Website: http://aimSciences.org

DD. 723-736

INVARIANT MEASURES FOR BIPERMUTATIVE CELLULAR AUTOMATA

Marcus Pivato

Department of Mathematics Trent University Peterborough, Ontario, K9L 1Z8, Canada

(Communicated by Lluís Alsedà)

Abstract. A right-sided, nearest neighbour cellular automaton (RNNCA) is a continuous transformation $\Phi: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ determined by a local rule $\phi: \mathcal{A}^{\{0,1\}} \longrightarrow \mathcal{A}$ so that, for any $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}}$ and any $z \in \mathbb{Z}$, $\Phi(\mathbf{a})_z = \phi(a_z, a_{z+1})$. We say that Φ is bipermutative if, for any choice of $a \in \mathcal{A}$, the map $\mathcal{A} \ni b \mapsto \phi(a, b) \in \mathcal{A}$ is bijective, and also, for any choice of $b \in \mathcal{A}$, the map $\mathcal{A} \ni a \mapsto \phi(a, b) \in \mathcal{A}$ is bijective.

We characterize the invariant measures of bipermutative RNNCA. First we introduce the equivalent notion of a *quasigroup CA*. Then we characterize Φ -invariant measures when \mathcal{A} is a (nonabelian) group, and $\phi(a,b)=a\cdot b$. Then we show that, if Φ is any bipermutative RNNCA, and μ is Φ -invariant, then Φ must be μ -almost everywhere K-to-1, for some constant K. We then characterize invariant measures when $\mathcal{A}^{\mathbb{Z}}$ is a group shift and Φ is an endomorphic CA.

1. **Introduction.** If \mathcal{A} is a (discretely topologized) finite set, then $\mathcal{A}^{\mathbb{Z}}$ is compact in the Tychonoff topology. Let $\sigma: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ be the shift map: $\sigma(\mathbf{a}) = [b_z|_{z \in \mathbb{Z}}]$, where $b_z = a_{z+1}$, for all $z \in \mathbb{Z}$. For any $n, m \in \mathbb{Z}$, let $[n...m] := \{n, n+1, ..., m\}$. A cellular automaton (CA) is a dynamical system $\Phi: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ defined by a local rule $\phi: \mathcal{A}^{[-\ell...r]} \longrightarrow \mathcal{A}$ (for some $\ell, r \geq 0$) so that, for any $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}}$ and any $z \in \mathbb{Z}$, $\Phi(\mathbf{a})_z = \phi(a_{z-\ell}, \ldots, a_{z+r})$. Equivalently [4], a CA is continuous map $\Phi: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ which commutes with σ .

Let $[-\ell...r] := [-\ell...r-1]$ and let $(-\ell...r] := [1-\ell...r]$. Then Φ is right-permutative if, for any fixed $\mathbf{a} \in \mathcal{A}^{[-\ell...r)}$, the map $\mathcal{A} \ni b \mapsto \phi(\mathbf{a},b) \in \mathcal{A}$ is bijective. Likewise, Φ is left-permutative if, for any fixed $\mathbf{b} \in \mathcal{A}^{(-\ell...r]}$, the map $\mathcal{A} \ni a \mapsto \phi(a,\mathbf{b}) \in \mathcal{A}$ is bijective, and Φ is bipermutative if it is both left- and right-permutative.

Example 1.1: (a) If (A, +) is an abelian group, $\ell = 0$ and r = 1, and $\phi(a_0, a_1) = a_0 + a_1$, then Φ is a called a *nearest neighbour addition* CA, and is bipermutative.

(b) If $\mathcal{A} = \mathbb{Z}_{/p}$ (where p is prime), and let $c_0, c_1, d \in \mathbb{Z}_{/p}$ be constants ($c_0 \neq 0 \neq c_1$). If $\phi(a_0, a_1) = c_0 a_0 + c_1 a_1 + d$, then Φ is a called an *affine* CA, and is bipermutative. \diamondsuit

We say that Φ is a *right-sided, nearest neighbour* cellular automaton (RNNCA) if $\ell = 0$ and r = 1 [as in Examples 1.1(a) and 1.1(b)]. It is easy to show:

²⁰⁰⁰ Mathematics Subject Classification. Primary: 37B15; Secondary: 37A50.

Key words and phrases. Cellular automata, permutative, invariant measure, quasigroup, Latin square, endomorphism, group shift.

Partially supported by NSERC Canada.

Lemma 1.2. Let $\Phi: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ be a CA and let $\mathcal{B} = \mathcal{A}^{\ell+r}$. There is an RNNCA $\Gamma: \mathcal{B}^{\mathbb{Z}} \longrightarrow \mathcal{B}^{\mathbb{Z}}$ so that the topological dynamical system $(\mathcal{A}^{\mathbb{Z}}, \Phi)$ is isomorphic to the system $(\mathcal{B}^{\mathbb{Z}}, \Gamma)$.

Furthermore
$$\left(\Phi \text{ is bipermutative } \right) \iff \left(\Gamma \text{ is bipermutative } \right).$$

Let λ be the uniform Bernoulli measure on $\mathcal{A}^{\mathbb{Z}}$. Thus, for any $n \leq m$, if $(c_n, \ldots, c_m) \in \mathcal{A}^{[n \ldots m]}$, then $\lambda \{ \mathbf{a} \in \mathcal{A}^{\mathbb{Z}} \; ; \; (a_n, \ldots, a_m) = (c_n, \ldots, c_m) \} = 1/|\mathcal{A}|^{m-n+1}$. Let $\mathcal{M}(\mathcal{A}^{\mathbb{Z}}; \Phi; \sigma)$ be the set of Φ - and σ -invariant probability measures on $\mathcal{A}^{\mathbb{Z}}$. Let Φ be a permutative CA. Then Φ is surjective, and thus $\lambda \in \mathcal{M}(\mathcal{A}^{\mathbb{Z}}; \Phi; \sigma)$ [4]. What other measures (if any) lie in $\mathcal{M}(\mathcal{A}^{\mathbb{Z}}; \Phi; \sigma)$? Let $h_{\mu}(\Phi)$ denote the measurable entropy [10, §5.2] of the measure-preserving dynamical system $(\mathcal{A}^{\mathbb{Z}}, \Phi, \mu)$. Let $\mathcal{M}(\mathcal{A}^{\mathbb{Z}}; \Phi; \sigma^{\text{-erg}})$ be the σ -ergodic measures in $\mathcal{M}(\mathcal{A}^{\mathbb{Z}}; \Phi; \sigma)$. Host, Maass, and Martínez [1] have shown:

Proposition 1.3. [1, Theorem 12] Let $\mathcal{A} = \mathbb{Z}_{/p}$, where p is prime. Let $\Phi \colon \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ be an affine CA. If $\mu \in \mathcal{M}$ ($\mathcal{A}^{\mathbb{Z}}; \Phi; \sigma^{\text{-erg}}$), and $h_{\mu}(\Phi) > 0$, then $\mu = \lambda$.

This paper generalizes Proposition 1.3 in three ways. In §2, we introduce quasigroups, and reformulate bipermutative RNNCA as *quasigroup CA*. In §3 we characterize invariant measures for *nearest-neighbour multiplication* CA (when \mathcal{A} is a nonabelian group). In §4 we extend the method of [1] to prove: if $\mu \in \mathcal{M}$ ($\mathcal{A}^{\mathbb{Z}}$; $\Phi^{\text{-erg}}$; σ) then there is some $K \leq |\mathcal{A}|$ so that Φ is K-to-1 (μ -æ) (Theorem 4.1). In §5 we generalize Proposition 1.3 to *endomorphic* CA on group shifts (Theorem 5.2).

Notation: If μ is a measure, then ' \forall_{μ} x' means ' μ -almost all x', and ' μ -æ' means ' μ -almost everywhere'. If \mathbf{U} and \mathbf{V} are measurable sets, then ' $\mathbf{U} \subset \mathbf{V}$ ' means $\mu[\mathbf{U} \setminus \mathbf{V}] = 0$, and ' $\mathbf{U} \equiv \mathbf{V}$ ' means $\mathbf{U} \subset \mathbf{V}$ and $\mathbf{V} \subset \mathbf{U}$. If \mathfrak{S} is a sigma algebra and \mathbf{U} is a measurable set, then $\mathbb{E}_{\mu}[\mathbf{U} \mid \mathfrak{S}]$ is the conditional expectation of $\mathbb{1}_{\mathbf{U}}$ given \mathfrak{S} .

2. Quasigroup Cellular Automata. A quasigroup [11] is a finite set \mathcal{A} equipped with a binary operation '*' which has the left- and right-cancellation properties. In other words, for any $a, b, c \in \mathcal{A}$,

(Note that the operator '*' is not necessarily associative. Indeed, it is easy to show: '*' is associative if and only if $(\mathcal{A},*)$ is a group.) Let $A:=|\mathcal{A}|$. The 'multiplication table' for * is the $A\times A$ matrix $\mathbf{M}^*=[m_{a,b}]_{a,b\in\mathcal{A}}$, where $m_{a,b}=a*b$. It follows that $(\mathcal{A},*)$ is a quasigroup if and only \mathbf{M}^* is a *Latin square*, which means that every column and every row of \mathbf{M}^* contains each element of \mathcal{A} exactly once [5]. A *quasigroup cellular automaton* (QGCA) is a RNNCA $\Phi: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ with local rule $\phi: \mathcal{A}^{\{0,1\}} \longrightarrow \mathcal{A}$ given: $\phi(a_0, a_1) = a_0 * a_1$, where '*' is a quasigroup operation. For instance, Example 1.1(a) is a QGCA. It follows:

$$\left(\Phi \text{ is a bipermutative RNNCA} \right) \iff \left(\Phi \text{ is a quasigroup CA} \right).$$

The obvious generalization of Proposition 1.3 fails for arbitrary quasigroup CA. If $\mathcal{B} \subset \mathcal{A}$, then \mathcal{B} is a *subquasigroup* (' $\mathcal{B} \prec \mathcal{A}$ ') if \mathcal{B} is closed under the '*' operation.

Lemma 2.1. If $\Phi: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ is a QGCA, and $\mathcal{B} \prec \mathcal{A}$, then $\mathcal{B}^{\mathbb{Z}}$ is a Φ -invariant subshift. If μ is the uniform Bernoulli measure on $\mathcal{B}^{\mathbb{Z}}$, then $\mu \in \mathcal{M}\left(\mathcal{A}^{\mathbb{N}}; \Phi; \sigma^{\text{-erg}}\right)$. If $|\mathcal{B}| = K$, then $h_{\mu}(\Phi) = \log(K)$ and Φ is K-to-1 $(\mu$ - \mathfrak{x}).

If $\mathcal{B} \prec \mathcal{A}$ and $(\mathcal{A}, *)$ is a finite group, then \mathcal{B} is a subgroup. Thus, if $|\mathcal{A}|$ is prime, then \mathcal{A} cannot have nontrivial subquasigroups. However, other prime cardinality quasigroups can. For example, let $\mathcal{D} := \{a_1, a_2; b_1, b_2; c_1, c_2, c_3\}$ (so $|\mathcal{D}| = 7$ is prime). Given the multiplication table below, $(\mathcal{D}, *)$ has two subquasigroups: $\mathcal{A} = \{a_1, a_2\}$ and $\mathcal{B} = \{b_1, b_2\}$.

