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Abstract. Let M = ZP be a D-dimensional lattice, and let (A, 4) be an abelian group.
AM is then a compact abelian group under componentwise addition. A continuous function
& AM 5 AM is called a linear cellular automaton if there is a finite subset F C M
and non-zero coefficients ¢; € Z so that, for any a € AM @) = Y feF % Uf(a).
Suppose that y is a probability measure on AM whose support is a subshift of finite type or
sofic shift. We provide sufficient conditions (on @ and w) under which ® asymptotically
randomizes i, meaning that wk™ — limys;_, o &/ = 5, where 7 is the Haar measure
on AM and J ¢ N has Cesaro density one. In the case when ® = 1 + o and A = (Zp)*
(p prime), we provide a condition on pu that is both necessary and sufficient. We then use
this to construct zero-entropy measures which are randomized by 1 4 o.

0. Introduction
Let D > 1, and let M := ZP be the D-dimensional lattice. If A is a (discretely
topologized) finite set, then A is compact in the Tychonoff topology. For any v € M,
let oV : AM_—— AM be the shift map: ¢V(a) := [bml mepgls Where bm := am-v, for all
m € M. A cellular automaton (CA) is a continuous map & : AM— AM which commutes
with all shifts: forany m € M, 0™ o ® = ® oo ™. Let 5 be the uniform Bernoulli measure
on AM. If 14 is another probability measure on AM, we say ® asymprotically randomizes
wif wk* —limps ;o0 &/ = n, where J C N has Cesaro density one.

If (A, +) is a finite abelian group, then AM is a product group, and 7 is the Haar
measure. A linear cellular automaton (LCA) is a CA ® with a finite subset F C M
(with # (F) > 2), and non-zero coefficients ¢ € Z (for all f € IF) so that, for any a € AM

@) =) ¢-o'(a) e))
felF

LCA are known to asymptotically randomize a wide variety of measures [MHMO03,
MM98, MM99, Lin84, FMMNO0], including those satisfying a correlation-decay
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condition called harmonic mixing [PY02, PY04, MMPY06]. However, all known
sufficient conditions for asymptotic randomization (and for harmonic mixing, in particular)
require w to have full support, i.e. supp(u) = AM,

Here we investigate asymptotic randomization when supp(u) C AM. In particular, we
consider the case when supp(u) is a sofic shift or subshift of finite type. In §1, we let
A = Z,, (p prime), and demonstrate asymptotic randomization for any Markov random
field that is locally free, a much weaker assumption than full support. However, in §2 we
show that harmonic mixing is a rather restrictive condition, by exhibiting a measure whose
support is a mixing sofic shift but which is not harmonically mixing.

Thus, in §3, we introduce the less restrictive concept of dispersion mixing (for measures)
and the dual concept of dispersion (for LCA), and state our main result: any dispersive
LCA asymptotically randomizes any dispersion mixing measure. In §4, welet A = (Z,,)*
(p prime, s € N) and introduce bipartite LCA, a broad class exemplified by the automaton
1 + 0. We then show that any bipartite LCA is dispersive.

In §5, we show that any uniformly mixing and harmonically bounded measure is
dispersion mixing. In particular, in §6, we show that this implies that any mixing
Markov measure (supported on a subshift of finite type), and any continuous factor of
a mixing Markov measure (supported on a sofic shift) is dispersion mixing and, thus,
is asymptotically randomized by any dispersive LCA (e.g. 1 + o). Thus, the example
of §2 is asymptotically randomized, even though it is not harmonically mixing.

In §7, we refine the results of §§3 and 4 by introducing Lucas mixing (a weaker
condition than dispersion mixing). When A = (Z,,)°, we show that a measure is
asymptotically randomized by the automaton 1 + o if and only if it is Lucas mixing.
Finally, in §8, we use Lucas mixing to construct a class of zero-entropy measures which are
asymptotically randomized by 1 + o, thereby refuting the conjecture that positive entropy
is necessary for asymptotic randomization.

Preliminaries and notation. Throughout, (A, +) is an abelian group (usually A =
(Z;p)*, where p is prime and s € N). Elements of AM are denoted by boldfaced letters
(e.g. a, b, ¢), and subsets by gothic letters (e.g. 2, B, €). Elements of M are sans serif
(e.g.l, m, n) and subsets are U, V, W.

If U c Manda € AM, then ay = [aul,pl is the ‘restriction’ of a to an element
of AY. For any b € AY, let [b] := {c € AM; ¢y = b} be the corresponding cylinder set.
In particular, if a € AM, then [ap] := {c € AM; ¢y = ay).

Measures. Let M(AM) be the set of Borel probability measures on AM. If o € M (AM)
and I C M, then let uj € M(AD) be the marginal projection of i onto AL If J ¢ M and
b e AJ, then let u® e M(AM) be the conditional probability measure in the cylinder
set [b]. In other words, for any X C AM w®[X] ;= w@ N [b)/ub]l. In particular,
if I € M is finite, then u](lb) e M(AM) is the conditional probability measure on the I

coordinates: for any ¢ € AL MI([b) [e] := u([c] N [b])/u[b].
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Subshifts. A subshift [Kit98, LM95] is a closed, shift-invariant subset ¥ < AM.
If U C M, then let Xy := {xy; x € X} be all admissible U-blocks in X. f U C M
is finite, and 20 = {wy,...,wy} C AU is a collection of admissible blocks, then the
induced subshift of finite type (SFT) is the largest subshift ¥ c AM such that Xy = 20.
In other words, X := mmeM o™M[20], where [20] := {a € AM; ay € W}, A sofic shift is
the image of an SFT under a block map.

In particular, if M = Z and U = {0, 1}, then X is called a topological Markov shift, and
the transition matrix of X is the matrix P = [papla pe 4, Where pyp = 1if [ab] € 20, and
pap = 0if [ab] & 20.

Characters. Let T' ¢ C be the circle group. A character of AM is a_continuous
homomorphism yx : AM—T!; the group of such characters is denoted by AM. For any
X € AM there is a finite subset K C M, and non-trivial xy € ,zl\ for all k € K, such that,
foranya € AM, y(a) = [ Tkex xk(ax). We indicate this by writing ‘x = @i Xk'-
The rank of x is the cardinality of K.

Cesaro density. If€,n € Z,thenlet[£...n) :={m € Z; £ <m < n}. If ] C N, then the
Cesaro density of J is defined as

1
density (J) := lim —#JN[0...N)).
N—>oo N
If J, K C N, then their relative Cesaro density is defined as

rel density[J/K] :=  lim W

In particular, density (J) = rel density[J/N].

1. Harmonic mixing of Markov random fields
Let B C M be a finite subset, symmetric under multiplication by —1 (usually, B =
{—1,0, 1}P). For any U ¢ M, we define

clU):={u+b;ueUand beB} and dU:=cl(U)\U.

For example, if M = Z and B = {—1, 0, 1}, then 3{0} = {£1}.
Let o € M(AM). Suppose U ¢ M, and let V := 9U and W = M \ cl(U).
If b € AY, then we say that b isolates U from W if the conditional measure ®

is a product of /,L]%)) and ug&). That is, for any U C AV and 29 ¢ AW, we have

n®EUN W) = uf ¢ - piy W),

We say that u is a Markov random field [Bré99, KS80] with interaction range B
(or write ‘u is a B-MRF”) if, for any U € M with V = 9U and W = M \ cl(U), any
choice of b € AV isolates U from W.

For example, if M = Z and B = {—1, 0, 1}, then w is a B-MREF iff u is a (one-step)
Markov chain. If B = [—N ... N], then u is a B-MRF iff u is an N-step Markov chain.

LEMMA 1.1. If u is a Markov random field, then sUpp(w) is a subshift of finite type.



