricted to ∆φ can be naturally identified with a subspace of
the space of G2-admissible vector fields. The main consequence of this observation is that
interesting dynamics (rotating waves, symmetric chaos) in this subspace for the cell system
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G2 corresponds to the same dynamics in the cell system G1, in which ./-equivalent cells are
synchronous.

We first choose cell phase spaces Pc for c ∈ C1. Then φ(c) ∈ C2, and we let the corre-
sponding cell phase space be P φ(c) = Pc. The space P φ(c) is well-defined since quotient maps
preserve the relation ∼c.

Choose a set of representatives R for the map φ. That is, R ⊆ C1 and for each d ∈ C2

there exists a unique c ∈ R such that φ(c) = d. Thus the set of all φ(c) runs through the
elements of C2 without duplication when c runs through R. Then define

P =
∏

c∈R

P φ(c) =
∏

c∈R

Pc

If x = (xc)c∈C1 defines coordinates on P , we can consider y = (yφ(c))φ(c)∈C2 as defining
coordinates on P . Moreover, for each c ∈ C1 there exists a unique r ∈ R such that φ(c) =
φ(r), and then yφ(c) is identified with yφ(r).

In Section 8 we introduced the notion of a quotient map between coupled cell networks.
The key property that we wish to ensure is that a quotient map φ : G1 → G2 induces a
natural mapping φ̂ : FPG1

→ FPG2
where P is obtained by identifying the relevant factors of

P .

Quotients Preserve Admissibility

We now establish an important property of quotient maps: they induce admissible vector
fields.

Suppose that φ : G1 → G2 is a quotient map. There is an injective map α : P → P
defined by

α(y)c = yφ(c) ∀c ∈ C1, y ∈ P (9.1)

Note that ∆φ = α(P ), so α : P → ∆φ is a bijection. Replacing y by α−1x, for x ∈ ∆φ,
equation (9.1) becomes:

(α−1x)φ(c) = xc ∀c ∈ C1 (9.2)

Definition 9.1 Since f ∈ FPG1
leaves ∆φ invariant, we can define a vector field f on P , the

induced vector field, by restricting f to ∆φ and projecting the result onto P by α−1. More
precisely,

f(y) = α−1(f(α(y))) ∀y ∈ P (9.3)

We will also denote f by φ̂(f). 3

The main result of this section is:

Theorem 9.2 For any f ∈ FPG1
, the induced vector field f lies in FPG2

.
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Proof Since f ∈ FPG1
is G1-admissible, it satisfies the two conditions of Definition 4.1: the

domain condition (4.3) and the equivariance condition (4.5).
The domain condition states: For all c ∈ C1 there exists a function f̂c : PI(c) → Pc such

that
fc(x) = f̂c(xI(c)) (9.4)

Equivalently, fc depends only on variables from cells in I(c).
BG1-equivariance states: For all c, c′ ∈ C1 and for all γ ∈ B(c, c′) we have

f̂c′(x) = f̂c(γ
∗(x)) ∀x ∈ PI(c′) (9.5)

where
(γ∗(x))i = xγ(i) ∀i ∈ I(c) (9.6)

and is undefined elsewhere.
We must verify Definition 4.1. That is, we must show that:

(a) The vector field f satisfies the domain condition for G2.

(b) The vector field f satisfies the equivariance condition for G2.

To prove (a), let d ∈ C2, and suppose that φ(c) = d. We must show that fd(y) depends
only on yI(d), for y ∈ P . We have:

fd(y) = fφ(c)(y)

= (f(y))φ(c)

= (α−1(f(α(y))))φ(c) by (9.3)
= (f(α(y)))c by (9.2)
= fc(α(y)) by definition

By (9.4), the value of fc(α(y)) depends only on (α(y))I(c). But by (9.1):

(α(y))I(c) = yφ(I(c)) = yI(d)

since φ(I(c)) = I(d) by (8.3). This proves (a).
We interrupt this proof to verify a lemma.

