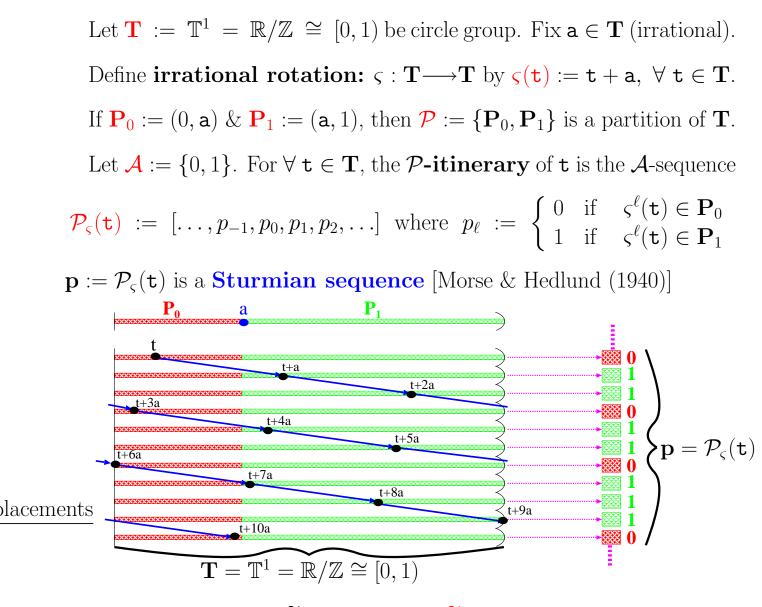
Cellular Automata vs. Quasisturmian Shifts Marcus Pivato Trent University

http://xaravve.trentu.ca/pivato/Research/qca.pdf

This research supported by NSERC Canada.



We get function $\mathcal{P}_{\varsigma} : \widetilde{\mathbf{T}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ (where $\widetilde{\mathbf{T}} \subset \mathbf{T}$ dense G_{δ}) such that

$$\mathcal{P}_{\varsigma} \circ \varsigma \quad = \quad \sigma \circ \mathcal{P}_{\varsigma}.$$

Let $\mathfrak{P} := \operatorname{closure} \left[\mathcal{P}_{\varsigma}(\widetilde{\mathbf{T}}) \right] \subset \mathcal{A}^{\mathbb{Z}}$. Then \mathfrak{P} is a **Sturmian shift**.

- Minimal: every point of \mathfrak{P} has dense σ -orbit.
- **Facts:** The smallest complexity of any nonperiodic subshift.
 - $\#(\mathfrak{P}-words \text{ of length } n) = n+1$. Thus, $h_{top}(\mathfrak{P}) = 0$.

Let $K \ge 1$. Let $\mathbf{T} := \mathbb{T}^K = \mathbb{R}^K / \mathbb{Z}^K \cong [0, 1)^K$ be the K-torus.

Fix $\mathbf{a} \in \mathbf{T}$ (monothetic). Define **irrational rotation:** $\varsigma : \mathbf{T} \longrightarrow \mathbf{T}$ by

$$old arsigma({ t t})$$
 := ${ t t}+{ t a}, \quad orall \, { t t} \in { extbf{T}}.$

 \mathcal{A} := finite alphabet. An \mathcal{A} -indexed **open partition** of **T** is collection $\mathcal{P} = \{\mathbf{P}_a\}_{a \in \mathcal{A}}$ of open subsets of **T**, so that:

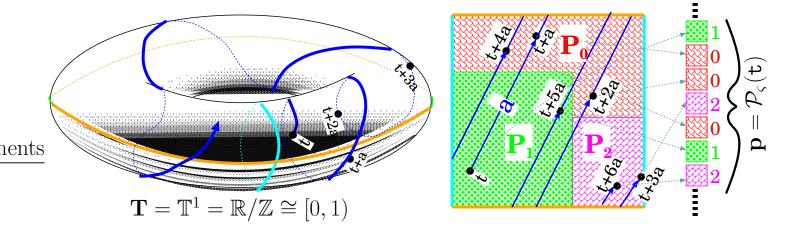
If
$$\mathbf{P}_* := \bigsqcup_{a \in \mathcal{A}} \mathbf{P}_a$$
, then:
• $\lambda[\mathbf{P}_*] = 1$. (λ := Lebesgue measure on \mathbf{T} .)
• \mathbf{P}_* is dense.

Define measurable function $\mathcal{P} : \mathbf{T} \longrightarrow \mathcal{A}$ by $\mathcal{P}^{-1}\{a\} = \mathbf{P}_a, \forall a \in \mathcal{A}.$

For any $t \in \mathbf{T}$, the **itinerary** of t is the sequence

$$\mathcal{P}_{\varsigma}(\mathsf{t}) := [\dots, p_{-1}, p_0, p_1, p_2, \dots]$$
 where $p_{\ell} := \mathcal{P}\left(\varsigma^{\ell}(\mathsf{t})\right)$, for all $\ell \in \mathbb{Z}$.

 $\mathbf{p} := \mathcal{P}_{\varsigma}(\mathbf{t})$ is a quasisturmian sequence



Get function $\mathcal{P}_{\varsigma} : \widetilde{\mathbf{T}} \longrightarrow \mathcal{A}^{\mathbb{Z}} (\widetilde{\mathbf{T}} \subset \mathbf{T} \text{ dense } G_{\delta})$ such that $\mathcal{P}_{\varsigma} \circ \varsigma = \sigma \circ \mathcal{P}_{\varsigma}$. Let $\mathfrak{P} := \text{closure } \left[\mathcal{P}_{\varsigma}(\widetilde{\mathbf{T}}) \right] \subset \mathcal{A}^{\mathbb{Z}}$. Then \mathfrak{P} is a **quasistumian shift**. \mathcal{P} is **measurable partition** if $\{\mathbf{P}_a\}_{a \in \mathcal{A}}$ are *measurable* & $\lambda[\mathbf{P}_*] = 1$. Let $\mu := \mathcal{P}_{\varsigma}(\lambda)$. Then μ is a **quasistumian measure** on $\mathcal{A}^{\mathbb{L}}$. Let $D \geq 1$. Let $\mathbb{L} := \mathbb{Z}^D$, a *D*-dimensional lattice.

