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Abstract.  We briefly review Condorcet and Young's epistemic interpretations of preference aggregation 
rules as maximum likelihood estimators.  We then develop a general framework for interpreting epistemic 
social choice rules as maximum likelihood estimators, maximum a posteriori estimators, or expected utility 
maximizers.   We illustrate this framework with several examples. Finally, we critique this program.

    Consider a group of voters trying to collectively determine the correct answer to some factual 
question, which has an objectively correct (but unknown) answer.  Suppose all the voters have the same 
values or preferences; the only conflict is over their beliefs about objective facts.1  What is the best way 
for  the voters  to reconcile  their  contradictory beliefs  and arrive at  a  collective decision?   We can 
distinguish between three sorts of questions:

1. A question about the best policy or action to take. (e.g: “What action (if any) should society 
take to counter anthropogenic climate change?”)

2. A question  about  a  matter  of  fact,  where  there  is  some  obvious  background  probability 
distribution over the possible answers (e.g. “What will the weather be in Pittsburgh on June 
28?”  Here, the background distribution could be based on historical data about the weather on 
June 28 in previous years.)

3. A  question  about  a  matter  of  fact,  where  there  is  no  obvious  background  probability 
distribution.   (e.g. “What caused the Permian-Triassic extinction event?”)

In Type 1 questions, the word “best” suggests that the group wishes to maximize the value of some 
(universally agreed upon) utility function.  When confronting uncertainty (where each action yields a 
probability distribution over the set of outcomes), the standard approach2 is to choose the action(s) with 
the largest expected utility.   In other words, the social decision should be an expected utility maximizer 
(EUM).

   In questions of Type 2 or 3, there is no utility function we wish to maximize ---either because the 
question is of purely “academic” interest (e.g. paleontology), or because different people may have 
different utility functions (e.g. weather),  and the group as a whole does not wish to fixate on any 

1  Cohen (1986) and Estlund (1997) describe this kind of `purely epistemic' social decision problem as `epistemic 
democracy'.  This model is in direct contrast to much of social choice theory, which assumes that voters agree about the 
objective facts, but have irreconcilable differences in their preferences or values.  

2 By “standard”, I mean that this approach is almost universally accepted  in economics, finance, and management 
science. Furthermore, it is the unique approach which satisfies certain axioms of “rationality” or “consistency”, as 
demonstrated by the well-known theorems of von Neumann and Morgenstern, Savage, etc.  Of course, there are other 
(“non-expected utility”) approaches to risky decision-making;  these may be better descriptions of actual human 
behaviour, but they are hard to defend on the grounds of “rationality”.  Also, of course expected-utility maximization 
requires the specification of a probability distributions associated with each action;  in some situations, these may be 
unknown or unknowable.
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particular utility function.  In a Type 2 question, our background knowledge can be represented by a 
prior  probability  distribution over  the possible  answers;     society's  goal  is  to  combine this  prior 
distribution with the information provided by the voters to identify the answer which is most likely to 
be correct,  all  things considered.    If  there is a well-defined probabilistic relationship between the 
possible answers and the possible signals sent by voters, then the correct way to do this is to use Bayes 
rule to compute a  posterior probability distribution, and then choose the answer(s) with the largest 
posterior probability.   In the jargon of statistics, the social decision should be a maximum a posteriori 
(MAP) estimator.   In a Type 3 question,  there is no natural  prior distribution,  and all  the possible 
answers are assumed to be equally likely,  a priori.3  In this situation, we begin with the uniformly 
distributed prior distribution, and again apply Bayes rule to identify the most likely outcome;  thus, the 
social decision will be a maximum likelihood estimator (MLE).
 
   Condorcet (1785) was the first to suggest that a social decision could be an MLE;  the celebrated 
Condorcet Jury Theorem (CJT) says that, under certain hypotheses, simple majority vote is an MLE 
when society must answer a yes/no question.  Condorcet's hypotheses (that the voters are independent 
and identically distributed random variables) were highly unrealistic;  there are now many variations of 
the CJT with more realistic hypotheses.4 Meanwhile Young (1986,1988,1995,1997) has shown that the 
Kemeny rule and the Borda rule can both be interpreted as MLEs, when society faces a preference-
aggregation problem involving more than two alternatives.    Conitzer, Xia, and their collaborators have 
extended the Condorcet-Young approach, and asked what other preference aggregation rules can be 
interpreted as MLEs.5

     However, preference aggregation is only one kind of social choice problem, and the MLE is only 
one of  the three types of  epistemic rules described above. What other voting rules can be interpreted 
as  MLE,  MAP,  or  EUM procedures,  given  suitable  assumptions  about  the  nature  of  the  decision 
problem and the background knowledge of the voters?  This paper will first describe the main results of 
Pivato (2011), which offer a partial answer to this question.  Then we will critique this program.

