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Introduction (2/29)

◮ Suppose society must collectively choose from some set X of
alternatives, using a voting rule F .

◮ Suppose we split the voters into two subgroups, and each subgroup,
using rule F , selects the alternative x .

◮ Then the combined group, using F , should also select alternative x .

◮ We say the rule F satisfies reinforcement if it has this property.

◮ Smith (1973) and Young (1974,1975) showed that ‘scoring rules’ (e.g.
Borda rule) are the only preference aggregation rules which satisfy
reinforcement and are anonymous and neutral (i.e. invariant under
relabeling of the voters and/or alternatives).

◮ This led to axiomatic characterizations of the Borda rule, Kemeny rule,
and plurality rule, by Young & Levenglick, Nitzan & Rubinstein,
Richelson, Morkelyunas, and others, as the only rules satisfying
reinforcement and certain other axioms.
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◮ Myerson (1995) generalized the Smith-Young results from preference
aggregators to abstract voting rules.

◮ I will extend Myerson’s result, by considering infinite signal sets, and
removing his hypotheses of universal domain and overwhelming
majority.

◮ I will do this by considering scoring rules where the scores can range
over a linearly ordered abelian group, instead of the real numbers.

◮ I will also characterize balance rules (another class introduced by
Myerson (1995)), the formally utilitarian voting rule, and the range
voting rule.
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Voting rules (4/29)

◮ Let V be the (finite or infinite) set of ‘signals’ or ‘messages’ which
could be sent by each voter.

◮ Let N := {0, 1, 2, 3, . . .} and Z := {±n; n ∈ N}.

◮ For any n ∈ ZV , let ‖n‖ :=
∑

v∈V

|nv |.

◮ Let N〈V〉 := {n ∈ NV ; ‖n‖ < ∞}.
◮ If n ∈ N〈V〉, then n represents an anonymous profile of voters: for each

v ∈ V, we interpret nv as the number of voters sending the signal v ,
while ‖n‖ is the (finite) size of the whole population.

◮ A domain is any collection of profiles D ⊆ N〈V〉 such that 0 ∈ D.
(The set N〈V〉 itself is the universal domain.)

◮ Let X be a (finite or infinite) set of social alternatives.
◮ A (variable population, anonymous) voting rule is a correspondence

F : D ⇉ X such that F (0) = X .
◮ For all d ∈ D, the outcome F (d) ⊆ X is a nonempty set (typically a

singleton).
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Loags and scoring rules (5/29)

A linearly ordered abelian group (loag) is a triple (R, +, >), where (R, +)
is an abelian group, and > is a complete, antisymmetric, transitive binary
relation on R such that, for all r , s ∈ R, if r > 0, then r + s > s.
Examples: (a) The set R of real numbers is a loag, with the standard
ordering and addition operator. So is Z.
(b) For any n ∈ N, the space Rn is a loag under vector addition and the
lexicographic order.

For any s = (sv )v∈V ∈ RV , define group homomorphism s : Z〈V〉−→R by
setting s(d) :=

∑
v∈V sv dv , for all d ∈ Z〈V〉. (Well-defined since ‖d‖ < ∞.)

An R-valued score system is an X -indexed set S := {sx}x∈X ⊂ RV .
Fix a domain D ⊆ N〈V〉. Define the S-scoring rule FS : D ⇉ X as follows:

FS(d) := argmax
x∈X

sx(d), for all d ∈ D.

Idea: sx(d) is the ‘score’ which alternative x receives from profile d; a
voter who sends signal v contributes sx

v ‘points’ to this score.
The alternative with the highest score wins.
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sx(d), for all d ∈ D.

Idea: sx(d) is the ‘score’ which alternative x receives from profile d; a
voter who sends signal v contributes sx

v ‘points’ to this score.
The alternative with the highest score wins.
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Examples (6/29)

Recall: The S-scoring rule FS : D ⇉ X is defined:

FS(d) := argmax
x∈X

sx(d), for all d ∈ D.

Examples:

◮ Plurality vote is a scoring rule with V = X , and R = Z, and sx
v = 1 if

x = v , while sx
v = 0 if x 6= v .

◮ The Borda rule is a scoring rule where V is the set of all strict
preference orders over X , and R = Z, and sx

v = r if x is ranked rth
place from the bottom in the preference order v .

◮ In the Kemeny rule, X = V is the space of preference orders on some
set A of alternatives, and F minimizes the ‘average distance’ to the
preferences of the voters.

