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Abstract
A new method is developed for estimating the spectral measure of
a multivariate stable probability measure, by representing the measure
as a sum of spherical harmonics.

Introduction:

Stable probability distributions are the natural generalizations of
the normal distribution, and share with it two key properties:

e Stability: The normal distribution is stable in the sense that,
if X and Y are independent random variables, with identical
normal distributions, then X + Y is also normal, and
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In a similar fashion, if X and Y are independent, identically
distributed (i.i.d) stable random variables, then X + Y is also
stable, and its distribution is the same as X and Y when renor-
malized by 2-/®. The stability exponent « ranges from 0 to
2 . When a = 2, we have the familiar normal distribution.
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e Renormalization Limit: The Central Limit Theorem says
that the normal distribution is the natural limiting distribution
of a suitably renormalized infinite sum of independent random
variables with finite variance. If Xy, Xo,... is a sequence of such
variables, then the random variables
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converge, in density, to a normal distribution. Similarly, if {Y;}7°,
are independent random variables whose distributions decay ac-
cording to a power law with exponent —1 — «, then the random
variables
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converge, in distribution, to an a-stable distribution

Thus, stable distributions model random aggregations of many
small, independent perturbations. For example, stable distributions
model the motions of Markovian stochastic processes whose incre-
ments exhibit power laws. Stable distributions arise with surprising
frequency in certain systems, especially those involving many inde-
pendent interacting units with sensitive dependencies between them.
They have appeared in mathematical finance [28],[14],[13], [29],[42],[15],
[37],[18],[19],[11],[30],[?], Internet traffic statistics [?], [32],[31], [52],
and arise in mathematical models of random scalar fields [53], [22],
radar [34], and signal processing [40], [8], [9], telecommunications [?],
and even the power distribution of ocean waves [7].

For further examples, see [53], [41], or [17]. The definitive refer-
ence on univariate stable distributions is [53]; the definitive reference
on multivariate distributions and stable processes is [41]. Other re-
cent references are [?], [?], [?], and a forthcoming book by Nolan [?];
slightly older references are [17] and [1].

Although one-dimensional stable distributions are well-understood,
there are many open questions in the multivariate regime. The sim-
plicity of the multivariate Gaussian universe does not extend to non-
Gaussian multivariate stable distributions. An N-dimensional Gaus-
sian distribution is completely determined by its NV x N covariance



matrix, which transforms nicely under linear changes of coordinates.
In particular, by orthogonally diagonalizing the matrix, we can find
an orthonormal basis for RV, relative to which the multivariate nor-
mal variable is revealed as a sum of independent univariate normal
variables —this is Principle Component Analysis.

For a general multivariate stable distribution, however, the situ-
ation is much more complex. Since the marginals do not have finite
variance, it does not make sense to define a “covariance matrix” in
the usual way; none of the integrals would converge. Various mod-
ified notions of “covariance” have been proposed (see, for example,
[41]), but these do not transform in any simple way under changes of
coordinates. In particular, there is nothing analogous to a “principle
components analysis”. Instead, the correlation structure of a stable
distribution on RP is determined by an arbitrary measure, I', on the
sphere SP~1 = {# € RP ; ||Z|| = 1}, called the spectral measure:

Theorem 1: Let « € [0,2), and let p be an a-stable probability
measure on RP | with center ji € RP. Then p has Fourier Transform:

—

Xl = exp(®[])

where ® (the “log Fourier transform”) is given:

o = (@i + [ o (&s) arly (1)

where n(¥(0) = —1[0]* — B, -6, (2)
. (@) ._ sign(0) - 0|1 if a#1
with 6 T { 6 - log |0) if a=1
. tan (%) if a#l
and B, := { _% if a=1

and where I' is some nonnegative Borel measure on SP~1.
Proof: See [41], §2.3, p.65, or [26].
O [Theorem 1]




T is called the spectral measure of the distribution', and is es-
sentially an “infinite-dimensional” data-structure, so it is clear that,
in general, no N x N matrix can possibly be adequate for representing
it. A “principle components” type decomposition is only valid when
the spectral measure consists of 2D antipodaly positioned atoms.

Estimating I" is much difficult than estimating a covariance matrix.
Whereas the terms of a covariance matrix can be directly computed
by estimating the correlation between coordinates, I is only indirectly
visible; the image of I" under a sort of “spherical convolution” appears
in the logarithm of the characteristic function of the distribution; there
is no more direct way to observe it.

