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Sturmian Shifts 1

Let T := T1 = R/Z ∼= [0, 1) be circle group. Fix a ∈ T (irrational).

Define irrational rotation: ς : T−→T by ς (t) := t + a, ∀ t ∈ T.

If P0 := (0, a) & P1 := (a, 1), then P := {P0,P1} is a partition of T.

Let A := {0, 1}. For ∀ t ∈ T, the P-itinerary of t is the A-sequence

Pς (t) := [. . . , p−1, p0, p1, p2, . . .] where p` :=

{

0 if ς`(t) ∈ P0

1 if ς`(t) ∈ P1

p := Pς (t) is a Sturmian sequence [Morse & Hedlund (1940)]
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PSfrag replacements

T = T1 = R/Z ∼= [0, 1)

p = Pς (t)

We get function Pς : ˜T−→AZ (where ˜T ⊂ T dense Gδ) such that

Pς ◦ ς = σ ◦ Pς .

Let P := closure
[

Pς (˜T)
]

⊂ AZ. Then P is a Sturmian shift.

Facts:

• Minimal: every point of P has dense σ-orbit.

• The smallest complexity of any nonperiodic subshift.

• #(P-words of length n) = n + 1. Thus, htop(P) = 0.



Quasisturmian Shifts 2

Let K ≥ 1. Let T := TK = RK/ZK ∼= [0, 1)K be the K-torus.

Fix a ∈ T (monothetic). Define irrational rotation: ς : T−→T by

ς (t) := t + a, ∀ t ∈ T.

A:= finite alphabet. An A-indexed open partition of T is collection

P = {Pa}a∈A of open subsets of T, so that:

If P∗ :=
⊔

a∈A

Pa, then:
• λ[P∗] = 1. (λ := Lebesgue measure on T.)

• P∗ is dense.

Define measurable function P : T−→A by P−1{a} = Pa, ∀ a ∈ A.

For any t ∈ T, the itinerary of t is the sequence

Pς (t) := [. . . , p−1, p0, p1, p2, . . .] where p` := P
(

ς`(t)
)

, for all ` ∈ Z.

p := Pς (t) is a quasisturmian sequence

t

t+
a

t+
5a

t+
6a

t+
2a

t+
4a

t+
3a

a

P1

P0

P2

1
0

2
0

0
1
2

t

t+
a

t+2a

t+3a

PSfrag replacements

T = T1 = R/Z ∼= [0, 1)

p
=
P
ς
(t

)

Get function Pς : ˜T−→AZ (˜T ⊂ T denseGδ) such that Pς◦ς = σ◦Pς .

Let P := closure
[

Pς (˜T)
]

⊂ AZ. Then P is a quasisturmian shift.

P is measurable partition if {Pa}a∈A are measurable & λ[P∗] = 1.

Let µ := Pς (λ). Then µ is a quasisturmian measure on AL.



Multidimensional Quasisturmian Shifts 3

Let D ≥ 1. Let L := ZD, a D-dimensional lattice.

Let τ : L−→T be a monomorphism with dense image.

Define rotation action of L on T:

For any ` ∈ L and t ∈ T, ς`(t) := t + τ (`).

Let A be a finite alphabet and let P = {Pa}a∈A be an open partition.

For ∀ t ∈ T, the itinerary of t is the D-dimensionalA-configuration:

Pς (t) := [p`]`∈L where p` := P
(

ς`(t)
)

, for all ` ∈ L.

p := Pς (t) is a quasisturmian configuration

P1

P0

P2
PSfrag replacements

T = T2 (K = 2)

L = Z2

(D = 2)

p
=
P ς

(t
)

We get function Pς : ˜T−→AL (where ˜T ⊂ T dense Gδ) such that

Pς ◦ ς` = σ` ◦ Pς , for all ` ∈ L.

P := closure
[

Pς (˜T)
]

⊂ AL is a quasisturmian shift on AL

If P is a measurable partition, then µ := Pς (λ) is a quasisturmian

measure on AL.