Let $\tau : \mathbb{L} \longrightarrow \mathbf{T}$ be a monomorphism with dense image.

Define **rotation** action of \mathbb{L} on \mathbf{T} :

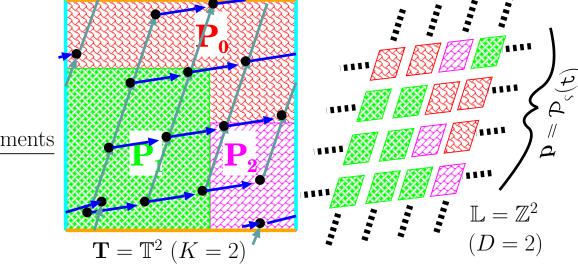
For any $\ell \in \mathbb{L}$ and $\mathbf{t} \in \mathbf{T}$, $\varsigma^{\ell}(\mathbf{t}) := \mathbf{t} + \tau(\ell)$.

Let \mathcal{A} be a finite alphabet and let $\mathcal{P} = \{\mathbf{P}_a\}_{a \in \mathcal{A}}$ be an open partition.

For $\forall t \in \mathbf{T}$, the **itinerary** of t is the *D*-dimensional *A*-configuration:

$$\mathcal{P}_{\varsigma}(\mathtt{t}) \ := \ [p_{\ell}]_{\ell \in \mathbb{L}} \ ext{where} \ p_{\ell} \ := \ \mathcal{P}\left(\varsigma^{\ell}(\mathtt{t})
ight), ext{ for all } \ell \in \mathbb{L}.$$

 $\mathbf{p} := \mathcal{P}_{\varsigma}(\mathbf{t})$ is a quasistumian configuration



ag replacements

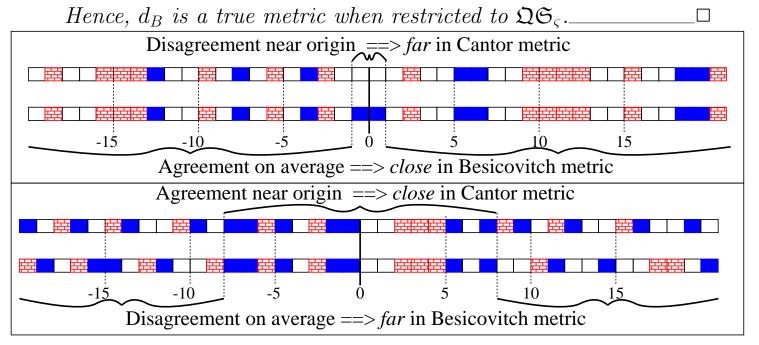
We get function $\mathcal{P}_{\varsigma} : \widetilde{\mathbf{T}} \longrightarrow \mathcal{A}^{\mathbb{L}}$ (where $\widetilde{\mathbf{T}} \subset \mathbf{T}$ dense G_{δ}) such that

 $\mathcal{P}_{\varsigma} \circ \varsigma^{\ell} = \sigma^{\ell} \circ \mathcal{P}_{\varsigma}, \quad \text{for all } \ell \in \mathbb{L}.$

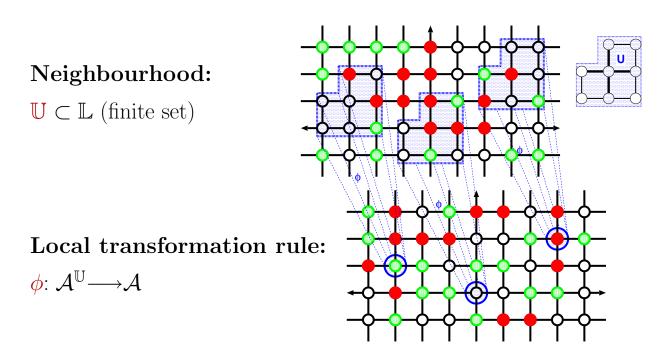
 $\mathfrak{P} := \operatorname{closure}\left[\mathcal{P}_{\varsigma}(\widetilde{\mathbf{T}})\right] \subset \mathcal{A}^{\mathbb{L}} \text{ is a quasisturmian shift on } \mathcal{A}^{\mathbb{L}}$

If \mathcal{P} is a *measurable* partition, then $\mu := \mathcal{P}_{\varsigma}(\lambda)$ is a **quasisturmian** measure on $\mathcal{A}^{\mathbb{L}}$.

The standard topology on $\mathcal{A}^{\mathbb{L}}$ is induced by **Cantor metric:** $\forall \mathbf{p}, \mathbf{q} \in \mathcal{A}^{\mathbb{L}}, \quad d_{\mathcal{C}}(\mathbf{p}, \mathbf{q}) := 2^{-D(\mathbf{p}, \mathbf{q})}; \quad D(\mathbf{p}, \mathbf{q}) := \min \{ |\ell| ; \ell \in \mathbb{L}, p_{\ell} \neq q_{\ell} \}.$ Let $\mathfrak{QS}_{\varsigma} := \{ \text{Quasisturmian sequences in } \mathcal{A}^{\mathbb{L}} \}.$ Then $\mathfrak{QS}_{\varsigma}$ is σ -invariant, $d_{\mathcal{C}}$ -dense subset of $\mathcal{A}^{\mathbb{L}}$ (but not $d_{\mathcal{C}}$ -closed). More useful is **Besicovitch (pseudo)metric:** $\forall \mathbf{p}, \mathbf{q} \in \mathcal{A}^{\mathbb{L}},$ $d_{\mathcal{B}}(\mathbf{p}, \mathbf{q}) := \overline{\text{density}} (\ell \in \mathbb{L} ; p_{\ell} \neq q_{\ell}) = \limsup_{N \to \infty} \frac{\#\{\mathbf{b} \in \mathbb{B}(N) ; p_{\mathbf{b}} \neq q_{\mathbf{b}}\},}{(2N)^{D}}$ (pseudometric, because $d_{\mathcal{B}}(\mathbf{p}, \mathbf{q}) = 0$ if $\mathbf{p} \neq \mathbf{q}$ on set of density zero.) Lemma: If $\mathbf{p}, \mathbf{q} \in \mathfrak{QS}_{\varsigma}$, then $\left(d_{\mathcal{B}}(\mathbf{p}, \mathbf{q}) = 0 \right) \iff \left(\mathbf{p} = \mathbf{q} \right).$



Cellular automata are Besicovitch-continuous; topological dynamics studied by F. Blanchard, E. Formenti, and P. Kurka [1997].



