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Introduction (2/29)

Problem 1. Can we represent nondiscounted, time-separable,
infinite-horizon intertemporal preferences, using an additive utility function?
In intergenerational social choice (e.g. environmental policy), discounting is
ethically indefensible. But nondiscounted utility sums over an infinite
number of future periods are generally infinite or undefined.

Problem 2. Can we formalize the ‘Principle of Insufficient Reason’ (i.e.
uniform probability distribution) when there are infinitely many possible
states of nature? (Important for choice under uncertainty/ambiguity.)

Problem 3. Can we axiomatize the utilitarian social welfare function when
the population size is variable?

Fact: A continuous, separable preference order on RN (for 3 ≤ N <∞) can
be represented using an additive utility function.
Problem 4. Can we extend this to the case when N is (uncountably)
infinite? Can we eliminate the topological conditions?

Goal. We will use nonstandard analysis and the theory of linearly ordered
abelian groups to answer these questions.
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Let X be a set of outcomes. Let I be an infinite indexing set.
Let X I be the set of all I-indexed sequences of elements from X .
An element x ∈ X I assigns an outcome xi to each i in I.
The space X I has at least three interpretations:

(i) Intertemporal choice. I := an infinite sequence of moments in time
(e.g. I = N or I = R+). X := the set of possible outcomes which
could happen at each moment. Thus, x = a history where outcome
xi happens at time i (e.g. a consumption stream).

(ii) Choice under uncertainty. I := an infinite set of possible ‘states of
nature’ (the true state is unknown). X := set of possible outcomes
which could occur in each state. Thus, x = a ‘lottery’ (or ‘Savage
act’) which yields outcome xi if state i occurs.

(iii) Variable population social choice. I := infinite set of ‘potential
people’. X := set of possible personal outcomes available to each
person, including an outcome o (‘nonexistence’). If x ∈ X I and
xi = o for all but finitely many coordinates, then x represents a finite
(but arbitrarily large) population.
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One can also combine these interpretations:

(iv) Variable population intertemporal social choice under uncertainty.
(Example: anthropogenic climate change, nuclear waste disposal, etc.)

Let T represent a time-stream (e.g. T := N).

Let S be a set of possible ‘states of nature’.

Let P be a set of ‘possible people’.

Suppose at least one of T , S, or P is infinite, and let I := T × S ×P.

Let X be a space of personal outcomes, including a ‘nonexistence’
outcome o.

Then an element x ∈ X I represents a policy which will assign personal
outcome xt,s,p to person p at time t, if the state of nature s occurs
(for every t ∈ T , s ∈ S, and p ∈ P).
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Finitary preorders (5/29)

A preorder on X I is a binary relation ( �) which is:

◮ Reflexive: x � x for all x ∈ X I .

◮ Transitive: For all x, y, z ∈ X I , if x � y and y � z, then x � z.

(�) represents the preferences over X I of an individual or a society.

Note that (�) is not necessarily complete (some elements of X I may be
incomparable to some other elements).

For any x, y ∈ X I , let I(x, y) := {i ∈ I; xi 6= yi} and d(x, y) := |I(x, y)|.
We say (�) is a finitary preorder if, for any x, y ∈ X I ,

(

d(x, y) <∞
)

=⇒
(

x � y or x � y
)

.

We say (�) is strictly finitary if the “ =⇒ ” is actually “ ⇐⇒ ”.
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Permutation invariance (6/29)

A permutation is a function π : I−→I that is one-to-one & onto (bijective).

Let I(π) := {i ∈ I; π(i) 6= i}. We say π is finitary if I(π) is finite.

Let Πfin be the group of all finitary permutations of I.

For any x ∈ X I , if π ∈ Πfin, then I(x, π(x)) ⊆ I(π), so d(x, π(x)) <∞.

Thus, a finitary preorder (�) can compare x to π(x).

Say that (�) is Πfin-invariant if x ≈ π(x) for all x ∈ X I and π ∈ Πfin.

◮ In interpretation (i) (Intertemporal choice), Πfin-invariance means there
are no time preferences: the near and far future are equally important.

◮ In interpretation (ii) (Uncertainty), Πfin-invariance means that all
states of nature are regarded as equally likely.*

◮ In interpretation (iii) (Social choice), Πfin-invariance is anonymity: all
people must be treated the same by the social preference relation (�).

◮ In interpretation (iv), Πfin-invariance implies all three of these things.

* To make outcome x ‘twice as likely’ as outcome y , map twice as many states to x .
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Separable preferences (7/29)

For any J ⊆ I and any x ∈ X I , define xJ := (xj)j∈J (an element of XJ ).
The preorder (�) is separable if the following holds: for any J ⊂ I, with
K := I \ J , and for every x, y, x′, y′ ∈ X I such that

xJ = yJ , xK = x′K,
x′J = y′J , and yK = y′K,

we have:
(

x � y
)

⇐⇒
(

x′ � y′
)

.

Heuristically: if xJ = yJ , then the ordering between x and y should be
decided entirely by comparing xK and yK. Likewise, if x′J = y′J , then the
ordering between x′ and y′ should be decided by comparing x′K and y′K.
Thus, if xK = x′K and yK = y′K, then the ordering between x and y should
agree with the ordering between x′ and y′.

(In Savage’s risky decision theory, separability is called the sure thing
principle or Axiom P2. In social choice, separability is a special case of the
axiom of independence of (or elimination of) indifferent individuals, which
in turn is a special case of the Extended Pareto axiom.)
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An abelian group is a set R equipped with a binary operator “+” with the
following properties:

◮ There is an identity element 0 ∈ R such that 0 + r = r for all r ∈ R.
◮ For every r ∈ R, there is an inverse − r ∈ R such that r + (−r) = 0.
◮ + is commutative: r + s = s + r for all r , s ∈ R.
◮ + is associative: r + (s + t) = (r + s) + t for all r , s, t ∈ R.

