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Abstract. Let M = ZD be a D-dimensional lattice, and let (A,+) be an abelian group.
AM is then a compact abelian group under componentwise addition. A continuous function
� : AM −→ AM is called a linear cellular automaton if there is a finite subset F ⊂ M
and non-zero coefficients ϕf ∈ Z so that, for any a ∈ AM, �(a) = ∑f∈F ϕf · σ f(a).
Suppose that µ is a probability measure on AM whose support is a subshift of finite type or
sofic shift. We provide sufficient conditions (on � and µ) under which � asymptotically
randomizes µ, meaning that wk∗ − limJ�j→∞�jµ = η, where η is the Haar measure
on AM, and J ⊂ N has Cesàro density one. In the case when � = 1+ σ and A = (Z/p)s
(p prime), we provide a condition on µ that is both necessary and sufficient. We then use
this to construct zero-entropy measures which are randomized by 1+ σ .

0. Introduction
Let D ≥ 1, and let M := ZD be the D-dimensional lattice. If A is a (discretely
topologized) finite set, then AM is compact in the Tychonoff topology. For any v ∈ M,
let σ v : AM−→AM be the shift map: σ v(a) := [bm|m∈M], where bm := am−v, for all
m ∈M. A cellular automaton (CA) is a continuous map� : AM−→AM which commutes
with all shifts: for any m ∈ M, σm ◦� = �◦σm. Let η be the uniform Bernoulli measure
on AM. If µ is another probability measure on AM, we say � asymptotically randomizes
µ if wk∗ − limJ�j→∞�jµ = η, where J ⊂ N has Cesàro density one.

If (A,+) is a finite abelian group, then AM is a product group, and η is the Haar
measure. A linear cellular automaton (LCA) is a CA � with a finite subset F ⊂ M
(with # (F) ≥ 2), and non-zero coefficients ϕf ∈ Z (for all f ∈ F) so that, for any a ∈ AM,

�(a) =
∑
f∈F

ϕf · σ f(a). (1)

LCA are known to asymptotically randomize a wide variety of measures [MHM03,
MM98, MM99, Lin84, FMMN00], including those satisfying a correlation-decay
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condition called harmonic mixing [PY02, PY04, MMPY06]. However, all known
sufficient conditions for asymptotic randomization (and for harmonic mixing, in particular)
require µ to have full support, i.e. supp(µ) = AM.

Here we investigate asymptotic randomization when supp(µ) � AM. In particular, we
consider the case when supp(µ) is a sofic shift or subshift of finite type. In §1, we let
A = Z/p (p prime), and demonstrate asymptotic randomization for any Markov random
field that is locally free, a much weaker assumption than full support. However, in §2 we
show that harmonic mixing is a rather restrictive condition, by exhibiting a measure whose
support is a mixing sofic shift but which is not harmonically mixing.

Thus, in §3, we introduce the less restrictive concept of dispersion mixing (for measures)
and the dual concept of dispersion (for LCA), and state our main result: any dispersive
LCA asymptotically randomizes any dispersion mixing measure. In §4, we let A = (Z/p)s
(p prime, s ∈ N) and introduce bipartite LCA, a broad class exemplified by the automaton
1+ σ . We then show that any bipartite LCA is dispersive.

In §5, we show that any uniformly mixing and harmonically bounded measure is
dispersion mixing. In particular, in §6, we show that this implies that any mixing
Markov measure (supported on a subshift of finite type), and any continuous factor of
a mixing Markov measure (supported on a sofic shift) is dispersion mixing and, thus,
is asymptotically randomized by any dispersive LCA (e.g. 1 + σ ). Thus, the example
of §2 is asymptotically randomized, even though it is not harmonically mixing.

In §7, we refine the results of §§3 and 4 by introducing Lucas mixing (a weaker
condition than dispersion mixing). When A = (Z/p)s , we show that a measure is
asymptotically randomized by the automaton 1 + σ if and only if it is Lucas mixing.
Finally, in §8, we use Lucas mixing to construct a class of zero-entropy measures which are
asymptotically randomized by 1+ σ , thereby refuting the conjecture that positive entropy
is necessary for asymptotic randomization.

Preliminaries and notation. Throughout, (A,+) is an abelian group (usually A =
(Z/p)s , where p is prime and s ∈ N). Elements of AM are denoted by boldfaced letters
(e.g. a, b, c), and subsets by gothic letters (e.g. A, B, C). Elements of M are sans serif
(e.g. l, m, n) and subsets are U,V,W.

If U ⊂ M and a ∈ AM, then aU := [au|u∈U] is the ‘restriction’ of a to an element
of AU. For any b ∈ AU, let [b] := {c ∈ AM; cU = b} be the corresponding cylinder set.
In particular, if a ∈ AM, then [aU] := {c ∈ AM; cU = aU}.

Measures. Let M(AM) be the set of Borel probability measures on AM. Ifµ ∈M(AM)
and I ⊂ M, then let µI ∈M(AI) be the marginal projection of µ onto AI. If J ⊂ M and
b ∈ AJ, then let µ(b) ∈ M(AM) be the conditional probability measure in the cylinder
set [b]. In other words, for any X ⊂ AM, µ(b)[X] := µ(X ∩ [b])/µ[b]. In particular,
if I ⊂ M is finite, then µ(b)

I
∈ M(AM) is the conditional probability measure on the I

coordinates: for any c ∈ AI, µ(b)
I
[c] := µ([c] ∩ [b])/µ[b].
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Subshifts. A subshift [Kit98, LM95] is a closed, shift-invariant subset X ⊂ AM.
If U ⊂ M, then let XU := {xU; x ∈ X} be all admissible U-blocks in X. If U ⊂ M
is finite, and W = {w1, . . . ,wN } ⊂ AU is a collection of admissible blocks, then the
induced subshift of finite type (SFT) is the largest subshift X ⊂ AM such that XU = W.
In other words, X := ⋂m∈M σm[W], where [W] := {a ∈ AM; aU ∈W}. A sofic shift is
the image of an SFT under a block map.

In particular, if M = Z and U = {0, 1}, then X is called a topological Markov shift, and
the transition matrix of X is the matrix P = [pab]a,b∈A, where pab = 1 if [ab] ∈ W, and
pab = 0 if [ab] �∈W.

Characters. Let T1 ⊂ C be the circle group. A character of AM is a continuous
homomorphism χ : AM−→T1; the group of such characters is denoted by ÂM. For any
χ ∈ ÂM there is a finite subset K ⊂ M, and non-trivial χk ∈ Â for all k ∈ K, such that,
for any a ∈ AM, χ(a) = ∏k∈K χk(ak). We indicate this by writing ‘χ = ⊗k∈K χk’.
The rank of χ is the cardinality of K.

Cesàro density. If �, n ∈ Z, then let [� . . . n) := {m ∈ Z; � ≤ m < n}. If J ⊂ N, then the
Cesàro density of J is defined as

density (J) := lim
N→∞

1

N
# (J ∩ [0 . . .N)).

If J,K ⊂ N, then their relative Cesàro density is defined as

rel density[J/K] := lim
N→∞

# (J ∩ [0 . . .N))
# (K ∩ [0 . . .N)) .

In particular, density (J) = rel density[J/N].

1. Harmonic mixing of Markov random fields
Let B ⊂ M be a finite subset, symmetric under multiplication by −1 (usually, B =
{−1, 0, 1}D). For any U ⊂M, we define

cl(U) := {u+ b; u ∈ U and b ∈ B} and ∂U := cl(U) \ U.

For example, if M = Z and B = {−1, 0, 1}, then ∂{0} = {±1}.
Let µ ∈ M(AM). Suppose U ⊂ M, and let V := ∂U and W = M \ cl(U).

If b ∈ AV, then we say that b isolates U from W if the conditional measure µ(b)

is a product of µ(b)
U

and µ(b)
W

. That is, for any U ⊂ AU and W ⊂ AW, we have

µ(b)(U ∩W) = µ(b)
U
(U) · µ(b)

W
(W).

We say that µ is a Markov random field [Bré99, KS80] with interaction range B
(or write ‘µ is a B-MRF’) if, for any U ⊂ M with V = ∂U and W = M \ cl(U), any
choice of b ∈ AV isolates U from W.

For example, if M = Z and B = {−1, 0, 1}, then µ is a B-MRF iff µ is a (one-step)
Markov chain. If B = [−N . . .N], then µ is a B-MRF iff µ is an N-step Markov chain.

LEMMA 1.1. If µ is a Markov random field, then supp(µ) is a subshift of finite type.
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For example, if µ is a Markov chain on AZ, then supp(µ) is a topological Markov shift.
Let B ⊂ M, and let µ ∈ M(AM) be B-MRF. Let S := B \ {0}. For any b ∈ AS,

let µ(b)0 ∈M(A) be the conditional probability measure on the zeroth coordinate. We say

that µ is locally free if, for any b ∈ AS, # (supp(µ(b)0 )) ≥ 2.

Example. If D = 1, then B = {−1, 0, 1}, S = {±1}, and µ is a Markov chain.
Thus, supp(µ) is a topological Markov shift, with transition matrix P = [pab]a,b∈A.
For any a, b ∈ A, write a � b if pab = 1, and define the follower and predecessor
sets

F(a) := {b ∈ A; a � b} and P(b) := {a ∈ A; a � b}.
It is easy to show that the following are equivalent:
(1) µ is locally free;
(2) every entry of P2 is 2 or larger;
(3) for any a, b ∈ A, # (F(a) ∩ P(b)) ≥ 2.