Lemma 9.3 Let d, d′ ∈ C2 and let β ∈ B(d, d′). Choose c, c′ ∈ C1 such that φ(c) = d, φ(c′) =
d′. Suppose that β lifts to β̃ ∈ B(c, c′). Then for all y ∈ P we have

β̃∗(α(y)) = α(β∗(y)) (9.7)

Proof For all i ∈ I(c) we have

(β̃∗(α(y)))i = (α(y))β̃(i) by (9.6)

= yφ(β̃(i)) by (9.1)

= yβ(φ(i)) by (8.1)
= (β∗(y))φ(i) by (9.6)
= (α(β∗(y)))i by (9.1)
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which proves (9.7). 2

Now we return to the proof of Theorem 9.2. To prove (b) we must show that for all
d, d′ ∈ C2 and β ∈ B(d, d′),

fd′(y) = fd(β
∗(y)) ∀y ∈ PI(d′) (9.8)

where by definition
(β∗(y))i = yβ(i)

Choose c, c′ ∈ C1 such that φ(c) = d, φ(c′) = d′. Use Definition 8.1(c) to lift β : I(d) →
I(d′) to β̃ : I(c)→ I(c′). That is, by (8.1):

β(φ(i)) = φ(β̃(i)) ∀i ∈ I(c)

We know that
fc′(x) = fc(β̃

∗(x)) ∀x ∈ P

Therefore, setting x = α(y), we have

fc′(α(y)) = fc(β̃
∗(α(y))) ∀y ∈ P (9.9)

By Lemma 9.3,
fc′(α(y)) = fc(α(β∗(y))) (9.10)

Now, by definition (9.3), f(y) = α−1(f(α(y))). Therefore

fd′(y) = (α−1(f(α(y))))d′
= (α−1(f(α(y))))φ(c′)

= (f(α(y)))c′ by (9.2)
= fc′(α(y))

Similarly,
fd(β

∗(y)) = (f(β∗(y)))d
= (α−1(f(α(β∗(y)))))d
= (f(α(β∗(y))))c by (9.2)
= fc(α(β∗(y)))

= fc(β̃
∗(α(y))) by (9.7)

and the result follows from (9.9). 2

Theorem 9.2 is valid for all of the quotients In Example 8.5. However, it is clear that
BG./ is a proper subset of BG′ . Therefore im(φ̂) = im(φ̂′) ⊆ BG./ ⊂ BG′ , so we gain more
information about induced vector fields f and their lifts f if we work with (G./, φ) rather
than (G′, φ′).

Note that Example 7.5 is the natural quotient, so φ̂ need not be surjective when φ is
natural. It is never surjective when φ is not the natural quotient map.
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10 Interior Symmetries and Local Bifurcation Theory

Finally, we discuss some special types of local bifurcation in coupled cell systems. In sym-
metric dynamics, there are two main local bifurcation theorems. The Equivariant Branching
Lemma ([10] Chapter XIII Section 3) proves the existence of certain branches of symmetry-
breaking steady-state solutions; the Equivariant Hopf Theorem ([10] Chapter XVI Section 4)
proves the existence of certain branches of spatio-temporal symmetry-breaking time-periodic
solutions. In this section we prove that both of these theorems generalize to coupled cell sys-
tems in a groupoid-equivariant setting. The analogue of the Equivariant Branching Lemma
is a natural generalization of the symmetric case, but the analogue of the Equivariant Hopf
Theorem has novel features. In particular, instead of proving the existence of states with cer-
tain spatio-temporal symmetries, we prove the existence of states that on certain subsets of
cells are superpositions of synchronous states with states having spatio-temporal symmetries.

The main concept involved in both bifurcation theorems is the notion of an ‘interior
symmetry’. Roughly, this is a permutation of cells that preserves a certain amount of input
structure. Interior symmetries are related to the symmetry groupoid, but in general do not
belong to it.

