Asymptotic Randomization of Multidimensional Finite-type Subshifts by Linear Cellular Automata

Marcus Pivato & Reem Yassawi

(Trent University, Canada)

Cellular Automata

- Spatially distributed dynamical systems;
- Local interactions;
- Spatially homogeneous rules.

CA are the 'discrete' analog of partial differential equations:

- **Space** is a lattice \mathbb{M} (eg. \mathbb{Z}^D or \mathbb{N}^D).
- The **local state** at each point in the lattice is an element of a finite alphabet, A.
- Global state: an M-indexed configuration of elements in \mathcal{A} . The space of such configurations is $\mathcal{A}^{\mathbb{M}}$.
- Evolution: a map $\Phi : \mathcal{A}^{\mathbb{M}} \longrightarrow \mathcal{A}^{\mathbb{M}}$, computed by applying a 'local rule' at every point in \mathbb{M} .

Preliminaries

 \mathcal{A} : a finite set, with the discrete topology.

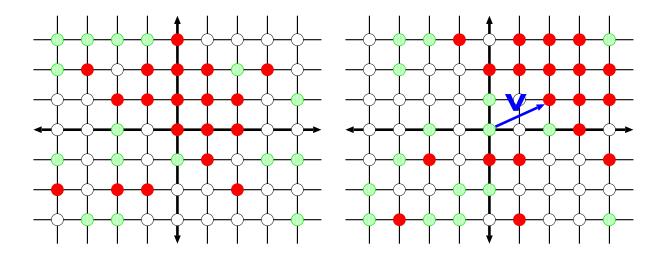
 \mathbb{M} : a **lattice** (for example, $\mathbb{M} = \mathbb{N}$, \mathbb{Z} , $\mathbb{N}^3 \times \mathbb{Z}^5$, etc.).

 $\mathcal{A}^{\mathbb{M}}$: a compact space under the Tychonoff topology.

An element of $\mathcal{A}^{\mathbb{M}}$ will be written as $\mathbf{a} = [a_m]_{m \in \mathbb{M}}$.

Shift action of \mathbb{M} on $\mathcal{A}^{\mathbb{M}}$: for all $v \in \mathbb{M}$, and $\mathbf{a} \in \mathcal{A}^{\mathbb{M}}$, define

$$\boldsymbol{\sigma}^{v}[\mathbf{a}] = [b_m|_{m \in \mathbb{M}}]$$
 where, $\forall m, b_m = a_{(v+m)}$.



Cellular Automata

Neighbourhood:

 $U \subset M$ (finite set)

A local rule $\phi: \mathcal{A}^{\mathbb{U}} \longrightarrow \mathcal{A}$ induces **cellular automaton**

$$\Phi \colon \mathcal{A}^{\mathbb{M}} {\longrightarrow} \mathcal{A}^{\mathbb{M}}$$

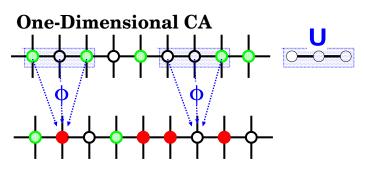
as follows:

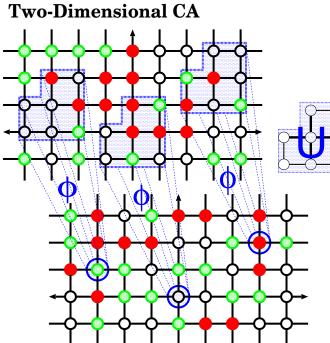
For any
$$\mathbf{a} = [a_m|_{m \in \mathbb{M}}]$$
 in $\mathcal{A}^{\mathbb{M}}$,

$$\Phi(\mathbf{a}) = [b_m|_{m \in \mathbb{M}}],$$

where, for all $m \in \mathbb{M}$,

$$b_m = \phi [a_{(u+m)}|_{u \in \mathbb{U}}].$$





Equivalently, a CA is a continuous transformation $\Phi: \mathcal{A}^{\mathbb{M}} \longrightarrow \mathcal{A}^{\mathbb{M}}$ that commutes with all shifts:

$$\forall m \in \mathbb{M}, \quad \Phi \circ \boldsymbol{\sigma}^m = \boldsymbol{\sigma}^m \circ \Phi.$$

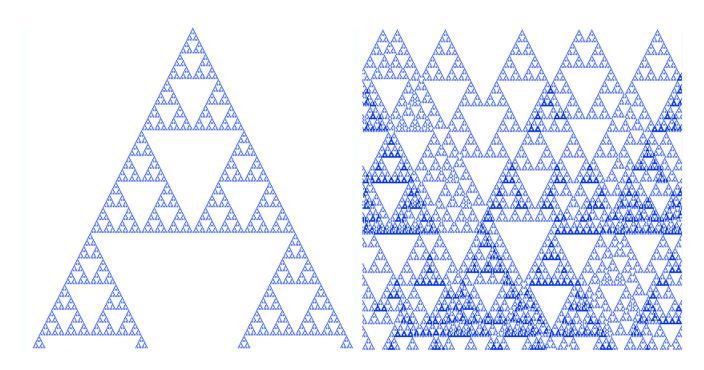
oxdots Example: $Nearest ext{-}neighbour\ XOR\ oxdots$

$$\mathbb{M} = \mathbb{Z}, \quad \mathbb{U} = \{-1, +1\}, \quad \mathcal{A} = \{0, 1\}, \quad \phi(\mathbf{a}) = a_{-1} + a_1 \pmod{2}.$$

\longleftarrow Space \longrightarrow

						-						
\mathbb{U} :					*		*					
						1						
					1		1					
				1				1				
			1		1		1		1			
		1								1		
	1		1						1		1	
1				1				1				1

Time



___ Linear Cellular Automata

 \mathcal{A} : finite abelian group (eg, $\mathcal{A} = \mathbb{Z}_{/p}$, p prime).

 $\mathcal{A}^{\mathbb{M}}$: **compact abelian group** (Tychonoff topology & pointwise addition)

Linear CA: A CA that is also a group endomorphism.

Equivalently: $\phi: \mathcal{A}^{\mathbb{U}} \longrightarrow \mathcal{A}$ is a homomorphism from the product group $\mathcal{A}^{\mathbb{U}}$ into \mathcal{A} .

Fact: $\mathcal{A} = \mathbb{Z}_{/p}$ is a field under multiplication.