Recall that Â is the dual group of A. For any χ ∈ Â and ν ∈ M(A), let 〈χ, ν〉 :=∑
a∈A χ(a) · ν{a}. It is easy to check the following.

LEMMA 1.2. Let p be prime and A = Z/p. If µ is a locally free MRF on AM, then there

is some c < 1 such that, for all non-trivial χ ∈ Â and any b∈ AS, |〈χ,µ(b)0 〉| ≤ c.
For any χ ∈ ÂM and µ ∈ M(AM), define 〈χ , µ〉 := ∫AM χ(a) dµ[a]. A measure µ

is called harmonically mixing if, for any ε > 0, there is some R ∈ N such that, for any
χ ∈ ÂM,

(rank [χ ] > R) �⇒ (|〈χ , µ〉| < ε).

The significance of this is the following [PY02, Theorem 12].

THEOREM A. Let A = Z/p, where p is prime. Any LCA on AM asymptotically
randomizes any harmonically mixing measure.

Most MRFs with full support are harmonically mixing [PY04, Theorem 15]. We now
extend this.

THEOREM 1.3. Let A = Z/p, where p is prime. Any locally free MRF on AM is
harmonically mixing.

Proof. Let µ be a locally free B-MRF. A subset I ⊂M is B-separated if (i− j) �∈ B for all
i, j ∈ I with i �= j. Let K ⊂M be finite, and let χ :=⊗k∈K χk be a character of AM.

Claim 1. Let K := # (K)= rank [χ ], and let B := max {|b1 − b2|; b1,b2 ∈ B}.
There exists a B-separated subset I ⊂ K such that

# (I) = I ≥ K

BD
. (2)

Proof. Let B̃ := [0 . . . B)D be a box of sidelength B. Cover K with disjoint translated
copies of B̃, so that

K ⊂
⊔
i∈I
(B̃+ i)

for some set I ⊂ K. Thus, |i − j| ≥ B for any i, j ∈ I with i �= j, so (i − j) �∈ B.
Also, # (B̃) = BD , so each copy covers at most BD points in K. Thus, we require at least
K/BD copies to cover all of K. In other words, I ≥ K/BD . �
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Thus, χ = χI · χK\I, where χI(a) :=
∏

i∈I χi(ai) and χK\I(a) :=
∏

k∈K\I χk(ak).

Let J := (∂I) ∪ (K \ I); fix b ∈ AJ, and let µ(b)
I
∈ M(AI) be the corresponding

conditional probability measure. Since µ is a Markov random field, and the I coordinates
are ‘isolated’ from one another by J coordinates, it follows that µ(b)

I
is a product measure.

In other words, for any a ∈ AI,
µ
(b)
I
[a] =
∏
i∈I
µ
(b)
i {ai}. (3)

Thus, the conditional expectation of χI is given as

〈χI, µ(b)I 〉 =
∑

a∈AI
µ
(b)
I
[a] ·
(∏

i∈I
χi(ai)

)
=
(∗)

∑
a∈AI

(∏
i∈I
µ
(b)
i {ai} · χi(ai)

)
=
∏
i∈I

(∑
ai∈A

µ(b){ai} · χi(ai)

)
=
∏
i∈I
〈χi, µ

(b)
i 〉,

where (∗) is by equation (3). Thus, 〈χ , µ(b)〉 = χK\I(b) · 〈χI, µ(b)I 〉 = χK\I(b) ·∏
i∈I 〈χi, µ

(b)
i 〉. Thus, if I = # (I), then

|〈χ , µ(b)〉| = |χK\I(b)| ·
∏
i∈I
|〈χi, µ

(b)
i 〉| ≤ 1 · cI (4)

where the last step follows from Lemma 1.2. However, 〈χ , µ〉 =∑b∈AJ µ[b] · 〈χ , µ(b)〉,
so

|〈χ , µ〉| ≤
∑

b∈AJ
µ[b] · |〈χ , µ(b)〉| ≤

(∗)

∑
b∈AJ

µ[b] · cI = cI ≤
(†)
cK/(B

D) −−−−→
K→∞ 0.

Here (∗) is by equation (4) and (†) is by equation (2). �

2. The even shift is not harmonically mixing
We will now construct a measure ν, supported on a sofic shift, which is not harmonically
mixing. Nonetheless, we will show in §§3–5 that this measure is asymptotically
randomized by many LCA.

Let X ⊂ (Z/3)Z be the subshift of finite type defined by the transition matrix

A =
1 0 1

1 0 1
0 1 0

 where for all i, j ∈ Z/3, aij =
{

1 if j � i is allowed,

0 if j � i is not allowed.

Let � : X → (Z/2)Z be the factor map of radius 0 which sends 0 into 0 and both 1 and 2
to 1. Then S := �(X) is Weiss’s even sofic shift: if s ∈ S, then there are an even number
of 1s between any two occurrences of 0 in s.

For any N ∈ N, and i, j ∈ Z/3, let XNij := {x ∈ X; x0 = i, xN = j }, and let

EN :=
{

s ∈ S ;
N∑
n=0

sn is even

}
and ON :=

{
s ∈ S ;

N∑
n=0

sn is odd

}
.
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LEMMA 2.1. For all i, j ∈ Z/3, either�(XNi,j ) ⊂ EN or �(XNi,j ) ⊂ ON . In particular,

�(XN0,0 � XN1,2 � XN2,1 � XN0,2 � XN1,0) = EN and �(XN1,1 � XN0,1 � XN2,0 � XN2,2) = ON.

Proof. Let x ∈ XNij , and s := �(x). Note that if k < k∗ are any two values such

that xk = 0 = xk∗ , then
∑k∗
n=k sn is even. In particular, let k be the first element of

[0 . . .N] where xk = 0, and let k∗ be the last element of [0 . . .N] where xk∗ = 0.
Thus,
∑k∗
n=k sn ≡ 0 (mod 2), so that

∑N
n=0 sn ≡

∑k−1
n=0 sn +

∑N
n=k∗+1 sn (mod 2).

However, since xk−1 �= 0 �= xk∗+1 by construction, the definition of X forces xk−1 = 2
and xk∗+1 = 1. Thus, the parity of

∑k−1
n=0 sn depends only on the value of x0 = i. Similarly

the parity of
∑N
n=k∗+1 sn depends only on xN = j . �

Let µ ∈M[X] be a mixing Markov measure on X, with transition matrix P and Perron
measure ρ = (ρ0, ρ1, ρ2) ∈ M[Z/3]. Let ν := �µ ∈ M[S], so that if U ⊂ S is
measurable, then ν[U] := µ[�−1(U)].

For all N ∈ N, define a character χN by χN(x) := ∏Nn=0(−1)xn for all x ∈ (Z/2)Z.
Then Lemma 2.1 implies

〈χN, ν〉 = ν(EN)− ν(ON)

= µ(XN0,0 � XN1,2 � XN2,1 � XN0,2 � XN1,0)− ν(XN1,1 � XN0,1 � XN2,0 � XN2,2).

However, µ is mixing, so limN→∞ µ(XNi,j ) = ρi · ρj . Thus, limN→∞ 〈χN, ν〉 =
ρ2

0 + 2ρ1ρ2 − ρ2
1 − ρ2

2 . So, for example, if

P =


1
2 0 1

2
1
2 0 1

2

0 1 0


with Perron measure ρ = ( 2

5 ,
1
5 ,

2
5 ), then limN→∞ 〈χN, ν〉 �= 0. Clearly, rank [χN ] = N ,

so that limN→∞ rank [χN ] = ∞. Thus, ν is not harmonically mixing.

3. Dispersion mixing
The example from §2 suggests the need for an asymptotic randomization condition
on measures that is less restrictive than harmonic mixing. In this section, we define
the concepts of dispersion mixing (DM) (for measures) and dispersion (for automata)
which together yield asymptotic randomization. In §4 we will show that many LCA
are dispersive. In §§5 and 6 we will show that many measures (including the even shift
measure ν from §2) are DM.

Let � be an LCA as in (1). The advantage of this ‘polynomial’ notation is that
composition of two LCA corresponds to multiplication of their respective polynomials.
For example, suppose A = (Z/p)s , where p ∈ N is prime, and s ∈ N. Suppose M = Z
and � = 1 + σ ; that is, �(a)0 = a0 + a1 (mod p). Then the binomial theorem implies
that

for any N ∈ N, �N =
N∑
n=0

[
N

n

]
p

σn, where

[
N

n

]
p

:=
(
N

n

)
mod p. (5)
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Let S > 0, and let K, J ⊂M be subsets. We say that K and J are S-separated if

min {|k− j|; k ∈ K and j ∈ J} ≥ S.
If F,G ⊂M, and� =∑f∈F ϕf ·σ f and� =∑g∈G γg ·σ g are two LCA, then we say� and
� are S-separated if F and G are S-separated. Likewise, if K,X ⊂M, and χ =⊗k∈K χk

and ξ =⊗x∈X ξx are two characters, then we say that χ and ξ are S-separated if K and X
are S-separated.