Recall that in general a symmetry γ of a differential equation

ẋ = f(x)

with phase space X = Rk is a linear map x 7→ γx on X that commutes with f ; that is, γ
satisfies

f(γx) = γf(x) ∀x ∈ X
Let x0 be an equilibrium that is fixed by γ. Then the Jacobian matrix of f at x0 commutes
with γ; that is,

(df)x0γ = γ(df)x0

This commutativity can force (df)x0 to have multiple eigenvalues [10] and is the source of
many of the complications in equivariant bifurcation theory. However, it can also help resolve
those complications. Similar problems arise in the context of interior symmetries, and again
the structure that causes them can sometimes be used to resolve them.

Throughout this section we work with a coupled cell network G on a set C of N nodes,
and use the same notation as before. In particular, f is a G-admissible vector field on a
phase space P . The symmetries that concern us here are permutations of the cells.

First, we relate the symmetry group of a coupled cell network to its symmetry groupoid.
Suppose that a permutation σ is a symmetry of the coupled cell system. Then it is easy to
show that for each cell j,

σ|I(j) : I(j)→ I(σ(j)) is an input isomorphism. (10.1)

Moreover, it is easy to see that the converse is also true. That is, if σ satisfies (10.1) for
every cell j, then σ is a symmetry. The proof is a direct application of BG-equivariance.

We now introduce an important concept for the local bifurcation theory of coupled cell
networks:
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Definition 10.1 Let S ⊆ C be a subset of cells, and let σ be a permutation of C that is the
identity on the complement C \ S of S. Then σ is an interior symmetry on S if σ satisfies
(10.1) for every j ∈ S.

The interior symmetry group ΣS is the set of all interior symmetries on S. It is obviously
a group. 3

The interior symmetry group ΣC on the whole network C is the usual symmetry group Γ
of the entire coupled cell system.

The simplest example of a network with a nontrivial interior symmetry is the three-cell
network of Figure 3, discussed in the introduction. Because of the (dotted) arrow from cell
1 to cell 3, the permutation (1 2) ∈ S3 is not a group symmetry of the network, but it is an
interior symmetry on the subset S = {1, 2}.

Groupoid equivariance of the cell system implies that

fS(σxS , xC\S) = σfS(xS , xC\S) (10.2)

where fS is the cell system vector field on the cells in S and σ ∈ ΣS .
Suppose that T ⊂ ΣS is a subgroup. Then

Fix(T) = {(xS , xC\S) ∈ P : δxS = xS ∀δ ∈ T} (10.3)

Proposition 10.2 Let T be a subgroup of ΣS , and let f be a G-admissible vector field. Then
the subspace Fix(T) is flow-invariant for f .

Proof The set consisting of δ|I(j) for all j ∈ S and δ ∈ T, together with the identity
elements in I(j) for all j 6∈ S, is a subgroupoid of BG whose fixed-point subspace is Fix(T).
Now apply (10.2) and (10.3). CHANGE PROOF — NO SUBGROUPOIDS 2

Linear Theory

We discuss steady-state and Hopf bifurcations from equilibria in Fix(ΣS) that break interior
symmetry.

The action of the group ΣS decomposes S as

S = S1 ∪ · · · ∪ Sk

where each Sj is an orbit of the action. Let

W = {x ∈ P : xj = 0 ∀j ∈ C \ S and
∑

i∈S`

xi = 0 for 1 ≤ ` ≤ k} (10.4)

Note that W is a ΣS-invariant subspace.
We can write the state space P as

P = W ⊕ Fix(ΣS) (10.5)
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In particular, (10.4) implies that vectors in W , when written in coupled cell coordinates,
have zero components on all cells not in S.

