
0

Asymptotic Randomization of
Multidimensional Finite-type Subshifts by

Linear Cellular Automata

Marcus Pivato & Reem Yassawi

(Trent University, Canada)



1

Cellular Automata

• Spatially distributed dynamical systems;

• Local interactions;

• Spatially homogeneous rules.

CA are the ‘discrete’ analog of partial differential equations:

• Space is a lattice M (eg. ZD or ND).

• The local state at each point in the lattice is an element of a

finite alphabet, A.

• Global state: an M-indexed configuration of elements in A.

The space of such configurations is AM.

• Evolution: a map Φ : AM−→AM, computed by applying a

‘local rule’ at every point in M.



2

Preliminaries

A: a finite set, with the discrete topology.

M: a lattice (for example, M = N, Z, N3 × Z5, etc.).

AM: a compact space under the Tychonoff topology.

An element of AM will be written as a = [am]m∈M.

Shift action of M on AM: for all v ∈M, and a ∈ AM, define

σv[a] = [bm|m∈M] where, ∀m, bm = a(v+m).

v
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Cellular Automata

Neighbourhood:

U ⊂M (finite set)

A local rule φ: AU−→A
induces cellular automaton

Φ: AM−→AM

as follows:

For any a = [am|m∈M] in AM,

Φ(a) = [bm|m∈M],

where, for all m ∈M,

bm = φ
[

a(u+m)|u∈U
]

.

U

φ φ

One-Dimensional CA

φφφ
U

Two-Dimensional CA

Equivalently, a CA is a continuous transformation Φ : AM−→AM
that commutes with all shifts:

∀ m ∈M, Φ ◦ σm = σm ◦ Φ.
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Example: Nearest-neighbour XOR

M = Z, U = {−1,+1}, A = {0, 1}, φ(a) = a−1+a1 (mod 2).

←− Space −→
U : ∗ ∗ . . .

. . . 1 . . .

. . . 1 1 . . .

. . . 1 1 . . .

. . . 1 1 1 1 . . .

. . . 1 1 . . .

. . . 1 1 1 1 . . .
. . .1 1 1 1. . .























y

Time
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Linear Cellular Automata

A: finite abelian group (eg, A = Z/p, p prime).

AM: compact abelian group (Tychonoff topology & pointwise

addition)

Linear CA: A CA that is also a group endomorphism.

Equivalently: φ : AU−→A is a homomorphism from the product

group AU into A.

Fact: A = Z/p is a field under multiplication.

Any LCA is a ‘polynomial of shift maps’:

Φ =
∑

u∈U

ϕu · σu, (where {ϕu}u∈U are in Z/p)

That is, for any a ∈ AM: Φ(a) =
∑

u∈U

ϕu · σu(a).

Example: (Nearest-Neighbour XOR) Φ = σ−1 + σ1.

a : 0 1 0 1 1 1 0 1 1 0 1

σ(a) : 0 1 0 1 1 1 0 1 1 0 1 ⇐=

σ−1(a) : =⇒ 0 1 0 1 1 1 0 1 1 0 1

Φ(a) : 0 0 1 0 1 0 1 1 0
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The Haar Measure

Let L⊂M be a finite set. Let b ∈ AL.

[b] =
{

a ∈ AM ; for all ` ∈ L, a` = b`
}

;

This is a cylinder set of size L = card [L].

If A = card [A], then there are AL cylinder sets of size L.

Haar measure: Probability measure H on AM assigning mass

A−L to all cylinder sets of size L.

• H is the ‘most random’ measure on AM. (maximal entropy)

• H is Φ-invariant for any surjective CA Φ.

Asymptotic Randomization

Let µ be a probability measure on AM.

Φ asymptotically randomizes µ if

wk∗− lim
N→∞

1

N

N
∑

n=1

Φnµ = H.

CA ‘Second Law of Thermodynamics’.



7

Asymptotic Randomization; One-dimensional CA

Theorem (Lind, 1984)






• A = Z/2 and M = Z.

• Φ = σ−1 + σ1.

• µ is a Bernoulli measure.





 =⇒
(

Φ asymptotically

randomizes µ

)

However, wk∗−lim
n→∞

ΦNµ 6= H, because

{Φ2µ, Φ4µ, Φ8µ, Φ16µ, Φ32µ, Φ64µ, . . .} does not converge to H.