Any LCA is a 'polynomial of shift maps':

$$\Phi = \sum_{u \in \mathbb{U}} \varphi_u \cdot \boldsymbol{\sigma}^u$$
, (where $\{\boldsymbol{\varphi}_u\}_{u \in \mathbb{U}}$ are in $\mathbb{Z}_{/p}$)

That is, for any $\mathbf{a} \in \mathcal{A}^{\mathbb{M}}$: $\Phi(\mathbf{a}) = \sum_{u \in \mathbb{U}} \varphi_u \cdot \boldsymbol{\sigma}^u(\mathbf{a})$.

Example: (Nearest-Neighbour XOR) $\Phi = \sigma^{-1} + \sigma^{1}$.

a :	0	1	0	1	1	1	0	1	1	0	1	
$oldsymbol{\sigma}(\mathbf{a})$:	$\begin{bmatrix} 0 & 1 \end{bmatrix}$	0	1	1	1	0	1	1	0	1	\Leftarrow	=
$oldsymbol{\sigma}^{-1}(\mathbf{a})$:	\Longrightarrow	0	1	0	1	1	1	0	1	1	0	1
$\Phi(\mathbf{a})$:		0	0	1	0	1	0	1	1	0		

The Haar Measure _____

Let $\mathbb{L} \subset \mathbb{M}$ be a finite set. Let $\mathbf{b} \in \mathcal{A}^{\mathbb{L}}$.

$$[\mathbf{b}] = \{\mathbf{a} \in \mathcal{A}^{\mathbb{M}} ; \text{ for all } \ell \in \mathbb{L}, \ a_{\ell} = b_{\ell}\};$$

This is a **cylinder set** of **size** $L = \operatorname{card} [\mathbb{L}]$.

If $A = \operatorname{card} [A]$, then there are A^L cylinder sets of size L.

Haar measure: Probability measure \mathcal{H} on $\mathcal{A}^{\mathbb{M}}$ assigning mass A^{-L} to all cylinder sets of size L.

- \mathcal{H} is the 'most random' measure on $\mathcal{A}^{\mathbb{M}}$. (maximal entropy)
- \mathcal{H} is Φ -invariant for any surjective CA Φ .

_____ Asymptotic Randomization _____

Let μ be a probability measure on $\mathcal{A}^{\mathbb{M}}$.

 Φ asymptotically randomizes μ if

$$\mathbf{wk}^* - \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \Phi^n \mu = \mathcal{H}.$$

CA 'Second Law of Thermodynamics'.

Asymptotic Randomization; One-dimensional CA $_$

Theorem (Lind, 1984)

$$' \bullet \mathcal{A} = \mathbb{Z}_{/2} \text{ and } \mathbb{M} = \mathbb{Z}.$$

$$\bullet \ \Phi = \boldsymbol{\sigma}^{-1} + \boldsymbol{\sigma}^1.$$

$$\begin{pmatrix} \bullet \ \mathcal{A} = \mathbb{Z}_{/2} \ and \ \mathbb{M} = \mathbb{Z}. \\ \bullet \ \Phi = \boldsymbol{\sigma}^{-1} + \boldsymbol{\sigma}^{1}. \\ \bullet \ \mu \ is \ a \ \mathbf{Bernoulli \ measure}. \end{pmatrix} \Longrightarrow \begin{pmatrix} \Phi \ asymptotically \\ randomizes \ \mu \end{pmatrix}$$

However, \mathbf{wk}^* - $\lim_{n\to\infty} \Phi^N \mu \neq \mathcal{H}$, because $\{\Phi^2 \mu, \Phi^4 \mu, \Phi^8 \mu, \Phi^{16} \mu, \Phi^{32} \mu, \Phi^{64} \mu, \ldots\}$ does <u>not</u> converge to \mathcal{H} .

Theorem (Ferrari, Ney, Maass & Martínez, 1998)

•
$$p$$
 prime; $\mathcal{A} = \mathbb{Z}_{/(p^n)}$; $\mathbb{M} = \mathbb{N}$.

•
$$\Phi = \varphi_0 \cdot \boldsymbol{\sigma}^0 + \varphi_1 \cdot \boldsymbol{\sigma}^1$$
.
 $\varphi_0 \not\equiv 0 \not\equiv \varphi_1 \pmod{p}$.

All transition probabilities nonzero.

$$\begin{pmatrix}
\bullet \ p \ prime; & \mathcal{A} = \mathbb{Z}_{/(p^n)}; & \mathbb{M} = \mathbb{N}. \\
\bullet \Phi = \varphi_0 \cdot \boldsymbol{\sigma}^0 + \varphi_1 \cdot \boldsymbol{\sigma}^1. \\
\varphi_0 \not\equiv 0 \not\equiv \varphi_1 \pmod{p}. \\
\bullet \mu \ is \ a \ \mathbf{Markov} \ \mathbf{measure}. \\
\wedge \mathcal{U} \ transition \ probabilities \ paragraphs.
\end{pmatrix} \implies \begin{pmatrix} \Phi \ asympt. \\ randomizes \ \mu \end{pmatrix}$$

Theorem (Maass & Martínez, 1999)

$$ullet \mathcal{A}=\mathbb{Z}_{/2}\oplus \mathbb{Z}_{/2}; \quad \mathbb{M}=\mathbb{N}.$$

$$\begin{pmatrix} \bullet \ \mathcal{A} = \mathbb{Z}_{/2} \oplus \mathbb{Z}_{/2}; & \mathbb{M} = \mathbb{N}. \\ \bullet \ Local \ map \ \phi \left[\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}; \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \right] = \begin{pmatrix} y_0 \\ x_0 + y_1 \end{pmatrix} \\ \bullet \ \mu \ a \ \mathbf{Markov} \ \mathbf{measure}. \\ All \ transition \ probabilities \ nonzero. \end{pmatrix} \Longrightarrow \begin{pmatrix} \Phi \ asympt. \\ randomizes \ \mu \end{pmatrix}$$

$$\Longrightarrow \left(\begin{array}{c} \Phi \ asympt. \\ randomizes \ \mu \end{array}\right)$$

_Harmonic Mixing and Asymptotic Randomization _

Theorem 1: (Y & P, 2000)

- Let $\mathcal{A} = \mathbb{Z}_{/p}$ (p prime).
- Let $\mathbb{M} = \mathbb{Z}^D \times \mathbb{N}^d$ be any lattice.
- Let $\Phi: \mathcal{A}^{\mathbb{M}} \longrightarrow \mathcal{A}^{\mathbb{M}}$ be any linear CA such that Φ has at least two nonzero coefficients (ie. not a shift).
- Let μ be a harmonically mixing measure.