◮ Lexicographical R2-valued rules arise if we first apply one scoring rule
Fa, and then use a second scoring rule Fb only to break any ties which
arise in Fa.
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Example: Quasiutilitarian voting rules (7/29)

Recall: The S-scoring rule FS : D ⇉ X is defined:

FS(d) := argmax
x∈X

sx(d), for all d ∈ D.

In several scoring rules, R = R, and V is some subset of RX , and sv
x := vx

for all v ∈ V and x ∈ X .

◮ Formally utilitarian voting is obtained by setting V := RX .

◮ Range voting is obtained by setting V := [0, 1]X

◮ Approval voting obtained by setting V := {0, 1}X .

◮ Relative utilitarianism is obtained by setting V := {v ∈ [0, 1]X ;
minx∈X vx = 0 and maxx∈X vx = 1}.

◮ Cumulative voting is obtained by setting V := {v ∈ [0, 1]X ;∑
x∈X vx = 1}.
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Balance rules (8/29)

Let (R, +, >) be a linearly ordered abelian group.
Let D ⊆ N〈V〉 be a domain of profiles.
An R-valued balance system is an X 2-indexed collection
B := {bx ,y}x ,y∈X ⊂ RV such that bx ,y = −by ,x for all x , y ∈ X (hence
bx ,x = 0 for all x ∈ X ), and such that,

max
x∈X

min
y∈X

bx ,y (d) ≥ 0, for all d ∈ D. (∗)

Define the balance rule FB : D ⇉ X as follows:

For all d ∈ D and x ∈ X ,
(
x ∈ FB(d)

)
⇐⇒

(
bx ,y (d) ≥ 0 for all y ∈ X .

)

(Condition (∗) just means that FB(d) 6= ∅ for all d ∈ D.)

Example:

Let S = {sx}x∈X be an R-valued score system on (X ,V).
For all x , y ∈ X , define ∇x ,yS := sx − sy ∈ RV , to obtain a balance system
∇S := {∇x ,yS}x ,y∈X . Then F∇S(n) = FS(n) for all n ∈ N〈V〉.
Thus, every scoring rule is a balance rule.
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The Condorcet balance rules (9/29)

Recall. The balance rule FB : D ⇉ X is defined as follows:

For all d ∈ D and x ∈ X ,
(
x ∈ FB(d)

)
⇐⇒

(
bx ,y (d) ≥ 0 for all y ∈ X .

)

Example. Let V be the set of all preference orders over X .
For all x , y ∈ X and v ∈ V, define

bx ,y
v :=





1 if v prefers x to y ;
−1 if v prefers y to x ;

0 if v is indifferent between x and y .

Then FB is the Condorcet rule: for any n ∈ N〈V〉, we have x ∈ F (n) if and
only if x is a Condorcet winner in the profile n (i.e. for any other y ∈ X , at
least as many voters strictly prefer x over y as the number who strictly
prefer y over x).
Unfortunately, F (n) = ∅ for some n ∈ N〈V〉 (the ‘Condorcet paradox’).
Let D ⊂ N〈V〉 be the set of all profiles having a Condorcet winner.
Then FB : D ⇉ X is a balance rule.



The Condorcet balance rules (9/29)

Recall. The balance rule FB : D ⇉ X is defined as follows:

For all d ∈ D and x ∈ X ,
(
x ∈ FB(d)

)
⇐⇒

(
bx ,y (d) ≥ 0 for all y ∈ X .

)

Example. Let V be the set of all preference orders over X .
For all x , y ∈ X and v ∈ V, define

bx ,y
v :=





1 if v prefers x to y ;
−1 if v prefers y to x ;

0 if v is indifferent between x and y .

Then FB is the Condorcet rule: for any n ∈ N〈V〉, we have x ∈ F (n) if and
only if x is a Condorcet winner in the profile n (i.e. for any other y ∈ X , at
least as many voters strictly prefer x over y as the number who strictly
prefer y over x).
Unfortunately, F (n) = ∅ for some n ∈ N〈V〉 (the ‘Condorcet paradox’).
Let D ⊂ N〈V〉 be the set of all profiles having a Condorcet winner.
Then FB : D ⇉ X is a balance rule.
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Reinforcement (10/29)

Let D ⊆ N〈V〉. A rule F : D ⇉ X satisfies reinforcement if the following
is true: for any n,m ∈ D, if F (n) ∩ F (m) 6= ∅, then

n + m ∈ D, and F (n + m) = F (n) ∩ F (m).

