Positive expansiveness versus network dimension in symbolic dynamical systems

Marcus Pivato

Department of Mathematics, Trent University
Peterborough, Ontario, Canada
marcuspivato@trentu.ca

December 3, 2010
Let \mathcal{A} be a finite set (‘alphabet’), let $D \in \mathbb{N}$, and let $\mathcal{A}^{\mathbb{Z}^D}$ be the set of all \mathbb{Z}^D-indexed configurations of symbols from \mathcal{A}, with the Cantor topology.
Let \mathcal{A} be a finite set (‘alphabet’), let $D \in \mathbb{N}$, and let $\mathcal{A}^{\mathbb{Z}^D}$ be the set of all \mathbb{Z}^D-indexed configurations of symbols from \mathcal{A}, with the Cantor topology. A **cellular automaton (CA)** is a continuous function $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$ which commutes with all shifts.
Let \mathcal{A} be a finite set (‘alphabet’), let $D \in \mathbb{N}$, and let $\mathcal{A}^{\mathbb{Z}^D}$ be the set of all \mathbb{Z}^D-indexed configurations of symbols from \mathcal{A}, with the Cantor topology. A cellular automaton (CA) is a continuous function $\Phi : \mathcal{A}^{\mathbb{Z}^D} \to \mathcal{A}^{\mathbb{Z}^D}$ which commutes with all shifts. One-dimensional CA are often positively expansive. But Mark Shereshevsky (1993,1996) showed:

If $D \geq 2$, then Φ cannot be positively expansive.
Shereshevsky’s result

Let \mathcal{A} be a finite set (‘alphabet’), let $D \in \mathbb{N}$, and let $\mathcal{A}^{\mathbb{Z}^D}$ be the set of all \mathbb{Z}^D-indexed *configurations* of symbols from \mathcal{A}, with the Cantor topology. A *cellular automaton* (CA) is a continuous function $\Phi : \mathcal{A}^{\mathbb{Z}^D} \to \mathcal{A}^{\mathbb{Z}^D}$ which commutes with all shifts. One-dimensional CA are often positively expansive. But Mark Shereshevsky (1993, 1996) showed:

If $D \geq 2$, then Φ cannot be positively expansive.

In fact, Shereshevsky’s result is much more general. Let \mathbb{G} be any finitely generated group, and consider the Cantor space $\mathcal{A}^{\mathbb{G}}$.
Let A be a finite set (‘alphabet’), let $D \in \mathbb{N}$, and let $A^{\mathbb{Z}^D}$ be the set of all \mathbb{Z}^D-indexed configurations of symbols from A, with the Cantor topology. A cellular automaton (CA) is a continuous function $\Phi : A^{\mathbb{Z}^D} \rightarrow A^{\mathbb{Z}^D}$ which commutes with all shifts. One-dimensional CA are often positively expansive. But Mark Shereshevsky (1993, 1996) showed:

If $D \geq 2$, then Φ cannot be positively expansive.

In fact, Shereshevsky’s result is much more general. Let G be any finitely generated group, and consider the Cantor space A^G. A CA is now a continuous function $\Phi : A^G \rightarrow A^G$ which commutes with all G-shifts.
Let \mathcal{A} be a finite set (‘alphabet’), let $D \in \mathbb{N}$, and let $\mathcal{A}^{\mathbb{Z}^D}$ be the set of all \mathbb{Z}^D-indexed configurations of symbols from \mathcal{A}, with the Cantor topology. A cellular automaton (CA) is a continuous function $\Phi : \mathcal{A}^{\mathbb{Z}^D} \rightarrow \mathcal{A}^{\mathbb{Z}^D}$ which commutes with all shifts. One-dimensional CA are often positively expansive. But Mark Shereshevsky (1993,1996) showed:

\[\text{If } D \geq 2, \text{ then } \Phi \text{ cannot be positively expansive.} \]

In fact, Shereshevsky’s result is much more general. Let G be any finitely generated group, and consider the Cantor space \mathcal{A}^G. A CA is now a continuous function $\Phi : \mathcal{A}^G \rightarrow \mathcal{A}^G$ which commutes with all G-shifts.

G has \textit{dimension D} if a ball of radius r in the Cayley digraph of G has cardinality of order $O(r^D)$.

Let \(\mathcal{A} \) be a finite set (‘alphabet’), let \(D \in \mathbb{N} \), and let \(\mathcal{A}^{\mathbb{Z}^D} \) be the set of all \(\mathbb{Z}^D \)-indexed configurations of symbols from \(\mathcal{A} \), with the Cantor topology. A cellular automaton (CA) is a continuous function \(\Phi: \mathcal{A}^{\mathbb{Z}^D} \rightarrow \mathcal{A}^{\mathbb{Z}^D} \) which commutes with all shifts. One-dimensional CA are often positively expansive. But Mark Shereshevsky (1993,1996) showed:

If \(D \geq 2 \), then \(\Phi \) cannot be positively expansive.

In fact, Shereshevsky’s result is much more general. Let \(\mathbb{G} \) be any finitely generated group, and consider the Cantor space \(\mathcal{A}^{\mathbb{G}} \). A CA is now a continuous function \(\Phi: \mathcal{A}^{\mathbb{G}} \rightarrow \mathcal{A}^{\mathbb{G}} \) which commutes with all \(\mathbb{G} \)-shifts.

\(\mathbb{G} \) has dimension \(D \) if a ball of radius \(r \) in the Cayley digraph of \(\mathbb{G} \) has cardinality of order \(\mathcal{O}(r^D) \). Let \(\mathcal{X} \subseteq \mathcal{A}^{\mathbb{G}} \) be a closed, \(\Phi \)-invariant, shift-invariant subset.
Let \mathcal{A} be a finite set (‘alphabet’), let $D \in \mathbb{N}$, and let $\mathcal{A}^{\mathbb{Z}^D}$ be the set of all \mathbb{Z}^D-indexed \textit{configurations} of symbols from \mathcal{A}, with the Cantor topology. A \textit{cellular automaton} (CA) is a continuous function $\Phi : \mathcal{A}^{\mathbb{Z}^D} \rightarrow \mathcal{A}^{\mathbb{Z}^D}$ which commutes with all shifts. One-dimensional CA are often positively expansive. But Mark Shereshevsky (1993,1996) showed:

\textit{If $D \geq 2$, then Φ cannot be positively expansive.}

In fact, Shereshevsky’s result is much more general. Let \mathbb{G} be any finitely generated group, and consider the Cantor space $\mathcal{A}^\mathbb{G}$. A CA is now a continuous function $\Phi : \mathcal{A}^\mathbb{G} \rightarrow \mathcal{A}^\mathbb{G}$ which commutes with all \mathbb{G}-shifts.

\mathbb{G} has \textit{dimension} D if a ball of radius r in the Cayley digraph of \mathbb{G} has cardinality of order $\mathcal{O}(r^D)$. Let $\mathcal{X} \subseteq \mathcal{A}^\mathbb{G}$ be a closed, Φ-invariant, shift-invariant subset. Shereshevsky showed:

\textit{If $D \geq 2$, and \mathcal{X} has nonzero topological entropy, then the topological dynamical system (\mathcal{X}, Φ) cannot be positively expansive.}
Let \mathcal{A} be a finite set (‘alphabet’), let $D \in \mathbb{N}$, and let $\mathcal{A}^{\mathbb{Z}^D}$ be the set of all \mathbb{Z}^D-indexed configurations of symbols from \mathcal{A}, with the Cantor topology. A cellular automaton (CA) is a continuous function $\Phi : \mathcal{A}^{\mathbb{Z}^D} \to \mathcal{A}^{\mathbb{Z}^D}$ which commutes with all shifts. One-dimensional CA are often positively expansive. But Mark Shereshevsky (1993,1996) showed:

If $D \geq 2$, then Φ cannot be positively expansive.

In fact, Shereshevsky’s result is much more general. Let \mathbb{G} be any finitely generated group, and consider the Cantor space $\mathcal{A}^{\mathbb{G}}$. A CA is now a continuous function $\Phi : \mathcal{A}^{\mathbb{G}} \to \mathcal{A}^{\mathbb{G}}$ which commutes with all \mathbb{G}-shifts.

\mathbb{G} has dimension D if a ball of radius r in the Cayley digraph of \mathbb{G} has cardinality of order $O(r^D)$. Let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{G}}$ be a closed, Φ-invariant, shift-invariant subset. Shereshevsky showed:

If $D \geq 2$, and \mathcal{X} has nonzero topological entropy, then the topological dynamical system (\mathcal{X}, Φ) cannot be positively expansive.

