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Abstract

A new method is developed for estimating the spectral measure of a multivariate stable

probability measure, by representing the measure as a sum of spherical harmonics.
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0. Introduction

Stable probability distributions are the natural generalizations of the normal
distribution, and share with it two key properties:

* Stability: The normal distribution is stable in the sense that, if X and Y are
independent random variables, with identical normal distributions, then Xþ Y is
also normal, and
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ðXþ YÞ D

distr
X D

distr
Y:

In a similar fashion, if X and Y are independent, identically distributed (i.i.d.)
stable random variables, then Xþ Y is also stable, and its distribution is the same

as X and Y when renormalized by 2�1=a: The stability exponent a ranges from 0 to
2. When a ¼ 2; we have the familiar normal distribution.

* Renormalization limit: The Central Limit Theorem says that the normal
distribution is the natural limiting distribution of a suitably renormalized infinite
sum of independent random variables with finite variance. If X1;X2;y is a
sequence of such variables, then the random variables

1

N1=2

XN

n¼1
Xn;

converge, in density, to a normal distribution. Similarly, if fYkgNk¼1 are

independent random variables whose distributions decay according to a power
law with exponent �1� a; then the random variables

1

N1=a

XN

n¼1
Yn;

converge, in distribution, to an a-stable distribution.

Thus, stable distributions model random aggregations of many small, independent
perturbations. For example, stable distributions model the motions of Markovian
stochastic processes whose increments exhibit power laws. Stable distributions arise
with surprising frequency in certain systems, especially those involving many
independent interacting units with sensitive dependencies between them. They have
appeared in mathematical finance [3,13,16–18,22,23,32–34,45,48], Internet traffic
statistics [31,58–60], and arise in mathematical models of random scalar fields
[26,61], radar [55], and signal processing [5,37,38], telecommunications [49], and even
the power distribution of ocean waves [42].
For further examples, see [20,47,61]. The definitive reference on univariate stable

distributions is [61]; the definitive reference on multivariate distributions and stable
processes is [47]. Other recent references are [1,8,28], and a forthcoming book by
Nolan [40]; slightly older references are [2,20].
Although one-dimensional stable distributions are well-understood, there are

many open questions in the multivariate regime. The simplicity of the multivariate
Gaussian universe does not extend to nonGaussian multivariate stable distributions.
An N-dimensional Gaussian distribution is completely determined by its N 	 N

covariance matrix, which transforms nicely under linear changes of coordinates. In
particular, by orthogonally diagonalizing the matrix, we can find an orthonormal

basis for RN ; with respect to this basis, the coordinates of the multivariate normal
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variable are independent univariate normal variables—this is Principle Component

Analysis.
For a general multivariate stable distribution, however, the situation is much more

complex. Since the marginals do not have finite variance, it does not make sense to
define a ‘‘covariance matrix’’ in the usual way; none of the integrals would converge.
Various modified notions of ‘‘covariance’’ have been proposed (see, for example,
[47]), but these do not transform in any simple way under changes of coordinates. In
particular, there is nothing analogous to a ‘‘principle components analysis’’. Instead,

the correlation structure of a stable distribution on RD is determined by an arbitrary

measure, G; on the sphere SD�1 ¼ f~xxARD; jj~xxjj ¼ 1g; called the spectral measure, as
follows.
For any aA½0; 2Þ; define the constant

Ba ¼
tan

pa
2

� �
if aa1;

�2p if a ¼ 1:

8<:
For any real number rAR; define

r/aS ¼
signðrÞ � jrja if aa1;

r � log jrj if a ¼ 1;

(
and ZðaÞðrÞ ¼ �jrja �Ba � r/aSi: ð1Þ

Finally, for any ~xxARD and sASD�1; let ZðaÞ/~xx; sS ¼ ZðaÞð/~xx; sSÞ:

Theorem 1. Let aA½0; 2Þ; and let r be an a-stable probability measure on RD; with

center ~mmARD: Then r has characteristic function

w½~xx ¼ expðF½~xxÞ;

where the log characteristic function F is given:

F½~xx ¼ /~mm;~xxS � iþ
Z
SD�1

ZðaÞ/~xx; sS dG½s; ð2Þ

and where G is a nonnegative Borel measure on SD�1:

Proof. See [47, Section 2.3, p. 65], or [29]. &

G is called the spectral measure of the distribution1, and is essentially an ‘‘infinite-
dimensional’’ data-structure, so it is clear that, in general, no N 	 N matrix can
possibly be adequate for representing it. A ‘‘principle components’’ type decom-
position is only valid when the spectral measure consists of 2D antipodaly positioned
atoms.
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1This terminology is standard, but somewhat unfortunate, since G is unrelated to any one of half a
dozen other ‘‘spectra’’ and ‘‘spectral measures’’ currently existent in mathematics. Perhaps it would be

more appropriate to call G a Feldheim measure, since Feldheim [19] was the first to define it.
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Estimating G is much difficult than estimating a covariance matrix. Whereas the
terms of a covariance matrix can be directly computed by estimating the correlation
between coordinates, G is only indirectly visible; the image of G under a sort of
‘‘spherical convolution’’ appears in the logarithm of the characteristic function of the
distribution; there is no more direct way to observe it.
In this paper, we develop a method for estimating G from the log-characteristic

function F: Assume for simplicity that the distribution is centered at the origin, and
let the spherical log-characteristic function be the function g : SD�1-C determined

by restricting F to the sphere. Then, for all ~xxASD�1; we have

g½~xx ¼
Z
SD�1

ZðaÞ/~xx; sS dG½s: ð3Þ

The characteristic function of a distribution is easy to estimate from empirical data,
and thus, we assume we have a good estimate of g on some suitably fine mesh over

