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Let A be a menu of social alternatives, which involve the provision of
nonpecuniary pure public goods. This means that these goods are

◮ Nonrivalrous (my consumption does not impede your consumption).

◮ Nonexcludable (it is impossible to enforce private property rights).

◮ Nonpecuniary (they affect subjective well-being, rather than income).

Examples. (Municipal) Public parks, playgrounds, recreation facilities,
monuments, festivals, cultural events (assume fixed budget for these items).
(Federal) Public TV/radio, national parks and wilderness reserves, public
health, pure academic research (assume fixed budget for all these items).

Let I be a set of voters. For each i in I, let ui be the cardinal utility
function of voter i over the alternatives in A.

Goal: Find a∗ in A which maximizes the aggregate utility
∑

i∈I
ciui (a)

(where ci are suitably chosen ‘weights’).

Problem: We don’t know the true values of the utility functions ui .
(Voters can exaggerate, or otherwise misrepresent their preferences).

Possible solution: The Groves-Clarke Pivotal mechanism.
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Groves-Clarke Pivotal mechanism (3/26)

Assume: i ’s joint utility over A and money is quasilinear.
Thus, if alternative a is chosen and voter i pays a tax ti , then i ’s utility will
be ui (a) − ci ti , where ci is i ’s (constant) marginal utility of money.

1. Each voter i announces a monetary ‘bid’ vi (a) for each alternative a in
A (thus, vi (a) − vi (b) measures how much i prefers a over b).

2. We choose the alternative with the highest aggregate bid.
3. We levy a ‘Clarke tax’ against any ‘pivotal’ voters.

This tax is structured such that it is a dominant strategy for each
voter i to bid vi (a) = ui (a)/ci for each a in A.

If every voter deploys her dominant strategy, then the mechanism selects
the a∗ in A which maximizes the weighted utilitarian sum

∑

i∈I

ui (a)

ci

. (∗)

This yields a strategy-proof implementation of the weighted utilitarian
social choice rule defined by maximizing (∗). No voter ever has any
incentive to strategically misrepresent her utility function.
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Problems with the Pivotal Mechanism (4/26)

1. The assumption of quasilinear utility is not realistic.
It is more realistic to suppose the marginal utility of money is not
constant, but declining for each voter (e.g. due to satiation).

2. The Pivotal Mechanism is inequitable.

The political influence of voter i on the sum
∑

i∈I

ui (a)

ci

is proportional

to 1/ci , which is (ceteris paribus) proportional to her income/wealth.
Thus, rich voters have more influence than poor voters.
For example, in 2007, 10% of Americans amassed nearly 50% of all
income earned in the United States.
Plausible assumption: people’s bids in the pivotal mechanism are
roughly proportional to their income.
Thus, the richest 10% alone could effectively control the outcome.
The pivotal mechanism would devolve into a plutocracy.
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Solutions to Problems with the Pivotal Mechanism (5/26)

1. The assumption of quasilinear utility is not realistic.
Solution strategy: Replace Clarke tax with a lottery: each pivotal
voter has a certain probability of paying a ‘fee’ of predetermined size.
If each voter has a von Neumann-Morgenstern (vNM) utility function,
then the expected disutility of this ‘stochastic Clarke tax’ will be linear
(as a function of probability).

2. The Pivotal Mechanism is inequitable.
Solution strategy: Stratify voters by wealth. Set up ‘wealth-adjusted’
pivotal mechanism, with different ‘fees’ for different wealth strata.
Observe statistical distribution of voting behaviour in each stratum.
If the statistical distribution of voting behaviour is the same in
Stratum A as it is in Stratum B, then voters in Stratum A exert, on
average, the same political influence as voters in Stratum B.
Now adjust the fees so that the voters of all wealth strata exert the
same influence, on average.
Thus, the mechanism is ‘fair’ in the sense that it does not give more
power to rich voters than poor voters, on average.
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Solutions to Problems with the Pivotal Mechanism (6/26)

“Solution strategy: Stratify voters by wealth. Examine the statistical
distribution of voting behaviour within each wealth stratum. Now
implement a ‘wealth-adjusted’ version of the pivotal mechanism, so that
voters of all wealth strata exert the same influence, on average.”

To make this intuition precise, we must make several assumptions:

1. The population I of voters is large enough that we will have enough
voters in each stratum to obtain good statistics.

2. There is not just one isolated referendum, but a series of many
referenda on different issues.
Thus, the statistics acquired from earlier referenda can be used to
‘tune’ the parameters of the mechanism for later referenda.

3. The voters’ political preference intensities are statistically independent
of their wealth stratum.
Thus, any statistical difference we observe between the average voting
intensity of different wealth strata is evidence of ‘unfairness’.

4. Statistical distribution of preference intensities is unchanging over time.
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Technical assumptions about the voters’ utility functions(7/26)

Imagine a series of referenda, occurring at times t = 0, 1, 2, 3, . . ..
Let At be the menu of social alternatives for the referendum at time t.
Assume that each voter i in I is a vNM expected-utility maximizer.
Let u$

i : R−→R be voter i ’s (nonlinear) vNM utility function for money.
Let ut

i : At−→R+ be voter i ’s vNM utility function over At (for
t = 0, 1, 2, 3, ...). Assume min

a∈At

ut
i (a) = 0.

We suppose i ’s joint vNM utility over At and wealth is separable.
Thus, if alternative at is chosen in referendum t, and voter i is left with a
net wealth of wi dollars, then her utility will be ut

i (at) + u$
i (wi ).