Example: The set R of real numbers is an abelian group under addition.
So is the set Z of integers, and the set Q of rational numbers.
For any N ∈ N, the space RN is an abelian group under vector addition.
A linear order on R is a transitive binary relation ( >) such that, for all
r , s ∈ R:

◮ either r > s or s > r , but not both ((>) is complete & antisymmetric).
◮ If r > 0, then r + s > s (i.e. (>) is homogeneous).

For example: the standard order on R, Z, or Q is a linear order.
Also, the lexicographical order (≫) on RN is a linear order.
(For any r, s ∈ RN , we have r ≫ s if there is some n ∈ [1 . . .N] such that
rm = sm for all m < n, while rn > sn.)
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Linearly ordered abelian groups; the additive preorder (9/29)

In fact, Hahn’s Embedding Theorem says that any linearly ordered abelian
group can be represented as an ordered subgroup of a lexicographically
ordered vector space RΩ (where Ω could be infinite).

Heuristically, a linearly ordered group (R,+, >) is a ‘measurement scale’.
For example, a function u : X−→R can be treated as a cardinal utility
function: we can meaningfully make statements like “u(x) + u(y) > u(z)”.

For any x, y ∈ X I , we have u(xi ) − u(yi ) = 0 for all i ∈ I \ I(x, y).
Thus, if d(x, y) <∞, then

∑

i∈I

(

u(xi ) − u(yi )
)

=
∑

i∈I(x,y)

(

u(xi ) − u(yi )
)

is a finite sum of elements in R, and thus, well-defined.

We then define the (finitary) additive preorder ( �
u

) on X I by specifying:
(

x �
u

y
)

⇐⇒

(

∑

i∈I

(

u(xi ) − u(yi )
)

≥ 0
)

,

for all x, y ∈ X I with d(x, y) <∞.
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We define the (finitary) additive preorder ( �
u

) on X I by specifying:

(

x �
u

y
)

⇐⇒

(

∑

i∈I

(

u(xi ) − u(yi )
)

≥ 0
)

,

for all x, y ∈ X I with d(x, y) <∞.

(i) In intertemporal choice,
∑

i∈I

(

u(xi ) − u(yi )
)

is the nondiscounted sum

of future u-utility differences between histories x and y.

(ii) In risky choice,
∑

i∈I

(

u(xi ) − u(yi )
)

is the difference between the

expected u-utility of lottery x and that of lottery y (assuming a
uniform probability distribution on I(x, y)).

(iii) In social choice, ( �
u

) is a generalized utilitarian social welfare order.

(iv) In risky intertemporal social choice, ( �
u

) is the nondiscounted
intertemporal Harsanyi utilitarian social welfare order.

We now come to our first main result.
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Theorem 1. Let (�) be a strictly finitary preorder on X I .

(a) (�) is Πfin-invariant and separable if and only if there exists some
linearly ordered abelian group (R,+, >) and function u : X−→R such that
(�) is the additive preorder defined by u.

(b) Furthermore, R and u can be built with a universal property: if
(R′,+, >) is another linearly ordered abelian group, and (�) is also the
additive preorder defined by some function u′ : X−→R′, then there exists
r ′ ∈ R′ and an order-preserving group homomorphism ψ : R−→R′ such
that u′(x) = ψ[u(x)] + r ′ for all x ∈ X .

Proof sketch. Fix o ∈ X , and let o ∈ X I be the element with o in every
coordinate. Let A be the free abelian group generated by X \ {o}.
(An element of A has the form “J1x1 + · · · + Jnxn”, where J1, . . . , Jn ∈ Z

and x1, . . . , xn ∈ X \ {o}.)
If x ∈ X I , and d(x, o) <∞, then x defines an element ax ∈ A in the
obvious way. (Example: if x = (x , x , x , y , y , o, o, o, . . .), then
ax = 3 x + 2 y). The preorder (�) then induces a preorder ( �

∗ ) on A.
Let C0 := {a ∈ A; a ≈

∗ 0}; then C0 is a subgroup of A.
Let R := A/C0; then R is a linearly ordered abelian group. Define
u : X−→R by treating X as a subset of A, and applying quotient map.



Theorem 1. Let (�) be a strictly finitary preorder on X I .

(a) (�) is Πfin-invariant and separable if and only if there exists some
linearly ordered abelian group (R,+, >) and function u : X−→R such that
(�) is the additive preorder defined by u.

(b) Furthermore, R and u can be built with a universal property: if
(R′,+, >) is another linearly ordered abelian group, and (�) is also the
additive preorder defined by some function u′ : X−→R′, then there exists
r ′ ∈ R′ and an order-preserving group homomorphism ψ : R−→R′ such
that u′(x) = ψ[u(x)] + r ′ for all x ∈ X .

Proof sketch. Fix o ∈ X , and let o ∈ X I be the element with o in every
coordinate. Let A be the free abelian group generated by X \ {o}.
(An element of A has the form “J1x1 + · · · + Jnxn”, where J1, . . . , Jn ∈ Z

and x1, . . . , xn ∈ X \ {o}.)
If x ∈ X I , and d(x, o) <∞, then x defines an element ax ∈ A in the
obvious way. (Example: if x = (x , x , x , y , y , o, o, o, . . .), then
ax = 3 x + 2 y). The preorder (�) then induces a preorder ( �

∗ ) on A.
Let C0 := {a ∈ A; a ≈

∗ 0}; then C0 is a subgroup of A.
Let R := A/C0; then R is a linearly ordered abelian group. Define
u : X−→R by treating X as a subset of A, and applying quotient map.



Theorem 1. Let (�) be a strictly finitary preorder on X I .

(a) (�) is Πfin-invariant and separable if and only if there exists some
linearly ordered abelian group (R,+, >) and function u : X−→R such that
(�) is the additive preorder defined by u.