Theorem (Ferrari, Ney, Maass & Mart́ınez, 1998)














• p prime; A = Z/(pn); M = N.

• Φ = ϕ0 · σ0 + ϕ1 · σ1.

ϕ0 6≡ 0 6≡ ϕ1 (mod p).

• µ is a Markov measure.

All transition probabilities nonzero.















=⇒
(

Φ asympt.

randomizes µ

)

Theorem (Maass & Mart́ınez, 1999)












• A = Z/2 ⊕ Z/2; M = N.

• Local map φ
[(

x0
y0

)

;
(

x1
y1

)]

=
(

y0
x0+y1

)

• µ a Markov measure.

All transition probabilities nonzero.













=⇒
(

Φ asympt.

randomizes µ

)
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Harmonic Mixing and Asymptotic Randomization

Theorem 1: (Y & P, 2000)

• Let A = Z/p (p prime).

• Let M = ZD × Nd be any lattice.

• Let Φ : AM−→AM be any linear CA such that

Φ has at least two nonzero coefficients (ie. not a shift).

• Let µ be a harmonically mixing measure.

Then Φ asymptotically randomizes µ.

Examples of Harmonic Mixing: Bernoulli measures, Markov

chains, or Markov random fields with ‘full support’.

Theorem 2: (Y & P, 2001)

• Let A = Z/n (any n ∈ N).

• Let M = ZD × Nd be any lattice.

• Let Φ : AM−→AM be any linear CA such that

∀ prime p dividing n, at least two coefficients are 6≡ 0 (mod p).

• Let µ be a harmonically mixing measure.

Then Φ asymptotically randomizes µ.
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The Characters of AM

T1: The unit circle group {z ∈ C ; |z| = 1}.

Character: A continuous homomorphism χ :AM−→T1.

Example: (A = Z/2) Characters of AZ:

β(a) = (−1)a0; γ(a) = (−1)(a0+a3+a5).

Example: (A = Z/5) κ(a) = exp

(

2πi

5
(a0 + 3a1 + 2a3 + 4a7)

)

.

Example: (A = Z/p) For any m ∈ M and c ∈ Z/p, the map

ξcm(a) = exp

(

2πi

p
· c · am

)

is a character of AM.

Lemma: All characters of AM are products of the form

χ(a) =
∏

m∈M

exp

(

2πi

p
· χm · am

)

.

That is: χ =
⊗

m∈M

ξχmm .

Coefficients: χm ∈ Z/p; all but finitely many are zero.

The rank of χ is the number of nonzero coefficients.

Example: rank [β] = 1. rank [γ] = 3. rank [κ] = 4.
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Fourier Coefficients

If χ is a character and µ is a measure on AM, then define

µ̂[χ] = 〈µ,χ〉 =

∫

AM
χ dµ.

These Fourier Coefficients completely identify µ.

Example: If µ = H, then ̂H[χ] =

{

1 if χ = 11

0 otherwise
.

Harmonic Mixing

µ is harmonically mixing if, for all ε > 0, ∃R ∈ N so that

for all characters χ,
(

rank [χ] > R
)

=⇒
( ∣

∣

∣µ̂[χ]
∣

∣

∣ < ε
)

Examples: H is obviously harmonically mixing.

A Bernoulli measure is HM if all a ∈ A have nonzero probability.

A Markov chain is HM if all transition probabilities are nonzero.

An N-step Markov chain is HM if all (N+1)-words get nonzero probability.

A Markov random field is HM if all cylinder sets get nonzero probability.

Common theme: full support –ie. supp (µ) = AM.

Question: What if µ does not have full support?

eg. What if supp (µ) is a subshift of finite type?
tape
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Characters and LCA

If χ is a character on AM, and Φ is a linear CA, then:

• χ ◦ Φ is also a character on AM.

• Get coefficients of χ ◦Φ by ‘convolving’ coefficients of χ and Φ.

Example: (A = Z/2) Suppose χ = ξ0 ⊗ ξ1 ⊗ ξ5

ie. χ(a) = (−1)a0 · (−1)a1 · (−1)a5.

If Φ = 1 + σ, then χ ◦ Φ = ξ0 ⊗ ξ2 ⊗ ξ5 ⊗ ξ6.