1180 M. Pivato and R. Yassawi

For example, if i is a Markov chain on AZ  then supp(w) is a topological Markov shift.
Let B ¢ M, and let u € M(A™) be B-MRE Let S := B\ {0}. Forany b € AS,
let ;Léb) € M(A) be the conditional probability measure on the zeroth coordinate. We say

that pu is locally free if, for any b € AS, # (supp(u”)) > 2.

Example. If D = 1, then B = {—1,0,1}, S = {£1}, and u is a Markov chain.
Thus, supp(u) is a topological Markov shift, with transition matrix P = [papls pe .
For any a,b € A, write a ~ b if py, = 1, and define the follower and predecessor
sets
F(a)={be A;a~b} and Pb):={ac A;a~ b}.

It is easy to show that the following are equivalent:
(1) wislocally free;
(2) every entry of P? is 2 or larger;
(3) foranya,b e A, #(F(a) NP(b)) > 2.

Recall that A is the dual group of A. For any x € Aandv € M(A), let (x,v) =
ZaeA x (a) - v{a}. It is easy to check the following.

LEMMA 1.2. Let p be prime and A = Z,p. If w is a locally free MRF on AM then there
is some ¢ < 1 such that, for all non-trivial x € Aand any be AS, {x, ;Lgb))l <ec.

Forany x € AM and u € M(AM), define (X, ) = f.AM x(a)du[a]. A measure u
is called harmonically mixing if, for any € > 0, there is some R € N such that, for any
x € AM,

(rank[x] > R) = (I{x, u}| < €).
The significance of this is the following [PY02, Theorem 12].
THEOREM A. Let A = 7, where p is prime. Any LCA on AM asymprotically
randomizes any harmonically mixing measure.

Most MRFs with full support are harmonically mixing [PY04, Theorem 15]. We now
extend this.

THEOREM 1.3. Let A = Z;p,, where p is prime. Any locally free MRF on AM g
harmonically mixing.

Proof. Let u be alocally free B-MRF. A subset I C M is B-separated if (i — j) ¢ B for all
i,j € Iwithi#j. Let K C M be finite, and let x := Q) Xk be a character of AM,
Claim1. Let K :=#({K)=rank[x], and let B:= max{|b;—Db;|;b, by e B}
There exists a B-separated subset I C K such that

K
#D =1z 5. 2)

Proof. Let B = [0...B)P be a box of sidelength B. Cover K with disjoint translated
copies of IE so that
K C |_|(]§ +1i)
iel
for some set I C K. Thus, |i —j| > B foranyi,j € T withi # j, so (i—j) ¢ B.
Also, # (@) = BP, so each copy covers at most B? points in K. Thus, we require at least
K/BD copies to cover all of K. In other words, / > K/BD. >
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Thus, x = x1 - XK\I, Where x1(a) := [ [icy xi(@i) and xg\1(@) = [ [xer\p Xk (@)
LetJ := QD) U K\ D; fix b € A7, and let /,L](Ib) e M(AD be the corresponding
conditional probability measure. Since p is a Markov random field, and the I coordinates

are ‘isolated’ from one another by J coordinates, it follows that u( )isa product measure.

In other words, for any a € AL

uilal = [T ™ tai. 3)

iel

Thus, the conditional expectation of xy is given as

() = > uilal <H Xi(ai)> 5 ) (H wPai) - Xi(ai))

ac Al iel acAl Viel
b
= H(Z n®ai} - Xi(ai)> =TT o ™.
icl “agje A iel

where (%) is by equation (3). Thus, (x,u®) = xxu®) - (xn u”) = xry) -
[Ticx (i ™). Thus, if I = # (), then

10X ™) = xea®- [T 106 ™ < 1! “

iel

where the last step follows from Lemma 1.2. However, (x, u) = ZbeAJ wlb] - (x, u®),
o)

D
[l < Y bl [(x w®) < Y bl = < KED —— 0.
beAJ ® et o Koo

Here (x) is by equation (4) and () is by equation (2). O

2. The even shift is not harmonically mixing
We will now construct a measure v, supported on a sofic shift, which is not harmonically
mixing. Nonetheless, we will show in §§3-5 that this measure is asymptotically
randomized by many LCA.

LetX C (Z /3)Z be the subshift of finite type defined by the transition matrix

1 0 1 e
o 1 if j ~ i is allowed,
A=|1 0 1| whereforalli,jeZs,a;= . .
01 0 0 if j ~ i is not allowed.

Let®: X > (Z /2)Z be the factor map of radius 0 which sends 0 into 0 and both 1 and 2
to 1. Then G := ®(X) is Weiss’s even sofic shift: if s € G, then there are an even number
of 1s between any two occurrences of 0 in s.

Forany N e N,and i, j € Z3, let .%’l]jv ={xeX;xo=1i,xy = j}, and let

N N
Ey = {SGG; aniseven} and Oy = {SEG; anisodd}.

n=0 n=0
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LEMMA 2.1. Foralli, j € Zj3, either CID(%INj) C Eyor CID(%INj) C Op. In particular,
oE uxy,uxl ux),uxf)=¢y and @&, Lx{,ux) ux]) =0

Proof. Let x € %f\]{, and s := ®(x). Note that if k& < k™ are any two values such
that xx = 0 = xi+, then Zﬁ;k sp is even. In particular, let k be the first element of
[0...N] where x; = 0, and let k* be the last element of [0...N] where x;+ = 0.
Thus, Zﬁ:k s, =0 (mod 2), so that Z;V:O Sp = Zﬁ;g) Sn 4 ZQ’:,{*H s, (mod 2).

However, since xx—1 # 0 # xp+4+1 by construction, the definition of X forces xx_1 = 2
and xg+41 = 1. Thus, the parity of Zﬁ;g) s, depends only on the value of xo = i. Similarly
the parity of Z,]:/:k*ﬂ s, depends only on xy = j. a

Let u € M[X] be a mixing Markov measure on X, with transition matrix P and Perron
measure p = (po, p1, p2) € M[Z;3]. Letv = du € M[E], so that if 4 C & is
measurable, then v[] := ;L[CD’I @nl.

For all N € N, define a character xy by xy(X) := ]_[,]lvzo(—l)x" for all x € (Z/Z)Z.
Then Lemma 2.1 implies

(xn,v) =v(€N) —v(ON)
= pn@&xouxux) uxl,uxy) — v uxl, uxl uxl).

However, u is mixing, so limN%oo,u,(%lN}.) = p;i - pj. Thus, limy e (XN, V) =
pg +2p102 — /012 - p%. So, for example, if

P=

S WI= WI=
S NI= =

L, 2), then limy— oo (xn. V) # 0. Clearly, rank [xn] = N,

with Perron measure p = ( 5, %)
00. Thus, v is not harmonically mixing.

so that limy—, oo rank [ xx]

’

” wiN

3. Dispersion mixing

The example from §2 suggests the need for an asymptotic randomization condition
on measures that is less restrictive than harmonic mixing. In this section, we define
the concepts of dispersion mixing (DM) (for measures) and dispersion (for automata)
which together yield asymptotic randomization. In §4 we will show that many LCA
are dispersive. In §§5 and 6 we will show that many measures (including the even shift
measure v from §2) are DM.

Let ® be an LCA as in (1). The advantage of this ‘polynomial’ notation is that
composition of two LCA corresponds to multiplication of their respective polynomials.
For example, suppose A = (Z,,)°, where p € Nis prime, and s € N. Suppose M = Z
and ® = 1 + o; thatis, ®(a)g = ap + a; (mod p). Then the binomial theorem implies
that

N

N N N

forany N € N, oV = Z|: i| o", where |: i| = ( ) mod p. 5)
n=0 n p n 14 n
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Let S > 0, and let K, J C M be subsets. We say that K and J are S-separated it
min{|k —j;keKand je J} > S.

