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Sturmian Shifts 1

Let T := T! = R/Z = [0, 1) be circle group. Fixa € T (irrational).
Define irrational rotation: ¢ : T—T by ¢(t) =t +a, Vt € T.
IfPy:=(0,a) & P, = (a,1), then P := {Py, Py} is a partition of T.
Let A:={0,1}. ForVt € T, the P-itinerary of t is the A-sequence

B [0 if M) ePy
P.(t) = [....p-1,p0,P1,P2,...] where p; := {1 if ¢‘(t) e Py

p ;= P.(t) is a Sturmian sequence [Morse & Hedlund (1940)]

o

We get function P, : T—AZ (where T C T dense Gj) such that
P.o¢c = ooP.

Let P := closure [Pg(’/lv‘ )] C AZ. Then % is a Sturmian shift.

e Minimal: every point of I3 has dense o-orbit.
Facts: e The smallest complexity of any nonperiodic subshift.

o #(B-words of length n) = n + 1. Thus, hyp(P) = 0.



Quasisturmian Shifts 2

Let K > 1. Let T := TX = RX¥/ZX = [0,1)" be the K-torus.
Fix a € T (monothetic). Define irrational rotation: ¢ : T—T by
¢(t) = t+a, VteT.

A:= finite alphabet. An A-indexed open partition of T is collection
P = {P,}aca of open subsets of T, so that:

e AP, =1. ()\:= Lebesgue measure on T.)
e P. is dense.

If P, = |_| P, then:
acA

Define measurable function P : T—A by P~H{a} = P,, Va € A

For any t € T, the itinerary of t is the sequence

Pc(t) == [...,p—1,p0, P1, P2, . ..] where p; := P (s'(t)), for all £ € Z.

p := P.(t) is a quasisturmian sequence
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T=T =R/Z=0,1)
Get function P, : T— A% (T C T dense Gy) such that P,og = goP..
Let P := closure [Pg(’f)} C A”. Then B is a quasisturmian shift.

P is measurable partition if {P,},c 4 are measurable & \[P,] = 1.

Let 11 := P.(\). Then p is a quasisturmian measure on A",
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Multidimensional Quasisturmian Shifts 3

Let D > 1. Let L := Z”, a D-dimensional lattice.
Let 7 : L—T be a monomorphism with dense image.
Define rotation action of I on T
Forany (€ Landt € T, <'(t) = t+7(f).
Let A be a finite alphabet and let P = {P,}4c4 be an open partition.
For Vt € T, the itinerary of t is the D-dimensional A-configuration:
P(t) = [pdeer. where py == P (s'(t)), forall £ € L.

p := P.(t) is a quasisturmian configuration
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We get function P, : T— AL (where T C T dense Gj) such that
P.ost = oloP, for all £ € L.
B = closure [Pg('f)} c Al is a quasisturmian shift on A"

If P is a measurable partition, then p := P, () is a quasisturmian
measure on A"



Quasisturmian Sequence Space in Besicovitch Metric 4

The standard topology on A" is induced by Cantor metric:
vp,qe AL, do(p,q):=27PP9: D(p,q) = min{|{|; L €L, p# q.
Let 96, := {Quasisturmian sequences in A%}

Then Q6. is o-invariant, do-dense subset of A (but not de-closed).

More useful is Besicovitch (pseudo)metric: Vp,q € A",

Joncity beB(N);
dp(p,q) = density (¢ € L ; p; # q;) = limsup #{b € B(N); po # @b},
N—o0 (QN)D

(pseudometric, because dg(p,q) = 0 if p # q on set of density zero.)

Lemma: If p,q € Q6 then (dB(p,q):O) — <p:q).