(b) Furthermore, R and u can be built with a universal property: if
(R′,+, >) is another linearly ordered abelian group, and (�) is also the
additive preorder defined by some function u′ : X−→R′, then there exists
r ′ ∈ R′ and an order-preserving group homomorphism ψ : R−→R′ such
that u′(x) = ψ[u(x)] + r ′ for all x ∈ X .

Proof sketch. Fix o ∈ X , and let o ∈ X I be the element with o in every
coordinate. Let A be the free abelian group generated by X \ {o}.
(An element of A has the form “J1x1 + · · · + Jnxn”, where J1, . . . , Jn ∈ Z

and x1, . . . , xn ∈ X \ {o}.)
If x ∈ X I , and d(x, o) <∞, then x defines an element ax ∈ A in the
obvious way. (Example: if x = (x , x , x , y , y , o, o, o, . . .), then
ax = 3 x + 2 y). The preorder (�) then induces a preorder ( �

∗ ) on A.
Let C0 := {a ∈ A; a ≈

∗ 0}; then C0 is a subgroup of A.
Let R := A/C0; then R is a linearly ordered abelian group. Define
u : X−→R by treating X as a subset of A, and applying quotient map.



Theorem 1. Let (�) be a strictly finitary preorder on X I .

(a) (�) is Πfin-invariant and separable if and only if there exists some
linearly ordered abelian group (R,+, >) and function u : X−→R such that
(�) is the additive preorder defined by u.

(b) Furthermore, R and u can be built with a universal property: if
(R′,+, >) is another linearly ordered abelian group, and (�) is also the
additive preorder defined by some function u′ : X−→R′, then there exists
r ′ ∈ R′ and an order-preserving group homomorphism ψ : R−→R′ such
that u′(x) = ψ[u(x)] + r ′ for all x ∈ X .

Proof sketch. Fix o ∈ X , and let o ∈ X I be the element with o in every
coordinate. Let A be the free abelian group generated by X \ {o}.
(An element of A has the form “J1x1 + · · · + Jnxn”, where J1, . . . , Jn ∈ Z

and x1, . . . , xn ∈ X \ {o}.)
If x ∈ X I , and d(x, o) <∞, then x defines an element ax ∈ A in the
obvious way. (Example: if x = (x , x , x , y , y , o, o, o, . . .), then
ax = 3 x + 2 y). The preorder (�) then induces a preorder ( �

∗ ) on A.
Let C0 := {a ∈ A; a ≈

∗ 0}; then C0 is a subgroup of A.
Let R := A/C0; then R is a linearly ordered abelian group. Define
u : X−→R by treating X as a subset of A, and applying quotient map.



Theorem 1. Let (�) be a strictly finitary preorder on X I .

(a) (�) is Πfin-invariant and separable if and only if there exists some
linearly ordered abelian group (R,+, >) and function u : X−→R such that
(�) is the additive preorder defined by u.

(b) Furthermore, R and u can be built with a universal property: if
(R′,+, >) is another linearly ordered abelian group, and (�) is also the
additive preorder defined by some function u′ : X−→R′, then there exists
r ′ ∈ R′ and an order-preserving group homomorphism ψ : R−→R′ such
that u′(x) = ψ[u(x)] + r ′ for all x ∈ X .

Proof sketch. Fix o ∈ X , and let o ∈ X I be the element with o in every
coordinate. Let A be the free abelian group generated by X \ {o}.
(An element of A has the form “J1x1 + · · · + Jnxn”, where J1, . . . , Jn ∈ Z

and x1, . . . , xn ∈ X \ {o}.)
If x ∈ X I , and d(x, o) <∞, then x defines an element ax ∈ A in the
obvious way. (Example: if x = (x , x , x , y , y , o, o, o, . . .), then
ax = 3 x + 2 y). The preorder (�) then induces a preorder ( �

∗ ) on A.
Let C0 := {a ∈ A; a ≈

∗ 0}; then C0 is a subgroup of A.
Let R := A/C0; then R is a linearly ordered abelian group. Define
u : X−→R by treating X as a subset of A, and applying quotient map.



Theorem 1. Let (�) be a strictly finitary preorder on X I .

(a) (�) is Πfin-invariant and separable if and only if there exists some
linearly ordered abelian group (R,+, >) and function u : X−→R such that
(�) is the additive preorder defined by u.

(b) Furthermore, R and u can be built with a universal property: if
(R′,+, >) is another linearly ordered abelian group, and (�) is also the
additive preorder defined by some function u′ : X−→R′, then there exists
r ′ ∈ R′ and an order-preserving group homomorphism ψ : R−→R′ such
that u′(x) = ψ[u(x)] + r ′ for all x ∈ X .

Proof sketch. Fix o ∈ X , and let o ∈ X I be the element with o in every
coordinate. Let A be the free abelian group generated by X \ {o}.
(An element of A has the form “J1x1 + · · · + Jnxn”, where J1, . . . , Jn ∈ Z

and x1, . . . , xn ∈ X \ {o}.)
If x ∈ X I , and d(x, o) <∞, then x defines an element ax ∈ A in the
obvious way. (Example: if x = (x , x , x , y , y , o, o, o, . . .), then
ax = 3 x + 2 y). The preorder (�) then induces a preorder ( �

∗ ) on A.
Let C0 := {a ∈ A; a ≈

∗ 0}; then C0 is a subgroup of A.
Let R := A/C0; then R is a linearly ordered abelian group. Define
u : X−→R by treating X as a subset of A, and applying quotient map.



Theorem 1. Let (�) be a strictly finitary preorder on X I .

(a) (�) is Πfin-invariant and separable if and only if there exists some
linearly ordered abelian group (R,+, >) and function u : X−→R such that
(�) is the additive preorder defined by u.

(b) Furthermore, R and u can be built with a universal property: if
(R′,+, >) is another linearly ordered abelian group, and (�) is also the
additive preorder defined by some function u′ : X−→R′, then there exists
r ′ ∈ R′ and an order-preserving group homomorphism ψ : R−→R′ such
that u′(x) = ψ[u(x)] + r ′ for all x ∈ X .