Stratification. Suppose I = I1 ⊔ I2 ⊔ · · · ⊔ IN , where, for each n in
[1 . . .N], all voters in stratum In have roughly the same net wealth.
(Example: Let N := 10. Let In = the nth decile of wealth distribution.)
For all n in [1 . . .N], let ϕn > 0 be a positive ‘fee’.
(Heuristic: the average marginal utility of ϕn dollars for voters in In should
be roughly the average marginal utility of ϕm dollars for voters in Im).
We refer to the N-tuple ϕ := (ϕ1, ϕ2, . . . , ϕN) as the fee schedule.
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Nonpecuniary pivotal mechanism: Part I (8/26)

(P1) For all n in [1 . . .N], randomly split stratum In into two equal-sized
subgroups, I+

n and I−
n . (Each voter knows her subgroup assignment).

Let ϕ+
n be slightly larger than ϕn. Let ϕ−

n be slightly smaller than ϕn.
(P2) For all i in I, and each a in At , voter i declares a value v t

i (a) in [0, 1]
for alternative a. Require min

a∈At

v t
i (a) = 0.

(P3) Let v := (v t
i )i∈I . Choose the alternative a∗ in At which maximizes the

‘utilitarian’ sum V (a) :=
∑

i∈I
v t
i (a).

(P4) Voter i is pivotal if there is some other alternative b in At with
V (a∗) − V (b) ≤ v t

i (a∗) − v t
i (b). In this case, define

pt
i (v) :=

∑

j∈I\{i}
[v t

j (b) − v t
j (a∗)].

(Note: 0 ≤ pt
i (v) ≤ v t

i (a∗) − v t
i (b) ≤ 1.)

(P5) For all n in [1 . . .N], any pivotal voter i in I±
n now faces a gamble:

With probability pt
i (v), she pays a fee of ϕ±

n dollars.
With probability 1 − pt

i (v), she pays nothing.
We refer to this gamble as a stochastic Clarke tax.
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How can we structure the fee schedule ϕ = (ϕ1, . . . , ϕN) to prevent this?



What is fair? (10/26)

For all i in I, let V t
i := max

a∈At

v t
i (a). (So 0 ≤ V t

i ≤ 1.)

Thus, V t
i measures the influence of i on the outcome of referendum t.

Define V
t

:=
1

|I|
∑

i∈I
V t

i .

Thus, V
t

is the per capita average influence of any voter on referendum t.

For all n in [1 . . .N], define V
t

n :=
1

|In|
∑

i∈In

V t
i .

That is, V
t

n measures the per capita average influence of voters in wealth
stratum n on referendum t.

We say that the fee schedule ϕ is perfectly fair in referendum t if:

(F1) V t
i < 1 for all voters i in I (i.e. no voter hits the ceiling); and

(F2) V
t

n = V
t

for all n in [1 . . .N] —i.e. each stratum has the
same average influence as every other stratum (rich or poor).
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What is (p, ǫ)-fair? (11/26)

Problem: It is generally impossible to guarantee that ϕ is perfectly fair.
Let ǫ > 0 be some small but positive ‘error tolerance’.
We say that the fee schedule ϕ is ǫ-fair in referendum t if

(F1ǫ) #{i ∈ I; V t
i = 1} < ǫ · |I| (i.e. almost nobody hit the ceiling).

(F2ǫ) 1 − ǫ < |V t

n/V
t | < 1 + ǫ for all n in [1 . . .N]

(i.e. all strata have almost the same influence).

Problem: We can’t even know whether ϕ was ǫ-fair until after the
referendum has occurred. (We can’t guarantee it in advance.)
Idea: If the statistical distribution of voting behaviour is roughly the same
from one referendum to the next, then we can compute in advance the
probability that ϕ will be ǫ-fair in any particular referendum.

Let 0 < p < 1 and let ǫ > 0.
Assume some fixed, known statistical distribution of voter behaviour.
The fee schedule ϕ is (p, ǫ)-fair if it has a probability of at least p to be
ǫ-fair in any referendum where the behaviour of the voters is randomly
generated according to this distribution.
Goal: Design a (p, ǫ)-fair fee schedule.
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n := (V
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)sn · ϕ′

n.



The calibration procedure (12/26)

Idea: Use historical data to “tune” the fee schedule ϕ so it converges to
(p, ǫ)-fairness over time. This is the second part of our mechanism.
Let ϕ

t = (ϕt
1, ϕ

t
2, . . . , ϕ

t
n) be the fee schedule at time t.

Fix a constant λ > 1 (calibration speed). Construct ϕ
t+1 as follows:

(R1) “If too many voters hit the ceiling, then adjust all fees upwards in
proportion to the number of voters who hit the ceiling.” Formally:
Let Et := #{i ∈ I; V t

i = 1}/|I| (fraction of voters hitting ceiling).
If Et ≥ ǫ, then set ϕ′

n := λ · (Et/ǫ) · ϕt
n ≥ ϕt

n, for all n in [1 . . .N].
Otherwise, if Et < ǫ, then set ϕ′

n := ϕt
n, for all n in [1 . . .N].

(R2) “Further adjust the fee of stratum n up (down) if the average influence
of stratum n was higher (lower) than the population average.”

Formally: Let V
t,+
n :=

1

|I+
n |

∑

i∈I+
n

V t
i and V

t,−
n :=

1

|I−
n |

∑

i∈I−

n

V t
i .

Then define sn :=
log(V

t,+
n ) − log(V

t,−
n )

log(ϕt,+
n ) − log(ϕt,−

n )
> 0 ( Estimated elasticity of

average influence ).

Finally, for all n in [1 . . .N], set ϕt+1
n := (V

t

n/V
t
)sn · ϕ′

n.



The calibration procedure (12/26)

Idea: Use historical data to “tune” the fee schedule ϕ so it converges to
(p, ǫ)-fairness over time. This is the second part of our mechanism.
Let ϕ

t = (ϕt
1, ϕ

t
2, . . . , ϕ

t
n) be the fee schedule at time t.