Hence, dp 1s a true metric when restricted to Q6. O
Disagreement near originm:,\:> far in Cantor metric
[ 1 el | B M = B [ ]| B [ | B [ B [

|ﬁ|%l%ﬁ-ﬁfﬁ*ﬁ|-lﬁm|ﬁlﬁ
-15 -10 -5 L0 | 5 10 15

\/-v\_/\/v\_/

Agreement on average ==> close in Besicovitch metric

Agreement near origin ==> close in Cantor metric

Disagreement on average ==> far in Besicovitch metric

Cellular automata are Besicovitch-continuous; topological dynamics stud-
ied by F. Blanchard, E. Formenti, and P. Kurka [1997].



Cellular Automata 5)

Neighbourhood: P
U C L (finite set) "

by

Local transformation rule:

o: AV— A

The CA induced by ¢ is function ®: A% D, so that for V a € A",
O(a) = [blper], where, V€L, by = @lawiolucy]-

Equivalently, a CA is a continuous transformation ®: A% > that com-
mutes with all shifts, ie. V/ € L, ®oo’ = of0o®.

Example: L = Z; U :={0,1}, A= Zj ={0,1}.
Define ¢ : Z/Q{O’l}—%/Q by ¢(a) == ap + a; (mod 2).

This yields linear cellular automaton & = Id + o.
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Cellular Automata 6

Theorem 1: [Hof & Knill, 1995; M.P. 2004] Let ®: A be a CA.

(a) Ifp e AV is a QS sequence, then ®(p) is also a QS sequence.
Thus, ®(Q6,) C N6..

(b) If P c AL is a QS shift, then ®(B) is also a QS shift.

(c) If pis a QS measure, then ®(u) is also a QS measure. O

Proof idea: Let P = {P,},c4. Define partition Q := {Q,}sea by
VaeA, Q. = U ﬂ <P, <C T.

ce AB  beB
¢(c)=a

Example: L=7; A=7Z;;, ¢ =Id+o.
Q = P,A¢P,) and Qy=Qf= (PO N g(PO)) L (P1 ﬂg(P1)>.

T ~0,1)

Q = PIA(P) = (0,2)U (a5 +a)
We write: ‘Q = ®_(P)". Thus, ® induces a map ¢, : AT— AT where
AT = {A-labelled partitions of T}.
Lemma 2: Let P € AT and let Q = ®(P). Then
(a) IfP is open then Q is open. Ift € T, then ® (P.(t)) = Q.(t).
(b) IfP = QS shift of P, then ®(P) = QS shift of Q.
(c) If u = QS measure of P, then ®(u) = QS measure of Q. _

I



Cellular Automata

Fifty iterations of ®. on a partition of T.

Fifty iterations of ® on a corresponding quasisturmian sequence.




Cellular Automata 8

Let AT := {A-labelled measurable partitions of T'}.

Define symmetric difference metric on A7T:

dr(P,Q) = > AMP,AQ,), forany P,Q e AT.
acA

(AT, dn) is a complete and bounded metric space (but not compact).
‘AT = {A-labelled open partitions of T} is da-dense subset of AT,
Theorem Let & : A¥ > be any cellular automaton. Then
(a) o AT—AT is dp-Lipschitz.

(b) (AT, da,®.) is a topological dynamical system, and
(c) D (°AT) C AT, so (°AT,dp, D) is a subsystem. O

Let AT = {A-labelled open partitions of T with 0 € T}.

Then %Al is a ¢-invariant, ® -invariant, comeager subset of 24T,
Theorem: Define & : ‘Af—0Q6, by E(P) = P(0). Then:
(a) & (°Ag) = Q6.

(b) I/P,Q € AL, then da(P, Q) = 2-dy (& (P),£(Q)).
(c) & od = Dol Also, foranyleL, & og' = olof.