*	a_1	a_2	b_1	b_2	c_1	c_2	c_3
a_1	$ a_1 $	a_2	c_1	c_2	b_2	b_1	c_3
a_2	a_2	a_1	c_2	c_1	b_1	c_3	b_2
b_1	c_1	c_3	b_1	b_2	c_2	a_1	a_2
b_2	c_3	c_1	b_2	b_1	a_1	a_2	c_2
c_1	b_1	b_2	c_3	a_1	a_2	c_2	c_1
c_2	b_2	c_2	a_1	a_2	c_3	c_1	b_1
c_3	c_2	b_1	a_2	c_3	c_1	b_2	a_1

Note: If $\Phi: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ is a QGCA, and $\mu \in \mathcal{M}(\mathcal{A}^{\mathbb{Z}}; \Phi; \sigma^{-\text{erg}})$, and $h_{\mu}(\Phi) > 0$, then μ is not necessarily the uniform measure on $\mathcal{B}^{\mathbb{Z}}$ for some $\mathcal{B} \prec \mathcal{A}$; see Examples 3.2(b,c).

Let $\mathbb{N} := \{0, 1, 2, 3, \ldots\}$. Any right-sided CA $\Phi \colon \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ induces a *unilateral* CA $\widetilde{\Phi} \colon \mathcal{A}^{\mathbb{N}} \longrightarrow \mathcal{A}^{\mathbb{N}}$ with the same local rule. Any $\mu \in \mathcal{M}\left(\mathcal{A}^{\mathbb{Z}}; \Phi; \sigma\right)$ projects to a measure $\widetilde{\mu} \in \mathcal{M}\left(\mathcal{A}^{\mathbb{N}}; \Phi; \sigma\right)$, and any $\widetilde{\mu} \in \mathcal{M}\left(\mathcal{A}^{\mathbb{N}}; \Phi; \sigma\right)$ extends to a unique $\mu \in \mathcal{M}\left(\mathcal{A}^{\mathbb{Z}}; \Phi; \sigma\right)$. In what follows, we will abuse notation and write $\widetilde{\Phi}$ as Φ .

Lemma 2.2. [3, Prop.2.3] If $\Phi: \mathcal{A}^{\mathbb{N}} \longrightarrow \mathcal{A}^{\mathbb{N}}$ is right-permutative, then $(\mathcal{A}^{\mathbb{N}}, \Phi)$ is conjugate to a full shift. To be precise, define $\Xi: \mathcal{A}^{\mathbb{N}} \longrightarrow \mathcal{A}^{\mathbb{N}}$ by

$$\Xi(\mathbf{a}) := [a_0, \ \Phi(\mathbf{a})_0, \ \Phi^2(\mathbf{a})_0, \ \Phi^3(\mathbf{a})_0, \ \ldots].$$

Then Ξ is a conjugacy from $(\mathcal{A}^{\mathbb{N}}, \Phi)$ to $(\mathcal{A}^{\mathbb{N}}, \sigma)$ (ie. Ξ is a homeomorphism and $\Xi \circ \Phi = \sigma \circ \Xi$).

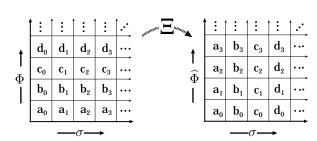
Let $(\mathcal{A},*)$ be a quasigroup. The *dual* quasigroup is the set \mathcal{A} equipped with binary operator $\widehat{*}$ defined: $a\widehat{*}b=c$, where c is the unique element in \mathcal{A} such that a*c=b. If $(\mathcal{A},*)$ is a group, then $a\widehat{*}b=a^{-1}*b$. If $\Phi\colon \mathcal{A}^{\mathbb{N}}\to \mathcal{A}^{\mathbb{N}}$ is a QGCA (with local map $\phi(a,b)=a*b$), then the *dual* of Φ is the right-permutative RNNCA $\widehat{\Phi}\colon \mathcal{A}^{\mathbb{N}}\to \mathcal{A}^{\mathbb{N}}$ with local map $\widehat{\phi}(a,b):=a\widehat{*}b$ (see Figure 1).

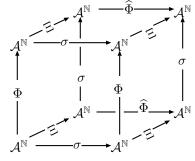
Lemma 2.3. Let (A, *) be a quasigroup. Let $\Phi: A^{\mathbb{N}} \to A^{\mathbb{N}}$ be the corresponding QGCA.

- (a) $(\mathcal{A}, \widehat{*})$ is a quasigroup, and $\widehat{\Phi} \colon \mathcal{A}^{\mathbb{N}} \to \mathcal{A}^{\mathbb{N}}$ is a QGCA. The dual of $\widehat{*}$ is *, and the dual of $\widehat{\Phi}$ is Φ .
 - (b) Ξ is a topological conjugacy from the dynamical system $(\mathcal{A}^{\mathbb{N}}, \sigma)$ to $(\mathcal{A}^{\mathbb{N}}, \widehat{\Phi})$.
 - (c) If $\mathcal{B} \subset \mathcal{A}$, then $((\mathcal{B}, *) \prec (\mathcal{A}, *)) \iff ((\mathcal{B}, \widehat{*}) \prec (\mathcal{A}, \widehat{*}))$.

Let μ be a measure on $\mathcal{A}^{\mathbb{N}}$, and let $\widehat{\mu} := \Xi(\mu)$. Then:

- (d) $\left(\mu \text{ is } \Phi\text{-invariant}\right) \iff \left(\widehat{\mu} \text{ is } \sigma\text{-invariant}\right)$.
- (e) $\left(\mu \text{ is } \sigma\text{-ergodic} \right) \iff \left(\widehat{\mu} \text{ is } \widehat{\Phi}\text{-ergodic} \right)$.
- $(\mathbf{f}) \quad \stackrel{\cdot}{lf} \mu \in \mathcal{M} \left(\mathcal{A}^{\mathbb{N}}; \Phi; \sigma\right), \ then \ h(\Phi, \mu) \ = \ h(\widehat{\Phi}, \widehat{\mu}) \ = \ h(\sigma, \mu) \ = \ h(\sigma, \widehat{\mu}). \quad \Box$





- (A) The space-time diagrams of Φ and $\widehat{\Phi}$.
- **(B)** Ξ induces a commuting cube.

Figure 1.

3. Multiplication CA on Nonabelian Groups. Throughout this section, let \mathcal{A} be a finite (possibly nonabelian) group with identity e, and let $\Phi: \mathcal{A}^{\mathbb{N}} \longrightarrow \mathcal{A}^{\mathbb{N}}$ be the nearest neighbour multiplication CA (NNMCA), with local map $\phi(a_0, a_1) = a_0 \cdot a_1$. This type of CA was previously studied in [9, 12]. Let $\widetilde{\mathbb{N}} := \{1, 2, 3, \ldots\}$. Let $\mu \in \mathcal{M}(\mathcal{A}^{\mathbb{N}})$. For any $\mathbf{a} \in \mathcal{A}^{\widetilde{\mathbb{N}}}$, let $\mu_{\mathbf{a}}$ be the conditional measure induced by \mathbf{a} on the zeroth coordinate. That is:

$$\forall b \in \mathcal{A}, \quad \mu_{\mathbf{a}}(b) := \mu \left[x_0 = b \mid \mathbf{x}_{\mid_{\widetilde{\mathbb{N}}}} = \mathbf{a} \right],$$

(where $\mathbf{x} \in \mathcal{A}^{\mathbb{N}}$ is a μ -random sequence). Let $\widetilde{\mu}$ be the projection of μ onto $\mathcal{A}^{\widetilde{\mathbb{N}}}$. Then we have the following disintegration [13]:

$$\mu = \int_{\mathcal{A}^{\widetilde{\mathbb{N}}}} (\mu_{\mathbf{a}} \otimes \delta_{\mathbf{a}}) \ d\widetilde{\mu}[\mathbf{a}]. \tag{1}$$

Let $\mathcal{C} \prec \mathcal{A}$ be a subgroup. Say μ is a \mathcal{C} -measure if, for $\forall_{\widetilde{\mu}} \mathbf{a} \in \mathcal{A}^{\widetilde{\mathbb{N}}}$, supp $(\mu_{\mathbf{a}})$ is a right coset of \mathcal{C} , and $\mu_{\mathbf{a}}$ is uniformly distributed on this coset. Our main result in this section is:

Theorem 3.1. If $\Phi: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ is an NNMCA, and $\mu \in \mathcal{M}\left(\mathcal{A}^{\mathbb{N}}; \Phi^{\text{-erg}}; \sigma\right)$, then μ is a C-measure for some $C \prec \mathcal{A}$.

Example 3.2: (a) Let $\mathcal{C} \prec \mathcal{A}$ be any subgroup, and let μ be the uniform measure on $\mathcal{C}^{\mathbb{N}}$. Then μ is a \mathcal{C} -measure (for any $\mathbf{a} \in \mathcal{A}^{\widetilde{\mathbb{N}}}$, $\mu_{\mathbf{a}}$ is uniform on \mathcal{C}), and $\mu \in \mathcal{M}\left(\mathcal{A}^{\mathbb{Z}}; \Phi^{-\operatorname{erg}}; \sigma\right)$

(b) Let $\mathcal{Q} = \{\pm 1, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}\}$ be the Quaternion group [2, §1.5], and let $\Phi_{\mathcal{Q}} : \mathcal{Q}^{\mathbb{N}} \longrightarrow \mathcal{Q}^{\mathbb{N}}$ be the NNMCA. If $\mathbf{p} := [\mathbf{i}, \mathbf{j}, \mathbf{k}, \mathbf{i}, \mathbf{j}, \mathbf{k}, \ldots]$, then $\Phi_{\mathcal{Q}}(\mathbf{p}) = [\mathbf{k}, \mathbf{i}, \mathbf{j}, \mathbf{k}, \mathbf{i}, \mathbf{j}, \ldots]$, so $\Phi_{\mathcal{Q}}^{2}(\mathbf{p}) = [\mathbf{j}, \mathbf{k}, \mathbf{i}, \mathbf{j}, \mathbf{k}, \mathbf{i}, \ldots]$ so $\Phi_{\mathcal{Q}}^{3}(\mathbf{p}) = [\mathbf{i}, \mathbf{j}, \mathbf{k}, \mathbf{i}, \mathbf{j}, \mathbf{k}, \ldots] = \mathbf{p}$. Let $\mu_{\mathcal{Q}}$ be the measure on $\mathcal{Q}^{\mathbb{N}}$ assigning probability 1/3 to each of \mathbf{p} , $\Phi_{\mathcal{Q}}(\mathbf{p})$ and $\Phi_{\mathcal{Q}}^{2}(\mathbf{p})$. Then $\mu_{\mathcal{Q}} \in \mathcal{M}\left(\mathcal{Q}^{\mathbb{N}}; \Phi_{\mathcal{Q}^{-\text{erg}}}; \sigma\right)$.

Now, let \mathcal{C} be any other group, and let $\mathcal{A} = \mathcal{C} \times \mathcal{Q}$. Identify \mathcal{C} with $\mathcal{C} \times \{1\} \prec \mathcal{A}$; then \mathcal{C} is a normal subgroup of \mathcal{A} , and $\mathcal{Q} = \mathcal{A}/\mathcal{C}$. The cosets of \mathcal{C} all have the form $\mathcal{C} \times \{q\}$ for some $q \in \mathcal{Q}$. There is a natural identification $\mathcal{A}^{\mathbb{N}} \cong \mathcal{C}^{\mathbb{N}} \times \mathcal{Q}^{\mathbb{N}}$, given: $\left[\binom{c_0}{q_0}, \binom{c_1}{q_1}, \binom{c_2}{q_2}, \ldots\right] \longleftrightarrow \left(\left[c_0, c_1, c_2, \ldots\right]; \left[q_0, q_1, q_2, \ldots\right]\right)$. Let $\mu_{\mathcal{C}}$ be the uniform Bernoulli measure on $\mathcal{C}^{\mathbb{N}}$, and let $\mu = \mu_{\mathcal{C}} \otimes \mu_{\mathcal{Q}}$.

Claim 1: μ is a C-measure.