    Let I={1,2,3,...,N} represent a set of voters, and let V be the set of signals (i.e. “votes”) which could 
be sent by each voter.  A profile is a list v which assigns a signal vi ∈V  to each voter i∈I.  Let VI  denote 
the set  of all  profiles,  and let  X be a set  of alternatives available to society (e.g.  possible actions, 
possible answers to some question).  A voting rule is a correspondence F from VI  to X ---that is, for any 
profile v∈VI, we obtain a nonempty subset F(v)⊆X. Typically (but not always) F(v) will be a singleton.

  For example, fix a function  S from  I  × V × X into ℝ.6  For any v∈VI, let  FS(v) be the set of all 
element(s)  x∈X which  maximize  the  sum  S(1,v1,x)+S(2,v2,x)+....+S(N,vN,x).   The  resulting 
correspondence FS  from VI into X is the scoring rule defined by S.    Many common voting rules can be 

3 This so-called Principle of insufficient reason  (PIR) is only really defensible when no obvious asymmetry exists 
between different possible answers, so they are effectively interchangeable.  Furthermore,  if the set of answers is 
infinite, then it is impossible for them to all be “equally probable”.  In this case, the PIR is only meaningful when there 
is some underlying  “canonical” probability measure, such as the Lebesgue measure.  Even here, if the space of answers 
is unbounded, the Lebesgue measure cannot generally be “normalized” to a probability measure.  This is why I use the 
vague phrase “equally likely”, rather than “equally probable”.   The fact remains that the PIR ---and, thus MLE ---lacks 
a satisfactory conceptual foundation.  The main argument in its favour is the absence of any obviously better alternative.

4 See, for example, List and Goodin (2001), Nitzan (2010, Part III), Hummel (2010), or Dietrich and Spiekerman (2011).
5 See Conitzer and Sandholm (2005), Conitzer et al. (2009), Xia et al (2010), and Conitzer and Xia (2011).
6 Here,  I × V ×X is the set of all ordered triples (i,v,x), where i∈I, v∈V, and x∈X.   Meanwhile, ℝ is the set of real 

numbers.
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represented as scoring rules.  For example:

● In the plurality rule, V=X, and S(i,v,x)=1 if v=x, whereas S(i,v,x)=0 if v≠x.
● In the weighted plurality rule, V=X, and S(i,v,x)=wi if v=x, whereas S(i,v,x)=0 if v≠x.  Here, wi  is the 

“weight” of voter i, which perhaps is a measure of her estimated “competency”.
● In the antiplurality rule,  V=X, and S(i,v,x)=-1 if v=x, whereas S(i,v,x)=0 if v≠x (i.e. each voter votes 

against her least-prefered  alternative, implicitly endorsing all the other alternatives).
● In  approval voting, V is the set of all subsets of  X, and S(i,v,x)=1 if  x∈v, whereas  S(i,v,x)=0 if  x∉v 

(Brams and Fishburn, 1983).
● In range voting, V is the set of all functions mapping each element of X into a real number between 0 

and 1, and S(i,v,x)=v(x) (Smith, 2001).
● In the  Borda rule, V is the set of all strict rankings of  X, and  S(i,v,x)=r if  x is ranked  rth from the 

bottom according to the ranking v.
● In  the  Kemeny  (1959) rule,  both  V and  X are  the  set  of  all  strict  rankings  over  some set  A of 

alternatives, and S(i,v,x) is the number of pairwise orderings where v and x agree.

    Note that, aside from the weighted plurality rule, all of these scoring rules are  anonymous, in the 
sense that S(i,v,x)=S(j,v,x) for all  i,j∈I, v∈V, and x∈X.  In other words, all voters have exactly the same 
“weight”.    If S(i,v,x)=-∞ for some i∈I, v∈V, and x∈X, then voter i can effectively “veto” the choice x 
by sending the signal v.  A rule has no vetos if this is never the case.  All the above rules have no vetos.