Idea: the profile (n + m) represents a union of two disjoint
sub-populations, represented by profiles n and m.
Reinforcement says: if x ∈ X and both n and m endorse x (i.e. if x ∈ F (n)
and x ∈ F (m)), then we should have x ∈ F (n + m).
Furthermore, in this case, F (n + m) should consist of only those x ∈ X
which receive this joint endorsement.

We now come to our first result:

Theorem 1. Let X and V be arbitrary sets, let D ⊆ N〈V〉 be any domain,
and let F : D ⇉ X be a voting rule.
Then F satisfies reinforcement if and only if F is a balance rule.
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Neutrality (11/29)

Not every balance rule is a scoring rule, even when D = N〈V〉.
We need additional hypotheses to characterize scoring rules.
Let ΠV be the group of all permutations of V. For any n ∈ N〈V〉 and
π ∈ ΠV , let π(n) := m, where mv := nπ−1(v) for all v ∈ V.
Let ΠX be the group of all permutations of X .
A voting rule F : D ⇉ X is neutral if there exists a group homomorphism
ν : ΠX−→ΠV (the neutralizer) such that, for all π ∈ ΠX , if π̃ := ν(π), then
the domain D is π̃-invariant, and F (π̃(d)) = π (F (d)) for all d ∈ D.
Idea: Every alternative in X is treated equally: for any x , y ∈ X , and every
profile d ∈ D with x ∈ F (d), there is a permutation d′ of d with y ∈ F (d′).

For any π ∈ ΠV and r ∈ RV , define rπ ∈ RV by (rπ)v = rπ(v) for all v ∈ V.
Let ν : ΠX−→ΠV be a homomorphism.
A score system S = {sx}x∈X is ν-neutral if, for all π ∈ ΠX and x , y ∈ X , if
π(y) = x and π̃ := ν(π), then sx π̃ = sy .
Example: All the scoring rules mentioned above have neutral score
systems, with the obvious neutralizers.
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Characterization of scoring rules (12/29)

Myerson (1995) proved the following theorem:

Suppose X and V are both finite, and let F : N〈V〉
⇉ X be a voting

rule (with universal domain). If F is neutral, satisfies reinforcement,
and satisfies an Archimedean condition called ‘overwhelming majority’,
then F is a scoring rule with a real-valued score function.

We will now extend this result.
A domain D ⊆ N〈V〉 is a cone if d1 + d2 ∈ D whenever d1,d2 ∈ D, and
also, d ∈ D whenever n d ∈ D for some n ∈ N.
Example: (a) The universal domain N〈V〉 itself is a cone.
(b) If f : R〈V〉−→R is a linear function, then the sets {n ∈ N〈V〉; f (n) ≥ 0}
and {n ∈ N〈V〉; f (n) = 0} are cones.
(c) The intersection of any collection of cones is a cone.
Here is our second main result:

Theorem 2. Let X be a finite set, let V be any set, let D ⊆ N〈V〉 be a
cone, and let F : D ⇉ X be any voting rule.
Then F is neutral and satisfies reinforcement if and only if F is a scoring
rule with a neutral score system.
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Overwhelming majority (13/29)

A voting rule F satisfies overwhelming majority (OWM) if, for any
n,n′ ∈ N〈V〉, there exists some M ∈ N such that, for all m > M, we have
F (mn + n′) ⊆ F (n).

Idea: If one sub-population of voters (represented by m n) is much larger
than another sub-population (represented by n′), then the choice of the
combined population should be determined by the choice of the larger
sub-population —except that the smaller sub-population may act as a
‘tie-breaker’ in some cases.

Recall: Myerson (1995) showed that, if the voting rule in Theorem 2
satisfies overwhelming majority, then not only is it a scoring rule, but the
score system is real-valued.

Our next result makes an analogous statement for the balance rule in
Theorem 1, without assuming neutrality.
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Overwhelming majority (14/29)

A voting rule F satisfies overwhelming majority (OWM) if, for any
n,n′ ∈ N〈V〉, there exists some M ∈ N such that, for all m > M, we have
F (mn + n′) ⊆ F (n).

A voting rule F : N〈V〉
⇉ X satisfies the tie condition (TC) if, for all

distinct x , y ∈ X :

(TC1) There exists some n ∈ N〈V〉 with F (n) = {x , y}; and
(TC2) For any finite W ⊆ V, there exists some m ∈ N〈V〉 such that

mw > 0 for all w ∈ W, and F (m) ⊇ {x , y}.