Definition: Φ is diffusive if, for all nontrivial characters χ,

there is a set J ⊂ N of Cesàro density 1, so that

lim
j→∞
j∈J

rank
[

χ ◦ Φj
]

= ∞.

Proposition A: Let A be a finite abelian group, M a lattice.
(

• Φ is a diffusive LCA on AM
• µ is harmonically mixing

)

=⇒
(

Φ asymptotically

randomizes µ

)

Proposition B:

• Let A = Z/n (any n ∈ N).

• Let M = ZD × Nd be any lattice.

• Let Φ : AM−→AM be any linear CA such that

∀ prime p dividing n, at least two coefficients are 6≡ 0 (mod p).

Then Φ is diffusive.

Theorems 1 & 2 follow from Propositions A & B.
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Subshifts of Finite Type

A subshift of finite type (SFT) is a closed, shift-invariant

subset X ⊂ AM determined by local ‘matching rules’

Topological Markov chain: One-dimensional SFT determined

by a digraph (or matrix) of ‘admissible transitions’.

0

2

1

1 1 0
0 0 1
1 0 1

T =

a = [...0,1,2,1,2,0,0,0,0,1,2,0,0,1,2,1,2,1,2,0,0,...]

A = {0,1,2}

Tiling: Multi-dimensional SFT determined by notched tiles.

Domino 
Tiling

Lozenge Tiling

Checkerboard
Tiling

B WL R

TB

B

T RL

RL

RL

B

T

RL

B

T

B

W

W

W W

B

B

BB
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Markov Random Fields

0

B

V

VO

Let M = ZD.

Let B ⊂M be a symmetric, finite

‘ball’ around 0. e.g. B = [−1...1]D.

If V ⊂M is any subset, define:

• ‘Closure’: cl(V) = V + B

• ‘Boundary’: ∂(V) = cl(V) \ V.

µ is a Markov random field (MRF) if,

for ∀ V⊂M, and ∀ b ∈ A∂(V), events ‘in-

side’ V are independent of events ‘outside’,

relative to conditional measure µ(b).

That is: if W ⊂ M \ cl(V), c ∈ AW,

and a ∈ AV, then:

µ(b) [a ^ c] = µ(b) [a] · µ(b) [c] .

If µ is an MRF, then supp (µ) is a SFT.

c1

c1 c1 c1

c1 c1

b1 b2

b3

b4 b5 b6

b7

b8

b10

b11b12

b13

b114b15b16

b17

b18

b19

b9

a1

a2

a4 a5 a6 a7 a8

a9

a10

a3

W
V

V

Example: If M = Z and B = {−1, 0, 1}, then an MRF is a

Markov Chain. If V = {1, 2, 3}, then ∂V = {0, 4}. Suppose

W = {5, 6}. ... ... ... b0 a1 a2 a3
︸ ︷︷ ︸

V

b4 c5 c6
︸ ︷︷ ︸

W

... ... ...

If b0, b4 ∈ A, then for any a1, a2, a3 ∈ A and any c5, c6 ∈ A,

µ[b0, a1, a2, a3, b4, c5, c6]

µ[b0, ∗, ∗, ∗, b4]
=

µ[b0, a1, a2, a3, b4]

µ[b0, ∗, ∗, ∗, b4]
· µ[b4, c5, c6]

µ[b4]

In this case, supp (µ) is a topological Markov chain.
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Local Freedom

Let S = ∂{0} = B \ {0} (the ‘sphere’).

If b ∈ AS, let µ
(b)
0 be the conditional mea-

sure on A{0}.
µ is locally free if, for any b ∈ AS,
supp

(

µ
(b)
0

)

contains at least 2 elements.

b1 b2

b3b4

b5 b6

µ(b)
0

S

Example: Let µ be a Markov chain onAZ. Then B = {−1, 0, 1}
and S = {−1, 1}. µ is locally free if, for any b(−1), b1 ∈ A, there

are a and a′ ∈ A so that a 6= a′ and

µ[b−1,a,b1] 6= 0 6= µ[b−1,a′,b1].