In this paper, we develop an method for estimating I" from the log-
characteristic function ®. Assume for simplicity that the distribution
is centered at the origin, and let the spherical log-characteristic
function be the function g : SP~! — C determined by restricting ®
to the sphere. Then, for all E € SP~1 we have

gl = [ 0% (és) aris Q)

The characteristic function of a distribution is easy to estimate
from empirical data, and thus, we assume we have a good estimate
of g on some suitably fine mesh over SP~!. Hence, the problem is to
recover I' from g.

Abusing notation, we might rewrite equation (3) as “g = 7@ «
I'”. If D =2 or D = 4, then SP~! is a topological group, and this
“convolution” can be interpreted literally, via the formula:

-

0t = [ s arls)

In other dimensions, however, SP~! is not a topological group,

and therefore, convolution per se is not well-defined. We must instead
think of S~! as a homogeneous manifold under the action of SO [R],
and define a kind of “convolution” in terms of this group action.
The eigenfunctions of the Laplacian operator on SP~! are called
spherical harmonics, and form an orthonormal basis for L2(SP1),

! This terminology is standard, but somewhat unfortunate, since I' is unrelated to
any one of half a dozen other “spectra” and “spectral measures” currently existent in
mathematics. Perhaps it would be more appropriate to call I' a Feldheim measure,
since Feldheim [16] was the first to define it.
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analogous to the Fourier basis for L2(S?) from classical harmonic anal-
ysis. The expression of a function on S”~! in terms of this basis is
called its spherical Fourier transform. A function f € L2(SP1)
is called zomal if it is rotationally invariant around a particular coor-
dinate axis —for example, 7(® is zonal. There is a way of convoly-
ing arbitrary functions by zonal functions, and, just as in classical
harmonic analysis, convolution of a function f by 7 translates into
componentwise multiplication of their respective Fourier transforms.
Thus, to deconvolve f and 7, it suffices divide the Fourier transform
of n x f by that of 7.

The advantage of this approach is twofold: First, it provides a
natural continuous representation of the spectral measure, obviating
the need to approximate it with a sum of atoms. Second, it is com-
putationally faster. The computations involved are still expensive:
numerically integrating on a sphere using a mesh of density e ~ 1/N
is a computation of order O (N (D _1)), and computing a convolution of
two functions is thus a computation of order O (N 2D *1)). However,
there is no need to explicitly compute a matrix inverse first, because
a closed-form expression exists for the elements of the orthonormal
basis.

Organization of this Paper: In§l, we summarize previous work
on this problem. In §2, we develop some background material, treat-
ing SP~! as homogeneous manifold under the action of SOP [R], and
reviewing zonal functions, the eigenfunctions of the Laplacian, and a
suitable notion of convolution, and provide explicit formulae for the
spherical harmonics. In §3, we define the spherical Fourier transform
and show how to compute “deconvolution” using this transform. In §4,
we characterize the rate of convergence of the spherical Fourier series
as an estimate of the spectral measure, and relate this to convergence
of the underlying stable distribution.

1 Summary of previous Work:

Early on, Press [36] developed an estimation scheme for multivariate
stable distributions, through a straightforward generalization of his
one-dimensional method. Press’s method, however, only works for
“pseudo-Gaussian” distributions, with log-characteristic functions of
the form:



ox@ = (€a)i+ (Eod)"”

where () is some symmetric, positive semidefinite “covariance ma-
trix”. If Q2 has unit eigenvectors &, . . . ,dp, with eigenvalues A1, ... Ap
(ie. as a covariance matrix, we have “principle components” A&, ...,
A1), then the spectral measure of this distribution is symmetric and
atomic, with atoms at each of +&1,...,+dp, with masses A1,...Ap
—in other words:

D

r'= Z)\d (Jgd —|—(5_(;;d)
d=1

Press proposes to solve for the components of the matrix {2 by em-
pirically estimating the log characteristic function at some collection
of frequencies {,...,En}, where N = D(D + 1)/2, and then solv-
ing a system of N linear equations. He claims that his method will
generalize to a sum of pseudo-Gaussians:

. o M N N\ /2
ox(@ = (Ea)i+ > (Emd)
m=1

(where Qq,...,Q are linearly independent, symmetric, positive
semidefinite matrices). However, in this case, one no longer ends up
with a system of linear equations, so it is not clear that the method is
tractable. In any event, Press’s method only applies to multivariate
distributions with particularly simple atomic spectral measures, which
furthermore must be symmetrically distributed. Empirical evidence
(see, for example, [4]) suggests that the stable distributions found in
financial data are significantly skewed; symmetry is not a reasonable
assumption.