Let $\mathbf{a} \in \mathcal{A}^{\mathbb{N}}$ be a μ -random sequence. Then $\mathbf{a} = (\mathbf{c}, \mathbf{q})$, where $\mathbf{q} \in$ $\{\mathbf{p}, \Phi_{\mathcal{Q}}(\mathbf{p}), \Phi_{\mathcal{Q}}^2(\mathbf{p})\}\$, (with probability 1/3 each), and $\mathbf{c} = (c_0, c_1, c_2, \ldots)$ is a sequence of independent, uniformly distributed random elements of C. The coordinates $[a_1, a_2, a_3, \ldots] = \begin{bmatrix} \binom{c_1}{q_1}, \binom{c_2}{q_2}, \binom{c_2}{q_2}, \ldots \end{bmatrix}$ determine \mathbf{q} , and thus, determine q_0 . Thus, $\mu_{[a_1, a_2, a_3, \ldots]}$ is uniformly distributed on the coset $\mathcal{C} \times \{q_0\}$. \diamondsuit claim 1 Claim 2: Let $\Phi : \mathcal{A}^{\mathbb{N}} \longrightarrow \mathcal{A}^{\mathbb{N}}$ be the NNMCA. Then $\mu \in \mathcal{M}\left(\mathcal{A}^{\mathbb{N}}; \Phi^{\text{-erg}}; \sigma\right)$.

Proof: μ is clearly σ -invariant.

 μ is Φ -invariant: Let $\Phi_c: \mathcal{C}^{\mathbb{N}} \longrightarrow \mathcal{C}^{\mathbb{N}}$ be the NNMCA on $\mathcal{C}^{\mathbb{N}}$. Then Φ $\Phi_{\mathcal{C}} \times \Phi_{\mathcal{Q}}$. Thus, $\Phi(\mu) = \Phi_{\mathcal{C}}(\mu_{\mathcal{C}}) \otimes \Phi_{\mathcal{Q}}(\mu_{\mathcal{Q}}) = \mu_{\mathcal{C}} \otimes \mu_{\mathcal{Q}} = \mu$. μ is Φ -ergodic: The system $(\mathcal{C}^{\mathbb{N}}, \Phi_{\mathcal{C}}, \mu_{\mathcal{C}})$ is mixing [7, Thm 6.3], thus weakly mixing. The system $(\mathcal{Q}^{\mathbb{N}}, \Phi_{\mathcal{Q}}, \mu_{\mathcal{Q}})$ is ergodic. Thus, the product system $(\mathcal{A}^{\mathbb{N}}, \Phi, \mu)$ $\cong (\mathcal{C}^{\mathbb{N}} \times \mathcal{Q}^{\mathbb{N}}, \ \Phi_{\mathcal{C}} \times \Phi_{\mathcal{Q}}, \ \mu_{\mathcal{C}} \otimes \mu_{\mathcal{Q}}) \text{ is also ergodic [10, Thm. 2.6.1].}$ Note that $h(\mu, \sigma) = h(\mu_c, \sigma) = \log_2 |\mathcal{C}| > 0$, but $supp(\mu) \neq \mathcal{B}^{\mathbb{N}}$ for any subgroup $\mathcal{B} \prec \mathcal{A}$.

(c) Let (A, +) be an abelian group, and let $\mathfrak{G} \subset A^{\mathbb{Z}}$ be a subgroup shift (a closed, σ -invariant subgroup). If Φ is as in 1.1(a), then $\Phi(\mathfrak{G}) = \mathfrak{G}$. If η is the Haar measure on \mathfrak{G} , then $\eta \in \mathcal{M}(\mathcal{A}^{\mathbb{Z}}; \Phi; \sigma^{-\text{erg}})$. Note that there may be no $\mathcal{B} \prec \mathcal{A}$ so that $\mathfrak{G} = \mathcal{B}^{\mathbb{Z}}$; see [6, Example 4]. Invariant measures of additive CA on subgroup shifts are investigated in [8].

- **Lemma 3.3.** (a) If μ is a \mathcal{C} -measure, then $h(\mu, \sigma) = \log_2 |\mathcal{C}|$. (b) $\left(\mu \text{ is an } \mathcal{A}\text{-measure}\right) \iff \left(\mu \text{ is the uniform measure on } \mathcal{A}^{\mathbb{N}}\right)$.
 - (c) Let $\{e\}$ be the identity subgroup. Then the following are equivalent:
 - [i] μ is an $\{e\}$ -measure; [ii] $|\operatorname{supp}(\mu_{\mathbf{a}})| = 1$, for $\forall_{\widetilde{\mu}} \mathbf{a} \in \mathcal{A}^{\mathbb{N}}$; [iii] $h(\mu, \sigma) = 0$.

Proof: (a) and (b) are obvious, and in (c), it is clear that $[i] \iff [ii]$. To see that $[ii] \iff [iii], \text{ let } \widetilde{\mathbf{F}} := \left\{ \mathbf{a} \in \mathcal{A}^{\widetilde{\mathbb{N}}} \; ; \; |\mathsf{supp}(\mu_{\mathbf{a}})| \geq 2 \right\}. \text{ If } \rho \text{ is a measure on } \mathcal{A}, \text{ define } \mathcal{A} \in \mathcal{A}$ $H(\rho) \,:=\, -\sum_{b\in A} \rho\{b\} \log_2{(\rho\{b\})}. \quad \text{Then } \Big(\ H(\rho)>0\ \Big) \quad \Longleftrightarrow \quad \Big(\ |\mathsf{supp}\,(\rho)|\geq 2\ \Big).$ Thus,

$$h(\mu,\sigma) \quad \overline{\overline{}_{(*)}} \quad \int_{\mathcal{A}^{\widetilde{\mathbb{N}}}} H(\mu_{\mathbf{a}}) \ d\widetilde{\mu}[\mathbf{a}] \quad \overline{\overline{}_{\widetilde{\mathbf{F}}}} \ H(\mu_{\mathbf{a}}) \ d\widetilde{\mu}[\mathbf{a}] \quad \mathop{>} \quad 0,$$

For (*) see [10, Prop. 5.2.12]. (\dagger) and (\ddagger) are because $(H(\mu_{\mathbf{a}}) > 0) \iff (\mathbf{a} \in \widetilde{\mathbf{F}})$, and (\ddagger) holds only if $\widetilde{\mu}[\widetilde{\mathbf{F}}] > 0$. Thus, $[\mathrm{ii}] \iff (\widetilde{\mu}[\widetilde{\mathbf{F}}] = 0) \iff$ $(h(\mu,\sigma)=0).$

Corollary 3.4. Let $h_{\max} := \max \{ \log_2 |\mathcal{C}| \; ; \; \mathcal{C} \; a \; proper \; subgroup \; of \; \mathcal{A} \}. \; If \Phi \colon \mathcal{A}^{\mathbb{N}} \to \mathbb{C}$ $\mathcal{A}^{\mathbb{N}}$ is a NNMCA, and $\mu \in \mathcal{M}(\mathcal{A}^{\mathbb{N}}; \Phi^{\text{-erg}}; \sigma)$ and $h(\mu, \sigma) > h_{\text{max}}$, then $\mu = \lambda$.

Proof: Theorem 3.1 says μ must be a \mathcal{C} -measure for some subgroup $\mathcal{C} \prec \mathcal{A}$. But if \mathcal{B} is any proper subgroup, then $h(\mu, \sigma) > h_{\text{max}} \geq \log_2 |\mathcal{B}|$, so Lemma 3.3(a) says \mathcal{C} can't be \mathcal{B} . Thus, $\mathcal{C} = \mathcal{A}$. Then Lemma 3.3(b) says that μ is the uniform

Example 3.5: (a) If p is prime, then $\mathbb{Z}_{/p}$ has no nontrivial proper subgroups, so $h_{\text{max}} = 0$. In this case, Corollary 3.4 becomes a special case of Proposition 1.3.

(b) If p and q are prime and p divides q-1, then there is a unique nonabelian group of order pq [2, §5.5]. For example, let p=3 and q=7 and let \mathcal{A} be the unique nonabelian group of order 21. Then $h_{\max} = \log_2(7) \approx 2.807 < 4.392 \approx \log_2(21)$. Hence, if $\mu \in \mathcal{M}$ ($\mathcal{A}^{\mathbb{N}}$; Φ -erg; σ) and $h(\mu, \sigma) \geq 2.81$, then $\mu = \lambda$.

If $b \in \mathcal{A}$, then we define (left) scalar multiplication by b upon $\mathcal{A}^{\mathbb{N}}$ in the obvious way: if $\mathbf{c} = [c_0, c_1, c_2, \ldots] \in \mathcal{A}^{\mathbb{N}}$, then $b \cdot \mathbf{c} = [bc_0, bc_1, bc_2, \ldots]$. For any sequence $\mathbf{a} = [a_1, a_2, a_3, \ldots]$ in $\mathcal{A}^{\widetilde{\mathbb{N}}}$ and any $b \in \mathcal{A}$, let $[b, \mathbf{a}]$ denote the sequence $[b, a_1, a_2, a_3, \ldots]$ in $\mathcal{A}^{\mathbb{N}}$. Recall the conjugacy $\Xi : \mathcal{A}^{\mathbb{N}} \longrightarrow \mathcal{A}^{\mathbb{N}}$ and the dual cellular automaton $\widehat{\Phi} : \mathcal{A}^{\mathbb{N}} \longrightarrow \mathcal{A}^{\mathbb{N}}$ introduced in §2.

Lemma 3.6. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{N}}$, and suppose $\Xi(\mathbf{a}) = [b_0, b_1, b_2, \ldots]$. Then:

(a) $\Xi[e, \mathbf{a}] = [e, b_0, b_0b_1, b_0b_1b_2, b_0b_1b_2b_3, \ldots].$

(b) If
$$b \in \mathcal{A}$$
, then $\Xi[b, \mathbf{a}] = b \cdot \Xi[e, \mathbf{a}]$. If $c \in \mathcal{A}$ then $\Xi[cb, \mathbf{a}] = c \cdot \Xi[b, \mathbf{a}]$.

A point $\mathbf{g} \in \mathcal{A}^{\mathbb{N}}$ is (Φ, μ) -generic if $\mu[\mathbf{U}] = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{\mathbf{U}} (\Phi^{n}(\mathbf{g}))$ for any cylinder set $\mathbf{U} \subset \mathcal{A}^{\mathbb{N}}$. Let $\mathcal{G}(\Phi, \mu)$ be the set of (Φ, μ) -generic points in $\mathcal{A}^{\mathbb{N}}$.

Lemma 3.7. (a) If $\mu \in \mathcal{M}\left(\mathcal{A}^{\mathbb{N}}; \Phi^{\text{-erg}}\right)$, then $\mu[\mathcal{G}(\Phi, \mu)] = 1$.

(b) If
$$\widehat{\mu} = \Xi(\mu)$$
, then $\left(\mu \in \mathcal{M}\left(\mathcal{A}^{\mathbb{N}}; \Phi^{-\operatorname{erg}}; \sigma\right)\right) \iff \left(\widehat{\mu} \in \mathcal{M}\left(\mathcal{A}^{\mathbb{N}}; \widehat{\Phi}; \sigma^{-\operatorname{erg}}\right)\right)$.

(c) Let
$$\mathbf{g} \in \mathcal{A}^{\mathbb{N}}$$
. Then $\left(\mathbf{g} \in \mathcal{G}\left(\Phi, \mu\right)\right) \iff \left(\Xi(\mathbf{g}) \in \mathcal{G}\left(\sigma, \widehat{\mu}\right)\right)$.