If � = ∑f∈F ϕf · σ f is an LCA, then let rankS(�) be the maximum number of
S-separated LCA which can be summed to yield �. That is:

rankS(�) := max {R; ∃�1, . . . ,�R mutually S-separated, with � = �1 + · · · +�R}.
For example, if

� = 1+ σ 5 + σ 6 + σ 11 + σ 12 + σ 13,

then rank4(�) = 3, because� = �1 +�2 +�3, where

�1 = 1, �2 = σ 5 + σ 6 and �3 = σ 11 + σ 12 + σ 13.

On the other hand, clearly rank1(�) = 6, while rank7(�) = 1.
Likewise, if χ =⊗k∈K χk is a character, and S > 0, then we define

rankS(χ) := max {R; ∃χ1, . . . ,χR mutually S-separated, withχ = χ1 ⊗ · · · ⊗ χR}.
(In the notation of §1, rank [χ ] = rank1(χ).)

We say that µ is DM if, for every ε > 0, there exist S,R > 0 such that, for any
character χ ∈ ÂM, (rankS(χ) > R) �⇒ (|〈χ , µ〉| < ε). Note that DM is less restrictive
than harmonic mixing.

If � is an LCA and χ is a character, then χ ◦ � is also a character. We say that �
is dispersive if, for any S > 0, and any character χ ∈ ÂM, there is a subset J ⊂ N of
density 1 such that limJ�j→∞ rankS(χ ◦�j) = ∞. We have the following.

THEOREM 3.1. Let A be any finite abelian group. If� : AM−→AM is a dispersive LCA
and µ ∈M(AM) is DM, then� asymptotically randomizes µ. �

Theorem 3.1 is an immediate consequence of an easily verified lemma.

LEMMA 3.2. � asymptotically randomizes µ if and only if, for all χ ∈ ÂM, there is a
subset J ⊂ N with density (J) = 1, such that limJ�j→∞ |〈χ ◦�j,µ〉| = 0.

Proof. See the proof of Theorem 12 in [PY02]. �

4. Dispersion and bipartite CA
If m = (m1,m2, . . . ,mD) ∈ M, then let |m| := |m1| + |m2| + · · · + |mD|. If
� =∑g∈G γg · σ g is an LCA, then define diam[�] := max {|g− h|; g,h ∈ G}.

The centre of � is the centroid of G (as a subset of Rn):

centre(�) := 1

# (G)

∑
g∈G

g.
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We say � is centred if |centre(�)| < 1. For any prime p ∈ N, let

Kp := min

{
1

2
,

4p − 7

4p + 4

}
.

Thus,K2 = 1
12 , K3 = 5

16 , andKp = 1
2 , for p ≥ 5.

Let A := (Z/p)s (where p is prime and s ∈ N). If � : AM−→AM is an LCA, then
we say � is bipartite if � = 1 + � ◦ σ f, where � is centred and diam[�] ≤ Kp · |f|.
For example:

� = 1+ σ f is bipartite for any non-zero f ∈M and any prime p ∈ N;
� = 1+ σ 12 + σ 13 = 1+ (1+ σ ) ◦ σ 12 is bipartite for any prime p ∈ N;
� = 1+ σ 14 + σ 19 = 1+ (σ−2 + σ 3) ◦ σ 16 is bipartite for any prime p ≥ 3;
� = 1+ σ 2 + σ 3 = 1+ (1+ σ ) ◦ σ 2 is bipartite for any prime p ≥ 5.

Our goal in this section is to prove the following theorem.

THEOREM 4.1. Let A = (Z/p)s , where p prime and s ∈ N. If � is bipartite, then � is
dispersive. �

For any N ∈ N, let [N(i)|∞i=0] denote the p-ary expansion of N , so that N =∑∞
i=0N

(i)pi . Let L(N) := {n ∈ [0 . . .N]; n(i) ≤ N(i), for all i ∈ N}.
LEMMA 4.2. (Lucas’s theorem) We have the following.

(a)
[
N
n

]
p
=∏∞i=0

[
N(i)

n(i)

]
p

, where we define
[
N(i)

n(i)

]
p
:= 0 if n(i) > N(i), and

[0
0

]
p
:= 1.

(b) Thus,
[
N
n

]
p
�= 0 if and only if n ∈ L(N).

For example, suppose M = Z and � = 1 + σ . If we interpret (5) in the light of
Lemma 4.2, we get

�N =
∑

n∈L(N)

[
N

n

]
p

σn.

LEMMA 4.3. Let r,H ∈ N.
(a) If M < pr , and N = M + pr ·H , then L(N) = L(M)+ pr · L(H) (see Figure 1).
(b) If m ∈ L(M), h ∈ L(H), and n = m+ pr · h, then[

N

n

]
p

=
[
M

m

]
p

·
[
H

h

]
p

.

For example, suppose p = 2 and N = 53 = 5+ 48 = 5+ 24 · 3. ThenM = 5, r = 4,
and H = 3, and

L(53) = L(5)+ 24 · L(3) = {0, 1, 4, 5} + 16 · {0, 1, 2, 3}
= {0, 1, 4, 5, 16, 17, 20, 21, 32, 33, 37, 38, 48, 49, 52, 53}.

If χ =⊗k∈K χk is a character, then define diam[χ ] := max {|k− j|; k, j ∈ K}. Then we
have the following.

LEMMA 4.4. Let � be an LCA, and let S > 0.
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L(H)

L(H)

L(N)

L(M) p
r

FIGURE 1. Lemma 4.3.

(a) If χ is a character, and S0 = S + diam[χ ], then rankS(χ ◦�) ≥ rankS0(�).
(b) If � is an LCA, and S0 = S + diam[�], then rankS(� ◦�) ≥ rankS0(�).

COROLLARY 4.5. The LCA� is dispersive if and only if, for any S0 > 0, there is a subset
J ⊂ N of density 1 such that limJ�j→∞ rankS0(�

j ) = ∞.

To prove Theorem 4.1, we use Lemma 4.3 to verify the condition of Corollary 4.5.
For any S0 > 0, define

J(S0) := {N ∈ N;N = MN+prNHN, for some HN, rN > 0 such that MN, S0<p
rN−1}.

For example, if p = 2 and S0 = 7, then 53 ∈ J(7), because 53 = 5 + 24 · 3, so that
M53 = 5, r53 = 4, and H53 = 3. Thus, 2r53−1 = 23 = 8, and 7 < 8 and 5 < 8. Note that
53 = 20 + 22 + 24 + 25; thus, 53(3) = 0. This is exactly why 53 ∈ J(7).

LEMMA 4.6. We have

J(S0) = {N ∈ N;N ≥ p · S0, and N(r) = 0 for some r ∈ (logp(S0) . . . logp(N)]}.

Proof. Suppose that N = MN + prNHN , for some HN, rN > 0 and MN ≥ 0, such that
MN, S0 < prN−1. Let r := rN − 1; then N(r) = 0 and logp(S0) < r < logp(N).

Conversely, suppose N(r) = 0, where logp(S0) < r < logp(N). Let rN := r + 1; then

S0 < pr = prN−1. Let MN := ∑r−1
i=0 N

(i)pi ; then MN < pr = prN−1 also. Now let
HN :=∑∞i=rN N(i)pi−rN ; then N = MN + prNHN . �

LEMMA 4.7. We have density (J(S0)) = 1.

Proof. Let I := [pS0 . . .∞]. Then I is a set of density one, and Lemma 4.6 implies that

I \ J(S0) = {N ∈ I;N(r) �= 0 for all r ∈ (logp(S0) . . . logp(N)]},

which is a set of density zero. It follows that density (J(S0)) = density (I) = 1. �

LEMMA 4.8. IfN ∈ J(S0), andN = M+prH , then�N = �M ◦�H , where� = �(pr).
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L(H)

prh1 prh2 prh3 prh4 prh5 prh6 prh7 prh8

L(H)pr

Γ Γ
Γ Γ Γprh3

prh6 prh7 prh8Γprh5

prh4 D prh5 D

prh4

w

pr w |f|

W   pr[w |f| -(h4+h5) D]

Γ
prh1

Γ
prh2

≥

FIGURE 2. Claim 1 of Theorem 4.1.

Proof. Recall that � = 1+ � ◦ σ f. Thus,

�N =
(L)

∑
n∈L(N)

[
N

n

]
p

(� ◦ σ f)n=
(‡)

∑
m∈L(M)

∑
h∈L(H)

[
H

h

]
p

[
M

m

]
p

(� ◦ σ f)(m+prh)

=
∑

h∈L(H)

[
H

h

]
p

( ∑
m∈L(M)

[
M

m

]
p

(
� ◦ σ f
)m)

◦ (� ◦ σ f)hp
r

=
(†)

∑
h∈L(H)

[
H

h

]
p

�M ◦ (� ◦ σ f)p
rh=

(�)
�M ◦�H.

Here (L) is by the Lucas theorem and (‡) is by Lemma 4.3(b), (†) is because �M =∑
m∈L(M)
[
M
m

]
p
(� ◦ σ f)m. Finally, (�) is because � = (1 + � ◦ σ f)p

r =
(L)

1 + (� ◦ σ f)p
r
.

Thus,

�H =
(L)

∑
h∈L(H)

[
H

h

]
p

(� ◦ σ f)p
rh.