Example: Any nontrivial neutral balance rule satisfies TC.

Proposition 3. Let F : N〈V〉
⇉ X be a balance rule satisfying TC.

F satisfies overwhelming majority if and only if F = FB for some real-valued
balance system B.

Proof sketch. Overwhelming majority and TC imply that the loag R is
Archimedean.
Then Hölder’s theorem implies that R is isomorphic to a subgroup of R.
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Formal Utilitarianism (15/29)

What is the ‘best’ scoring rule? We will now offer two possible answers to
this question.
Let V and W be two sets of ‘signals’, and let α : W−→V (‘translation’).
Define α∗ : N〈W〉−→N〈V〉 as follows: for any n ∈ N〈W〉, and any v ∈ V,
α∗(n)v :=

∑
{nw ; w ∈ W and α(w) = v}.

Given two voting rules F : N〈V〉
⇉ X and G : N〈W〉

⇉ X , we say that F is
at least as expressive as G if there is a some ‘translation’ function
α : W−→V such that, for all n ∈ N〈W〉, F (α∗(n)) = G (n).
Idea: for any w ∈ W, voting for w in the rule G is effectively equivalent to
voting for α(w) in F . Thus, the voters can express any profile of opinions
via F which they could have expressed via G .

The rule F is the most expressive member of some class of rules if it is at
least as expressive as every other element of that class.

Proposition 4. Let X be a finite set.
Formally utilitarian voting is the most expressive X -valued voting rule
which satisfies reinforcement, neutrality, and overwhelming majority.



Formal Utilitarianism (15/29)

What is the ‘best’ scoring rule? We will now offer two possible answers to
this question.
Let V and W be two sets of ‘signals’, and let α : W−→V (‘translation’).
Define α∗ : N〈W〉−→N〈V〉 as follows: for any n ∈ N〈W〉, and any v ∈ V,
α∗(n)v :=

∑
{nw ; w ∈ W and α(w) = v}.

Given two voting rules F : N〈V〉
⇉ X and G : N〈W〉

⇉ X , we say that F is
at least as expressive as G if there is a some ‘translation’ function
α : W−→V such that, for all n ∈ N〈W〉, F (α∗(n)) = G (n).
Idea: for any w ∈ W, voting for w in the rule G is effectively equivalent to
voting for α(w) in F . Thus, the voters can express any profile of opinions
via F which they could have expressed via G .

The rule F is the most expressive member of some class of rules if it is at
least as expressive as every other element of that class.

Proposition 4. Let X be a finite set.
Formally utilitarian voting is the most expressive X -valued voting rule
which satisfies reinforcement, neutrality, and overwhelming majority.



Formal Utilitarianism (15/29)

What is the ‘best’ scoring rule? We will now offer two possible answers to
this question.
Let V and W be two sets of ‘signals’, and let α : W−→V (‘translation’).
Define α∗ : N〈W〉−→N〈V〉 as follows: for any n ∈ N〈W〉, and any v ∈ V,
α∗(n)v :=

∑
{nw ; w ∈ W and α(w) = v}.

Given two voting rules F : N〈V〉
⇉ X and G : N〈W〉

⇉ X , we say that F is
at least as expressive as G if there is a some ‘translation’ function
α : W−→V such that, for all n ∈ N〈W〉, F (α∗(n)) = G (n).
Idea: for any w ∈ W, voting for w in the rule G is effectively equivalent to
voting for α(w) in F . Thus, the voters can express any profile of opinions
via F which they could have expressed via G .

The rule F is the most expressive member of some class of rules if it is at
least as expressive as every other element of that class.

Proposition 4. Let X be a finite set.
Formally utilitarian voting is the most expressive X -valued voting rule
which satisfies reinforcement, neutrality, and overwhelming majority.



Formal Utilitarianism (15/29)

What is the ‘best’ scoring rule? We will now offer two possible answers to
this question.
Let V and W be two sets of ‘signals’, and let α : W−→V (‘translation’).
Define α∗ : N〈W〉−→N〈V〉 as follows: for any n ∈ N〈W〉, and any v ∈ V,
α∗(n)v :=

∑
{nw ; w ∈ W and α(w) = v}.

