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Cellular Automata

e Spatially distributed dynamical systems;
e Local interactions;

e Spatially homogeneous rules.
CA are the ‘discrete’” analog of partial differential equations:

e Space is a lattice M (eg. Z or NP).

e The local state at each point in the lattice is an element of a

finite alphabet, A.

e Global state: an M-indexed configuration of elements in A.

The space of such configurations is AM.

e Evolution: a map ® : AM—AM computed by applying a
‘local rule’ at every point in M.



Preliminaries

A: a finite set, with the discrete topology.

M: a lattice (for example, M =N, Z, N°x Z° etc.).
AM: " a compact space under the Tychonoff topology.

An element of AM will be written as a = [a,,]mem.

Shift action of M on AM: for all v € M, and a € AM define

o'la] = |by|,en] Where, Vm, by = a@im)-




Cellular Automata

One-Dimensional CA

Neighbourhood:
U C M (finite set)

A local rule ¢: A"—A

induces cellular automaton LV o-Dimensional CA

H: AM_—— AM
as follows:
For any a = [an],,cp] in AY,
q)(a) — [bm’meML

where, for all m € M,

b = ¢ [a(qum) ‘ueU] :

Equivalently, a CA is a continuous transformation ® : AM— AM
that commutes with all shifts:

Vm e M, oo™ = o0"od.



Example: Nearest-neighbour XOR

M=% U={-1+1}, A={0,1},

<—— Space ——

o@a) = a_1+a,

(mod 2).
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Linear Cellular Automata

A: finite abelian group (eg, A = Z,, p prime).

AM: compact abelian group (Tychonoff topology & pointwise
addition)

Linear CA: A CA that is also a group endomorphism.

Equivalently: ¢ : AY— A4 is a homomorphism from the product
group AY into A.

Fact: A =17, is a field under multiplication.

Any LCA is a ‘polynomial of shift maps’:

b — Z Oy * 0-“7 (Whefe {Spu}uEU are in Z/p)

uelU
That is, for any a € AM:  ®(a) = ngu-au(a).
uelU
Example: (Nearest-Neighbour XOR) & =01 + o'
a: (0J1]of1]1[1]of1]1][O]1]
o(@: [0]1]0]1]1]1][0]1]1]0][1]|«=
o '(a): —|0|1][01]1]1]0]1]1][0[1]
d(a) : (0JoJ1[01]0[1][1]0]




The Haar Measure

Let LC M be a finite set. Let b € A
= {aEAM; for all £ € L, ag:bg};
This is a cylinder set of size L = card [L].
[f A = card [A], then there are A cylinder sets of size L.
Haar measure: Probability measure H on A assigning mass

A~L to all cylinder sets of size L.

e H is the ‘most random’ measure on A™. (maximal entropy)

e H is ®-invariant for any surjective CA &.

Asymptotic Randomization
Let 12 be a probability measure on AM.

® asymptotically randomizes u if

J&EHOO—Z@” -

CA ‘Second Law of Thermodynamics’.
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_Asymptotic Randomization; One-dimensional CA _

Theorem (Lind, 1984)
o A="Zs and M = Z.

e b =01+l

® asymptotically
randomizes [i

e /1 is a Bernoulli measure.

However, wk*—lim ®"pu # H, because

n—oo

P?p, Dy, PP, DO, P32p, d%y, ...} does not converge to H.
U w, OO

Theorem (Ferrari, Ney, Maass & Martinez, 1998)

(Oppl”ime; A:Z/(pn); M = N. \

o b=y -0+ -0l

wo Z 0 Z 1 (mod p), s < d asympt. )

randomizes i
e /1 is a Markov measure.

\ All transition probabilities nonzero. /

Theorem (Maass & Martinez, 1999)
(.AZZ/Q@Z/Q; M = N.