Bifurcation theory concerns changes in solutions of an ODE as parameters are varied, so
we introduce an explicit bifurcation parameter λ ∈ R. We assume that f (hence also its
components fc) depend explicitly on λ, and that the ODE

ẋ = f(x, λ) (10.6)

has a ‘trivial’ equilibrium x0. In the present context, we may assume without loss of gener-
ality that

f(x0, λ) ≡ 0

and that the bifurcation occurs at λ = 0. Let L = (df)x0 . Proposition 10.2 implies that
Fix(ΣS) is invariant under L, so that L has the block form

L =

[

A 0
C B

]

(10.7)

with respect to the decomposition (10.5); that is, A : W → W and B : Fix(ΣS)→ Fix(ΣS).
Thus the eigenvalues of L are the eigenvalues of A, together with those of B.

Local bifurcation (steady-state or Hopf) occurs when some eigenvalue of L has zero real
part. That eigenvalue is either associated with A or with B, and it is the former case that
concerns us here. We say that f undergoes a bifurcation at x0 that breaks interior symmetry
if A has an eigenvalue with zero real part. In this case, steady-state bifurcation occurs when
A has a zero eigenvalue, and Hopf bifurcation occurs when A has a conjugate pair of purely
imaginary eigenvalues. In the Hopf case, we may assume (after rescaling time if necessary)
that the purely imaginary eigenvalues of A are ±i. We may also assume that the center
subspace E(A) is equal to kerA in steady-state bifurcation, and to the real eigenspace

E(A) = {x ∈ P : (A2 + 1)x = 0}

in Hopf bifurcation.
The structure of L in (10.7) has several important implications:

Lemma 10.3 (a) A commutes with the action of ΣS on W .

(b) A vector u ∈ Fix(ΣS) is an eigenvector of B with eigenvalue µ if and only if u is an
eigenvector of L with eigenvalue µ.

(c) If w ∈ W is an eigenvector of A with eigenvalue µ, then there exists an eigenvector v
of L with eigenvalue µ of the form

v = w + u

where u ∈ Fix(ΣS).
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(d) The center subspace E(A) is ΣS-invariant.

Proof Part (a) follows from Proposition 10.2 and the chain rule. Parts (b,c) are conse-
quences of the block form of L. Part (d) follows because part (a) implies that all eigenspaces
of A are ΣS-invariant. 2

In our bifurcation studies we shall assume:

1) Critical eigenvalues µ (0 in steady-state bifurcation and ±i in Hopf bifurcation) extend
uniquely and smoothly to eigenvalues µ(λ) for λ near 0.

2) The eigenvalue crossing condition

d

dλ
Re(µ)(0) 6= 0 (10.8)

is valid.

Interior Symmetry Branching Lemma

Recall [6, 8] that an axial subgroup of a group action is an isotropy subgroup whose fixed-
point subspace is one-dimensional. We can now prove a generalization to coupled cell systems
of the Equivariant Branching Lemma:

Theorem 10.4 Assume that kerL and kerA have the same dimension, and that kerA is
ΣS-absolutely irreducible. Let T ⊂ ΣS be an axial subgroup of the action of ΣS on kerA,
and assume the eigenvalue crossing condition (10.8). Then there exists a unique branch of
equilibria, bifurcating from (x0, 0), with T symmetry.

Proof By Proposition 10.2, Fix(T) is flow-invariant. Since T is an axial subgroup, kerA∩
Fix(T) is one-dimensional and the bifurcation of f |Fix(T)×R is a simple eigenvalue bifurca-

tion. Moreover, since f |Fix(ΣS)×R is nonsingular at λ = 0, there is a unique branch of trivial

solutions to f = 0 in Fix(ΣS) ×R. By the usual implicit function theorem argument, the
eigenvalue crossing condition implies the existence of a unique branch of nontrivial solutions
to f = 0 in Fix(T)×R. 2

Remark 10.5 Liapunov-Schmidt reduction ([7] Chapter I Section 3) applied to the equation
f = 0 yields a reduced equation g = 0, where

g : kerL×R→ kerL

whose solutions are in one-to-one correspondence with the solutions of f = 0 near the origin.
Even though Theorem 10.4 proves the simultaneous existence of branches of solutions to
g = 0 corresponding to each axial subgroup T, the reduced mapping g satisfies no obvious
symmetry constraints. In particular:
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1) The group ΣS does not act (naturally) on kerL, even though it does act on kerA.