Given two voting rules F : N〈V〉
⇉ X and G : N〈W〉

⇉ X , we say that F is
at least as expressive as G if there is a some ‘translation’ function
α : W−→V such that, for all n ∈ N〈W〉, F (α∗(n)) = G (n).
Idea: for any w ∈ W, voting for w in the rule G is effectively equivalent to
voting for α(w) in F . Thus, the voters can express any profile of opinions
via F which they could have expressed via G .

The rule F is the most expressive member of some class of rules if it is at
least as expressive as every other element of that class.

Proposition 4. Let X be a finite set.
Formally utilitarian voting is the most expressive X -valued voting rule
which satisfies reinforcement, neutrality, and overwhelming majority.



Formal Utilitarianism (15/29)

What is the ‘best’ scoring rule? We will now offer two possible answers to
this question.
Let V and W be two sets of ‘signals’, and let α : W−→V (‘translation’).
Define α∗ : N〈W〉−→N〈V〉 as follows: for any n ∈ N〈W〉, and any v ∈ V,
α∗(n)v :=

∑
{nw ; w ∈ W and α(w) = v}.

Given two voting rules F : N〈V〉
⇉ X and G : N〈W〉

⇉ X , we say that F is
at least as expressive as G if there is a some ‘translation’ function
α : W−→V such that, for all n ∈ N〈W〉, F (α∗(n)) = G (n).
Idea: for any w ∈ W, voting for w in the rule G is effectively equivalent to
voting for α(w) in F . Thus, the voters can express any profile of opinions
via F which they could have expressed via G .

The rule F is the most expressive member of some class of rules if it is at
least as expressive as every other element of that class.

Proposition 4. Let X be a finite set.
Formally utilitarian voting is the most expressive X -valued voting rule
which satisfies reinforcement, neutrality, and overwhelming majority.



Formal Utilitarianism (15/29)

What is the ‘best’ scoring rule? We will now offer two possible answers to
this question.
Let V and W be two sets of ‘signals’, and let α : W−→V (‘translation’).
Define α∗ : N〈W〉−→N〈V〉 as follows: for any n ∈ N〈W〉, and any v ∈ V,
α∗(n)v :=

∑
{nw ; w ∈ W and α(w) = v}.

Given two voting rules F : N〈V〉
⇉ X and G : N〈W〉

⇉ X , we say that F is
at least as expressive as G if there is a some ‘translation’ function
α : W−→V such that, for all n ∈ N〈W〉, F (α∗(n)) = G (n).
Idea: for any w ∈ W, voting for w in the rule G is effectively equivalent to
voting for α(w) in F . Thus, the voters can express any profile of opinions
via F which they could have expressed via G .

The rule F is the most expressive member of some class of rules if it is at
least as expressive as every other element of that class.

Proposition 4. Let X be a finite set.
Formally utilitarian voting is the most expressive X -valued voting rule
which satisfies reinforcement, neutrality, and overwhelming majority.



Formal Utilitarianism (15/29)

What is the ‘best’ scoring rule? We will now offer two possible answers to
this question.
Let V and W be two sets of ‘signals’, and let α : W−→V (‘translation’).
Define α∗ : N〈W〉−→N〈V〉 as follows: for any n ∈ N〈W〉, and any v ∈ V,
α∗(n)v :=

∑
{nw ; w ∈ W and α(w) = v}.

Given two voting rules F : N〈V〉
⇉ X and G : N〈W〉

⇉ X , we say that F is
at least as expressive as G if there is a some ‘translation’ function
α : W−→V such that, for all n ∈ N〈W〉, F (α∗(n)) = G (n).
Idea: for any w ∈ W, voting for w in the rule G is effectively equivalent to
voting for α(w) in F . Thus, the voters can express any profile of opinions
via F which they could have expressed via G .

The rule F is the most expressive member of some class of rules if it is at
least as expressive as every other element of that class.

Proposition 4. Let X be a finite set.
Formally utilitarian voting is the most expressive X -valued voting rule
which satisfies reinforcement, neutrality, and overwhelming majority.



Formal Utilitarianism (15/29)

What is the ‘best’ scoring rule? We will now offer two possible answers to
this question.
Let V and W be two sets of ‘signals’, and let α : W−→V (‘translation’).
Define α∗ : N〈W〉−→N〈V〉 as follows: for any n ∈ N〈W〉, and any v ∈ V,
α∗(n)v :=

∑
{nw ; w ∈ W and α(w) = v}.