We will generalize Shereshevsky’s result to a much broader class of symbolic dynamical systems. These are systems like a CA, but having an ‘irregular’ network topology.
Symbolic dynamical systems

Let \mathbb{V} be an infinite set of ‘vertices’.
Symbolic dynamical systems

Let \mathcal{V} be an infinite set of ‘vertices’. Endow $\mathcal{A}^\mathcal{V}$ with the Cantor topology.
Let \mathcal{V} be an infinite set of ‘vertices’. Endow $\mathcal{A}^\mathcal{V}$ with the Cantor topology. Let $\mathcal{X} \subseteq \mathcal{A}^\mathcal{V}$ be a closed subset.
Let \mathbb{V} be an infinite set of ‘vertices’. Endow $\mathcal{A}^{\mathbb{V}}$ with the Cantor topology. Let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Let $\Phi : \mathcal{X} \rightarrow \mathcal{X}$ be a continuous function.
Let \mathcal{V} be an infinite set of ‘vertices’. Endow $\mathcal{A}^\mathcal{V}$ with the Cantor topology. Let $\mathcal{X} \subseteq \mathcal{A}^\mathcal{V}$ be a closed subset. Let $\Phi : \mathcal{X} \rightarrow \mathcal{X}$ be a continuous function. We will call the triple $(\mathcal{A}^\mathcal{V}, \mathcal{X}, \Phi)$ a \textit{symbolic dynamical system}.
Symbolic dynamical systems

Let \mathcal{V} be an infinite set of ‘vertices’. Endow $\mathcal{A}^\mathcal{V}$ with the Cantor topology. Let $\mathcal{X} \subseteq \mathcal{A}^\mathcal{V}$ be a closed subset. Let $\Phi : \mathcal{X} \rightarrow \mathcal{X}$ be a continuous function. We will call the triple $(\mathcal{A}^\mathcal{V}, \mathcal{X}, \Phi)$ a *symbolic dynamical system*.

Examples.
Let \mathbb{V} be an infinite set of ‘vertices’. Endow $A^\mathbb{V}$ with the Cantor topology. Let $\mathcal{X} \subseteq A^\mathbb{V}$ be a closed subset. Let $\Phi : \mathcal{X} \to \mathcal{X}$ be a continuous function. We will call the triple $(A^\mathbb{V}, \mathcal{X}, \Phi)$ a **symbolic dynamical system**.

Examples.

- **Subshift.** $\mathbb{V} = \mathbb{Z}$ or \mathbb{N}; $\Phi =$ shift map; $\mathcal{X} =$ shift-invariant subset.
Symbolic dynamical systems

Let \mathcal{V} be an infinite set of ‘vertices’. Endow $\mathcal{A}^\mathcal{V}$ with the Cantor topology. Let $\mathcal{X} \subseteq \mathcal{A}^\mathcal{V}$ be a closed subset. Let $\Phi : \mathcal{X} \rightarrow \mathcal{X}$ be a continuous function. We will call the triple $(\mathcal{A}^\mathcal{V}, \mathcal{X}, \Phi)$ a symbolic dynamical system.

Examples.

- **Subshift.** $\mathcal{V} = \mathbb{Z}$ or \mathbb{N}; $\Phi =$shift map; $\mathcal{X} =$shift-invariant subset.
- **Cellular automaton.** $\mathcal{V} = \mathbb{Z}^D \times \mathbb{N}^d$ (or some group/monoid); $\mathcal{X} = \mathcal{A}^\mathcal{V}$, and Φ commutes with all shifts.
Symbolic dynamical systems

Let \mathcal{V} be an infinite set of ‘vertices’. Endow $\mathcal{A}^\mathcal{V}$ with the Cantor topology. Let $\mathcal{X} \subseteq \mathcal{A}^\mathcal{V}$ be a closed subset. Let $\Phi : \mathcal{X} \rightarrow \mathcal{X}$ be a continuous function. We will call the triple $(\mathcal{A}^\mathcal{V}, \mathcal{X}, \Phi)$ a symbolic dynamical system.

Examples.

- **Subshift.** $\mathcal{V} = \mathbb{Z}$ or \mathbb{N}; $\Phi =$ shift map; $\mathcal{X} =$ shift-invariant subset.

- **Cellular automaton.** $\mathcal{V} = \mathbb{Z}^D \times \mathbb{N}^d$ (or some group/monoid); $\mathcal{X} = \mathcal{A}^\mathcal{V}$, and Φ commutes with all shifts.

- **p-ary odometer.** $\mathcal{V} = \mathbb{N}$; $\mathcal{A} = \mathbb{Z}/p$; $\mathcal{X} = \mathcal{A}^\mathbb{N}$; $\Phi =$ successor map.
Symbolic dynamical systems

Let \mathcal{V} be an infinite set of ‘vertices’. Endow $\mathcal{A}^\mathcal{V}$ with the Cantor topology. Let $\mathcal{X} \subseteq \mathcal{A}^\mathcal{V}$ be a closed subset. Let $\Phi : \mathcal{X} \rightarrow \mathcal{X}$ be a continuous function. We will call the triple $(\mathcal{A}^\mathcal{V}, \mathcal{X}, \Phi)$ a symbolic dynamical system.

Examples.

- **Subshift.** $\mathcal{V} = \mathbb{Z}$ or \mathbb{N}; Φ = shift map; \mathcal{X} = shift-invariant subset.
- **Cellular automaton.** $\mathcal{V} = \mathbb{Z}^D \times \mathbb{N}^d$ (or some group/monoid); $\mathcal{X} = \mathcal{A}^\mathcal{V}$, and Φ commutes with all shifts.
- **p-ary odometer.** $\mathcal{V} = \mathbb{N}$; $\mathcal{A} = \mathbb{Z}/p$; $\mathcal{X} = \mathcal{A}^\mathbb{N}$; Φ = successor map.
- **Automaton network.** \mathcal{V} is a directed graph, in which all vertices have finite in-degree. Each vertex has a finite state automaton (FSA) with statespace \mathcal{A}, which takes input from all its neighbours in the digraph. The map Φ encodes the simultaneous updating of all the FSAs.
Symbolic dynamical systems

Let \mathbb{V} be an infinite set of ‘vertices’. Endow $\mathbb{A}^\mathbb{V}$ with the Cantor topology. Let $\mathcal{X} \subseteq \mathbb{A}^\mathbb{V}$ be a closed subset. Let $\Phi : \mathcal{X} \rightarrow \mathcal{X}$ be a continuous function. We will call the triple $(\mathbb{A}^\mathbb{V}, \mathcal{X}, \Phi)$ a **symbolic dynamical system**.

Examples.

- **Subshift.** $\mathbb{V} = \mathbb{Z}$ or \mathbb{N}; $\Phi =$ shift map; $\mathcal{X} =$ shift-invariant subset.

- **Cellular automaton.** $\mathbb{V} = \mathbb{Z}^D \times \mathbb{N}^d$ (or some group/monoid); $\mathcal{X} = \mathbb{A}^\mathbb{V}$, and Φ commutes with all shifts.

- **p-ary odometer.** $\mathbb{V} = \mathbb{N}$; $\mathbb{A} = \mathbb{Z}/p$; $\mathcal{X} = \mathbb{A}^\mathbb{N}$; $\Phi =$ successor map.

- **Automaton network.** \mathbb{V} is a directed graph, in which all vertices have finite in-degree. Each vertex has a finite state automaton (FSA) with statespace \mathbb{A}, which takes input from all its neighbours in the digraph. The map Φ encodes the simultaneous updating of all the FSAs.

In fact, we shall now see that any symbolic dynamical system can be seen as an automaton network.
Let $x \in A^V$ and let $B \subseteq V$.
Let $x \in \mathcal{A}^V$ and let $\mathcal{B} \subseteq V$. We define $x_\mathcal{B} := [x_b]_{b \in \mathcal{B}}$ (an element of $\mathcal{A}^\mathcal{B}$).
Let $x \in A^V$ and let $B \subseteq V$. We define $x_B := [x_b]_{b \in B}$ (an element of A^B).

Lemma. Let (A^V, X, Φ) be a symbolic dynamical system.
Let $x \in A^V$ and let $B \subseteq V$. We define $x_B := [x_b]_{b \in B}$ (an element of A^B).

Lemma. Let (A^V, \mathcal{X}, Φ) be a symbolic dynamical system. For all $v \in V$, there exists a finite subset $B(v, 1) \subseteq V$ (the input neighbourhood for v) and a function $\phi_v : A^{B(v,1)} \to A$ (the local rule at v), such that for all $x \in \mathcal{X}$, we have
Let $x \in A^V$ and let $B \subseteq V$. We define $x_B := [x_b]_{b \in B}$ (an element of A^B).

Lemma. Let (A^V, \mathcal{X}, Φ) be a symbolic dynamical system. For all $v \in V$, there exists a finite subset $B(v, 1) \subseteq V$ (the input neighbourhood for v) and a function $\phi_v : A^{B(v,1)} \rightarrow A$ (the local rule at v), such that for all $x \in \mathcal{X}$, we have $\Phi(x)_v = \phi_v (x_{B(v,1)})$.
Let $\mathbf{x} \in \mathcal{A}^V$ and let $\mathcal{B} \subseteq V$. We define $\mathbf{x}_\mathcal{B} := [x_b]_{b \in \mathcal{B}}$ (an element of $\mathcal{A}^\mathcal{B}$).