(e) & is top.dyn.sys.isomorphism (°Ag,dp, D¢, <) = (Q6,,dp, P, 0).
[

Idea: Study action of ® on Q& via action of @, on °A4L, AT & AT,



Topological Dynamics 9

Top.dyn.sys. (X, d, ¢) is equicontinuous if, 777777 ////// 7
for Ve>0, 46 > 0suchthatVa,ye X,

( d(x,y) <o ) —
( d(e"(z),p"(y)) < eforallm e N )

Theorem: If (A% dc, ®) is equicont. then (°AY,da,®.) is equicont.O

Let £ > 0. The top.dyn.sys. (Q6.,dg, ) is (positively) £-expansive
if, for Vp,q € Q6. with q # p, In € Nso that dg (P"(p), P"(q)) > &.

Proposition [Blanchard, Formenti & Kurka, 1997]

If & : AL is any CA, then (A%, ®,dp) is not expansive.

Proof idea: Construct a € A% which is ‘nonexpansive’ for all CA.O
But a is not QS, so this proof does not apply to (Q6, dp, D).

Ift e T let

06, = {QS sequences induced by rotation-by-t} < A%
Theorem: Let A =7/, and let  :=1d + 0.

ForVy t € T, the top.dyn.sys. (Q6s,dp, P) is expansive. O

Proof Idea: Sufficient to show expansive at [...0000...]. (P is linear).

Small ‘perturbations’ of [...0000...] are magnified along certain powers
of 2 (use Fermat Property: for ¥ n €N, " = Id+¢>)___ O



Transitivity 10

A top.dyn.sys. (X, d, ¢) is transitive if, for any open sets U,V C X,
dn € Nsothat UN e (V) # 0.

(X, d, ) is topologically mixing if for any open sets U,V C X,
AN € Nsothat UNne (V) #£ 0 forall n > N.

X D

Theorem:
o If (AT, dn,d,) is transitive, then (A", dc, ®) is transitive.
o If (°AY,dp,d,) is top.mizing, then (A“,dc, ®) is top.mizing._O

Question: 3 CA ® such that (°AT, da, @) is transitive or top.mixing?



Surjectivity of CA on Quasisturmian Shifts 11

Conjecture: If &: A D is surjective, then ®.: AT D is surjective.

Counterexample: A = {0,1} = Z. For any P € AT if P =
{Po, Pl}, then let ﬁ = {FQ,Fl}, where FO = P1 and Fl = P().

Lemma: Let & :=1d+o. If P € & (AY), then P &  (AT). O
Thus ® (AT) only fills ‘half’ of AT. But ® (A7) is still dense in AT...
Theorem Let & : A2 D be a cellular automaton. TFAE:

(a) @ is surjective onto AZ.

(b) @ (°A"Y) is dp-dense in °AT, and O (AT) is dp-dense in AT.
(c) P(Q6,) is dp-dense in QE..

(d) P(Q6.) is do-dense in Q6..

Proof idea: “(a)==(b)” Irrational rotations are rank one, so we
can ‘tile” any QS sequence p = P.(t) with some word w.

Let v be a ®-preimage of w. Build Q € 24T such that q := Q.(t) is
‘tiled” with v (and ‘tilings’ of p and q are ‘aligned’). Then ®(q) o
Thus, ¢.(Q) /C'I\A/P.

“(b)==(c)” Top.dyn.sys. isomorphism (°AL, da, ®.) = (Q6.,dp, D).

“(¢)=(d)” Use ‘tiling’ argument to show:

If X € Q6, is og-invariant and dg-dense in QG., then X is also
dc-dense in Q6.

“(d)=(a)” Q6. is dc-dense in A¥. Thus, ®(A") is dense in A";
thus ¢(AY) = AY (compactness). O




Injectivity of CA restricted to Quasisturmian Shifts 12

Theorem Let &: A*, > be a CA. 3 dense G5 subset "AT C AT,
with . (*AT) C *AY, so that, for V P € *AY, the following di-

chotomaes hold:

(a) If p is QS measure induced by P, then either ® is constant
(p-2), or @ is injective (u-e).

(b) If P € °AT and B is the QS shift induced by P, then either

CD‘ g 18 constant, or CD‘ g 18 injective.