Fix a constant λ > 1 (calibration speed). Construct ϕ
t+1 as follows:

(R1) “If too many voters hit the ceiling, then adjust all fees upwards in
proportion to the number of voters who hit the ceiling.” Formally:
Let Et := #{i ∈ I; V t

i = 1}/|I| (fraction of voters hitting ceiling).
If Et ≥ ǫ, then set ϕ′

n := λ · (Et/ǫ) · ϕt
n ≥ ϕt

n, for all n in [1 . . .N].
Otherwise, if Et < ǫ, then set ϕ′

n := ϕt
n, for all n in [1 . . .N].

(R2) “Further adjust the fee of stratum n up (down) if the average influence
of stratum n was higher (lower) than the population average.”

Formally: Let V
t,+
n :=

1

|I+
n |

∑

i∈I+
n

V t
i and V

t,−
n :=

1

|I−
n |

∑

i∈I−

n

V t
i .

Then define sn :=
log(V

t,+
n ) − log(V

t,−
n )

log(ϕt,+
n ) − log(ϕt,−

n )
> 0 ( Estimated elasticity of

average influence ).

Finally, for all n in [1 . . .N], set ϕt+1
n := (V

t

n/V
t
)sn · ϕ′

n.



The calibration procedure (12/26)

Idea: Use historical data to “tune” the fee schedule ϕ so it converges to
(p, ǫ)-fairness over time. This is the second part of our mechanism.
Let ϕ

t = (ϕt
1, ϕ

t
2, . . . , ϕ

t
n) be the fee schedule at time t.

Fix a constant λ > 1 (calibration speed). Construct ϕ
t+1 as follows:

(R1) “If too many voters hit the ceiling, then adjust all fees upwards in
proportion to the number of voters who hit the ceiling.” Formally:
Let Et := #{i ∈ I; V t

i = 1}/|I| (fraction of voters hitting ceiling).
If Et ≥ ǫ, then set ϕ′

n := λ · (Et/ǫ) · ϕt
n ≥ ϕt

n, for all n in [1 . . .N].
Otherwise, if Et < ǫ, then set ϕ′

n := ϕt
n, for all n in [1 . . .N].

(R2) “Further adjust the fee of stratum n up (down) if the average influence
of stratum n was higher (lower) than the population average.”

Formally: Let V
t,+
n :=

1

|I+
n |

∑

i∈I+
n

V t
i and V

t,−
n :=

1

|I−
n |

∑

i∈I−

n

V t
i .

Then define sn :=
log(V

t,+
n ) − log(V

t,−
n )

log(ϕt,+
n ) − log(ϕt,−

n )
> 0 ( Estimated elasticity of

average influence ).

Finally, for all n in [1 . . .N], set ϕt+1
n := (V

t

n/V
t
)sn · ϕ′

n.



The calibration procedure (12/26)

Idea: Use historical data to “tune” the fee schedule ϕ so it converges to
(p, ǫ)-fairness over time. This is the second part of our mechanism.
Let ϕ

t = (ϕt
1, ϕ

t
2, . . . , ϕ

t
n) be the fee schedule at time t.

Fix a constant λ > 1 (calibration speed). Construct ϕ
t+1 as follows:

(R1) “If too many voters hit the ceiling, then adjust all fees upwards in
proportion to the number of voters who hit the ceiling.” Formally:
Let Et := #{i ∈ I; V t

i = 1}/|I| (fraction of voters hitting ceiling).
If Et ≥ ǫ, then set ϕ′

n := λ · (Et/ǫ) · ϕt
n ≥ ϕt

n, for all n in [1 . . .N].
Otherwise, if Et < ǫ, then set ϕ′

n := ϕt
n, for all n in [1 . . .N].

(R2) “Further adjust the fee of stratum n up (down) if the average influence
of stratum n was higher (lower) than the population average.”

Formally: Let V
t,+
n :=

1

|I+
n |

∑

i∈I+
n

V t
i and V

t,−
n :=

1

|I−
n |

∑

i∈I−

n

V t
i .

Then define sn :=
log(V

t,+
n ) − log(V

t,−
n )

log(ϕt,+
n ) − log(ϕt,−

n )
> 0 ( Estimated elasticity of

average influence ).

Finally, for all n in [1 . . .N], set ϕt+1
n := (V

t

n/V
t
)sn · ϕ′

n.



The calibration procedure (12/26)

Idea: Use historical data to “tune” the fee schedule ϕ so it converges to
(p, ǫ)-fairness over time. This is the second part of our mechanism.
Let ϕ

t = (ϕt
1, ϕ

t
2, . . . , ϕ

t
n) be the fee schedule at time t.

Fix a constant λ > 1 (calibration speed). Construct ϕ
t+1 as follows:

(R1) “If too many voters hit the ceiling, then adjust all fees upwards in
proportion to the number of voters who hit the ceiling.” Formally:
Let Et := #{i ∈ I; V t

i = 1}/|I| (fraction of voters hitting ceiling).
If Et ≥ ǫ, then set ϕ′

n := λ · (Et/ǫ) · ϕt
n ≥ ϕt

n, for all n in [1 . . .N].
Otherwise, if Et < ǫ, then set ϕ′

n := ϕt
n, for all n in [1 . . .N].

(R2) “Further adjust the fee of stratum n up (down) if the average influence
of stratum n was higher (lower) than the population average.”

Formally: Let V
t,+
n :=

1

|I+
n |

∑

i∈I+
n

V t
i and V

t,−
n :=

1

|I−
n |

∑

i∈I−

n

V t
i .

Then define sn :=
log(V

t,+
n ) − log(V

t,−
n )

log(ϕt,+
n ) − log(ϕt,−

n )
> 0 ( Estimated elasticity of

average influence ).

Finally, for all n in [1 . . .N], set ϕt+1
n := (V

t

n/V
t
)sn · ϕ′

n.



The calibration procedure (12/26)

Idea: Use historical data to “tune” the fee schedule ϕ so it converges to
(p, ǫ)-fairness over time. This is the second part of our mechanism.
Let ϕ

t = (ϕt
1, ϕ

t
2, . . . , ϕ

t
n) be the fee schedule at time t.