IfF,G C M,and ® = ¢ p gr-ofand N = de@ yg-09 are two LCA, then we say ® and
I" are S-separated if F and G are S-separated. Likewise, if K, X C M, and x = Qi Xk
and & = Q,x éx are two characters, then we say that x and & are S-separated if K and X
are S-separated.

If & = ) tpor- o' is an LCA, then let ranks(®) be the maximum number of
S-separated LCA which can be summed to yield ®. That is:

ranks(®) := max {R; 3P, ..., g mutually S-separated, with & = &| + - . + Dg}.
For example, if
d=1+06"+040l 462403,
then ranky (®) = 3, because ® = & + P, + P3, where
o =1, <I>2=c75+c76 and <I>3=c7”+c712+c713.

On the other hand, clearly rank; (®) = 6, while rank;(®) = 1.
Likewise, if x = ®keK Xk is a character, and S > 0, then we define

ranks(x) := max {R; 3x1, ..., xg mutually S-separated, withy = x1 ® --- ® xr}.

(In the notation of §1, rank [x] = rank;(x).)

We say that 4 is DM if, for every € > 0, there exist S, R > 0 such that, for any
character x € AM, (ranks(x) > R) = (|{x, u)| < €). Note that DM is less restrictive
than harmonic mixing.

If ® is an LCA and y is a character, then x o ® is also a character. We say that ®
is dispersive if, for any S > 0, and any character x € AM, there is a subset J] C N of
density 1 such that limys ;o rankg(x o ®/) = co. We have the following.

THEOREM 3.1. Let A be any finite abelian group. If ® : AM— AM s g dispersive LCA
and p € M(AM) is DM, then ® asymptotically randomizes 1. O

Theorem 3.1 is an immediate consequence of an easily verified lemma.

LEMMA 3.2. ® asymptotically randomizes | if and only if, for all x € .ZM there is a
subset J C N with density (I) = 1, such that limys j_, |(X © @7, )| =0.

Proof. See the proof of Theorem 12 in [PY02]. O

4. Dispersion and bipartite CA
Ifm = (mi,my,...,mp) € M, then let |m| := |my| + |m2| + -+ + |mp|. If
= deG g - 09 is an LCA, then define diam[I'] := max {|g — h|; g, h € G}.

The centre of T is the centroid of G (as a subset of R"):

1
centre(T") := ) Z g.
geG
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We say I' is centred if |centre(I")| < 1. For any prime p € N, let

|1 4p =7
Kp :=miny -, —— .
2 4p+4

Thus, K> = % K3 = 15_6’ and K, = %,forp > 5.

Let A := (Zp)* (where p is prime and s € N). If ® : AM_ AM 5 an LCA, then
we say O is bipartite if ® = 1+ T o of, where T is centred and diam[I'] < K, - [f|.
For example:

d=1+0 is bipartite for any non-zero f € M and any prime p € N;

P=14+0240B=14U+0)o00c!?

is bipartite for any prime p € N;
P=140"%+0"=14+0"2+0%00!® is bipartite for any prime p > 3;

d=1+0’+0’=1+(1+0)oc? is bipartite for any prime p > 5.
Our goal in this section is to prove the following theorem.

THEOREM 4.1. Let A = (Z,,)°, where p prime and s € N. If ® is bipartite, then ® is
dispersive. O
For any N € N, let [N([)|?io] denote the p-ary expansion of N, so that N =
YRy NDpl LetL(N) :={n €[0...N];n® < N foralli € N}.
LEMMA 4.2. (Lucas’s theorem) We have the following.
N N NG L - 0
(a) [n ]p = ]—[?io[n(,-) ]p, where we define [n(,-) ]p =0ifn® > ND, and [0]p = 1.

(b)  Thus, [V ]p # 0 if and only if n € L(N).
For example, suppose Ml = Z and ® = 1 4 o. If we interpret (5) in the light of

Lemma 4.2, we get
N
oV = o”.
>0

nelL(N)

LEMMA 4.3. Letr, H € N.
@ IfM<p,and N =M+ p"-H, thenL(N) =L(M) + p" - L(H) (see Figure I).
b)) Ifmell(M), helL(H),andn =m + p" - h, then

N] [M H
n p_ ml, Lhl,
For example, suppose p =2and N =53 =5+48 =54+2%.3. Then M =5,r = 4,
and H = 3, and
L(53) =LG)+2* - L3)=1{0,1, 4,5} + 16-{0, 1,2, 3}

={0,1, 4,5, 16,17, 20,21, 32,33, 37,38, 48,49, 52,53}.

If x = @y ek Xk is a character, then define diam[x] := max {|k — j|; k, j € K}. Then we
have the following.

LEMMA 4.4. Let ® be an LCA, and let S > 0.
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FIGURE 1. Lemma 4.3.

(a) If x is a character, and Sy = S + diam[ ], then ranks(x o ®) > ranks, ().
(b) IfT isan LCA, and So = S 4 diam[I'], then ranks(I" o @) > ranks, (P).

COROLLARY 4.5. The LCA ® is dispersive if and only if, for any So > 0, there is a subset
J C N of density 1 such that limys ;_, », ranks, (/) = oco.

To prove Theorem 4.1, we use Lemma 4.3 to verify the condition of Corollary 4.5.
For any Sp > 0, define

J(So) :={N € N; N = My+p"™ Hy, for some Hy, ry > 0 such that My, S0<pr"’71}.

For example, if p = 2 and Sy = 7, then 53 € J(7), because 53 = 5 + 24 .3, so that
Msz =5, rs3 = 4, and Hsz = 3. Thus, 2’5371 =23 = 8, and 7 < 8 and 5 < 8. Note that
53 =20 4 2% 4 2% 4 23; thus, 53 = 0. This is exactly why 53 € J(7).

LEMMA 4.6. We have
J(So) ={N € N; N > p-Sp, and N =0 for some r € (log,,(Sp) .. .log ,(N)]1}.

Proof. Suppose that N = My + p"V¥ Hy, for some Hy,ry > 0 and My > 0, such that

My, Sy < prN*l. Letr :=ry — 1;then N = 0 and logp(So) <r< logp(N).
Conversely, suppose N =0, where logp(So) <r< logp(N). Letry :=r + 1; then

So < p- = p'Nl Let My = Z?;& N®pi: then My < p" = p' ! also. Now let

Hy = ZirN N®pi=rN:then N = My + p’~ Hy. O

LEMMA 4.7. We have density (J(Sp)) = 1.

Proof. Letl :=[pSo...oc]. Then I is a set of density one, and Lemma 4.6 implies that

I\J(So) = {N € I N7 3 0 forall r € (log,,(Sp) .. .log, (N)]}.
which is a set of density zero. It follows that density (J(Sp)) = density (I) = 1. o

LEMMA 4.8. If N € J(So), and N = M + p" H, then ® = ®M 0 O where ©® = &P,
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v

=Dy Dy < p'hs D
A —
W > plwlfl ~(h+hy) D]

FIGURE 2. Claim 1 of Theorem 4.1.

Proof. Recall that ® = 1 + I o of. Thus,

N — N f\n — H M f\ (m+p"h)
v g [ers g, [0 [2]reor

nelL(N) L mell(M) heL(H)

= Z Hi| ( Z |:Mi| (Focrf) >o(l"ocrf)hpr
heL(H)-h P \meLmL ™ dp

TH ,
= § ] M o (Moot =M, 0F,
) h 0]

heL(H)L p

Here (L) is by the Lucas theorem and (f) is by Lemma 4.3(b), () is because oM —
Smeran | ¥ ] (T o of)™. Finally, () is because ® = (1 + I o g")?’ =1+Too fyp"

Thus,
off= %" [H} (TCoghr'h
w® h
helL(H) p
O
Proof of Theorem 4.1. 1t suffices to verify the condition of Corollary 4.5. So, let S1 :=
So + diam[®M]. Then
ranks, (@) ﬁrankso(CDM o ®") > rankg, (©7) (6)
* )
where (k) is by Lemma 4.8 and (F) is by Lemma 4.4(b).
Thus, we want to show that ranks, (0f) H—> oo for H in a set of density 1. To do

this, we use gaps in L(H). If hg, h; € IL(H), we say that ho and k| bracket a gap if:
@) hy>=p-ho and (i) [ho...h) NL(H) = 0.