   Now suppose that  X represents a set of possible “states of nature”; the true state is unknown.  We 
suppose that each voter receives some partial information about the true state, which determines the 
way she votes.   We can mathematically model these assumptions by specifying a prior probability 
distribution over  X, and, for each   i∈I  and  x∈X,  a probability distribution over  V (called the  error  
model),  which describes the sort of signal which voter i is likely to send if the true state of nature is x. 
(We assume that the signals of different voters are conditionally independent random variables, for any 
state of nature).  We call a combination of a prior and an error model  a scenario.    We say this scenario 
is  anonymous if  all  voters  are  equally  competent,  and  receive  the  same  quantity  and  quality  of 
information (i.e. for any  x∈X, we have the same probability distribution on V for every  i∈I).   If the 
conditional  probability of voter i sending signal v is  zero, given state of nature x,  then the scenario 
says certain events are “impossible”.  If this never occurs, for any i∈I, v∈V, and x∈X, then we say the 
scenario has no impossibilities.

   Given any scenario  C,  and any profile   v∈VI,  we can use Bayes rule  to compute the posterior 
distribution over X, conditional on v.  Let MAP(C,v) denote the element(s) of X which obtain maximal 
probability in this posterior distribution (the maximum a posteriori estimator determined by C and v). 
A voting rule F is MAP-rationalizable if there exists some scenario C such that F(v)  = MAP(C,v) for 
all v∈VI.  The rule  F is anonymously MAP-rationalizable if the scenario C  is anonymous.  We now 
come to one of our main results.

Theorem 1:  A voting rule is MAP-rationalizable if and only if it is a scoring rule.  Furthermore, it is  
anonymously MAP-rationalizable if and only if it is an anonymous scoring rule.  Finally, it has no  
vetos if and only if the corresponding scenario has no impossibilities7.

7 Pivato (2011, Theorem 1.1).
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    In particular, the (weighted) (anti)plurality, Borda, Kemeny, approval, and range-voting rules are all 
MAP-rationalizable.  A MAP-rationalizable voting rule  F is  MLE-rationalizable if the rationalizing 
scenario C has a uniformly distributed prior probability distribution.  This is the case if and only if the 
scoring function S satisfies a technical condition called “balance”, which means that all alternatives in 
X are treated roughly the same.

  Theorem  1  tells  us  that  many  voting  rules  (i.e.  non-scoring  rules)  can  have  no epistemic 
rationalization.  However, the fact that a given voting rule can be rationalized by some scenario does 
not  imply that  this  scenario  is  a  particularly  realistic  description  of  the  epistemic  problem facing 
society.  What would a realistic description look like?  Typically, the space X of alternatives has a sort 
of “geometry”;  there is a sense in which some elements of X are “close together” (i.e. very similar), 
whereas other elements are “far apart” (very dissimilar).8  Suppose each voter's signal is a guess about 
the correct element in X (so in this model, V=X).  If the voters are not completely unreliable, then they 
are more likely to guess an answer which is close to the right answer than one which is far away.  Thus, 
if the true state of nature is x, then we expect there to be some (decreasing) real-valued function Ei such 
that,  for any  v∈X, the probability that  voter  i guesses  v is given by  Ei[d(x,v)] (where  d(x,v) is the 
“distance” between x and v in  X).  This is called a  metric error model.  In this case, the scoring rule 
described in Theorem 1 is a  metric voting rule:  for each  i∈I  and  x,v∈X,  the value of  S(i,v,x) is a 
decreasing function of the distance between v and x.  In this setup, the prior probability distribution on 
X  translates into a “bias function” β,9 and the rule chooses the x in X which maximize the sum
 

β(x)+S(1,v1,x)+S(2,v2,x)+....+S(N,vN,x).  

  For example, suppose that the function  Ei   is  exponentially decaying (i.e.  Ei(r) =  ai/bi
r, for some 

constants  ai,bi>0).  Then it can be shown that (for a suitable prior probability distribution) the MAP 
estimator  is  the  weighted median  rule.10  For  any profile  v,  the  weighted  median  rule  picks  the 
element(s) of X which minimize the  sum w1 d(x,v1) + w2 d(x,v2)  + .... + wN d(x,vN), where  w1,w2,....,wN 

are nonnegative “weights” assigned to the voters.   The rule is anonymous if and only if a1=a2=....=aN 

and b1=b2=....=bN, or equivalently, w1=w2=....=wN=1; this yields the (unweighted)  median rule (which 
minimizes d(x,v1) + .... + d(x,vN)).  The space X is called homogeneous if the geometry of X “looks the 
same” around each x in X.11  In this case, the median rule is the MLE for any anonymous exponential 
error model (where Ei(r) = a/br, for all i in I, for some constants a,b>0 which are independent of i). 
 