Lemma. Let $(\mathcal{A}^V, \mathcal{X}, \Phi)$ be a symbolic dynamical system. For all $v \in V$, there exists a finite subset $\mathcal{B}(v, 1) \subseteq V$ (the input neighbourhood for v) and a function $\phi_v : \mathcal{A}^{\mathcal{B}(v,1)} \to \mathcal{A}$ (the local rule at v), such that for all $\mathbf{x} \in \mathcal{X}$, we have $\Phi(\mathbf{x})_v = \phi_v(\mathbf{x}_{\mathcal{B}(v,1)})$.

Example. If $\Phi : \mathcal{A}^{\mathbb{Z}^D} \to \mathcal{A}^{\mathbb{Z}^D}$ is a cellular automaton, then this is just the Curtis-Hedlund-Lyndon Theorem.
Let $x \in \mathcal{A}^V$ and let $B \subseteq V$. We define $x_B := [x_b]_{b \in B}$ (an element of \mathcal{A}^B).

Lemma. Let $(\mathcal{A}^V, \mathcal{X}, \Phi)$ be a symbolic dynamical system. For all $v \in V$, there exists a finite subset $B(v, 1) \subseteq V$ (the input neighbourhood for v) and a function $\phi_v : \mathcal{A}^{B(v,1)} \rightarrow \mathcal{A}$ (the local rule at v), such that for all $x \in \mathcal{X}$, we have $\Phi(x)_v = \phi_v (x_{B(v,1)})$.

Example. If $\Phi : \mathcal{A}^\mathbb{Z}^D \rightarrow \mathcal{A}^\mathbb{Z}^D$ is a cellular automaton, then this is just the Curtis-Hedlund-Lyndon Theorem.

For any $v, w \in V$, write $v \rightarrow w$ if $v \in B(w, 1)$.
Let $x \in \mathcal{A}^V$ and let $B \subseteq V$. We define $x_B := \{x_b\}_{b \in B}$ (an element of \mathcal{A}^B).

Lemma. Let $(\mathcal{A}^V, \mathcal{X}, \Phi)$ be a symbolic dynamical system. For all $v \in V$, there exists a finite subset $B(v, 1) \subseteq V$ (the input neighbourhood for v) and a function $\phi_v : \mathcal{A}^{B(v,1)} \rightarrow \mathcal{A}$ (the local rule at v), such that for all $x \in \mathcal{X}$, we have $\Phi(x)_v = \phi_v(x_{B(v,1)})$.

Example. If $\Phi : \mathcal{A}^{\mathbb{Z}^D} \rightarrow \mathcal{A}^{\mathbb{Z}^D}$ is a cellular automaton, then this is just the Curtis-Hedlund-Lyndon Theorem.

For any $v, w \in V$, write $v \rightarrow w$ if $v \in B(w, 1)$. This defines a directed graph structure on V, called the *network* of Φ.
Let \(x \in \mathcal{A}^V \) and let \(B \subseteq V \). We define \(x_B := [x_b]_{b \in B} \) (an element of \(\mathcal{A}^B \)).

Lemma. Let \((\mathcal{A}^V, X, \Phi)\) be a symbolic dynamical system. For all \(v \in V \), there exists a finite subset \(B(v, 1) \subseteq V \) (the input neighbourhood for \(v \)) and a function \(\phi_v : \mathcal{A}^{B(v, 1)} \rightarrow \mathcal{A} \) (the local rule at \(v \)), such that for all \(x \in X \), we have \(\Phi(x)_v = \phi_v (x_{B(v, 1)}) \).

Example. If \(\Phi : \mathcal{A}^{\mathbb{Z}^D} \rightarrow \mathcal{A}^{\mathbb{Z}^D} \) is a cellular automaton, then this is just the Curtis-Hedlund-Lyndon Theorem.

For any \(v, w \in V \), write \(v \rightarrow w \) if \(v \in B(w, 1) \). This defines a directed graph structure on \(V \), called the network of \(\Phi \).

Example. The network of a subshift on \(\mathcal{A}^\mathbb{N} \).

\[\begin{array}{cccccccc}
0 & - & 1 & - & 2 & - & 3 & - & 4 & - & 5 & - & 6 & - & 7 & - & 8 & \ldots
\end{array} \]
Let $x \in A^V$ and let $B \subseteq V$. We define $x_B := [x_b]_{b \in B}$ (an element of A^B).

Lemma. Let (A^V, \mathcal{X}, Φ) be a symbolic dynamical system. For all $v \in V$, there exists a finite subset $B(v, 1) \subseteq V$ (the input neighbourhood for v) and a function $\phi_v : A^{B(v,1)} \rightarrow A$ (the local rule at v), such that for all $x \in \mathcal{X}$, we have $\Phi(x)_v = \phi_v (x_{B(v,1)})$.

Example. If $\Phi : A^Z \rightarrow A^Z$ is a cellular automaton, then this is just the Curtis-Hedlund-Lyndon Theorem.

For any $v, w \in V$, write $v \rightarrow w$ if $v \in B(w, 1)$. This defines a directed graph structure on V, called the *network* of Φ.

Example. The network of a subshift on A^Z.

![Network Diagram]
Let \(x \in \mathcal{X}^V \) and let \(B \subseteq V \). We define \(x_B := [x_b]_{b \in B} \) (an element of \(\mathcal{X}^B \)).

Lemma. Let \((\mathcal{X}^V, \mathcal{X}, \Phi)\) be a symbolic dynamical system. For all \(v \in V \), there exists a finite subset \(B(v, 1) \subseteq V \) (the input neighbourhood for \(v \)) and a function \(\phi_v : \mathcal{X}^{B(v,1)} \rightarrow \mathcal{X} \) (the local rule at \(v \)), such that for all \(x \in \mathcal{X} \), we have \(\Phi(x)_v = \phi_v(x_{B(v,1)}) \).

Example. If \(\Phi : \mathcal{X}^{\mathbb{Z}^D} \rightarrow \mathcal{X}^{\mathbb{Z}^D} \) is a cellular automaton, then this is just the Curtis-Hedlund-Lyndon Theorem.

For any \(v, w \in V \), write \(v \rightarrow w \) if \(v \in B(w, 1) \). This defines a directed graph structure on \(V \), called the network of \(\Phi \).

Example. The network of CA on \(\mathbb{Z}^2 \) (von Neumann neighbourhood)
The network of a symbolic dynamical system

Let $x \in \mathcal{A}^V$ and let $B \subseteq V$. We define $x_B := [x_b]_{b \in B}$ (an element of \mathcal{A}^B).

Lemma. Let $(\mathcal{A}^V, \mathcal{X}, \Phi)$ be a symbolic dynamical system. For all $v \in V$, there exists a finite subset $B(v, 1) \subseteq V$ (the input neighbourhood for v) and a function $\phi_v : \mathcal{A}^{B(v, 1)} \rightarrow \mathcal{A}$ (the local rule at v), such that for all $x \in \mathcal{X}$, we have $\Phi(x)_v = \phi_v (x_{B(v, 1)})$.

Example. If $\Phi : \mathcal{A}^{\mathbb{Z}^D} \rightarrow \mathcal{A}^{\mathbb{Z}^D}$ is a cellular automaton, then this is just the Curtis-Hedlund-Lyndon Theorem.

For any $v, w \in V$, write $v \rightarrow w$ if $v \in B(w, 1)$. This defines a directed graph structure on V, called the *network* of Φ.

Example. The network of cellular automaton on \mathbb{Z}^2 (Moore neighbourhood)
Let \(x \in \mathcal{A}^V \) and let \(B \subseteq V \). We define \(x_B := [x_b]_{b \in B} \) (an element of \(\mathcal{A}^B \)).

Lemma. Let \((\mathcal{A}^V, \mathcal{X}, \Phi)\) be a symbolic dynamical system. For all \(v \in V \), there exists a finite subset \(B(v, 1) \subseteq V \) (the input neighbourhood for \(v \)) and a function \(\phi_v : \mathcal{A}^{B(v, 1)} \rightarrow \mathcal{A} \) (the local rule at \(v \)), such that for all \(x \in \mathcal{X} \), we have \(\Phi(x)_v = \phi_v(x_{B(v, 1)}) \).

Example. If \(\Phi : \mathcal{A}^\mathbb{Z}^D \rightarrow \mathcal{A}^\mathbb{Z}^D \) is a cellular automaton, then this is just the Curtis-Hedlund-Lyndon Theorem.

For any \(v, w \in V \), write \(v \rightarrow w \) if \(v \in B(w, 1) \). This defines a directed graph structure on \(V \), called the network of \(\Phi \).