Given two voting rules F : N〈V〉
⇉ X and G : N〈W〉

⇉ X , we say that F is
at least as expressive as G if there is a some ‘translation’ function
α : W−→V such that, for all n ∈ N〈W〉, F (α∗(n)) = G (n).
Idea: for any w ∈ W, voting for w in the rule G is effectively equivalent to
voting for α(w) in F . Thus, the voters can express any profile of opinions
via F which they could have expressed via G .

The rule F is the most expressive member of some class of rules if it is at
least as expressive as every other element of that class.

Proposition 4. Let X be a finite set.
Formally utilitarian voting is the most expressive X -valued voting rule
which satisfies reinforcement, neutrality, and overwhelming majority.



Formal Utilitarianism (15/29)

What is the ‘best’ scoring rule? We will now offer two possible answers to
this question.
Let V and W be two sets of ‘signals’, and let α : W−→V (‘translation’).
Define α∗ : N〈W〉−→N〈V〉 as follows: for any n ∈ N〈W〉, and any v ∈ V,
α∗(n)v :=

∑
{nw ; w ∈ W and α(w) = v}.

Given two voting rules F : N〈V〉
⇉ X and G : N〈W〉

⇉ X , we say that F is
at least as expressive as G if there is a some ‘translation’ function
α : W−→V such that, for all n ∈ N〈W〉, F (α∗(n)) = G (n).
Idea: for any w ∈ W, voting for w in the rule G is effectively equivalent to
voting for α(w) in F . Thus, the voters can express any profile of opinions
via F which they could have expressed via G .

The rule F is the most expressive member of some class of rules if it is at
least as expressive as every other element of that class.

Proposition 4. Let X be a finite set.
Formally utilitarian voting is the most expressive X -valued voting rule
which satisfies reinforcement, neutrality, and overwhelming majority.



Range voting (16/29)

For any v ∈ V, define 1v ∈ N〈V〉 by (1v )v := 1, whereas (1v )w := 0 for all
w ∈ V \ {v}.
A voting rule F : N〈V〉

⇉ X admits minority overrides if, for any n ∈ N〈V〉,
there is some v ∈ V such that F (n + 1v ) 6= F (n).
Idea: Regardless of the size of the population and the weight of existing
public opinion, a single voter can always cast a vote which changes the
outcome. (Example: Formally utilitarian voting).
Such ‘overrides’ not only generate political instability; they are arguably
undemocratic. It might be better if F did not admit minority overrides.

If V is finite, then any rule satisfying overwhelming majority will not admit
minority overrides.
However, we will be interested in the case when V is infinite.

Proposition 5. Let X be a finite set.
Range voting is the most expressive X -valued voting rule which satisfies
reinforcement, neutrality, overwhelming majority, and does not admit
minority overrides.

[Skip to end]
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Despite Propositions 3-5, OWM is not always normatively compelling. In
some cases, a non-real-valued scoring system may be more appropriate.
Example. Let X ( X1 ×X2, where X1 is a space of alternatives in one
‘policy dimension’, while X2 is a space of alternatives in another dimension.
Note: X is a proper subset of X1 ×X2. Not all policy pairs are feasible.
Suppose X1 is considered to be lexicographically prior to X2 (e.g. X1

represents basic human rights, while X2 represents GDP).
For j = 1, 2, let Vj be a space of signals, and suppose we have decided to
use the R-valued score system jS = {

j
sx}x∈X ⊂ RVj on (Xj ,Vj).

Problem. If we apply the scoring rules F1S : N〈V1〉 ⇉ X1 and
F2S : N〈V2〉 ⇉ X2 separately, then we may end up selecting an element of
(X1 ×X2) \ X (infeasible).
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Nonsolution. Combine 1S and 2S into a R-valued score system S on
(X ,V1 × V2) by defining sx1,x2

v1,v2 := 1s
x1
v1

+ 2s
x2
v2

for all (x1, x2) ∈ X and
(v1, v2) ∈ V1 × V2.
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Flaw. This does not respect the lexicographical priority of X1 over X2.
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Solution. Let R := R2 with the vector addition operation ‘+’ and the
lexicographical ordering ‘≻’ (i.e. (r1, r2) ≻ (s1, s2) if and only if either
r1 > s1, or r1 = s1 and r2 > s2).
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Proof sketches



Homogeneous partial orders (19/29)

Let (R, +) be an abelian group, and let (�) be a binary relation on R.
(�) is homogeneous if, for all r , s ∈ R, we have (r � s) ⇐⇒ (r − s � 0).
Thus, (R, +,≻) is a loag iff (≻) is a homogeneous linear order on R.
The positive conoid of (�) is the set P� := {r ∈ R; r � 0}.
The conoid P� completely encodes the relation (�): for any r , s ∈ R,

(
r � s

)
⇐⇒

(
r − s ∈ P�

)
. (∗)

Conversely, given any subset P ⊆ R, we can use formula (∗) to define a
unique homogeneous binary relation (�) such that P� = P.