�

Proof of Theorem 4.1. It suffices to verify the condition of Corollary 4.5. So, let S1 :=
S0 + diam[�M ]. Then

rankS0(�
N)=

(∗) rankS0(�
M ◦�H) ≥

(†)
rankS1(�

H) (6)

where (∗) is by Lemma 4.8 and (†) is by Lemma 4.4(b).
Thus, we want to show that rankS1(�

H) −−−−→
H→∞ ∞ for H in a set of density 1. To do

this, we use gaps in L(H). If h0, h1 ∈ L(H), we say that h0 and h1 bracket a gap if:

(i) h1 ≥ p · h0 and (ii) [h0 . . . h1) ∩ L(H) = ∅.

Claim 1. Let h0, h1 ∈ L(H), with p ≤ h0 < h1, and suppose h0 and h1 bracket a gap in
L(H). Then (� ◦ σ f)p

rh0 and (� ◦ σ f)p
rh1 are S1-separated.
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Proof. Suppose that |h0−h1| = w. Then (σ f)p
rh0 and (σ f)p

rh1 . are (pr ·w · |f|)-separated.
Thus, if D = diam[�], then (� ◦ σ f)p

rh0 and (� ◦ σ f)p
rh1 are W -separated, where

W := prw|f| − (diam[�prh0] + diam[�prh1]) = prw|f| − (prh0D + prh1D)

≥ pr · (w|f| −D · (h1 + h0)) (7)

(see Figure 2). We want W ≥ S1 or, equivalently, W − diam[�M ] ≥ S0 (because
S1 = S0 + diam[�M]). First, note that

diam[�M] ≤ M · |f| + 2 · max
m∈L(M)

diam[�m] = M · |f| + 2M ·D
= M · (|f| + 2D) ≤ pr−1 · (|f| + 2D). (8)

Thus,

W − diam[�M ] ≥
(∗)
pr · (w · |f| −D · (h1 + h0))− pr−1 · (|f| + 2D)

= pr−1 · (pw · |f| − pD · (h1 + h0)− |f| − 2D)

≥
(†)
S0 · (pw · |f| − pD · (h1 + h0)− |f| − 2D)

where (∗) is by (7) and (8), and (†) is because S0 < pr−1. Thus, it suffices to show that

pw · |f| − pD · (h1 + h0)− |f| − 2D ≥ 1.

To see this, observe that

pw · |f| − pD · (h1 + h0)− |f| − 2D

= (pw − 1) · |f| − [p · (h1 + h0)− 2] ·D
≥
(�)

(pw − 1) · |f| − [p · (h1 + h0)− 2] ·Kp · |f|
= (pw − 1− [p · (h1 + h0)− 2]Kp) · |f|
≥
(∗)
p · (h1 − h0)− 1− [p · (h1 + h0)− 2]Kp

= p · ((1−Kp) · h1 − (1+Kp) · h0)− (1+ 2 ·Kp)
≥
(†)
p · ((1−Kp) · p − (1+Kp)) · h0 − 2

≥
(‡)
p2 · ((1−Kp) · p − (1+Kp))− 2

≥
(�)

3

4
p2 − 2 ≥

(�)
3− 2 = 1.

Here (�) is by hypothesis that � is bipartite, (∗) is because |f| ≥ 1, and w = h1 − h0,

(†) is because h1 ≥ p · h0 and Kp ≤ 1
2 , (‡) is because h0 ≥ p,

(�) is because

Kp ≤ 4p − 7

4p + 4
= p − 7/4

p + 1
,

thus, (p + 1)Kp ≤ p − 7
4 = p − 1 − 3

4 , so, 3
4 ≤ (p − 1) − (p + 1)Kp =

(1−Kp)p − (1+Kp), and
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(�) is because p ≥ 2, so p2 ≥ 4. It follows thatW − diam[�M ] ≥ S0, so that W ≥ S1. �
Let rank [H ] := # of gaps in L(H). Then Claim 1 implies that

rankS1(�
H) ≥ rank [H ]. (9)

Thus, we want to show that the number of gaps is large.
Suppose that i < k. We say that i and k bracket a zero-block in the p-ary expansion

of H if H(i−1) �= 0 �= H(k), but H(j) = 0, for all i ≤ j < k. For example, suppose that
p = 2 and H = 19. Then 3 and 5 bracket a zero block in the binary expansion . . . 010011.

Claim 2. If i and k bracket a zero-block in the p-ary expansion of H , then pi and pj

bracket a gap in L(H).

Proof. H(i) = 0, so the largest element in L(H) less than pi is

h0 =
i−1∑
j=1

H(j) · pj ≤
i−1∑
j=1

(p − 1) · pj = pi − 1.

Now, k = min {j > i;H(j) �= 0}, so h1 = pk is the smallest element in L(H) greater
than pi . Also, h1 ≥ pi+1 > p · (pi − 1) ≥ p · h0. �

Let #ZB(H) := #of zero-blocks in the p-ary expansion of H . Then Claim 2 implies
that

rank [H ] ≥ #ZB(H). (10)

Define H := {H ∈ N; #ZB(H) ≥ 1/p3 logp(H)}.
Claim 3. We claim density (H) = 1.

Proof. Observe that #ZB(H) is no less than the number of occurrences of the word ‘101’
in the p-ary expansion ofH (because 101 is a zero-block). Let

H′ :=
{
H ∈ N ; (# of occurrences of ‘101’) ≥ 1

p3
logp(H)

}
.

Then H′ ⊂ H. The weak law of large numbers implies density (H′) = 1. �
Define J := {N ∈ J(S0);N = MN + prNHN,where rN ≤ 1

2 logp(N), and HN ∈ H}.
Claim 4. We claim density (J) = 1.

Proof. We have J = J1 ∩ J2, where

J1 := {N ∈ J(S0);N = MN + prNHN,where HN ∈ H} and

J2 := {N ∈ J(S0); N = MN + prNHN, where rN ≤ 1
2 logp(N)}.

Now, density (J1) = 1 by Lemma 4.7 and Claim 3. To see that density (J2) = 1, note that

J(S0) \ J2 ⊂ {N ∈ N;N(r) �= 0 for all r ∈ (logp(S0) . . .
1
2 logp(N)]},

which is a set of density zero. �
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If N = MN + prNHN is an element of J, then

logp(HN) ≥ logp(N)− rN ≥ logp(N)− 1
2 logp(N) = 1

2 logp(N). (11)

Thus,

rankS0(�
N) ≥

(♥)
rankS1(�

HN ) ≥
(♦)

rank [HN ] ≥
(♣)

#ZB(HN)

≥
(∗)

1

p3 logp(HN) ≥
(♠)

1

2p3 logp(N).

Here, (♥) is by equation (6), (♦) is by equation (9), (♣) is by equation (10), (♠) is by
equation (11), and (∗) is because H ∈ H by hypothesis. Thus,

lim
J�N→∞

rankS0(�
N) ≥ 1

2p3 lim
J�N→∞

logp(N) = ∞.
�

5. Uniform mixing and DM
A measure µ ∈ M(AZ) is uniformly mixing if, for any ε > 0, there is some M > 0 so
that, for any cylinder subsets L ⊂ A(−∞...0] and R ⊂ A[0...∞), and any m > M ,

µ[σm(L) ∩R]
ε̃
µ[L] · µ[R] (12)

(here ‘x
ε̃
y’ means that |x − y| < ε).

Example 5.1.
(a) Any mixing N-step Markov chain is uniformly mixing (see §6).
(b) If ν ∈ M(BZ) is uniformly mixing, and � : BZ−→AZ is a block map, then

µ := �(ν) is also uniformly mixing. (If � has local map ψ : B[−�...r]−→A, then
replace the M in (12) with M + �+ r + 1.)

(c) Hence, if F ⊂ BZ is an SFT, and S := �(F) ⊂ AZ a sofic shift, and ν ∈M(F) is
any mixing N-step Markov chain, then µ := �(ν) is a uniformly mixing measure
on S. We call µ a quasi-Markov measure.

We say that µ is harmonically bounded (HB) if there is some C < 1 so that |〈χ , µ〉|
< C for all χ ∈ ÂZ except χ = 11. The goal of this section is to prove the following
theorem.

THEOREM 5.2. Let A be a finite abelian group. If µ ∈M(AZ) is uniformly mixing and
harmonically bounded, then µ is dispersion mixing.

We will then apply Theorem 5.2 to get the following.

COROLLARY 5.3. Let A = Z/p, where p is prime. If µ ∈ M(AZ) is a mixing quasi-
Markov measure, then µ is asymptotically randomized by any dispersive LCA.

Harmonic boundedness and entropy.

LEMMA 5.4. Let A = (Z/p)s , where p is prime and s ∈ N. If µ ∈ M(AZ) and
h(µ, σ ) > (s − 1) · log2(p), then µ is harmonically bounded.
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Proof. Suppose that µ was not HB. Then for any α > 0, we can find 11 �= χ ∈ ÂZ with
|〈χ , µ〉| > 1− α. Let I := image(χ) ⊂ T1, and let ν := χ(µ) ∈M(I) be the projected
measure on I. Thus, 〈χ , µ〉 =∑i∈I i · ν{i}. The following four claims are easy to check.

Claim 1. For any β > 0, there exists α > 0 such that, for any probability measure
ν ∈M(I) with |∑i∈I i · ν{i}| > 1− α, there is some i0 ∈ I with ν{i0} > 1− β. �

Suppose that χ = ⊗k∈K χk, where K ⊂ [0 . . .K] and K ∈ K. Thus, if ξ :=⊗
k∈K\{K} χk , then χ = ξ ⊗ χK . For any b ∈ A[0...K), let µ(b)K be the conditional measure

on the Kth coordinate, and let ν(b)K := χK(µ(b)K ) ∈M(I) be the projected measure on I.