Claim 1. Let ho, hy € L(H), with p < hy < hy, and suppose hg and k| bracket a gap in
L(H). Then (T o /)P0 and (" o o)?""1 are S1-separated.
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Proof. Suppose that |hg—h1| = w. Then (5P "o and (cH)P'M . are (p" - w-|f])-separated.
Thus, if D = diam[I'], then (I" o ¢")?"%0 and (I" 0 6F)?" 1 are W-separated, where
W := p"wlf| — (diam[['P"0] + diam[[7"1]) = p"wlf| — (p"hoD + p"h1 D)
> p" - (wlfl = D - (h1 + ho)) @)
(see Figure 2). We want W > S or, equivalently, W — diam[®¥] > Sy (because
S; = So + diam[®M]). First, note that

diam[®M] < M - |fj+2- max diam[I"]=M -|f|+2M - D
melL(M)

=M-(ffl+2D) < p"' - (Ifl +2D). ®)
Thus,
W —diam[®M] > p" - (w - [f = D - (h1 + ho)) — p" ' - (|f| + 2D)
(%)

=p" ' (pw-Ifl = pD - (hy + ho) — |f| — 2D)
= So- (pw- Ifl = pD - (1 + ho) = If| = 2D)

where (%) is by (7) and (8), and (%) is because Sy < p"~!. Thus, it suffices to show that
pw - [fl = pD - (hy +ho) — Ifl = 2D > 1.
To see this, observe that

pw - |fl = pD - (hy + ho) — If| = 2D
=(pw—1D-fl=[p-(h1 +ho)—=2]-D

(%(pw—1)'|f|—[17’(h1+ho)—2]'Kp'|f|

= (pw—1—1[p- (h1 +ho) —2]K)) - [f|
(E)P-(hl—ho)—l—[P'(h1+h0)—2]Kp

=p- (1= Kp)-hi — (1 +Kp) -ho) — (1 +2-Kp)
Zp (1= Kp) - p=(+Kp) o =2

gpz-((l—Kp>-p—(1+Kp>)—2
3 2

>ZpP—2>23-2=1.

= 4 ©)

Here (b) is by hypothesis that I" is bipartite, () is because |f| > 1, and w = hj — hy,

() isbecause h1 > p-hpand K, < %, (%) is because hg > p,

(x) 1is because
- 4p—7 p—T7/4

P=4p+4— p+1

thus, (p+ DK, < p—F=p—1—-350,3<(p-D-(p+DK, =
(1-Kp)p—(1+Kp),and

9
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(¢) is because p > 2, so p2 > 4. It follows that W — diam[®M] > S, so that W > S. ¢
Let rank [H] := # of gaps in L(H). Then Claim 1 implies that
ranks, (%) > rank [H]. )

Thus, we want to show that the number of gaps is large.

Suppose that i < k. We say that i and k bracket a zero-block in the p-ary expansion
of Hif Hi=D £ 0 H® but HY) = 0, foralli < j < k. For example, suppose that
p =2and H = 19. Then 3 and 5 bracket a zero block in the binary expansion ...010011.

Claim 2. If i and k bracket a zero-block in the p-ary expansion of H, then p’ and p/
bracket a gap in L(H).

Proof. HY) = 0, so the largest element in L(H) less than p' is
i—1 ' il ' _
ho=> HY . pl <> (p—1)-p/ =p' —1.
j=1 j=1
Now, k = min{j > i; HY # 0}, so h; = pk is the smallest element in IL(H) greater

than p'. Also, by > p't! > p-(p' —1) > p - ho. o

Let #ZB(H) := #of zero-blocks in the p-ary expansion of H. Then Claim 2 implies
that
rank [H] > #ZB(H). (10)

Define H := {H € N; #ZB(H) > 1/p> log,(H)}.
Claim 3. We claim density (H) = 1.

Proof. Observe that #ZB(H ) is no less than the number of occurrences of the word ‘101’
in the p-ary expansion of H (because 101 is a zero-block). Let

1
H := {H € N; (# of occurrences of ‘101’) > —310gp(H)}.
p

Then H' C H. The weak law of large numbers implies density (H') = 1. o
Define J := {N € J(So); N = My + p"™ Hy, where ry < 3log,(N),and Hy € H}.
Claim 4. We claim density (J) = 1.

Proof. We have J = J1 N J,, where

Ji:={N € J(So); N= My + p'V Hy, where Hy € H} and
J2:={N €J(So); N =My + p™ Hy, where ry < 3log,(N)}.

Now, density (J;) = 1 by Lemma 4.7 and Claim 3. To see that density (J;) = 1, note that
J(S0)\J2 C (N e N; N £ 0forall r € (log,(So) ... 5 log,(N)]},

which is a set of density zero. o
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If N = My + p'N Hy is an element of J, then
log,(Hy) = log,(N) — ry > log,(N) — 5 log,(N) = 3 log,(N). (11
Thus,

ranks, (®") > ranks, (©7¥) > rank [Hy] > #ZB(Hy)
©) ) (&)

1 1
> —log,(Hy) = —= log, (N).
P p3 gp( N) ® 2[73 gp( )

Here, (Q) is by equation (6), (<) is by equation (9), (&) is by equation (10), (#) is by
equation (11), and (x) is because H € H by hypothesis. Thus,

1
lim ranks (®Y) > — lim log, (N) = oo.
JoN—o0 SO( )z 2[73 JoN—o0 gp( )

5.  Uniform mixing and DM
A measure 1 € M(A?) is uniformly mixing if, for any € > 0, there is some M > 0 so
that, for any cylinder subsets £ ¢ A0 and R c A0 and any m > M,

ulo™(£) N R~ ulL] - ulR] (12)

(here ‘x:y’ means that [x — y| < €).

Example 5.1.

(a) Any mixing N-step Markov chain is uniformly mixing (see §6).

() Ifv € M(BZ%) is uniformly mixing, and ¥ : BZ—s A% is a block map, then
w := ®(v) is also uniformly mixing. (If ¥ has local map v : Bl=¢-"1— A, then
replace the M in (12) with M + £ +7r + 1.)

(¢) Hence, if § C BZis an SFT, and G := ¥ (F) C AZ a sofic shift, and v € M(F) is
any mixing N-step Markov chain, then p := ®(v) is a uniformly mixing measure
on G. We call u a quasi-Markov measure.

We say that u is harmonically bounded (HB) if there is some C < 1 so that [{x, u)]

< C forall x € AZ except x = 1. The goal of this section is to prove the following
theorem.

THEOREM 5.2. Let A be a finite abelian group. If i € M(A%) is uniformly mixing and
harmonically bounded, then p is dispersion mixing.

We will then apply Theorem 5.2 to get the following.

COROLLARY 5.3. Let A = Z;p, where p is prime. If n € M(AZ) is a mixing quasi-
Markov measure, then | is asymptotically randomized by any dispersive LCA.

Harmonic boundedness and entropy.