Cheng, Rachev and Xin [44],[5] develop a more sophisticated method,
by expressing a stable random vector in polar coordinates, and then
examining the order statistics of the radial component, as a function
of the angular component. They utilize the theorem of Araujo and
Giné (Corollary 6.20(b), Chapter 3, p. 152 of [1]) stating that the ra-
dial distribution decays most slowly in those angular directions with
the heaviest concentration of spectral mass; these differences in decay
rate are then used to estimate the density distribution of the spectral
measure.



Nolan, Panorska, and McCulloch [25], [24], develop a method based
upon a discrete approximation of the spectral measure. If the spectral
measure is treated as a sum of a finite number of atoms,

r = Z'Ya(saa

acA

then, for any fixed £ € SP~L, the function né-a) (s) = @ <E, s>

of Theorem 1 can be restricted to a function n(f)‘) : A — C. The

set of all discrete measures supported on A is a finite-dimensional
(a)

vector space, which we can identify with C*, and g is just a linear

functional on this vector space. If £ C SP~! is some finite set, then
we can define a linear map:

F:CA —(CE

where, for each & € £,

FO): = 8 = [, ofar
gp-1 &

The method of Nolan et al. then comes down to inverting this
linear transformation to recover I' from an empirical estimate of g.
They explicitly implemented their method in the two-dimensional case
(ie. when the spectral measure lives on a circle), and tested it against
a variety of distributions. They found that it worked fairly well for a
variety of measures on the circle, and consistently outperformed the
method of Chen et al. The methods of Chen et al. and Nolan et al.
are also discussed in §5 of [33].

Finally, Hurd et al. [?] develop...

2 SP-! as a Homogeneous Riemannian
Manifold: Zonal functions, Laplacians,
and Convolution

[The development of background material here loosely follows the dis-
cussion in [47] chapter 3, section 3. A more friendly approach is [35].
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SP~1is a compact Riemannian manifold, and G = SOP [R] is a

(nonabelian) compact Lie group, acting transitively and isometrically
on SP~! by rotations. We will develop a version of harmonic analysis
on SP~! as a homogeneous Riemannian manifold (this theory is actu-
ally applicable to any homogeneous Riemannian manifold; it may be
helpful to keep this in mind).

Let £= be the canonical volume measure induced on SP~! by its
Riemann structure. For example, on S?, £ is the usual “surface area”
measure. SP~1is compact, so £ is finite —assume L= is normalized
to have total mass 1. Let L2(SP~1) = L2(SP~!, 0v; C). The action
of G on SP~! induces a linear G-action on L?(SP~!) in the obvious
way: if ¢ € L2(SP~!) and g € G, then g.¢p : SP~! — C is defined:
g-9(m) = ¢(g.m).

Let C*®(SP~1) be the space of smooth, complex-valued functions
on SP~1 [ is finite, so C®(SP~1) is a linear subspace of L2(SP1)
(though not a closed subspace). G acts smoothly on SP~1, so C*(SP1)
is G-invariant. We consider the restricted action of G on C®(SP1).

Let A : C®(SP~1) — C*°(SP~1) is the Laplacian operator.

Theorem 2: (The Laplacian on SP) [45]

First consider the case D = 1. Endow the circle S' with the angular
coordinate system 6 € (0, 27), so that any point on S%, = S'—{(1,0)}
has coordinates

(cos(), sin(6))
If f : S, — C, then, relative to this coordinate system, we have:
o°f
002"

More generally, define SP, = SP\ (RP~! x [0,00) x {0}), and
then define the diffeomorphism

Agr f =

« X (0,71) —> SP,

(8,¢) = [cos(d); sin(¢)-s]

Then we have the following inductive formula:



0? 0 1
Ast = 8#4:; + (.D—].) COt(d))% + W ASD—I f (4)

O

A commutes with the isometric G action: for all g € G,

Ag-9) = g.(Ad)

Let A := {A € C; —\is an eigenvalue of A}, and for each A €
A, let V) = {gb € C®(SP1); A¢p = —)\gb} be the corresponding
eigenspace. Thus, V) is a G-invariant subspace.