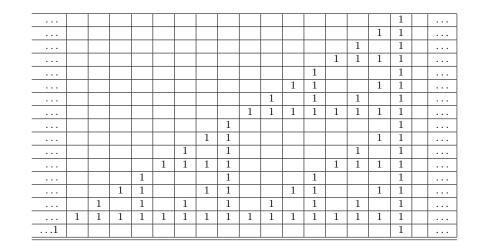
The CA induced by ϕ is function $\Phi: \mathcal{A}^{\mathbb{L}} \supseteq$, so that for $\forall \mathbf{a} \in \mathcal{A}^{\mathbb{L}}$,

 $\Phi(\mathbf{a}) := [b_{\ell}|_{\ell \in \mathbb{L}}], \quad \text{where, } \forall \ell \in \mathbb{L}, \quad b_{\ell} = \phi [a_{(u+\ell)}|_{u \in \mathbb{U}}].$

Equivalently, a CA is a continuous transformation $\Phi: \mathcal{A}^{\mathbb{L}} \longrightarrow$ that commutes with all shifts, ie. $\forall \ell \in \mathbb{L}, \quad \Phi \circ \sigma^{\ell} = \sigma^{\ell} \circ \Phi.$

Example: $\mathbb{L} := \mathbb{Z};$ $\mathbb{U} := \{0, 1\},$ $\mathcal{A} := \mathbb{Z}_{/2} = \{0, 1\}.$ Define $\phi : \mathbb{Z}_{/2}^{\{0,1\}} \longrightarrow \mathbb{Z}_{/2}$ by $\phi(\mathbf{a}) := a_0 + a_1 \pmod{2}.$

This yields **linear cellular automaton** $\Phi = \text{Id} + \sigma$.



Theorem 1: [Hof & Knill, 1995; M.P. 2004] Let $\Phi: \mathcal{A}^{\mathbb{L}} \supseteq be \ a \ CA$.

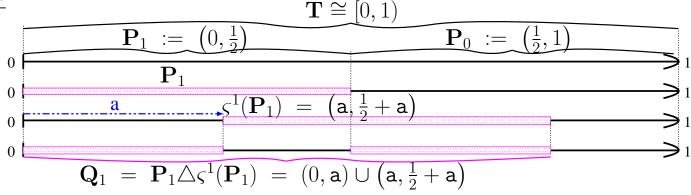
- (a) If $\mathbf{p} \in \mathcal{A}^{\mathbb{L}}$ is a QS sequence, then $\Phi(\mathbf{p})$ is also a QS sequence. Thus, $\Phi(\mathfrak{Q}\mathfrak{S}_{\varsigma}) \subseteq \mathfrak{Q}\mathfrak{S}_{\varsigma}$.
- (b) If $\mathfrak{P} \subset \mathcal{A}^{\mathbb{L}}$ is a QS shift, then $\Phi(\mathfrak{P})$ is also a QS shift.
- (c) If μ is a QS measure, then $\Phi(\mu)$ is also a QS measure.

Proof idea: Let $\mathcal{P} = {\mathbf{P}_a}_{a \in \mathcal{A}}$. Define partition $\mathcal{Q} := {\mathbf{Q}_a}_{a \in \mathcal{A}}$ by

$$\forall a \in \mathcal{A}, \qquad \mathbf{Q}_a := \bigcup_{\substack{\mathbf{c} \in \mathcal{A}^{\mathbb{B}} \\ \phi(\mathbf{c}) = a}} \bigcap_{\mathbf{b} \in \mathbb{B}} \varsigma^{-\mathbf{b}}(\mathbf{P}_{c_{\mathbf{b}}}) \subset \mathbf{T}.$$

Example: $\mathbb{L} = \mathbb{Z}$; $\mathcal{A} = \mathbb{Z}_{/2}$; $\Phi := \mathrm{Id} + \sigma$. $\mathbf{Q}_1 = \mathbf{P}_1 \bigtriangleup \varsigma(\mathbf{P}_1)$ and $\mathbf{Q}_0 = \mathbf{Q}_1^{\complement} = \left(\mathbf{P}_0 \cap \varsigma(\mathbf{P}_0)\right) \sqcup \left(\mathbf{P}_1 \cap \varsigma(\mathbf{P}_1)\right)$.

ements



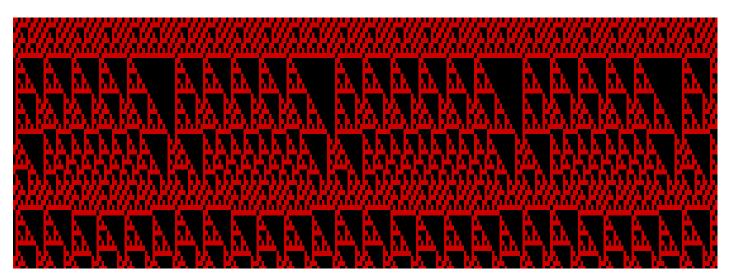
We write: $\mathcal{Q} = \Phi_{\varsigma}(\mathcal{P})^{\prime}$. Thus, Φ induces a map $\Phi_{\varsigma} : \mathcal{A}^{\mathbf{T}} \longrightarrow \mathcal{A}^{\mathbf{T}}$, where $\mathcal{A}^{\mathbf{T}} := \{\mathcal{A}\text{-labelled partitions of } \mathbf{T}\}.$

Lemma 2: Let $\mathcal{P} \in \mathcal{A}^{\mathbf{T}}$ and let $\mathcal{Q} = \Phi_{\varsigma}(\mathcal{P})$. Then

(a) If P is open then Q is open. If t ∈ T, then Φ (P_ζ(t)) = Q_ζ(t).
(b) If 𝔅 = QS shift of P, then Φ(𝔅) = QS shift of Q.
(c) If μ = QS measure of P, then Φ(μ) = QS measure of Q. _□



Fifty iterations of Φ_{ς} on a partition of **T**.