LEMMA 5.4. Let A = (Z;p)°, where p is prime and s € N. If u € M(A?) and
h(u, o) > (s — 1) - log,(p), then w is harmonically bounded.
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Proof. Suppose that  was not HB. Then for any « > 0, we can find 1 # x € ;l\Z with
[(x, )| > 1 —a. Let Z := image(x) C T!, and let v := x () € M(Z) be the projected
measure on Z. Thus, (x, u) = Y ;7 - v{i}. The following four claims are easy to check.

Claim 1. For any 8 > 0, there exists « > 0 such that, for any probability measure
v e M) with |} ;.70 - v{i}| > 1 — «, there is some ig € Z with v{ip} > 1 — B. o

Suppose that x = @k xk» where K C [0...K] and K € K. Thus, if § :=
®kEK\{K} Xi,then x = & ® xg. Foranyb € A[O"'K), let ug’) be the conditional measure

on the K'th coordinate, and let vg’) = XK (uﬁ?)) € M(Z) be the projected measure on Z.

Claim 2. For any y > 0, there exists § > 0 such that, if there exists ip € Z with
v{ip} > 1 — B, then there is a subset 2B C Al0-K) with ul’B] > 1 — y, such that, for
every b € ‘B, there is some i, € Z with vg’){ib} > 1 — y. Thus, if Py = Xgl{ib} C A,

then u[Py] > 1 — y. (Observe that # (Py) < p*~! for all b € A0-K)) o
For any measure p € M(A), define H(p) := — ), 4 pla}logy(p{a}). Recall (e.g.
[Pet89, Proposition 5.2.12]) that the o -entropy of u can be computed
h(p.o) = lim %" plb]- H(uy)). (13)
N—o00
be Al0-.N)

Claim 3. For any § > 0, there exists 1 > 0 such that, for any probability measure
p on A, if there is a subset P C A with #(P) < p*~! and p[P] > 1 — yi, then
H(p) < (s — 1) -logy(p) +3. o

Claim 4. For any € > 0, and S > 0, there exist §, y» > 0 such that, for any K € N and
probability measure 1 on A%X1 if there is a subset B C ALK with u[B] > 1 — y»,
such that, forall b € B, H(u¥’) < S — 8, then Yy qo.co ulb]l - HulY) < S—e. o

Now, set S := (s — 1) - log,(p). For any € > 0, find §, > > 0 as in Claim 4. Then find
y1 > 0 asin Claim 3, and let y := min{y1, y»}. Next, find 8 as in Claim 2 and then find
as in Claim 1. Finally, find x € AZ with |(x, )| > 1—a. It then follows from Claims 1-4
that ZbeA[o,,,m ulb] - H(Mg\']))) < (s — 1) - logy(p) — €. However, the limit in (13) is a
decreasing limit, so we conclude that 4(u, o) < (s — 1) -log,(p) — €. Since this is true for
any € > 0, we conclude that 4(u, o) < (s — 1) - log,(p), contradicting our hypothesis. O

COROLLARY 5.5. If A = Z,, (where p prime) and h(w, o) > 0, then w is harmonically
bounded.

Say w is uniformly multiply mixing if, for any € > 0, there is some S > 0 such that,
forany R > 0, if Ko, Ky, ..., Kz C M are finite, mutually S-separated subsets of M, and
o AKo . up c AKR are cylinder sets, then

R R
u(ﬂ ur);; [Trw). (14)
r=0 r=0

LEMMA 5.6. If u € M(AZ) is uniformly mixing, then  is uniformly multiply mixing.
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Proof (By induction on R). The case R = 1 is just uniform mixing. Suppose (14) is true
forall R” < R. Find § > 0 so that, if Ko, ..., Kg are mutually S-separated, then

R R R R
u(ﬂ ur> = M(ﬂo n ﬂur) = 1(tho) -u(ﬂ ur) o0 hWo) - [T i),
r=0 r=I1 r=1 =

r=1

where ";' > comes by setting R’ = 1, and * RDe > comes by setting R = R — 1. O
LEMMA 5.7. Suppose that u € M(AZ) is uniformly multiply mixing. For any € > 0
and R € N, there is some S > 0 so that if Ky,...,Kr C Z are S-separated sets
and, for all r € [0...R], xr : AKX . C are characters, and X = Hfzo X, then

1) o3 T2 (s )

Proof of Theorem 5.2. Let € > 0. We want to find § > 0 and R > 0 such that, if yx is
any character, and rankg(x) > R, then |(x, u)| < €. Let C < 1 be the harmonic bound.
Find R € N so that CR < ¢/2.

Let S > O be as in Lemma 5.7. Suppose ranks(x) > R, and let y := ®f:0 Xr» where
Xr - AKr 5 C are characters, and Ko, ..., Kgr C Z are S-separated. Then Lemma 5.7
implies that

R
(X 1) 7 ]‘!}(xr,m. (15)

By harmonic boundedness, we know |(x;, u)| < C forallr € [0... R]. Thus, (15) implies

R R
€
06wl [Tl < ] =cf < cf <o
r=0 r=0

O

Proof of Corollary 5.3. From Examples 5.1(a) and (b), we know p is uniformly mixing.
Any mixing quasi-Markov measure has non-zero entropy, so Corollary 5.5 says that u is
harmonically bounded. Theorem 5.2 says u is dispersion mixing. Theorem 3.1 says u is
asymptotically randomized by any dispersive CA.

6. Markov words

If myn € Z, and m < n, let A" be the set of all words of the form a =
[am, Gm1s ..., an—1]. Let A* = |U_o_men<oo Alm--m) be the set of all finite words.
Elements of A* are denoted by boldfaced letters (e.g. a, b, ¢), and subsets by gothic
letters (e.g. A, B, €). Concatenation of words is indicated by juxtaposition. Thus, if
a = lag...ay] and b = [bgy...by], then ab = [ag...aybo...by,]. If V > 0 and
v e Al=V-Y) we say that v is a Markov word for 1 if (in the terminology of §1), v isolates
(—=oco...— V) from[V...00).

Example 6.1.
(a) If pis an N-step Markov shift, and N < 2V, then every v € A=YV i5 a Markov
word.
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(b) Let§ C BZ be a subshift of finite type, let ¥ : F—> A% be a block map, so that
G = W(J) is a sofic shift. Let v be a Markov measure on § and let & := W (v).
If s € G|—v..v] is a synchronizing word for W, then s is a Markov word for .

PROPOSITION 6.2. If 1 € M(AZ) is mixing and has a Markov word, then  is uniformly
mixing.

Proof. Fix € > 0. For any words a,b € A*, the mixing of u implies that there is some
Mc(a,b) < oo such that, for all m > M.(a,b), u(c™[a] N [b]);«,u[a] - u[b]. Our goal is
to find some M > 0 so that M.(a,b) < M forall a,b € A*.

Let v € A* be a Markov word for .

Claim 1. Let u,w,u’,w € A* and consider the words uvw and u'vw’. We have
M. (uvw, u'vw') = M. (vw, u'v).

Proof. Define transition probabilities u(u «<-- v) := p(uv)/u(v) and pu(v --» w) =
w(vw)/p(v). If m > M.(vw, u'v), then

w(o™ uvw] N [w'vw']) = p( «--v) - (" [ywlN[u'v]) - (v -->w")  (16)
~ == V) - pu[vw] - pu'vl - (v --» W) 17)
= pluvw] - plu'vw']. (18)

Equations (16) and (18) are because v is a Markov word; (17) is because m >
M:(vw,u'v). o

If a € A*, we say that v occurs in a if a|[,—y _,4v) = Vv for some n.
Claim 2. There is some N > 0 such that u{a € Al%N: vy occursina} > 1 — e.