Proof sketch. Fix o ∈ X , and let o ∈ X I be the element with o in every
coordinate. Let A be the free abelian group generated by X \ {o}.
(An element of A has the form “J1x1 + · · · + Jnxn”, where J1, . . . , Jn ∈ Z

and x1, . . . , xn ∈ X \ {o}.)
If x ∈ X I , and d(x, o) <∞, then x defines an element ax ∈ A in the
obvious way. (Example: if x = (x , x , x , y , y , o, o, o, . . .), then
ax = 3 x + 2 y). The preorder (�) then induces a preorder ( �

∗ ) on A.
Let C0 := {a ∈ A; a ≈

∗ 0}; then C0 is a subgroup of A.
Let R := A/C0; then R is a linearly ordered abelian group. Define
u : X−→R by treating X as a subset of A, and applying quotient map.



Theorem 1. Let (�) be a strictly finitary preorder on X I .

(a) (�) is Πfin-invariant and separable if and only if there exists some
linearly ordered abelian group (R,+, >) and function u : X−→R such that
(�) is the additive preorder defined by u.

(b) Furthermore, R and u can be built with a universal property: if
(R′,+, >) is another linearly ordered abelian group, and (�) is also the
additive preorder defined by some function u′ : X−→R′, then there exists
r ′ ∈ R′ and an order-preserving group homomorphism ψ : R−→R′ such
that u′(x) = ψ[u(x)] + r ′ for all x ∈ X .

Proof sketch. Fix o ∈ X , and let o ∈ X I be the element with o in every
coordinate. Let A be the free abelian group generated by X \ {o}.
(An element of A has the form “J1x1 + · · · + Jnxn”, where J1, . . . , Jn ∈ Z

and x1, . . . , xn ∈ X \ {o}.)
If x ∈ X I , and d(x, o) <∞, then x defines an element ax ∈ A in the
obvious way. (Example: if x = (x , x , x , y , y , o, o, o, . . .), then
ax = 3 x + 2 y). The preorder (�) then induces a preorder ( �

∗ ) on A.
Let C0 := {a ∈ A; a ≈

∗ 0}; then C0 is a subgroup of A.
Let R := A/C0; then R is a linearly ordered abelian group. Define
u : X−→R by treating X as a subset of A, and applying quotient map.



Theorem 1. Let (�) be a strictly finitary preorder on X I .

(a) (�) is Πfin-invariant and separable if and only if there exists some
linearly ordered abelian group (R,+, >) and function u : X−→R such that
(�) is the additive preorder defined by u.

(b) Furthermore, R and u can be built with a universal property: if
(R′,+, >) is another linearly ordered abelian group, and (�) is also the
additive preorder defined by some function u′ : X−→R′, then there exists
r ′ ∈ R′ and an order-preserving group homomorphism ψ : R−→R′ such
that u′(x) = ψ[u(x)] + r ′ for all x ∈ X .

Proof sketch. Fix o ∈ X , and let o ∈ X I be the element with o in every
coordinate. Let A be the free abelian group generated by X \ {o}.
(An element of A has the form “J1x1 + · · · + Jnxn”, where J1, . . . , Jn ∈ Z

and x1, . . . , xn ∈ X \ {o}.)
If x ∈ X I , and d(x, o) <∞, then x defines an element ax ∈ A in the
obvious way. (Example: if x = (x , x , x , y , y , o, o, o, . . .), then
ax = 3 x + 2 y). The preorder (�) then induces a preorder ( �

∗ ) on A.
Let C0 := {a ∈ A; a ≈

∗ 0}; then C0 is a subgroup of A.
Let R := A/C0; then R is a linearly ordered abelian group. Define
u : X−→R by treating X as a subset of A, and applying quotient map.



Theorem 1. Let (�) be a strictly finitary preorder on X I .

(a) (�) is Πfin-invariant and separable if and only if there exists some
linearly ordered abelian group (R,+, >) and function u : X−→R such that
(�) is the additive preorder defined by u.

(b) Furthermore, R and u can be built with a universal property: if
(R′,+, >) is another linearly ordered abelian group, and (�) is also the
additive preorder defined by some function u′ : X−→R′, then there exists
r ′ ∈ R′ and an order-preserving group homomorphism ψ : R−→R′ such
that u′(x) = ψ[u(x)] + r ′ for all x ∈ X .

Proof sketch. Fix o ∈ X , and let o ∈ X I be the element with o in every
coordinate. Let A be the free abelian group generated by X \ {o}.
(An element of A has the form “J1x1 + · · · + Jnxn”, where J1, . . . , Jn ∈ Z

and x1, . . . , xn ∈ X \ {o}.)
If x ∈ X I , and d(x, o) <∞, then x defines an element ax ∈ A in the
obvious way. (Example: if x = (x , x , x , y , y , o, o, o, . . .), then
ax = 3 x + 2 y). The preorder (�) then induces a preorder ( �

∗ ) on A.
Let C0 := {a ∈ A; a ≈

∗ 0}; then C0 is a subgroup of A.
Let R := A/C0; then R is a linearly ordered abelian group. Define
u : X−→R by treating X as a subset of A, and applying quotient map.



Theorem 1. Let (�) be a strictly finitary preorder on X I .

(a) (�) is Πfin-invariant and separable if and only if there exists some
linearly ordered abelian group (R,+, >) and function u : X−→R such that
(�) is the additive preorder defined by u.

(b) Furthermore, R and u can be built with a universal property: if
(R′,+, >) is another linearly ordered abelian group, and (�) is also the
additive preorder defined by some function u′ : X−→R′, then there exists
r ′ ∈ R′ and an order-preserving group homomorphism ψ : R−→R′ such
that u′(x) = ψ[u(x)] + r ′ for all x ∈ X .