2) The bifurcating branches can be transcritical, even when the symmetry condition
NΣS (T)/T ∼= Z2 (where NΣS (T) is the normalizer of T in ΣS) would imply that generic
equivariant bifurcations are pitchforks.

An example illustrating the second point is the 3-cell network of Figure 3, where we
assume that each cell has one-dimensional internal dynamics. In this example, S = {1, 2}
and ΣS = Z2(1 2). Generically, the bifurcating branch is transcritical. To ensure this, it is
enough to assume that the coupling from cell 1 to cell 3 is nonzero at linear level. 3

Review of the Equivariant Hopf Theorem

We now generalize the Equivariant Hopf Theorem ([10] Chapter XVI) to the context of inte-
rior symmetries of coupled cell systems. We begin this process by recalling the Equivariant
Hopf Theorem.

Let x(t) be a 2π-periodic solution of a system of ODEs with symmetry group Γ. A
spatio-temporal symmetry of x(t) is a pair (γ, θ) ∈ Γ× S1 such that

γx(t) = x(t+ θ)

Here S1 is the circle group of phase shifts modulo the period. The group of (spatio-temporal)
symmetries of a periodic solution is a subgroup ∆ ⊆ Γ × S1. The subgroup K = ∆ ∩ Γ
consists of the purely spatial symmetries of x(t). It is known that K must be an isotropy
subgroup of the Γ-action [10, 4, 8].

Consider now the context of Γ-equivariant vector fields F : Rn ×R → Rn where Γ is a
(compact Lie) group, so that

F (γx, λ) = γF (x, λ) ∀γ ∈ Γ

Assume that F has a Γ-invariant equilibrium x0 for all λ, that is,

F (x0, λ) ≡ 0

Suppose that x0 undergoes a Hopf bifurcation at λ = 0. After rescaling time, we may suppose
that

L = (dxF )x0

has eigenvalues that include ±i when λ = 0. Note that L commutes with Γ since x0 is a
Γ-invariant equilibrium.

There is a natural action of S1 on E(L) given by the exponential exp(sL), and this
action commutes with Γ since L commutes with Γ. Recall [6, 8] that an isotropy subgroup
∆ ⊂ Γ× S1 is C-axial if

dim FixE(L)(∆) = 2
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Suppose that the eigenvalue µ that extends i at λ = 0 crosses the imaginary axis with
nonzero speed as λ varies. Then the Equivariant Hopf Theorem states that for each C-axial
subgroup ∆, there is a branch of periodic solutions emanating from (x0, 0) with spatio-
temporal symmetry group ∆. The proof uses Liapunov-Schmidt reduction in the context of
loop spaces: see [10] Chapter XIV Section 4.

We now prove a generalization: for each C-axial subgroup ∆ of the action of a group of
interior symmetries on C, there is also a branch of periodic solutions emanating from this
bifurcation point, whose structure is related to ∆, but in a less straightforward way.

Hopf Theorem with Interior Symmetry

We pursue the same proof strategy to derive an analog of the Equivariant Hopf Theorem for
interior symmetries. Let G be a coupled cell network, let S ⊆ C, and suppose that there is
an interior symmetry group ΣS . Let f be a G-admissible vector field. In general, f is not
ΣS-equivariant, and L does not commute with ΣS . However, the block matrix A defined
in (10.7) does commute with ΣS , so there is a natural ΣS × S1-action on E(A), where S1

acts by exp(sA). Let ∆ ⊂ ΣS × S1 be a subgroup. The spatial symmetry group in ∆ is
K = ∆ ∩ ΣS .