Fifty iterations of Φ on a corresponding quasisturmian sequence.

Let $\mathcal{A}^{\mathbf{T}} := \{\mathcal{A}\text{-labelled measurable partitions of } \mathbf{T}\}.$

Define symmetric difference metric on $\mathcal{A}^{\mathbf{T}}$:

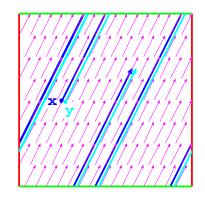
$$\boldsymbol{d}_{\Delta}(\mathcal{P},\mathcal{Q}) = \sum_{a \in \mathcal{A}} \lambda \left(\mathbf{P}_a \Delta \mathbf{Q}_a \right), \quad \text{for any } \mathcal{P}, \mathcal{Q} \in \mathcal{A}^{\mathbf{T}}.$$

 $(\mathcal{A}^{\mathbf{T}}, d_{\Delta})$ is a complete and bounded metric space (but not compact). ${}^{o}\mathcal{A}^{\mathbf{T}} := \{\mathcal{A}\text{-labelled open partitions of } \mathbf{T}\} \text{ is } d_{\triangle}\text{-dense subset of } \mathcal{A}^{\mathbf{T}}.$ **Theorem** Let $\Phi : \mathcal{A}^{\mathbb{L}} \longrightarrow$ be any cellular automaton. Then (a) $\Phi_{\varsigma}: \mathcal{A}^{\mathbf{T}} \to \mathcal{A}^{\mathbf{T}}$ is d_{\wedge} -Lipschitz. (b) $(\mathcal{A}^{\mathbf{T}}, d_{\triangle}, \Phi_{\varsigma})$ is a topological dynamical system, and (c) $\Phi_{\varsigma}({}^{o}\mathcal{A}^{\mathbf{T}}) \subset {}^{o}\mathcal{A}^{\mathbf{T}}, so ({}^{o}\mathcal{A}^{\mathbf{T}}, d_{\triangle}, \Phi_{\varsigma}) is a subsystem. \square$ Let ${}^{o}\mathcal{A}_{0}^{\mathbf{T}} := \{\mathcal{A}\text{-labelled open partitions of } \mathbf{T} \text{ with } 0 \in \widetilde{\mathbf{T}}\}.$ Then ${}^{o}\mathcal{A}_{0}^{\mathbf{T}}$ is a ς -invariant, Φ_{ς} -invariant, comeager subset of ${}^{o}\mathcal{A}^{\mathbf{T}}$. **Theorem:** Define $\xi_{\varsigma} : {}^{o}\mathcal{A}_{0}^{\mathbf{T}} \longrightarrow \mathfrak{QS}_{\varsigma}$ by $\xi_{\varsigma}(\mathcal{P}) := \mathcal{P}_{\varsigma}(0)$. Then: (a) $\xi_{\varsigma} \left({}^{o} \mathcal{A}_{0}^{\mathrm{T}} \right) = \mathfrak{Q} \mathfrak{S}_{\varsigma}.$ (b) If $\mathcal{P}, \mathcal{Q} \in {}^{o}\mathcal{A}_{0}^{\mathbf{T}}$, then $d_{\Delta}(\mathcal{P}, \mathcal{Q}) = 2 \cdot d_{B}\left(\xi_{\varsigma}\left(\mathcal{P}\right), \xi_{\varsigma}\left(\mathcal{Q}\right)\right)$. (c) $\xi_{\varsigma} \circ \Phi_{\varsigma} = \Phi \circ \xi_{\varsigma}$. Also, for any $\ell \in \mathbb{L}$, $\xi_{\varsigma} \circ \varsigma^{\ell} = \sigma^{\ell} \circ \xi_{\varsigma}$. (e) ξ_{ς} is top.dyn.sys.isomorphism $({}^{o}\mathcal{A}_{0}^{\mathbf{T}}, d_{\triangle}, \Phi_{\varsigma}, \varsigma) \cong (\mathfrak{Q}\mathfrak{S}_{\varsigma}, d_{B}, \Phi, \sigma).$

Idea: Study action of Φ on $\mathfrak{QS}_{\varsigma}$ via action of Φ_{ς} on ${}^{o}\mathcal{A}_{0}^{\mathbf{T}}$, ${}^{o}\mathcal{A}^{\mathbf{T}} \& \mathcal{A}^{\mathbf{T}}$.

Top.dyn.sys. (\mathbf{X}, d, φ) is **equicontinuous** if, for $\forall \epsilon > 0, \exists \delta > 0$ such that $\forall x, y \in \mathbf{X}$,

$$\left(\begin{array}{c} d(x,y) < \delta \end{array} \right) \Longrightarrow \\ \left(\begin{array}{c} d\left(\varphi^n(x), \varphi^n(y)\right) < \epsilon \text{ for all } n \in \mathbb{N} \end{array} \right)$$



Theorem: If $(\mathcal{A}^{\mathbb{L}}, d_C, \Phi)$ is equicont. then $({}^{o}\mathcal{A}_0^{\mathbf{T}}, d_{\triangle}, \Phi_{\varsigma})$ is equicont. \Box

Let $\xi > 0$. The top.dyn.sys. $(\mathfrak{QG}_{\varsigma}, d_B, \Phi)$ is (positively) ξ -expansive if, for $\forall \mathbf{p}, \mathbf{q} \in \mathfrak{QG}_{\varsigma}$ with $\mathbf{q} \neq \mathbf{p}, \exists n \in \mathbb{N}$ so that $d_B(\Phi^n(\mathbf{p}), \Phi^n(\mathbf{q})) > \xi$.

Proposition [Blanchard, Formenti & Kurka, 1997]

If $\Phi : \mathcal{A}^{\mathbb{Z}} \longrightarrow$ is any CA, then $(\mathcal{A}^{\mathbb{Z}}, \Phi, d_B)$ is <u>not</u> expansive.