Example. The network of an odometer.

\[0 1 2 3 4 5 6 7 8\]
For any $U \subset V$, define $B(U, 1) := U \cup \{v \in V : \exists u \in U : v \xrightarrow{\bullet} u\}$.
For any $U \subseteq V$, define $B(U, 1) := U \cup \{ v \in V ; \exists u \in U : v \rightarrow u \}$. Then inductively define $B(U, n + 1) := B(B(U, n), 1)$ for all $n \in \mathbb{N}$.
For any \(U \subset V \), define \(B(U, 1) := U \cup \{ v \in V ; \exists u \in U : v \rightarrow u \} \).

Then inductively define \(B(U, n + 1) := B(B(U, n), 1) \) for all \(n \in \mathbb{N} \).

If \(v \in V \), then \(B(v, r) \) is the set of all \(w \in V \) such that there exists a directed path \(w = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_s = v \) with \(s \leq r \).
For any $U \subset V$, define $B(U, 1) := U \cup \{v \in V; \exists u \in U: v \rightarrow u\}$.
Then inductively define $B(U, n + 1) := B(B(U, n), 1)$ for all $n \in \mathbb{N}$.
If $v \in V$, then $B(v, r)$ is the set of all $w \in V$ such that there exists a directed path $w = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_s = v$ with $s \leq r$.

Define $\dim_v(V, \rightarrow) := \liminf_{r \to \infty} \frac{\log |B(v, r)|}{\log(r)}$ ("lower dimension")
For any $U \subseteq V$, define $B(U, 1) := U \cup \{v \in V ; \exists u \in U : v \rightarrow u\}$. Then inductively define $B(U, n + 1) := B(B(U, n), 1)$ for all $n \in \mathbb{N}$. If $v \in V$, then $B(v, r)$ is the set of all $w \in V$ such that there exists a directed path $w = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_s = v$ with $s \leq r$.

Define $\dim_v(V, \rightarrow) := \liminf_{r \to \infty} \frac{\log|B(v, r)|}{\log(r)}$ ("lower dimension") and $\overline{\dim}_v(V, \rightarrow) := \limsup_{r \to \infty} \frac{\log|B(v, r)|}{\log(r)}$ ("upper dimension").
For any \(U \subset V \), define \(B(U, 1) := U \cup \{ v \in V ; \exists u \in U : v \rightarrow u \} \).

Then inductively define \(B(U, n + 1) := B(B(U, n), 1) \) for all \(n \in \mathbb{N} \).

If \(v \in V \), then \(B(v, r) \) is the set of all \(w \in V \) such that there exists a directed path \(w = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_s = v \) with \(s \leq r \).

Define \(\dim_v(V, \rightarrow) := \liminf_{r \to \infty} \frac{\log |B(v, r)|}{\log(r)} \) ("lower dimension")

and \(\dim_v(V, \rightarrow) := \limsup_{r \to \infty} \frac{\log |B(v, r)|}{\log(r)} \) ("upper dimension").

If \(\dim_v(V, \rightarrow) = \dim_v(V, \rightarrow) \), then denote common value by \(\dim_v(V, \rightarrow) \).
Network Dimension

For any \(U \subset V \), define \(\mathcal{B}(U, 1) := U \cup \{ v \in V ; \exists u \in U : v \rightarrow u \} \).
Then inductively define \(\mathcal{B}(U, n + 1) := \mathcal{B}(\mathcal{B}(U, n), 1) \) for all \(n \in \mathbb{N} \).
If \(v \in V \), then \(\mathcal{B}(v, r) \) is the set of all \(w \in V \) such that there exists a directed path \(w = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_s = v \) with \(s \leq r \).

Define \(\underline{\dim}_v(V, \rightarrow) := \liminf_{r \to \infty} \frac{\log |\mathcal{B}(v, r)|}{\log(r)} \) ("lower dimension")
and \(\overline{\dim}_v(V, \rightarrow) := \limsup_{r \to \infty} \frac{\log |\mathcal{B}(v, r)|}{\log(r)} \) ("upper dimension").

If \(\underline{\dim}_v(V, \rightarrow) = \overline{\dim}_v(V, \rightarrow) \), then denote common value by \(\dim_v(V, \rightarrow) \).

Define \(\overline{\dim}(V, \rightarrow) := \sup \{ \overline{\dim}_v(V, \rightarrow) ; v \in V \} \);
For any \(U \subset V \), define \(B(U, 1) := U \cup \{ v \in V ; \exists u \in U : v \rightarrow u \} \).

Then inductively define \(B(U, n + 1) := B(B(U, n), 1) \) for all \(n \in \mathbb{N} \).

If \(v \in V \), then \(B(v, r) \) is the set of all \(w \in V \) such that there exists a directed path \(w = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_s = v \) with \(s \leq r \).

Define \(\underline{\dim}_v(\mathbb{V}, \rightarrow) := \lim \inf_{r \to \infty} \frac{\log |B(v, r)|}{\log(r)} \) ("lower dimension")

and \(\overline{\dim}_v(\mathbb{V}, \rightarrow) := \lim \sup_{r \to \infty} \frac{\log |B(v, r)|}{\log(r)} \) ("upper dimension").

If \(\underline{\dim}_v(\mathbb{V}, \rightarrow) = \overline{\dim}_v(\mathbb{V}, \rightarrow) \), then denote common value by \(\dim_v(\mathbb{V}, \rightarrow) \).

Define \(\underline{\dim}(\mathbb{V}, \rightarrow) := \sup \{ \overline{\dim}_v(\mathbb{V}, \rightarrow) ; v \in \mathbb{V} \} \);

and \(\overline{\dim}(\mathbb{V}, \rightarrow) := \inf \{ \underline{\dim}_v(\mathbb{V}, \rightarrow) ; v \in \mathbb{V} \} \).
For any $U \subset V$, define $B(U, 1) := U \cup \{v \in V ; \exists u \in U : v \rightarrow u\}$. Then inductively define $B(U, n + 1) := B(B(U, n), 1)$ for all $n \in \mathbb{N}$. If $v \in V$, then $B(v, r)$ is the set of all $w \in V$ such that there exists a directed path $w = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_s = v$ with $s \leq r$.

Define $\underline{\dim}_v(V, \rightarrow) := \liminf_{r \to \infty} \frac{\log |B(v, r)|}{\log(r)}$ ("lower dimension")

and $\overline{\dim}_v(V, \rightarrow) := \limsup_{r \to \infty} \frac{\log |B(v, r)|}{\log(r)}$ ("upper dimension").

If $\underline{\dim}_v(V, \rightarrow) = \overline{\dim}_v(V, \rightarrow)$, then denote common value by $\dim_v(V, \rightarrow)$.

Define $\underline{\dim}(V, \rightarrow) := \sup \{\underline{\dim}_v(V, \rightarrow) ; v \in V\}$;

and $\overline{\dim}(V, \rightarrow) := \inf \{\overline{\dim}_v(V, \rightarrow) ; v \in V\}$.

If $\underline{\dim}(V, \rightarrow) = \overline{\dim}(V, \rightarrow)$, then denote common value by $\dim(V, \rightarrow)$.
For any $U \subset V$, define $B(U, 1) := U \cup \{v \in V ; \exists u \in U : v \xrightarrow{} u\}$. Then inductively define $B(U, n + 1) := B(B(U, n), 1)$ for all $n \in \mathbb{N}$. If $v \in V$, then $B(v, r)$ is the set of all $w \in V$ such that there exists a directed path $w = v_1 \xrightarrow{} v_2 \xrightarrow{} \cdots \xrightarrow{} v_s = v$ with $s \leq r$.

Define $\underline{\dim}_v(V, \xrightarrow{}) := \liminf_{r \to \infty} \frac{\log |B(v, r)|}{\log(r)}$ ("lower dimension") and $\overline{\dim}_v(V, \xrightarrow{}) := \limsup_{r \to \infty} \frac{\log |B(v, r)|}{\log(r)}$ ("upper dimension").

If $\underline{\dim}_v(V, \xrightarrow{}) = \overline{\dim}_v(V, \xrightarrow{})$, then denote common value by $\dim_v(V, \xrightarrow{})$.

Define $\underline{\dim}(V, \xrightarrow{}) := \sup \{\overline{\dim}_v(V, \xrightarrow{}) ; v \in V\}$; and $\overline{\dim}(V, \xrightarrow{}) := \inf \{\underline{\dim}_v(V, \xrightarrow{}) ; v \in V\}$.

If $\dim(V, \xrightarrow{}) = \overline{\dim}(V, \xrightarrow{})$, then denote common value by $\dim(V, \xrightarrow{})$.

Example. If $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$ is a CA, then $\dim(\mathbb{Z}^D, \xrightarrow{}) = D$.
Network Dimension

For any $U \subset V$, define $B(U, 1) := U \cup \{v \in V ; \exists u \in U : v \rightarrow u\}$. Then inductively define $B(U, n + 1) := B(B(U, n), 1)$ for all $n \in \mathbb{N}$. If $v \in V$, then $B(v, r)$ is the set of all $w \in V$ such that there exists a directed path $w = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_s = v$ with $s \leq r$.