(d) Let
$$\widetilde{\mathbf{G}} := \left\{ \mathbf{a} \in \mathcal{A}^{\widetilde{\mathbb{N}}} \; ; \; [b, \mathbf{a}] \in \mathcal{G} \left(\Phi, \mu \right) \; for \; all \; b \in \operatorname{supp} \left(\mu_{\mathbf{a}} \right) \right\}. \; Then \; \widetilde{\mu}[\widetilde{\mathbf{G}}] = 1.$$

Proof: (a) For each cylinder set $\mathbf{C} \subset \mathcal{A}^{\mathbb{N}}$, let $\mathcal{G}_{\mathbf{C}} \subset \mathcal{A}^{\mathbb{N}}$ be the set of points which are (Φ, μ) -generic for \mathbf{C} ; then $\mu[\mathcal{G}_{\mathbf{C}}] = 1$ by the Birkhoff Ergodic Theorem. If \mathfrak{C} is the set of all cylinder sets, then \mathfrak{C} is countable, and $\mathcal{G}(\Phi, \mu) = \bigcap_{\mathbf{C} \in \mathcal{G}} \mathcal{G}_{\mathbf{C}}$.

(b) follows from Lemma 2.3(d,e). (c) follows from Lemma 2.2.

(d) Suppose not. For every $\mathbf{a} \in \mathcal{A}^{\widetilde{\mathbb{N}}}$, let $\mathcal{B}_{\mathbf{a}} := \{b \in \text{supp}(\mu_{\mathbf{a}}) \; ; \; [b, \mathbf{a}] \notin \mathcal{G}(\Phi, \mu)\}$. Let $\widetilde{\mathbf{H}} := \mathcal{A}^{\widetilde{\mathbb{N}}} \setminus \widetilde{\mathbf{G}} = \left\{ \mathbf{a} \in \mathcal{A}^{\widetilde{\mathbb{N}}} \; ; \; \mathcal{B}_{\mathbf{a}} \neq \emptyset \right\}$, and let $\mathbf{H} := \left\{ [b, \mathbf{h}] \; ; \; \mathbf{h} \in \widetilde{\mathbf{H}}, \; b \in \mathcal{B}_{\mathbf{h}} \right\}$.

If
$$\widetilde{\mu}[\widetilde{\mathbf{G}}] < 1$$
, then $\widetilde{\mu}[\widetilde{\mathbf{H}}] > 0$. Thus, $\mu[\mathbf{H}] = \int_{\widetilde{\mathbf{H}}} \mu_{\mathbf{h}}[\mathcal{B}_{\mathbf{h}}] d\widetilde{\mu}[\mathbf{h}] > 0$, where

(†) is by eqn.(1), and (*) is because $\mu_{\mathbf{h}}[\mathcal{B}_{\mathbf{h}}] > 0$, for all $\mathbf{h} \in \widetilde{\mathbf{H}}$.

But $\mathcal{G}(\Phi, \mu) \subset \mathcal{A}^{\mathbb{N}} \setminus \mathbf{H}$, so if $\mu[\mathbf{H}] > 0$, then $\mu[\mathcal{G}(\Phi, \mu)] < 1$, contradicting (a). \square

Lemma 3.8. Let $\mathbf{a} \in \mathcal{A}^{\widetilde{\mathbb{N}}}$, and let $b, b' \in \mathcal{A}$. Suppose both $[b, \mathbf{a}]$ and $[b', \mathbf{a}]$ are in $\mathcal{G}(\Phi, \mu)$.

If $c = b' \cdot b^{-1}$, then $\widehat{\mu}$ is invariant under (left) scalar multiplication by c. In other words, for any measurable subset $\mathbf{U} \subset \mathcal{A}^{\mathbb{N}}$, $\widehat{\mu}[c \cdot \mathbf{U}] = \widehat{\mu}[\mathbf{U}]$.

Proof: It suffices to check invariance for cylinder sets (they generate the Borel sigma algebra of $\mathcal{A}^{\mathbb{N}}$). Let $\mathbf{U} \subset \mathcal{A}^{\mathbb{N}}$ be a cylinder set. Let $\mathbf{g} := \Xi[b, \mathbf{a}]$ and $\mathbf{g}' := \Xi[b', \mathbf{a}]$. Then

$$\widehat{\mu}[\mathbf{U}] \quad \underset{(\mathbf{g}1)}{\underline{=}} \quad \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{\mathbf{U}} \left(\sigma^{n}(\mathbf{g}) \right) \quad \underset{(*)}{\underline{=}} \quad \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{\mathbf{U}} \left(\sigma^{n}(c^{-1} \cdot \mathbf{g}') \right)$$

$$= \quad \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{(c \cdot \mathbf{U})} \left(\sigma^{n}(\mathbf{g}') \right) \quad \underset{(\mathbf{g}2)}{\underline{=}} \quad \widehat{\mu}[c \cdot \mathbf{U}].$$

(g1) is because $\mathbf{g} \in \mathcal{G}(\sigma, \widehat{\mu})$ and (g2) is because $\mathbf{g}' \in \mathcal{G}(\sigma, \widehat{\mu})$ [both by Lemma 3.7(c)]. (*) is because $\mathbf{g}' = \Xi[b', \mathbf{a}] = c \cdot \Xi[b, \mathbf{a}] = c \cdot \mathbf{g}$, where (†) is Lemma 3.6(b).

 $\text{Let }\widetilde{\mathbf{I}} \,:=\, \Big\{\mathbf{a} \in \mathcal{A}^{\widetilde{\mathbb{N}}} \;;\; \exists \text{ distinct } b,b' \in \mathcal{A} \text{ so that } [b,\mathbf{a}] \text{ and } [b',\mathbf{a}] \text{ are } (\Phi,\mu)\text{-generic} \Big\}.$

Lemma 3.9. If $h(\mu, \sigma) > 0$, then $\widetilde{\mu}[\widetilde{\mathbf{I}}] > 0$ (so the hypothesis of Lemma 3.8 is nonvacuous).

 $\begin{array}{ll} \textit{Proof:} & \text{Let } \widetilde{\mathbf{F}} := \Big\{ \mathbf{a} \in \mathcal{A}^{\widetilde{\mathbb{N}}} \; ; \; |\mathsf{supp} \, (\mu_{\mathbf{a}})| \geq 2 \Big\}. \; \text{Then Lemma 3.3(c) says } \widetilde{\mu}[\widetilde{\mathbf{F}}] > 0, \\ & \text{because } h(\mu,\sigma) > 0. \; \text{Thus, } \mu[\widetilde{\mathbf{F}} \cap \widetilde{\mathbf{G}}] > 0, \; \text{by Lemma 3.7(d)}. \; \text{But } \widetilde{\mathbf{I}} \supseteq \widetilde{\mathbf{F}} \cap \widetilde{\mathbf{G}}. \; \Box \end{array}$

Lemma 3.10. Let $c \in \mathcal{A}$, and define $\Gamma : \mathcal{A}^{\mathbb{N}} \longrightarrow \mathcal{A}^{\mathbb{N}}$ by $\Gamma[\mathbf{a}] = c \cdot \mathbf{a}$. If $\widehat{\mu} = \Xi[\mu]$ is Γ -invariant, then for $\forall_{\widetilde{\mu}} \mathbf{a} \in \mathcal{A}^{\widetilde{\mathbb{N}}}$, $\mu_{\mathbf{a}}$ is invariant under left multiplication by c.

Proof: Let $b \in \mathcal{A}$. Let $b' := c \cdot b$. Define measurable functions $\beta, \beta' : \mathcal{A}^{\widetilde{\mathbb{N}}} \longrightarrow \mathbb{R}$ by $\beta(\mathbf{a}) := \mu_{\mathbf{a}}(b)$ and $\beta'(\mathbf{a}) := \mu_{\mathbf{a}}(b')$. We must show that $\beta = \beta'$, $\widetilde{\mu}$ -æ.

Claim 1: Define $\gamma: \mathcal{A}^{\mathbb{N}} \longrightarrow \mathcal{A}^{\mathbb{N}}$ by $\gamma[a_0, a_1, a_2, \ldots] := [c \cdot a_0, a_1, a_2, \ldots]$. Then μ is γ -invariant.

Proof: For any measurable subset $\mathbf{U} \subset \mathcal{A}^{\mathbb{N}}$,

$$\mu\left[\gamma(\mathbf{U})\right] \quad \underset{\overline{(\mathbb{D})}}{\overline{\equiv}} \quad \widehat{\mu}\left[\Xi\circ\gamma(\mathbf{U})\right] \quad \underset{\overline{(*)}}{\overline{\equiv}} \quad \widehat{\mu}\left[\Gamma\circ\Xi(\mathbf{U})\right] \quad \underset{\overline{\overline{(1)}}}{\overline{\equiv}} \quad \widehat{\mu}\left[\Xi(\mathbf{U})\right] \quad \underline{\overline{\equiv}} \quad \mu\left[\mathbf{U}\right].$$

(D) is by definition of $\widehat{\mu}$. (*) is because Lemma 3.6(b) implies $\Xi \circ \gamma = \Gamma \circ \Xi$.

(I) is because $\widehat{\mu}$ is Γ -invariant.

◇ Claim 1

Claim 2: For any measurable $\widetilde{\mathbf{W}} \subset \mathcal{A}^{\widetilde{\mathbb{N}}}$, $\int_{\widetilde{\mathbf{W}}} \beta(\mathbf{w}) \ d\widetilde{\mu}[\mathbf{w}] = \int_{\widetilde{\mathbf{W}}} \beta'(\mathbf{w}) \ d\widetilde{\mu}[\mathbf{w}].$

Proof: Let $\mathbf{U} = [b] \times \widetilde{\mathbf{W}}$, and let $\mathbf{U}' = \gamma(\mathbf{U}) = [cb] \times \widetilde{\mathbf{W}} = [b'] \times \widetilde{\mathbf{W}}$. Then:

$$\int_{\widetilde{\mathbf{W}}} \beta(\mathbf{w}) \ d\widetilde{\mu}[\mathbf{w}] \ \underset{\overline{(*)}}{\overline{=}} \ \mu[\mathbf{U}] \ \underset{\overline{(\dagger)}}{\overline{=}} \ \mu[\mathbf{U}'] \ \underset{\overline{(*)}}{\overline{=}} \ \int_{\widetilde{\mathbf{W}}} \beta'(\mathbf{w}) \ d\widetilde{\mu}[\mathbf{w}],$$

where (*) is by equation (1), and (†) is by Claim 1. \diamondsuit Claim 2 Claim 2 implies $\beta = \beta'$ ($\widetilde{\mu}$ -æ). In other words, for $\forall_{\widetilde{\mu}} \mathbf{a} \in \mathcal{A}^{\widetilde{\mathbb{N}}}, \ \mu_{\mathbf{a}}[b] = \mu_{\mathbf{a}}[cb].$

Proof of Theorem 3.1: If $h(\mu, \sigma) = 0$, then μ is an $\{e\}$ -measure by Lemma 3.3(c). So assume $h(\mu, \sigma) \neq 0$. Let \mathcal{C} be the set of all $c \in \mathcal{A}$ so that there is some $\mathbf{a} \in \mathcal{A}^{\widetilde{\mathbb{N}}}$ and $b \in \mathcal{A}$ with both $[b, \mathbf{a}]$ and $[(cb), \mathbf{a}]$ in $\mathcal{G}(\Phi, \mu)$. Lemma 3.9 says $\mathcal{C} \neq \emptyset$, because $h(\mu, \sigma) \neq 0$.

Claim 1: C is a group, and $\mu_{\mathbf{a}}$ is invariant under (left) C-multiplication for $\forall_{\widetilde{\mu}} \ \mathbf{a} \in \mathcal{A}^{\widetilde{\mathbb{N}}}$.