SD�1 (the estimation of g is discussed in detail in [43, Proposition 25, Section 4.4, p.
48]). Hence, the problem is to recover G from g:

Abusing notation, we might rewrite Eq. (3) as ‘‘g ¼ ZðaÞ � G’’. If D ¼ 2 or 4, then
SD�1 is a topological group, and this ‘‘convolution’’ can be interpreted literally, via
the formula:

ZðaÞ � Gð~xxÞ ¼
Z
SD�1

ZðaÞð~xx � s�1Þ dG½s:

In other dimensions, however, SD�1 is not a topological group, and therefore,

convolution per se is not well defined. We must instead think of SD�1 as a

homogeneous manifold under the action of SODðRÞ; and define a kind of
‘‘convolution’’ in terms of this group action.

The eigenfunctions of the Laplacian operator on SD�1 are called spherical

harmonics, and form an orthonormal basis for L2ðSD�1Þ; analogous to the Fourier
basis for L2ðS1Þ from classical harmonic analysis. The expression of a function on

SD�1 in terms of this basis is called its spherical Fourier series. A function

fAL2ðSD�1Þ is called zonal if it is rotationally invariant around a particular

coordinate axis—for example, ZðaÞ is zonal. There is a way of ‘convolving’ arbitrary
functions by zonal functions, and, just as in classical harmonic analysis, convolution
of a function f by Z translates into componentwise multiplication of their respective
Fourier coefficients. Thus, to deconvolve f and Z; it suffices to divide the Fourier
coefficients of Z � f by those of Z: If G is reasonably smooth, then the spherical

Fourier series converges rapidly in L2 (Theorem 14). This, in turn, implies rapid
convergence of the estimated stable probability density function in Lp; for 1pppN:
Our main result is as follows:

Theorem 2. Let aA½0; 2Þ; aa1; and suppose r is an a-stable probability measure on RD

with density function F :RD-½0;NÞ; spectral measure G; and spherical log-
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characteristic function g :SD�1-C: Suppose that G is absolutely continuous relative

to the spherical Lebesgue measure L; and that dG ¼ g dL; where gAL2ðSD�1;LÞ:
There exists a sequence of functions Zn :S

D�1 	 SD�1-C ( for nAN) and a

sequence of constants fAngNn¼1 with the following properties:

1. For all nAN; define gn :S
D�1-C by

gnðsÞ ¼
1

An

Z
SD�1

Znðs;sÞgðsÞ dL½s for any sASD�1:

Then fgngNn¼1 are orthogonal in L2ðSD�1Þ; and g ¼
P

N

n¼1 gn:

2. For all NAN; let g½N ¼
PN

n¼1 gn; let G½N ¼ g½NL; and let r½N be the corresponding

a-stable probability measure, with density function F ½N :RD-½0;NÞ: If

gAC2MðSD�1Þ; then, for all pA½1;N; limk-N jjF � F ½njjp ¼ 0; and furthermore,

jjF � F ½njj
N

is of order less than Oðn�2MÞ:

Proof. Part (1) is Theorem 12 and Corollary 13. Part (2) is Corollary 16. &

This approach to estimating G has three advantages:

1. It is relatively fast, computationally. Computing a spherical Fourier coefficient

with precision e is a numerical integration of complexity OðN2ðD�1ÞÞ (where
NB1=e), to be contrasted with the OðN3ðD�1ÞÞ required by an explicit matrix-
inversion approach such as [35] (see Section 1).

2. Part (2) of Theorem 2 provides a good convergence rate for the partial sums of the
spherical Fourier series, especially when g is smooth.

3. A spherical Fourier series explicitly represents G as a continuous object on SD�1;
rather than as a sum of atoms. If G is, in reality, discrete, this representation might
be misleading. In many cases, however, G is absolutely continuous, relative to the
Lebesgue measure—for example, if the stable distribution is sub-Gaussian [47,
Section 2.5]. Also, physical intuition suggests that a continuous spectral measure
is more ‘‘natural’’ than a discrete one.

According to a theorem of Araujo and Giné [2, Corollary 6.20(b), Chapter 3] the
radial distribution of a stable probability distribution decays most slowly in those
angular directions with the heaviest concentration of mass in the spectral measure.
Thus, if G is continuous, then a discrete approximation of G may introduce
anomalous asymptotic behaviour to the estimated distribution; a continuous
approximation is preferable for this reason.
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Organization of this paper: In Section 1, we summarize previous work on this

problem. In Section 2, we develop some background material, treating SD�1 as

homogeneous manifold under the action of SODðRÞ; and reviewing zonal functions,
the eigenfunctions of the Laplacian, and a suitable notion of convolution, and
provide explicit formulae for the spherical harmonics. In Section 3, we define the
spherical Fourier transform and show how to compute ‘‘deconvolution’’ using this
transform. In Section 4, we characterize the rate of convergence of the spherical
Fourier series as an estimate of the spectral measure, and relate this to convergence
of the underlying stable distribution.