The eigenfunctions of the Laplacian on SP”~! are called spherical
harmonics. Further information on spherical harmonics can be found
in chapter 4, section 3 of [47]; chapter II of [3]; chapters 3 and 5 of
[21]; chapters 7 and 8 of [27]; §11 and §12 of [45]; and also in [38],
[39], [20], [2], [6], [43], [46], and [50].

Let e = (1,0,...,0) € SP~1 and define

Ge = {9g€G; ge = e},

the set of all orthogonal transformations of RP fixing the e-axis. In
other words, G, is the set of all “rotations” of the remaining (D — 1)
dimensions about this axis; hence, there is a natural isomorphism
Ge = SOP-1[R]. G is thus a connected, compact subgroup of G.
The action of G upon C®(SP~1) restricts to an action of G, and the
spaces V), remain invariant under this new action.

Definition 3: Zonal function

A function ¢ € C®(SP~Y) is called zonal (relative to G and the
fixed point e € SP~1) if it is invariant under the action of G,.
Formally, for any G, -invariant subspace V C C®(SP1), define

Z,(V) = {CeV;VgeG, g = ¢}

Thus, the zonal elements of C*®(SP~1) are smooth functions rota-
tionally invariant about the e axis. Clearly, any such function must
be of the form

C(x) = C(z1)

where (; : [-1,1] — C, and where x = (z1,%2,...,2p) is any
element of SP~1,



Proposition 4:

1. IfV C C(SP~Y) is a nontrivial G-invariant subspace, then Z.(V)
is nontrivial.

2. If dim(Z,(V)) = 1, then V is an irreducible G-module.

Proof:
Proof of Part 1:
Claim 1: V contains an element ¢ such that ¢(e) # 0.

Proof:  Since V is nontrivial, there is some 1 € V which is
nonzero somewhere —say 1 (z) # 0. Since G acts transitively
on SP~! find g € G so that g.e = z. Thus, if ¢ = g.1p, then
¢(e) = ¥(g.e) = ¥(z) # 0. Since V is G-invariant, ¢ € V is
the element we seek. ............ .. oLl O [Claim 1]

Now, G, is a closed subgroup of the compact group G; thus, Ge
is compact, so it has a finite Haar measure #* . Define

¢ = /G 96 aH=ly

Since Her is finite, this integral is well-defined. Since V is a
closed, G-invariant subspace, the element ( is in V. Furthermore,
since ((e) = ¢(e), and ¢(e) # 0, we conclude that ¢ is nontrivial.
Finally, note that { is Ge-invariant by construction —in other
words, it is zonal.

Proof of Part 2: Suppose V = V; @& Vy, where V;,V, are G-
invariant. Then by Part 1, we can construct linearly independent
zonal functions (; € Z.(Vy) and (o € Z(V3). Since (1,(2 €
Z.(V), this contradicts the hypothesis that dim(Z.(V)) = 1.

O [Proposition 4]

The isometric action of G, on S”~! induces a linear, isometric ac-

tion upon the tangent space T,SP~L If 7 € T,SP~!is the derivative
of a path 7 : (—¢,e) — SP~! with v(0) = e, then ¢.7 is the derivative
of the path (g.y) : (—e,€) — SP~L. The action of of G, on SP~1 is
rank one, meaning that G, acts transitively on the set of unit tan-
gent vectors 1,SP~L For any r > 0, let B (e,r) be the ball of radius
r about e in SP~1, relative to the intrinsic Riemannian metric. The

following is clear:
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Lemma 5: For all v, G, acts transitively on OB (e,r) in SP~1.

Proposition 6: If SP~! is of rank one, then each eigenspace
V) of A is an irreducible G-module.

Proof: By Proposition 4, it suffices to show that dim[Z,(V))] = 1.

So, suppose that (1,(s € Z.(V,) are linearly independent. Since
they are zonal, (i(u) and (s(u) are functions only of the distance
from u to e. So, for some u € SP~! with dist [u,e] = 7, define
z1 := (1(u) and 2z9 := (2(u), and let ¢ := 22(; — 21{2. Thus, ( is
also zonal. We aim to show that ( is the zero function; thus, (1
and (o are just scalar multiples of one another.
Now, by construction, {(u) = 0, and thus, ( = 0 on 9B (e;7). At
the same time, however, ( is a linear combination of two elements
of Vy; hence, it is also in V) —ie. ( is a (—\)-eigenfunctions of
A. Fix A, and let r get small. If r is made small enough, then
the Dirichlet boundary condition (|sp(e;) = 0 forces the smallest
eigenvalue of A to be larger in absolute value than ), creating a
contradiction.