Then Φ asymptotically randomizes μ .

Examples of Harmonic Mixing: Bernoulli measures, Markov chains, or Markov random fields with 'full support'.

Theorem 2: (Y & P, 2001)

- Let $\mathcal{A} = \mathbb{Z}_{/n}$ (any $n \in \mathbb{N}$).
- Let $\mathbb{M} = \mathbb{Z}^D \times \mathbb{N}^d$ be any lattice.
- Let $\Phi: \mathcal{A}^{\mathbb{M}} \longrightarrow \mathcal{A}^{\mathbb{M}}$ be any linear CA such that

 \forall prime p dividing n, at least two coefficients are $\not\equiv 0 \pmod{p}$.

• Let μ be a harmonically mixing measure.

Then Φ asymptotically randomizes μ .

The Characters of $\mathcal{A}^{\mathbb{M}}$ ____

 \mathbb{T}^1 : The unit circle group $\{z \in \mathbb{C} ; |z| = 1\}$.

Character: A continuous homomorphism $\chi: \mathcal{A}^{\mathbb{M}} \longrightarrow \mathbb{T}^1$.

Example: $(\mathcal{A} = \mathbb{Z}_{/2})$ Characters of $\mathcal{A}^{\mathbb{Z}}$:

$$\beta(\mathbf{a}) = (-1)^{a_0}; \qquad \gamma(\mathbf{a}) = (-1)^{(a_0 + a_3 + a_5)}.$$

Example:
$$(\mathcal{A} = \mathbb{Z}_{/5})$$
 $\kappa(\mathbf{a}) = \exp\left(\frac{2\pi \mathbf{i}}{5}(a_0 + 3a_1 + 2a_3 + 4a_7)\right)$.

Example: $(\mathcal{A} = \mathbb{Z}_{/p})$ For any $m \in \mathbb{M}$ and $c \in \mathbb{Z}_{/p}$, the map $\boldsymbol{\xi}_{m}^{c}(\mathbf{a}) = \exp\left(\frac{2\pi \mathbf{i}}{p} \cdot c \cdot a_{m}\right)$ is a character of $\mathcal{A}^{\mathbb{M}}$.

Lemma: All characters of $\mathcal{A}^{\mathbb{M}}$ are products of the form

$$\chi(\mathbf{a}) = \prod_{m \in \mathbb{M}} \exp\left(\frac{2\pi \mathbf{i}}{p} \cdot \chi_m \cdot a_m\right).$$
That is:
$$\chi = \bigotimes_{m \in \mathbb{M}} \xi_m^{\chi_m}.$$

Coefficients: $\chi_m \in \mathbb{Z}_{/p}$; all but finitely many are zero.

The **rank** of χ is the number of nonzero coefficients.

Example: rank $[\beta] = 1$. rank $[\gamma] = 3$. rank $[\kappa] = 4$.

Fourier Coefficients

If χ is a character and μ is a measure on $\mathcal{A}^{\mathbb{M}}$, then define

$$\widehat{\mu}[\boldsymbol{\chi}] = \langle \mu, \boldsymbol{\chi} \rangle = \int_{\mathcal{A}^{\mathbb{M}}} \boldsymbol{\chi} \ d\mu.$$

These Fourier Coefficients completely identify μ .

Example: If
$$\mu = \mathcal{H}$$
, then $\widehat{\mathcal{H}}[\chi] = \begin{cases} 1 & \text{if } \chi = \mathbb{1} \\ 0 & \text{otherwise} \end{cases}$.

Harmonic Mixing

 μ is **harmonically mixing** if, for all $\epsilon > 0$, $\exists R \in \mathbb{N}$ so that for all characters χ ,

$$\Big(\ \mathsf{rank} \, [\pmb{\chi}] \ > \ R \ \Big) \quad \Longrightarrow \quad \Big(\ \Big| \widehat{\mu}[\pmb{\chi}] \Big| \ < \ \epsilon \ \Big)$$

Examples: \mathcal{H} is obviously harmonically mixing.

A Bernoulli measure is HM if all $a \in \mathcal{A}$ have nonzero probability.

A Markov chain is HM if all transition probabilities are nonzero.

An N-step Markov chain is HM if all (N+1)-words get nonzero probability.

A Markov random field is HM if all cylinder sets get nonzero probability.

Common theme: $full\ support\ -ie.\ supp\ (\mu) = \mathcal{A}^{\mathbb{M}}.$

Question: What if μ does *not* have full support?

eg. What if $supp(\mu)$ is a subshift of finite type?

tape

Characters and LCA

If χ is a character on $\mathcal{A}^{\mathbb{M}}$, and Φ is a linear CA, then:

- $\chi \circ \Phi$ is also a character on $\mathcal{A}^{\mathbb{M}}$.
- Get coefficients of $\chi \circ \Phi$ by 'convolving' coefficients of χ and Φ .

Example:
$$(\mathcal{A} = \mathbb{Z}_{/2})$$
 Suppose $\boldsymbol{\chi} = \boldsymbol{\xi}_0 \otimes \boldsymbol{\xi}_1 \otimes \boldsymbol{\xi}_5$ ie. $\boldsymbol{\chi}(\mathbf{a}) = (-1)^{a_0} \cdot (-1)^{a_1} \cdot (-1)^{a_5}$.

If $\Phi = 1 + \boldsymbol{\sigma}$, then $\boldsymbol{\chi} \circ \Phi = \boldsymbol{\xi}_0 \otimes \boldsymbol{\xi}_2 \otimes \boldsymbol{\xi}_5 \otimes \boldsymbol{\xi}_6$.

Definition: Φ is **diffusive** if, for all nontrivial characters χ , there is a set $\mathbb{J} \subset \mathbb{N}$ of Cesàro density 1, so that

$$\lim_{\substack{j o \infty \ j \in \mathbb{J}}} \operatorname{rank} \left[oldsymbol{\chi} \circ \Phi^j
ight] \ = \ \infty.$$

Proposition A: Let \mathcal{A} be a finite abelian group, \mathbb{M} a lattice.