Definition 10.6 The subgroup ∆ ⊂ ΣS × S1 is spatially C-axial if

dim FixEi(A)(∆) = dim FixEi(A)(K) = 2 (10.9)

We require the following concept:

Definition 10.7 The ODE (10.6) undergoes a synchrony-breaking Hopf bifurcation at x0

when λ = 0 if:

(a) After rescaling time, the linearization L = (df)x0 at λ = 0 has eigenvalues ±i coming
from A, as defined in Lemma 10.3(c).

(b) The eigenvalue crossing condition (10.8) holds. 3

We use the term ‘synchrony-breaking’ because the equilibrium state is assumed to be
in Fix(ΣS) (and hence synchronous on each ΣS-orbit in S), whereas the Hopf bifurcation
critical eigenvectors (corresponding to a critical eigenvalue of A in (10.7)) are assumed to be
transverse to Fix(ΣS) (which leads to periodic solutions not in Fix(ΣS) and hence with less
synchrony).

The generalization of the Equivariant Hopf Theorem is:

Theorem 10.8 Consider the coupled cell system (10.6). Let S be a subset of cells with
interior symmetry group ΣS , and let x0 ∈ Fix(ΣS) be an equilibrium of f . Assume that a
synchrony-breaking Hopf bifurcation occurs at x0 when λ = 0. Let ∆ ⊂ ΣS × S1 be a spatial
C-axial subgroup. Then generically there exists a family of periodic solutions of (10.6),
bifurcating from (x0, 0) and having period near 2π, that is synchronous on any two cells in
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S lying in the same K-orbit. Moreover, to lowest order in the bifurcation parameter λ, the
solution x(t) is of the form

x(t) ≈ u(t) + w(t) (10.10)

where u(t) = etLu0 is synchronous on ΣS group orbits of cells in S and w(t) = etLv0 has
exact ∆ spatio-temporal symmetries on cells in S.

Proof We adapt the proof of the Equivariant Hopf Theorem [10], which uses Liapunov-
Schmidt reduction, to the context of a synchrony-breaking Hopf bifurcation that breaks
interior symmetry. Let C2π(P ) be the loop space consisting of all continuous 2π-periodic
functions from S1 into P , with the C0 norm. The Hopf Theorem concerns periodic solutions
to differential equations near a point where the Jacobian matrix has purely imaginary eigen-
values. We have rescaled time so that those purely imaginary eigenvalues are ±i, so we look
for periodic solutions with period near 2π. By introducing a perturbed period parameter τ
we can rescale time again, from t to s = (1 + τ)t, and consider 2π-periodic solutions to the
equation

F(v(s), λ, τ) ≡ (1 + τ)
dv

ds
− f(v(s), λ) = 0 (10.11)

These solutions are zeros near the trivial equilibrium (0, 0, 0) of the mapping

F : C1
2π(P )×R×R→ C2π(P )

defined in (10.11), where C1
2π(P ) consists of the continuously differentiable functions in C2π(P )

with the C1 norm.
The linearization of F about the origin is

L(v(s)) =
dv

ds
− Lv(s)

and ker(L) consists of all functions v(s) = Re(eisv) where v is an eigenvector of L associated
to the eigenvalue i.

As is well known, the operator F is S1-equivariant with respect to the phase shift action
of S1 on loop space. In the standard Hopf Theorem ker(L) is two-dimensional, and Liapunov-
Schmidt reduction in the presence of symmetry leads to a reduced equation that can be solved
for a unique branch of 2π-periodic solutions as long as the eigenvalue crossing condition is
valid.

In the equivariant context, ker(L) may be high-dimensional. The proof of the Equivariant
Hopf Theorem proceeds by restricting the Liapunov-Schmidt reduced equation to Fix(∆),
which by the C-axial assumption on ∆ is two-dimensional, and then completing the proof
as in the standard Hopf Theorem. That approach does not work in the context of interior
symmetries (since the fixed-point subspace of ∆ in loop space is not F -invariant), but the
fixed-point subspace of K is F -invariant (by Proposition 10.2). Since spatial C-axial assumes
that dim Fix(K) is two-dimensional the proof proceeds as in the equivariant case.