)
e Local map ¢ [(58) : (ﬁ)} = (xoyfyl) . ( $ asympt. )

randomizes
e /1 a Markov measure. H

\ All transition probabilities nonzero. /
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_Harmonic Mixing and Asymptotic Randomization _

Theorem 1: (Y & P, 2000)
o Let A= 7y, (p prime).
o Let M = ZP x NY be any lattice.
o Let & : AM—— AM be any linear CA such that

¢ has at least two nonzero coefficients (ie. not a shift).
e Let 11 be a harmonically mixing measure.

Then ® asymptotically randomizes fi.

Examples of Harmonic Mixing: Bernoulli measures, Markov
chains, or Markov random fields with ‘full support’.

Theorem 2: (Y & P, 2001)
o Let A=7Z, (anyn € N).
o Let M = Z” x N? be any lattice.
o Let & : AM— AM be any linear CA such that

V prime p dividing n, at least two coefficients are Z0 (mod p).
e Let u be a harmonically mixing measure.

Then ® asymptotically randomizes fi.




The Characters of AM

T': The unit circle group {z € C: |z| = 1}.

Character: A continuous homomorphism y : AM—T1,

Example: (A =Z;) Characters of A”*:

Bla) = (-1, V@) = (1))

2m1
5

Example: (A=7Z/;) k(a) = exp (— (ap + 3a; + 2a3 + 4a7)>.

Example: (A = Zj,) For any m € M and ¢ € Z,, the map

2711

¢ (a) = exp <_ .C- am> is a character of AM.
p

m

Lemma: All characters of AM are products of the form

2mi
x(a) = H exp (? “ Xm am) -
That is: X = ® gxm,

Coefficients: x,, € Z/,; all but finitely many are zero.

The rank of x is the number of nonzero coefficients.

Example: rank [3] = 1.  rank|y] = 3. rank|K]

= 4.
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Fourier Coeflicients

If x is a character and p is a measure on A, then define

pxl = (wx) = / X dy.
AM
These Fourier Coefficients completely identify .
{ 1 ifx=1

Example: If = H, then  H[x] 0 otherwise °

Harmonic Mixing

1 is harmonically mixing if, for all e > 0, d R € N so that
for all characters ',

(rank[x] > R) — (‘ﬁ[x]‘ < e)

Examples: H is obviously harmonically mixing.

A Bernoulli measure is HM if all a € A have nonzero probability.
A Markov chain is HM if all transition probabilities are nonzero.
An N-step Markov chain is HM if all (N-+1)-words get nonzero probability.

A Markov random field is HM it all cylinder sets get nonzero probability.

Common theme: full support —ie. supp (1) = A,
Question: What if p does not have full support?
eg. What if supp (i) is a subshift of finite type?
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Characters and LCA

If x is a character on A™, and ® is a linear CA, then:

e x o @ is also a character on AM.

e Get coefficients of x o ® by ‘convolving’ coefficients of x and .

Example: (A =7Z/) Suppose x =&, ® & ®&;
. x(a) = (~1) - (1) - (1)

Definition: ¢ is diffusive if, for all nontrivial characters ,
there is a set J C N of Cesaro density 1, so that
lim rank [X o CIDj] = Q.

J—00

jel

Proposition A: Let A be a finite abelian group, M a lattice.
( o & is a diffusive LCA on AM ) . ( ¢ asymptotically >

e 4 is harmonically mixing randomizes i

Proposition B:
o Let A=17Z,, (anyn € N).
o Let M = Z" x N? be any lattice.
o Let & : AM—— AM be any linear CA such that

V prime p dividing n, at least two coefficients are Z 0 (mod p).

Then ¢ is diffusive.

Theorems 1 & 2 follow from Propositions A & B.
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Subshifts of Finite Type

A subshift of finite type (SFT) is a closed, shift-invariant
subset X C AM determined by local ‘matching rules’

Topological Markov chain: One-dimensional SE'T determined
by a digraph (or matrix) of ‘admissible transitions’.