Claim 2. For any γ > 0, there exists β > 0 such that, if there exists i0 ∈ I with
ν{i0} > 1 − β, then there is a subset B ⊂ A[0...K) with µ[B] > 1 − γ , such that, for
every b ∈ B, there is some ib ∈ I with ν(b)K {ib} > 1 − γ . Thus, if Pb = χ−1

K {ib} ⊂ A,

then µ(b)K [Pb] > 1− γ . (Observe that # (Pb) ≤ ps−1 for all b ∈ A[0...K).) �
For any measure ρ ∈ M(A), define H(ρ) := −∑a∈A ρ{a} log2(ρ{a}). Recall (e.g.

[Pet89, Proposition 5.2.12]) that the σ -entropy of µ can be computed

h(µ, σ ) = lim
N→∞

∑
b∈A[0...N)

µ[b] ·H(µ(b)N ). (13)

Claim 3. For any δ > 0, there exists γ1 > 0 such that, for any probability measure
ρ on A, if there is a subset P ⊂ A with # (P) ≤ ps−1 and ρ[P] > 1 − γ1, then
H(ρ) < (s − 1) · log2(p)+ δ. �
Claim 4. For any ε > 0, and S > 0, there exist δ, γ2 > 0 such that, for any K ∈ N and
probability measure µ on A[0...K], if there is a subset B ⊂ A[0...K) with µ[B] > 1 − γ2,
such that, for all b ∈ B, H(µ(b)K ) < S − δ, then

∑
b∈A[0...K) µ[b] ·H(µ(b)K ) < S − ε. �

Now, set S := (s − 1) · log2(p). For any ε > 0, find δ, γ2 > 0 as in Claim 4. Then find
γ1 > 0 as in Claim 3, and let γ := min{γ1, γ2}. Next, find β as in Claim 2 and then find α
as in Claim 1. Finally, find χ ∈ ÂZ with |〈χ , µ〉| > 1−α. It then follows from Claims 1–4
that
∑

b∈A[0...K) µ[b] · H(µ(b)N ) < (s − 1) · log2(p) − ε. However, the limit in (13) is a
decreasing limit, so we conclude that h(µ, σ ) < (s−1) · log2(p)− ε. Since this is true for
any ε > 0, we conclude that h(µ, σ ) ≤ (s − 1) · log2(p), contradicting our hypothesis. �

COROLLARY 5.5. If A = Z/p (where p prime) and h(µ, σ ) > 0, then µ is harmonically
bounded.

Say µ is uniformly multiply mixing if, for any ε > 0, there is some S > 0 such that,
for any R > 0, if K0,K1, . . . ,KR ⊂M are finite, mutually S-separated subsets of M, and
U0 ⊂ AK0, . . . ,UR ⊂ AKR are cylinder sets, then

µ

( R⋂
r=0

Ur

)
R̃ε

R∏
r=0

µ(Ur ). (14)

LEMMA 5.6. If µ ∈M(AZ) is uniformly mixing, then µ is uniformly multiply mixing.
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Proof (By induction on R). The case R = 1 is just uniform mixing. Suppose (14) is true
for all R′ < R. Find S > 0 so that, if K0, . . . ,KR are mutually S-separated, then

µ

( R⋂
r=0

Ur

)
= µ
(

U0 ∩
R⋂
r=1

Ur

)
ε̃
µ(U0) · µ

( R⋂
r=1

Ur

)
(̃R−1)ε

µ(U0) ·
R∏
r=1

µ(Ur),

where ‘
ε̃

’ comes by setting R′ = 1, and ‘
(̃R−1)ε

’ comes by setting R′ = R − 1. �

LEMMA 5.7. Suppose that µ ∈ M(AZ) is uniformly multiply mixing. For any ε > 0
and R ∈ N, there is some S > 0 so that if K0, . . . ,KR ⊂ Z are S-separated sets
and, for all r ∈ [0 . . . R], χr : AKr−→C are characters, and χ = ∏Rr=0 χr , then
〈χ , µ〉

ε̃/2

∏R
r=0 〈χr , µ〉.

Proof of Theorem 5.2. Let ε > 0. We want to find S > 0 and R > 0 such that, if χ is
any character, and rankS(χ) > R, then |〈χ , µ〉| < ε. Let C < 1 be the harmonic bound.
Find R ∈ N so that CR < ε/2.

Let S > 0 be as in Lemma 5.7. Suppose rankS(χ) > R, and let χ :=⊗R
r=0 χr , where

χr : AKr−→C are characters, and K0, . . . ,KR ⊂ Z are S-separated. Then Lemma 5.7
implies that

〈χ , µ〉
ε̃/2

R∏
r=0

〈χr , µ〉. (15)

By harmonic boundedness, we know |〈χr , µ〉| < C for all r ∈ [0 . . . R]. Thus, (15) implies

|〈χ , µ〉|
ε̃/2

R∏
r=0

|〈χr , µ〉| <
R∏
r=0

C = CR+1 < CR <
ε

2
.

�

Proof of Corollary 5.3. From Examples 5.1(a) and (b), we know µ is uniformly mixing.
Any mixing quasi-Markov measure has non-zero entropy, so Corollary 5.5 says that µ is
harmonically bounded. Theorem 5.2 says µ is dispersion mixing. Theorem 3.1 says µ is
asymptotically randomized by any dispersive CA.

6. Markov words
If m,n ∈ Z, and m ≤ n, let A[m...n) be the set of all words of the form a =
[am, am+1, . . . , an−1]. Let A∗ := ⋃−∞<m<n<∞A[m...n) be the set of all finite words.
Elements of A∗ are denoted by boldfaced letters (e.g. a, b, c), and subsets by gothic
letters (e.g. A, B, C). Concatenation of words is indicated by juxtaposition. Thus, if
a = [a0 . . . an] and b = [b0 . . . bm], then ab = [a0 . . . anb0 . . . bm]. If V > 0 and
v ∈ A[−V ...V ), we say that v is a Markov word for µ if (in the terminology of §1), v isolates
(−∞ . . .− V ) from [V . . .∞).
Example 6.1.
(a) If µ is an N-step Markov shift, and N ≤ 2V , then every v ∈ A[−V ...V ) is a Markov

word.
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(b) Let F ⊂ BZ be a subshift of finite type, let � : F−→AZ be a block map, so that
S := �(F) is a sofic shift. Let ν be a Markov measure on F and let µ := �(ν).
If s ∈ S[−V ...V ] is a synchronizing word for � , then s is a Markov word for µ.

PROPOSITION 6.2. If µ ∈M(AZ) is mixing and has a Markov word, then µ is uniformly
mixing.

Proof. Fix ε > 0. For any words a,b ∈ A∗, the mixing of µ implies that there is some
Mε(a,b) <∞ such that, for all m > Mε(a,b), µ(σm[a] ∩ [b])

ε̃
µ[a] · µ[b]. Our goal is

to find some M > 0 so that Mε(a,b) < M for all a,b ∈ A∗.
Let v ∈ A∗ be a Markov word for µ.

Claim 1. Let u,w,u′,w′ ∈ A∗, and consider the words uvw and u′vw′. We have
Mε(uvw,u′vw′) = Mε(vw,u′v).

Proof. Define transition probabilities µ(u ��� v) := µ(uv)/µ(v) and µ(v ��� w) :=
µ(vw)/µ(v). If m > Mε(vw,u′v), then

µ(σm[uvw] ∩ [u′vw′]) = µ(u ��� v) · µ(σm[vw] ∩ [u′v]) · µ(v ��� w′) (16)

ε̃
µ(u ��� v) · µ[vw] · µ[u′v] · µ(v ��� w′) (17)

= µ[uvw] · µ[u′vw′]. (18)

Equations (16) and (18) are because v is a Markov word; (17) is because m >

Mε(vw,u′v). �
If a ∈ A∗, we say that v occurs in a if a|[n−V ...n+V ) = v for some n.

Claim 2. There is some N > 0 such that µ{a ∈ A[0...N]; v occurs in a} > 1− ε.

Proof. By ergodicity, find N such that

µ

( N⋃
n=0

σn[v]
)
> 1− ε.

�
Let A∗v be the set of words (of length at least N) in A∗ with v occurring in the last (N +V )
coordinates, and let vA∗ be the set of all words in A∗ with v occurring in the first (N +V )
coordinates. Then Claim 2 implies that

µ(A∗v) > 1− ε and µ(vA∗) > 1− ε. (19)

Let A<N :=⋃Nn=1 A[0...n]. Then

A∗v = {uvw; u ∈ A∗ and w ∈ A<N } and

vA∗ = {u′vw′; u′ ∈ A<N and w′ ∈ A∗}. (20)

Define

M1 := max
a∈A∗v

max
b∈vA∗

Mε(a,b)=
(∗) max

u∈A∗
w∈A<N

max
u′∈A<N

w′∈A∗
Mε(uvw, u′vw′)

=
(†)

max
w,u′∈A<N

Mε(vw,u′v)
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where (∗) is by (20) and (†) is by Claim 1. Likewise, define

M2 := max
a∈A∗v

max
b∈A<N

Mε(a,b) = max
w∈A<N

max
b∈A<N

Mε(vw,b),

M3 := max
a∈A<N

max
b∈vA∗

Mε(a,b) = max
a∈A<N

max
u′∈A<N

Mε(a,u′v), and

M4 := max
a∈A<N

max
b∈A<N

Mε(a,b).