Quasisturmian Sequence Space in Besicovitch Metric 4

The standard topology on AL is induced by Cantor metric:

∀p,q ∈ AL, dC(p,q) := 2−D(p,q); D(p,q) := min {|`| ; ` ∈ L, p` 6= q`}.

Let QSς := {Quasisturmian sequences in AL}.

Then QSς is σ-invariant, dC-dense subset of AL (but not dC-closed).

More useful is Besicovitch (pseudo)metric: ∀p,q ∈ AL,

dB(p,q) := density (` ∈ L ; p` 6= q`) = lim sup
N→∞

#{b ∈ B(N) ; pb 6= qb},
(2N)D

(pseudometric, because dB(p,q) = 0 if p 6= q on set of density zero.)

Lemma: If p,q ∈ QSς , then
(

dB(p,q) = 0
)

⇐⇒
(

p = q
)

.

Hence, dB is a true metric when restricted to QSς . 2

0 5 10 15-15 -10 -5

Agreement on average ==> close in Besicovitch metric

Disagreement near origin  ==> far in Cantor metric

0 5 10 15-15 -10 -5

Disagreement on average ==> far in Besicovitch metric

Agreement near origin  ==> close in Cantor metric

Cellular automata are Besicovitch-continuous; topological dynamics stud-

ied by F. Blanchard, E. Formenti, and P. Kurka [1997].



Cellular Automata 5

Neighbourhood:

U ⊂ L (finite set)

Local transformation rule:

φ: AU−→A

φ

φ

U

φ

The CA induced by φ is function Φ:AL−←⊃, so that for ∀ a ∈ AL,

Φ(a) := [b`|`∈L], where, ∀` ∈ L, b` = φ
[

a(u+`)|u∈U
]

.

Equivalently, a CA is a continuous transformation Φ:AL−←⊃ that com-

mutes with all shifts, ie. ∀` ∈ L, Φ ◦ σ` = σ` ◦ Φ.

Example: L := Z; U := {0, 1}, A := Z/2 = {0, 1}.

Define φ : Z/2{0,1}−→Z/2 by φ(a) := a0 + a1 (mod 2).

This yields linear cellular automaton Φ = Id + σ.
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Theorem 1: [Hof & Knill, 1995; M.P. 2004] Let Φ:AL−←⊃ be a CA.

(a) If p ∈ AL is a QS sequence, then Φ(p) is also a QS sequence.

Thus, Φ(QSς ) ⊆ QSς .

(b) If P ⊂ AL is a QS shift, then Φ(P) is also a QS shift.

(c) If µ is a QS measure, then Φ(µ) is also a QS measure. 2

Proof idea: Let P = {Pa}a∈A. Define partition Q := {Qa}a∈A by

∀ a ∈ A, Qa :=
⋃

c∈AB
φ(c)=a

⋂

b∈B

ς−b(Pcb
) ⊂ T.

Example: L = Z; A = Z/2; Φ := Id + σ.

Q1 = P14 ς(P1) and Q0 = Q{1 =
(

P0 ∩ ς(P0)
)

t
(

P1 ∩ ς(P1)
)

.

0 1

0 1

0 1

0 1

a

PSfrag replacements
T ∼= [0, 1)

P1 :=
(

0, 1
2

)

P0 :=
(

1
2, 1
)

P1

ς1(P1) =
(

a, 1
2 + a

)

Q1 = P14ς1(P1) = (0, a) ∪
(

a, 1
2 + a

)

We write: ‘Q = Φς (P)’. Thus, Φ induces a map Φς : AT−→AT, where

AT := {A-labelled partitions of T}.

Lemma 2: Let P ∈ AT and let Q = Φς (P). Then

(a) If P is open then Q is open. If t ∈ ˜T, then Φ (Pς (t)) = Qς (t).

(b) If P = QS shift of P, then Φ(P) = QS shift of Q.

(c) If µ = QS measure of P, then Φ(µ) = QS measure of Q. 2
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Fifty iterations of Φς on a partition of T.