Let T = [ta,b]a,b∈A be the admissible transition matrix for

supp (µ) (ie. ta,b = 1 iff µ[a, b] > 0). Then
(

µ is locally free
)

⇐⇒
(

All entries of T2 are at least 2
)

Example: Suppose µ has transition probability matrix P. Then:
(

P =





1/2 1/2
1

1/2 1/2





)

=⇒
(

T2 =





1 1
1

1 1





2

=





1 1 1
1 1
2 1 1





)

=⇒
(

µ is not LF
)

.
(

P =









1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3









)

=⇒

(

T2 =









1 1 1
1 1 1
1 1 1
1 1 1









2

=









3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3









)

=⇒
(

µ is LF
)

.
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Theorem (Y&P, 2002)

Let A = Z/p (p prime). Let µ be a Markov random field. Then:
(

µ is locally free
)

=⇒
(

µ is harmonically mixing
)

.

Proof: Let ̂A be the dual group of A. If χ ∈ ̂A, let
〈

χ, µ
(b)
0

〉

=
∑

a∈A

χ(a) · µ(b)
0 {a}.

Claim 1: ∃ constant c < 1 so that, ∀χ ∈ ̂A, and ∀b ∈ AS,
∣

∣

∣

〈

χ, µ
(b)
0

〉∣

∣

∣ ≤ c.

Claim 2: ∃ constant B (determined by B) so that, for any

K ⊂M, ∃ I ⊂ K so that:

• Elements of I are ‘well-separated’: ∀ i, j ∈ I, (i− j) 6∈ B.

• |I| ≥ |K|
B

.

K I
0 B

O
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Let χ =
⊗

k∈K

χk be a character (K ⊂M finite).

Then χ = χI · χK\I, where

χI(a) =
∏

i∈I

χi(ai), and χK\I(a) =
∏

k∈K\I

χk(ak).

Let J = (∂ I ) ∪ ( K \ I ).

K I J

Fix b ∈ AJ. Then µ
(b)
I is a product measure:

For any a ∈ AI, µ
(b)
I [a] =

∏

i∈I

µ
(b)
i [ai].

Thus,
〈

χI, µ
(b)
I

〉

=
∏

i∈I

〈

χi, µ
(b)
i

〉

.

Thus,
∣

∣

∣

〈

χI, µ
(b)
I

〉∣

∣

∣ =
∏

i∈I

∣

∣

∣

〈

χi, µ
(b)
i

〉∣

∣

∣ ≤
∏

i∈I

c (Claim 1).

= c|I| ≤ c|K|/B (Claim 2).

Thus,
∣

∣

∣

〈

χ, µ(b)
〉∣

∣

∣ =
∣

∣

∣χK\I(b)
∣

∣

∣ ·
∏

i∈I

∣

∣

∣

〈

χi, µ
(b)
i

〉∣

∣

∣ ≤ 1 · c|K|/B.

This holds for all b ∈ AJ. Thus, |〈χ, µ〉| ≤ c|K|/B, and c|K|/B→0

as rank [χ] = |K|→∞, because |c| < 1. 2
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Sofic Shifts

A sofic shift is the image of a SFT under a block map Ψ.

0 2

1

0

Ψ

Ψ

Ψ

The Even Sofic Shift

1
a = [...0,1,2,1,2,0,0,0,0,1,2,0,0,1,2,1,2,1,2,0,0,...]

Ψ(a) = [...0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,1,1,1,1,0,0,...]

Proposition: (Y&P, 2001)

Let µ be the measure of maximal entropy on the Even Shift.

Then µ is not harmonically mixing.

Question: Do LCA asymptotically randomize measures on sofic shifts?

We need a condition weaker than harmonic mixing.
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Dispersion Mixing

Let S> 0. Subsets K, L ⊂ ZD are

S-separated if

min {|k− `| ; k ∈ K and ` ∈ L} ≥ S.

K

L
S

Characters χ =
⊗

k∈K

χk and λ =
⊗

`∈L

λ` are S-separated if

K and L are S-separated. Define:

rankS (χ) = max

{

R ; ∃χ1, . . . ,χR mutually S-separated,

so that χ = χ1 ⊗ · · · ⊗ χR

}

.

rankS(χ) = 4 S
S

S

χ1
χ2

χ3χ4

χ S

The measure µ is dispersion mixing (DM) if, for every ε > 0,

there are S,R > 0 so that, for any character χ,
(

rankS (χ) > R
)

=⇒
(

|〈χ, µ〉| < ε
)

.

Proposition: Let µ be a mixing N -step Markov measure on AZ.