Proof: Lemma 3.8 says that $\widehat{\mu}$ is invariant under \mathcal{C} -scalar multiplication. Let \mathcal{D} be the group generated by \mathcal{C} . Then $\mathcal{C} \subseteq \mathcal{D}$, and $\widehat{\mu}$ is also invariant under \mathcal{D} -scalar multiplication. Lemma 3.10 implies that $\mu_{\mathbf{a}}$ is invariant under (left) \mathcal{D} -multiplication for $\forall_{\widetilde{\mu}} \mathbf{a} \in \mathcal{A}^{\widetilde{\mathbb{N}}}$. It follows from Lemma 3.7(d) that $\mathcal{D} \subseteq \mathcal{C}$, and hence, $\mathcal{C} = \mathcal{D}$. \diamondsuit claim 1

Claim 2: For $\forall_{\widetilde{\mu}} \mathbf{a} \in \mathcal{A}^{\widetilde{\mathbb{N}}}$, supp $(\mu_{\mathbf{a}})$ is a (right) coset of \mathcal{C} .

Proof: For $\forall_{\widetilde{\mu}} \mathbf{a} \in \mathcal{A}^{\widetilde{\mathbb{N}}}$, Claim 1 implies that $\operatorname{supp}(\mu_{\mathbf{a}})$ is a disjoint union of cosets of \mathcal{C} , and that $\mu_{\mathbf{a}}$ is uniformly distributed on each of these cosets. Let

$$\widetilde{\mathbf{M}}\quad :=\quad \Big\{\mathbf{a}\in\mathcal{A}^{\widetilde{\mathbb{N}}}\;;\; \mathsf{supp}\,(\mu_{\mathbf{a}})\;\; \mathsf{contains}\; \mathsf{more}\; \mathsf{than}\; \mathsf{one}\; \mathsf{coset}\; \mathsf{of}\; \mathcal{C}\Big\}.$$

We claim that $\widetilde{\mu}[\widetilde{\mathbf{M}}] = 0$. Suppose not. Then Lemma 3.7(d) implies that $\widetilde{\mu}[\widetilde{\mathbf{M}} \cap \widetilde{\mathbf{G}}] > 0$. So let $\mathbf{m} \in \widetilde{\mathbf{M}} \cap \widetilde{\mathbf{G}}$, and find elements $b, b' \in \operatorname{supp}(\mu_{\mathbf{m}})$ living in different cosets, such that $[b, \mathbf{m}]$ and $[b', \mathbf{m}]$ are both in $\mathcal{G}(\Phi, \mu)$. If $c = b^{-1}b'$, then b' = cb, so $c \in \mathcal{C}$. But b and b' are in different cosets of \mathcal{C} ; hence, $c \notin \mathcal{C}$. Contradiction.

4. **Degree of QGCA relative to invariant measures.** If μ is a Φ -invariant measure, then Φ is K-to-1 (μ - α) if there is a measurable subset $\mathcal{U} \subseteq \mathcal{A}^{\mathbb{Z}}$ such that: [i] $\mu[\mathcal{U}] = 1$; [ii] $\Phi^{-1}(\mathcal{U}) = \mathcal{U}$; and [iii] Every $\mathbf{u} \in \mathcal{U}$ has exactly K preimages in \mathcal{U} —ie. $|\mathcal{U} \cap \Phi^{-1}\{\mathbf{u}\}| = K$. We will generalize the methods of [1] to prove:

Theorem 4.1. Let $\Phi: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ be a QGCA, and let $\mu \in \mathcal{M}\left(\mathcal{A}^{\mathbb{Z}}; \Phi; \sigma^{\text{-erg}}\right)$. Let $N := |\mathcal{A}|$. Then $\exists K \in [1...N]$ so that $h_{\mu}(\Phi) = \log_2(K)$, and Φ is K-to-1 $(\mu$ - \mathfrak{X}). \square

Example: Let λ be the uniform Bernoulli measure on $\mathcal{A}^{\mathbb{Z}}$. Then λ is invariant for any QGCA, $h_{\lambda}(\Phi) = \log_2(N)$, and Φ is N-to-1 (λ -æ) (set $\mathcal{U} := \mathcal{A}^{\mathbb{Z}}$ above). Indeed, λ is the only (Φ, σ) -invariant measure with entropy $\log_2(N)$. Proposition 1.3 is proved in [1] by first proving a special case of Theorem 4.1 (when Φ is an affine CA) and then showing that K = N.

Let $\mu \in \mathcal{M}(\mathcal{A}^{\mathbb{Z}})$. If \mathfrak{q} is any partition of $\mathcal{A}^{\mathbb{Z}}$, and \mathfrak{S} is any sigma-algebra, define

$$H_{\mu}\left(\mathfrak{q}\left|\mathfrak{S}\right.\right) := \sum_{\mathbf{Q}\in\mathfrak{q}} \int_{\mathbf{Q}} \log_{2}\left(\mathbb{E}_{\mu}\left[\mathbf{Q}\left|\mathfrak{S}\right.\right]\right)\left(\mathbf{x}\right) d\mu\left[\mathbf{x}\right].$$
 (2)

If $\Psi: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ is a continuous transformation (eg. either Φ or σ), and \mathfrak{q} is a partition of $\mathcal{A}^{\mathbb{Z}}$, and $\infty \leq \ell \leq n \leq \infty$, define $\Psi^{[\ell,m]}(\mathfrak{q}) := \bigvee_{m=\ell}^n \Psi^{-m}(\mathfrak{q})$. In particular, let \mathfrak{p}_0 be the partition of $\mathcal{A}^{\mathbb{Z}}$ generated by zero-coordinate cylinder sets, and let $\mathfrak{p}_{[\ell,n]} := \sigma^{[\ell,n]}(\mathfrak{p}_0)$. Thus, $\mathfrak{B} := \mathfrak{p}_{[-\infty,\infty]}$ is the Borel sigma-algebra of $\mathcal{A}^{\mathbb{Z}}$. Let $\mathfrak{B}^1 := \Phi^{-1}(\mathfrak{B})$. If $\mu \in \mathcal{M}\left(\mathcal{A}^{\mathbb{Z}}; \Phi\right)$, then $h_{\mu}\left(\Phi\right) = \lim_{r \to \infty} h_{\mu}\left(\Phi, \mathfrak{p}_{[-r,r]}\right)$, where $h_{\mu}\left(\Phi, \mathfrak{p}_{[-r,r]}\right) := H_{\mu}\left(\mathfrak{p}_{[-r,r]} \middle| \Phi^{[1,\infty]}\left(\mathfrak{p}_{[-r,r]}\right)\right)$.

Lemma 4.2. If $\Phi: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ is a QGCA, and $\mu \in \mathcal{M}\left(\mathcal{A}^{\mathbb{Z}}; \Phi; \sigma\right)$, then $h_{\mu}\left(\Phi\right) = H_{\mu}\left(\mathfrak{p}_{0} \mid \mathfrak{B}^{1}\right)$.

Proof: Let $\mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$ be an unknown sequence. Φ is bipermutative, so knowledge of $(\Phi^t(\mathbf{x}))_{[-r,r]}$ (for $t \in [0..T]$) determines $\mathbf{x}_{[-T-r,T+r]}$, and vice versa. Thus we get an equality of partitions: $\Phi^{[0,T]}\left(\mathfrak{p}_{[-r,r]}\right) = \mathfrak{p}_{[-T-r,T+r]}$. Letting $T \to \infty$ yields an equality of σ -algebras: $\Phi^{[0,\infty]}\left(\mathfrak{p}_{[-r,r]}\right) = \mathfrak{p}_{[-\infty,\infty]} = \mathfrak{B}$. Applying Φ^{-1} to everything yields: $\Phi^{[1,\infty]}\left(\mathfrak{p}_{[-r,r]}\right) = \Phi^{-1}(\mathfrak{B}) = \mathfrak{B}^1$. Thus,

$$h_{\mu}\left(\Phi, \mathfrak{p}_{[-r,r]}\right) := H_{\mu}\left(\mathfrak{p}_{[-r,r]} \left| \Phi^{[1,\infty]}\left(\mathfrak{p}_{[-r,r]}\right)\right.\right) = H_{\mu}\left(\mathfrak{p}_{[-r,r]} \left| \mathfrak{B}^{1}\right.\right)$$

$$\stackrel{=}{=} H_{\mu}\left(\mathfrak{p}_{0} \left| \mathfrak{B}^{1}\right.\right).$$

(*) is because Φ is bipermutative, so knowledge of $\Phi(\mathbf{x})$ and x_0 determines \mathbf{x} .

Thus,
$$h_{\mu}\left(\Phi\right) = \lim_{r \to \infty} h_{\mu}\left(\Phi, \mathfrak{p}_{[-r,r]}\right) = \lim_{r \to \infty} H_{\mu}\left(\mathfrak{p}_{0} \left| \mathfrak{B}^{1} \right.\right) = H_{\mu}\left(\mathfrak{p}_{0} \left| \mathfrak{B}^{1} \right.\right).$$

For any $\mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$, let $\mathcal{F}(\mathbf{x}) := \Phi^{-1}\{\Phi(\mathbf{x})\} = \{\mathbf{y} \in \mathcal{A}^{\mathbb{Z}} : \Phi(\mathbf{y}) = \Phi(\mathbf{x})\}$. Hence, the sets $\mathcal{F}(\mathbf{x})$ (for $\mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$) are the 'minimal elements' of sigma algebra \mathcal{B}^1 . The conditional expectation operator $\mathbb{E}_{\mu} \left[\bullet \middle| \mathfrak{B}^1 \right]$ defines *fibre measures* $\mu_{\mathbf{x}}$ (for $\forall_{\mu} \mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$) with three properties:

- (F1) For any measurable $\mathbf{U} \subset \mathcal{A}^{\mathbb{Z}}$ and for $\forall_{\mu} \mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$, $\mu_{\mathbf{x}}(\mathbf{U}) = \mathbb{E}_{\mu} \left[\mathbf{U} \, \middle| \, \mathfrak{B}^1 \, \middle| \, (\mathbf{x}) \right]$.
- (F2) For any fixed $\mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$, $\mu_{\mathbf{x}}$ is a probability measure on $\mathcal{A}^{\mathbb{Z}}$, and $\mathsf{supp}(\mu_{\mathbf{x}}) = \mathcal{F}(\mathbf{x})$.
- **(F3)** For any fixed measurable $\mathbf{U} \subset \mathcal{A}^{\mathbb{Z}}$, the function $\mathcal{A}^{\mathbb{Z}} \ni \mathbf{x} \mapsto \mu_{\mathbf{x}}(\mathbf{U}) \in \mathbb{R}$ is \mathfrak{B}^1 -measurable. Hence, $\mu_{\mathbf{x}} = \mu_{\mathbf{y}}$ for any $\mathbf{y} \in \mathcal{F}(\mathbf{x})$.

Our goal is to show that there is some constant K and, for $\forall_{\mu} \mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$, there is a subset $\mathcal{E} \subset \mathcal{F}(\mathbf{x})$ of cardinality K so that $\mu_{\mathbf{x}}$ is uniformly distributed on \mathcal{E} .

Lemma 4.3. For any measurable $\mathbf{U} \subset \mathcal{A}^{\mathbb{Z}}$ and for $\forall_{\mu} \mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$, $\mu_{\mathbf{x}} \left(\sigma^{-1}(\mathbf{U}) \right) = \mu_{\sigma(\mathbf{x})}(\mathbf{U})$.