Fifty iterations of Φ on a corresponding quasisturmian sequence.
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Let AT := {A-labelled measurable partitions of T}.

Define symmetric difference metric on AT:

d4(P,Q) =
∑

a∈A

λ (Pa4Qa) , for any P,Q ∈ AT.

(AT, d4) is a complete and bounded metric space (but not compact).

oAT := {A-labelled open partitions of T} is d4-dense subset of AT.

Theorem Let Φ : AL−←⊃ be any cellular automaton. Then

(a) Φς :AT→AT is d4-Lipschitz.

(b) (AT, d4,Φς ) is a topological dynamical system, and

(c) Φς (
oAT) ⊂ oAT, so ( oAT, d4,Φς ) is a subsystem. 2

Let oAT
0 := {A-labelled open partitions of T with 0 ∈ ˜T}.

Then oAT
0 is a ς -invariant, Φς -invariant, comeager subset of oAT.

Theorem: Define ξς : oAT
0−→QSς by ξς(P) := Pς (0). Then:

(a) ξς
(

oAT
0

)

= QSς .

(b) If P,Q ∈ oAT
0 , then d4(P,Q) = 2 · dB

(

ξς (P) , ξς (Q)
)

.

(c) ξς ◦ Φς = Φ ◦ ξς. Also, for any ` ∈ L, ξς ◦ ς` = σ` ◦ ξς.

(e) ξς is top.dyn.sys.isomorphism ( oAT
0 , d4,Φς , ς ) ∼= (QSς , dB,Φ, σ).

2

Idea: Study action of Φ on QSς via action of Φς on oAT
0 , oAT & AT.



Topological Dynamics 9

Top.dyn.sys. (X, d, ϕ) is equicontinuous if,

for ∀ ε > 0, ∃ δ > 0 such that ∀ x, y ∈ X,
(

d(x, y) < δ
)

=⇒
(

d (ϕn(x), ϕn(y)) < ε for all n ∈ N
)

.

x
y

Theorem: If (AL, dC,Φ) is equicont. then ( oAT
0 , d4,Φς ) is equicont.2

Let ξ > 0. The top.dyn.sys. (QSς , dB,Φ) is (positively) ξ-expansive

if, for ∀ p,q ∈ QSς with q 6= p, ∃ n ∈ N so that dB (Φn(p),Φn(q)) > ξ.

Proposition [Blanchard, Formenti & Kurka, 1997]

If Φ : AZ−←⊃ is any CA, then (AZ,Φ, dB) is not expansive.

Proof idea: Construct a ∈ AZ which is ‘nonexpansive’ for all CA.2

But a is not QS, so this proof does not apply to (QSς , dB,Φ).

If t ∈ T1, let

QSt := {QS sequences induced by rotation-by-t} ⊂ AZ.

Theorem: Let A = Z/2 and let Φ := Id + σ.

For ∀λ t ∈ T, the top.dyn.sys. (QSt, dB,Φ) is expansive. 2

Proof Idea: Sufficient to show expansive at [...0000...]. (Φ is linear).

Small ‘perturbations’ of [...0000...] are magnified along certain powers

of 2 (use Fermat Property: for ∀ n ∈ N, Φ2n = Id + σ2n.) 2



Transitivity 10

A top.dyn.sys. (X, d, ϕ) is transitive if, for any open sets U,V ⊂ X,

∃ n ∈ N so that U ∩ ϕ−n(V) 6= ∅.

(X, d, ϕ) is topologically mixing if, for any open sets U,V ⊂ X,

∃ N ∈ N so that U ∩ ϕ−n(V) 6= ∅ for all n > N .

X
U

Vφn(U)

Theorem:

• If ( oAT, d4,Φς ) is transitive, then (AL, dC,Φ) is transitive.

• If ( oAT, d4,Φς ) is top.mixing, then (AL, dC,Φ) is top.mixing. 2

Question: ∃ CA Φ such that ( oAT, d4,Φς ) is transitive or top.mixing?