 $\begin{pmatrix} \bullet & \Phi \text{ is a diffusive } LCA \text{ on } \mathcal{A}^{\mathbb{M}} \\ \bullet & \mu \text{ is harmonically mixing} \end{pmatrix} \Longrightarrow \begin{pmatrix} \Phi \text{ asymptotically } \\ \text{randomizes } \mu \end{pmatrix}$

Proposition B:

- Let $\mathcal{A} = \mathbb{Z}_{/n}$ (any $n \in \mathbb{N}$).
- Let $\mathbb{M} = \mathbb{Z}^D \times \mathbb{N}^d$ be any lattice.
- Let $\Phi: \mathcal{A}^{\mathbb{M}} \longrightarrow \mathcal{A}^{\mathbb{M}}$ be any linear CA such that

 \forall prime p dividing n, at least two coefficients are $\not\equiv 0 \pmod{p}$.

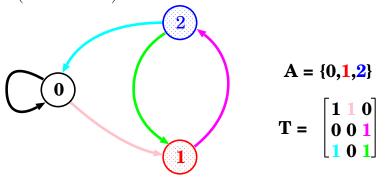
Then Φ is diffusive.

Theorems 1 & 2 follow from Propositions A & B.

Subshifts of Finite Type

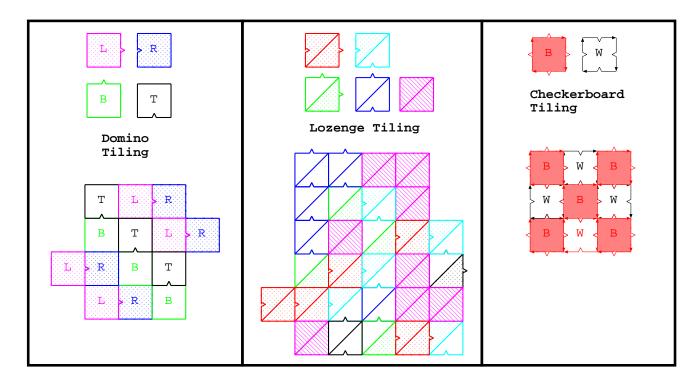
A subshift of finite type (SFT) is a closed, shift-invariant subset $\mathfrak{X} \subset \mathcal{A}^{\mathbb{M}}$ determined by local 'matching rules'

Topological Markov chain: One-dimensional SFT determined by a digraph (or matrix) of 'admissible transitions'.

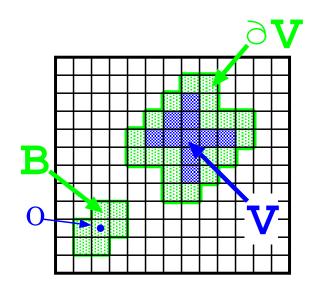


a = [...0,1,2,1,2,0,0,0,0,1,2,0,0,1,2,1,2,1,2,0,0,...]

Tiling: Multi-dimensional SFT determined by notched tiles.



Markov Random Fields



Let $\mathbb{M} = \mathbb{Z}^D$.

Let $\mathbb{B} \subset \mathbb{M}$ be a symmetric, finite 'ball' around 0. e.g. $\mathbb{B} = [-1...1]^D$.

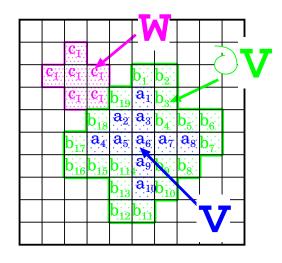
If $\mathbb{V} \subset \mathbb{M}$ is any subset, define:

- 'Closure': $cl(\mathbb{V}) = \mathbb{V} + \mathbb{B}$
- 'Boundary': $\partial(\mathbb{V}) = cl(\mathbb{V}) \setminus \mathbb{V}$.

 μ is a **Markov random field** (MRF) if, for $\forall \ \mathbb{V} \subset \mathbb{M}$, and $\forall \ \mathbf{b} \in \mathcal{A}^{\partial(\mathbb{V})}$, events 'inside' \mathbb{V} are independent of events 'outside', relative to conditional measure $\mu^{(\mathbf{b})}$.

That is: if $\mathbb{W} \subset \mathbb{M} \setminus cl(\mathbb{V})$, $\mathbf{c} \in \mathcal{A}^{\mathbb{W}}$, and $\mathbf{a} \in \mathcal{A}^{\mathbb{V}}$, then:

$$\mu^{(\mathbf{b})}\left[\mathbf{a}\smile\mathbf{c}\right]\ =\ \mu^{(\mathbf{b})}\left[\mathbf{a}\right]\cdot\mu^{(\mathbf{b})}\left[\mathbf{c}\right].$$



If μ is an MRF, then supp (μ) is a SFT.

If
$$b_0, b_4 \in \mathcal{A}$$
, then for any $a_1, a_2, a_3 \in \mathcal{A}$ and any $c_5, c_6 \in \mathcal{A}$,
$$\frac{\mu[b_0, a_1, a_2, a_3, b_4, c_5, c_6]}{\mu[b_0, *, *, *, *, b_4]} = \frac{\mu[b_0, a_1, a_2, a_3, b_4]}{\mu[b_0, *, *, *, *, b_4]} \cdot \frac{\mu[b_4, c_5, c_6]}{\mu[b_4]}$$

In this case, $supp(\mu)$ is a topological Markov chain.

Local Freedom

Let
$$S = \partial \{0\} = B \setminus \{0\}$$
 (the 'sphere').

If $\mathbf{b} \in \mathcal{A}^{\mathbb{S}}$, let $\mu_0^{(\mathbf{b})}$ be the conditional measure on $\mathcal{A}^{\{0\}}$.

 μ is **locally free** if, for any $\mathbf{b} \in \mathcal{A}^{\mathbb{S}}$, supp $\left(\mu_0^{(\mathbf{b})}\right)$ contains at least 2 elements.