Proof idea: Say that P is simple if P has no translational symmetries.
Lemma: Suppose P is simple.
(a) If P € AT then the map P, : T— AL is injective (A-ee).

(b) If P € °AT then P, : T—P.(T) c AL is a homeomorphism
with respect to both to the do and dp metrics on *B. O

Corollary: Suppose P and Q = ®.(P) are both simple.
(a) If p is QS measure of P, then ® is injective (u-).
(b) If P e °AT and B is QS shift of P, then CID‘q3 is injective.__O

Strategy: Find a dense G set *AT C AT of simple partitions whose
O -images are also simple.



CA-Invariant Quasisturmian Measures 13

Theorem: Let ®: A¥ D be a CA. Let j be QS measure generated
by P € AY. Then:

( (s CD—z'nvaricmt) = ( P (P) = p*(P) for somet € T )
(p* is rotation map ie. p*(s) = s+ t, foralls € T).

Proof Sketch: If @ = & (P), then Q also generates p. Must show:
Claim: If u is generated by P € AT, then:

{ Partitions of T generating u} = {p*(P); t € T}.

Claim proof sketch: If P simple, then P.: T— AL injective (A-a).

If Q also generates u, and Q simple, then O.: T‘—>AL is injective (A-ae).
(If P, @ not simple, then replace with ‘quotient’ partitions)

(T, A\, <) 2 (T, A\, <)

Thus, get commuting diagram:

N /Qg
(T, A\, <)

O = Qg‘l o P, is measure-preserving endomorphism of torus rotation
system (T, A, ¢). Any endomorphism must be a rotation. Claim follows.O

Corollary: If A = Zj,, then = Id + o has no QS invariant
Measures.

Proof idea: If P € AT, then ®**(P)——=O (trivial partition) for
some sequence {ng}>° . (“Niltropy”)

But this is impossible if . is acting as rotation. O

N
1
tion: If p i then 3 wk™Ii —E D" 1?7
Question: If i is a QS measure, then 4 w -lim anl [



Asymptotic Randomization 14

If Ais an abelian group (eg. A = Z,) then so is A% A linear CA
is a CA @ : A%, D that is also a group homomorphism.

If 11 is prob.measure on A%, then & asymptotically randomizes u

N
. * 0 1: 1 n _ . : ( ) L
if wk —ngnoo N Zl d"1 = n, (n:= uniform (‘Haar’) measure on A".)

Theorem 1 [D.Lind, 1984]

e A=17Z and L = Z. |
b =040l (“NN.XOR”) | = < ¢ asymptotically )

randomizes [i
e /1 is a Bernoulli measure.

Theorem 2 [P.Ferrari, P.Ney, A.Maass & S.Martinez, 1998]
(opprime; A=Zm); L=N. \

e ®=py-0"+p-0l. (“Ledrappier”) (

; : O as t.
wo and @, are relativ. prime to p. YIP )

randomizes [

e /1 is a Markov measure.
All transition probabilities nonzero. )

Theorem 3 [R.Yassawi & M.P., 2000]

( o Let A=Zy, (p prime). \
o Let L =7Z" x N? be any lattice.

O t.
o Let ®: A D be any nontrivial linear |= ( A )
randomizes [t

cellular automaton (ie. not a shift).
e [, a harmonically mixing measure. )

Harmonic Mixing: eg. Bernoulli measures, Markov chains, or
Markov random fields with ‘full support’.

Y&P 2002, 2003] extends Thm.3 to A = Z,, (V n € N) and other abelian
groups, and to p supported on subshifts of finite type and sofic shifts.



Asymptotic Nonrandomization 15

Theorem: 3 S C T! (dense Gs) so that, for any s € S and
P c °AT, if 1 is the QS measure generated by P under s-rotation,
then p 1s not asymptotically randomized by ® =Id + o.

Proof Heuristic: Fermat Property: ForVn € N, ®*' = Id+o¢?".
Thus " = Id+¢?".