Lemma. (�) is a transitive if and only if:

(a) P� is additively closed (i.e. p1 + p2 ∈ P whenever p1, p2 ∈ P);

In this case, (�) is a partial order (i.e. transitive and antisymmetric) if
and only if, in addition to (a), we have

(b) 0 6∈ P�.

Otherwise, (�) is a preorder (i.e. transitive and reflexive).
(�) is a linear order if and only if, in addition to (a) and (b), we have

(c) For all r ∈ R \ {0}, either r ∈ P� or −r ∈ P� (but not both).
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Homogeneous Szpilrajn Lemma (20/29)

If (�) and (�′) are two relations on R, we say that (�′) extends (�) if, for
all r , s ∈ R, we have (r � s) =⇒ (r �′ s).

An abelian group (R, +) is torsion free if n r 6= 0 for any n ∈ Z \ {0} and
r ∈ R \ {0}.

The proof of Theorem 1 uses the following result:

Homogeneous Szpilrajn Lemma. Let (R, +) be a torsion free abelian
group.
Any homogeneous partial order (≻) on R is extended by a homogeneous
linear order.

Proof sketch. (Fuchs, 1950 or Everett, 1950) Similar to ‘classic’ Szpilrajn
lemma.

1. Show that the set of homogeneous partial orders extending (≻)
satisfies the Ascending Chain Condition.

2. Then use Zorn’s Lemma to obtain maximal extension.

3. This maximal extension must be a homogeneous linear order.
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Theorem 1. Let X and V be any sets, let D ⊆ N〈V〉 be any domain. A
voting rule F : D ⇉ X satisfies reinforcement ⇔ F is a balance rule.
Proof sketch. “ =⇒ ” Let Z〈V〉 := {n ∈ ZV ; ‖n‖ < ∞}.
For all x ∈ X , let Cx := {d ∈ D; x ∈ F (d)}.
Then Cx is a preorder conoid in the abelian group Z〈V〉.
(Proof: We have 0 ∈ Cx because 0 ∈ D and F (0) = X by definition.
Meanwhile, Cx is closed under addition because F satisfies reinforcement).

For any x , y ∈ X , let Px ,y := {cx − cy ; cx ∈ Cx and cy ∈ Cy}.
Px ,y is a preorder conoid (because Cx and Cy are). Note: Py ,x = −Px ,y .

Let (�) be the homogenous preorder on Z〈V〉 defined by Px ,y .
Let Ox ,y := {z ∈ Z〈V〉; z ≈ 0}. Let Rx ,y := Z〈V〉/Ox ,y .
The homog. preorder (�) projects to homog. partial order (≻) on Rx ,y .
Homog. Szpilrajn extends (≻) to homog. linear order ( >

x,y
) on Rx ,y .

Let bx ,y : Z〈V〉−→Rx ,y be the quotient map (i.e. bx ,y (z) := z + Ox ,y ).
Note: Oy ,x = Ox ,y , so Ry ,x = Rx ,y as groups, and by ,x = bx ,y .
But ( >

x,y
) is the negative ordering to ( >

y,x
) (i.e. r >

x,y
r ′ ⇔ −r >

y,x
− r ′).

Thus, WOLOG, redefine ( >
y,x

) to be identical with ( >
x,y

), and redefine by ,x

to be −bx ,y (or vice versa) Finally, let bx ,x := 0 for all x ∈ X .
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From balance rules to scoring rules (23/29)

Theorem 1 + reinforcement =⇒ balance rule. To prove Theorem 2, we
must show this balance rule is actually a scoring rule. We use the following:

Lemma A. Let D ⊆ N〈V〉 be a domain. A voting rule F : D ⇉ X is a
scoring rule if and only if F is a balance rule with a balance system
B = {bx ,y}x ,y∈X satisfying:
bx ,y (d) + by ,z(d) = bx ,z(d), for all x , y , z ∈ X and d ∈ D. (∗)

Proof sketch. “ =⇒ ” Let S be a score system, and let B := ∇S.
Then FB = FS, and B satisfies (∗).
“⇐=” Fix o ∈ X . Define so := 0. For all other x ∈ X , define sx := bx ,o .
This yields a score system S. If B satisfies (∗), then it is easy to show that
FB = F∇S. But F∇S = FS.