1. Summary of previous work

Early on, Press [44] developed an estimation scheme for multivariate stable
distributions, through a straightforward generalization of his one-dimensional
method. Press’s method, however, only works for ‘‘pseudo-Gaussian’’ distributions,
with log-characteristic functions of the form:

FXð~xxÞ ¼ /~xx;~mmSiþ/~xx;O~xxSa=2;

where O is some symmetric, positive semidefinite ‘‘covariance matrix’’. If O has unit
eigenvectors ~oo1;y; ~ooD; with eigenvalues l1;y; lD (i.e. as a covariance matrix, we
have ‘‘principle components’’ l1~oo1;y; l1~oo1), then the spectral measure of this
distribution is symmetric and atomic, with atoms at each of 7~oo1;y;7~ooD; with
masses l1;y; lD—in other words:

G ¼
XD

d¼1
ldðd~ood

þ d�~ood
Þ; where d~oo is the point mass at ~oo:

Press proposes to solve for the components of the matrix O by empirically estimating
the log characteristic function at some collection of frequencies f~xx1;y;~xxNg; where
N ¼ DðD þ 1Þ=2; and then solving a system of N linear equations. He claims that his
method will generalize to a sum of pseudo-Gaussians:

FXð~xxÞ ¼ /~xx;~mmSiþ
XM
m¼1

/~xx;Om
~xxSa=2:

(where O1;y;OM are linearly independent, symmetric, positive semidefinite
matrices). However, in this case, one no longer ends up with a system of linear
equations, so it is not clear that the method is tractable. In any event, Press’s method
only applies to multivariate distributions with particularly simple atomic spectral
measures, which furthermore must be symmetrically distributed. Empirical evidence
(see, for example, [21]) suggests that the stable distributions found in financial data
are significantly skewed; symmetry is not a reasonable assumption.
Cheng, Rachev and Xin [7,46] develop a more sophisticated method, by expressing

a stable random vector in spherical polar coordinates, and then examining the order
statistics of the radial component, as a function of the angular component. They
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utilize the aforementioned theorem of Araujo and Giné [2] stating that the radial
distribution decays most slowly in those angular directions with the heaviest
concentration of spectral mass; these differences in decay rate are then used to
estimate the density distribution of the spectral measure.
More generally, Hurd et al. [27] consider any multivariate, infinitely-divisible

distribution r whose Lévy–Khintchine measure l takes the form

dl½r � s ¼ f ðrÞ dr dG½s;

where sASD�1 and G is some ‘‘spectral measure’’ on SD�1; while rA½0;NÞ; and
f : ½0;NÞ-½0;NÞ is some function asymptotically of order f ðrÞBOðr�a�1Þ: A result
similar to that of Araujo and Giné [2] is shown for this class of distributions,
providing a mechanism for estimating G from empirical data by looking at the
angular distribution of extremal events.
Nolan, Panorska, and McCulloch [35,41], develop a method based upon a discrete

approximation of the spectral measure. If the spectral measure is treated as a sum of
a finite number of atoms,

G ¼
X
aAA

gada;

then, for any fixed ~xxASD�1; the function ZðaÞ~xx
ðsÞ ¼ ZðaÞ/~xx; sS of Theorem 1 can be

restricted to a function ZðaÞ~xx
:A-C: The set of all discrete measures supported onA

is a finite-dimensional vector space, which we can identify with CA; and ZðaÞ~xx
is just a

linear functional on this vector space. If XCSD�1 is some finite set, then we can

define a linear map F :CA-CX; where, for each ~xxAX;

FðGÞ~xx ¼ gð~xxÞ ¼
Z
SD�1

ZðaÞ~xx
dG:

The method of Nolan et al. then comes down to inverting this linear transformation
to recover G from an empirical estimate of g: They explicitly implemented their
method in the two-dimensional case (i.e. when the spectral measure lives on a circle),
and tested it against a variety of distributions. They found that it worked fairly well
for a variety of measures on the circle, and consistently outperformed the method of
Cheng et al. The methods of Cheng et al. and Nolan et al. are also discussed in [39,
Section 5].

2. Zonal functions, Laplacians, and convolution on spheres

2 SD�1 is a compact Riemannian manifold, and G ¼ SODðRÞ is a (nonabelian)
compact Lie group, acting transitively and isometrically on SD�1 by rotations. We
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will develop a version of harmonic analysis on SD�1 as a homogeneous Riemannian
manifold (this theory is actually applicable to any homogeneous Riemannian
manifold; it may be helpful to keep this in mind).

Let L be the canonical volume measure induced on SD�1 by its Riemann structure.

For example, on S2; L is the usual ‘‘surface area’’ measure. SD�1 is compact, so L is
finite—assume L is normalized to have total mass 1. Let

L2ðSD�1Þ ¼ f :SD�1-C;

Z
SD�1

j f ðsÞj2 dL½soN


 �
:

The action of G on SD�1 induces a linear G-action on L2ðSD�1Þ in the obvious way:
if fAL2ðSD�1Þ and gAG; then g � f :SD�1-C is defined: g � fðmÞ ¼ fðg � mÞ:
Let CNðSD�1Þ be the space of smooth, complex-valued functions on SD�1: L is

finite, so CNðSD�1Þ is a linear subspace of L2ðSD�1Þ (though not a closed subspace).
G acts smoothly on SD�1; so CNðSD�1Þ is G-invariant. We consider the restricted
action of G on CNðSD�1Þ:
Let W : CNðSD�1Þ-CNðSD�1Þ be the Laplacian operator.