	$\mathbf{b_1}$	\mathbf{b}_2	
\mathbf{b}_4	μ(b)	\mathbf{b}_3	
\mathbf{b}_{5}	\mathbf{b}_{6}		

Example: Let μ be a Markov chain on $\mathcal{A}^{\mathbb{Z}}$. Then $\mathbb{B} = \{-1, 0, 1\}$ and $\mathbb{S} = \{-1, 1\}$. μ is **locally free** if, for any $b_{(-1)}, b_1 \in \mathcal{A}$, there are a and $a' \in \mathcal{A}$ so that $a \neq a'$ and

$$\mu[b_{-1}, a, b_1] \neq 0 \neq \mu[b_{-1}, a', b_1].$$

Let $\mathbf{T} = [t_{a,b}]_{a,b\in\mathcal{A}}$ be the **admissible transition matrix** for $\mathsf{supp}(\mu)$ (ie. $t_{a,b} = 1$ iff $\mu[a,b] > 0$). Then

$$\left(\mu \text{ is locally free}\right) \iff \left(\text{ All entries of } \mathbf{T}^2 \text{ are at least 2}\right)$$

Example: Suppose μ has transition probability matrix **P**. Then:

Theorem (Y&P, 2002)

Let $\mathcal{A} = \mathbb{Z}_{/p}$ (p prime). Let μ be a Markov random field. Then: $\left(\mu \text{ is locally free}\right) \Longrightarrow \left(\mu \text{ is harmonically mixing}\right).$

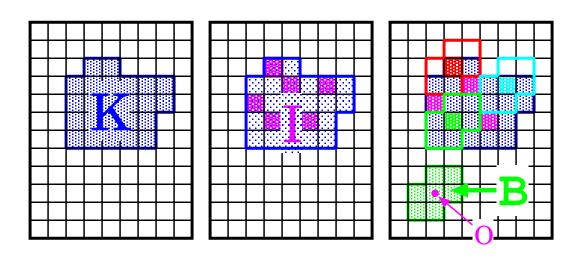
Proof: Let $\widehat{\mathcal{A}}$ be the dual group of \mathcal{A} . If $\chi \in \widehat{\mathcal{A}}$, let

$$\left\langle \chi, \mu_0^{(\mathbf{b})} \right\rangle = \sum_{a \in \mathcal{A}} \chi(a) \cdot \mu_0^{(\mathbf{b})} \{a\}.$$

Claim 1: $\exists constant \ c < 1 \ so \ that, \ \forall \ \chi \in \widehat{\mathcal{A}}, \ and \ \forall \ \mathbf{b} \in \mathcal{A}^{\mathbb{S}}, \ \left|\left\langle \chi, \mu_0^{(\mathbf{b})} \right\rangle \right| \le c.$

Claim 2: \exists constant B (determined by \mathbb{B}) so that, for any $\mathbb{K} \subset \mathbb{M}$, $\exists \mathbb{I} \subset \mathbb{K}$ so that:

- Elements of \mathbb{I} are 'well-separated': $\forall i, j \in \mathbb{I}$, $(i-j) \notin \mathbb{B}$.
- $\bullet \ |\mathbb{I}| \ \ge \ \frac{|\mathbb{K}|}{B}.$

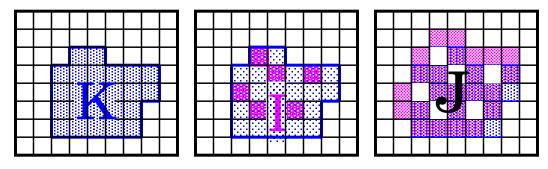


Let
$$\chi = \bigotimes_{k \in \mathbb{K}} \chi_k$$
 be a character ($\mathbb{K} \subset \mathbb{M}$ finite).

Then $\chi = \chi_{\mathbb{I}} \cdot \chi_{\mathbb{K} \setminus \mathbb{I}}$, where

$$\chi_{\mathbb{I}}(\mathbf{a}) = \prod_{i \in \mathbb{I}} \chi_i(a_i), \text{ and } \chi_{\mathbb{K} \setminus \mathbb{I}}(\mathbf{a}) = \prod_{k \in \mathbb{K} \setminus \mathbb{I}} \chi_k(a_k).$$

Let $\mathbb{J} = (\partial \mathbb{I}) \cup (\mathbb{K} \setminus \mathbb{I}).$



Fix $\mathbf{b} \in \mathcal{A}^{\mathbb{J}}$. Then $\mu_{\mathbb{I}}^{(\mathbf{b})}$ is a product measure:

For any
$$\mathbf{a} \in \mathcal{A}^{\mathbb{I}}$$
, $\mu_{\mathbb{I}}^{(\mathbf{b})}[\mathbf{a}] = \prod_{i \in \mathbb{I}} \mu_i^{(\mathbf{b})}[a_i]$.

Thus,
$$\left\langle \boldsymbol{\chi}_{\mathbb{I}}, \ \mu_{\mathbb{I}}^{(\mathbf{b})} \right\rangle = \prod_{i \in \mathbb{I}} \left\langle \chi_{i}, \ \mu_{i}^{(\mathbf{b})} \right\rangle.$$
Thus, $\left| \left\langle \boldsymbol{\chi}_{\mathbb{I}}, \ \mu_{\mathbb{I}}^{(\mathbf{b})} \right\rangle \right| = \prod_{i \in \mathbb{I}} \left| \left\langle \chi_{i}, \ \mu_{i}^{(\mathbf{b})} \right\rangle \right| \leq \prod_{i \in \mathbb{I}} c \quad \text{(Claim 1)}.$

$$= c^{|\mathbb{I}|} \leq c^{|\mathbb{K}|/B} \quad \text{(Claim 2)}.$$

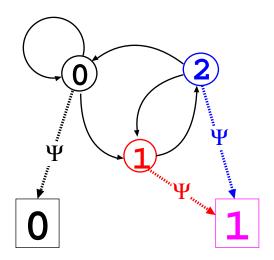
Thus,
$$\left|\left\langle \boldsymbol{\chi}, \ \mu^{(\mathbf{b})} \right\rangle \right| = \left| \boldsymbol{\chi}_{\mathbb{K}\setminus\mathbb{I}}(\mathbf{b}) \right| \cdot \prod_{i\in\mathbb{I}} \left|\left\langle \chi_i, \ \mu_i^{(\mathbf{b})} \right\rangle \right| \leq 1 \cdot c^{|\mathbb{K}|/B}$$
.

This holds for all $\mathbf{b} \in \mathcal{A}^{\mathbb{J}}$. Thus, $|\langle \boldsymbol{\chi}, \, \mu \rangle| \leq c^{|\mathbb{K}|/B}$, and $c^{|\mathbb{K}|/B} \to 0$ as $\mathsf{rank}[\boldsymbol{\chi}] = |\mathbb{K}| \to \infty$, because |c| < 1.