     For example, let X be the space of all strict preference relations on some set A of alternatives.  For 
any x and y in X, let d(x,y) be the number of pairs in A on which the orders of x and y disagree.  Then 
(X,d) is a homogeneous space.  The median rule on X is the Kemeny rule. The argument sketched above 
shows that the Kemeny rule is the MLE for any anonymous exponential error model on X;  this was 
first noted by Young (1986,1988,1995,1997).  
  

8 Formally, this means X is a metric space.
9 Note that a uniform prior does not necessarily translate into a constant bias function.  The bias is generated by an 

interaction between the prior probability distribution, the error functions Ei, and the geometry of the metric on X.  See 
Pivato (2011, Theorem 2.1).

10 See Pivato (2011, Section 3).
11 Formally: for any x and y in X, there is an isometry of X which maps x into y.  (An isometry is a bijection from X to itself 

which preserves distances.)  See Pivato (2011, Corollary 2.2).
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    Here is another example.  Let A be a set of possible candidates for some committee.  Let X be the set 
of all committees comprised of exactly n of these candidates (for some fixed n≤|A|).  For any x and y in 
X,  let  d(x,y) be the number of candidates on which x and y disagree.  Then (X,d) is a homogeneous 
space; thus,  again,  the median rule is  the MLE for any anonymous exponential  error model on  X. 
Likewise, if X is the set of all committees with an odd number of candidates, then it is homogeneous, so 
the median is the MLE.12

   The median rule is not the only voting rule with interesting statistical rationalizations.  Let  X be a 
homogeneous subset of a Euclidean space (i.e. ℝM, for some M>0), which we endow with the standard 
Euclidean notion of distance, and consider an anonymous Gaussian error model on X  (that is: Ei(r) = 
exp(-r2/22)/C for all i in I, for some constants , C >0 which are independent of i). The MLE for this 
error model is the metric voting rule where S(i,v,x)=-d(x,v)2 for all  i∈I, v∈V, and x∈X.   It is easy to 
check that this rule simply chooses the element(s) of X which are closest to the average of the votes 
v1,v2,....,vN, when treated as M-dimensional vectors in ℝM.13

    For example, let A be a set of N social alternatives.  A ranking of A is a bijection from A into the set 
{1,2,...,N};  we can regard such a ranking as a vector in the Euclidean space ℝA.  Let X be the set of all 
such rankings, regarded as a subset of  ℝA.  Then X is homogeneous, and the averaging rule (i.e. the 
MLE for any Gaussian error model) is the Borda rule.   This provides another MLE-rationalization for 
the Borda rule, which is quite different from the rationalization given by Young (1986).  Variations of 
this setup yield MLE-rationalizations of other “ranking” rules, including the plurality rule and anti-
plurality rule.

    Now let us turn to the problem of expected utility maximization.  Many voting rules invite each voter 
to assign a numerical “score” to each social alternative, and then choose the alternative with the highest 
average  score.   Rules  differ  on  what  range  of  scores  are  admissible.   For  example,  classical  
utilitarianism allows the score of an alternative to be any real number, whereas range voting allows any 
score in the interval [0,1], and approval voting requires the score of each alternative to be either 0 or 1. 
In all these rules, a voter can give the same score to two or more alternatives (unlike the Borda rule, 
(anti)plurality  rule,  and  other  “ranking”  rules).   We  will  refer  to  rules  with  this  property  as 
quasiutilitarian.

   Any quasiutilitarian voting rule can be rationalized as an expected utility maximizer.   Suppose that 
the score a voter assigns to an alternative reflects her (possibly incorrect) estimate of the “social utility” 
of that alternative.   Although the voters' estimates may be incorrect, we assume that they are not totally 
perverse:  under  reasonable  assumptions  about  the  voters'  (mis)perceptions,  one  can  show  that,  if 
alternative a receives an average score of r, and alternative b receives an average score of s, and r > s, 
then the  conditionally expected utility of  a,  given this information, is higher than the conditionally 
expected utility of  b. (This does not mean that  r itself is a good estimate of the expected utility of a 
---but this isn't necessary).  Under these conditions, it is easy to see that the quasiutilitarian rule in 
question is an expected utility maximizer.  In particular, this yields EUM-rationalizations of classical 
utilitarianism, range voting, approval voting, and a “relaxed” version of the Borda rule (where a voter 
can given the same rank to two or more alternatives).14

12 Pivato (2011, Example 3.5)
13 Pivato (2011, Proposition 2.5)
14 Pivato (2011, Section 4).
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*    *    *

   As these results illustrate, a large variety of voting rules can be “rationalized” as MAP, MLE, or EUM 
rules for some prior distribution and some more-or-less plausible model of the voters' error patterns. 
However, there are some foundational problems with this entire program.    First of all, this program 
begins with a familiar voting rule, and then “rationalizes” it with some probabilistic scenario, after the 
fact.   But   this  is  the  reverse of  the  correct  procedure.   One should  begin  by specifying  a  prior 
probability distribution and an error model for the voters which captures the underlying epistemic 
problem as realistically as possible, and then compute the MLE/MAP/EUM for this model;   this may 
or may not end up being a familiar voting rule.  