Theorem 3 (The Laplacian on SD (Takeuchi [51])). Endow the circle S1 with the

angular coordinate system yAð0; 2pÞ; so that any point on S1� ¼ S1 � fð1; 0Þg has

coordinates ðcosðyÞ; sinðyÞÞ:
If f :S1�-C; then, in this coordinate system, WS1 f ¼ @2f

@y2
:

For DX2; let SD
� ¼ SD

\ðRD�1 	 ½0;NÞ 	 f0gÞ; and define the diffeomorphism

SD�1
� 	 ð0; pÞ-SD

� ðs;fÞ/½cosðfÞ; sinðfÞ � s:

Then we have the following inductive formula:

WSD f ¼ @2f

@f2
þ ðD � 1Þ cotðfÞ @f

@f
þ 1

sinðfÞ2
WSD�1 f :

W commutes with the isometric G action: for all gAG;

Wðg � fÞ ¼ g � ðWfÞ:

Let L :¼ flAC;�l is an eigenvalue of Wg; and for each lAL; let

Vl ¼ ffACNðSD�1Þ;Wf ¼ �lfg

be the corresponding eigenspace. Thus, Vl is a G-invariant subspace.

The eigenfunctions of the Laplacian on SD�1 are called spherical harmonics.
Further information on spherical harmonics can be found in [53, Section 4.3]; [54,
Chapter II]; [25, Chapters 3 and 5]; [30, Chapters 7–8]; [51, Sections 11 and 12], and
also in [9,11,12,14,36,50,52,56].
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Let e ¼ ð1; 0;y; 0ÞASD�1; and define

Ge ¼ fgAG; g � e ¼ eg;

the set of all orthogonal transformations of RD fixing the e-axis. In other words, Ge

is the set of all ‘‘rotations’’ of the remaining ðD � 1Þ dimensions about this axis;
hence, there is a natural isomorphism GeDSOD�1ðRÞ: Ge is thus a connected,

compact subgroup of G: The action of G upon CNðSD�1Þ restricts to an action of
Ge; and the spaces Vl remain invariant under this new action.

A function zACNðSD�1Þ is called zonal (relative to G and the fixed point eASD�1)
if it is invariant under the action of Ge: Formally, for any Ge-invariant subspace

VCCNðSD�1Þ; define
ZeðVÞ ¼ fzAV; 8gAGe; g � z ¼ zg:

Thus, the zonal elements of CNðSD�1Þ are smooth functions which are rotationally

invariant about the e-axis. Clearly, any zonal function must be of the form
zðx1; x2;y; xDÞ ¼ z1ðx1Þ where z1 : ½�1; 1-C:

Proposition 4. 1. If VCCðSD�1Þ is a nontrivial G-invariant subspace, then ZeðVÞ is

nontrivial.
2. If dimðZeðVÞÞ ¼ 1; then V is an irreducible G-module.

Proof.

Proof of Part 1.

Claim 1. V contains an element f such that fðeÞa0:

Proof. Since V is nontrivial, there is some cAV which is nonzero somewhere—say

cðxÞa0: Since G acts transitively on SD�1; find gAG so that g � e ¼ x: Thus, if
f ¼ g � c; then fðeÞ ¼ cðg � eÞ ¼ cðxÞa0: Since V is G-invariant, fAV is the
element we seek. &

Now, Ge is a closed subgroup of the compact group G; thus, Ge is compact, so it
has a finite Haar measure H: Define

z :¼
Z
Ge

g � f dH½g:

Since H is finite, this integral is well defined. Since V is a closed, G-invariant
subspace, the element z is in V: Furthermore, since zðeÞ ¼ fðeÞ; and fðeÞa0; we
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conclude that z is nontrivial. Finally, note that z is Ge-invariant by construction—in
other words, it is zonal.

Proof of Part 2. Suppose V ¼ V1"V2; where V1;V2 are G-invariant. Then by Part
1, we can construct linearly independent zonal functions z1AZeðV1Þ and
z2AZeðV2Þ: Since z1; z2AZeðVÞ; this contradicts the hypothesis that
dimðZeðVÞÞ ¼ 1: &

For any r40; let Bðe; rÞ be the ball of radius r about e in SD�1; relative to the
intrinsic Riemannian metric.

Lemma 5. For all r40; Ge acts transitively on @Bðe; rÞ in SD�1:

Proposition 6. Each eigenspace Vl of WSD�1 is an irreducible G-module.

Proof. By Proposition 4, it suffices to show that dim½ZeðVlÞ ¼ 1: So, suppose that
z1; z2AZeðVlÞ are linearly independent. Since they are zonal, z1ðsÞ and z2ðsÞ are
functions only of the distance from s to e: So, for some sASD�1 with distanceðs; eÞ ¼
r; let z1 ¼ z1ðsÞ and z2 ¼ z2ðsÞ; and let z :¼ z2z1 � z1z2: Thus, z is also zonal. We aim
to show that z is the zero function; thus, z1 and z2 are just scalar multiples of one
another.
Now, by construction, zðsÞ ¼ 0; and thus, z � 0 on @Bðe; rÞ: At the same time,

however, z is a linear combination of two elements of Vl; hence, it is also in Vl —i.e.
z is a ð�lÞ-eigenfunctions ofW: Fix l; and let r get small. If r is made small enough,
then the homogeneous Dirichlet boundary condition zj@Bðe;rÞ � 0 forces the smallest
eigenvalue ofW to be larger in absolute value than l; creating a contradiction. &

One consequence of this irreducibility is

Theorem 7 ((Schur’s Lemma) (Brocker and Dieck [4])). Let V be a complex Banach

space and an irreducible G-module. If f :V-V is a continuous C-linear map that

commutes with the G-action, then f is multiplication by a scalar.