Fix a constant λ > 1 (calibration speed). Construct ϕ
t+1 as follows:

(R1) “If too many voters hit the ceiling, then adjust all fees upwards in
proportion to the number of voters who hit the ceiling.” Formally:
Let Et := #{i ∈ I; V t

i = 1}/|I| (fraction of voters hitting ceiling).
If Et ≥ ǫ, then set ϕ′

n := λ · (Et/ǫ) · ϕt
n ≥ ϕt

n, for all n in [1 . . .N].
Otherwise, if Et < ǫ, then set ϕ′

n := ϕt
n, for all n in [1 . . .N].

(R2) “Further adjust the fee of stratum n up (down) if the average influence
of stratum n was higher (lower) than the population average.”

Formally: Let V
t,+
n :=

1

|I+
n |

∑

i∈I+
n

V t
i and V

t,−
n :=

1

|I−
n |

∑

i∈I−

n

V t
i .

Then define sn :=
log(V

t,+
n ) − log(V

t,−
n )

log(ϕt,+
n ) − log(ϕt,−

n )
> 0 ( Estimated elasticity of

average influence ).

Finally, for all n in [1 . . .N], set ϕt+1
n := (V

t

n/V
t
)sn · ϕ′

n.



The calibration procedure (12/26)

Idea: Use historical data to “tune” the fee schedule ϕ so it converges to
(p, ǫ)-fairness over time. This is the second part of our mechanism.
Let ϕ

t = (ϕt
1, ϕ

t
2, . . . , ϕ

t
n) be the fee schedule at time t.

Fix a constant λ > 1 (calibration speed). Construct ϕ
t+1 as follows:

(R1) “If too many voters hit the ceiling, then adjust all fees upwards in
proportion to the number of voters who hit the ceiling.” Formally:
Let Et := #{i ∈ I; V t

i = 1}/|I| (fraction of voters hitting ceiling).
If Et ≥ ǫ, then set ϕ′

n := λ · (Et/ǫ) · ϕt
n ≥ ϕt

n, for all n in [1 . . .N].
Otherwise, if Et < ǫ, then set ϕ′

n := ϕt
n, for all n in [1 . . .N].

(R2) “Further adjust the fee of stratum n up (down) if the average influence
of stratum n was higher (lower) than the population average.”

Formally: Let V
t,+
n :=

1

|I+
n |

∑

i∈I+
n

V t
i and V

t,−
n :=

1

|I−
n |

∑

i∈I−

n

V t
i .

Then define sn :=
log(V

t,+
n ) − log(V

t,−
n )

log(ϕt,+
n ) − log(ϕt,−

n )
> 0 ( Estimated elasticity of

average influence ).

Finally, for all n in [1 . . .N], set ϕt+1
n := (V

t

n/V
t
)sn · ϕ′

n.



The calibration procedure (12/26)

Idea: Use historical data to “tune” the fee schedule ϕ so it converges to
(p, ǫ)-fairness over time. This is the second part of our mechanism.
Let ϕ

t = (ϕt
1, ϕ

t
2, . . . , ϕ

t
n) be the fee schedule at time t.

Fix a constant λ > 1 (calibration speed). Construct ϕ
t+1 as follows:

(R1) “If too many voters hit the ceiling, then adjust all fees upwards in
proportion to the number of voters who hit the ceiling.” Formally:
Let Et := #{i ∈ I; V t

i = 1}/|I| (fraction of voters hitting ceiling).
If Et ≥ ǫ, then set ϕ′

n := λ · (Et/ǫ) · ϕt
n ≥ ϕt

n, for all n in [1 . . .N].
Otherwise, if Et < ǫ, then set ϕ′

n := ϕt
n, for all n in [1 . . .N].

(R2) “Further adjust the fee of stratum n up (down) if the average influence
of stratum n was higher (lower) than the population average.”

Formally: Let V
t,+
n :=

1

|I+
n |

∑

i∈I+
n

V t
i and V

t,−
n :=

1

|I−
n |

∑

i∈I−

n

V t
i .

Then define sn :=
log(V

t,+
n ) − log(V

t,−
n )

log(ϕt,+
n ) − log(ϕt,−

n )
> 0 ( Estimated elasticity of

average influence ).

Finally, for all n in [1 . . .N], set ϕt+1
n := (V

t

n/V
t
)sn · ϕ′

n.



The calibration procedure (12/26)

Idea: Use historical data to “tune” the fee schedule ϕ so it converges to
(p, ǫ)-fairness over time. This is the second part of our mechanism.
Let ϕ

t = (ϕt
1, ϕ

t
2, . . . , ϕ

t
n) be the fee schedule at time t.

Fix a constant λ > 1 (calibration speed). Construct ϕ
t+1 as follows:

(R1) “If too many voters hit the ceiling, then adjust all fees upwards in
proportion to the number of voters who hit the ceiling.” Formally:
Let Et := #{i ∈ I; V t

i = 1}/|I| (fraction of voters hitting ceiling).
If Et ≥ ǫ, then set ϕ′

n := λ · (Et/ǫ) · ϕt
n ≥ ϕt

n, for all n in [1 . . .N].
Otherwise, if Et < ǫ, then set ϕ′

n := ϕt
n, for all n in [1 . . .N].

(R2) “Further adjust the fee of stratum n up (down) if the average influence
of stratum n was higher (lower) than the population average.”

Formally: Let V
t,+
n :=

1

|I+
n |

∑

i∈I+
n

V t
i and V

t,−
n :=

1

|I−
n |

∑

i∈I−

n

V t
i .

Then define sn :=
log(V

t,+
n ) − log(V

t,−
n )

log(ϕt,+
n ) − log(ϕt,−

n )
> 0 ( Estimated elasticity of

average influence ).