Sofic Shifts

A **sofic shift** is the image of a SFT under a block map Ψ .

The Even Sofic Shift



$$\mathbf{a} = [...0, 1, 2, 1, 2, 0, 0, 0, 0, 1, 2, 0, 0, 1, 2, 1, 2, 1, 2, 0, 0, ...]$$

$$\Psi(\mathbf{a}) = [...0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, ...]$$

Proposition: (Y&P, 2001)

Let μ be the measure of maximal entropy on the Even Shift.

Then μ is not harmonically mixing.

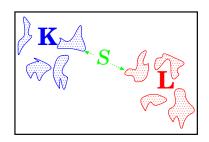
Question: Do LCA asymptotically randomize measures on sofic shifts?

We need a condition weaker than harmonic mixing.

Dispersion Mixing

Let S > 0. Subsets \mathbb{K} , $\mathbb{L} \subset \mathbb{Z}^D$ are S-separated if

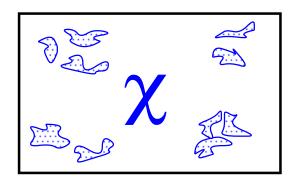
$$\min \{ |\mathbf{k} - \ell| ; \mathbf{k} \in \mathbb{K} \text{ and } \ell \in \mathbb{L} \} \ge S.$$

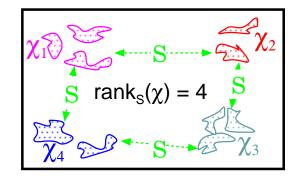


Characters $\chi = \bigotimes_{k \in \mathbb{K}} \chi_k$ and $\lambda = \bigotimes_{\ell \in \mathbb{L}} \lambda_\ell$ are S-separated if

 \mathbb{K} and \mathbb{L} are S-separated. Define:

$$\operatorname{\mathsf{rank}}_S\left(\pmb{\chi}\right) = \max \left\{ egin{array}{ll} R \; ; \; \exists \, \pmb{\chi}_1, \dots, \pmb{\chi}_R \; \; ext{mutually S-separated,} \\ & \operatorname{so that} \, \pmb{\chi} = \pmb{\chi}_1 \otimes \dots \otimes \pmb{\chi}_R \end{array}
ight\}.$$





The measure μ is **dispersion mixing** (DM) if, for every $\epsilon > 0$, there are S, R > 0 so that, for any character χ ,

$$\Big(\operatorname{rank}_S(\boldsymbol{\chi}) > R \Big) \Longrightarrow \Big(|\langle \boldsymbol{\chi}, \mu \rangle| < \epsilon \Big).$$

Proposition: Let μ be a mixing N-step Markov measure on $\mathcal{A}^{\mathbb{Z}}$.

- **1.** μ is DM. (and supp (μ) is a subshift of finite type).
- **2.** If $\Psi : \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{B}^{\mathbb{Z}}$ is a block map, and $\nu = \Psi(\mu)$, then ν is also DM. (and supp (μ) is a sofic shift).

Example: The measure of max. entropy on the Even Shift is DM.

Dispersive Cellular Automata

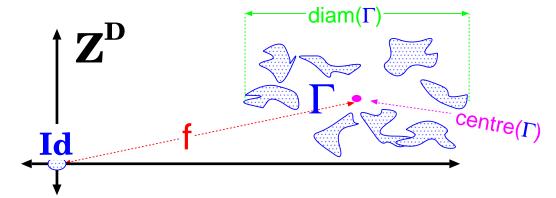
If Φ is an LCA and χ is a character, then $\chi \circ \Phi$ is also a character.

 Φ is **dispersive** if, for any S > 0, and any $\chi \in \widehat{\mathcal{A}^{\mathbb{M}}}$, there is subset $\mathbb{J} \subset \mathbb{N}$ of density 1 so that $\lim_{\mathbb{J}\ni j\to\infty} \operatorname{rank}_S(\chi \circ \Phi^j) = \infty$.

Theorem: If Φ is dispersive and μ is DM, then Φ asymptotically randomizes μ .

Bipartite CA & Dispersion

If $\Gamma = \sum_{g \in \mathbb{G}} \gamma_g \cdot \boldsymbol{\sigma}^g$ is an LCA, then $\operatorname{diam}[\Gamma] = \max\{|g - h| ; g, h \in \mathbb{G}\}.$



$$\operatorname{centre}\left(\Gamma\right) \ = \ \frac{1}{\operatorname{card}\left[\mathbb{G}\right]} \, \sum_{\mathbf{g} \in \mathbb{G}} \mathbf{g} \ \text{ is the centroid of } \mathbb{G} \ (\text{as subset of } \mathbb{R}^D).$$

Let $\mathcal{A} = \mathbb{Z}_{/p}$ for $p \geq 5$. Φ is **bipartite** if $\Phi = \mathbf{Id} + \Gamma \circ \boldsymbol{\sigma}^{\dagger}$, where $|\operatorname{centre}(\Gamma)| < 1$ and $\operatorname{diam}[\Gamma] \leq \frac{1}{2} \cdot |\mathbf{f}|$. For example:

$$\Phi = 1 + \boldsymbol{\sigma} = 1 + \underbrace{\operatorname{Id}}_{\operatorname{diam}[\Gamma]=0} \circ \boldsymbol{\sigma}^{1}, \quad \text{or} \quad \Phi = 1 + \boldsymbol{\sigma}^{2} + \boldsymbol{\sigma}^{3} = 1 + \underbrace{(1 + \boldsymbol{\sigma})}_{\operatorname{diam}[\Gamma]=1} \circ \boldsymbol{\sigma}^{2}$$

Theorem: If Φ is bipartite then Φ is dispersive.

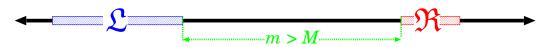
(similar results for p = 2 or p = 3.)