Now consider the D-torus TD; equipped with the standard equivariant metric. The
eigenfunctions of the Laplacian on are the periodic functions of the form

EnðxÞ ¼ expð2pi �/n; xSÞ;

with nAcTDTDDZD; where xA½0; 1ÞD and ½0; 1ÞD is identified with TD in the obvious

way. These eigenfunctions form an orthonormal basis for L2ðTDÞ: The same is true
for arbitrary homogeneous Riemannian manifolds, and in particular, for the sphere:

Theorem 8. L2ðSD�1Þ is an orthogonal direct sum of the eigenspaces of W: In other

words,

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

M. Pivato, L. Seco / Journal of Multivariate Analysis ] (]]]]) ]]]–]]]10

YJMVA : 2159



UNCORRECTED P
ROOF

L2ðSD�1Þ ¼
M
lAL

Vl;

where the subspaces Vl1 and Vl2 are orthogonal whenever l1al2:

Proof. See for example [57, Chapter 6, p. 255]; [6, Theorem 3.21, p. 156]. Or treatW
as an elliptic differential operator, and use [15, Section 6.5, Theorem 1]. Alternately,
employ the Spectral Theorem for unbounded self-adjoint operators [10, Section
X.4]. &

If Z :SD�1 	 SD�1-C; then say that Z is a G-equivariant if, for all s; sASD�1 and

gAG; Zðg � s; g � sÞ ¼ Zðs; sÞ: Since G acts isometrically and transitively on SD�1; this
is equivalent to saying that Zðs; sÞ is a function only of the inner product /s; sS:We

will thus often write Zðs; sÞ as ‘‘Z/s; sS’’. For instance, the function ZðaÞ :SD�1 	
SD�1-C defined by equation (1) is G-equivariant.

If Z is G-equivariant, f :SD�1-C; and both are L-integrable, then we define the

convolution Z � f :SD�1-C by

ðZ � fÞðsÞ ¼
Z
SD�1

Zðs; sÞfðsÞ dL½s:

For example, if G is a measure on SD�1; with Radon–Nikodym derivative

g :SD�1-C; then Z � g :SD�1-C is defined

Z � gðsÞ ¼
Z
SD�1

Zðs; sÞgðsÞ dL½s ¼
Z
SD�1

Zðs; sÞ dG½s:

In particular, if G is a spectral measure and Z ¼ ZðaÞ; then this formula is identical to
Eq. (3). In other words,

ZðaÞ � g ¼ g;

where g is the spherical log-characteristic function.

Recall again the case of TD: The eigenfunctions of the Laplacian, fEn; nAZDg;
are well-behaved under convolution: classical harmonic analysis tells us thatX

nAZD

anEnðxÞ
 !

�
X
nAZD

bnEnðxÞ
 !

¼
X
nAZD

ðan � bnÞEnðxÞ:

A similar formula holds for zonal spherical harmonics.

Proposition 9 (Convolution and eigenfunctions). Let Z :SD�1 	 SD�1-C be G-

equivariant. Fix lAL and zAZeðVlÞ; and define complex constant Al ¼ ðZ�zÞðeÞ
zðeÞ : Then

for any fAVl; Z � f ¼ Al � f:

Proof. Let TZ :C
NðSD�1Þ-CNðSD�1Þ be defined: TZðfÞ ¼ Z � f:
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Claim 1. TZ commutes with the G-action: for all gAG; TZ½g � f ¼ g � TZ½f:

Proof. For any sASD�1;

TZ½g � fðsÞ ¼ ½Z � ðg � fÞðsÞ

¼
Z
SD�1

Zðs; sÞfðg � sÞ dL½s

¼
ð1Þ

Z
SD�1

Zðs; g�1 � s0Þfðs0Þ dL½s0

¼
ð2Þ

Z
SD�1

Zðg � s; s0Þfðs0Þ dL½s0

¼ ðZ � fÞðg � sÞ ¼ g � ðZ � fÞðsÞ:
(1) where s0 :¼ g � s: (2) Because Z is G-equivariant. &

Claim 2. TZ commutes with W:

Proof. For each sASD�1; define Zs :S
D�1-C by ZsðsÞ ¼ Zðs; sÞ ¼ Zðs; sÞ: Thus,

ðZ � fÞðsÞ ¼
Z
SD�1

Zðs; sÞ � fðsÞ dL½s ¼
Z
SD�1

fðsÞ � ZsðsÞ dL½s:

Hence,

WðZ � fÞðsÞ ¼ W

Z
SD�1

fðsÞ � ZsðsÞ dL½s ¼
Z
SD�1

fðsÞ �WZsðsÞ dL½s; ð4Þ

because W is a linear operator.

Claim 2.1. WZsðsÞ ¼ WZsðsÞ:

Proof. Find some gAG so that g � s ¼ s and g � s ¼ s: Thus for any sASD�1;

ZsðsÞ ¼ Zðs; sÞ ¼ Zðg � s; g � sÞ ¼ Zðs; g � sÞ ¼ Zsðg � sÞ ¼ ðg � ZsÞðsÞ:
In other words,

Zs ¼ ðg � ZsÞ:
Thus,

WZs ¼ Wðg � ZsÞ ¼ g � ðWZsÞ:
In particular, WZsðsÞ ¼ g � ðWZsÞðsÞ ¼ WZsðg � sÞ ¼ WZsðsÞ: &

Hence, we can rewrite expression (4) as:Z
SD�1

fðsÞ �WZsðsÞ dL½s:

But SD�1 is a manifold without boundary, so W is self-adjoint [57, Chapter 6].
Hence,
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Z
SD�1

fðsÞ �WZsðsÞ dL½s ¼
Z
SD�1

WfðsÞ � ZsðsÞ dL½s

¼
Z
SD�1

Zðs; sÞ �WfðsÞ dL½s ¼ Z � ðWfÞðsÞ: &

It follows from Claim 2 that TZ must leave invariant all eigenspaces ofW; in other
words, for all lAL; Vl is invariant under TZ:

But by Claim 1, the restricted map ðTZÞjVl
:Vl-Vl is then an isomorphism of

linear G-modules. Since G acts irreducibly on Vl (by Proposition 6), it follows from
Schur’s Lemma that TZ must act on Vl by scalar multiplication: thus, there is some

AlAC so that, for all fAVl;

TZðfÞ ¼ Al � f:

In other words, Z � f ¼ Al � f: In particular, if zAZeðVlÞ; then Z � z ¼ Al � z; hence
we must have Al ¼ Z�zðeÞ

zðeÞ : &

Corollary 10. Let zAZeðVlÞ be a zonal eigenfunction, normalized so that jjzjj2 ¼ 1:
Define Z :SD�1 	 SD�1-C by

Zðs; sÞ ¼ zðg�1
s � sÞ;

where gsAG is any element so that gs � e ¼ s: Then Z is well-defined, independent of

the choice of gs; and is G-equivariant. Define Pl : L2ðSD�1Þ-L2ðSD�1Þ by

PlðfÞ ¼ zðeÞ � ðZ � fÞ:

Then Pl is the orthogonal projection from L2ðSD�1Þ onto the eigenspace Vl:

Proof.

Proof of ‘‘Well Defined’’. If g1; g2AG so that g1 � e ¼ g2 � e ¼ s; then g�1
1 � g2 � e ¼ e;

thus, g�1
1 � g2AGe: But z is zonal about e; so zðg�1

2 � sÞ ¼ zðg�1
1 � g2 � g�1

2 � sÞ ¼
zðg�1

1 � sÞ:

Proof of ‘‘Equivariant’’. Let s; sASD�1; and hAG: Note that we can pick gðh�sÞ ¼
h � gs: Thus,

Zðh � s; h � sÞ ¼ zðg�1
ðh�sÞ � h � sÞ ¼ zððh � gsÞ�1 � h � sÞ ¼ zðg�1

s � h�1 � h � sÞ

¼ zðg�1
s � sÞ ¼ Zðs; sÞ:

Proof of ‘‘Orthogonal Projection’’. Since Pl is defined by a convolution integral, it is

clearly a linear operator. It suffices to show that Pl fixes Vl; and annihilates V
>
l :
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If fAVl; then by Proposition 9,

Z � f ¼ ðZ � zÞðeÞ
zðeÞ � f:

Thus, PlðfÞ ¼ ðZ � zÞðeÞ � f; so it suffices to show that ðZ � zÞðeÞ ¼ 1: But:

Z � zðeÞ ¼
Z
SD�1

Zðe; sÞzðsÞ dL½s

¼
Z
SD�1

zðg�1
e � sÞ � zðsÞ dL½s

¼
Z
SD�1

zðsÞ � zðsÞ dL½s ðsince ge ¼ IdÞ

¼ jjzjj22 ¼ 1; by hypothesis:

On the other hand, if fAV>
l ; then for all sASD�1;

Z � fðsÞ ¼
Z
SD�1

zðg�1
s � sÞ � fðsÞ dL½s

¼
Z
SD�1

ðg�1
s � zÞðsÞ � fðsÞ dL½s

¼/g�1
s � z; fS ¼ 0;

because g�1
s � zAVl>f: &

Proposition 11 (Zonal eigenfunctions ofW on SD�1). The eigenvalues of W on SD�1

are all of the form

lN ¼ N � ðN þ D � 2Þ;

for some NAN: Let zN be a corresponding eigenfunction, and assume that zN is zonal

(relative to SODðRÞ and e).
Case D ¼ 2: Modulo multiplication by some normalizing constant,

zNðyÞ ¼ cosðN � yÞ

where we use the coordinate system ð0; 2pÞ{y/ðcosðyÞ; sinðyÞÞAS1: If we write zN

in terms of Cartesian coordinates ðx1; x2Þ on R2; we get the Chebyshev polynomials:

zNðx1; x2Þ ¼ 2ðN�1ÞxN
1 þ

XIN
2m

n¼1
ð�1Þn2ðN�1�2nÞ N

n

N � n � 1
n � 1

 !
x
ðN�2nÞ
1 : ð5Þ

Case D ¼ 3: Modulo multiplication by some constant, zN is a Legendre

polynomial:

zNðx1; x2; x3Þ ¼
XIN=2m

n¼0
ð�1Þn 2N�2n

G
1

2
þ N � n

� �
G
1

2

� �
� n! � ðN � 2nÞ!

� xN�2n
1 :
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Case DX4: Let n ¼ D�2
2
: For any NAN and nA½0::N=2; define coefficients c

ðnÞ
N;n ¼

GðnþðN�nÞÞ
GðnÞ�n!�ðN�2nÞ!; and define the ðN; nÞth Gegenbauer polynomial:

C
ðnÞ
N ðxÞ ¼

XIN=2m

n¼0
ð�1Þn2N�2n � c

ðnÞ
N;n � xN�2n:

Let

K
ðnÞ
N ¼ jjCðnÞ

N jj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
SD�1

jCðnÞ
N ðx1Þj2 dx

s

¼
ffiffiffi
2

p
� pðD�1Þ=4

GðnÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�IN=2m

k¼0
ð�1Þk � 22N�2k �

G N � k þ 1
2

� �
G N � k þ D

2

� � �
Xk

n¼0
c
ðnÞ
N;nc

ðnÞ
N;ðk�nÞ

 !vuuuuut :

Assume that zN is of unit norm. Then zN is a normalized Gegenbauer polynomial:

zNðx1; x2;y; xDÞ ¼
1

K
ðnÞ
N

C
ðnÞ
N ðx1Þ:

Proof.