Finally, for all n in [1 . . .N], set ϕt+1
n := (V

t

n/V
t
)sn · ϕ′

n.



The calibration procedure (12/26)

Idea: Use historical data to “tune” the fee schedule ϕ so it converges to
(p, ǫ)-fairness over time. This is the second part of our mechanism.
Let ϕ

t = (ϕt
1, ϕ

t
2, . . . , ϕ

t
n) be the fee schedule at time t.

Fix a constant λ > 1 (calibration speed). Construct ϕ
t+1 as follows:

(R1) “If too many voters hit the ceiling, then adjust all fees upwards in
proportion to the number of voters who hit the ceiling.” Formally:
Let Et := #{i ∈ I; V t

i = 1}/|I| (fraction of voters hitting ceiling).
If Et ≥ ǫ, then set ϕ′

n := λ · (Et/ǫ) · ϕt
n ≥ ϕt

n, for all n in [1 . . .N].
Otherwise, if Et < ǫ, then set ϕ′

n := ϕt
n, for all n in [1 . . .N].

(R2) “Further adjust the fee of stratum n up (down) if the average influence
of stratum n was higher (lower) than the population average.”

Formally: Let V
t,+
n :=

1

|I+
n |

∑

i∈I+
n

V t
i and V

t,−
n :=

1

|I−
n |

∑

i∈I−

n

V t
i .

Then define sn :=
log(V

t,+
n ) − log(V

t,−
n )

log(ϕt,+
n ) − log(ϕt,−

n )
> 0 ( Estimated elasticity of

average influence ).

Finally, for all n in [1 . . .N], set ϕt+1
n := (V

t

n/V
t
)sn · ϕ′

n.



The calibration procedure (12/26)

Idea: Use historical data to “tune” the fee schedule ϕ so it converges to
(p, ǫ)-fairness over time. This is the second part of our mechanism.
Let ϕ

t = (ϕt
1, ϕ

t
2, . . . , ϕ

t
n) be the fee schedule at time t.

Fix a constant λ > 1 (calibration speed). Construct ϕ
t+1 as follows:

(R1) “If too many voters hit the ceiling, then adjust all fees upwards in
proportion to the number of voters who hit the ceiling.” Formally:
Let Et := #{i ∈ I; V t

i = 1}/|I| (fraction of voters hitting ceiling).
If Et ≥ ǫ, then set ϕ′

n := λ · (Et/ǫ) · ϕt
n ≥ ϕt

n, for all n in [1 . . .N].
Otherwise, if Et < ǫ, then set ϕ′

n := ϕt
n, for all n in [1 . . .N].

(R2) “Further adjust the fee of stratum n up (down) if the average influence
of stratum n was higher (lower) than the population average.”

Formally: Let V
t,+
n :=

1

|I+
n |

∑

i∈I+
n

V t
i and V

t,−
n :=

1

|I−
n |

∑

i∈I−

n

V t
i .

Then define sn :=
log(V

t,+
n ) − log(V

t,−
n )

log(ϕt,+
n ) − log(ϕt,−

n )
> 0 ( Estimated elasticity of

average influence ).

Finally, for all n in [1 . . .N], set ϕt+1
n := (V

t

n/V
t
)sn · ϕ′

n.



The calibration procedure (12/26)

Idea: Use historical data to “tune” the fee schedule ϕ so it converges to
(p, ǫ)-fairness over time. This is the second part of our mechanism.
Let ϕ

t = (ϕt
1, ϕ

t
2, . . . , ϕ

t
n) be the fee schedule at time t.

Fix a constant λ > 1 (calibration speed). Construct ϕ
t+1 as follows:

(R1) “If too many voters hit the ceiling, then adjust all fees upwards in
proportion to the number of voters who hit the ceiling.” Formally:
Let Et := #{i ∈ I; V t

i = 1}/|I| (fraction of voters hitting ceiling).
If Et ≥ ǫ, then set ϕ′

n := λ · (Et/ǫ) · ϕt
n ≥ ϕt

n, for all n in [1 . . .N].
Otherwise, if Et < ǫ, then set ϕ′

n := ϕt
n, for all n in [1 . . .N].

(R2) “Further adjust the fee of stratum n up (down) if the average influence
of stratum n was higher (lower) than the population average.”

Formally: Let V
t,+
n :=

1

|I+
n |

∑

i∈I+
n

V t
i and V

t,−
n :=

1

|I−
n |

∑

i∈I−

n

V t
i .

Then define sn :=
log(V

t,+
n ) − log(V

t,−
n )

log(ϕt,+
n ) − log(ϕt,−

n )
> 0 ( Estimated elasticity of

average influence ).

Finally, for all n in [1 . . .N], set ϕt+1
n := (V

t

n/V
t
)sn · ϕ′

n.



“(R1) Let Et := #{i ∈ I; V t
i = 1}/|I|. If Et ≥ ǫ, set ϕ′

n := λ (Et/ǫ) · ϕt
n

for all n ∈ [1...N]. If Et < ǫ, then set ϕ′
n := ϕt

n for all n ∈ [1...N].

(R2) Let V
t,+
n :=

1

|I+
n |

∑

i∈I+
n

V t
i and V

t,−
n :=

1

|I−
n |

∑

i∈I−

n

V t
i . Define

sn := log(V
t,+
n )−log(V

t,−

n )

log(ϕt,+
n )−log(ϕt,−

n )
. Set ϕt+1

n := (V
t

n/V
t
)snϕ′

n for all n ∈ [1...N].”

Idea: Iterating (R1) decreases the number of voters who ‘hit the ceiling’.
Thus, after enough iterations of (R1), ϕ

t satisfies (F1ǫ) with probability p.

Meanwhile, iterating (R2) causes V
t

1, . . . ,V
t

N to move closer together.
Thus, after enough iterations of (R2), ϕ

t satisfies (F2ǫ) with probability p.