@ A ={0,1,2}
1 0
, T= {001

01
a= [..01,2,1,2,0,0,0,0,1,2,0,0,1,2,1,2,1,2,0,0,...]

Tiling: Multi-dimensional SF'T' determined by notched tiles.

Lob LR L
B T A A Checker board
Tiling
LA
. Lozenge Tiling
Dom no
Tiling —A A
TR
N e 2
B T ,
L>R B > g
L>R >>
, L
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Markov Random Fields

Let M = ZP.

Let B C M be a symmetric, finite
‘ball’ around 0. e.g. B = [—1...1]".

If V C M is any subset, define:
AN o ‘Closure cl(V)=V+B
O VE e ‘Boundary’: =cl(V)\ V.

p is a Markov random field (MRF) if,

forVVC M, andV b e A%V events ‘in- /W
side’ V are independent of events ‘outside’, B i I /
relative to conditional measure p). Clgci e
That is: if W c M\ cl(V), ¢ € AV, ERED
\Y . 4| 85| Q¢ | A7) g
and a € A", then: - ay;\ 't
aj N
pPla < = p®al- w®c]. A0 0N

If 11 is an MRF, then supp (u) is a SFT.
Example: If M = Z and B = {—1,0,1}, then an MRF is a

Markov Chain. If V = {1,2,3}, then Suppose
W = {5,6}. N P R T R e DA AR N T e
\% W
If € A, then for any a,as,a3 € A and any c;,¢c5 € A,
,u[ y 1, A2, A3, ,65766] B ,u[ y 1, A2, A3, ] .M[ 765706]
pulbo, o, o, %, 0] o pafboy kD] plbd]

In this case, supp (1) is a topological Markov chain.
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Local Freedom

Let S =0{0} =B\ {0} (the ‘sphere’). , ‘ ‘ ‘

Ifbe A5 let uéb) be the conditional mea- R
{0} “8
sure on AV,

1 is locally free if, for any b € A5,

supp (,u(()b>> contains at least 2 elements. ‘ ‘ ‘

Example: Let u be a Markov chain on A%, Then B = {—1,0,1}

and . pislocally free if, for any , there
are a and a' € A so that a # o' and

II’L[ 7a7 ] # O # Iu’[ 7a/7 ]

Let T = [taplapea be the admissible transition matrix for
supp (1) (ie. top = 1iff pfa, b] > 0). Then

( 1 is locally free ) — ( All entries of T? are at least 2 )

Example: Suppose i has transition probability matrix P. Then:

1

1/2 1/2 11 1% 111
(=l wl) = (==Ll
1/2 1/2 2 1 1
:><,ulsnotLF>
1/3 1/3 1/3 1117 [3 222
R VE! 1/3 1/3 2 _ 11 2 3 2 2
(P_ 1/3 1/3 1/3]) — (T_ 1 1]{2232])
1/3 1/3 1/3 11 2 2 2 3
:}(
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Theorem (Y&P, 2002)
Let A= Zy, (p prime). Let i be a Markov random field. Then:

( 1 is locally free ) — ( i is harmonically mjxjng) :

Proof: Let A be the dual group of A. If y € A, let
b b
<x,ué >> = > xla) - pi{a}.

acA

Claim 1: d constant ¢ < 1 so that, Vy € ./Zl\, and Vb € A5,
’<X7:u(()b)>‘ S C.

Claim 2: 3 constant B (determined by ) so that, for any
KcM, dITcK so that:

e Elements of Il are ‘well-separated’: Vi,j € 1, (i—j) &
K|

o |I| > i
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Let x = ® Xk be a character (K C M finite).
keK

Then x = X1 xx\1, where

= HX@(C%), and XK\]I H Xk(ak).

i€l keK\I

LetJ = (OL)U(K\1I).

Fix b € A, Then ,Lb]gm is a product measure:

For any a € A", ,uH H:‘% a;).
1€l
Thus, <X]1> uﬁb)> = ‘___<Xz', M§b>>.
i€l
Thus, ‘<X]Ia ,u](lb)>‘ = ‘<Xz; ,ug )>| < H (Claim 1).
ZGH 1€l

= d < BB (Claim 2).