____Uniform Mixing & Dispersion Mixing

Measure μ on $\mathcal{A}^{\mathbb{Z}}$ is **uniformly mixing** (UM) if, for any $\epsilon > 0$, there $\exists M > 0$ so that, for any cylinder subsets $\mathfrak{L} \subset \mathcal{A}^{(-\infty..0]}$ and $\mathfrak{R} \subset \mathcal{A}^{[0..\infty)}$, and any m > M,

$$\mu \left[\boldsymbol{\sigma}^{m}(\boldsymbol{\mathfrak{L}}) \cap \boldsymbol{\mathfrak{R}} \right] \sim \mu \left[\boldsymbol{\mathfrak{L}} \right] \cdot \mu \left[\boldsymbol{\mathfrak{R}} \right]$$
 (1)

 $\underline{\text{rag replacements}}_{\epsilon} y$ " means $|x - y| < \epsilon$.)



Example: Any mixing Markov measure is uniformly mixing.

 μ is **harmonically bounded** (HB) if there is some C < 1 so that $|\langle \boldsymbol{\chi}, \mu \rangle| < C$ for all $\boldsymbol{\chi} \in \widehat{\mathcal{A}}^{\mathbb{Z}}$ except $\boldsymbol{\chi} = 1$.

Example: Any system with 'high enough' entropy is HB.

Theorem: If μ is UM and HB then μ is DM.

A quasi-Markov measure is a mixing Markov measure, or the image of a mixing Markov measure under a block map.

Example: The measure of max. entropy on the Even Shift is quasi-Markov.

Theorem: Any high-entropy quasi-Markov measure is UM and HB, therefor dispersion mixing.

Example: The measure of max.entropy on the Even Shift is DM.

$\Big(\ \text{LCA composition} \ \Big) \Longleftrightarrow \Big(\ \text{Polynomial multiplication} \ \Big)$

Example: Suppose $\mathbb{M} = \mathbb{Z}$ and $\phi(\mathbf{a}) = a_0 + a_1$. Then

$$\Phi = (1 + \boldsymbol{\sigma})^{1} = 1 + \boldsymbol{\sigma}
\Phi^{\circ 2} = (1 + \boldsymbol{\sigma})^{2} = 1 + 2\boldsymbol{\sigma} + \boldsymbol{\sigma}^{2}
\Phi^{\circ 3} = (1 + \boldsymbol{\sigma})^{3} = 1 + 3\boldsymbol{\sigma} + 3\boldsymbol{\sigma}^{2} + \boldsymbol{\sigma}^{3}
\Phi^{\circ 4} = (1 + \boldsymbol{\sigma})^{4} = 1 + 4\boldsymbol{\sigma} + 6\boldsymbol{\sigma}^{2} + 4\boldsymbol{\sigma}^{3} + \boldsymbol{\sigma}^{4}
\Phi^{\circ 5} = (1 + \boldsymbol{\sigma})^{5} = 1 + 5\boldsymbol{\sigma} + 10\boldsymbol{\sigma}^{2} + 10\boldsymbol{\sigma}^{3} + 5\boldsymbol{\sigma}^{4} + \boldsymbol{\sigma}^{5}
\vdots$$

Suppose $\mathcal{A} = \mathbb{Z}_{/2}$; thus $\phi(\mathbf{a}) = a_0 + a_1 \pmod{2}$.

$$\Phi = (1 + \sigma)^{1} = 1 + \sigma
\Phi^{\circ 2} = (1 + \sigma)^{2} = 1 + \sigma^{2}
\Phi^{\circ 3} = (1 + \sigma)^{3} = 1 + \sigma + \sigma^{2} + \sigma^{3}
\Phi^{\circ 4} = (1 + \sigma)^{4} = 1 + \sigma^{4}
\Phi^{\circ 5} = (1 + \sigma)^{5} = 1 + \sigma + \sigma^{4} + \sigma^{5}
\Phi^{\circ 6} = (1 + \sigma)^{6} = 1 + \sigma^{2} + \sigma^{4} + \sigma^{6}
\Phi^{\circ 7} = (1 + \sigma)^{6} = 1 + \sigma + \sigma^{2} + \sigma^{3} + \sigma^{4} + \sigma^{5} + \sigma^{6} + \sigma^{7}
\vdots$$

In general:

If $\phi(x) = \sum_{u \in \mathbb{U}} \varphi_u \cdot x^u$ is a formal polynomial with 'powers' in \mathbb{M} ,

and
$$\Phi = \sum_{u \in \mathbb{I}} \varphi_u \cdot \boldsymbol{\sigma}^u = \boldsymbol{\phi}(\boldsymbol{\sigma})$$
 is the corresponding LCA,

Then: $\Phi \circ \Phi = (\boldsymbol{\phi} \cdot \boldsymbol{\phi})(\boldsymbol{\sigma}), \quad \Phi \circ \Phi \circ \Phi = \boldsymbol{\phi}^3(\boldsymbol{\sigma}), \text{ etc.}$

Lucas Theorem

If $n \in \mathbb{N}$, let $[n^{[i]}|_{i=0}^{\infty}]$ be the **binary expansion** of n.

Example: Let $n=19_{\text{dec}}=\dots 0010011_{\text{bin}}$. Thus, $n^{[0]}=1$, $n^{[1]}=1$, $n^{[2]}=0$, $n^{[3]}=0$, $n^{[4]}=1$, $n^{[5]}=0$, etc.

Define
$$\mathcal{L}(N) = \{ \ell \in \mathbb{N} ; \ell^{[i]} \leq N^{[i]}, \forall i \in \mathbb{N} \}.$$

Example:

$$\mathcal{L}(19_{\rm dec}) = \mathcal{L}(10011_{\rm bin})$$

$$= \left\{0_{\rm bin}, 1_{\rm bin}, 10_{\rm bin}, 11_{\rm bin}, 10000_{\rm bin}, 10001_{\rm bin}, 10010_{\rm bin}, 10011_{\rm bin}\right\}$$

$$= \left\{0_{\rm dec}, 1_{\rm dec}, 2_{\rm dec}, 3_{\rm dec}, 16_{\rm dec}, 17_{\rm dec}, 18_{\rm dec}, 19_{\rm dec}\right\}.$$

Lucas Theorem for binomial coefficients, mod 2:

$$\begin{bmatrix} N \\ n \end{bmatrix}_{2} = \begin{cases} 1 & \text{if } n \in \mathcal{L}(N); \\ 0 & \text{if } n \notin \mathcal{L}(N). \end{cases}$$