1. µ is DM. (and supp (µ) is a subshift of finite type).

2. If Ψ : AZ−→BZ is a block map, and ν = Ψ(µ), then ν is

also DM. (and supp (µ) is a sofic shift). 2

Example: The measure of max. entropy on the Even Shift is DM.
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Dispersive Cellular Automata

If Φ is an LCA and χ is a character, then χ◦Φ is also a character.

Φ is dispersive if, for any S > 0, and any χ ∈ ̂AM, there is

subset J ⊂ N of density 1 so that lim
J3j→∞

rankS
(

χ ◦ Φj
)

= ∞.

Theorem: If Φ is dispersive and µ is DM, then Φ asymptoti-

cally randomizes µ.

Bipartite CA & Dispersion

If Γ =
∑

g∈G

γg·σg is an LCA, then diam [Γ] = max {|g − h| ; g, h ∈ G}.

f
Γ

diam(Γ)

centre(Γ)Id

ZD

centre (Γ) =
1

card [G]

∑

g∈G

g is the centroid of G (as subset of RD).

Let A = Z/p for p ≥ 5. Φ is bipartite if Φ = Id + Γ ◦ σf ,

where |centre (Γ)| < 1 and diam [Γ] ≤ 1
2· |f|. For example:

Φ = 1+σ = 1+ Id
︸︷︷︸

diam[Γ]=0

◦σ1, or Φ = 1+σ2+σ3 = 1+(1 + σ)
︸ ︷︷ ︸

diam[Γ]=1

◦σ2

Theorem: If Φ is bipartite then Φ is dispersive.

(similar results for p = 2 or p = 3.)
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Uniform Mixing & Dispersion Mixing

Measure µ on AZ is uniformly mixing (UM) if, for any ε > 0,

there ∃ M> 0 so that, for any cylinder subsets L⊂ A(−∞..0] and

R⊂ A[0..∞), and any m > M ,

µ [σm(L) ∩R]
ε̃

µ [L] · µ [R] (1)

(“x
ε̃
y” means |x− y| < ε.)

m > M

PSfrag replacements

L R

Example: Any mixing Markov measure is uniformly mixing.

µ is harmonically bounded (HB) if there is some C < 1 so

that |〈χ, µ〉| < C for all χ ∈ ̂AZ except χ = 11.

Example: Any system with ‘high enough’ entropy is HB.

Theorem: If µ is UM and HB then µ is DM.

A quasi-Markov measure is a mixing Markov measure, or the

image of a mixing Markov measure under a block map.

Example: The measure of max. entropy on the Even Shift is

quasi-Markov.

Theorem: Any high-entropy quasi-Markov measure is UM and

HB, therefor dispersion mixing.

Example: The measure of max.entropy on the Even Shift is DM.
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(

LCA composition
)

⇐⇒
(

Polynomial multiplication
)

Example: Suppose M = Z and φ(a) = a0 + a1. Then

Φ = (1 + σ)1 = 1 + σ

Φ◦2 = (1 + σ)2 = 1 + 2σ + σ2

Φ◦3 = (1 + σ)3 = 1 + 3σ + 3σ2 + σ3

Φ◦4 = (1 + σ)4 = 1 + 4σ + 6σ2 + 4σ3 + σ4

Φ◦5 = (1 + σ)5 = 1 + 5σ + 10σ2 + 10σ3 + 5σ4 + σ5

...

Suppose A = Z/2; thus φ(a) = a0 + a1 (mod 2).

Φ = (1 + σ)1 = 1 + σ

Φ◦2 = (1 + σ)2 = 1 + σ2

Φ◦3 = (1 + σ)3 = 1 + σ + σ2 + σ3

Φ◦4 = (1 + σ)4 = 1 + σ4

Φ◦5 = (1 + σ)5 = 1 + σ + σ4 + σ5

Φ◦6 = (1 + σ)6 = 1 + σ2 + σ4 + σ6

Φ◦7 = (1 + σ)6 = 1 + σ + σ2 + σ3 + σ4 + σ5 + σ6 + σ7

...

In general:

If φ(x) =
∑

u∈U

ϕu · xu is a formal polynomial with ‘powers’ in M,

and Φ =
∑

u∈U

ϕu · σu = φ(σ) is the corresponding LCA,

Then: Φ ◦ Φ = (φ · φ)(σ), Φ ◦ Φ ◦ Φ = φ3(σ), etc.
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Lucas Theorem

If n ∈ N, let
[

n[i]|∞i=0

]

be the binary expansion of n.