Thus, ‘<X> M(b)>‘ = ‘XK\]I(b)’ 'H‘<Xi, Nz('b)>| < 1- /B,

el

This holds for all b € AY. Thus, |(x, )| < ¢®IVB and ®/E 0
as rank [x] = |K| —o0, because |c| < 1. O
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Sofic Shifts

A sofic shift is the image of a SF'T under a block map W.

The Even Sofic Shift

a=I[...0,1,2,1,2,0,0,0,0,1,2,0,0,1,2,1,2,1,2,0,0,...]
Y(a) =I...0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,1,1,1,1,0,0,...]

Proposition: (Y&P, 2001)
Let 11 be the measure of maximal entropy on the Even Shift.

Then p is not harmonically mixing.

Question: Do LCA asymptotically randomize measures on sofic shifts?

We need a condition weaker than harmonic mixing.
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Dispersion Mixing

Let 5> 0. Subsets K, L C Z” are
-separated if

min{|lk — /| ; ke Kand ¢/ €L} >

Characters x = ® Xk and A = ® A are S-separated if

keK lell
K and L are S-separated.  Define:

ranks (x) = ma R ; 3x1,...,xr mutually S-separated,
S : sothat x =x1® - ® Xp ’
=t
X® oy, K2

X rankg(x) = 4
2 e o K

The measure 1 is dispersion mixing (DM) if, for every € > 0,
there are S, R > 0 so that, for any character x,

(rankg(x) > R):(!(X,MH < e).

Proposition: Let ;1 be a mixing N-step Markov measure on A”.
1. pis DM.  (and supp () is a subshift of finite type).

2. If U : A2——PB” is a block map, and v = V(u), then v is
also DM.  (and supp (p) is a sofic shift). O

Example: The measure of max. entropy on the Even Shift is DM.
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Dispersive Cellular Automata
If ®is an LCA and x is a character, then x o ® is also a character.
® is dispersive if, for any S > 0, and any x € ZM, there is

subset J C N of density 1 so that lim rankg (X o CIDJ) = 0.

Joj—00

Theorem: If ® is dispersive and v is DM, then ® asymptoti-
cally randomizes 4.

Bipartite CA & Dispersion

[fI" = nyg-ag isan LCA, then [ = max{|g—h|; g, h € G}.
geG

1
card [G]

centre (I') = Z g is the centroid of G (as subset of R”).
geG

Let A =7, for p > 5. ®is bipartiteif ® = Id +1T' o o'
where |centre (I')| < 1 and [| < i |f|. For example:

® =14+0 = 1+ 1Id oo', or ® = 1+0°+0’ = 14+(1 + ) o0’
['=0 I'=1

Theorem: If O is bipartite then ® is dispersive.

(similar results for p =2 or p = 3.)
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_ Uniform Mixing & Dispersion Mixing

Measure p on AZ is uniformly mixing (UM) if, for any € > 0,
there 3 /> 0 so that, for any cylinder subsets £C A0 and
R A% and any

plo™(&) NR] ~ plL]- pA (1)

(“z ~ y" means [z —y| <€)

Example: Any mixing Markov measure is uniformly mixing.

1 is harmonically bounded (HB) if there is some C' < 1 so
that |(x, u)| < C for all x € A% except x = 1.

Example: Any system with ‘high enough’ entropy is HB.

Theorem: If y 1s UM and HB then p 1s DM.

A quasi-Markov measure is a mixing Markov measure, or the
image of a mixing Markov measure under a block map.

Example: The measure of max. entropy on the Even Shift is
quasi-Markov.

Theorem: Any high-entropy quasi-Markov measure is UM and

HB, therefor dispersion mizing.