Proof sketch. Fix o ∈ X , and let o ∈ X I be the element with o in every
coordinate. Let A be the free abelian group generated by X \ {o}.
(An element of A has the form “J1x1 + · · · + Jnxn”, where J1, . . . , Jn ∈ Z

and x1, . . . , xn ∈ X \ {o}.)
If x ∈ X I , and d(x, o) <∞, then x defines an element ax ∈ A in the
obvious way. (Example: if x = (x , x , x , y , y , o, o, o, . . .), then
ax = 3 x + 2 y). The preorder (�) then induces a preorder ( �

∗ ) on A.
Let C0 := {a ∈ A; a ≈

∗ 0}; then C0 is a subgroup of A.
Let R := A/C0; then R is a linearly ordered abelian group. Define
u : X−→R by treating X as a subset of A, and applying quotient map.



Theorem 1. Let (�) be a strictly finitary preorder on X I .

(a) (�) is Πfin-invariant and separable if and only if there exists some
linearly ordered abelian group (R,+, >) and function u : X−→R such that
(�) is the additive preorder defined by u.

(b) Furthermore, R and u can be built with a universal property: if
(R′,+, >) is another linearly ordered abelian group, and (�) is also the
additive preorder defined by some function u′ : X−→R′, then there exists
r ′ ∈ R′ and an order-preserving group homomorphism ψ : R−→R′ such
that u′(x) = ψ[u(x)] + r ′ for all x ∈ X .

Proof sketch. Fix o ∈ X , and let o ∈ X I be the element with o in every
coordinate. Let A be the free abelian group generated by X \ {o}.
(An element of A has the form “J1x1 + · · · + Jnxn”, where J1, . . . , Jn ∈ Z

and x1, . . . , xn ∈ X \ {o}.)
If x ∈ X I , and d(x, o) <∞, then x defines an element ax ∈ A in the
obvious way. (Example: if x = (x , x , x , y , y , o, o, o, . . .), then
ax = 3 x + 2 y). The preorder (�) then induces a preorder ( �

∗ ) on A.
Let C0 := {a ∈ A; a ≈

∗ 0}; then C0 is a subgroup of A.
Let R := A/C0; then R is a linearly ordered abelian group. Define
u : X−→R by treating X as a subset of A, and applying quotient map.



Theorem 1. Let (�) be a strictly finitary preorder on X I .

(a) (�) is Πfin-invariant and separable if and only if there exists some
linearly ordered abelian group (R,+, >) and function u : X−→R such that
(�) is the additive preorder defined by u.

(b) Furthermore, R and u can be built with a universal property: if
(R′,+, >) is another linearly ordered abelian group, and (�) is also the
additive preorder defined by some function u′ : X−→R′, then there exists
r ′ ∈ R′ and an order-preserving group homomorphism ψ : R−→R′ such
that u′(x) = ψ[u(x)] + r ′ for all x ∈ X .

Proof sketch. Fix o ∈ X , and let o ∈ X I be the element with o in every
coordinate. Let A be the free abelian group generated by X \ {o}.
(An element of A has the form “J1x1 + · · · + Jnxn”, where J1, . . . , Jn ∈ Z

and x1, . . . , xn ∈ X \ {o}.)
If x ∈ X I , and d(x, o) <∞, then x defines an element ax ∈ A in the
obvious way. (Example: if x = (x , x , x , y , y , o, o, o, . . .), then
ax = 3 x + 2 y). The preorder (�) then induces a preorder ( �

∗ ) on A.
Let C0 := {a ∈ A; a ≈

∗ 0}; then C0 is a subgroup of A.
Let R := A/C0; then R is a linearly ordered abelian group. Define
u : X−→R by treating X as a subset of A, and applying quotient map.



Hyperadditive preorder (12/29)

Theorem 1 applies to choices between alternatives which differ at only
finitely many I-coordinates. However, it is insufficient for choice
problems which implicate infinitely many coordinates.

To fix this, we will use methods from nonstandard analysis.

Let R be a linearly ordered abelian group. One can construct a larger
linearly ordered group ∗R by supplementing R with a rich collection of
‘infinite’ and ‘infinitesimal’ elements with their own well-defined arithmetic.
(Formally, ∗R is an ultrapower of R; more details later.)
For example, if R is the additive group R of real numbers, then ∗R is the
additive group of hyperreal numbers.

For any function u : X−→R and any x ∈ X I , it is possible to evaluate the

‘sum’ ∗
∑

i∈I

u(xi ) as an element of ∗R in a unique and well-defined way.

We can then define the hyperadditive preorder (
∗�

u
) on X I by

(

x
∗�

u
y
)

⇐⇒

(

∗
∑

i∈I

u(xi ) ≥ ∗
∑

i∈I

u(yi )
)

, for all x, y ∈ X I .
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Hyperadditive preorders (13/29)

Recall: we define the hyperadditive preorder (
∗�

u
) on X I by

(

x
∗�

u
y
)

⇐⇒

(

∗
∑

i∈I

u(xi ) ≥ ∗
∑

i∈I

u(yi )
)

, for all x, y ∈ X I .

(
∗�

u
) is a complete, Πfin-invariant, separable preorder on X I , whose finitary

part is the additive preorder ( �
u

).
Also, (

∗�
u

) satisfies a weak continuity condition called UF-continuity.
(Roughly: if xJ �

u
yJ for ‘almost all’ finite subsets J ⊆ I, then x �

u
y.

Precise definition given later).

Theorem 2. Let (�) be a preorder on X I . Then

(a) (�) is Πfin-invariant, separable and UF-continuous if and only if there
exists some linearly ordered abelian group (R,+, >) and some function
u : X−→R such that (�) = (

∗�
u

).

(b) R and u can be built with same universal property as in Theorem 1.



Hyperadditive preorders (13/29)

Recall: we define the hyperadditive preorder (
∗�

u
) on X I by

(

x
∗�

u
y
)

⇐⇒

(

∗
∑

i∈I

u(xi ) ≥ ∗
∑

i∈I

u(yi )
)

, for all x, y ∈ X I .