Surjectivity of CA on Quasisturmian Shifts 11

Conjecture: If Φ:AL−←⊃ is surjective, then Φς :AT−←⊃ is surjective.

Counterexample: A = {0, 1} = Z/2. For any P ∈ AT, if P =

{P0,P1}, then let P := {P0,P1}, where P0 := P1 and P1 := P0.

Lemma: Let Φ := Id + σ. If P ∈ Φς (AT), then P 6∈ Φς (AT). 2

Thus Φς (AT) only fills ‘half’ of AT. But Φς (AT) is still dense in AT...

Theorem Let Φ : AZ−←⊃ be a cellular automaton. TFAE:

(a) Φ is surjective onto AZ.

(b) Φς (
oAT) is d4-dense in oAT, and Φς (AT) is d4-dense in AT.

(c) Φ(QSς ) is dB-dense in QSς .

(d) Φ(QSς ) is dC-dense in QSς .

Proof idea: “(a)=⇒(b)” Irrational rotations are rank one, so we

can ‘tile’ any QS sequence p = Pς (t) with some word w.

Let v be a Φ-preimage of w. Build Q ∈ oAT such that q := Qς (t) is

‘tiled’ with v (and ‘tilings’ of p and q are ‘aligned’). Then Φ(q)
d̃B

p.

Thus, Φς (Q)
d̃4
P .

“(b)=⇒(c)” Top.dyn.sys. isomorphism ( oAT
0 , d4,Φς ) ∼= (QSς , dB,Φ).

“(c)=⇒(d)” Use ‘tiling’ argument to show:

If X ⊂ QSς is σ-invariant and dB-dense in QSς , then X is also

dC-dense in QSς .

“(d)=⇒(a)” QSς is dC-dense in AL. Thus, Φ(AL) is dense in AL;

thus Φ(AL) = AL (compactness). 2



Injectivity of CA restricted to Quasisturmian Shifts 12

Theorem Let Φ:AL−←⊃ be a CA. ∃ dense Gδ subset ∗AT ⊂ AT,

with Φς (
∗AT) ⊆ ∗AT, so that, for ∀ P ∈ ∗AT, the following di-

chotomies hold:

(a) If µ is QS measure induced by P, then either Φ is constant

(µ-æ), or Φ is injective (µ-æ).

(b) If P ∈ oAT and P is the QS shift induced by P, then either

Φ|P is constant, or Φ|P is injective.

Proof idea: Say thatP is simple ifP has no translational symmetries.

Lemma: Suppose P is simple.

(a) If P ∈ AT then the map Pς : ˜T−→AL is injective (λ-æ).

(b) If P ∈ oAT then Pς : ˜T−→Pς (˜T) ⊂ AL is a homeomorphism

with respect to both to the dC and dB metrics on ˜P. 2

Corollary: Suppose P and Q = Φς (P) are both simple.

(a) If µ is QS measure of P, then Φ is injective (µ-æ).

(b) If P ∈ oAT and P is QS shift of P, then Φ|P is injective. 2

Strategy: Find a dense Gδ set ∗AT ⊂ AT of simple partitions whose

Φς -images are also simple.
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Theorem: Let Φ:AL−←⊃ be a CA. Let µ be QS measure generated

by P ∈ AT. Then:
(

µ is Φ-invariant
)

⇐⇒
(

Φς (P) = ρt(P) for some t ∈ T
)

.

(ρt is rotation map ie. ρt(s) := s + t, for all s ∈ T).

Proof Sketch: If Q = Φς (P), then Q also generates µ. Must show:

Claim: If µ is generated by P ∈ AT, then:

{Partitions of T generating µ} = {ρt(P) ; t ∈ T}.

Claim proof sketch: If P simple, then Pς : ˜T→AL injective (λ-æ).

IfQ also generates µ, andQ simple, thenQς : ˜T→AL is injective (λ-æ).