Proof of Characterization of Eigenvalues. See [57, Chapter 6], [53, Chapter 3], or [43,
Corollary 42, Section 5.2].

Proof of Case D ¼ 2. It is clear from the definition of the Laplacian on S1 that the

function zN is an eigenfunction ofWS1: The subgroup of SO2ðRÞ fixing e is just the
two-element group of maps ðx1; x2Þ/ðx1;7x2Þ; since the function zN is symmetric
relative to the x2 variable, it is zonal relative to these maps.
The formula (5) is then just a standard trigonometric identity, where we identify

x1 ¼ cosðyÞ; see, for example [24, Section 1.33(3), p. 27].

Proof of Case D ¼ 3. This is just the Gegenbauer polynomial when D ¼ 3: For a
direct proof, see, for example [54, Theorem 1, Section 2.1, p. 90], where there is
unfortunately an error in the definition of the Legendre functions—see [51, Section 1,
p. 2] for a correct definition.

Proof of Case DX4. This is just a big computation. See [43, Proposition 44, Section
5.2] or [53]. &
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3. Spherical Fourier series

Theorem 12 (Spherical Fourier analysis). For all nAN; let zn :S
D�1-C be the zonal

harmonic polynomials defined by Proposition 11, and then define Zn :S
D�1 	

SD�1-C by

Znðs;sÞ ¼ znðeÞ � zn/s; sS:

Then Zn is rotationally equivariant.

Now, suppose gAL2ðSD�1;CÞ: If we define gn :¼ Zn � g then gnAVðlnÞ; and g has the

orthogonal decomposition:

g ¼
XN
n¼1

gn: ð6Þ

Proof. This follows from Theorem 8 and Corollary 10, using the zonal functions
provided by Proposition 11. &

Corollary 13 ((De)convolution on spheres). Suppose Z :SD�1 	 SD�1-C is rota-

tionally equivariant, and suppose that g :¼ Z � g: If, for all nAN; zn and Zn are as in

Theorem 12, and we define

gn :¼ Zn � g; and An :¼ ðZ � znÞðe1Þ
znðe1Þ

;

then gn ¼ An � gn:
Conversely, suppose that g is unknown, but we know Z and g: We can reconstruct g

via the formula:

g ¼
XN
n¼1

1

An

gn:

Proof. Combine Theorem 13 and Proposition 9. &

If gAL2ðSD�1Þ; then the spherical Fourier Coefficients of g are the functions gn :¼
Zn � g; for nAN: (Notice that these ‘‘coefficients’’ are themselves functions, not
numbers). The spherical Fourier series for g is then the orthogonal decomposition
g ¼

P
N

n¼1 gn:

Example (Spherical Fourier series on S1). Let for NAN; let zN :S
1-C be as in Part

1 of Proposition 11:

zNðyÞ ¼ cosðNyÞ ¼ 1
2
ðENðyÞ þ Eð�NÞðyÞÞ;
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where we identify S1D½0; 2pÞ; and define EKðyÞ :¼ expðKy � iÞ: LetZN :S
1 	 S1-C

be defined from zN as in Theorem 13. Then, for any g :S1-R;

gN ¼ZN � g

¼
ð1Þ

g � zN ¼ 1
2
ðg � EN þ g � Eð�NÞÞ

¼
ð2Þ

1

2
ð#gðNÞ � EN þ f̂ð�NÞ � Eð�NÞÞ

¼
ð3Þ

1

2
ð#gðNÞ � EN þ #gðNÞ � ENÞ

¼ re½#gðNÞ � EN :

(1) Here, convolution is meant in the ‘‘usual’’ sense on the group S1 ¼ T1:
(2) Here, #g is the (classical) Fourier transform of g as a function on the circle.
(3) Because g is real-valued.

Now, if we write #gðNÞ ¼ rN expðfN � iÞ; where rNA½0;NÞ and fNA½0; 2pÞ; then,
for any yAS1D½0; 2pÞ; we have:

gNðyÞ ¼ re½rN � expðfN iÞ � ENðyÞ

¼ rN � re½expðfN iÞ � expðN � y � iÞ

¼ rN � re exp N � yþ fN

N

� �
� i

� �� �
¼ rN � re EN yþ fN

N

� �� �
¼ rN � zN yþ fN

N

� �
:

In other words, convolving zN by g is equivalent to multiplying the magnitude of zN

by rN ; and rotating the phase by fN=N:

4. Asymptotic decay and convergence rates

In classical harmonic analysis, the infinitesimal properties of a function f are
reflected in the asymptotic behaviour of its Fourier transform, and vice versa.

Generally, the smoother f is, the more rapidly f̂ decays near infinity. Conversely, if f

is very ‘‘jaggy’’, undifferentiable, or discontinuous, then f̂ decays slowly or not at all
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near infinity, reflecting a concentration of the ‘‘energy’’ of f in high frequency
Fourier components.
Hence, when approximating f by partial Fourier sums, the more jaggy f is, the

more slowly the sum converges, and the more terms we must include in the sum to
obtain a good approximation.