Proof: For $\forall_{\mu} \mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$, (F1) says $\mu_{\mathbf{x}} \left(\sigma^{-1}(\mathbf{U}) \right) = \mathbb{E}_{\mu} \left[\sigma^{-1}(\mathbf{U}) \middle| \mathfrak{B}^{1} \right] (\mathbf{x})$ and $\mu_{\sigma(\mathbf{x})}(\mathbf{U}) = \mathbb{E}_{\mu} \left[\mathbf{U} \middle| \mathfrak{B}^{1} \right] (\sigma(\mathbf{x}))$. We must show that $\mathbb{E}_{\mu} \left[\sigma^{-1}(\mathbf{U}) \middle| \mathfrak{B}^{1} \right] (\mathbf{x}) = \mathbb{E}_{\mu} \left[\mathbf{U} \middle| \mathfrak{B}^{1} \right] (\sigma(\mathbf{x}))$, for $\forall_{\mu} \mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$. Now, $\mathbb{E}_{\mu} \left[\sigma^{-1}(\mathbf{U}) \middle| \mathfrak{B}^{1} \right]$ and $\mathbb{E}_{\mu} \left[\mathbf{U} \middle| \mathfrak{B}^{1} \right]$ are \mathfrak{B}^{1} -measurable functions, so it suffices to show that, for any $\mathbf{B} \in \mathfrak{B}^{1}$,

$$\begin{split} &\int_{\mathbf{B}} \mathbb{E}_{\mu} \left[\sigma^{-1}(\mathbf{U}) \, \middle| \mathfrak{B}^{1} \right] (\mathbf{x}) \, d\mu[\mathbf{x}] &= \int_{\mathbf{B}} \mathbb{E}_{\mu} \left[\mathbf{U} \, \middle| \mathfrak{B}^{1} \right] (\sigma(\mathbf{x})) \, d\mu[\mathbf{x}]. \end{split}$$
 But
$$&\int_{\mathbf{B}} \mathbb{E}_{\mu} \left[\sigma^{-1}(\mathbf{U}) \, \middle| \mathfrak{B}^{1} \right] (\mathbf{x}) \, d\mu[\mathbf{x}] \quad \overline{\underset{(\overline{\mathbf{E}})}{=}} \quad \int_{\mathbf{B}} \mathbb{1}_{\sigma^{-1}(\mathbf{U})} (\mathbf{x}) \, d\mu[\mathbf{x}] \\ &= \mu \left[\mathbf{B} \cap \sigma^{-1}(\mathbf{U}) \right] \quad \overline{\underset{(\overline{\mathbf{I}})}{=}} \quad \mu \left[\sigma(\mathbf{B}) \cap \mathbf{U} \right] \quad = \quad \int_{\sigma(\mathbf{B})} \mathbb{1}_{\mathbf{U}} (\mathbf{x}') \, d\mu[\mathbf{x}'] \\ &\overline{\underset{(\overline{\mathbf{E}})}{=}} \quad \int_{\sigma(\mathbf{B})} \mathbb{E}_{\mu} \left[\mathbf{U} \, \middle| \mathfrak{B}^{1} \right] (\mathbf{x}') \, d\mu[\mathbf{x}'] \quad \overline{\underset{(\overline{\mathbf{S}})}{=}} \quad \int_{\mathbf{B}} \mathbb{E}_{\mu} \left[\mathbf{U} \, \middle| \mathfrak{B}^{1} \right] (\sigma(\mathbf{x})) \, d\mu[\mathbf{x}], \end{split}$$

as desired. Here (**E**) is the definition of conditional expectation, (**I**) is because μ is σ -invariant, and (**S**) is the substitution $\mathbf{x}' = \sigma(\mathbf{x})$ (because μ is σ -invariant). \square

For any $\mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$, let $\eta(\mathbf{x}) := \mu_{\mathbf{x}}\{\mathbf{x}\}$. Thus, if $\mathbf{y} \in \mathcal{A}^{\mathbb{Z}}$ is an unknown, μ -random sequence, then $\eta(\mathbf{x})$ is the conditional probability that $\mathbf{y} = \mathbf{x}$, given that $\Phi(\mathbf{y}) = \Phi(\mathbf{x})$.

Lemma 4.4. (a) η is σ -invariant (μ -æ).

- (b) If $\mu \in \mathcal{M}(\mathcal{A}^{\mathbb{Z}}; \sigma^{\text{-erg}})$, then $\exists H \in \mathbb{R}$ so that $\eta(\mathbf{x}) = H$, for $\forall_{\mu} \mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$.
- (c) If $\mu \in \mathcal{M}(\mathcal{A}^{\mathbb{Z}}; \Phi; \sigma^{-\text{erg}})$, then:
 - [i] η is Φ -invariant $(\mu$ -æ); and [ii] $h_{\mu}(\Phi) = -\log_2(H)$.

Proof: (a) $\eta(\sigma(\mathbf{x})) = \mu_{\sigma(\mathbf{x})} \{ \sigma(\mathbf{x}) \} = \mu_{\mathbf{x}} \{ \sigma^{-1} \{ \sigma(\mathbf{x}) \} \} = \mu_{\mathbf{x}} \{ \mathbf{x} \} = \eta(\mathbf{x}).$ (*) is Lemma 4.3. (†) is because σ is invertible on $\mathcal{A}^{\mathbb{Z}}$. Parts (b) and (c)[i] follow.

(c)[ii]: Claim 1: For all $\mathbf{P} \in \mathfrak{p}_0$, and for $\forall_{\mu} \mathbf{x} \in \mathbf{P}$, $\mathbb{E}_{\mu} \left[\mathbf{P} \middle| \mathfrak{B}^1 \right] (\mathbf{x}) = H$.

Proof: $\mathbb{E}_{\mu}\left[\mathbf{P} \middle| \mathfrak{B}^{1}\right](\mathbf{x}) \xrightarrow{\overline{(\mathbf{F}1)}} \mu_{\mathbf{x}}(\mathbf{P}) \xrightarrow{\overline{(\mathbf{F}2)}} \mu_{\mathbf{x}}\left(\mathbf{P} \cap \mathcal{F}(\mathbf{x})\right) \xrightarrow{\overline{(\dagger)}} \mu_{\mathbf{x}}\{\mathbf{x}\} = \eta(\mathbf{x}) \xrightarrow{\overline{(b)}} H.$ (b) is by part (b). (†) is because, if $\mathbf{x} \in \mathbf{P} \in \mathfrak{p}_{0}$, then $\mathbf{P} \cap \mathcal{F}(\mathbf{x}) = \{\mathbf{x}\}$ (because Φ is bipermutative, so any $\mathbf{y} \in \mathcal{F}(\mathbf{x})$ is determined by y_{0} . But if $\mathbf{y} \in \mathbf{P}$, then $y_{0} = x_{0}$, so $\mathbf{y} = \mathbf{x}$).

Thus,
$$h_{\mu}(\Phi) \equiv -\sum_{\mathbf{P} \in \mathfrak{p}_{0}} \int_{\mathbf{P}} \log_{2} \left(\mathbb{E}_{\mu} \left[\mathbf{P} \middle| \mathfrak{B}^{1} \right] \right) (\mathbf{x}) \ d\mu[\mathbf{x}]$$

$$\equiv -\sum_{\mathbf{P} \in \mathfrak{p}_{0}} \int_{\mathbf{P}} \log_{2}(H) \ d\mu = -\log_{2}(H).$$

(*) is by Lemma 4.2 and eqn.(2). (\dagger) is by Claim 1.

We must now show that $H = \frac{1}{K}$ for some K. Let $N := |\mathcal{A}|$, and identify \mathcal{A} with the group $\mathbb{Z}_{/N}$ in an arbitrary way. Define $\tau : \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ as follows. For any $\mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$, $\tau(\mathbf{x}) = \mathbf{y}$, where \mathbf{y} is the unique element in $\mathcal{F}(\mathbf{x})$ such that $y_0 = x_0 + 1 \pmod{N}$. Existence/uniqueness of \mathbf{y} follows from bipermutativity.

Note that $\tau(\mu) \neq \mu$, so a statement which is true μ -æ may not be true $\tau(\mu)$ -æ. For example, Lemma 4.4(c)[i] does not imply $\eta\left(\Phi\left[\tau(\mathbf{x})\right]\right) = \eta\left(\tau(\mathbf{x})\right)$ for \forall_{μ} x.

For any
$$n \in \mathbb{Z}_{/N}$$
, let $\mathbf{E}_n := \left\{ \mathbf{x} \in \mathcal{A}^{\mathbb{Z}} ; \eta \left(\tau^n(\mathbf{x}) \right)^2 > 0 \right\}$. Let $\mu_n := \tau^n (\mathbb{1}_{\mathbf{E}_n} \cdot \mu)$.

Lemma 4.5. Let $\mu \in \mathcal{M}\left(\mathcal{A}^{\mathbb{N}}; \Phi; \sigma^{\text{-erg}}\right)$. Then for any $n \in \mathbb{Z}_{/N}$, the following hold:

- (a) μ_n is absolutely continuous relative to μ .
- (b) η is Φ -invariant $(\mu_n$ -æ).
- (c) For $\forall_{\mu} \mathbf{x} \in \mathbf{E}_n$, $\eta(\mathbf{x}) = \eta(\tau^n(\mathbf{x}))$.

Proof: (a) Let $\mathbf{Z} \subset \mathcal{A}^{\mathbb{Z}}$ be Borel-measurable. If $\mu[\mathbf{Z}] = 0$, we must show $\mu_n[\mathbf{Z}] = 0$. Claim 1: For $\forall_{\mu} \mathbf{z} \in \tau^{-n}(\mathbf{Z})$, $\eta(\tau^n(\mathbf{z})) = 0$; hence $\mathbf{z} \notin \mathbf{E}_n$. Proof: $\eta(\tau^n(\mathbf{z})) := \mu_{\tau^n(\mathbf{z})} \{\tau^n(\mathbf{z})\} \xrightarrow{(\mathbf{F}3)} \mu_{\mathbf{z}} \{\tau^n(\mathbf{z})\} \leq \mu_{\mathbf{z}}[\mathbf{Z}] \xrightarrow{(\dagger)} 0$.

(*) is because $\mathbf{z} \in \tau^{-n}(\mathbf{Z})$, so $\tau^{n}(\mathbf{z}) \in \mathbf{Z}$. (†) is because $\int_{\mathcal{A}^{\mathbb{Z}}} \mu_{\mathbf{x}}[\mathbf{Z}] \ d\mu[\mathbf{x}] = \mu[\mathbf{Z}] = 0$, hence $\mu_{\mathbf{x}}[\mathbf{Z}] = 0$, for $\forall_{\mu} \mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$. \diamondsuit claim 1. Hence $\mu_{n}[\mathbf{Z}] = (\mathbb{1}_{\mathbf{E}_{n}} \cdot \mu) [\tau^{-n}(\mathbf{Z})] = \mu[\tau^{-n}(\mathbf{Z}) \cap \mathbf{E}_{n}] \stackrel{\text{(*)}}{=} 0$, where (*) is Claim 1.

- (b) Part (a) means that " μ -æ" implies " μ_n -æ". Now invoke Lemma 4.4(c)[i].
- (c) $\eta(\mathbf{x}) = \overline{(\dagger)} \eta\left(\Phi[\mathbf{x}]\right) = \eta\left(\Phi\left[\tau^n(\mathbf{x})\right]\right) = \eta\left(\tau^n(\mathbf{x})\right)$. Here, (†) is Lemma 4.4(c)[i], (*) is because $\tau^n(\mathbf{x}) \in \mathcal{F}(\mathbf{x})$, and (b) is by part (b).

Now, let $\mathcal{E}(\mathbf{x}) := \{ \mathbf{y} \in \mathcal{F}(\mathbf{x}) : \eta(\mathbf{y}) > 0 \}.$

Corollary 4.6. For $\forall_{\mu} \mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$, $\mu_{\mathbf{x}}$ is equidistributed on $\mathcal{E}(\mathbf{x})$. If $|\mathcal{E}(\mathbf{x})| = K$, then $\mu_{\mathbf{x}}\{\mathbf{y}\} = \frac{1}{K}$ for all $\mathbf{y} \in \mathcal{E}(\mathbf{x})$. Hence, $\eta(\mathbf{x}) = \frac{1}{K}$.