Proof idea: Construct $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}}$ which is 'nonexpansive' for all CA. But \mathbf{a} is *not* QS, so this proof does *not* apply to $(\mathfrak{QS}_{\varsigma}, d_B, \Phi)$. If $\mathbf{t} \in \mathbb{T}^1$, let

 $\mathfrak{QS}_{t} := \{ QS \text{ sequences induced by rotation-by-} t \} \subset \mathcal{A}^{\mathbb{Z}}.$

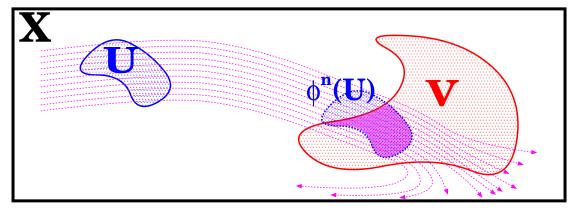
Theorem: Let $\mathcal{A} = \mathbb{Z}_{/2}$ and let $\Phi := \mathrm{Id} + \sigma$.

For $\forall_{\lambda} t \in \mathbf{T}$, the top.dyn.sys. $(\mathfrak{QS}_{t}, d_{B}, \Phi)$ is expansive.

Proof Idea: Sufficient to show expansive at [...0000...]. (Φ is linear).

Small 'perturbations' of [...0000...] are magnified along certain powers of 2 (use *Fermat Property:* for $\forall n \in \mathbb{N}, \quad \Phi^{2^n} = \mathrm{Id} + \sigma^{2^n}$.)_____ A top.dyn.sys. (\mathbf{X}, d, φ) is **transitive** if, for any open sets $\mathbf{U}, \mathbf{V} \subset \mathbf{X}$, $\exists n \in \mathbb{N}$ so that $\mathbf{U} \cap \varphi^{-n}(\mathbf{V}) \neq \emptyset$.

 (\mathbf{X}, d, φ) is **topologically mixing** if, for any open sets $\mathbf{U}, \mathbf{V} \subset \mathbf{X}$, $\exists N \in \mathbb{N}$ so that $\mathbf{U} \cap \varphi^{-n}(\mathbf{V}) \neq \emptyset$ for all n > N.



Theorem:

- If $({}^{o}\mathcal{A}^{\mathbf{T}}, d_{\Delta}, \Phi_{\varsigma})$ is transitive, then $(\mathcal{A}^{\mathbb{L}}, d_{C}, \Phi)$ is transitive.
- If $({}^{o}\mathcal{A}^{\mathbf{T}}, d_{\triangle}, \Phi_{\varsigma})$ is top.mixing, then $(\mathcal{A}^{\mathbb{L}}, d_{C}, \Phi)$ is top.mixing._

Question: \exists CA Φ such that $({}^{o}\mathcal{A}^{\mathbf{T}}, d_{\Delta}, \Phi_{\varsigma})$ is transitive or top.mixing?

Conjecture: If $\Phi: \mathcal{A}^{\mathbb{L}} \supseteq$ is surjective, then $\Phi_{\varsigma}: \mathcal{A}^{\mathbf{T}} \supseteq$ is surjective.

Counterexample: $\mathcal{A} = \{0, 1\} = \mathbb{Z}_{/2}$. For any $\mathcal{P} \in \mathcal{A}^{\mathbf{T}}$, if $\mathcal{P} =$ $\{\mathbf{P}_0, \mathbf{P}_1\}$, then let $\overline{\mathcal{P}} := \{\overline{\mathbf{P}}_0, \overline{\mathbf{P}}_1\}$, where $\overline{\mathbf{P}}_0 := \mathbf{P}_1$ and $\overline{\mathbf{P}}_1 := \mathbf{P}_0$.

Lemma: Let $\Phi := \mathrm{Id} + \sigma$. If $\mathcal{P} \in \Phi_{\varsigma}(\mathcal{A}^{\mathbf{T}})$, then $\overline{\mathcal{P}} \notin \Phi_{\varsigma}(\mathcal{A}^{\mathbf{T}})$.

Thus $\Phi_{\varsigma}(\mathcal{A}^{\mathbf{T}})$ only fills 'half' of $\mathcal{A}^{\mathbf{T}}$. But $\Phi_{\varsigma}(\mathcal{A}^{\mathbf{T}})$ is still dense in $\mathcal{A}^{\mathbf{T}}$...

Theorem Let $\Phi : \mathcal{A}^{\mathbb{Z}} \longrightarrow$ be a cellular automaton. TFAE:

- (a) Φ is surjective onto $\mathcal{A}^{\mathbb{Z}}$.
- (b) $\Phi_{\varsigma}({}^{o}\mathcal{A}^{\mathbf{T}})$ is d_{\bigtriangleup} -dense in ${}^{o}\mathcal{A}^{\mathbf{T}}$, and $\Phi_{\varsigma}(\mathcal{A}^{\mathbf{T}})$ is d_{\bigtriangleup} -dense in $\mathcal{A}^{\mathbf{T}}$.
- (c) $\Phi(\mathfrak{QS}_{\varsigma})$ is d_B -dense in $\mathfrak{QS}_{\varsigma}$.
- (d) $\Phi(\mathfrak{Q}\mathfrak{S}_{\varsigma})$ is d_C -dense in $\mathfrak{Q}\mathfrak{S}_{\varsigma}$.

Proof idea: "(a) \Longrightarrow (b)" Irrational rotations are *rank one*, so we can 'tile' any QS sequence $\mathbf{p} = \mathcal{P}_{\varsigma}(\mathbf{t})$ with some word \mathbf{w} .

Let **v** be a Φ -preimage of **w**. Build $\mathcal{Q} \in {}^{o}\mathcal{A}^{\mathbf{T}}$ such that $\mathbf{q} := \mathcal{Q}_{\varsigma}(\mathbf{t})$ is 'tiled' with **v** (and 'tilings' of **p** and **q** are 'aligned'). Then $\Phi(\mathbf{q}) \xrightarrow[d_B]{} \mathbf{p}$. Thus, $\Phi_{\varsigma}(\mathcal{Q}) \xrightarrow[d_{\wedge}]{} \mathcal{P}.$

"(**b**) \Longrightarrow (**c**)" Top.dyn.sys. isomorphism (${}^{o}\mathcal{A}_{0}^{\mathbf{T}}, d_{\triangle}, \Phi_{\varsigma}$) \cong ($\mathfrak{Q}\mathfrak{S}_{\varsigma}, d_{B}, \Phi$). "(c) \Longrightarrow (d)" Use 'tiling' argument to show:

If $\mathfrak{X} \subset \mathfrak{QS}_{\varsigma}$ is σ -invariant and d_B -dense in $\mathfrak{QS}_{\varsigma}$, then \mathfrak{X} is also d_C -dense in $\mathfrak{QS}_{\varsigma}$.