Consequence: If $\Phi = 1 + \boldsymbol{\sigma}$, then

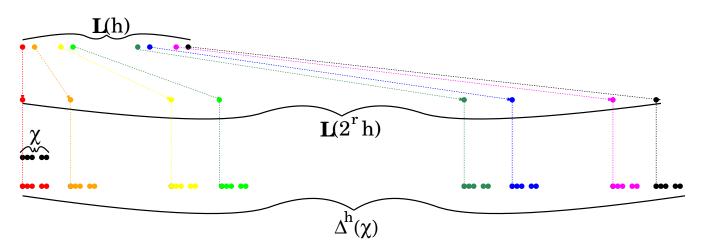
$$\Phi^N = (1+\boldsymbol{\sigma})^N = \sum_{n=0}^N \begin{bmatrix} N \\ n \end{bmatrix}_2 \boldsymbol{\sigma}^n = \sum_{n \in \mathcal{L}(N)} \boldsymbol{\sigma}^n.$$

Example:

$$\Phi^{19} = 1 + \boldsymbol{\sigma} + \boldsymbol{\sigma}^2 + \boldsymbol{\sigma}^3 + \boldsymbol{\sigma}^{16} + \boldsymbol{\sigma}^{17} + \boldsymbol{\sigma}^{18} + \boldsymbol{\sigma}^{19}.$$

Lucas Mixing

Let
$$\chi = \chi_0 \otimes \chi_1 \otimes \ldots \otimes \chi_K \in \widehat{\mathcal{A}}^{\mathbb{Z}}$$
. If $H \in \mathbb{N}$, define
$$\Delta^H(\chi) = \bigotimes_{h \in \mathcal{L}(H)} \chi \circ \sigma^{2^r \cdot h}, \quad \text{where } r = \lceil \log_2(K) \rceil.$$



Example: Let $\chi = \xi_0 \otimes \xi_1 \otimes \xi_2 \otimes \xi_3$, where $\xi_k(\mathbf{a}) = (-1)^{a_k}$.

Thus,
$$r = \lceil \log_2(3) \rceil = 2$$
.

Let
$$H = 4$$
. Then $\mathcal{L}(4) = \{0, 4\}$, so

$$\Delta^{4}(\boldsymbol{\chi}) = \boldsymbol{\chi} \circ \boldsymbol{\sigma}^{2^{r} \cdot 0} \otimes \boldsymbol{\chi} \circ \boldsymbol{\sigma}^{2^{r} \cdot 4} = \boldsymbol{\chi} \circ \boldsymbol{\sigma}^{0} \otimes \boldsymbol{\chi} \circ \boldsymbol{\sigma}^{2^{2} \cdot 4}
= \boldsymbol{\chi} \otimes \boldsymbol{\chi} \circ \boldsymbol{\sigma}^{16}
= \xi_{0} \otimes \xi_{1} \otimes \xi_{2} \otimes \xi_{3} \otimes \xi_{16} \otimes \xi_{17} \otimes \xi_{18} \otimes \xi_{19}.$$

Measure μ is **Lucas mixing** (LM) if:

For all $\chi \in \widehat{\mathcal{A}}^{\mathbb{Z}}$, there is a subset $\mathbb{H} \subset \mathbb{N}$ of density 1 so that

$$\lim_{\mathbb{H}\ni H\to\infty}\left\langle \mathbf{\Delta}^{H}\left(\mathbf{\chi}\right),\ \mu\right\rangle =0.$$

Theorem: Any DM measure is LM

In particular, any high-entropy quasi-Markov measure is LM.

LM & Asymptotic Randomization

Theorem Let $\Phi = 1 + \boldsymbol{\sigma}$. Then $\left(\Phi \text{ asymptotically randomizes } \boldsymbol{\mu}\right) \iff \left(\boldsymbol{\mu} \text{ is } LM\right)$.

Let $\boldsymbol{\chi} \in \widehat{\mathcal{A}}^{\mathbb{Z}}$. For $\forall m \in \mathbb{N}$, let $\boldsymbol{\chi}^m = \boldsymbol{\chi} \circ \Phi^m$.

Lemma: There is a subset \mathbb{N}_{χ} of density 1 so that, $\forall N \in \mathbb{N}_{\chi}$:

1. $N = M + 2^r \cdot H$ for some M, r, and H.

2.
$$\boldsymbol{\chi} \circ \Phi^N = \boldsymbol{\Delta}^H \left(\boldsymbol{\chi}^M \right)$$

Proof: Observe: $19 = 3 + 16 = 3 + 2^4$, and

$$\mathcal{L}(19) = \{0, 1, 2, 3\} \sqcup \{16, 17, 18, 19\}$$

$$= (\{0, 1, 2, 3\} + 0) \sqcup (\{0, 1, 2, 3\} + 16)$$

$$= \{0, 1, 2, 3\} + \{0, 16\} = \mathcal{L}(3) + 2^4 \cdot \{0, 1\}$$

$$= \mathcal{L}(3) + 2^4 \cdot \mathcal{L}(1).$$

Claim: Let $r, H \in \mathbb{N}$. If $M < 2^r$, and $N = M + 2^r \cdot H$, then

$$\mathcal{L}(N) = \mathcal{L}(M) + 2^r \cdot \mathcal{L}(H).$$

Consequence:

$$\Phi^{N} = \sum_{n \in \mathcal{L}(N)} \boldsymbol{\sigma}^{n} = \sum_{m \in \mathcal{L}(M)} \sum_{h \in \mathcal{L}(H)} \boldsymbol{\sigma}^{m+2^{r}h}$$

$$= \sum_{h \in \mathcal{L}(H)} \left(\sum_{m \in \mathcal{L}(M)} \boldsymbol{\sigma}^{m} \right) \circ \boldsymbol{\sigma}^{2^{r}h} = \sum_{h \in \mathcal{L}(H)} \Phi^{M} \circ \boldsymbol{\sigma}^{2^{r}h}$$

Now, suppose $\chi = \chi_0 \otimes \ldots \otimes \chi_K$, and $N = M + 2^r \cdot H$. Then for 'most' M, r, and H,

$$\boldsymbol{\chi} \circ \Phi^{N} = \bigotimes_{h \in \mathcal{L}(H)} (\boldsymbol{\chi} \circ \Phi^{M}) \circ \boldsymbol{\sigma}^{2^{r}h} = \bigotimes_{h \in \mathcal{L}(H)} \boldsymbol{\chi}^{M} \circ \boldsymbol{\sigma}^{2^{r}h} = \boldsymbol{\Delta}^{H} (\boldsymbol{\chi}^{M}).\Box$$