O [Proposition 6]

One consequence of this irreducibility is

Theorem 7: (Schur’s Lemma) [48]

If V is complex Banach space and an irreducible G-module, and
¢ : V — V is a continuous, complex-linear map that commutes with
the G-action, then ¢ must be multiplication by a scalar. [

Now consider the D-torus TP, equipped with the standard equiv-
ariant metric. The eigenfunctions of the Laplacian on are the periodic
functions of the form &,(x) = exp (2i - (n,x)), with n € TP = 7P
where x € [0,1)” and [0,1)” is identified with TP in the obvious
way. These eigenfunctions form an orthonormal basis for L?(TP).
The same is true for arbitrary homogeneous Riemannian manifolds,
and in particular, for the sphere:

Theorem 8:

e If \i # Ao, then the eigenspaces Vy, and V), are orthogonal as
subsets of L2(SP~1).

11



e The eigenspaces of A span L?(SP~1). In other words:

L’(SP) = Vi

AEA

Proof: See for example [51], chapter 6, p. 255; or [7], Theorem 3.21,
p- 156. Or treat A as an elliptic differential operator, and use
[12], §6.5, Theorem 1, p. 335. Alternately, employ the Spectral
Theorem for unbounded self-adjoint operators (see [10], chapter
X, section 4, p. 319).

O [Theorem 8]

Definition 9: Fgquivariant Function

Ifn: SP~1 x SP~1 — C, then say that 7 is a G-equivariant if,
for all m,n € SP~! and g € G,
n(g-m,g.n) = n(m,n)

Since G acts isometrically and transitively on S, this is equiv-
alent to saying that n(x,y) is a function only of the distance
dist [x,y].

For instance, if the function n(® : SP~1 x SP~1 — C defined by
equation (2) is G-equivariant.

G-equivariant functions are interesting because we can define a
sort of convolution with them.

Definition 10: Conwvolution
Ifn is G-equivariant, ¢ : SP~! — C, and both are (= -integrable,
then definen x ¢ : SP~1 — C by

(e d)) = [ n(s.0)60) doo

For example, if T' is a measure on SP~!, with Radon-Nikodym
derivative v : SP~! — C, then 5 x v : SP~1 — C is defined

wea) = [ ne09®) doep] = [ n(s.0) arp

12



In particular, if T’ is a spectral measure and 7 = n{®, then this
formula is identical to equation (3). In other words,

n“xy = g
where g is the spherical log-characteristic function.

Recall again the case of TP The eigenfunctions of the Laplacian,
{Sn :nezbP }, are well-behaved under convolution: classical har-
monic analysis tells us that

Y anbn®) |+ | Y baa(x)| = D (an-bn)Ea(x)

neZD nezD nezD

It turns out that this phenomenon generalizes to arbitrary homo-
geneous Riemannian manifolds.

Proposition 11: (Convolution and Eigenfunctions)
Let  : SP~1 x SP~1 — C be G-equivariant. Fix A\ € A and
¢ € Z.(Vy), and define Ay € C by:

(n*¢)(e)
Ay = .
’ ¢(e)
Then, for any ¢ € V), n*x¢d = Ay-o.
Proof: Let T, : C®°(SP~1) — C*°(SP~!) be defined: T, (¢) = n* ¢.

Claim 1:  The operator T;, commutes with the G-action: for

all g € G, Tylg.¢] = 9.T;[¢].

Proof: For any m € SP~1,

Ligdlom) = lnx(94) (m)
= [, nmn)é(gn) aos [

=) /SD_ln(m,gl.n')qS(n’) dLs[n']

—o [, lgm. 1o dew]

= (n*x¢)(gm)
= g.(n*x¢)(m).

13



(1) where n' :=g.n
(2) Because 7 is G-equivariant. ........... O [Claim 1]

Claim 2: T; commutes with A.

Proof: For each y € S~ define 7, : SP~! — C by ny(z) =
n(y, =) = n(z,y). Thus,

(n*)(z) = /SDln(w,y) - $(y) dL=[y]

= B(y) - ny(z) dL=[y]

sb-1

Hence, A (n*¢)(z) = A ) é(y) - ny(z) dL=[y]

= B(y) - Any(z) dL=[y] (*)

sDh-1

because A is a linear operator.
Claim 2.1: Any(z) = Ang(y).