Thus, M1, . . . ,M4 each maximizes a finite collection of finite values, so each is finite.
Thus,M := max{M1, . . . ,M4} is finite.

Claim 3. For any a,b ∈ A∗, Mε(a,b) < M .

Proof. If a ∈ A<N ∪ A∗v and b ∈ A<N ∪v A∗, then Mε(a,b) < M by definition.
So, suppose a �∈ A<N ∪ A∗v. Then (19) implies that µ[a] < ε. Hence, for any m ∈ N,
µ(σm[a] ∩ b) < ε and µ[a] · µ[b] < ε. Thus, µ(σm[a] ∩ b)

ε̃
µ[a] · µ[b] automatically.

Hence,Mε(a,b) = 0 < M .
Likewise, if b �∈ A<N ∪v A∗, thenMε(a,b) = 0 < M . �
Thus, µ is uniformly mixing. �

COROLLARY 6.3. If µ is harmonically bounded, mixing and has a Markov word, then µ
is asymptotically randomized by � = 1+ σ .

Proof. Combine Proposition 6.2 with Theorems 3.1 and 5.2. �

7. Lucas mixing
Throughout this section, let D := 1, so that M = Z. Let A := (Z/p)s , where p ∈ N is
prime, and s ∈ N. Let � := 1 + σ . We will introduce a condition on µ which is weaker
than DM, and which is both sufficient and necessary for asymptotic randomization.

Let χ ∈ ÂZ, and suppose that χ =⊗k∈K χk. We define |[χ ]| := max(K)− min(K),
and define

〈〈χ〉〉 := pr where r := �logp |[χ ]|�.
It follows from Lucas’ theorem that �〈〈χ〉〉 = 1+ σ 〈〈χ〉〉. Thus, for any h ∈ N,

�h·〈〈χ〉〉 =
∑
�∈L(h)

[
h

�

]
p

σ 〈〈χ〉〉·� and, thus, χ ◦�h·〈〈χ〉〉 =
⊗
�∈L(h)

[
h

�

]
p

χ ◦ σ 〈〈χ〉〉·�.

Observe that K + pr� and K + pr�′ are disjoint for any � �= �′ ∈ L(h). Hence,
if L := # (L(h)), then χ ◦�h·〈〈χ〉〉 is a product of L ‘disjoint translates’ of χ .

If µ is a measure on AZ, we say that µ is Lucas mixing if, for any non-trivial
character χ ∈ ÂZ, there is a subset H ⊂ N of Cesàro density one such that
limH�h→∞ 〈χ ◦�h·〈〈χ〉〉, µ〉 = 0.

Our goal in this section is to prove the following.

THEOREM 7.1. We have

(� = 1+ σ asymptotically randomizes µ) ⇐⇒ (µ is Lucas mixing).
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It is relatively easy to see that the following holds.

LEMMA 7.2. If µ is DM, then µ is Lucas mixing.

Thus, the ‘⇐�’ direction of Theorem‘7.1 is an extension of Theorem 3.1, in the case
� = 1+ σ . The ‘�⇒’ direction makes this the strongest possible extension for this LCA.

Set S := |[χ ]|, and let J̃ := J(S), where J(S) is defined as in §4. It follows from
Lemma 4.7 that density (̃J) = 1. For any m ∈ N, let χm := χ ◦�m.

LEMMA 7.3. Let j ∈ J̃, with j = m + pr · h. Then χ ◦ �j = χm ◦ �h′·〈〈χm〉〉, where
h′ = ps · h for some s ≥ 0.

Proof. Apply Lemma 4.8 to observe that �j = �m ◦�h·(pr ). Thus,

χ ◦�j = χ ◦�m ◦�h·(pr) = χm ◦�h·(pr).
By definition, r is such that m < pr−1 and |[χ ]| < pr−1. Thus,

|[χm]| = |[χ ]| +m < pr−1 + pr−1 ≤ pr .
Now, let s := r − logp |[χm]|, and let h′ := ps · h. Then h · (pr) = h′ · 〈〈χm〉〉, so that

�h·(pr) = �h′·〈〈χm〉〉. �

Proof of Theorem 7.1. We use Lemma 3.2.

‘⇐�’ For any m ∈ N, let r(m) := �logp(max{m, |[χ ]|})� + 1, and define

J̃m := {m+ pr(m)h; h ∈ N}. (21)

It follows that
J̃ =
⋃
m∈N

J̃m. (22)

If j = m + pr(m)h is an element of J̃m, then Lemma 7.3 says χ ◦ �j = χm ◦ �h′·〈〈χm〉〉,
for some h′ ≥ h. Now, µ is Lucas mixing, so find a subset H̃m ⊂ N of density one with
lim
H̃m�h→∞ 〈χm ◦�h·〈〈χ

m〉〉, µ〉 = 0. Define

Hm :=
{
h ∈ H̃m; |〈χm ◦�h·〈〈χm〉〉, µ〉| ≤ 1

m

}
,

Jm := {m+ pr(m)h; h ∈ Hm}, and (23)

J :=
⋃
m∈N

Jm. (24)

Claim 1. We claim that density (J) = 1.

Proof. For any m ∈ N, there is some K such that Hm = H̃m ∩ [K . . .∞).
Thus, rel density[Hm/H̃m] = 1. Thus, density (Hm) = density (H̃m) = 1.
Compare (21) and (23) to see that rel density[Jm/̃Jm] = 1. Then compare (22) and (24)
to see that rel density[J/̃J] = 1. Thus, density (J) = density (̃J) = 1. �
Claim 2. We claim that limJ�j→∞ 〈χ ◦�j ,µ〉 = 0.
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Proof. Fix ε > 0. Let M be large enough that 1/M < ε. For all m ∈ N with
m < M , find Hm such that, if h ∈ H̃m and h > Hm, then |〈χm ◦�h·〈〈χm〉〉, µ〉| < ε.
Let Jm := m + 2r(m) · Hm. Thus, if j = m+ 2r(m) · h is an element of Jm, and j > Jm,
then we must have h > Hm, so that |〈χ ◦�j,µ〉| = |〈χm ◦�h·〈〈χm〉〉, µ〉| < ε.

Now let J := max1≤m≤M Jm. Thus, for all j ∈ J, if j > J , then either j ∈ Jm for
some m ≤ M , in which case |〈χ ◦�j,µ〉| < ε by construction of J , or j ∈ Jm for some
m > M , in which case

|〈χ ◦�j,µ〉| <
(∗)

1

m
<

1

M
<
(†)
ε.

Here, (∗) follows by the definition of Hm, and (†) follows by the definition of M . �
Lemma 3.2 and Claims 1 and 2 imply that � asymptotically randomizes µ.
‘�⇒’ Suppose that µ was not weakly harmonically mixing. Thus, there is

some χ ∈ ÂZ and some subset H ⊂ N of density δ > 0 such that
lim supH�h→∞ |〈χ ◦�h·〈〈χ〉〉, µ〉| > 0. However, χ ◦ �h·〈〈χ〉〉 = χ ◦ �pr ·h (where r =
�logp |[χ ]|�). Hence, if J := pr · H, then density (J) = p−r · δ > 0, and
lim supJ�j→∞ |〈χ ◦�j,µ〉| = lim supH�h→∞ |〈χ ◦�h·〈〈χ〉〉, µ〉| > 0. However, then
Lemma 3.2 implies that � cannot randomize µ. �

8. Randomization of zero-entropy measures
Of the probability measures which are asymptotically randomized by LCA, every known
example has positive entropy. However, we will show that positive entropy is not necessary,
by constructing a class of zero-entropy measures which are Lucas mixing and, thus
(by Theorem 7.1), randomized by � = 1+ σ .

For both efficiency and lucidity, we will employ probabilistic language. Let (�,B, ρ)
be an abstract probability space (called the sample space). If (X,X ) is any measurable
space, then an (X-valued) random variable is a measurable function f : �−→X.
In particular, a random sequence is a measurable function a : �−→AZ. By convention,
we suppress the argument of random variables. Thus, if a,b, c are random sequences, then
the equation ‘a+ b = c’ means ‘a(ω)+ b(ω) = c(ω), for ρ-almost all ω ∈ �’.

If f : �−→X is a random variable, and U ⊂ X, then ‘Prob[f ∈ U]’ denotes
ρ[f−1(U)]. If g : �−→Y is another random variable, then f and g are independent
if, for any measurable U ⊂ X and V ⊂ Y, Prob[f ∈ U and g ∈ V] = Prob[f ∈ U]
·Prob[g ∈ V] i.e. ρ[f−1(U)∩g−1(V)] = ρ[f−1(U)]·ρ[g−1(V)]. The distribution of f is
the probability measure µ := f (ρ) on (X,X ); we then say that f is a µ-random variable.
Thus, every random variable determines a probability measure on its range. However,
given a measure µ, we can construct infinitely many independent µ-random variables.