At this point, the fee schedule ϕ
t is (p, ǫ)-fair.

Our main result (stated very informally due to time constraints) is this:

Theorem. Suppose the population of voters is sufficiently large, and
statistical distribution of their utility functions (over wealth and social
alternatives) satisfies certain regularity assumptions. Then the calibration
mechanism (R1)-(R2) will converge to a (p, ǫ)-fair fee schedule.

Furthermore, the time to convergence is roughly O
(

log(1/ǫ)

1 − p

)

iterations.
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Convergence of the calibration procedure (1) (14/26)

Theorem (informally). Suppose the population of voters is sufficiently
large, and statistical distribution of their utility functions (over wealth and
social alternatives) satisfies certain regularity assumptions. Then the
calibration mechanism (R1)-(R2) will converge to a (p, ǫ)-fair fee schedule.

Furthermore, the time to convergence is roughly O
(

log(1/ǫ)

1 − p

)

iterations.

Here, “certain regularity assumptions” means (roughly) that we treat the
voters’ utility functions as a set of independent random variables such that:

◮ All wealth strata have same statistical distribution of political
preference intensities on any particular referendum.

◮ There is no correlation between a voter’s political preference intensity
and her utility function for wealth.

◮ No correlation between preference intensities in different referenda.
◮ There is no correlation between voters.
◮ It is highly improbable that a voter’s political preference intensity will

be “huge”, when measured in monetary terms.
◮ Expected influence of a stratum n is a “well-behaved” function of ϕn.



Convergence of the calibration procedure (1) (14/26)

Theorem (informally). Suppose the population of voters is sufficiently
large, and statistical distribution of their utility functions (over wealth and
social alternatives) satisfies certain regularity assumptions. Then the
calibration mechanism (R1)-(R2) will converge to a (p, ǫ)-fair fee schedule.

Furthermore, the time to convergence is roughly O
(

log(1/ǫ)

1 − p

)

iterations.

Here, “certain regularity assumptions” means (roughly) that we treat the
voters’ utility functions as a set of independent random variables such that:

◮ All wealth strata have same statistical distribution of political
preference intensities on any particular referendum.

◮ There is no correlation between a voter’s political preference intensity
and her utility function for wealth.

◮ No correlation between preference intensities in different referenda.
◮ There is no correlation between voters.
◮ It is highly improbable that a voter’s political preference intensity will

be “huge”, when measured in monetary terms.
◮ Expected influence of a stratum n is a “well-behaved” function of ϕn.



Convergence of the calibration procedure (1) (14/26)

Theorem (informally). Suppose the population of voters is sufficiently
large, and statistical distribution of their utility functions (over wealth and
social alternatives) satisfies certain regularity assumptions. Then the
calibration mechanism (R1)-(R2) will converge to a (p, ǫ)-fair fee schedule.

Furthermore, the time to convergence is roughly O
(

log(1/ǫ)

1 − p

)

iterations.

Here, “certain regularity assumptions” means (roughly) that we treat the
voters’ utility functions as a set of independent random variables such that:

◮ All wealth strata have same statistical distribution of political
preference intensities on any particular referendum.

◮ There is no correlation between a voter’s political preference intensity
and her utility function for wealth.

◮ No correlation between preference intensities in different referenda.
◮ There is no correlation between voters.
◮ It is highly improbable that a voter’s political preference intensity will

be “huge”, when measured in monetary terms.
◮ Expected influence of a stratum n is a “well-behaved” function of ϕn.



Convergence of the calibration procedure (1) (14/26)

Theorem (informally). Suppose the population of voters is sufficiently
large, and statistical distribution of their utility functions (over wealth and
social alternatives) satisfies certain regularity assumptions. Then the
calibration mechanism (R1)-(R2) will converge to a (p, ǫ)-fair fee schedule.

Furthermore, the time to convergence is roughly O
(

log(1/ǫ)

1 − p

)

iterations.

Here, “certain regularity assumptions” means (roughly) that we treat the
voters’ utility functions as a set of independent random variables such that:

◮ All wealth strata have same statistical distribution of political
preference intensities on any particular referendum.

◮ There is no correlation between a voter’s political preference intensity
and her utility function for wealth.

◮ No correlation between preference intensities in different referenda.
◮ There is no correlation between voters.
◮ It is highly improbable that a voter’s political preference intensity will

be “huge”, when measured in monetary terms.
◮ Expected influence of a stratum n is a “well-behaved” function of ϕn.



Convergence of the calibration procedure (1) (14/26)

Theorem (informally). Suppose the population of voters is sufficiently
large, and statistical distribution of their utility functions (over wealth and
social alternatives) satisfies certain regularity assumptions. Then the
calibration mechanism (R1)-(R2) will converge to a (p, ǫ)-fair fee schedule.

Furthermore, the time to convergence is roughly O
(

log(1/ǫ)

1 − p

)

iterations.

Here, “certain regularity assumptions” means (roughly) that we treat the
voters’ utility functions as a set of independent random variables such that:

◮ All wealth strata have same statistical distribution of political
preference intensities on any particular referendum.

◮ There is no correlation between a voter’s political preference intensity
and her utility function for wealth.

◮ No correlation between preference intensities in different referenda.
◮ There is no correlation between voters.
◮ It is highly improbable that a voter’s political preference intensity will

be “huge”, when measured in monetary terms.
◮ Expected influence of a stratum n is a “well-behaved” function of ϕn.



Convergence of the calibration procedure (1) (14/26)

Theorem (informally). Suppose the population of voters is sufficiently
large, and statistical distribution of their utility functions (over wealth and
social alternatives) satisfies certain regularity assumptions. Then the
calibration mechanism (R1)-(R2) will converge to a (p, ǫ)-fair fee schedule.

Furthermore, the time to convergence is roughly O
(

log(1/ǫ)

1 − p

)

iterations.