Now suppose s =0.1_0 , 1 000, 1 0000000 1 00...0 1...

1 3 7 15

Dyadic Recurrence: 3 {n;};°, s.t. d(2" -s, 0) < 27",
Thus, ®*(P) = P+¢* (P) ~ P+P = O. (O = trivial partition).
Thus, &2 *(P) ~ O*(O) ~ O for k € [0..2"71]

S

Thus, 2" ¥ (1)[0000] > £ > & = 7[0000] for k € [0...2"74].

1
8 16

N
1
)k_ . _ n : . . . D
Thus, wk A}EI;O N 5_1 Q" £ n: it gives too much mass to [0000]

0

N

1
Corollary: 4 k* clust 'toof—gcbn ' 50 :
orollary: Jweak™ cluster point ., 0 {an ,u}N,l oo F 1)

Now, ®(fino) = fhoo, 80 A(fieo, o) = 0 [Host, Maass, Martinez, 2004].
But also pis 1s not QS.

Question: What is p7

Remark: A\[S] = 0. Can we find a larger set of ‘nonrandomizing’
irrational rotations? Conjecture: Yes.

Question: Can any CA asymptotically randomize any QS measure?

Conjecture: No.



Chopping 16

Hof & Knill [1995] saw empirically that @, ‘chops’ partition P into tiny
bits. Empirically, # of bits in ®!'(P) grew polynomially with 7.

Idea: Measure ‘chopping’ via growth in size of P = U oP,.
acA

Let [OP| be some measure of size of OP. For example:
o If T =T, then [0P] is cardinality of OP.
o If T = T? then [OP] is length of OP.
o If T = T3 then [OP] is area of IP.

o If OP is a-dim. fractal, then [OP] is a-dim. Hausdorff measure.

1 N

. chops P on average if lim ~ Z 10 (PI[P])| = oo.

N—o0
n=1

Equivalently, 4 J C N such that
density (J) = 1 and lim [ (PI[P])] = oo.

J2j—0

®, chops P intermittently if limsup [0 (P![P])]| = oc.

n—oo

Equivalent: 3J C N (zero density) so that _lim  [9 (PP[P])] = .

J3j—00

Proposition: If L := Z” and ®: A* > is CA, then 3 C > 0 so
that, if P € °AY and n € N, then {8 (@?[P])W < C-nP.[oP]._O

Proposition: If (Q6.,dg, ) is expansive, then O intermittently
chops all P € °AT.

Proof idea: Let P" := ®7(P). Then P! : T—QG&, is Lipschitz
with constant proportional to [OP"]. If s ~ t then P.(s) ~ P.(t). But
if P(s) ¢ PI(t), then [OP"| must have gotten large. O




Chopping by Boolean Linear Cellular Automata 17

A :=Z;. A boolean linear CA (BLCA) is lincar CA ¢: A% D.

Theorem: Let &: A, > be a nontrivial BLCA. For a ‘generic’ set
of P € °AT, & chops P on average.
If T =T, then ® chops all P € °AT on average.

Proof idea: ¢ multiplies boundary points the same way ® multiplies
a ‘point mass’ [....... 000000010000000......] into many point masses. [

1 1 1 1 . Time

We can be more specific....

Theorem: Let & = Id + 0. Let ¢ be a Z-action on T, and let
P c °AY be ‘generic’. Then, as n—oo...

(a) ...the mazimum of |0 (P*[P])| grows linearly. 3K > 0 so that
K < lim supl 0 (QN[P])| < [oP].

n—oo n

(b) ...the minimum of [0 ([P])| remains constant:
liminf [0 (®V[P])] < 2[0P].

n—oo

(c) ...the average of {8 (CID?[P])W grows like n®, where o :=log, (2).

=

If A(N) = % ~ [a (@?[P])W, then lim 1Oglo(§](\7]\;)> - a.

n

|
o

(d) Both (a) and (b) are equalities for a dense set of P € °AT.0