"(d) \Longrightarrow (a)" $\mathfrak{Q}\mathfrak{S}_{\varsigma}$ is d_C -dense in $\mathcal{A}^{\mathbb{L}}$. Thus, $\Phi(\mathcal{A}^{\mathbb{L}})$ is dense in $\mathcal{A}^{\mathbb{L}}$; thus $\Phi(\mathcal{A}^{\mathbb{L}}) = \mathcal{A}^{\mathbb{L}}$ (compactness).

Injectivity of CA restricted to Quasisturmian Shifts _____12

Theorem Let $\Phi: \mathcal{A}^{\mathbb{L}} \supseteq$ be a CA. \exists dense G_{δ} subset $^*\mathcal{A}^{\mathbf{T}} \subset \mathcal{A}^{\mathbf{T}}$, with $\Phi_{\varsigma}({}^{*}\!\mathcal{A}^{\mathbf{T}}) \subseteq {}^{*}\!\mathcal{A}^{\mathbf{T}}$, so that, for $\forall \mathcal{P} \in {}^{*}\!\mathcal{A}^{\mathbf{T}}$, the following dichotomies hold:

(a) If μ is QS measure induced by \mathcal{P} , then either Φ is constant $(\mu-\alpha)$, or Φ is injective $(\mu-\alpha)$.

(b) If $\mathcal{P} \in {}^{o}\mathcal{A}^{T}$ and \mathfrak{P} is the QS shift induced by \mathcal{P} , then either $\Phi_{|_{\mathfrak{P}}}$ is constant, or $\Phi_{|_{\mathfrak{P}}}$ is injective.

Proof idea: Say that \mathcal{P} is *simple* if \mathcal{P} has no translational symmetries.

Lemma: Suppose \mathcal{P} is simple.

(a) If $\mathcal{P} \in \mathcal{A}^{\mathbf{T}}$ then the map $\mathcal{P}_{\varsigma} : \widetilde{\mathbf{T}} \longrightarrow \mathcal{A}^{\mathbb{L}}$ is injective $(\lambda - \alpha)$.

(b) If $\mathcal{P} \in {}^{o}\mathcal{A}^{T}$ then $\mathcal{P}_{\varsigma} : \widetilde{\mathbf{T}} \longrightarrow \mathcal{P}_{\varsigma}(\widetilde{\mathbf{T}}) \subset \mathcal{A}^{\mathbb{L}}$ is a homeomorphism with respect to both to the d_C and d_B metrics on \mathfrak{P} .

Corollary: Suppose \mathcal{P} and $\mathcal{Q} = \Phi_{\varsigma}(\mathcal{P})$ are both simple.

(a) If μ is QS measure of \mathcal{P} , then Φ is injective (μ -æ).

(b) If $\mathcal{P} \in {}^{o}\mathcal{A}^{T}$ and \mathfrak{P} is QS shift of \mathcal{P} , then $\Phi_{|_{\mathfrak{P}}}$ is injective._

Strategy: Find a dense G_{δ} set ${}^*\mathcal{A}^{\mathbf{T}} \subset \mathcal{A}^{\mathbf{T}}$ of simple partitions whose Φ_{ς} -images are also simple.

Theorem: Let $\Phi: \mathcal{A}^{\mathbb{L}} \supseteq$ be a CA. Let μ be QS measure generated by $\mathcal{P} \in \mathcal{A}^{\mathbf{T}}$. Then:

$$\left(\mu \text{ is } \Phi \text{-invariant} \right) \iff \left(\Phi_{\varsigma}(\mathcal{P}) = \boldsymbol{\rho}^{t}(\mathcal{P}) \text{ for some } t \in \mathbf{T} \right).$$

 $(\boldsymbol{\rho}^{t} \text{ is rotation map } ie. \ \boldsymbol{\rho}^{t}(s) := s + t, \text{ for all } s \in \mathbf{T}).$

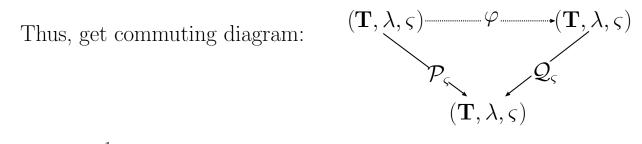
Proof Sketch: If $\mathcal{Q} = \Phi_{\varsigma}(\mathcal{P})$, then \mathcal{Q} also generates μ . Must show:

Claim: If μ is generated by $\mathcal{P} \in \mathcal{A}^{\mathbf{T}}$, then:

 $\{Partitions of \mathbf{T} generating \mu\} = \{\boldsymbol{\rho}^{t}(\mathcal{P}) ; t \in \mathbf{T}\}.$

Claim proof sketch: If \mathcal{P} simple, then $\mathcal{P}_{\varsigma}: \widetilde{\mathbf{T}} \to \mathcal{A}^{\mathbb{L}}$ injective $(\lambda - \alpha)$.

If \mathcal{Q} also generates μ , and \mathcal{Q} simple, then $\mathcal{Q}_{\varsigma}: \widetilde{\mathbf{T}} \to \mathcal{A}^{\mathbb{L}}$ is injective $(\lambda - \varepsilon)$. (If \mathcal{P}, \mathcal{Q} not simple, then replace with 'quotient' partitions)



 $\varphi := \mathcal{Q}_{\varsigma}^{-1} \circ \mathcal{P}_{\varsigma}$ is measure-preserving endomorphism of torus rotation system $(\mathbf{T}, \lambda, \varsigma)$. Any endomorphism must be a rotation. Claim follows.

Corollary: If $\mathcal{A} = \mathbb{Z}_{/2}$, then $\Phi := \mathrm{Id} + \sigma$ has no QS invariant measures.