Define $\dim_v(V, \rightarrow) := \liminf_{r \to \infty} \frac{\log |B(v, r)|}{\log(r)}$ ("lower dimension")

and $\bar{\dim}_v(V, \rightarrow) := \limsup_{r \to \infty} \frac{\log |B(v, r)|}{\log(r)}$ ("upper dimension").

If $\dim_v(V, \rightarrow) = \bar{\dim}_v(V, \rightarrow)$, then denote common value by $\dim_v(V, \rightarrow)$.

Define $\bar{\dim}(V, \rightarrow) := \sup \{\bar{\dim}_v(V, \rightarrow) ; v \in V\}$;
and $\dim(V, \rightarrow) := \inf \{\dim_v(V, \rightarrow) ; v \in V\}$.

If $\dim(V, \rightarrow) = \bar{\dim}(V, \rightarrow)$, then denote common value by $\dim(V, \rightarrow)$.

Example. If $\Phi : A^{\mathbb{Z}^D} \rightarrow A^{\mathbb{Z}^D}$ is a CA, then $\dim(\mathbb{Z}^D, \rightarrow) = D$.
More generally, if G is a group, and $\Phi : A^G \rightarrow A^G$ is a CA, then $\dim(G, \rightarrow) =$ the dimension of the group G.
Let $(\mathbb{V}, \bullet \rightarrow)$ be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^\mathbb{V}$ be a closed subset.
Let (V, \rightarrow) be a digraph, and let $\mathcal{X} \subseteq A^V$ be a closed subset. For any $B \subseteq V$, define $\mathcal{X}_B := \{x_B; x \in \mathcal{X}\}$.
Let \((V, \rightarrow)\) be a digraph, and let \(X \subseteq A^V\) be a closed subset. For any \(B \subseteq V\), define \(X_B := \{x_B; x \in X\}\). For any \(v \in V\), we define:

\[
h_v(X) := \liminf_{r \to \infty} \frac{\log_2 |X_{B(v,r)}|}{|B(v, r)|}
\]

(“lower topological entropy”)
Let \((V, \rightarrow)\) be a digraph, and let \(\mathcal{X} \subseteq \mathcal{A}^V\) be a closed subset. For any \(B \subseteq V\), define \(\mathcal{X}_B := \{x_B; x \in \mathcal{X}\}\). For any \(v \in V\), we define:

\[
\underline{h}(\mathcal{X}) := \liminf_{r \to \infty} \frac{\log_2 |\mathcal{X}_B(v, r)|}{|B(v, r)|} \quad \text{("lower topological entropy")}
\]

and \(\overline{h}(\mathcal{X}) := \limsup_{r \to \infty} \frac{\log_2 |\mathcal{X}_B(v, r)|}{|B(v, r)|} \quad \text{("upper topological entropy")}
\]
Let $(\mathcal{V}, \rightarrow)$ be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^\mathcal{V}$ be a closed subset. For any $\mathcal{B} \subseteq \mathcal{V}$, define $\mathcal{X}_\mathcal{B} := \{\mathbf{x}_\mathcal{B}; \mathbf{x} \in \mathcal{X}\}$. For any $\mathbf{v} \in \mathcal{V}$, we define:

\[
\underline{h}_\mathbf{v}(\mathcal{X}) := \lim_{r \to \infty} \inf \frac{\log_2 |\mathcal{X}_{\mathbf{B}(\mathbf{v}, r)}|}{|\mathcal{B}(\mathbf{v}, r)|} \quad (\text{"lower topological entropy"})
\]

and

\[
\bar{h}_\mathbf{v}(\mathcal{X}) := \lim_{r \to \infty} \sup \frac{\log_2 |\mathcal{X}_{\mathbf{B}(\mathbf{v}, r)}|}{|\mathcal{B}(\mathbf{v}, r)|} \quad (\text{"upper topological entropy"}).
\]

Clearly, $0 \leq \underline{h}_\mathbf{v}(\mathcal{X}) \leq \bar{h}_\mathbf{v}(\mathcal{X}) \leq \log_2 |\mathcal{A}|$.

Let \((V, \rightarrow)\) be a digraph, and let \(X \subseteq A^V\) be a closed subset. For any \(B \subseteq V\), define \(X_B := \{x_B; x \in X\}\). For any \(v \in V\), we define:

\[
\underline{h}_v(X) := \lim_{r \to \infty} \inf \frac{\log_2 |X_B(v, r)|}{|B(v, r)|} \quad \text{("lower topological entropy")}
\]

and

\[
\bar{h}_v(X) := \lim_{r \to \infty} \sup \frac{\log_2 |X_B(v, r)|}{|B(v, r)|} \quad \text{("upper topological entropy")}
\]

Clearly, \(0 \leq \underline{h}_v(X) \leq \bar{h}_v(X) \leq \log_2 |A|\). We define

\[
\underline{h}(X) := \inf_{v \in V} \underline{h}_v(X)
\]
Let \((V, \cdot \mapsto)\) be a digraph, and let \(\mathcal{X} \subseteq A^V\) be a closed subset. For any \(B \subseteq V\), define \(\mathcal{X}_B := \{x_B; x \in \mathcal{X}\}\). For any \(v \in V\), we define:

\[
\underline{h}_v(\mathcal{X}) := \liminf_{r \to \infty} \frac{\log_2 |\mathcal{X}_B(v, r)|}{|B(v, r)|} \quad \text{("lower topological entropy")}
\]

and \(\overline{h}_v(\mathcal{X}) := \limsup_{r \to \infty} \frac{\log_2 |\mathcal{X}_B(v, r)|}{|B(v, r)|} \quad \text{("upper topological entropy")}
\]

Clearly, \(0 \leq \underline{h}_v(\mathcal{X}) \leq \overline{h}_v(\mathcal{X}) \leq \log_2 |A|\). We define

\[
\underline{h}(\mathcal{X}) := \inf_{v \in V} \underline{h}_v(\mathcal{X}) \quad \text{and} \quad \overline{h}(\mathcal{X}) := \sup_{v \in V} \overline{h}_v(\mathcal{X}).
\]
Let \((V, \rightarrow)\) be a digraph, and let \(X \subseteq A^V\) be a closed subset. For any \(B \subseteq V\), define \(X_B := \{x_B; x \in X\}\). For any \(v \in V\), we define:

\[
\underline{h}_v(X) := \liminf_{r \to \infty} \frac{\log_2 |X_{B(v,r)}|}{|B(v, r)|} \quad (\text{“lower topological entropy”})
\]

and \(\overline{h}_v(X) := \limsup_{r \to \infty} \frac{\log_2 |X_{B(v,r)}|}{|B(v, r)|} \quad (\text{“upper topological entropy”}).\)

Clearly, \(0 \leq \underline{h}_v(X) \leq \overline{h}_v(X) \leq \log_2 |A|\). We define

\[
\underline{h}(X) := \inf_{v \in V} \underline{h}_v(X) \quad \text{and} \quad \overline{h}(X) := \sup_{v \in V} \overline{h}_v(X).
\]

If \(\underline{h}(X) = \overline{h}(X)\), then we denote their common value by \(h(X)\).
Let $(V, \cdot \rightarrow)$ be a digraph, and let $X \subseteq A^V$ be a closed subset. For any $B \subseteq V$, define $X_B := \{x_B; x \in X\}$. For any $v \in V$, we define:

$$h_v(X) := \lim \inf_{r \to \infty} \frac{\log_2 |X_{B(v,r)}|}{|B(v, r)|} \quad \text{("lower topological entropy")},$$

and

$$\bar{h}_v(X) := \lim \sup_{r \to \infty} \frac{\log_2 |X_{B(v,r)}|}{|B(v, r)|} \quad \text{("upper topological entropy")}.$$

Clearly, $0 \leq h_v(X) \leq \bar{h}_v(X) \leq \log_2 |A|$. We define

$$\underline{h}(X) := \inf_{v \in V} h_v(X) \quad \text{and} \quad \bar{h}(X) := \sup_{v \in V} \bar{h}_v(X).$$

If $\underline{h}(X) = \bar{h}(X)$, then we denote their common value by $h(X)$.

Example. (a) $h(A^V) = \log_2 |A|$.
Let \((V, \rightarrow)\) be a digraph, and let \(X \subseteq A^V\) be a closed subset. For any \(B \subseteq V\), define \(X_B := \{x_B; x \in X\}\). For any \(v \in V\), we define:

\[
\underline{h}_v(X) := \liminf_{r \to \infty} \frac{\log_2 |X_{B(v,r)}|}{|B(v, r)|}
\]

(“lower topological entropy")

and \(\overline{h}_v(X) := \limsup_{r \to \infty} \frac{\log_2 |X_{B(v,r)}|}{|B(v, r)|}\)

(“upper topological entropy”).

Clearly, \(0 \leq \underline{h}_v(X) \leq \overline{h}_v(X) \leq \log_2 |A|\). We define

\[
\underline{h}(X) := \inf_{v \in V} \underline{h}_v(X) \quad \text{and} \quad \overline{h}(X) := \sup_{v \in V} \overline{h}_v(X).
\]

If \(\underline{h}(X) = \overline{h}(X)\), then we denote their common value by \(h(X)\).