(
∗�

u
) is a complete, Πfin-invariant, separable preorder on X I , whose finitary

part is the additive preorder ( �
u

).
Also, (

∗�
u

) satisfies a weak continuity condition called UF-continuity.
(Roughly: if xJ �

u
yJ for ‘almost all’ finite subsets J ⊆ I, then x �

u
y.

Precise definition given later).

Theorem 2. Let (�) be a preorder on X I . Then

(a) (�) is Πfin-invariant, separable and UF-continuous if and only if there
exists some linearly ordered abelian group (R,+, >) and some function
u : X−→R such that (�) = (

∗�
u

).

(b) R and u can be built with same universal property as in Theorem 1.



Hyperadditive preorders (13/29)

Recall: we define the hyperadditive preorder (
∗�

u
) on X I by

(

x
∗�

u
y
)

⇐⇒

(

∗
∑

i∈I

u(xi ) ≥ ∗
∑

i∈I

u(yi )
)

, for all x, y ∈ X I .

(
∗�

u
) is a complete, Πfin-invariant, separable preorder on X I , whose finitary

part is the additive preorder ( �
u

).
Also, (

∗�
u

) satisfies a weak continuity condition called UF-continuity.
(Roughly: if xJ �

u
yJ for ‘almost all’ finite subsets J ⊆ I, then x �

u
y.

Precise definition given later).

Theorem 2. Let (�) be a preorder on X I . Then

(a) (�) is Πfin-invariant, separable and UF-continuous if and only if there
exists some linearly ordered abelian group (R,+, >) and some function
u : X−→R such that (�) = (

∗�
u

).

(b) R and u can be built with same universal property as in Theorem 1.



Hyperadditive preorders (13/29)

Recall: we define the hyperadditive preorder (
∗�

u
) on X I by

(

x
∗�

u
y
)

⇐⇒

(

∗
∑

i∈I

u(xi ) ≥ ∗
∑

i∈I

u(yi )
)

, for all x, y ∈ X I .

(
∗�

u
) is a complete, Πfin-invariant, separable preorder on X I , whose finitary

part is the additive preorder ( �
u

).
Also, (

∗�
u

) satisfies a weak continuity condition called UF-continuity.
(Roughly: if xJ �

u
yJ for ‘almost all’ finite subsets J ⊆ I, then x �

u
y.

Precise definition given later).

Theorem 2. Let (�) be a preorder on X I . Then

(a) (�) is Πfin-invariant, separable and UF-continuous if and only if there
exists some linearly ordered abelian group (R,+, >) and some function
u : X−→R such that (�) = (

∗�
u

).

(b) R and u can be built with same universal property as in Theorem 1.



Hyperadditive preorders (13/29)

Recall: we define the hyperadditive preorder (
∗�

u
) on X I by

(

x
∗�

u
y
)

⇐⇒

(

∗
∑

i∈I

u(xi ) ≥ ∗
∑

i∈I

u(yi )
)

, for all x, y ∈ X I .

(
∗�

u
) is a complete, Πfin-invariant, separable preorder on X I , whose finitary

part is the additive preorder ( �
u

).
Also, (

∗�
u

) satisfies a weak continuity condition called UF-continuity.
(Roughly: if xJ �

u
yJ for ‘almost all’ finite subsets J ⊆ I, then x �

u
y.

Precise definition given later).

Theorem 2. Let (�) be a preorder on X I . Then

(a) (�) is Πfin-invariant, separable and UF-continuous if and only if there
exists some linearly ordered abelian group (R,+, >) and some function
u : X−→R such that (�) = (

∗�
u

).

(b) R and u can be built with same universal property as in Theorem 1.



Hyperadditive preorders (13/29)

Recall: we define the hyperadditive preorder (
∗�

u
) on X I by

(

x
∗�

u
y
)

⇐⇒

(

∗
∑

i∈I

u(xi ) ≥ ∗
∑

i∈I

u(yi )
)

, for all x, y ∈ X I .

(
∗�

u
) is a complete, Πfin-invariant, separable preorder on X I , whose finitary

part is the additive preorder ( �
u

).
Also, (

∗�
u

) satisfies a weak continuity condition called UF-continuity.
(Roughly: if xJ �

u
yJ for ‘almost all’ finite subsets J ⊆ I, then x �

u
y.

Precise definition given later).

Theorem 2. Let (�) be a preorder on X I . Then

(a) (�) is Πfin-invariant, separable and UF-continuous if and only if there
exists some linearly ordered abelian group (R,+, >) and some function
u : X−→R such that (�) = (

∗�
u

).

(b) R and u can be built with same universal property as in Theorem 1.



Hyperadditive preorders (13/29)

Recall: we define the hyperadditive preorder (
∗�

u
) on X I by

(

x
∗�

u
y
)

⇐⇒

(

∗
∑

i∈I

u(xi ) ≥ ∗
∑

i∈I

u(yi )
)

, for all x, y ∈ X I .

(
∗�

u
) is a complete, Πfin-invariant, separable preorder on X I , whose finitary

part is the additive preorder ( �
u

).
Also, (

∗�
u

) satisfies a weak continuity condition called UF-continuity.
(Roughly: if xJ �

u
yJ for ‘almost all’ finite subsets J ⊆ I, then x �

u
y.

Precise definition given later).

Theorem 2. Let (�) be a preorder on X I . Then

(a) (�) is Πfin-invariant, separable and UF-continuous if and only if there
exists some linearly ordered abelian group (R,+, >) and some function
u : X−→R such that (�) = (

∗�
u

).

(b) R and u can be built with same universal property as in Theorem 1.



Strong Pareto/dominance property (14/29)

In what sense does u represents individual preferences in Theorems 1 and 2?
Let x ∈ X , let i ∈ I, and let z−i ∈ X I\{i}. Let (x , z−i ) be the element
of X I which has x in the ith coordinate and z−i in the other coordinates.

Let (�) be a separable, Πfin-invariant, finitary preorder on X I .