Example: The measure of max.entropy on the Even Shift is DM.
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( LCA composition ) — ( Polynomial multiplication )

Example: Suppose M =7 and ¢(a) =ag+a;. Then

P=(1+0) =1+ o

P? = (1+0)* =1+ 20 + o7

3 = (1+06) =1+ 30 + 30* + o°

»t = (1+o0)! =1 + 40 + 60* + 40° + o
(1+0) =1 + 50 + 106° + 106° + 50* + o°

P —

Suppose A = Zjy;  thus ¢(a) = ag +a; (mod 2).

1

¢ = (1+0) 1 + o

P2 = (1+0)? =1 + o

% = (1+o0) =1+ o + 0° + o°

Pt = (14+0) =1 + ot

% = (1+0)° =1+ o + o' + o°

0 = (1+0)f =1 + o + o + ob

"= 1+0) =140 + 0> +0° + 0" +0° + % + o
In general:

If p(z) = Z ©w, - " 1is a formal polynomial with ‘powers’” in M,
and & = Z oy - 0" = ¢(o) is the corresponding LCA,

Then: ®od = (¢ -@)(o), Podod = ¢’(o), cte.
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Lucas Theorem

IfneN, let [nm fio} be the binary expansion of n.

Example: Let n = 194, = ...0010011,;,. Thus, nl% = 1,
nlt = 1, nl2 = 0, nb = 0, nlt = 1, nb) = 0, etc.

Define £(N) = {z eN: (< NIl vie N}.

Example:

£ (19) = £(10011,,)
- {Obim 1bin7 1Obin7 11bin7 10000bin7 1OOOlbin) 1001Obina 1OOI]bm}

- {Odem 1dec; 2de07 3dec7 16de(:7 17de<;7 18de(:7 19dec} .

Lucas Theorem for binomial coefficients, mod 2:

MR

Consequence: If & = 1+ o, then

o = (+o) - fzm;,n I

n=0 neLl(N)

Example:

PY = 1+eo+4+0’°+0° + o0+ +o8+0Y.
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Lucas Mixing

Let x = xXo®Xx1®...0 xK € .//4\2. If H € N, define
A'(x) = Q) xoo®"  wherer = [log,(K)].

W
A'(x)
Example: Let x = & ® & ® & ® &3, where {p(a) = (—1)%.
Thus, r = [logy(3)] = 2.

Let H =4. Then L (4) = {0,4}, so

A4(X) _ Xoa_zr-o R Xoo_zu _ XOO'O R Xoa'22'4
= x ® xoo"

= HO®OVE®EE ® &6 ® &7 ® &g o
Measure p is Lucas mixing (LM) if:

For all x € ﬁ, there is a subset H C N of density 1 so that
lim <AH (x), u) = 0.

H>H—o0

Theorem: Any DM measure is LM
In particular, any high-entropy quasi-Markov measure is LM.
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LM & Asymptotic Randomization

Theorem Let ® =1+ o. Then
( ® asymptotically randomizes ) = ( W 1s LM ) :

LethZl\Z. ForVm e N, let x™ = xod™.
Lemma: There is a subset N, of density 1 so that, V NV &€ N,:
1. N = M+2"-H for some M, r, and H.
2. x o ®V = AH (XM)
Proof: Observe: 19 = 3416 = 34 2% and
L£(19) = {0,1,2,3} U {16,17,18,19}

_ ({0,1,2,3}+0) ¥ ({0,1,2,3}+16>
= {0,1,2,3} +{0,16} = L£(3)+2*-{0,1}
= L3)+2*-L(1).
Claim: Letr, H € N. If M <2",and N =M + 2" - H, then

L(N) = LM)+2"-L(H). O
Consequence'
Lo - T oy e
neL(N meL(M) heLl(H)
SN BRSNS s
heL(H) \meL(M) hel(H

Now, suppose X = X0 ® ... Xk, andN:M—l—ZT-H. Then for
‘most’ M, r, and H,

x 0 Y = ® (XOCDM ® M :AH<XM).D

heLl(H) heL(H