Example. (a) \(h(A^V) = \log_2 |A|\).

(b) Suppose \(V = \mathbb{Z}^D\) (with Cayley digraph), and \(X \subseteq A^{\mathbb{Z}^D}\) is a \(D\)-dimensional subshift. Then \(h(X)\) is the \((D\)-dimensional) topological entropy of \(X\).
Let \((\mathcal{V}, \rightarrow)\) be a digraph, and let \(\mathcal{X} \subseteq \mathcal{A}^\mathcal{V}\) be a closed subset.
Let \((\mathcal{V}, \bullet)\) be a digraph, and let \(\mathcal{X} \subseteq \mathcal{A}^\mathcal{V}\) be a closed subset. Say that \(\mathcal{X}\) is \emph{weakly independent} if there is some constant \(\epsilon > 0\) such that, for any disjoint balls \(B_1, \ldots, B_N \subset \mathcal{V}\),

\[
\log_2 |\mathcal{X}_{B_1 \sqcup \cdots \sqcup B_N}| \geq \epsilon \sum_{n=1}^{N} \log_2 |\mathcal{X}_{B_n}|.
\]
Let \((V, \cdot \rightarrow)\) be a digraph, and let \(\mathcal{X} \subseteq A^V\) be a closed subset. Say that \(\mathcal{X}\) is \textit{weakly independent} if there is some constant \(\varepsilon > 0\) such that, for any disjoint balls \(B_1, \ldots, B_N \subset V\),

\[
\log_2 |\mathcal{X}_{B_1 \sqcup \cdots \sqcup B_N}| \geq \varepsilon \sum_{n=1}^{N} \log_2 |\mathcal{X}_{B_n}|.
\]

This is a ‘topological mixing’ condition:
Let \((\mathcal{V}, \bullet \leftrightarrow)\) be a digraph, and let \(\mathcal{X} \subseteq \mathcal{A}^{\mathcal{V}}\) be a closed subset. Say that \(\mathcal{X}\) is \textit{weakly independent} if there is some constant \(\epsilon > 0\) such that, for any disjoint balls \(\mathcal{B}_1, \ldots, \mathcal{B}_N \subset \mathcal{V}\),

\[
\log_2 |\mathcal{X}_{\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_N}| \geq \epsilon \sum_{n=1}^{N} \log_2 |\mathcal{X}_{\mathcal{B}_n}|.
\]

This is a ‘topological mixing’ condition: the information contained in balls \(\mathcal{B}_1, \ldots, \mathcal{B}_{N-1}\) has limited power to predict the contents of ball \(\mathcal{B}_N\).
Let \((V, \bullet \rightarrow)\) be a digraph, and let \(\mathcal{X} \subseteq A^V\) be a closed subset. Say that \(\mathcal{X}\) is **weakly independent** if there is some constant \(\epsilon > 0\) such that, for any disjoint balls \(B_1, \ldots, B_N \subset V\),

\[
\log_2 |\mathcal{X}_{B_1 \sqcup \cdots \sqcup B_N}| \geq \epsilon \sum_{n=1}^{N} \log_2 |\mathcal{X}_{B_n}|.
\]

This is a ‘topological mixing’ condition: the information contained in balls \(B_1, \ldots, B_{N-1}\) has limited power to predict the contents of ball \(B_N\).

Example.
Local independence and subisometries

Let \((V, \bullet \to)\) be a digraph, and let \(\mathcal{X} \subseteq \mathcal{A}^V\) be a closed subset. Say that \(\mathcal{X}\) is \textit{weakly independent} if there is some constant \(\epsilon > 0\) such that, for any disjoint balls \(B_1, \ldots, B_N \subset V\),

\[
\log_2 |\mathcal{X}_{B_1 \sqcup \cdots \sqcup B_N}| \geq \epsilon \sum_{n=1}^{N} \log_2 |\mathcal{X}_{B_n}|.
\]

This is a ‘topological mixing’ condition: the information contained in balls \(B_1, \ldots, B_{N-1}\) has limited power to predict the contents of ball \(B_N\).

\textbf{Example.} For all \(v \in A\), let \(A_v \subseteq A\) with \(|A_v| \geq 2\).
Local independence and subisometries

Let \((V, \cdot \rightarrow)\) be a digraph, and let \(X \subseteq A^V\) be a closed subset. Say that \(X\) is weakly independent if there is some constant \(\epsilon > 0\) such that, for any disjoint balls \(B_1, \ldots, B_N \subset V\),

\[
\log_2 |X_{B_1 \sqcup \ldots \sqcup B_N}| \geq \epsilon \sum_{n=1}^{N} \log_2 |X_{B_n}|.
\]

This is a ‘topological mixing’ condition: the information contained in balls \(B_1, \ldots, B_{N-1}\) has limited power to predict the contents of ball \(B_N\).

Example. For all \(v \in A\), let \(A_v \subseteq A\) with \(|A_v| \geq 2\). Let \(X := \prod_{v \in V} A_v \subseteq A^V\); then \(h(X) \geq 1\), and \(X\) is weakly independent.
Local independence and subisometries

Let \((V, \rightarrow)\) be a digraph, and let \(\mathcal{X} \subseteq A^V\) be a closed subset. Say that \(\mathcal{X}\) is \textit{weakly independent} if there is some constant \(\epsilon > 0\) such that, for any disjoint balls \(B_1, \ldots, B_N \subseteq V\),

\[
\log_2 |\mathcal{X}_{B_1 \sqcup \cdots \sqcup B_N}| \geq \epsilon \sum_{n=1}^{N} \log_2 |\mathcal{X}_{B_n}|.
\]

This is a ‘topological mixing’ condition: the information contained in balls \(B_1, \ldots, B_{N-1}\) has limited power to predict the contents of ball \(B_N\).

\textbf{Example.} For all \(v \in A\), let \(A_v \subseteq A\) with \(|A_v| \geq 2\). Let \(\mathcal{X} := \prod_{v \in V} A_v \subseteq A^V\); then \(h(\mathcal{X}) \geq 1\), and \(\mathcal{X}\) is weakly independent. In particular, the space \(\mathcal{X} = A^V\) itself is weakly independent.
Let \((V, \bullet\rightarrow)\) be a digraph, and let \(X \subseteq A^V\) be a closed subset. Say that \(X\) is weakly independent if there is some constant \(\epsilon > 0\) such that, for any disjoint balls \(B_1, \ldots, B_N \subset V\),

\[
\log_2 |X_{B_1 \sqcup \cdots \sqcup B_N}| \geq \epsilon \sum_{n=1}^{N} \log_2 |X_{B_n}|.
\]

This is a ‘topological mixing’ condition: the information contained in balls \(B_1, \ldots, B_{N-1}\) has limited power to predict the contents of ball \(B_N\).

Example. For all \(v \in A\), let \(A_v \subseteq A\) with \(|A_v| \geq 2\). Let \(X := \prod_{v \in V} A_v \subseteq A^V\); then \(h(X) \geq 1\), and \(X\) is weakly independent. In particular, the space \(X = A^V\) itself is weakly independent.

A subisometry of \((V, \bullet\rightarrow)\) is an injection \(\tau : V \rightarrow V\) such that, for all \(v, w \in V\), we have \((v \bullet\rightarrow w) \iff (\tau(v) \bullet\rightarrow \tau(w))\).
Local independence and subisometries

Let \((V, \bullet \to)\) be a digraph, and let \(X \subseteq A^V\) be a closed subset. Say that \(X\) is weakly independent if there is some constant \(\epsilon > 0\) such that, for any disjoint balls \(B_1, \ldots, B_N \subseteq V\),

\[
\log_2 |X_{B_1 \sqcup \cdots \sqcup B_N}| \geq \epsilon \sum_{n=1}^{N} \log_2 |X_{B_n}|.
\]

This is a ‘topological mixing’ condition: the information contained in balls \(B_1, \ldots, B_{N-1}\) has limited power to predict the contents of ball \(B_N\).

Example. For all \(v \in A\), let \(A_v \subseteq A\) with \(|A_v| \geq 2\). Let \(X := \prod_{v \in V} A_v \subseteq A^V\); then \(h(X) \geq 1\), and \(X\) is weakly independent. In particular, the space \(X = A^V\) itself is weakly independent.

A subisometry of \((V, \bullet \to)\) is an injection \(\tau : V \rightarrow V\) such that, for all \(v, w \in V\), we have \((v \bullet \to w) \iff (\tau(v) \bullet \to \tau(w))\). Thus, for all \(v \in V\) and \(r > 0\), we have \(\tau[B(v, r)] \subseteq B[\tau(v), r]\) (with equality if \(\tau\) is surjective).
Let \((V, \bullet \rightarrow)\) be a digraph, and let \(X \subseteq A^V\) be a closed subset. Say that \(X\) is \textit{weakly independent} if there is some constant \(\epsilon > 0\) such that, for any disjoint balls \(B_1, \ldots, B_N \subset V\),

\[
\log_2 |X_{B_1 \sqcup \cdots \sqcup B_N}| \geq \epsilon \sum_{n=1}^{N} \log_2 |X_{B_n}|.
\]

This is a ‘topological mixing’ condition: the information contained in balls \(B_1, \ldots, B_{N-1}\) has limited power to predict the contents of ball \(B_N\).