For any x , y ∈ X , define x �
1 y if there exists some i ∈ I and z−i ∈ X I\{i}

such that (x , z−i ) � (y , z−i ). This defines a complete preorder ( �
1 ) on X .

Note: (�) is separable and Πfin-invariant, so x �
1 y if and only if

(x , z−i ) � (y , z−i ) for all i ∈ I and z−i ∈ X I\{i}.

Proposition 3. Let (R,+, >) be a linearly ordered group, let u : X−→R,
and let ( �) be the (hyper)additive preorder on X I defined by u. Then:

(a) u is an ordinal utility function for ( �
1 ): (x �

1 y) ⇔ (u(x) ≥ u(y)).

(b) For any x, y ∈ X I which are (�)-comparable, we have:
(

xi
�
1 yi for all i ∈ I

)

=⇒
(

x � y
)

.
(

xi
�
1 yi for all i ∈ I, and xi

≻
1 yi for some i ∈ I

)

=⇒
(

x ≻ y
)

.
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Archimedean preferences and real-valued utility (15/29)

In Theorems 1 and 2, when is u real-valued? (Equivalent: when is R ⊆ R?)
Fix o ∈ X . Define o ∈ X I by oi := o for all i ∈ I.

For any x ∈ X I with d(x, o) <∞, and any N ∈ N, define xN as follows.

x : . . . x1x2x3x4x5 o o o o o o o o o o o o o o o o o o o o o o o o o . . .

x4 : . . . x1x2x3x4x5
| {z }

J1

x1x2x3x4x5
| {z }

J2

x1x2x3x4x5
| {z }

J3

x1x2x3x4x5
| {z }

J4

o o o o o o o o o o . . .

(1) Find disjoint J1, . . . ,JN ⊂ I with |Jn| = d(x, o) for all n ∈ [1...N].
(2) Let βn : Jn−→I(x, o) be bijections for n ∈ [1 . . .N].
(3) Define xN

j := xβn(j) for all n ∈ [1 . . .N] and j ∈ Jn.

(4) Define xN
i := o for all i ∈ I \ J1 ⊔ · · · ⊔ JN .

(�) is Archimedean if and only if: for all x, y ∈ X I with d(x, o) <∞,
d(y, o) <∞, and x ≻ o, there exists some N ∈ N such that xN � y.
(This definition is independent of the choice of o, because (�) is separable.)

Proposition 4. Let (�) be a strictly finitary preorder on X I .

(�) is Πfin-invariant, separable, and Archimedean if and only if there exists
some u : X−→R such that (�) is the additive preorder defined by u.
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Formal definition of ∗R: ultrafilters (16/29)

Let F := {all finite subsets of I}.

Let P := the power set of F .

A free ultrafilter is a subset UF ⊂ P (i.e. a family of collections of finite
subsets of I) with the following properties:

◮ (F0) No finite subset of F is an element of UF. (Hence, ∅ 6∈ UF.)

◮ (F1) If D,E ∈ UF, then D ∩ E ∈ UF.

◮ (F2) For any E ∈ UF and P ∈ P, if E ⊆ P , then P ∈ UF also.

◮ (UF) For any P ∈ P, either P ∈ UF or P∁ ∈ UF (but not both).

Idea: Elements of UF are ‘large’ collections of finite subsets of I; if
G ∈ UF and a certain statement holds for all J ∈ G, then this statement
holds for ‘almost all’ finite subsets J ⊆ I. (In particular, axioms (F0) and
(UF) imply that F ∈ UF.)

The existence of a free ultrafilter on F follows from Zorn’s Lemma.
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Formal definition of ∗R: ultraproducts (17/29)

Let (R,+, >) be a linearly ordered abelian group (e.g. R = R).
Let RF be the set of all functions r : F−→R.

For any r , s ∈ RF , let F(r , s) := {F ∈ F ; r(F) ≥ s(F)}.

Let UF be a free ultrafilter on F . Define r �
UF

s if and only if F(r , s) ∈ UF.

This defines a complete preorder ( �
UF

) on RF .

Let ( ≈
UF

) be the symmetric part of ( �
UF

) (an equivalence relation on RF).
Thus, r ≈

UF
s if they agree ‘almost everywhere’. Define ∗R := RF/( ≈

UF
).

For any r ∈ RF , let ∗r denote the equivalence class of r in ∗R.

Define linear order ( >) on ∗R, by (∗r > ∗s) ⇔ (r ≻
UF

s), for all ∗r , ∗s ∈ ∗R.

RF is an abelian group under pointwise addition. Define a binary
operation ‘+’ on ∗R by setting ∗r + ∗s := ∗(r + s) for all ∗r , ∗s ∈ ∗R.

Lemma A. (∗R,+, >) is a linearly ordered abelian group.
∗R is called an ultrapower of R.

Example. If R = R, then ∗R is the group of hyperreal numbers (the
starting point of nonstandard analysis).
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Formal definition of (
∗�

u
): hypersums [Skip to end] (18/29)

Let r : I−→R be some function. Recall: F := { all finite subsets of I}.

For any F ∈ F , define SF :=
∑

f ∈F

rf . This yields a function S : F−→R.

Then define ∗
∑

i∈I

ri to be the unique element of ∗R corresponding to S .

In particular, for any set X , any function u : X−→R and any x ∈ X I ,

define ∗
∑

i∈I

u(xi ) ∈
∗R in this fashion.

Then define the hyperadditive preorder (
∗�

u
) on X I by:

(

x
∗�

u
y
)

⇐⇒

(

∗
∑

i∈I

u(xi ) ≥ ∗
∑

i∈I

u(yi )
)

, for all x, y ∈ X I .

Lemma B. (a) (
∗�

u
) is a complete, separable preorder on X I .

(b) Furthermore, UF can be designed such that (
∗�

u
) is Πfin-invariant, and

such that the finitary part of (
∗�

u
) is the additive preorder ( �

u
).
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UF-continuity [Skip to end] (19/29)

For any x, z ∈ X I and J ⊆ I, let xJ z
I\J

denote the element w ∈ X I

defined by wj := xj for all j ∈ J and wi := zi for all i ∈ I \ J .