Here, “certain regularity assumptions” means (roughly) that we treat the
voters’ utility functions as a set of independent random variables such that:

◮ All wealth strata have same statistical distribution of political
preference intensities on any particular referendum.

◮ There is no correlation between a voter’s political preference intensity
and her utility function for wealth.

◮ No correlation between preference intensities in different referenda.
◮ There is no correlation between voters.
◮ It is highly improbable that a voter’s political preference intensity will

be “huge”, when measured in monetary terms.
◮ Expected influence of a stratum n is a “well-behaved” function of ϕn.



Convergence of the calibration procedure (1) (14/26)

Theorem (informally). Suppose the population of voters is sufficiently
large, and statistical distribution of their utility functions (over wealth and
social alternatives) satisfies certain regularity assumptions. Then the
calibration mechanism (R1)-(R2) will converge to a (p, ǫ)-fair fee schedule.

Furthermore, the time to convergence is roughly O
(

log(1/ǫ)

1 − p

)

iterations.

Here, “certain regularity assumptions” means (roughly) that we treat the
voters’ utility functions as a set of independent random variables such that:

◮ All wealth strata have same statistical distribution of political
preference intensities on any particular referendum.

◮ There is no correlation between a voter’s political preference intensity
and her utility function for wealth.

◮ No correlation between preference intensities in different referenda.
◮ There is no correlation between voters.
◮ It is highly improbable that a voter’s political preference intensity will

be “huge”, when measured in monetary terms.
◮ Expected influence of a stratum n is a “well-behaved” function of ϕn.



Convergence of the calibration procedure (1) (14/26)

Theorem (informally). Suppose the population of voters is sufficiently
large, and statistical distribution of their utility functions (over wealth and
social alternatives) satisfies certain regularity assumptions. Then the
calibration mechanism (R1)-(R2) will converge to a (p, ǫ)-fair fee schedule.

Furthermore, the time to convergence is roughly O
(

log(1/ǫ)

1 − p

)

iterations.

Here, “certain regularity assumptions” means (roughly) that we treat the
voters’ utility functions as a set of independent random variables such that:

◮ All wealth strata have same statistical distribution of political
preference intensities on any particular referendum.

◮ There is no correlation between a voter’s political preference intensity
and her utility function for wealth.

◮ No correlation between preference intensities in different referenda.
◮ There is no correlation between voters.
◮ It is highly improbable that a voter’s political preference intensity will

be “huge”, when measured in monetary terms.
◮ Expected influence of a stratum n is a “well-behaved” function of ϕn.



Convergence of the calibration procedure (2) (15/26)

Theorem (informally). Suppose the population of voters is sufficiently
large, and statistical distribution of their utility functions (over wealth and
social alternatives) satisfies certain regularity assumptions. Then the
calibration mechanism (R1)-(R2) will converge to a (p, ǫ)-fair fee schedule.

Furthermore, the time to convergence is roughly O
(

log(1/ǫ)

1 − p

)

iterations.

Meanwhile “sufficiently large” means

Population ≥ 8
√

N3 + 1

ǫ C
√

1 − p
,

where N is the number of strata, and C is a constant (which depends on
statistical distribution of the voters’ preferences).
For example, if N = 10, ǫ = 0.01, p = 0.99, and C = 0.5, then

Population ≥ 507, 000

is large enough (this is the population of a medium-sized city).

[Skip to end]
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Formal analysis of convergence to fairness



Existence of a (p, ǫ)-fair fee schedule (17/26)

To ensure that (p, ǫ)-fair fee schedule exists, we impose some ‘regularity’
conditions on the distribution of voter preferences. Let N := {0, 1, 2, . . .}.
For all t in N, recall that At is the menu for referendum t.
For all i in I, recall that ut

i : At−→R is i ’s cardinal utility function.
Let Ut

i := maxa∈At
ut
i (a). This measures the ‘intensity’ of voter i ’s

preferences on referendum t. Here is our first assumption:

(U) For all t in N, there is a probability distribution µt on R+ such that Ut
i

is a µt-random variable, for all i in I.
Also, {Ut

i ; i ∈ I and t ∈ N} is a set of independent random variables.

Idea: All strata have same statistical distribution of political preference
intensities on any particular referendum. No correlation of preference
intensities between different referenda or between different voters.

Next, for all i in I, and all ϕ > 0, let C t
i (ϕ) := u$

i (w
t
i )− u$

i (w
t
i −ϕ) be the

‘cost’ (in utility) of a fee of size ϕ for voter i at time t.
In particular, if voter i is in stratum In, and deploys her dominant strategy
for the mechanism (P1)-(P5), then v t

i (a) = min{1, ut
i (a)/C t

i (ϕt
i )} for every

alternative a in At .
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wealth disutility and her political preference intensity.
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(C3) For any ǫ > 0, there is some constant ϕǫ
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independent, ρn-random function, then Prob [Ut ≥ Cn(ϕ
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Our first result: “If the set I of voters is large enough, and we divide it into
N equal-sized subgroups I1, . . . , IN , then there is a (p, ǫ)-fair fee schedule.”

Proposition 1. Assume (U) and (C). Let 0 < V ∗ < 1 be any constant.

(a) For all n in [1 . . .N], there is a unique ϕ∗
n in R+ with Vn(ϕ

∗
n) = V ∗.

Now let 0 < ǫ, p < 1, and suppose that

(A) |I| ≥ 8
√

N3+1
ǫ V ∗

√
1−p

, and (B) |I1| = |I2| = · · · = |IN | = |I|
N

.

(b) There is a constant K > 0 such that, for any t in N, if |ϕt
n −ϕ∗

n| < K ǫ
for all n in [1 . . .N], then ϕ

t satisfies (F2ǫ) with probability ≥ p.
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medium-sized city).
If V ∗ is small enough, and we define ϕ

∗ := (ϕ∗
1, . . . , ϕ

∗
N) as in Prop.1(a),

then Prop.1(b,c) guarantees that the fee schedule ϕ
∗ is (0.99, 0.01)-fair.