(If P,Q not simple, then replace with ‘quotient’ partitions)

Thus, get commuting diagram:

PSfrag replacements

(T, λ, ς )(T, λ, ς )

(T, λ, ς )

ϕ

Pς Qς

ϕ := Q−1
ς ◦ Pς is measure-preserving endomorphism of torus rotation

system (T, λ, ς ). Any endomorphism must be a rotation. Claim follows.2

Corollary: If A = Z/2, then Φ := Id + σ has no QS invariant

measures.

Proof idea: If P ∈ AT, then Φ2nk
ς (P)−−−−k→∞−→O (trivial partition) for

some sequence {nk}∞k=1. (“Niltropy”)

But this is impossible if Φς is acting as rotation. 2

Question: If µ is a QS measure, then ∃ wk∗− lim
N→∞

1

N

N
∑

n=1

Φnµ?



Asymptotic Randomization 14

If A is an abelian group (eg. A = Z/n) then so is AL. A linear CA

is a CA Φ : AL−←⊃ that is also a group homomorphism.

If µ is prob.measure on AL, then Φ asymptotically randomizes µ

if wk∗− lim
N→∞

1

N

N
∑

n=1

Φnµ = η, (η := uniform (‘Haar’) measure on AL.)

Theorem 1 [D.Lind, 1984]






• A = Z/2 and L = Z.

• Φ = σ−1+σ1. (“N.N. XOR”)

• µ is a Bernoulli measure.





 =⇒
(

Φ asymptotically

randomizes µ

)

Theorem 2 [P.Ferrari, P.Ney, A.Maass & S.Mart́ınez, 1998]














• p prime; A = Z/(pn); L = N.

• Φ = ϕ0 ·σ0 +ϕ1 ·σ1. (“Ledrappier”)

ϕ0 and ϕ1 are relativ. prime to p.

• µ is a Markov measure.

All transition probabilities nonzero.















=⇒
(

Φ asympt.

randomizes µ

)

Theorem 3 [R.Yassawi & M.P., 2000]












• Let A = Z/p (p prime).

• Let L = ZD × Nd be any lattice.

• Let Φ:AL−←⊃ be any nontrivial linear

cellular automaton (ie. not a shift).

• µ a harmonically mixing measure.













=⇒
(

Φ asympt.

randomizes µ

)

Harmonic Mixing: eg. Bernoulli measures, Markov chains, or

Markov random fields with ‘full support’.

Y&P [2002, 2003] extends Thm.3 toA = Z/n (∀ n ∈ N) and other abelian

groups, and to µ supported on subshifts of finite type and sofic shifts.
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Theorem: ∃ S ⊆ T1 (dense Gδ) so that, for any s ∈ S and

P ∈ oAT, if µ is the QS measure generated by P under s-rotation,

then µ is not asymptotically randomized by Φ = Id + σ.

Proof Heuristic: Fermat Property: For ∀ n ∈ N, Φ2n = Id + σ2n.

Thus Φ2n
ς = Id + ς2

n
.

Now suppose s = 0.1 0
︸︷︷︸

1

1 000
︸︷︷︸

3

1 0000000
︸ ︷︷ ︸

7

1 00 . . . 0
︸ ︷︷ ︸

15

1 . . .

Dyadic Recurrence: ∃ {nk}∞k=1 s.t. d(2nk · s, 0) < 2−nk .

Thus, Φ2n
ς (P) = P+ς2

n
(P) ∼ P+P = O. (O = trivial partition).

Thus, Φ2n+k
ς (P) ∼ Φk(O) ∼ O for k ∈

[

0...2n−4
]

Thus, Φ2n+k(µ)[0000] ≥ 1
8 > 1

16 = η[0000] for k ∈
[

0...2n−4
]

.

Thus, wk∗− lim
N→∞

1

N

N
∑

n=1

Φnµ 6= η: it gives too much mass to [0000]. 2

Corollary: ∃ weak* cluster point µ∞ of

{

1

N

N
∑

n=1

Φnµ

}∞

N=1

; µ∞ 6= η.

Now, Φ(µ∞) = µ∞, so h(µ∞, σ) = 0 [Host, Maass, Martinez, 2004].

But also µ∞ is not QS.

Question: What is µ∞?