Let x, y ∈ X I , and let G ∈ UF.

Write“x �
G

y” if, for all z ∈ X I and all J ∈ G, we have xJ z
I\J

� yJ z
I\J

.

Write “x ≻
G

y” if, for all z ∈ X I and all J ∈ G, we have xJ z
I\J ≻ yJ z

I\J
.

The preorder (�) is UF-continuous if, for any x, y ∈ X I :

(C1) if x �
G

y for some G ∈ UF, then x � y.

(C2) if x ≻
G

y for some G ∈ UF, then x ≻ y.

Let ( �
fin

) denote the finitary part of (�).
Lemma C. Let (�) be a preorder on X I , and let u : X−→R. Then

(

( �
fin

) = ( �
u

), and (�) is UF-continuous
)

⇐⇒
(

(�) = (
∗�

u
)
)

.

Theorem 2 follows by combining Lemmas A, B, and C.
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Practicalities (20/29)

Problems. (a) (
∗�

u
) is defined using an ultrafilter, so it is not explicitly

constructable within the Zermelo-Fraenkel (ZF) axioms.
(This is unavoidable: Zame (2007) and Lauwers (2010) have shown that
any ‘reasonable’ infinite-horizon intertemporal preference order is
nonconstructable in ZF.)
(b) Furthermore, there are uncountably many distinct ultrafilters UF

satisfying the conditions of Lemma B(b); each yields a slightly different
version (

∗�
u

UF
) of the hyperadditive order.

This makes it hard to determine, in practice, whether x
∗�

u
y.

Solution. For any x, y ∈ X I , define x �
w

y iff there exists some finite

E ⊂ I such that
∑

j∈J

u(xj) ≥
∑

j∈J

u(yj) for all finite J ⊂ I with E ⊆ J .

Proposition. Let R be a linearly ordered abelian group and let u : X−→R.
For any x, y ∈ X I , we have x �

w
y if and only if x

∗�
u

UF
y for every ultrafilter

UF satisfying Lemma B(b).
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About permutation invariance (21/29)

Πfin-invariance does not require (�) to be invariant under arbitrary
permutations of I. Thus, it lacks the full ethical force of the standard
‘anonymity’ axiom of social choice theory.

Fortunately, (
∗�

u
) is invariant under a much larger group ΠUF of

permutations, which includes some (but not all) non-finitary ones

Unfortunately, ΠUF is still only a small subgroup of the group of all
permutations of I.

However, it is well-known that (�) cannot be invariant under all
permutations of I and also satisfy the Pareto/dominance axiom. (See Basu
& Mitra (2003) or Fleurbaey & Michel (2003; Theorem 1) for details).
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About UF-continuity (22/29)

Part (C1) of the ‘UF-continuity’ axiom is very similar to Fleurbaey &
Michel’s (2003) ‘Limit Ranking’ axiom, or part (a) of Basu & Mitra’s
(2007; Axiom 4) ‘Strong consistency’.

Part (C2) is similar to Asheim & Tungodden’s (2004; WPC) ‘Weak
Preference Consistency’, or part (b) of Basu & Mitra’s (2007; Axiom 5)
‘Weak consistency’.

One difference: the other axioms suppose I = N and specify a particular
choice of G (namely: G := {[1 . . .T ]; T ∈ N}), whereas UF-continuity
allows G to be any element of UF; in this sense, the other axioms are less
demanding than UF-continuity is.

On the other hand, the other axioms apply if the hypotheses of (C1) and
(C2) to hold for even one choice of z ∈ X I , whereas UF-continuity only
applies if these hypotheses hold for all z ∈ X I ; in this sense, the other
axioms are more demanding than UF-continuity is.
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About separability (23/29)

Separability imposes a mild restriction on attitudes towards (i)
intertemporal volatility, (ii) risk, and/or (iii) interpersonal inequality.

For example, improving xi to yi is has the same social value, whether i is
currently the least happy person, time period, or state of nature in x, or
already the most happy person, time period, or state of nature in x.

This excludes ‘rank-dependent expected utility’ models of risky choice, and
excludes ‘rank-weighted utilitarian’ SWOs (e.g. ‘generalized Gini’).
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Additively separable preferences are susceptible to several paradoxes:
◮ (a) The St. Petersburg Paradox (risk everything for microscopic

probability of winning huge reward).
◮ (b) Nozick’s (1974) utility monster (sacrifice a large population of

happy people so that just one person can achieve ‘Nirvana’).
◮ (c) Parfit’s (1984) repugnant conclusion (sacrifice a large population of

happy people for a vastly huger population of miserable people).
◮ (d) Diamond’s (1971) paradox (utilitarianism doesn’t prefer ex ante

egalitarian lotteries over ex ante inegalitarian ones).
◮ (e) More generally, utilitarianism doesn’t care about ‘equality’ (i.e. the

utilitarian optimum may be highly inegalitarian).
◮ (f) Also, utilitarianism doesn’t care about ‘fairness’ or ‘dessert’.
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◮ Using linearly ordered abelian groups and nonstandard analysis, we can
provide an additive utility representation for any separable,
permutation-invariant preorder on X I , for any set X and any (infinite)
set I.

◮ This provides a new framework for decisions involving infinitely many
future generations, uncertainty, and/or variable populations.



Conclusion (26/29)

◮ Using linearly ordered abelian groups and nonstandard analysis, we can
provide an additive utility representation for any separable,
permutation-invariant preorder on X I , for any set X and any (infinite)
set I.

◮ This provides a new framework for decisions involving infinitely many
future generations, uncertainty, and/or variable populations.



Merci & Thank you.

These presentation slides are available at

<http://euclid.trentu.ca/pivato/Research/separable.pdf>

The paper is available at

<http://mpra.ub.uni-muenchen.de/28262/>
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