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generated group, and consider the Cantor space AG. A CA is now a
continuous function Φ : AG−→AG which commutes with all G-shifts.

G has dimension D if a ball of radius r in the Cayley digraph of G has
cardinality of order O(rD). Let X ⊆ AG be a closed, Φ-invariant,
shift-invariant subset. Shereshevsky showed:

If D ≥ 2, and X has nonzero topological entropy, then the topological

dynamical system (X , Φ) cannot be positively expansive.

We will generalize Shereshevsky’s result to a much broader class of
symbolic dynamical systems. These are systems like a CA, but having an
‘irregular’ network topology.
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◮ p-ary odometer. V = N; A = Z/p; X = AN; Φ=successor map.

◮ Automaton network. V is a directed graph, in which all vertices have
finite in-degree. Each vertex has a finite state automaton (FSA) with
statespace A, which takes input from all its neighbours in the digraph.
The map Φ encodes the simultaneous updating of all the FSAs.

In fact, we shall now see that any symbolic dynamical system can be seen
as an automaton network.
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−→AZD

is a CA, then dim(ZD , •→) = D.
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v∈V

hv(X ).

If h(X ) = h(X ), then we denote their common value by h(X ).

Example. (a) h(AV) = log2 |A|.

(b) Suppose V = Z
D (with Cayley digraph), and X ⊆ AZD

is a
D-dimensional subshift. Then h(X ) is the (D-dimensional) topological
entropy of X .
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A subisometry of (V, •→) is an injection τ : V−→V such that, for all
v, w ∈ V, we have (v •→w) ⇐⇒ (τ(v) •→τ(w)). Thus, for all v ∈ V and
r > 0, we have τ [B(v, r)] ⊆ B[τ(v), r ] (with equality if τ is surjective).

Example. Let (V, •→) =Cayley digraph of a group/monoid (e.g. Z
D × N
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Fix w ∈ V. Define τ : V−→V by τ(v) := v + w. Then τ is a subisometry.
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We say that τ is a moving subsymmetry if speed(v, τ) > 0 for all v ∈ V.



Moving subsymmetries (9/21)

Recall: τ is a moving subsymmetry if speed(v, τ) > 0 for all v ∈ V.



Moving subsymmetries (9/21)

Recall: τ is a moving subsymmetry if speed(v, τ) > 0 for all v ∈ V.

Example. Let (V, •→) be the Cayley digraph of a group or monoid (e.g.
Z

D × N
d).



Moving subsymmetries (9/21)

Recall: τ is a moving subsymmetry if speed(v, τ) > 0 for all v ∈ V.

Example. Let (V, •→) be the Cayley digraph of a group or monoid (e.g.
Z

D × N
d). Fix w ∈ V. Define τ : V−→V by τ(v) := v + w. Then τ is a

moving subsymmetry. (In fact, speed(v, τ) = |w|).



Moving subsymmetries (9/21)

Recall: τ is a moving subsymmetry if speed(v, τ) > 0 for all v ∈ V.

Example. Let (V, •→) be the Cayley digraph of a group or monoid (e.g.
Z

D × N
d). Fix w ∈ V. Define τ : V−→V by τ(v) := v + w. Then τ is a

moving subsymmetry. (In fact, speed(v, τ) = |w|).

Nonexample. Let V = Z × N, with the digraph structure shown below.



Moving subsymmetries (9/21)

Recall: τ is a moving subsymmetry if speed(v, τ) > 0 for all v ∈ V.

Example. Let (V, •→) be the Cayley digraph of a group or monoid (e.g.
Z

D × N
d). Fix w ∈ V. Define τ : V−→V by τ(v) := v + w. Then τ is a

moving subsymmetry. (In fact, speed(v, τ) = |w|).

Nonexample. Let V = Z × N, with the digraph structure shown below.

Define subisometry τ : V−→V by τ(z , n) = (z + 1, n).



Moving subsymmetries (9/21)

Recall: τ is a moving subsymmetry if speed(v, τ) > 0 for all v ∈ V.