 $\textit{Proof:} \quad 1_{|\overline{\text{(F2)}}|} \; \mu_{\mathbf{x}}\left(\mathcal{F}\left(\mathbf{x}\right)\right) = \sum_{\mathbf{y} \in \mathcal{F}(\mathbf{x})} \mu_{\mathbf{x}}\{\mathbf{y}\} \; \underset{\overline{\text{(*)}}}{=} \; \sum_{\mathbf{y} \in \mathcal{E}(\mathbf{x})} \eta(\mathbf{x}) = K \cdot \eta(\mathbf{x}), \; \text{so} \; \eta(\mathbf{x}) = \frac{1}{K}.$

To see (*), let $\mathbf{y} \in \mathcal{F}(\mathbf{x})$. Then $\mu_{\mathbf{x}}\{\mathbf{y}\} = \eta(\mathbf{y})$. If $\mathbf{y} \notin \mathcal{E}(\mathbf{x})$, then $\eta(\mathbf{y}) = 0$. If $\mathbf{y} \in \mathcal{E}(\mathbf{x})$, let $\mathbf{y} = \tau^n(\mathbf{x})$ for $n \in \mathbb{Z}_{/N}$. Then $\mathbf{x} \in \mathbf{E}_n$, so $\eta(\mathbf{y}) = \eta(\mathbf{x})$ by Lemma 4.5(c).

Corollary 4.7. There exists $K \in [1..N]$ so that, for $\forall_{\mu} \mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$, $|\mathcal{E}(\mathbf{x})| = K$, and so that $\mu_{\mathbf{x}}\{\mathbf{y}\} = \frac{1}{K}$ for all $\mathbf{y} \in \mathcal{E}(\mathbf{x})$. Thus, $h_{\mu}(\Phi) = \log_2(K)$.

Proof: Corollary 4.6 implies that $H = \frac{1}{K}$ in Lemma 4.4(b). Now apply Lemma 4.4(c)[ii].

Proof of Theorem 4.1: Let $\mathcal{U} := \{ \mathbf{x} \in \mathcal{A}^{\mathbb{Z}} ; |\mathcal{E}(\mathbf{x})| = K \}$. Then Corollary 4.7 says $\mu(\mathcal{U}) = 1$. Since μ is Φ -invariant, it follows that $\mu(\Phi^{-1}(\mathcal{U})) = 1$ also; hence $\Phi^{-1}(\mathcal{U}) = \mathcal{U}.$

Thus, for $\forall_{\mu} \mathbf{u} \in \mathcal{U}$, there is some $\mathbf{x} \in \mathcal{U}$ so that $\Phi(\mathbf{x}) = \mathbf{u}$. But then $\Phi^{-1}(\mathbf{u}) = \mathcal{F}(\mathbf{x})$, so $\Phi^{-1}(\mathbf{u}) \cap \mathcal{U} = \mathcal{F}(\mathbf{x}) \cap \mathcal{U} = \mathcal{E}(\mathbf{x})$ is a set of cardinality K, by definition of \mathcal{U} .

Endomorphic Cellular Automata. A group shift is a sequence space $\mathcal{A}^{\mathbb{Z}}$ equipped with a topological group structure such that σ is a group automorphism. Equivalently, the multiplication operation \bullet on $\mathcal{A}^{\mathbb{Z}}$ is defined by some local multiplication map $\psi: \mathcal{A}^{[-\hat{\ell}..r]} \times \mathcal{A}^{[-\hat{\ell}..r]} \longrightarrow \mathcal{A}$ so that, if $\mathbf{a}, \mathbf{b} \in \mathcal{A}^{\mathbb{Z}}$ and $\mathbf{c} = \mathbf{a} \bullet \mathbf{b}$, then $c_0 = \psi(a_{-\ell}, \dots, a_r; b_{-\ell}, \dots, b_r)$. The most obvious group shift is a product group, where A is a finite group and multiplication on $A^{\mathbb{Z}}$ is defined componentwise. However, this is not the only group shift [6].

An endomorphic cellular automaton (ECA) is a cellular automaton $\Phi: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ which is also a group endomorphism of $\mathcal{A}^{\mathbb{Z}}$. For example, it is easy to verify:

Proposition 5.1. Let (A, +) be an additive abelian group. Let $A^{\mathbb{Z}}$ be the product group. Let $\Phi: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ be a RNNCA, with local map $\phi: \mathcal{A}^{\{0,1\}} \longrightarrow \mathcal{A}$. Then:

- (a) Φ is an ECA if and only if $\phi(a_0, a_1) = \phi_0(a_0) + \phi_1(a_1)$, where ϕ_0, ϕ_1 are endomorphisms of A.
 - (b) Φ is bipermutative if and only if ϕ_0 and ϕ_1 are automorphisms of A.

A beca is a bipermutative, right-sided, nearest-neighbour endomorphic cellular automaton. Let $\mathcal{M}(\mathcal{A}^{\mathbb{Z}};\Phi;\sigma^{-\text{tot}})$ be the set of Φ -invariant and totally σ -ergodic measures on $\mathcal{A}^{\mathbb{Z}}$. If \mathcal{G} is a group, let $\mathsf{Aut}(\mathcal{G})$ be the automorphism group of \mathcal{G} . If $\psi \in \text{Aut}(\mathcal{G}) \text{ (eg. } \mathcal{G} = \mathcal{A}^{\mathbb{Z}} \text{ and } \phi = \sigma) \text{ then "} \mathcal{H} \preceq \mathcal{G}$ " means $\mathcal{H} \subset \mathcal{G}$ is a ϕ -invariant subgroup of \mathcal{G} . Say \mathcal{G} is ϕ -primitive if there are no proper nontrivial $\mathcal{H} \prec \mathcal{G}$. The main result of this section is:

Theorem 5.2. Let $\mathcal{A}^{\mathbb{Z}}$ be a group shift and let $\Phi \colon \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ be a beca such that $\ker(\Phi)$ is σ -primitive. If $\mu \in \mathcal{M}(\mathcal{A}^{\mathbb{Z}}; \Phi; \sigma^{-\text{tot}})$, and $h_{\mu}(\Phi) > 0$, then $\mu = \lambda$.

Recall from §4 that if $\mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$, then $\mathcal{F}(\mathbf{x}) := \Phi^{-1}\{\Phi(\mathbf{x})\}.$

Lemma 5.3. Let $\Phi: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ be a beca on a group shift. Let $\mathcal{K} := \ker(\Phi)$. (a) For any $\mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$, $\mathcal{F}(\mathbf{x}) = \mathbf{x} \bullet \mathcal{K}$.

- (b) Let $\mathbf{e} \in \mathcal{A}^{\mathbb{Z}}$ be the identity element. Then \mathbf{e} is a constant sequence —ie. there is some $e \in \mathcal{A}$ so that $\mathbf{e} = (..., e, e, e, ...)$.
 - (c) $\mathcal{K} \preceq \mathcal{A}^{\mathbb{Z}}$. Also, if $\mathbf{k} \in \mathcal{K}$, then \mathbf{k} is entirely determined by k_0 .
- (d) There is a natural bijection $\zeta : A \longrightarrow \mathcal{K}$, where $\zeta[a]$ is the unique $\mathbf{k} \in \mathcal{K}$ with $k_0 = a$. In particular, $\zeta[e] = \mathbf{e}$.
- (e) There is a permutation $\rho: A \longrightarrow A$ so that $\sigma \circ \zeta = \zeta \circ \rho$. In particular, $\rho(e) = e$.

Hence, every element of K is P-periodic, for some P < |A|.

- (f) Any $\mathcal{J} \prec \mathcal{K}$ is thus a disjoint union of periodic σ -orbits.
- $(A \setminus \{e\} \text{ consists of a single } \rho\text{-orbit}) \iff (K \text{ is } \sigma\text{-primitive}).$

(a) is a basic property of group homomorphisms. For (b) recall that $\sigma \in Aut(\mathcal{A}^{\mathbb{Z}})$, so $\sigma(\mathbf{e}) = \mathbf{e}$, so \mathbf{e} must be constant. (c) follows from (b) because Φ is bipermutative. Then $(\mathbf{c}) \Longrightarrow (\mathbf{d}) \Longrightarrow (\mathbf{e}) \Longrightarrow (\mathbf{f}) \Longrightarrow (\mathbf{g})$.

If (A, +) is abelian and $A^{\mathbb{Z}}$ is the product group, then Lemma 5.3 takes the form:

Lemma 5.4. Let (A, +) be an abelian group. Let $A^{\mathbb{Z}}$ be the product group. Let $\Phi: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ be a beca and let $\mathcal{K} := \ker(\Phi)$.

- (a) For any $\mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$, $\mathcal{F}(\mathbf{x}) = \mathbf{x} + \mathcal{K}$.
- (b) The map $\zeta : \mathcal{A} \longrightarrow \mathcal{K}$ in Lemma 5.3(d) is a group isomorphism.
- (c) $\rho \in Aut(A)$, in Lemma 5.3(e). To be precise, suppose Φ has local map $\phi(a_0, a_1) = \phi_0(a_0) + \phi_1(a_1)$, where $\phi_0, \phi_1 \in \text{Aut}(A)$, as in Proposition 5.1(b). Then $\rho = -\phi_1^{-1} \circ \phi_0$. (d) If $\mathcal{J} \preceq \mathcal{K}$, then $\mathcal{J} = \zeta(\mathcal{B})$, for some $\mathcal{B} \preceq \mathcal{A}$.

 - (e) $(A \text{ is } \rho\text{-primitive}) \iff (K \text{ is } \sigma\text{-primitive}).$

(b) To see that ζ is a group homomorphism, suppose $\mathbf{k} = \zeta(a)$ and *Proof:* $\mathbf{k}' = \zeta(a')$. Let $\mathbf{j} = \mathbf{k} + \mathbf{k}'$ and let $\mathbf{i} = \zeta(a + a')$; we must show $\mathbf{j} = \mathbf{i}$. The operation on K is componentwise addition, so $j_0 = k_0 + k'_0 = a + a' = i_0$. Then Lemma 5.3(c) implies i = j. Hence, ζ is a homomorphism, and thus, an isomorphism (it is bijective). All other claims follow.

Let η be as in §4, and for any $\mathbf{k} \in \mathcal{K}$, let $\mathbf{E}_{\mathbf{k}} := \{\mathbf{x} \in \mathcal{A}^{\mathbb{Z}} : \eta(\mathbf{x} \bullet \mathbf{k}) > 0\}$.

Lemma 5.5. Suppose $\mu \in \mathcal{M}\left(\mathcal{A}^{\mathbb{N}}; \Phi; \sigma^{\text{-erg}}\right)$. For any $\mathbf{k} \in \mathcal{K}$, the following hold: (a) $\sigma(\mathbf{E}_{\mathbf{k}}) = \mathbf{E}_{\sigma(\mathbf{k})}$. (b) Thus, if $\sigma^{P}(\mathbf{k}) = \mathbf{k}$, then $\sigma^{P}(\mathbf{E}_{\mathbf{k}}) = \mathbf{E}_{\mathbf{k}}$.