   Second of all, these results (as well as the aforementioned work by Young, Conitzer, Xia, and others) 
assume that the mistakes made by different voters are independent random variables.  But this is totally 
unrealistic, because voters presumably come from similar cultural and educational backgrounds, draw 
upon the same body of public (mis)information, and are in constant communication with one another. 
Furthermore,  a  psychological  desire  to  conform  or  avoid  conflict  may  lead  to  “herding”  or 
“groupthink”.    Lorenz  et  al. (2011)  have  shown  empirically  that  such  “social  influences”  can 
undermine the reliability of epistemic social choice mechanisms.   Thus, any plausible error model 
must involve correlated errors.  But it is not clear how to realistically model such correlations, and a 
realistic model might be mathematically intractable.  Dietrich and Spiekerman (2011) have extended 
the CJT to a model where voters draw upon common information sources.  It  would be fruitful to 
extend their approach to other epistemic social choice problems.

   A particularly intractable form of “error correlation” can arise from strategic dishonesty on the part of 
the voters.  Even if all the voters have the same objectives, they may have incentives to exaggerate their 
views or suppress countervailing evidence to counteract what they believe to be the misperceptions of 
the other (“sincere but misguided”) voters.   This was demonstrated mathematically by Austen-Smith 
and Banks (1996).  For an empirical example, one has only to look at the recent debates in climate 
science or macroeconomics, where apparently sincere scientists (who claim to share similar concerns 
over the long-term welfare of humanity)  sometimes accuse one another of overstating or understating 
their conclusions.15  

   Finally, the “statistical” approach to epistemic democracy assumes that it is possible to specify, with 
reasonable accuracy, the prior probability distribution and the error model of the voters.  But this is not 
realistic.  Consider the aforementioned debate over climate change.  Supposing we wanted to obtain a 
consensus using the statistical techniques described in this paper.  What is a reasonable prior?  And how 
could we even begin to specify an error model for the opinions of the climate scientists?16  

   For some problems, a precise specification may not be necessary.  For example, the CJT and the 
aforementioned  EUM-rationalizations  of  quasiutilitarian  rules  are  each  valid  for  a  large  class  of 
scenarios.  But the MAP-rationalization described by Theorem 1 can often be quite sensitive to the 

15 There are, of course, also many participants in these debates who are not sincere, or not even real scientists, and who 
may reasonably be accused of short-sightedness, irrationality and/or outright selfishness.  However, considerable 
disagreement remains even after the obvious propagandists, sycophants, ideologues, and crackpots  have been 
eliminated from the dataset.

16 An attempt to do so would arguably be even more vulnerable to error or bias than the original climate science.
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underlying scenario.   Perhaps, then we should not seek a voting rule which is the “optimal” statistical 
estimator for one particular scenario, but rather, seek a rule which is “reasonably reliable” for a broad 
spectrum of scenarios.

    However, to consider even a “spectrum” of scenarios, we must first specify the underlying space of 
possible answers, and in some cases, it is no obviously correct way to do this.   For example, consider a 
debate amongst scientists over the correct model of some phenomenon (e.g. climate).  It is far from 
clear how to specify the “space of possible scientific models”.  Which structural parameters should be 
held fixed, and which should be allowed to vary?  And how should these variables be coordinatized? 
There is no obvious answer to these questions, and the outcome of an MLE or MAP rule will be highly 
sensitive to how they are answered.  In effect, the “social consensus” would be an artifact of how we 
framed the debate. 

    Fortunately, the scientific community does not generally resolve dissensus by “voting”.  Instead, 
scientists deliberate, scrutinize each other's theories, and zero in on those lacunae in the empirical data 
which allow the dissensus to even exist. They then seek to fill these lacunae as efficiently as possible.17 
This deliberation and empirical  exploration continues until  little or no dissensus remains,  at  which 
point the use of an epistemic social choice mechanism is no longer necessary.
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