Let A := Z/2 and µ ∈ M(AZ), and consider a µ-random sequence a ∈ AZ.
We say µ has independent random dyadic increments (IRDI) if, for any n ∈ N, and
all m ∈ [1 . . .2n], am+2n = am + dnm, where dn1 , . . . , d

n
2n are independent A-valued

random variables. If dn1 , . . . , d
n
2n have distributions δn1 , . . . , δ

n
2n , then µ has lower decay

rate α ∈ (0, 1) if there is some L > 0 such that, for all n ≥ L, and all m ∈ [1 . . .2n],
αn ≤ δnm{1}.
PROPOSITION 8.1. If µ has IRDI with lower decay rate α > 1/

√
2, then µ is Lucas

mixing.
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Proof. Let χ ∈ ÂZ be a non-trivial character. We seek H ⊂ N with density (H) = 1, such
that limH�h→∞ 〈χ ◦�h·〈〈χ〉〉, µ〉 = 0.

If n ∈ N, let I = I (n) := �log2(n)�, and suppose that n has binary expansion {n(i)}Ii=0.
Let I(n) := {j ∈ [0 . . . I ]; n(j) = 1}. Let ε > 0 be small, and define

H := {h ∈ N; # (I(h)) ≥ 1
2I (h)− ε}.

Then density (H) = 1. Suppose that n ∈ H is large; let I := I(n) and I := I (n).
Assume that I is large (in particular, I > L).

Now, α > 1/
√

2, so find β such that 1/α < β <
√

2. Define

M := # (I)− 1 ≥ 1
2I − ε − 1 >

(∗) log2(β)I, (25)

where (∗) is because log2(β) <
1
2 and I is large, while ε is small.

Suppose that I = {i1 < i2 < · · · < iM+1 = I }. Let ξ0 := χ , and for each
m ∈ [0 · · ·M], define ξm+1 := ξm⊗(ξm◦σLi ), whereLi := 2im ·〈〈χ〉〉. Thus, χ◦�n·〈〈χ〉〉 =
ξM+1.

Let r := rank [χ ]. Then for all m ∈ [1 . . .M + 1], rank [ξm] = 2m · r . In particular,
define

R := rank [ξM] = 2M · r >
(∗) (∗)β

I · r (26)

where (∗) is by equation (25). Thus, ξM = ⊗x∈X ξx , where X ⊂ Z is a subset with
# (X) = R. Thus, if a ∈ AZ is a µ-random sequence, then

ξM+1(a) = ξM(a) · (ξM ◦ σ 2I (a)) =
∏
x∈X

ξx(ax) · ξx(ax+2I )

=
∏
x∈X

ξx(ax + ax+2I ) =
∏
x∈X

ξx(d
I
x ), (27)

where {dIx }x∈X are IRDI. If dIx has distribution δIx , then

EδIx [ξx(dIx )] = δIx {0} − δIx {1} = 1− 2δIx{1} ≤
(∗)

1− 2 · αI = 2α−I − 1

2α−I
. (28)

Here, (∗) is because µ has lower decay rate α, so δIx {1} ≥ αI (assuming I ≥ L).
Thus,

〈µ,χ ◦�n〉 =
(‡)

Eµ

[∏
x∈X

ξx(d
I
x )

]
=
(∗)

∏
x∈X

EδIx [ξx(dIx )] ≤
(†)

(
2α−I − 1

2α−I

)R
.

Here, (‡) is by equation (27), (∗) is because {dIx }x∈X are independent, and (†) is by
equation (28) and because # (X) = R. Thus,

log |〈µ,χ ◦�n〉| ≤ R · [log(2α−I − 1)− log(2α−I )] ≤
(∗)
− R · log′(2α−I )

= −R
2α−I

<
(†)

−βI r
2α−I

= − r
2
(αβ)I .

where, (∗) is because log is a decreasing function, and (†) is by equation (26).
However, β > 1/α, so αβ > 1. Thus, limH�h→∞ log |〈µ,χ ◦�h·〈〈χ〉〉〉| =

−r/2 limI→∞(αβ)I = −∞. Hence, limH�h→∞ |〈µ,χ ◦�h·〈〈χ〉〉〉| = 0. �
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Suppose that µ ∈ M(AZ) has IRDI; for any n ∈ N, and all m ∈ [1 . . .2n],
let δn1 , . . . , δ

n
2n be the dyadic increment distributions, as before. Then µ has upper decay

rate α ∈ (0, 1) if there are constants L1,K > 0 such that, for all n ≥ L1, and all
m ∈ [1 . . .2n], δnm{1} ≤ K · αn.

PROPOSITION 8.2. If µ has IRDI with upper decay rate α < 1, then h(µ) = 0.

Proof. Let L1,K > 0 be as above. Assume without loss of generality that K > 4.
Let L2 := (−log2(K)− 1)/log2(α). Let L := max{L1, L2}.

For any n ∈ N, and m ∈ [1 . . .2n], let δnm be as above. The entropy of δnm is defined as

H(δnm) := −δnm{0} log2(δ
n
m{0})− δnm{1} log2(δ

n
m{1}). (29)

Claim 1. There exists c1 > 0 such that, if n > L and m ∈ [1 . . .2n], then H(δnm) <
c1n · αn.

Proof. We have α < 1, so log2(α) < 0. Thus, if n ≥ L2, then n log2(α) ≤ L2 log2(α).
Thus,

log2(Kα
n) = log2(K)+ n log2(α) ≤ log2(K)+ L2 log2(α)

= log2(K)− log2(K)− 1 = −1. (30)

Thus, δnm{1} ≤
(∗)
Kαn ≤

(†)

1
2 , where (∗) is because n ≥ L1. and (†) is by equation (30).

However, if δnm{1} < 1
2 in (29), then H(δnm) decreases as δnm{1} decreases. Hence,

H(δnm) ≤ −Kαn log2(Kα
n)− (1−Kαn) log2(1−Kαn)

< Kαn (nA− k)︸ ︷︷ ︸
(∗)

+(1−Kαn) · 2Kαn︸ ︷︷ ︸
(†)

= K(nA+ 2− k − 2Kαn) · αn

<
(‡)
KnA · αn <

(�)
c1n · αn.

Here (∗) is the substitution k := log2(K) andA := − log2(α); (†) is because, if ε is small,
then log(1− ε) ≈ −ε, thus,−log(1− ε) < 2ε; (‡) is because 2− k− 2Kαn < 0 because
k > 2 because we assume K > 4; (�) is where c1 := KA > 0. �

Let a ∈ AZ be a µ-random sequence, and fix n > L. To compute the conditional
entropy H(a|(2n...2n+1]|a|[1...2n]), recall that, for all m ∈ [1 . . .2n], a2n+m = am + dnm.
Thus,

H(a|(2n...2n+1]|a|[1...2n]) = H(dn1 , dn2 , . . . , dn2n) =
(∗)

2n∑
m=1

H(δnm)

<
(†)

2n · c1nα
n = c1n · (2α)n (31)

where (∗) is because dn1 , d
n
2 , . . . , d

n
2n are independent random variables with distributions
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δn1 , . . . , δ
n
2n , and (†) is by Claim 1. Thus, for any N > L,

H(a|[1...2N ]|a|[1...2L]) =
N−1∑
n=L

H(a|(2n...2n+1]|a|[1...2n]) <
(∗)

N−1∑
n=L

c1n · (2α)n

< c1N · (2α)L
N−L−1∑
n=0

(2α)n = c1N · (2α)L (2α)
N−L − 1

2α − 1

≤ c2N · (2α)N, (32)

where (∗) is by equation (31), and where c2 ≈ c1/2α − 1 > 0 is another constant.
Thus, if H0 := H(a|[1...2L]), then

H(a|[1...2N ]) = H(a|[1...2N ]|a|[1...2L])+H0 ≤
(∗)
c2N · (2α)N +H0, (33)

where (∗) is by equation‘(32). Thus,

h(µ) = lim
M→∞

1

M
H(a|[1...M]) = lim

N→∞
1

2N
H(a|[1...2N ])

≤
(∗)

lim
N→∞

c2N · (2α)N +H0

2N
≤ c2 lim

N→∞Nα
N (†)

0
,

where (∗) is by equation (33), and where (†) is because |α| < 1. �

It remains to actually construct a measure with IRDI. Let 0 < α < 1. For any n ∈ N,
let ρn be the probability distribution on A = Z/2 such that

ρn{1} = αn and ρn{0} = 1− αn. (34)

For each n ∈ N, we will construct a random sequence an ∈ AZ as follows. First, define
a0 := [. . . 0000 . . . ]. Now, suppose, inductively, that we have an. Let rn0 , r

n
1 , . . . , r

n
2n−1

be a set of 2n independent A-valued, ρn-random variables. Let rn ∈ AZ be the random,
2n+1-periodic sequence

rn :=
[
. . . ,

zeroth coordinate
↓
0, 0, . . . , 0︸ ︷︷ ︸

2n

, rn0 , r
n
1 , . . . , r

n
2n−1, 0, 0, . . . , 0︸ ︷︷ ︸

2n

, rn0 , r
n
1 , . . . , r

n
2n−1, . . .

]
,

and inductively define an+1 := an + rn.
Let µn ∈ M(AZ) be the distribution of an, and let µ̃n := (1/2n)

∑2n
i=1 σ

i(µn) be the
stationary average of µn. Finally, let µ := wk∗ − limn→∞ µ̃n.