Proof. By ergodicity, find N such that

N
“(U cr"[v]) >1—e.
n=0

o
Let A} be the set of words (of length at least N) in .A* with v occurring in the last (N + V)
coordinates, and let y.A* be the set of all words in A* with v occurring in the first (N + V)
coordinates. Then Claim 2 implies that

u(A) >1—eand pu(A*) > 1—e. (19)
Let AN := (V| Al0-7] Then

Af = {uvw;ue A*and w e A=V}  and

vA* = (u'vw;u' € A=Y and W e A*). (20)
Define
Mj := max max M.(a,b)= max max M.(uvw, u'vw')
acAf bey A* 0 ued*  yeA<N

= max M.(vw,u’v)
) wae A<N
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where (x) is by (20) and () is by Claim 1. Likewise, define

M> := max max M.(a,b) = max max M.(vw,Db),

acAf be A<N weA<N beA<N
M3z := max max M.(a,b) = max max M.(a,u’v), and
ac A<N bey A* acA<N weA=<N

My := max max Mc(a,b).
ac A<N be A<N

Thus, My, ..., M4 each maximizes a finite collection of finite values, so each is finite.
Thus, M := max{Mj, ..., M4} is finite.

Claim 3. For any a,b € A*, M.(a,b) < M.

Proof If a € A<N U A¥ and b € A<N Uy A*, then Mc(a,b) < M by definition.
So, suppose a & A<N U A¥. Then (19) implies that uu[a] < €. Hence, for any m € N,
uw(c™[a]lNb) < € and p[a] - u[b] < €. Thus, u(c™[a] N b)?u[a] - u[b] automatically.
Hence, M.(a,b) =0 < M.

Likewise, if b ¢ A<V Uy A*, then Mc(a,b) =0 < M. o

Thus, p is uniformly mixing. a

COROLLARY 6.3. If u is harmonically bounded, mixing and has a Markov word, then
is asymptotically randomized by ® =1+ 0.

Proof. Combine Proposition 6.2 with Theorems 3.1 and 5.2. O

7. Lucas mixing
Throughout this section, let D := 1, so that M = Z. Let A := (Z,,)*, where p € N is
prime, and s € N. Let ® := 1 + 0. We will introduce a condition on © which is weaker
than DM, and which is both sufficient and necessary for asymptotic randomization.

Let x € AZ, and suppose that x = Rer xk- We define [[x]] := max(K) — min(K),
and define

((x)) :==p" wherer :=[log, |[x]I1.

It follows from Lucas’ theorem that ‘(X)) = 1 4 (X)) Thus, for any h € N,

h h

h-((x)) _ ({x)-€ h-((x)) _ ({x)-€

) = E |:€j| o and, thus, x o ® = ® |:ei| Xoo .
Lyt dp teLayL ¥ dp

Observe that K + p"¢ and K + p"¢’ are disjoint for any £ # ¢ € L(h). Hence,
if L := # (LL(h)), then x o ®" (X)) jsa product of L ‘disjoint translates’ of x.

If p is a measure on A%, we say that u is Lucas mixing if, for any non-trivial
character x € AZ_ there is a subset H < N of Cesaro density one such that
limpis— o0 (X 0 @"X, p) = 0.

Our goal in this section is to prove the following.

THEOREM 7.1. We have

(® = 1 4+ o asymptotically randomizes ) <= (u is Lucas mixing).
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It is relatively easy to see that the following holds.
LEMMA 7.2. If u is DM, then w is Lucas mixing.

Thus, the ‘<" direction of Theorem‘7.1 is an extension of Theorem 3.1, in the case
® = 1+ 0. The ‘=’ direction makes this the strongest possible extension for this LCA.

Set S := |[x]|, and let T = J(S), where J(S) is defined as in §4. It follows from
Lemma 4.7 that density (j) = 1.Foranym € N, let x* := x o ®".

LEMMA 7.3. Let j € i with j = m + p" -h. Then x o ®/ = x" o O X" ywhere
h = p% - h forsomes > 0.
Proof. Apply Lemma 4.8 to observe that &/ = & o ®'(?")_ Thus,

X o dF = X o ®" o (P = x" o (P

By definition, r is such that m < p’~!and |[x]| < p"~!. Thus,

1 r

X" =1xll+m<p ' +p " <p.

Now, let s :=r —log, [[x™]|, and let i’ := p* - h. Then h - (p") = I’ - {{x™)), so that

d P — @l (X" O
Proof of Theorem 7.1. We use Lemma 3.2.
‘<" Forany m € N, let r(m) := [log,(max{m, |[[x]]})]+ 1, and define
T = {m+p"™h;h e N} 1)
It follows that
T=J T (22)

meN

If j = m + p"™h is an element of J,, then Lemma 7.3 says x o ®/ = x™ o ®""(x")
for some 4’ > h. Now, u is Lucas mixing, so find a subset H,,, C N of density one with
limg (x™ o ®" X)) 1) = 0. Define

ndh— 00

~ m 1
H,, = {h € Hys [(x™ 0 &™) 4y < E},

I ={m+ p"™h;h € Hy}, and (23)
J:=J In- 24
meN

Claim 1. We claim that density (J) = 1.

Proof. For any m € N, there is some K such that H,, = }ﬁlm N [K...00).
Thus, rel density[H,,/H,,] = 1. Thus, density (H,) = density(H,) = I.
Compare (21) and (23) to see that rel density[Jm/jm] = 1. Then compare (22) and (24)
to see that rel density[J/j] = 1. Thus, density (J) = density (:lf) =1. o

Claim 2. We claim that limy ;_, o (x o ®/, 1) = 0.
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Proof. Fix ¢ > 0. Let M be large enough that 1/M < €. For all m € N with
m < M, find H,, such that, if 1 € ]ﬁlm and h > H,, then |(x" o oh (X" | W)y < e.
Let J,, :=m +2"™ . H,,. Thus, if j =m+ 27(m) . h is an element of J,,, and Jj > Jm,
then we must have & > H,,, so that |(x o ®/, )| = |(x" o o (™) | w) < e.

Now let J := maxij<m<pm Jm. Thus, forall j € J, if j > J, then either j € J,, for
some m < M, in which case |(x o ®/, u)| < € by construction of J, or j € J,, for some
m > M, in which case

xo® , pu)| < —<— <e
x H () m M )
Here, () follows by the definition of H,,, and (7) follows by the definition of M. o

Lemma 3.2 and Claims 1 and 2 imply that ® asymptotically randomizes .

‘=>" Suppose that u was not weakly harmonically mixing. Thus, there is
some x € AZ and some subset H C N of density § > O such that
1im SUpps 00 | (X © @ (X0 1) > 0. However, x o (X)) = x o &P (where r =

Mog, [[x1I1). Hence, if J := p" - H, then density(J) = p™ -8 > 0, and
Hmsupys ;o0 (X © @7, u)| = limsupg) o [(X 0 "X 1) > 0. However, then
Lemma 3.2 implies that & cannot randomize u. O

8. Randomization of zero-entropy measures

Of the probability measures which are asymptotically randomized by LCA, every known
example has positive entropy. However, we will show that positive entropy is not necessary,
by constructing a class of zero-entropy measures which are Lucas mixing and, thus
(by Theorem 7.1), randomized by ® =1+ o.

For both efficiency and lucidity, we will employ probabilistic language. Let (2, B, p)
be an abstract probability space (called the sample space). If (X, X') is any measurable
space, then an (X-valued) random variable is a measurable function f : Q—X.
In particular, a random sequence is a measurable function a : Q—> A%. By convention,
we suppress the argument of random variables. Thus, if a, b, ¢ are random sequences, then
the equation ‘a + b = ¢’ means ‘a(w) + b(w) = ¢(w), for p-almost all w € Q.