Problem: What value of V ∗ is ‘small enough’ in Prop.1(c)?
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ǫ

N be as
in assumption (C3). Let λ be the ‘calibration speed’ in rule (R1).
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log(λ)
.
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n was not too far from ϕǫ
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n ≥ ϕǫ

n/4 for all n ∈ [1...N], then L(ǫ) ≤ 6.
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Example. Let ǫ := 0.01. Suppose we want (F1ǫ) to be violated in less than
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n.

Example. If λ = 1.26, and ϕ0
n ≥ ϕǫ

n/4 for all n ∈ [1...N], then L(ǫ) ≤ 6.

Proposition 2. Let 0 < ǫ, p < 1. Suppose |I| > 1/ǫ
√

1 − p. If only (R1)
is applied during each referendum, then there will almost surely come a time
T ǫ

p such that, for all t > T ǫ

p , condition (F1ǫ) is satisfied with probability p
or higher. The expected value of the random variable T ǫ

p is at most
1

1−p
L

(

ǫ − 1
|I|√1−p

)

.

Example. Let ǫ := 0.01. Suppose we want (F1ǫ) to be violated in less than
4% of all referenda (i.e. p := 0.96). If |I| ≥ 10 000 and L(0.0095) ≤ 6,
then 150 iterations of (R1) will usually suffice to guarantee this.
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If p ≈ 1, and t > T ǫ

p , then Proposition 2 says that condition (F1ǫ) is
satisfied with very high probability. Thus, after time T ǫ

p , rule (R1) is
almost never invoked. Thus, we can focus on the dynamics of (R2) only.
We claim: (R2) causes ϕ

t to converge to the ϕ
∗ described in Prop. 1(b).

Recall that V
t

n :=
1

|In|
∑

i∈In

V t
i . For any ϕ > 0, let Vn(ϕ) be expected

influence of stratum n on referendum t, if ϕt
n = ϕ, from Assumption (C4).

Lemma: V
t

n = Vn(ϕ
t
n) + γt

n, where γt
n is a random variable with mean

zero, variance less than 1/|In|, and an “almost Gaussian” distribution.

In practice, |In| is very large. Thus, |γt
n| is very probably very small.

Example. If N = 10 and each In represents one decile of the wealth
distribution of 10 000 000 voters, then |γt

n| < 0.004, with probability

greater than 99.99%. Thus, V
t

n ≈ V t
n (ϕt

n).
For simplicity, we will assume this approximation is exact.....
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(C4) “There is a decreasing, continuously twice-differentiable function
Vn : R+−→[0, 1] such that V (0) = 1 and lim

ϕ→∞
V (ϕ) = 0, and such that for

any ϕ ≥ 0 and any t in N, Vn(ϕ) is the expected value of the random
variable min{1, Ut/Cn(ϕ)}, where Ut is a µt-random variable and Cn is an
independent, ρn-random function.”
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Proposition 3. Suppose that:

(S1) V
t

n = Vn(ϕ
t
n) all t in N and all n in [1 . . .N].

(S2) There is some V ∗ such that V
t
= V ∗ for all t in N.

Suppose only (R2) is applied during each referendum. Then for any ǫ > 0,
there is T1(ǫ) > 0 such that (F2ǫ) is satisfied for all t ≥ T1(ǫ).

Furthermore, T1(ǫ) = O
(

√

log(1/ǫ)
)

.

If the functions V1, . . . ,VN in (C4) are isolestic, then T1(ǫ) = 1.

Of course, Proposition 3 does not exactly describe behaviour of rule (R2),
because (S1) and (S2) are both approximations. But if we combine Prop.
1(b) with the argument used to prove Prop. 3, we obtain the following:

Heuristic. Fix p ∈ [0, 1). Suppose |I| ≥ 8
√

N3+1
ǫ V ∗

√
1−p

, and

|I1| = · · · = |IN | = |I|
N

. Also suppose that:

(S1) V
t

n ≈ Vn(ϕ
t
n) all t in N and all n in [1 . . .N].

(S2) There is some V ∗ such that V
t ≈ V ∗ for all t in N.

Suppose only (R2) is applied in each referendum. For any ǫ > 0, there
exists T0(ǫ) > 0 such that ϕ

t satisfies (F2ǫ) with probability ≥ p for all
t ≥ T0(ǫ). Also T0(ǫ) = O(

√

log(1/ǫ)). If V1, ...,VN are isolestic, then
T0(ǫ) = 1.
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Conclusion. We have modified the Groves-Clarke pivotal mechanism to
obtain a ‘fair’, strategy-proof implementation of weighted utilitarian social
choice amongst nonpecuniary public goods.
The mechanism gives roughly equal influence to poor voters and rich voters.
Unresolved Problems:

◮ Most public goods have both pecuniary and nonpecuniary
costs/benefits. (Example: law enforcement, urban zoning, roads,
public education, commerce regulations, and the government itself.)

◮ The mechanism is very informationally intensive. But all votes must
remain confidential, so that voters cannot be bribed or intimidated, or
coordinate their actions in voting blocs.

◮ We assumed each voter’s joint utility function over wealth and public
goods was separable. But this is false; a large gain/loss of wealth will
generally change a voter’s preferences over public goods.

◮ The stochastic Clarke tax assumes voters are vNM expected utility
maximizers. But this is empirically false (Kahneman & Tversky).

◮ The budget size must be fixed in advance, because otherwise the
choice of public goods would involve an inextricable pecuniary
component. How should society determine the size of this budget?
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Thank you.

These presentation slides are available at

<http://euclid.trentu.ca/pivato/Research/pivotal.pdf>

The paper is available at

< http://mpra.ub.uni-muenchen.de/34525>
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