Let µ∞ be the probability distribution of the random sequence a∞ := ∑∞n=1 rn

(see Figure 3). Then µ∞ = wk∗ − limn→∞ µn, and loosely speaking, µ is the ‘σ -ergodic
average’ of µ∞. Thus, if a is a µ-random sequence, we can think of a as obtained by
shifting a∞ by a random amount. The following lemma describes the structure of a∞.

LEMMA 8.3. Let M ∈ N have binary expansion M = ∑∞n=0 mn2n. For all n ≥ 0, let
Mn :=∑n−1

i=0 mi2
i . Then a∞M =

∑∞
n=0mn · rnMn

. �

For example, suppose thatM := 13 = 1+4+8; thenm0 = m2 = m3 = 1 andm1 = 0.
Hence,M0 = 0, M1 = M2 = 1, and M3 = 5. Thus, a∞13 = r0

0 + r2
1 + r3

5 (see Figure 3).
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0 r4
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2 r4

3 . . .

r3
0 r3

1 r3
2 r3

3 r3
4 r3

5 r3
6 r3

7

r2
0 r2

1 r2
2 r2

3 r2
0 r2

1 r2
2 r2

3

r1
0 r1

1 r1
0 r1

1 r1
0 r1

1 r1
0 r1

1 r1
0 r1

1 . . .

r0
0 r0

0 r0
0 r0

0 r0
0 r0

0 r0
0 r0

0 r0
0 r0

0 . . .
. . . a∞

0 a∞
1 a∞

2 a∞
3 a∞

4 a∞
5 a∞

6 a∞
7 a∞

8 a∞
9 a∞

10 a∞
11 a∞

12 a∞
13 a∞

14 a∞
15 a∞

16 a∞
17 a∞

18 a∞
19 . . .

. . . a0 a1 a2 a3 a4 a5 a6 a7 . . .

FIGURE 3. The construction of random sequence a∞; the approximation of a as a random translate of a∞.

Think of a∞ as being generated by a process of ‘duplication with error’. Let w0 := [0]
be a word of length 1. Suppose, inductively, that we have wn = [w1w2 . . . w2n−1].
Let w̃n := [w̃1w̃2 . . . w̃2n−1] be an ‘imperfect copy’ of wn: for each m ∈ [0 . . .2n),
w̃m := wm+ rnm, where rn0 , r

n
1 . . . , r

n
2n−1 are the independent ρn-distributed variables from

before, which act as ‘copying errors’. Let wn+1 := wnw̃n. Then a∞ is the limit of wn as
n→∞.

PROPOSITION 8.4. We propose that µ has IRDI, with upper and lower decay rate α.

Proof. Let a ∈ AZ be a µ-random sequence, and fix N ∈ N. By construction, there is
some k ∈ Z such that a looks like σk(a∞) in a neighbourhood around 0. To be precise,

for all m ∈ [0 . . .2N+1), am = a∞k+m. (35)

For example, in Figure 3, let N = 2, so that 2N = 4; suppose k = 6. Thus,
[a0, a1, . . . , a7] = [a∞6 , a∞7 , . . . , a∞13 ]. Thus, d2

0 = a4 − a0 = a∞10 − a∞6 = r3
2 − r2

2 =
r3

2 + r2
2 . We have the following more general claim.

Claim 1. Let m ∈ [0 . . .2N).
(a) There is a set S(m) := {(n0,m0), (n1,m1), . . . , (nJ ,mJ )} (for some J ≥ 0), where

N = n0 ≤ n1 ≤ · · · ≤ nJ , and wheremj ∈ [0 . . .2nj ) for all j ∈ [0 . . . J ], such that
dNm = rn0

m0 + rn1
m1 + · · · + rnJmJ .

(b) If m′ ∈ [0 . . .2N), and m′ �= m, then S(m′) ∩ S(m) = ∅. �

Proof. Let M := k + m and let M̃ := k + m + 2N . If M = ∑∞n=0mn2n and
M̃ =∑∞n=0 m̃n2n, then Lemma 8.3 says that

a∞M =
∞∑
n=0

mn · rnMn
and a∞̃

M
=

∞∑
n=0

m̃n · rnM̃n
. (36)

Let N1 ≥ N be the smallest element of [N . . .∞) such that mN1 = 0. Hence, mn = 1 for
all n ∈ [N . . .N1), and mN1 = 0. Note that M̃ =M + 2N , so binary expansions of M and
M̃ are related as follows:
(A) mn = m̃n for all n ∈ [0 . . .N);
(B) thus, M̃n =Mn for all n ∈ [0 . . .N];
(C) if mN = 0 then m̃N = 1. If mN = 1, then m̃N = 0;
(D) m̃n = 0 for all n ∈ [N . . .N1) (possibly an empty set), and m̃N1 = 1;
(E) mn = m̃n for all n > N1.
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Thus,

dNm = am+2N − am=(∗) a∞k+m+2N − a∞k+m = a∞̃M + a∞M (mod 2)

=
(†)

∞∑
n=0

(m̃n · rnM̃n
+mn · rnMn

) =
(ab)

∞∑
n=N

(m̃n · rnM̃n
+mn · rnMn

)

= rNMN︸︷︷︸
(bc)

+
N1−1∑
n=N+1

mn r
n
Mn︸︷︷︸
(d)

+ rN1

M̃N1︸︷︷︸
(d)

+
∞∑

n=N1+1

mn︸︷︷︸
(e)

·(rn
M̃n
+ rnMn

). (37)

Here, (∗) is by equation (35); (†) is by equation (36); (ab) is by (A) and (B); (bc) is by (B)
and (C); (d) is by (D), and (e) is by (E).

Now, to see (a), let

S(m) := {(n,m); rnm appears with non-zero coefficient in expression (37)}.
In particular, rNMN

appears in (37), so (n0,m0) := (N,MN); thus, n0 = N .

To see (b), suppose that m < m′; hencem′ = m+ i for some i ∈ [1 . . .2N).
LetM ′ := M+i and M̃ ′ := M̃+i. SupposeM ′ =∑∞n=0m

′
n2n and M̃ ′ =∑∞n=0 m̃

′
n2n.

Define M ′
n, M̃ ′

n, and N ′1 analogously. Then, an argument identical to (37) yields

dNm′ = rNM ′N +
N ′1−1∑
n=N+1

m′nrnM ′n + r
N ′1
M̃ ′
N ′1
+

∞∑
n=N ′1+1

m′n · (rnM̃ ′n + r
n
M ′n ). (38)

Now, for all n ∈ [N . . .∞), M ′
n = Mn + i and M̃ ′

n = M̃n + i (because i < 2N ); thus,
rn
M ′n
= rnMn+i �∈ {rnMn

, rn
M̃n
} and rn

M̃ ′n
= rn

M̃n+i �∈ {r
n
Mn
, rn
M̃n
}. Thus, every summand of (38)

is distinct from every summand of (37), so S(m′) ∩ S(m) = ∅. �
To see that the random variables dN0 , . . . , d

N
2N−1

are jointly independent, use Claim 1(a):

dN0 =
∑

(n,m)∈S(0)
rnm, dN1 =

∑
(n,m)∈S(1)

rnm , . . . , dN2N−1 =
∑

(n,m)∈S(2N−1)

rnm.

The random variables {rnm; n ∈ N,m ∈ [1 . . .2N ]} are independent, and Claim 1(b) says
that S(0), S(1) . . . , S(2N − 1) are pairwise disjoint; thus dN0 , . . . , d

N
2N−1

are jointly
independent.

Lower decay rate. |α| < 1, so if N is sufficiently large (e.g. N > L := −1/ log2(α)),
then αN < 1/2. Suppose that dNm = r

n0
m0 + rn1

m1 + · · · + rnJmJ , as in Claim 1(a). For all
j ∈ [0 . . . J ], let Pj := Prob

(∑J
i=j r

ni
mi = 1
)
. Thus,

δNm {1} = P0=
(†)
ρN {0} · P1 + ρN {1} · (1− P1) = (1− αN) · P1 + αN · (1− P1)

= αN + (1− 2αN) · P1 ≥
(∗)
αN .

Here (†) is because Claim 1(a) says n0 = N and (∗) is because 1 − 2αN > 0, because
αN < 1

2 .
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Upper decay rate. Let K := 1/1− α. We claim that, for any N and m, δNm {1} ≤ KαN .
As before, let Pj := Prob(

∑J
i=j r

ni
mi = 1). For any j ∈ [1 . . . J ), we have

Pj = (1−αnj ) ·Pj+1+αnj · (1−Pj+1) = Pj+1+ (1−2Pj+1)α
nj ≤ Pj+1+αnj , (39)

and PJ = αnJ . Hence,

δNm {1} = P0 ≤
(∗)
αn0 + αn1 + · · · + αnJ ≤

∞∑
i=n0

αi = αn0

1− α = Kα
n0 =

(†)
KαN .

Here, (∗) is obtained by applying (39) inductively, and (†) is because n0 = N . �

Thus, if 1/
√

2 < α < 1, thenµ satisfies the conditions of Propositions 8.1 and 8.2, so µ
is a zero-entropy, Lucas mixing measure. Hence, 1+ σ asymptotically randomizes µ.
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[Bré99] P. Brémaud. Markov Chains: Gibbs fields, Monte Carlo Simulation, and Queues. Springer,
New York, 1999.

[FMMN00] P. A. Ferrari, A. Maass, S. Martı́nez and P. Ney. Cesàro mean distribution of group automata
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