Proof: (a) For $\forall_{\mu} \mathbf{x} \in \mathbf{E}_{\mathbf{k}}$, $0 < \eta(\mathbf{x} \bullet \mathbf{k}) = \eta \left(\sigma(\mathbf{x} \bullet \mathbf{k}) \right) = \eta \left(\sigma(\mathbf{x}) \bullet \sigma(\mathbf{k}) \right)$, and thus, $\sigma(\mathbf{x}) \in \mathbf{E}_{\sigma(\mathbf{k})}$. Hence $\sigma(\mathbf{E}_{\mathbf{k}}) \subset \mathbf{E}_{\sigma(\mathbf{k})}$. By symmetric reasoning, $\mathbf{E}_{\sigma(\mathbf{k})} \subset \sigma(\mathbf{E}_{\mathbf{k}}).$

To see (*), define $\mu_{\mathbf{k}} \in \mathcal{M}(\mathcal{A}^{\mathbb{Z}})$ by $\mu_{\mathbf{k}}[\mathbf{U}] := \mu \left[\mathbf{E}_{\mathbf{k}} \cap (\mathbf{U} \bullet \mathbf{k}^{-1}) \right]$. Then $\mu_{\mathbf{k}}$ is absolutely continuous with respect to μ , by reasoning similar to Lemma 4.5(a); hence η is σ -invariant ($\mu_{\mathbf{k}}$ -æ), by reasoning similar to Lemma 4.5(b).

Corollary 5.6. For any $\mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$, let $\mathcal{E}(\mathbf{x}) := \{ \mathbf{y} \in \mathcal{F}(\mathbf{x}) ; \eta(\mathbf{y}) > 0 \}$ as in §4. If $\mu \in \mathcal{M}\left(\mathcal{A}^{\mathbb{Z}}; \Phi; \sigma^{\text{-tot}}\right)$, then there exists $\mathcal{J} \prec \mathcal{K}$ so that, for $\forall_{\mu} \mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$, $\mathcal{E}(\mathbf{x}) = \mathcal{E}(\mathbf{x})$ $\mathbf{x} \bullet \mathcal{J}$.

Proof: Define $\mathcal{J} := \{ \mathbf{k} \in \mathcal{K} ; \mu(\mathbf{E}_{\mathbf{k}}) > 0 \}.$

Claim 1: For any $\mathbf{j} \in \mathcal{J}$, $\mu(\mathbf{E_j}) = 1$.

Proof: Lemma 5.3(e) yields $P \in \mathbb{N}$ so that $\sigma^P(\mathbf{j}) = \mathbf{j}$. Then Lemma 5.5(b) says that $\sigma^P(\mathbf{E_i}) = \mathbf{E_i}$. But μ is σ^P -ergodic; hence $\mu(\mathbf{E_i}) = 1$.

Claim 2: For $\forall_{\mu} \mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$, $\mathcal{E}(\mathbf{x}) = \mathbf{x} \bullet \mathcal{J}$.

 $\mathcal{E}(\mathbf{x}) = \{\mathbf{x} \bullet \mathbf{k} \; ; \; \mathbf{k} \in \mathcal{K}, \; \mathbf{x} \in \mathbf{E}_{\mathbf{k}}\}, \text{ so we must show:} \quad \text{for } \forall_{\mu} \mathbf{x} \in \mathcal{A}^{\mathbb{Z}},$ and all $\mathbf{k} \in \mathcal{K}$, $(\mathbf{x} \in \mathbf{E}_{\mathbf{k}}) \iff (\mathbf{k} \in \mathcal{J})$. Now, $\mu \left[\bigcup_{\mathbf{k} \in \mathcal{K} \setminus \mathcal{J}} \mathbf{E}_{\mathbf{k}} \right] = 0$, by definition of \mathcal{J} , and $\mu \left[\bigcap_{\mathbf{j} \in \mathcal{J}} \mathbf{E}_{\mathbf{j}} \right] = 1$, by Claim 1. Thus, for $\forall_{\mu} \mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$, we have $x \in \bigcap E_j \setminus \bigcup E_k$. ♦ Claim 2

Let $\mathcal{U} := \mathbf{E_e} = \{ \mathbf{x} \in \mathcal{A}^{\mathbb{Z}} ; \eta(\mathbf{x}) > 0 \}.$

Claim 3: If $\mathbf{k} \in \mathcal{K}$, then $(\mathbf{k} \in \mathcal{J}) \iff (\mathcal{U} \bullet \mathbf{k} \subset \mathcal{U})$. Proof: $\left(\mathbf{k} \in \mathcal{J}\right) \stackrel{\dagger *}{\Longleftrightarrow} \left(\mu\left[\mathbf{E}_{\mathbf{k}}\right] = 1\right) \stackrel{* \diamond}{\Longleftrightarrow} \left(\mu\left[\mathcal{U} \cap \mathbf{E}_{\mathbf{k}}\right] = 1\right) \stackrel{\ddagger}{\Longleftrightarrow}$

Proof: Let $\mathbf{j}_1, \mathbf{j}_2 \in \mathcal{J}$, and $\mathbf{j} := \mathbf{j}_1 \bullet \mathbf{j}_2$. Claim 3 says $\mathcal{U} \bullet \mathbf{j} = (\mathcal{U} \bullet \mathbf{j}_1) \bullet \mathbf{j}_2 \subset \mathcal{U} \bullet \mathbf{j}_2 \subset \mathcal{U}$. Claim 3 then says $\mathbf{j} \in \mathcal{J}$. Thus \mathcal{J} is closed under ' \bullet '; being finite, \mathcal{J} is a subgroup. \diamondsuit Claim 4

To see that $\sigma^{-1}(\mathcal{J}) = \mathcal{J}$, let $\mathbf{k} \in \mathcal{K}$. Then $\left(\mathbf{k} \in \mathcal{J}\right) \iff \left(\mu[\mathbf{E}_{\mathbf{k}}] = 1\right)$ $\iff \left(\mu[\sigma(\mathbf{E}_{\mathbf{k}})] = 1\right) \iff \left(\sigma(\mathbf{k}) \in \mathcal{J}\right) \iff \left(\mathbf{k} \in \sigma^{-1}(\mathcal{J})\right)$. Here, (†) is by Claim 1, (*) is because μ is σ -invariant, and (‡) is by Lemma 5.5(a).

Corollary 5.7. Let $J := |\mathcal{J}|$. Then $h_{\mu}(\Phi) = \log(J)$, and Φ is J-to-1 (μ - \mathfrak{A}).

Proof: Combine Corollary 5.6 with Corollary 4.7.

Proof of Theorem 5.2: If $h_{\mu}(\Phi) > 0$, then Corollary 5.7 says $|\mathcal{J}| > 1$. But $\mathcal{J} \prec \mathcal{K}$, and \mathcal{K} is σ -primitive, so $\mathcal{J} = \mathcal{K}$. Thus, $|\mathcal{J}| = |\mathcal{K}| \underset{(*)}{=} |\mathcal{A}|$, where (*) is by Lemma 5.3(d). Thus, $h_{\mu}(\sigma) \underset{(*)}{=} h_{\mu}(\Phi) \underset{(\dagger)}{=} \log |\mathcal{A}|$, which means $\mu = \lambda$. Here (*) is by Lemma 2.3(f) and (†) is by Corollary 5.7.

Lemmas 5.3(g) and 5.4(e) characterize when \mathcal{K} is σ -primitive. For example, let $p \in \mathbb{N}$ be prime, and $\mathcal{A} := (\mathbb{Z}_{/p})^N$ for some N > 0. Then \mathcal{A} is a vector space over the field $\mathbb{Z}_{/p}$, and $\rho : \mathcal{A} \longrightarrow \mathcal{A}$ is a group automorphism iff ρ is a $\mathbb{Z}_{/p}$ -linear automorphism. Thus, ρ can be described by an $N \times N$ matrix \mathbf{M} of coefficients in $\mathbb{Z}_{/p}$. Furthermore, $\mathcal{B} \subset \mathcal{A}$ is a $(\rho$ -invariant) subgroup iff \mathcal{B} is a $(\rho$ -invariant) subspace. The ρ -invariant subspaces in \mathcal{A} are described by the rational canonical form $[2, \S 12.2]$ of ρ , which is a matrix $\widetilde{\mathbf{M}}$, similar to \mathbf{M} , of the form

$$\widetilde{\mathbf{M}} = \left[\begin{array}{ccc} \mathbf{M}_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \mathbf{M}_L \end{array} \right], \text{ where, for all } \ell \in [1..L], \ \mathbf{M}_\ell = \left[\begin{array}{ccc} 0 \dots 0 & m_{\ell 1} \\ \hline \mathbf{Id} & \vdots \\ m_{\ell r_\ell} \end{array} \right],$$

(for some $r_{\ell} > 0$ and $m_{\ell 1}, \ldots, m_{\ell r_{\ell}} \in \mathbb{Z}_{/p}$, and where **Id** is an identity matrix). Each *component matrix* \mathbf{M}_{ℓ} corresponds to a ρ -invariant subspace of \mathcal{A} . We say $\rho \in \mathsf{Aut}(\mathcal{A})$ is *simple* if its rational canonical form has only one component.

Lemma 5.8.
$$\left(\rho \text{ is simple } \right) \iff \left(A \text{ is } \rho\text{-primitive.} \right).$$

Corollary 5.9. Let $\mathcal{A} = (\mathbb{Z}_{/p})^N$. Let $\mathcal{A}^{\mathbb{Z}}$ be the product group. Let $\Phi : \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ be a beca with local map $\phi(a_0, a_1) = \phi_0(a_0) + \phi_1(a_1)$. If $\rho = -\phi_1^{-1} \circ \phi_0$ is simple, then the conclusion of Theorem 5.2 holds.

Proof: Combine Lemma 5.8 with parts (c) and (e) of Lemma 5.4. \Box

Example 5.10: Let $\mathcal{A} = (\mathbb{Z}_{/7})^4$, and let $\phi(a_0, a_1) = \phi_0(a_0) + a_1$, where ϕ_0 has matrix

$$\left[\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{array}\right]$$

Thus, $\rho = -\phi_0$ is simple. Hence, if $\mu \in \mathcal{M}\left(\mathcal{A}^{\mathbb{Z}}; \Phi; \sigma^{\text{-tot}}\right)$ and $h_{\mu}\left(\Phi\right) > 0$, then $\mu = \lambda$.

REFERENCES

- [1] Bernard Host, Alejandro Maass and Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. *Discrete & Continuous Dynamical Systems*, 9(6):1423–1446, 2003.
- [2] David S. Dummit and Richard M. Foote. Abstract Algebra. Prentice-Hall, Englewood Cliffs, NJ, 1991.
- [3] F. Blanchard and A. Maass. Dynamical properties of expansive one-sided cellular automata. Isreal J. Math., 99:149–174, 1997.
- [4] G. Hedlund. Endomorphisms and automorphisms of the shift dynamical systems. *Mathematical System Theory*, 3:320–375, 1969.
- [5] J. Dénes and A.D. Keedwell. Latin squares and their applications. Academic Press, New York, 1974.
- [6] Bruce Kitchens. Expansive dynamics in zero-dimensional groups. Ergodic Theory & Dynamical Systems, 7:249–261, 1987.
- [7] Rune Kleveland. Mixing properties of one-dimensional cellular automata. Proceedings of the AMS, 125(6):1755-1766, June 1997.
- [8] A. Maass, S. Martínez, M. Pivato, and R. Yassawi. Asymptotic randomization of subgroup shifts by linear cellular automata. (submitted), 2004.
- [9] Cris Moore. Quasi-linear cellular automata. Physica D, 103:100–132, 1997.
- [10] Karl Petersen. Ergodic Theory. Cambridge University Press, New York, 1989.
- [11] Hala O. Pflugfelder. Quasigroups and Loops: Introduction, volume 7 of Sigma Series in Pure Math B. Heldermann Verlag, Berlin, 1990.
- [12] M. Pivato. Multiplicative cellular automata on nilpotent groups: Structure, entropy, and asymptotics. *Journal of Statistical Physics*, 110(1/2):247–267, January 2003.
- [13] Laurent Schwartz. Lectures on disintegration of measures. Tata Institute of Fundamental Research, Bombay, 1975.

Received September 2003; first revision April 2004; second revision December 2004.

E-mail address: pivato@xaravve.trentu.ca