Example: Let n = 19dec = . . . 0010011bin. Thus, n[0] = 1,

n[1] = 1, n[2] = 0, n[3] = 0, n[4] = 1, n[5] = 0, etc.

Define L (N) =
{

` ∈ N ; `[i] ≤ N [i], ∀i ∈ N
}

.

Example:

L (19dec) = L (10011bin)

=
{

0bin, 1bin, 10bin, 11bin, 10000bin, 10001bin, 10010bin, 10011bin

}

=
{

0dec, 1dec, 2dec, 3dec, 16dec, 17dec, 18dec, 19dec

}

.

Lucas Theorem for binomial coefficients, mod 2:
[

N

n

]

2

=

{

1 if n ∈ L (N) ;

0 if n 6∈ L (N) .

Consequence: If Φ = 1 + σ, then

ΦN = (1 + σ)N =

N
∑

n=0

[

N

n

]

2

σn =
∑

n∈L(N)

σn.

Example:

Φ19 = 1 + σ + σ2 + σ3 + σ16 + σ17 + σ18 + σ19.
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Lucas Mixing

Let χ = χ0 ⊗ χ1 ⊗ . . .⊗ χK ∈ ̂AZ. If H ∈ N, define

∆H (χ) =
⊗

h∈L(H)

χ ◦ σ2r·h, where r = dlog2(K)e.

χ

L(h)

L(2  h)r

(χ)h∆

Example: Let χ = ξ0 ⊗ ξ1 ⊗ ξ2 ⊗ ξ3, where ξk(a) = (−1)ak .

Thus, r = dlog2(3)e = 2.

Let H = 4. Then L (4) = {0, 4}, so

∆4 (χ) = χ ◦ σ2r·0 ⊗ χ ◦ σ2r·4 = χ ◦ σ0 ⊗ χ ◦ σ22·4

= χ ⊗ χ ◦ σ16

= ξ0 ⊗ ξ1 ⊗ ξ2 ⊗ ξ3 ⊗ ξ16 ⊗ ξ17 ⊗ ξ18 ⊗ ξ19.

Measure µ is Lucas mixing (LM) if:

For all χ ∈ ̂AZ, there is a subset H ⊂ N of density 1 so that

lim
H3H→∞

〈

∆H (χ) , µ
〉

= 0.

Theorem: Any DM measure is LM

In particular, any high-entropy quasi-Markov measure is LM.



24

LM & Asymptotic Randomization

Theorem Let Φ = 1 + σ. Then
(

Φ asymptotically randomizes µ
)

⇐⇒
(

µ is LM
)

.

Let χ ∈ ̂AZ. For ∀ m ∈ N, let χm = χ ◦ Φm.

Lemma: There is a subset Nχ of density 1 so that, ∀ N ∈ Nχ:

1. N = M + 2r ·H for some M , r, and H .

2. χ ◦ ΦN = ∆H
(

χM
)

Proof: Observe: 19 = 3 + 16 = 3 + 24, and

L (19) = {0, 1, 2, 3} t {16, 17, 18, 19}
=
(

{0, 1, 2, 3} + 0
)

t
(

{0, 1, 2, 3} + 16
)

= {0, 1, 2, 3} + {0, 16} = L (3) + 24 · {0, 1}
= L (3) + 24 · L (1) .

Claim: Let r, H ∈ N. If M < 2r, and N = M + 2r ·H, then

L (N) = L (M) + 2r · L (H). 2

Consequence:

ΦN =
∑

n∈L(N)

σn =
∑

m∈L(M)

∑

h∈L(H)

σm+2rh

=
∑

h∈L(H)





∑

m∈L(M)

σm



 ◦ σ2rh =
∑

h∈L(H)

ΦM ◦ σ2rh

Now, suppose χ = χ0⊗ . . .⊗ χK , and N = M + 2r ·H . Then for

‘most’ M , r, and H ,

χ ◦ΦN =
⊗

h∈L(H)

(

χ ◦ ΦM
)

◦σ2rh =
⊗

h∈L(H)

χM ◦σ2rh = ∆H
(

χM
)
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