If f : Q—>X is a random variable, and U C X, then ‘Prob[f € U] denotes
plf 1 (U)]. If g : Q—>Y is another random variable, then f and g are independent
if, for any measurable U € X and V C Y, Prob[f € Uandg € V] = Prob[f € U]
-Prob[g € Vl]ie. p[f~ 1 (U)Ng= (V)] = p[ £~ (U)]- plg~ 1 (V)]. The distribution of f is
the probability measure ;1 := f(p) on (X, X'); we then say that f is a u-random variable.
Thus, every random variable determines a probability measure on its range. However,
given a measure (, we can construct infinitely many independent p-random variables.

Let A := Z; and p € M(AZ), and consider a p-random sequence a € AZ.
We say u has independent random dyadic increments (IRDI) if, for any n € N, and
allm e [1...2"], apyon = am + dy,, where df, ..., d}, are independent A-valued
random variables. If di’, el dgn have distributions 81’, e, 53,1, then u has lower decay
rate a € (0, 1) if there is some L > O such that, foralln > L, and allm € [1...2"],
o <8 {1}).

PROPOSITION 8.1. If w has IRDI with lower decay rate o > 1/+/2, then w is Lucas
mixing.
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Proof. Let x € AZ be a non-trivial character. We seek H C N with density (H) = 1, such
that limggsj_ 00 (X © ®* 00 1)y = 0.

Ifn e N,let I = I(n) := [log,(n)], and suppose that n has binary expansion {n(i)},.lzo.
Letl(n) :={j €[0...1]; nt) = 1}. Let € > 0 be small, and define

H := {h € N; #(I(h)) > 11 (h) — €}

Then density (H) = 1. Suppose that n € H is large; let I := I(n) and I := I(n).
Assume that [ is large (in particular, I > L).
Now, & > 1/+/2, so find g such that 1 /o < B < /2. Define

M =#0)—-1> %I —e—1 (i) log, (B)1, 25)
where (x) is because log, (8) < % and [/ is large, while € is small.
Suppose that I = {i; < iy < -+ < iy4+1 = I}. Let & := x, and for each
m e [0---M],define &, 1 = &, o00Li), where L; := 2im.((x)). Thus, y o®" (X)) =
IVERE

Letr :=rank[x]. Then forallm € [1...M + 1], rank[§,] = 2™ - r. In particular,
define
R :=rank[£y] =2Y . r 2 (=B -r (26)
3

where (%) is by equation (25). Thus, &y = ®xeX &¢, where X C Z is a subset with
#(X) = R. Thus,ifa € A% isa u-random sequence, then

Evri(@) =E&y@) - (Epo 521 (a)) = l_[ &x(ay) - éx(ax+21)

xeX
=[] &tax + a0 =[] &@h. 27)
xeX xeX

where {d!}cx are IRDL If d! has distribution 8, then

201 — 1

201 %)

Egr & (dD]=80{0) —sl{1} =1-28/{1}) < 1-2-a' =
X (*)
Here, (x) is because p has lower decay rate o, so 5;{1} > of (assuming I > L).
Thus,

2071 —1\R
(. X ocD");Eul:ng(d){)}z JRMECRIE (Z—,) .
xeX xeX

Here, (f) is by equation (27), (x) is because {d;}xex are independent, and () is by
equation (28) and because # (X) = R. Thus,
log (i, x o ®")| < R -[loge™" — 1) —log(2a™ "] < — R -log'2a™")
()
—R —Blr

LA ——
20~ 1) 201 2

where, () is because log is a decreasing function, and () is by equation (26).
However, § > 1/a, so af > 1. Thus, limgs)_ e log|{u, x o @0 =
—r/21im;_ oo (@B)! = —o0. Hence, limpsp— o0 | (10, x 0 @) = 0. ]
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Suppose that © € M(AZ) has IRDI; for any n € N, and all m € [1...2"],
let 67, ..., 85, be the dyadic increment distributions, as before. Then u has upper decay
rate a € (0, 1) if there are constants Li, K > 0 such that, for all n > L, and all
mell...2"], 60 {1} < K -a".

PROPOSITION 8.2. If u has IRDI with upper decay rate @ < 1, then h(u) = 0.

Proof. Let L1, K > 0 be as above. Assume without loss of generality that K > 4.
Let Ly := (—log,(K) — 1)/log, (). Let L := max{L;, L2}.
Foranyn e N,andm € [1...2"], let 8}, be as above. The entropy of §};, is defined as

H(8,,) := —6,,{0} 1ogy(8,,{0}) — 8,,{1} log, (5}, {1}). (29

Claim 1. There exists ¢c; > 0 such that, if » > L and m € [1...2"], then H(5),) <
cin - a”.

Proof. We have o < 1, so logy(«) < 0. Thus, if n > Ly, then nlog,(«) < Lylog,(w).
Thus,

log, (Ka") = log, (K) + nlog,(«) < log,(K) + L2 log,(a)
=log,(K) —logy,(K) — 1= —1. (30)

Thus, §;, {1} < Ka" < 1 Where (%) is because n > L. and (7) is by equation (30).
) )

However, if ), {1} < % in (29), then H (8}, decreases as &), {1} decreases. Hence,

H(@®p) < —Ko'"logy(Ka™) — (1 — Ka") log, (1 — Ka™)
< Ka"(nA —-k)+(1 —Ka") - 2Ka"=KnA+2—k—-2Kd")-a"
=
(%) ()

< KnA-o" < cin-o".
(#) (©)

Here (x) is the substitution k£ := log,(K) and A := —log,(«); () is because, if € is small,
then log(1 — €) & —¢, thus, —log(1 — €) < 2¢; (%) is because 2 — k — 2K a" < 0 because
k > 2 because we assume K > 4; (¢) is where c¢; := KA > 0. o

Let a € AZ be a p-random sequence, and fix n > L. To compute the conditional
entropy H(a|(2nm2n+l]|a|[1._.2n]), recall that, for all m € [1...2"], axngm = am + d}),.
Thus,

2’!
H@lon efali on) = H@i i, od) = Y HE)
m=1

(?) 2" . cina” = cin - Q)" (€2))

where (%) is because d”, df, e, dg’,, are independent random variables with distributions
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8'1’, el 83’,,, and () is by Claim 1. Thus, for any N > L,

N-—1 N—1
H(al[lm2N]|a|[1m2L]) = Z H(al(zn._.znﬁ—]]|a|[1m2n]) < Z cin - (Z(X)n
n=L o) n=L
N—-L—1 N—L
2 -1
<aN-Qa)t Y Qo) =ceN- ot~ =1
20 — 1
n=0
<aN- QoY (32)

where (k) is by equation (31), and where ¢» &~ c¢;/2a¢ —1 > 0 is another constant.
Thus, if Hy := H(a|[; 1), then

H(a|[1m2N]) = H(al[lmzN]la|[1m2L]) + H() < C2N . (20[)N + H(), (33)
(%)

where (x) is by equation‘(32). Thus,

. 1 ) 1
h(p) = A}gnoo MH(aHl...M]) = 1\,12"00 2_NH(a|[1...2N])

N - Q)N + Hy

< lim < ¢y lim N (1),
(%) N—o0 2N N—o0 0
where (x) is by equation (33), and where () is because || < 1. O

It remains to actually construct a measure with IRDI. Let 0 < o < 1. Foranyn € N,
let p, be the probability distribution on A = Z /> such that

puill =" and pu{0) =1 —o". (34)

For each n € N, we will construct a random sequence a” € AZ as follows. First, define
a® := [...0000...]. Now, suppose, inductively, that we have a". Let ry,r{,..., 75 _,
be a set of 2" independent A-valued, p,-random variables. Let r* € A% be the random,
2"+ _periodic sequence

zeroth coordinate

'
oo |:”',0,()’”,,(),r(')’,rf’,...,rg’n_l,O,O,...,O,r(')’,rf’,...,rfn_l,...j|,
—_—— ——
2)1 2n
and inductively define a"*! := a” +r".