At linear level the solution of (10.6), with period near 2π, is of the form

v(t) = w(t) + u(t)
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where w(t) ∈ FixW (∆) and u(t) ∈ Fix(ΣS). This follows from the form of the eigenvectors
in Lemma 10.3(c). In particular, w(t) has spatio-temporal symmetry ∆ on cells in S, and
u(t) is synchronous on ΣS group orbits of cells in S. 2

Remark 10.9 (1) The theorem asserts no restrictions on vj(t) when j 6∈ S.
(2) The structure of a ∆-symmetric wave does impose genuine restrictions. Suppose, for

the sake of illustration, that ∆ defines a rotating wave. That is,

∆ = 〈(ζ, θ)〉 ⊆ ΣS × S1

where ζ is a k-cycle on S, with |S| = k, and θ = 2π/k for the period 2π case. Then on
S = {0, . . . , k − 1} we have

w0(t) = w1(t+ 2π/k) = · · · = wk−1(t+ 2(k − 1)π/k)

and
u0(t) = u1(t) = · · · = uk−1(t)

for all t. To first order in λ, the wave v(t) satisfies

vj(t) = wj(t) + uj(t)

If we define
yj(t) = vj+1(t)− vj(t) = wj+1(t)− wj(t)

(subscripts modulo k) then
yj(t) = y0(t+ 2πj/k)

is a rotating wave. For a general periodic state, no such relation on differences holds. 3

Example 10.10 Consider the four-cell network whose diagram is Figure 22 (left). Set
S = {1, 2, 3} and observe that the interior symmetry group is Z3. Symmetry-breaking Hopf
bifurcation that breaks Z3 symmetry leads to simple eigenvalues and a rotating wave. As
discussed, synchrony-breaking Hopf bifurcation leads to periodic solutions that, tgo first
order, are the sum of a periodic rotating wave and a periodic state that is synchronous on S.
A simulation of such a state is given in Figure 22 (right). The upper panel in the simulation
shows the superimposed time series from cells 1,2,3. The lower panel shows the hidden
(approximate) rotating wave obtained by superimposing the time series x1 − x2, x2 − x3,
x3 − x1. 3
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Figure 22: Z3 interior symmetry in a four-cell example. (Left) network; (right) simulation.

11 Final Comments

The formalism of symmetry groupoids proposed in this paper can be set up for many analo-
gous systems that possess a network structure. Here, we have associated to each cell (node of
the network) a continuous-time dynamical system defined on a manifold, and to each directed
edge a coupling between such systems. We briefly consider variations on this theme.

Extra constraints can be imposed, an important one being to make the system Hamil-
tonian, see [9]. An analogous formalism can be introduced for discrete-time dynamics (cou-
pled map lattices and generalizations to networks), or discrete-time discrete-space dynamics
(cellular automata), and groupoid-equivariance implies constraints on the dynamics (in par-
ticular, on patterns of synchrony). If cells represent states of a stochastic process, and edges
represent transitions, then the network corresponds to a Markov chain, and now the sym-
metry groupoid implies constraints on the stationary probability density function. We can
also extend the groupoid formalism to stochastic differential equations and delay-differential
equations.

The theory developed here is a preliminary step toward a formal understanding of pattern-
formation in general, not necessarily symmetric, coupled cell networks. Its main focus is
robust synchrony, plus a first pass at local bifurcation theory. Many other questions about
the dynamics of coupled cell networks can be tackled within the groupoid framework; indeed,
work is in progress on several of these. In all cases, the central role of the symmetry groupoid
as a formal algebraic structure that captures the constraints imposed by the network topology
is paramount.
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