Proof: Find some ¢ € G so that gz = y and g.y = z.
Thus for any m € SP~1,

nz(m) = n(z,m) = n(g.x, gm) = nly, g.m)
= ny(g-m) = (g.7y)(m)

In other words, 7, = (g.17y)-
Thus, Amn, = Algny) = g.(Amy)-
In particular, Amn,(y) = g.(Amy)(y) = Anyl(g.y)
= Any(z).

.................................... O [Claim 2.1]

Hence, we can rewrite expression (x) as:

[, 46) - bn(y) age1)

14



But SP~!is a manifold without boundary, so A is self-adjoint
(see, for example [51], chapter 6). Hence,

(y) - Ane(y) dl=[y] = AP(y) - 1z (y) dLy]

gD-1 §D-1
— /SD_ln(x,y) - Ag(y) AL [y]
= n*(Ad)(z)

.......................................... O [Claim 2]
It follows from Claim 2 that T;, must leave invariant all eigenspaces
of A; in other words, for all A € A, V), is invariant under T5,.
But by Claim 1, the restricted map

(Tﬂ)| :V)\ — V)\

is then an isomorphism of linear G-modules. Since G acts irre-
ducibly on V) (by Proposition 6), it follows from Schur’s Lemma
that T, must act on V) by scalar multiplication: thus, there is
some A) € C so that, for all ¢ € Vj,

Ty(d) = Ax-9¢

....in other words, n x ¢ = Ay - ¢. In particular, if ( € Z.(V,),
then nx( = A) -(; hence we must have Ay = "zgg)

O [Proposition 11]

Corollary 12: Let ( € Z.(V,) be a zonal eigenfunction, nor-
malized so that ||(|l, = 1. Define Z : SP=t x SP=1 — C by

Z(z,y) = Clg5"y)

where g, € G is any element so that g,.e = x. Then Z is well-
defined, independent of the choice of g,, and is G-equivariant. If we
then define Py : L2(SP~1) — L2(SP-1) by

Px(¢) = (le) - (Z+¢)

then Py is the orthogonal projection from L?(SP~!) onto the
eigenspace V.

15



Proof:

Proof of “Well Defined”: If g1,92 € G so that g1.e = go.e =,
then gfl.gg.e = e; thus, gfl.gz € Ge. Thus, since ( is zonal about
67

Clg2y) = Clgrtg2.9: 1) = (o1 ')
Proof of “Equivariant”: Let z,y € SP~! and h € G. Note that
we can pick g(j.z) = h.gg. Thus,

Z(ha, hy) = (ggmhy) = C((hga) " hy) = gz h hy)
= Clgz'y) = Z(z, y)

Proof of “Orthogonal Projection”: Since P, is defined by a
convolution integral, it is clearly a linear operator. It then suffices
to show that Py fixes V), and annihilates V)L\.

If ¢ € V,, then by Proposition 11,

Zxg = Z200 thus, Pa(d) = (Z+O)(e) 6,

so it suffices to show that (Z x ()(e) = 1. But:

zi¢e) = [ 2w aeh)
- /SDIC(gel-y) +C(y) AL y]

= éDIC(y)-C(y) AL y] (since g, = Id)

2
= <l
=1 (by hypothesis)

On the other hand, if ¢ € V3, then for all s € SP~1,

16



ZxP(s) = /S Cg5 " y) - dly) dL=[y]

= [, 60 0)-9tw) doely
= <gs_1'C’ ¢>
= 0

O [Corollary 12]

Proposition 13: ( Zonal Eigenfunctions of A on SP~1)
The eigenvalues of A on SP~! are all of the form

Av = N-(N+D-2).

for some N € N. Let {(ny be a corresponding eigenfunction, and
assume that (y is zonal (relative to SOP [R] and e).