Proof idea: If $\mathcal{P} \in \mathcal{A}^{\mathbf{T}}$, then $\Phi_{\varsigma}^{2^{n_k}}(\mathcal{P}) \xrightarrow[k \to \infty]{} \mathcal{O}$ (trivial partition) for some sequence $\{n_k\}_{k=1}^{\infty}$. ("Niltropy")

But this is impossible if Φ_{ς} is acting as rotation.

Question: If μ is a QS measure, then \exists wk*-lim $N \to \infty = \frac{1}{N} \sum_{n=1}^{N} \Phi^n \mu$?

If \mathcal{A} is an abelian group (eg. $\mathcal{A} = \mathbb{Z}_{/n}$) then so is $\mathcal{A}^{\mathbb{L}}$. A **linear CA** is a CA $\Phi : \mathcal{A}^{\mathbb{L}} \longrightarrow$ that is also a group homomorphism.

If μ is prob.measure on $\mathcal{A}^{\mathbb{L}}$, then Φ asymptotically randomizes μ if wk*- $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \Phi^n \mu = \eta$, (η := uniform ('Haar') measure on $\mathcal{A}^{\mathbb{L}}$.)

Theorem 1 [D.Lind, 1984]

$$\begin{pmatrix} \bullet \ \mathcal{A} = \mathbb{Z}_{/2} \text{ and } \mathbb{L} = \mathbb{Z}.\\ \bullet \ \Phi = \sigma^{-1} + \sigma^{1}. \ ("N.N. \ XOR")\\ \bullet \ \mu \text{ is a Bernoulli measure.} \end{pmatrix} \Longrightarrow \begin{pmatrix} \Phi \text{ asymptotically}\\ randomizes \ \mu \end{pmatrix}$$

Theorem 2 [P.Ferrari, P.Ney, A.Maass & S.Martínez, 1998]

$$\begin{pmatrix} \bullet \ p \ prime; & \mathcal{A} = \mathbb{Z}_{/(p^n)}; & \mathbb{L} = \mathbb{N}. \\ \bullet \ \Phi = \varphi_0 \cdot \sigma^0 + \varphi_1 \cdot \sigma^1. \quad (\text{``Ledrappier''}) \\ \varphi_0 \ and \ \varphi_1 \ are \ relativ. \ prime \ to \ p. \\ \bullet \ \mu \ is \ a \ Markov \ measure. \\ All \ transition \ probabilities \ nonzero. \end{pmatrix} \Longrightarrow \left(\begin{array}{c} \Phi \ asympt. \\ randomizes \ \mu \end{array} \right)$$

Theorem 3 [R.Yassawi & M.P., 2000]

• Let
$$\mathcal{A} = \mathbb{Z}_{/p}$$
 (p prime).

- Let A = Z_{/p} (p prime).
 Let L = Z^D × N^d be any lattice.
 Let Φ: A^L ⊃ be any nontrivial linear cellular automaton (ie. not a shift).
 μ a harmonically mixing measure.

$$\Longrightarrow \left(\begin{array}{c} \Phi \text{ asympt.} \\ \text{randomizes } \mu \end{array} \right)$$

Harmonic Mixing: eg. Bernoulli measures, Markov chains, or Markov random fields with 'full support'.

Y&P [2002, 2003] extends Thm.3 to $\mathcal{A} = \mathbb{Z}_{/n} \ (\forall n \in \mathbb{N})$ and other abelian groups, and to μ supported on subshifts of finite type and sofic shifts.

Theorem: $\exists \mathbf{S} \subseteq \mathbb{T}^1$ (dense G_{δ}) so that, for any $\mathbf{s} \in \mathbf{S}$ and $\mathcal{P} \in {}^{o}\mathcal{A}^{\mathbf{T}}$, if μ is the QS measure generated by \mathcal{P} under \mathbf{s} -rotation, then μ is <u>not</u> asymptotically randomized by $\Phi = \mathrm{Id} + \sigma$.

Proof Heuristic: Fermat Property: For $\forall n \in \mathbb{N}, \Phi^{2^n} = \mathrm{Id} + \sigma^{2^n}$. Thus $\Phi_{\varsigma}^{2^n} = \mathrm{Id} + \varsigma^{2^n}$.

Now suppose $\mathbf{s} = 0.1 \underbrace{0}_{1} 1 \underbrace{000}_{3} 1 \underbrace{0000000}_{7} 1 \underbrace{00...0}_{15} 1...$

Dyadic Recurrence: $\exists \{n_k\}_{k=1}^{\infty}$ s.t. $d(2^{n_k} \cdot \mathbf{s}, 0) < 2^{-n_k}$.

Thus, $\Phi_{\varsigma}^{2^{n}}(\mathcal{P}) = \mathcal{P} + \varsigma^{2^{n}}(\mathcal{P}) \sim \mathcal{P} + \mathcal{P} = \mathcal{O}.$ ($\mathcal{O} = \text{trivial partition}$). Thus, $\Phi_{\varsigma}^{2^{n}+k}(\mathcal{P}) \sim \Phi^{k}(\mathcal{O}) \sim \mathcal{O}$ for $k \in [0...2^{n-4}]$ Thus, $\Phi^{2^{n}+k}(\mu)[0000] \geq \frac{1}{8} > \frac{1}{16} = \eta[0000]$ for $k \in [0...2^{n-4}]$.

Thus, wk*- $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \Phi^n \mu \neq \eta$: it gives too much mass to [0000]. \Box

Corollary: \exists weak* cluster point μ_{∞} of $\left\{\frac{1}{N}\sum_{n=1}^{N}\Phi^{n}\mu\right\}_{N=1}^{\infty}$; $\mu_{\infty} \neq \eta$.

Now, $\Phi(\mu_{\infty}) = \mu_{\infty}$, so $h(\mu_{\infty}, \sigma) = 0$ [Host, Maass, Martinez, 2004]. But also μ_{∞} is not QS.

Question: What is μ_{∞} ?

Remark: $\lambda[\mathbf{S}] = 0$. Can we find a larger set of 'nonrandomizing' irrational rotations? **Conjecture:** Yes.

Question: Can *any* CA asymptotically randomize *any* QS measure? Conjecture: No. Hof & Knill [1995] saw empirically that Φ_{ς} 'chops' partition \mathcal{P} into tiny bits. Empirically, # of bits in $\Phi_{\varsigma}^{n}(\mathcal{P})$ grew polynomially with n.