Remark. (a) Lemma A can also be used to find other sufficient conditions
(besides neutrality) for a balance rule to be a scoring rule.
But Lemma A can also be used to create balance rules which are not
scoring rules. (So reinforcement alone is not enough to get a scoring rule.)
Next problem: Use neutrality to ensure that the balance system from
Theorem 1 satisfies (∗).
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Neutral perfect balance systems (24/29)

Let ν : ΠX−→ΠV be a group homomorphism. Let B be a balance system.

◮ Say B is ν-neutral if, for all x , y , x ′, y ′ ∈ X and π ∈ ΠX , if
x ′ := π−1(x) and y ′ := π−1(y) and π̃ = ν(π), then bx ,y π̃ = bx ′,y ′

.

◮ Say B is perfect on the domain D if, for any d ∈ D, any x ∈ FB(d)
and any y ∈ X \ FB(d), we have bx ,y (d) > 0.

Example: ∇S is perfect. But the Condorcet balance system is not perfect.

The next result is also important to prove Theorem 2.

Proposition B. Let X be a finite set, let V be any set, let D ⊆ N〈V〉 be a
domain, and let F : D ⇉ X be a balance rule.
Let ν : ΠX−→ΠV be a group homomorphism. Then F is ν-neutral if and
only if F = FB for some ν-neutral perfect balance system B.

Proof sketch. Start with any balance system B̃ for F .
Act on B̃ by a (suitably chosen) transitive subgroup Γ of ΠX .
Let B be sum of all elements in the Γ-orbit of B̃.
Then FeB

= FB, and FB is ν-neutral by construction.
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Proof sketch for Theorem 2 (25/29)

If F satisfies reinforcement, then Theorem 1 says F is a balance rule.
If ν : ΠX−→ΠV is a homomorphism, and F is also ν-neutral, then
Proposition B says F has a ν-neutral, perfect balance system B.
We must show that B satisfies condition (∗) in Lemma A.
For simplicity, suppose |X | = 3, and let X = {x , y , z}.
Find π ∈ ΠX with π(x) = z , π(y) = x , and π(z) = y . Thus, π3 = IdX .
Let π̃ := ν(π) ∈ ΠV . Thus, π̃3 = IdV .
Let d ∈ D, and let d̃ := d + π̃(d) + π̃2(d). Then π̃(d̃) = d̃.
Thus, neutrality says π[F (d̃)] = F (d̃). But F (d̃) 6= ∅. Thus, F (d̃) = X .
Thus, bx ,y (d̃) = 0 (because x , y ∈ FB(d̃)). But then

0 = bx ,y (d̃) = bx ,y
(
d + π̃(d) + π̃2(d)

)
=

(
bx ,y + bx ,y π̃ + bx ,y π̃2

)
(d)

=
(
bx ,y + bπ−1(x),π−1(y)π̃ + bπ−2(x),π−2(y)

)
(d) (by neutrality of B)

= (bx ,y + by ,z + bz,x) (d) (by the definition of π).

Thus, bx ,y (d) + by ,z(d) = −bz,x(d) = bx ,z(d).
This holds for all d ∈ D. Thus, condition (∗) holds.
Thus, Lemma A says that F is a scoring rule.
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Other results and open problems (26/29)

Other results:

◮ Other conditions under which a balance rule is actually a scoring rule.

◮ Also, examples of balance rules which are not scoring rules.

◮ Conditions under which the balance representation or scoring
representation of a rule is unique up to affine transformations.

Open problems:

◮ Neutrality is sufficient but not necessary in Theorem 2.
Are there normatively compelling conditions that are both necessary
and sufficient for a scoring rule?

◮ Are there normatively compelling balance rules that are not scoring
rules?

◮ Most of our results require X to be finite. Can this restriction be
eliminated?
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Thank you.

These presentation slides are available at

<http://euclid.trentu.ca/pivato/Research/scoring.pdf>

The paper is available at

< http://mpra.ub.uni-muenchen.de/31896>
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