Let i, € M(AZ) be the distribution of a”, and let i, := (1/2") 212:1 o' (un) be the
stationary average of ji,. Finally, let u := wk* — lim,,_, o [L5,.

Let (oo be the probability distribution of the random sequence a®® := o

n=1
(see Figure 3). Then poo = Wk* — limy— o0 iy, and loosely speaking, u is the ‘o -ergodic
average’ of (. Thus, if a is a pu-random sequence, we can think of a as obtained by

shifting a> by a random amount. The following lemma describes the structure of a*°.

LEMMA 8.3. Let M € N have binary expansion M = ZZO:O m,2". Foralln > 0, let
M, = Z::ol m;2. Then aSy = > o0 mpy Ty O

For example, suppose that M := 13 = 14+4+8; thenmg = my = m3 = 1l andm; = 0.
Hence, My =0, M|y = My = 1, and M3 = 5. Thus, a‘l’g = rg + "12 + rg’ (see Figure 3).
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3 3

3 : 3 3 3
™ Tt T2 T3 Ty Ty Tg 77
.2 2 2 .2 2 2 2 2
To "1 T3 T3 ™o T2 T3
1 1 1 1 1 1 1 1 -1 1
7'0 Tl TU ’I‘l TO Tl TO 7‘1 70 Tl
0 .0 0 0 0 0 0 .0 0 0
7‘0 70 TU 7'0 70 7"0 70 70 Litv) 70.“
X 40 X g g™ g  axX g0 5,00 500 o0 500 00 = o0 g% o6 0 g0
--@g-  @p a4zt a4y a4y ag a7’ adg 49 Arg  Gpp d4yp 43 Gry A4y A1 Gry d3g Qig -
ag ay az as ay as a6 azr

FIGURE 3. The construction of random sequence a®; the approximation of a as a random translate of a.

Think of a® as being generated by a process of ‘duplication with error’. Let w® := [0]
be a word of length 1. Suppose, inductively, that we have W" = [wiw2...wa_1].
Let W' := [wiWy...Wwy_1] be an ‘imperfect copy’ of w": for each m € [0...2"),
Wy 1= Wy + 1y, Where 1, r{ ..., 7, | are the independent p,-distributed variables from
before, which act as ‘copying errors’. Let w*t! := w"W". Then a* is the limit of w" as
n—00.

PROPOSITION 8.4. We propose that u has IRDI, with upper and lower decay rate o.

Proof. Leta € AZ be a w-random sequence, and fix N € N. By construction, there is
some k € Z such that a looks like 0% (a®) in a neighbourhood around 0. To be precise,

forallm € [0...2YT)), 4, =a3,,. (35)
For example, in Figure 3, let N = 2, so that 2N — 4, suppose k = 6. Thus,
lag, a1, ..., a7] = [ag°,a3°, ..., af3]. Thus, d(% =a4—ap = ajy —ag’ = r23 —r22 =

V23 + r22. We have the following more general claim.

Claim 1. Letm € [0...2V).

(a) Thereis aset S(m) := {(ng, mo), (n1,my), ..., (ny,my)} (for some J > 0), where
N=no<ny <---<ny,andwherem; € [0...2"%) forall j € [0...J], such that
dN =rpd +rpk 4.

(b) Ifm’ e[0...2Y), and m’ # m, then S(m’) N S(m) = @. O

Proof Let M = k+mand let M = k+m +2¥. If M = Y m,2" and
M =>"0 ,m,2", then Lemma 8.3 says that

M2

o
o0 n 0 ~ n
ay = My Ty and aﬂzé Mn =T (36)
n=0

0

n

Let N1 > N be the smallest element of [N ... 00) such that my, = 0. Hence, m, = 1 for
alln € [N...Ny),and my, = 0. Note that M=M +2¥ so binary expansions of M and
M are related as follows:

(A) m, =myforalln € [0...N);

(B) thus, M, = M, foralln € [0...N];

(C) ifmy=0thenmy =1.Ifmy =1,thenmy = 0;

(D) my =0foralln € [N...Np) (possibly an empty set), and my, = 1;

(B) my, =myforalln > Nj.
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Thus,

N _ — 00 _ 00  _ 00 [es)
d, = a, N —ap = YepmiaN ~ Aerm = Ay +ay; (mod 2)

o0 o0
— ~ n n — ~ n n
= E My -r~ +my-r = E My v~ +my-r
) 0( n + my My’ () N( n e + my Mn)
= n=

lel o8
N
=riy b Y mary TS Ym0 ). (37)
N n My, _— M, n
~~— n=N+l1 —~ n=Ni+1

——
(bc) (d) ) (e)
Here, (x) is by equation (35); (1) is by equation (36); (ab) is by (A) and (B); (bc) is by (B)
and (C); (d) is by (D), and (e) is by (E).
Now, to see (a), let

S(m) := {(n, m); r};, appears with non-zero coefficient in expression (37)}.

In particular, rﬁN appears in (37), so (ng, mo) := (N, My); thus, nop = N.

To see (b), suppose that m < m’; hence m’ = m + i for some i € [1...2V).

Let M := M+i and M" := M+i. Suppose M' = 3" m/,2" and M’ = Y22 i), 2".
Define M,, ]\7{1, and N| analogously. Then, an argument identical to (37) yields

N -1 00
N N /.n Ni / n n
d, = erv + Z Myl + rﬁ// + Z m, - (r/q/l +rM},1). (38)
n=N+1 Mo n=N+1

Now, foralln € [N ...00), M,’l = M, + i and A’;I,; = 1\71,, + i (because i < 2N); thus,

L— noopn no— noopn
v, = My & {rM", rM”} and rM',1 Fii i & {rM", rMn}. Thus, every summand of (38)

is distinct from every summand of (37), so S(m’) N S(m) = . o
To see that the random variables d(])v e dé\fv,l are jointly independent, use Claim 1(a):
dy = Z r,odY = Z e dé\f\,q: Z .
(n,m)eS(0) (n,m)eS(1) (n,m)eS2N-1)

The random variables {r”;n € N,m € [1...2V]} are independent, and Claim 1(b) says

m?

that $(0), S(1)..., S@Y — 1) are pairwise disjoint; thus df,...,dy,_, are jointly
independent.
Lower decay rate. |a| < 1, so if N is sufficiently large (e.g. N > L := —1/log,(a)),

then «¥ < 1/2. Suppose that dY = .r,ﬁ'l% + 1k 4 -+ 4 i), as in Claim 1(a). For all
Jj€l10...J1.let P :=Prob(Y_/_; ry, = 1). Thus,

(1} =Po= pn{0}- Pr+ {1} - (1= P =1 —a) - P +a™ - (1= Pp)

=aN+(l—2aN)'P1 > ol
)

Here (1) is because Claim 1(a) says ng = N and (%) is because 1 — 2™ > 0, because

N _ 1
o <2.



Randomization of sofic shifts by linear cellular automata 1201

Upper decay rate. Let K := 1/1 — «a. We claim that, for any N and m, 8,1,\,]{1} < KoV
As before, let Pj = Prob(ZiJ:j r,f{l. =1). Forany j € [1...J), we have
Pj=(1—a")- Piay +&" - (1= Pjy1) = Py + (1 —2Pje)a < Py +a™, (39)

and P; = /. Hence,

N n n n - i a0 n N
— 0 1 - J — — 0=
Spil} =Py <™ +a"! + + o 520{ _l_a_Ka (T)Koz .
) i=no
Here, (x) is obtained by applying (39) inductively, and () is because ng = N. O

Thus, if 1/ V2 <a < 1, then w satisfies the conditions of Propositions 8.1 and 8.2, so u
is a zero-entropy, Lucas mixing measure. Hence, 1 + ¢ asymptotically randomizes (.
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