Idea: Measure 'chopping' via growth in size of $\partial \mathcal{P} := \bigcup_{a \in \mathcal{A}} \partial \mathbf{P}_a$.

Let $\left[\partial \mathcal{P}\right]$ be some measure of size of $\partial \mathcal{P}$. For example:

- If $\mathbf{T} = \mathbb{T}^1$, then $[\partial \mathcal{P}]$ is cardinality of $\partial \mathcal{P}$.
- If $\mathbf{T} = \mathbb{T}^2$, then $[\partial \mathcal{P}]$ is *length* of $\partial \mathcal{P}$.
- If $\mathbf{T} = \mathbb{T}^3$, then $[\partial \mathcal{P}]$ is *area* of $\partial \mathcal{P}$.
- If $\partial \mathcal{P}$ is α -dim. fractal, then $\lceil \partial \mathcal{P} \rceil$ is α -dim. Hausdorff measure.

$$\Phi_{\varsigma}$$
 chops \mathcal{P} on average if $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \left[\partial \left(\Phi_{\varsigma}^{n}[\mathcal{P}] \right) \right] = \infty.$

Equivalently, $\exists J \subseteq \mathbb{N}$ such that

density
$$(\mathbb{J}) = 1$$
 and $\lim_{\mathbb{J} \ni j \to \infty} \left[\partial \left(\Phi_{\varsigma}^{n}[\mathcal{P}] \right) \right] = \infty.$

 Φ_{ς} chops \mathcal{P} intermittently if $\limsup_{n \to \infty} \left[\partial \left(\Phi_{\varsigma}^{n}[\mathcal{P}] \right) \right] = \infty.$

Equivalent: $\exists J \subseteq \mathbb{N}$ (zero density) so that $\lim_{J \ni j \to \infty} \left[\partial \left(\Phi_{\varsigma}^{n}[\mathcal{P}] \right) \right] = \infty.$

Proposition: If $\mathbb{L} := \mathbb{Z}^D$ and $\Phi: \mathcal{A}^{\mathbb{L}} \supseteq$ is CA, then $\exists C > 0$ so that, if $\mathcal{P} \in {}^{o}\mathcal{A}^{\mathbf{T}}$ and $n \in \mathbb{N}$, then $\left[\partial \left(\Phi_{\varsigma}^{n}[\mathcal{P}]\right)\right] \leq C \cdot n^D \cdot \left[\partial \mathcal{P}\right] ._\Box$

Proposition: If $(\mathfrak{QS}_{\varsigma}, d_B, \Phi)$ is expansive, then Φ_{ς} intermittently chops all $\mathcal{P} \in {}^{o}\mathcal{A}^{\mathbf{T}}$.

Proof idea: Let $\mathcal{P}^n := \Phi_{\varsigma}^n(\mathcal{P})$. Then $\mathcal{P}_{\varsigma}^n : \mathbf{T} \longrightarrow \mathfrak{Q}\mathfrak{S}_{\varsigma}$ is Lipschitz with constant proportional to $\lceil \partial \mathcal{P}^n \rceil$. If $\mathbf{s} \sim \mathbf{t}$ then $\mathcal{P}_{\varsigma}(\mathbf{s}) \sim \mathcal{P}_{\varsigma}(\mathbf{t})$. But if $\mathcal{P}_{\varsigma}^n(\mathbf{s}) \not\sim \mathcal{P}_{\varsigma}^n(\mathbf{t})$, then $\lceil \partial \mathcal{P}^n \rceil$ must have gotten large. $\mathcal{A} := \mathbb{Z}_{/2}$. A **boolean linear CA (BLCA)** is linear CA $\Phi: \mathcal{A}^{\mathbb{L}} \subset$.

Theorem: Let $\Phi: \mathcal{A}^{\mathbb{L}} \supseteq$ be a nontrivial BLCA. For a 'generic' set of $\mathcal{P} \in {}^{o}\mathcal{A}^{\mathbf{T}}$, Φ chops \mathcal{P} on average. If $\mathbf{T} = \mathbb{T}^{1}$, then Φ chops <u>all</u> $\mathcal{P} \in {}^{o}\mathcal{A}^{\mathbf{T}}$ on average.

Proof idea: Φ_{ς} multiplies boundary points the same way Φ multiplies a 'point mass' [.....000000010000000.....] into many point masses.____

						1								
					1		1							
				1				1						
			1		1		1		1					Time
		1								1				
•••	1		1						1		1			
1				1				1				1		

We can be more specific....

Theorem: Let $\Phi = \text{Id} + \sigma$. Let ς be a \mathbb{Z} -action on \mathbf{T} , and let $\mathcal{P} \in {}^{o}\mathcal{A}^{\mathbf{T}}$ be 'generic'. Then, as $n \to \infty$...

(a) ...the maximum of
$$\left[\partial\left(\Phi_{\varsigma}^{n}[\mathcal{P}]\right)\right]$$
 grows linearly. $\exists K > 0$ so that
 $K \leq \limsup_{n \to \infty} \frac{1}{n} \left[\partial\left(\Phi_{\varsigma}^{n}[\mathcal{P}]\right)\right] \leq \left[\partial\mathcal{P}\right]$.
(b) ...the minimum of $\left[\partial\left(\Phi_{\varsigma}^{n}[\mathcal{P}]\right)\right]$ remains constant:
 $\liminf_{n \to \infty} \left[\partial\left(\Phi_{\varsigma}^{n}[\mathcal{P}]\right)\right] \leq 2\left[\partial\mathcal{P}\right]$.
(c) ...the average of $\left[\partial\left(\Phi_{\varsigma}^{n}[\mathcal{P}]\right)\right]$ grows like n^{α} , where $\alpha := \log_{2}\left(\frac{3}{2}\right)$.
If $A(N) := \frac{1}{N} \sum_{n=0}^{N-1} \left[\partial\left(\Phi_{\varsigma}^{n}[\mathcal{P}]\right)\right]$, then $\lim_{N \to \infty} \frac{\log\left(A(N)\right)}{\log(N)} = \alpha$.

(d) Both (a) and (b) are equalities for a dense set of $\mathcal{P} \in {}^{o}\mathcal{A}^{T}.\Box$