Case D = 2: Modulo multiplication by some normalizing constant,
(n(0) = cos(N -6)

where we use the coordinate system (0,2m) 3 0 — (cos(#), sin(f)) €
St. If we write (x in terms of Cartesian coordinates x = (z1,z2) on
R?, we get the CebySev polynomials:

N /N-n—1 o
(nv(x) = 20DV 4 (—1)n2(N_1_2"); ( " ) ng ).

n—1
(5)

Case D = 3: Modulo multiplication by some constant, (y is a
Legendre Polynomial:

Lv/2) T[4 N—n
. . noN—2n 2 . N-—2n
(nv(x) = nZ:O( 1)"2 T[] nl (N —2n) "

17



General Case: Assume that (y is of unit norm. Then (y is a
normalized Gegenbauer polynomial:

1 v
(v = —5 O (1)
Ky
LN/2]
where C](\',/)(m) = Z (—1)"2N_2”-cg\';;)n-a:N_2"
n=0
. (v) _ F(V + (N — n))
With e = ) nl- (N = 2n)!

dx

2
CJ(V)(ml)‘

and where (K](\',j)>2 = /SD—I

2. x(D-1)/2 ZI%QJ( 1)k . 92N -2k L (N -
= 72 . —_ - - o—_—
L(v) = (N —k+
’ V) (v
) ( cN;ncN;(k—n)> !
n=0
where v = #.
Proof:
Proof of Characterization of Eigenvalues: See, for example,
[61], chapter 6, [47], chapter 3, or [35].
Proof of Case D = 2: It is clear from the definition of the

Laplacian on S! that the function (y is an eigenfunction of AS?.
The subgroup of SO? [R] fixing e is just the two-element group of
maps (z1,z2) — (z1, *x2); since the function (y is symmetric
relative to the x4 variable, it is zonal relative to these maps.
The formula (5) is then just a standard trigonometric identity,
where we identify z1 = cos(#); see, for example [23], §1.33 #3,
p- 27.

Proof of Case D = 3: This is just the Gegenbauer polynomial
when D = 3. For a direct proof, see, for example [3], Theorem
1, §2.1, p- 90, where there is unfortunately an error in the defi-
nition of the Legendre functions —see [45], §1, p.2, for a correct
definition).

Proof of General Case:  This is just a big computation. See [47]
or [35].
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O [Proposition 13]

3 Spherical Fourier Series

Theorem 14: (Spherical Fourier Analysis)
Foralln € N, let ¢, : SP~! — C be the zonal harmonic polynomi-
als defined by Proposition 13, and then define Z, : SP~1xSP~1 — C

by
Zn(x,y) = Cale) - Cul{x,y))

Then Z,, is rotationally equivariant.
Now, suppose v € L2(SP~1; C). If we define ~, := Z,*~ then
Yn € V(z,), and y has the orthogonal decomposition:

Y= Z'Yn- (6)
n=1

Proof: This follows from Theorem 8, and Corollary 12, using the
zonal functions provided by Proposition 13.

O [Theorem 14]

Corollary 15: ((De)convolution on Spheres)

Suppose n : SP~1 x SP~1 — C is rotationally equivariant, and
suppose that g := n*x-~y. If, for alln € N, (, and Z, are as in
Theorem 14, and we define

(n* ¢n)(e1)

n = Zp * and A,
& & Cn(el)

then g, = Ay, - Tn-
Conversely, suppose that -y is unknown, but we know n and g. We
can reconstruct y via the formula:

1
7 =D &
n=1""

Proof: This follows from the previous theorem, and Proposition 11.

O [Corollary 15]
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Definition 16: Spherical Fourier Coefficients

If v € L2(SP~Y), then the spherical Fourier Coefficients of
v are the functions v, := Z2Z,*~, for n € N. (Notice that
these “coefficients” are themselves functions, not numbers). The
spherical Fourier series for -y is then the orthogonal decompo-
sition

00
T = Z'Yn-
n=1

Example 17: (Spherical Fourier series on S!)
Let for N € N, let {5 : S — C be as in Part 1 of Proposition
13:

1
(n(0) = cos(NO) = 5 (En(0)+E-n)(0))
where we identify S! 22 [0,27), and define Ex(0) = exp(K8-1i).

Let Zy : S' x S' — C be defined from (y as in Theorem 15. Then,
for any v:S! — R,

W = Zn*7
=q) Y*CN = %(7*51\1 + v+ ECn)
=(2) % (?(N) -En + f(=N) '5(_N))
=(3) % (?(N) “En + m>
= re[y(N)-&n]

(1) where the convolution is now meant in the “usual” sense on
the group S' = T'.

(2) here, 7 is the (classical) Fourier transform of v as a function
on the circle.

(3) because 7 is real-valued.