\textbf{Example.} For all \(v \in A\), let \(A_v \subseteq A\) with \(|A_v| \geq 2\). Let \(X := \prod_{v \in V} A_v \subseteq A^V\); then \(h(X) \geq 1\), and \(X\) is weakly independent. In particular, the space \(X = A^V\) itself is weakly independent.

A \textit{subisometry} of \((V, \bullet \rightarrow)\) is an injection \(\tau : V \rightarrow V\) such that, for all \(v, w \in V\), we have \((v \bullet \rightarrow w) \iff (\tau(v) \bullet \rightarrow \tau(w))\). Thus, for all \(v \in V\) and \(r > 0\), we have \(\tau[B(v, r)] \subseteq B[\tau(v), r]\) (with equality if \(\tau\) is surjective).

\textbf{Example.}
Local independence and subisometries

Let \((V, \circlearrowright)\) be a digraph, and let \(X \subseteq A^V\) be a closed subset. Say that \(X\) is **weakly independent** if there is some constant \(\epsilon > 0\) such that, for any disjoint balls \(B_1, \ldots, B_N \subset V\),

\[
\log_2 |X_{B_1 \cup \cdots \cup B_N}| \geq \epsilon \sum_{n=1}^{N} \log_2 |X_{B_n}|.
\]

This is a ‘topological mixing’ condition: the information contained in balls \(B_1, \ldots, B_{N-1}\) has limited power to predict the contents of ball \(B_N\).

Example. For all \(v \in A\), let \(A_v \subseteq A\) with \(|A_v| \geq 2\). Let \(X := \prod_{v \in V} A_v \subseteq A^V\); then \(h(X) \geq 1\), and \(X\) is weakly independent. In particular, the space \(X = A^V\) itself is weakly independent.

A subisometry of \((V, \circlearrowright)\) is an injection \(\tau : V \rightarrow V\) such that, for all \(v, w \in V\), we have \((v \circlearrowright w) \iff (\tau(v) \circlearrowright \tau(w))\). Thus, for all \(v \in V\) and \(r > 0\), we have \(\tau[\mathbb{B}(v, r)] \subseteq \mathbb{B}[\tau(v), r]\) (with equality if \(\tau\) is surjective).

Example. Let \((V, \circlearrowright) = \text{Cayley digraph of a group/monoid (e.g. } \mathbb{Z}^D \times \mathbb{N}^d)\).
Let \((V, \cdot \mapsto)\) be a digraph, and let \(X \subseteq A^V\) be a closed subset. Say that \(X\) is \textit{weakly independent} if there is some constant \(\epsilon > 0\) such that, for any disjoint balls \(B_1, \ldots, B_N \subset V,\)

\[
\log_2 |X_{\sqcup B_1} \sqcup \cdots \sqcup B_N| \geq \epsilon \sum_{n=1}^{N} \log_2 |X_{B_n}|.
\]

This is a ‘topological mixing’ condition: the information contained in balls \(B_1, \ldots, B_{N-1}\) has limited power to predict the contents of ball \(B_N\).

\textbf{Example.} For all \(v \in A\), let \(A_v \subseteq A\) with \(|A_v| \geq 2\). Let \(X := \prod_{v \in V} A_v \subseteq A^V\); then \(h(X) \geq 1\), and \(X\) is weakly independent. In particular, the space \(X = A^V\) itself is weakly independent.

A \textit{subisometry} of \((V, \cdot \mapsto)\) is an injection \(\tau : V \longrightarrow V\) such that, for all \(v, w \in V\), we have \((v \cdot \mapsto w) \iff (\tau(v) \cdot \mapsto \tau(w))\). Thus, for all \(v \in V\) and \(r > 0\), we have \(\tau[\mathbb{B}(v, r)] \subseteq \mathbb{B}[\tau(v), r]\) (with equality if \(\tau\) is surjective).

\textbf{Example.} Let \((V, \cdot \mapsto) = \text{Cayley digraph of a group/monoid (e.g. } \mathbb{Z}^D \times \mathbb{N}^d)\). Fix \(w \in V\). Define \(\tau : V \longrightarrow V\) by \(\tau(v) := v + w\). Then \(\tau\) is a subisometry.
Recall: a subisometry of \((V, \bullet \mapsto)\) is an injection \(\tau : V \rightarrow V\) such that, for all \(v, w \in V\), we have \((v \bullet \mapsto w) \iff (\tau(v) \bullet \mapsto \tau(w))\).
Subisometries and subsymmetries

Recall: a subisometry of \((V, \bullet\to)\) is an injection \(\tau : V \to V\) such that, for all \(v, w \in V\), we have \((v \bullet\to w) \iff (\tau(v) \bullet\to \tau(w))\).

For any \(a \in A^V\), define \(\tau(a) := a'\), where \(a'_v := a_{\tau(v)}\) for all \(v \in V\).
Recall: a subisometry of \((\mathcal{V}, \bullet\rightarrow)\) is an injection \(\tau: \mathcal{V} \rightarrow \mathcal{V}\) such that, for all \(v, w \in \mathcal{V}\), we have \((v \bullet\rightarrow w) \iff (\tau(v) \bullet\rightarrow \tau(w))\).

For any \(a \in \mathcal{A}^\mathcal{V}\), define \(\tau(a) := a'\), where \(a'_v := a_{\tau(v)}\) for all \(v \in \mathcal{V}\). This yields a surjection \(\tau: \mathcal{A}^\mathcal{V} \rightarrow \mathcal{A}^\mathcal{V}\).
Recall: a subisometry of $(V, \cdot \mapsto)$ is an injection $\tau : V \rightarrow V$ such that, for all $v, w \in V$, we have $(v \cdot \mapsto w) \iff (\tau(v) \cdot \mapsto \tau(w))$.

For any $a \in A^V$, define $\tau(a) := a'$, where $a'_v := a_{\tau(v)}$ for all $v \in V$. This yields a surjection $\tau : A^V \rightarrow A^V$.

Let $\mathcal{X} \subseteq A^V$ be a closed subset. Let $\Phi : \mathcal{X} \rightarrow \mathcal{X}'$ be a continuous map.
Recall: a subisometry of $(\mathbb{V}, \bullet \mapsto)$ is an injection $\tau: \mathbb{V} \longrightarrow \mathbb{V}$ such that, for all $v, w \in \mathbb{V}$, we have $(v \bullet \mapsto w) \iff (\tau(v) \bullet \mapsto \tau(w))$.

For any $a \in A^\mathbb{V}$, define $\tau(a) := a'$, where $a'_v := a_{\tau(v)}$ for all $v \in \mathbb{V}$. This yields a surjection $\tau : A^\mathbb{V} \longrightarrow A^\mathbb{V}$.

Let $\mathcal{X} \subseteq A^\mathbb{V}$ be a closed subset. Let $\Phi : \mathcal{X} \longrightarrow \mathcal{X}'$ be a continuous map. We say τ is a subsymmetry of the symbolic dynamical system $(A^\mathbb{V}, \mathcal{X}, \Phi)$ if $\tau(\mathcal{X}) = \mathcal{X}'$ and $\tau \circ \Phi = \Phi \circ \tau$.
Recall: a *subisometry* of \((V, \bullet \to)\) is an injection \(\tau : V \to V\) such that, for all \(v, w \in V\), we have \((v \bullet \to w) \iff (\tau(v) \bullet \to \tau(w))\).

For any \(a \in A^V\), define \(\tau(a) := a'\), where \(a'_v := a_{\tau(v)}\) for all \(v \in V\). This yields a surjection \(\tau : A^V \to A^V\).

Let \(X \subseteq A^V\) be a closed subset. Let \(\Phi : X \to X\) be a continuous map. We say \(\tau\) is a *subsymmetry* of the symbolic dynamical system \((A^V, X, \Phi)\) if \(\tau(X) = X\) and \(\tau \circ \Phi = \Phi \circ \tau\).

Example. Let \(\Phi : A^{\mathbb{Z}^D} \to A^{\mathbb{Z}^D}\) be a CA, and let \(X \subseteq A^{\mathbb{Z}^D}\) be a subshift with \(\Phi(X) = X\). Then any shift map is a subsymmetry of \((A^{\mathbb{Z}^D}, X, \Phi)\).
Recall: a subisometry of \((V, \cdot \to)\) is an injection \(\tau : V \to V\) such that, for all \(v, w \in V\), we have \((v \cdot \to w) \iff (\tau(v) \cdot \to \tau(w))\).