Example. Let (V, •→) be the Cayley digraph of a group or monoid (e.g.
Z

D × N
d). Fix w ∈ V. Define τ : V−→V by τ(v) := v + w. Then τ is a

moving subsymmetry. (In fact, speed(v, τ) = |w|).

Nonexample. Let V = Z × N, with the digraph structure shown below.

τ32

path of length 11

Define subisometry τ : V−→V by τ(z , n) = (z + 1, n). Then
speed(τ, v) = 0, for all v ∈ V, because for any k ∈ N, there is a path from v

to τ (2k )(v) of length at most 2k + 1.



Moving subsymmetries (9/21)

Recall: τ is a moving subsymmetry if speed(v, τ) > 0 for all v ∈ V.

Example. Let (V, •→) be the Cayley digraph of a group or monoid (e.g.
Z

D × N
d). Fix w ∈ V. Define τ : V−→V by τ(v) := v + w. Then τ is a

moving subsymmetry. (In fact, speed(v, τ) = |w|).

Nonexample. Let V = Z × N, with the digraph structure shown below.

τ32

path of length 11

Define subisometry τ : V−→V by τ(z , n) = (z + 1, n). Then
speed(τ, v) = 0, for all v ∈ V, because for any k ∈ N, there is a path from v

to τ (2k )(v) of length at most 2k + 1. Thus, τ is not a moving subsymmetry.
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We now come to our generalizations of Shereshevsky’s result.

Theorem 1. Let Φ : AV−→AV be a continuous self-map with a moving

subsymmetry. If dim(V, •→) > 1, then the system (AV, Φ) is not positively

expansive.

Theorem 2. Let (AV,X , Φ) be a symbolic dynamical system with a

moving subsymmetry, and suppose X is weakly independent.

◮ If h(X ) > 0 and dim(V, •→) > 1 then (X , Φ) is not positively

expansive.

◮ If dimv(V, •→) = dimv(V, •→) for all v ∈ V, and h(X ) > 0, and

dim(V, •→) > 1, then (X , Φ) is not positively expansive.
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Proof sketch. (by contradiction) If (X , Φ) is positively expansive, then
there is some finite ‘window’ W ⊂ V such that for any x ∈ X , the data
[xW, Φ(x)W, Φ2(x)W, Φ3(x)W, . . . Φt(x)W, . . .] completely encodes x.
But if v ∈ V has superlinear connectivity and hv(X ) > 0, then the
information content of xB(v,r) grows superlinearly as r→∞. It is impossible
to transmit all this information through W quickly enough as t→∞.
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Theorem 0. Let (AV,X , Φ) be a symbolic dynamical system with a

moving subsymmetry. If X is weakly independent, and there exists some

v ∈ V with superlinear connectivity such that hv(X ) > 0, then the system

(X , Φ) is not positively expansive.

Remarks.

◮ Theorems 0 - 2 apply even if the moving subsymmetry τ and its
iterates are the only symmetries of the system (AV,X , Φ).
In particular, we do not require the symmetry group of (AV,X , Φ) to
itself have growth dimension greater than 1.

◮ The ‘weak independence’ condition in Theorems 0 and 2 is probably
unnecessary. (It is absent from Shereshevsky’s original result).
However, it is not clear how to dispense with it.

◮ The existence of a moving subsymmetry is also probably unnecessary.
However, some condition is required beyond merely superlinear
connectivity and nonzero entropy. This is shown by the next
counterexample....
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For any n ∈ V◦, define φn : Xn+1−→Xn by φn

(

an+1
bn+1

)

=
(

an+1
0

)

.

For any mk ∈ V�, define φmk
: X(mk)+1 ×Xm(k+1)

−→Xmk
as follows:

φmk

(

(a(mk )+1

0

)

,

(

am(k+1)

bm(k+1)

))

:=

(

a(mk )+1

am(k+1)
+ bm(k+1)

)

.

Theorem. (a) h(X ) ≥ 1, and X is weakly independent; and

(b) dimv(V, •→) = 2 for all v ∈ V; but

(c) The system (X , Φ) is positively expansive.

Proof sketch. (a) is obvious from the definition of X .
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Theorem. (a) h(X ) ≥ 1, and X is weakly independent; and

(b) dimv(V, •→) = 2 for all v ∈ V; but

(c) The system (X , Φ) is positively expansive.