Now, if we write ¥(N) = ryexp(¢n - i), where ry € [0,00) and
én € [0,27), then, for any 6 € S' =2 [0,27), we have:
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() = re[ry-exp(¢ni)-En(0)]
= ry -relexp( ((N-6-1)]
¢

e (r0 52 1)
(m |

= TIrN-Te [EN

-

In other words, convolving (x by 7 is equivalent to multiplying the
magnitude of {y by rx, and rotating the phase by ¢n/N.

4 Asymptotic Decay and Convergence
Rates

In classical harmonic analysis, the infinitesimal properties of a func-
tion f are in many ways reflected in the asymptotic behaviour of its
Fourier transform, and vice versa. Generally, the smoother f is, the
more rapidly fdecays near infinity. Conversely, if f is very “jaggy”,
undifferentiable, or discontinuous, then fdecays slowly or not at all
near infinity, reflecting a concentration of the “energy” of f in high
frequency Fourier components.

Hence, when approximating f by a partial Fourier sum, the more
jaggy f is, the more slowly the sum converges, and the more terms we
must include to ensure ourselves of a good approximation.

A similar phenomenon manifests when approximating a functions
v : SP~1 — C by a spherical Fourier series. By relating the decay
rate of the spherical Fourier series to the smoothness of v, we will
be able to estimate the error introduced by approximating v with a
partial spherical Fourier sum.

Say that a sequence of functions [y,[3%,] is of order less than or
equal to O(n™?) if

hm ||7n||2 <

n—oo N

(with the limit possibly zero).
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Theorem 18: Let v : SP~! — C, and suppose that v is con-
tinuously 2M -differentiable. Then the sequence [y,|° ] is of order
less than or equal to O(n~(2M+1))

Proof:  First suppose that v is twice continuously differentiable.
Thus, using formula (4) on page 9, we can apply Agp-1 to . Let
a = Agp-17. Since « is a continuous function, it is in L2(SP~1),
and we can compute the spherical Fourier coefficients o, = Z, *a,
for all n, and conclude:

o
a = i Q.
n=1

In particular, since this sum converges absolutely in L2(SP~1),
we know that the sequence [a,|%° ;] is of order less than O(n~1).

By construction, we know that v, = Z, x <y is an eigenfunction
of Agp-1, with eigenvalue A\, = n(n + D — 2). By Claim 2 of
Proposition 11, the Laplacian operator commutes with convolu-
tion operators. Thus,

nn+D—=2)y, = Agpayn
= Agp-1(Zn *7)
= Zpx (ASD—I’Y)
= Zpxa

= aTL

Since this is true for all n, we conclude that [y,]3%,] is of order
less than or equal to O (W) -0(n Y = O(mn3).
Proceed inductively to prove the general case.

O [Theorem 18]

Conclusion
By expressing the log characteristic function g of equation (3) as a

spherical Fourier series via Theorem 14, and then applying the “de-
convolution” formula provided by Corollary 15, we can reconstruct a
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spherical Fourier series for the spectral measure I'. Of course, for prac-
tical purposes, we can only ever compute a finite number of terms of
this series. The degree of approximation error introduced by finitely
truncating the spherical Fourier series is determined by the asymp-
totic decay rate of the coefficients. As with classical Fourier series,
this decay rate is a function of the “smoothness” of I' (Theorem 18).
For an extremely singular I, unsurprisingly, the coefficients may decay
in size slowly, so the series will take a long time to converge to a good
approximation.

The advantage of this approach is that, once we have expressed
g in terms of its spherical Fourier series, computing I' is extremely
straightforward; we need only divide the Fourier series of g by the con-
stants A, of Corollary 15. Computation of the Fourier series, in turn,
involves convolution with Gegenbauer polynomials. A closed-form ex-
pression for these polynomials is given (Theorem 13), and the convolu-
tion can be computed by numerical integration over SP~1, a task with
complexity O (NQ(D*I)), to be contrasted with the O (N3(D*1) + NQ(D*U)
required by an explicit matrix-inversion approach (where N ~ 1/e re-
flects a precision of € in our approximation).

Through a linear combination of spherical harmonics, we can ex-
plicitly represent I' as a continuous object on SP~L, rather than as a
sum of atoms. Of course, if I' in reality was discrete, this representa-
tion might be misleading, and a discrete representation might actually
be preferable. However, in many cases I is absolutely continuous, rel-
ative to the Lebesgue measure —for example, if the stable distribution
is sub-Gaussian (see [41], §2.5). In these cases, an explicitly continu-
ous representation may be preferable to avoid introducing anomalous
asymptotic behaviour to the distribution.
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