Remark: λ[S] = 0. Can we find a larger set of ‘nonrandomizing’

irrational rotations? Conjecture: Yes.

Question: Can any CA asymptotically randomize any QS measure?

Conjecture: No.
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Hof & Knill [1995] saw empirically that Φς ‘chops’ partition P into tiny

bits. Empirically, # of bits in Φn
ς (P) grew polynomially with n.

Idea: Measure ‘chopping’ via growth in size of ∂P :=
⋃

a∈A

∂Pa.

Let d∂Pe be some measure of size of ∂P . For example:

• If T = T1, then d∂Pe is cardinality of ∂P .

• If T = T2, then d∂Pe is length of ∂P .

• If T = T3, then d∂Pe is area of ∂P .

• If ∂P is α-dim. fractal, then d∂Pe is α-dim. Hausdorff measure.

Φς chops P on average if lim
N→∞

1

N

N
∑

n=1

⌈

∂
(

Φn
ς [P ]

)⌉

= ∞.

Equivalently, ∃ J ⊆ N such that

density (J) = 1 and lim
J3j→∞

⌈

∂
(

Φn
ς [P ]

)⌉

= ∞.

Φς chops P intermittently if lim sup
n→∞

⌈

∂
(

Φn
ς [P ]

)⌉

= ∞.

Equivalent: ∃ J ⊆ N (zero density) so that lim
J3j→∞

⌈

∂
(

Φn
ς [P ]

)⌉

= ∞.

Proposition: If L := ZD and Φ:AL−←⊃ is CA, then ∃ C > 0 so

that, if P ∈ oAT and n ∈ N, then
⌈

∂
(

Φn
ς [P ]

)

⌉

≤ C · nD · d∂Pe. 2

Proposition: If (QSς , dB,Φ) is expansive, then Φς intermittently

chops all P ∈ oAT.

Proof idea: Let Pn := Φn
ς (P). Then Pnς : T−→QSς is Lipschitz

with constant proportional to d∂Pne. If s ∼ t then Pς (s) ∼ Pς (t). But

if Pnς (s) 6∼ Pnς (t), then d∂Pne must have gotten large. 2



Chopping by Boolean Linear Cellular Automata 17

A := Z/2. A boolean linear CA (BLCA) is linear CA Φ:AL−←⊃.

Theorem: Let Φ:AL−←⊃ be a nontrivial BLCA. For a ‘generic’ set

of P ∈ oAT, Φ chops P on average.

If T = T1, then Φ chops all P ∈ oAT on average.

Proof idea: Φς multiplies boundary points the same way Φ multiplies

a ‘point mass’ [.......000000010000000......] into many point masses. 2

. . . 1 . . .

. . . 1 1 . . .

. . . 1 1 . . .

. . . 1 1 1 1 . . .

. . . 1 1 . . .

. . . 1 1 1 1 . . .

. . . 1 1 1 1 . . .



















y

Time

We can be more specific....

Theorem: Let Φ = Id + σ. Let ς be a Z-action on T, and let

P ∈ oAT be ‘generic’. Then, as n→∞...

(a) ...the maximum of
⌈

∂
(

Φn
ς [P ]

)⌉

grows linearly. ∃K > 0 so that

K ≤ lim sup
n→∞

1

n

⌈

∂
(

Φn
ς [P ]

)⌉

≤ d∂Pe .

(b) ...the minimum of
⌈

∂
(

Φn
ς [P ]

)⌉

remains constant:

lim inf
n→∞

⌈

∂
(

Φn
ς [P ]

)⌉

≤ 2 d∂Pe .

(c) ...the average of
⌈

∂
(

Φn
ς [P ]

)

⌉

grows like nα, where α := log2

(

3
2

)

.

If A(N) :=
1

N

N−1
∑

n=0

⌈

∂
(

Φn
ς [P ]

)

⌉

, then lim
N→∞

log
(

A(N)
)

log(N)
= α.

(d) Both (a) and (b) are equalities for a dense set of P ∈ oAT.2