Proof sketch. (b) (Case v = 0) The figure shows B(0, r) for
r = 1, 2, . . . , 7.
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Theorem. (a) h(X ) ≥ 1, and X is weakly independent; and

(b) dimv(V, •→) = 2 for all v ∈ V; but

(c) The system (X , Φ) is positively expansive.

Proof sketch. (b) (Case v = 0) The figure shows B(0, r) for
r = 1, 2, . . . , 7. Clearly, |B(0, r)| grows quadratically as r→∞.
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Theorem. (a) h(X ) ≥ 1, and X is weakly independent; and

(b) dimv(V, •→) = 2 for all v ∈ V; but

(c) The system (X , Φ) is positively expansive.

Proof sketch. (b) (Case v = 0) The figure shows B(0, r) for
r = 1, 2, . . . , 7. Clearly, |B(0, r)| grows quadratically as r→∞. Thus,
dim0(V, •→) = 2.
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Theorem. (a) h(X ) ≥ 1, and X is weakly independent; and

(b) dimv(V, •→) = 2 for all v ∈ V; but

(c) The system (X , Φ) is positively expansive.

Proof sketch. (b) (Case v = 0) The figure shows B(0, r) for
r = 1, 2, . . . , 7. Clearly, |B(0, r)| grows quadratically as r→∞. Thus,
dim0(V, •→) = 2. The proof for other v ∈ V is similar.
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Theorem. (a) h(X ) ≥ 1, and X is weakly independent; and

(b) dimv(V, •→) = 2 for all v ∈ V; but

(c) The system (X , Φ) is positively expansive.

Proof sketch. (c) Straightforward computation shows that the data
x0, Φ(x)0, Φ2(x)0, Φ3(x)0, Φ4(x)0, . . ., Φt(x)0, . . . is sufficient to
reconstruct x, for any x ∈ X .
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Under suitable conditions, this metric is dimensionally compatible with the
network topology of (V, •→), meaning that dim(X , d) = dim(V, •→).

Let (X ′, d ′) be another metric space, and let Γ : X−→X ′ be a continuous
function. Say Γ is Hölder if there are constants η, λ ∈ (0,∞) such that, for
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dim(X , d) ≥ dim(X ′, d ′).
◮ If Γ is a (d , d ′)-biHölder homeomorphism, then
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Corollary. Let (AV,X1, Φ1) and (BW,X2, Φ2) be two symbolic dynamical

systems, and let d1 and d2 be dimensionally compatible Lipschitz metrics

on X1 and X2 respectively.

◮ If there is a factor mapping (X1, Φ1)−→(X2, Φ2) which is

(d1, d2)-Hölder , then dim(V, •→1) ≥ dim(W, •→2).
◮ If (X1, Φ1) and (X2, Φ2) are conjugate via a bi-Hölder

homeomorphism, then dim(V, •→1) = dim(W, •→2).
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Question. What other dynamical properties of (AV,X , Φ) are influenced
by the geometry of the digraph (V, •→)?
One could also go the other way. Start with an infinite digraph (V, •→), and
randomly generate a continuous self-map Φ : AV−→AV, such that ( •→) is
the network of Φ.
Question. What are the ‘generic’ (i.e. almost-certain) properties of
(AV, Φ), and how do they depend on the geometry of (V, •→)?
Conjecture If dim(V, •→) ≤ 1, then almost surely, (AV, Φ) is

equicontinuous. If dim(V, •→) > 1, then almost surely, (AV, Φ) is sensitive.

(The intuition here comes from percolation theory).
Question. Suppose we take a symbolic dynamical system (AV, Φ) and
‘mutate’ it, by changing the local rule at a small number of vertices. What
topological-dynamical properties are ‘robust’ under such mutations, and
how does this depend on the geometry of (V, •→)?



Thank you.

These presentation slides are available at

<http://euclid.trentu.ca/pivato/Research/network.pdf>

For more information, see

Positive expansiveness versus network dimension in symbolic dynamical

systems, to appear in Theoretical Computer Science (2011).

<http://arxiv.org/abs/0907.2935>
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