A similar phenomenon manifests when approximating a function g :SD�1-C by a
spherical Fourier series. By relating the decay rate of the spherical Fourier series to
the smoothness of g; we will be able to estimate the error introduced by
approximating g with a partial spherical Fourier sum.
If a40; then we say that a sequence of functions ½gnjNn¼1 is of order less than or

equal to Oðn�aÞ if

0p lim
n-N

na � jjgnjj2oN:

Theorem 14. Let g :SD�1-C; and suppose that g is continuously 2M-differentiable.

Then the sequence ½gnjNn¼1 is of order less than or equal to Oðn�ð2Mþ1ÞÞ:

Proof. First suppose that g is twice continuously differentiable. Thus, using the
inductive formula from Theorem 3 we can applyWSD�1 to g: Let a ¼ WSD�1g: Since a
is a continuous function, it is in L2ðSD�1Þ; and we can compute the spherical Fourier
coefficients an ¼ Zn � a; for all n; and conclude that a ¼

P
N

n¼1 an: In particular,

since this sum converges absolutely in L2ðSD�1Þ; we know that the sequence ½anjNn¼1
is of order less than Oðn�1Þ:
By construction, we know that gn ¼ Zn � g is an eigenfunction of WSD�1 ; with

eigenvalue ln ¼ nðn þ D � 2Þ: By Claim 2 of Proposition 9, the Laplacian operator
commutes with convolution operators. Thus,

nðn þ D � 2Þgn ¼WSD�1gn ¼ WSD�1ðZn � gÞ

¼Zn � ðWSD�1gÞ ¼ Zn � a

¼ an:

Since this is true for all n; we conclude that ½gnjNn¼1 is of order less than or equal to
Oð 1

nðnþD�2ÞÞ � Oðn�1Þ ¼ Oðn�3Þ:
Proceed inductively to prove the general case. &

If f ; g :RD-C; then we define jj f � gjjp ¼ ess supxAR j f ðxÞ � gðxÞj; and, for any
pA½1;NÞ; we define

jj f � gjjp ¼
Z
RD

j f ðxÞ � gðxÞjp dx

� �1=p

:

The following lemma is technical, but not difficult to prove [43, Corollaries 14–15,
Section 3.2].
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Lemma 15. Suppose aa1; and that ½rkj
N

k¼1 is a sequence of a-stable probability

measures on RD; with density functions ½FkjNk¼1; spectral measures ½GkjNk¼1; and

spherical log-characteristic functions ½gkj
N

k¼1: Let r be some other a-stable measure

with density F ; spectral measure G; and spherical log-characteristic function g: Suppose

that lim infk-N minsASD�1gkðsÞ40; and minsASD�1 gðsÞ40: Then:

1. If Gk (resp. G) has Radon–Nikodym derivative gk (resp. g), and limk-Njjg� gkjj2 ¼
0; then for every qA½1;N; limk-N jjF � Fkjjq ¼ 0:

2. There is a constant C40 so that for all kAN; jjF � FkjjNoC � jjg� gkjj2:

Corollary 16 (Application to spectral measures). Let aA½0; 2Þ; aa1; and suppose r is

an a-stable probability measure on RD with density function F :RD-½0;NÞ; spectral

measure G; and spherical log-characteristic function g; withminsASD�1 gðsÞ40: Suppose

that G is absolutely continuous relative to L; and that dG ¼ g dL; where gAL2ðSD�1;LÞ
has spherical Fourier series g ¼

P
N

n¼1 gn:

For all NAN; let g½N ¼
PN

n¼1 gn; let G½N ¼ g½N L; and let r½N be the corresponding

a-stable probability measure, with density function F ½N :RD-½0;NÞ:
If gAC2MðSD�1Þ; then, for all pA½1;N; limk-N jjF � F ½njjp ¼ 0:
Furthermore, jjF � F ½njj

N
is of order less than Oðn�2MÞ:

Proof. By Theorem 14, we know that jjg� g½njj2 is of order less than Oðn�2MÞ: Thus,
applying Lemma 15, we conclude that jjF � F ½njjp is of order less than Oðn�2MÞ: &

5. Conclusion

By expressing the log characteristic function g of Eq. (3) as a spherical Fourier
series via Theorem 12, and then applying the ‘‘deconvolution’’ formula from
Corollary 13, we can reconstruct a spherical Fourier series for the spectral measure
G:
The advantages of this approach are three-fold. First, once we have expressed g in

terms of its spherical Fourier series, computing G is extremely straightforward; we
need only divide the spherical Fourier coefficients of g by the constants An of
Corollary 13. Computation of the Fourier coefficients, in turn, involves convolution
with Gegenbauer polynomials. A closed-form expression for these polynomials is
given (Theorem 11). This convolution can be computed by numerical integration

over SD�1: To obtain a precision of e requires a computation of complexity
OðN2ðD�1ÞÞ (where NB1=e), to be contrasted with the OðN3ðD�1ÞÞ required by an
explicit matrix-inversion approach.
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Second, if G is absolutely continuous with a C2M Radon–Nikodym derivative,

then the spherical Fourier series converges in L2 at a rate of OðN2MÞ (Theorem 14) so
that the estimated stable probability density function in converges at a rate of

OðN2MÞ in Lp; for 1pppN (Corollary 16).
Finally, a spherical Fourier series explicitly represents G as a continuous object on

SD�1; rather than as a sum of atoms, thereby avoiding the introduction of
anomalous asymptotic behaviour to the estimated probability distribution.
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