For any \(a \in A^V\), define \(\tau(a) := a'\), where \(a' := a_{\tau(v)}\) for all \(v \in V\). This yields a surjection \(\tau : A^V \to A^V\).

Let \(X \subseteq A^V\) be a closed subset. Let \(\Phi : X \to X\) be a continuous map. We say \(\tau\) is a subsymmetry of the symbolic dynamical system \((A^V, X, \Phi)\) if \(\tau(X) = X\) and \(\tau \circ \Phi = \Phi \circ \tau\).

Example. Let \(\Phi : A^{\mathbb{Z}^D} \to A^{\mathbb{Z}^D}\) be a CA, and let \(X \subseteq A^{\mathbb{Z}^D}\) be a subshift with \(\Phi(X) = X\). Then any shift map is a subsymmetry of \((A^{\mathbb{Z}^D}, X, \Phi)\).

For any \(v, w \in V\), let \(d(v, w)\) be the length of the shortest undirected path in \((V, \cdot \to)\) from \(v\) to \(w\) (or \(\infty\) if there is no such path); then \(d\) is a metric on each undirected-path component of \(V\).
Subisometries and subsymmetries

Recall: a subisometry of $(V, \bullet \mapsto)$ is an injection $\tau : V \rightarrow V$ such that, for all $v, w \in V$, we have $(v \bullet \mapsto w) \iff (\tau(v) \bullet \mapsto \tau(w))$.

For any $a \in A^V$, define $\tau(a) := a'$, where $a'_v := a_{\tau(v)}$ for all $v \in V$. This yields a surjection $\tau : A^V \rightarrow A^V$.

Let $X \subseteq A^V$ be a closed subset. Let $\Phi : X \rightarrow X$ be a continuous map. We say τ is a subsymmetry of the symbolic dynamical system (A^V, X, Φ) if $\tau(X) = X$ and $\tau \circ \Phi = \Phi \circ \tau$.

Example. Let $\Phi : A^{Z^D} \rightarrow A^{Z^D}$ be a CA, and let $X \subseteq A^{Z^D}$ be a subshift with $\Phi(X) = X$. Then any shift map is a subsymmetry of (A^{Z^D}, X, Φ).

For any $v, w \in V$, let $d(v, w)$ be the length of the shortest undirected path in $(V, \bullet \mapsto)$ from v to w (or ∞ if there is no such path); then d is a metric on each undirected-path component of V.

For any $v \in V$, let $\text{speed}(v, \tau) := \lim_{n \rightarrow \infty} \frac{d[v, \tau^n(v)]}{n}$.
Subisometries and subsymmetries

Recall: a subisometry of \((V, \rightarrow)\) is an injection \(\tau : V \longrightarrow V\) such that, for all \(v, w \in V\), we have \((v \rightarrow w) \iff (\tau(v) \rightarrow \tau(w))\).

For any \(a \in A^V\), define \(\tau(a) := a'\), where \(a'_v := a_{\tau(v)}\) for all \(v \in V\). This yields a surjection \(\tau : A^V \longrightarrow A^V\).

Let \(X \subseteq A^V\) be a closed subset. Let \(\Phi : X \longrightarrow X\) be a continuous map. We say \(\tau\) is a subsymmetry of the symbolic dynamical system \((A^V, X, \Phi)\) if \(\tau(X) = X\) and \(\tau \circ \Phi = \Phi \circ \tau\).

Example. Let \(\Phi : A^{\mathbb{Z}^D} \longrightarrow A^{\mathbb{Z}^D}\) be a CA, and let \(X \subseteq A^{\mathbb{Z}^D}\) be a subshift with \(\Phi(X) = X\). Then any shift map is a subsymmetry of \((A^{\mathbb{Z}^D}, X, \Phi)\).

For any \(v, w \in V\), let \(d(v, w)\) be the length of the shortest undirected path in \((V, \rightarrow)\) from \(v\) to \(w\) (or \(\infty\) if there is no such path); then \(d\) is a metric on each undirected-path component of \(V\).

For any \(v \in V\), let \(\text{speed}(v, \tau) := \lim_{n \to \infty} \frac{d[v, \tau^n(v)]}{n}\). This limit is well-defined and constant on each undirected-path component of \((V, \rightarrow)\).
Subisometries and subsymmetries

Recall: a subisometry of \((\nabla, \bullet\mapsto)\) is an injection \(\tau : \nabla \longrightarrow \nabla\) such that, for all \(v, w \in \nabla\), we have \((v \bullet\mapsto w) \iff (\tau(v) \bullet\mapsto \tau(w))\).

For any \(a \in \mathcal{A}^\nabla\), define \(\tau(a) := a', \) where \(a' := a_{\tau(v)}\) for all \(v \in \nabla\). This yields a surjection \(\tau : \mathcal{A}^\nabla \longrightarrow \mathcal{A}^\nabla\).

Let \(\mathcal{X} \subseteq \mathcal{A}^\nabla\) be a closed subset. Let \(\Phi : \mathcal{X} \longrightarrow \mathcal{X}\) be a continuous map. We say \(\tau\) is a subsymmetry of the symbolic dynamical system \((\mathcal{A}^\nabla, \mathcal{X}, \Phi)\) if \(\tau(\mathcal{X}) = \mathcal{X}\) and \(\tau \circ \Phi = \Phi \circ \tau\).

Example. Let \(\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}\) be a CA, and let \(\mathcal{X} \subseteq \mathcal{A}^{\mathbb{Z}^D}\) be a subshift with \(\Phi(\mathcal{X}) = \mathcal{X}\). Then any shift map is a subsymmetry of \((\mathcal{A}^{\mathbb{Z}^D}, \mathcal{X}, \Phi)\).

For any \(v, w \in \nabla\), let \(d(v, w)\) be the length of the shortest undirected path in \((\nabla, \bullet\mapsto)\) from \(v\) to \(w\) (or \(\infty\) if there is no such path); then \(d\) is a metric on each undirected-path component of \(\nabla\).

For any \(v \in \nabla\), let \(\text{speed}(v, \tau) := \lim_{n \rightarrow \infty} \frac{d[v, \tau^n(v)]}{n}\). This limit is well-defined and constant on each undirected-path component of \((\nabla, \bullet\mapsto)\). We say that \(\tau\) is a moving subsymmetry if \(\text{speed}(v, \tau) \geq 0\) for all \(v \in \nabla\).
Recall: τ is a \textit{moving} subsymmetry if $\text{speed}(v, \tau) > 0$ for all $v \in \mathbb{V}$.
Recall: τ is a moving subsymmetry if $\text{speed}(v, \tau) > 0$ for all $v \in \mathbb{V}$.

Example. Let $(\mathbb{V}, \bullet\rightarrow)$ be the Cayley digraph of a group or monoid (e.g. $\mathbb{Z}^D \times \mathbb{N}^d$).
Recall: τ is a moving subsymmetry if $\text{speed}(v, \tau) > 0$ for all $v \in V$.

Example. Let (V, \rightarrow) be the Cayley digraph of a group or monoid (e.g. $\mathbb{Z}^D \times \mathbb{N}^d$). Fix $w \in V$. Define $\tau : V \rightarrow V$ by $\tau(v) := v + w$. Then τ is a moving subsymmetry. (In fact, $\text{speed}(v, \tau) = |w|$).
Recall: τ is a *moving* subsymmetry if $\text{speed}(v, \tau) > 0$ for all $v \in \mathbb{V}$.

Example. Let $(\mathbb{V}, \bullet \mapsto)$ be the Cayley digraph of a group or monoid (e.g. $\mathbb{Z}^D \times \mathbb{N}^d$). Fix $w \in \mathbb{V}$. Define $\tau : \mathbb{V} \to \mathbb{V}$ by $\tau(v) := v + w$. Then τ is a moving subsymmetry. (In fact, $\text{speed}(v, \tau) = |w|$).

Nonexample. Let $\mathbb{V} = \mathbb{Z} \times \mathbb{N}$, with the digraph structure shown below.
Recall: \(\tau \) is a \textit{moving} subsymmetry if \(\text{speed}(v, \tau) > 0 \) for all \(v \in \mathbb{V} \).

\textbf{Example.} Let \((\mathbb{V}, \rightarrow)\) be the Cayley digraph of a group or monoid (e.g. \(\mathbb{Z}^D \times \mathbb{N}^d \)). Fix \(w \in \mathbb{V} \). Define \(\tau : \mathbb{V} \rightarrow \mathbb{V} \) by \(\tau(v) := v + w \). Then \(\tau \) is a moving subsymmetry. (In fact, \(\text{speed}(v, \tau) = |w| \)).

\textbf{Nonexample.} Let \(\mathbb{V} = \mathbb{Z} \times \mathbb{N} \), with the digraph structure shown below.

Define subisometry \(\tau : \mathbb{V} \rightarrow \mathbb{V} \) by \(\tau(z, n) = (z + 1, n) \).
Moving subsymmetries

Recall: \(\tau \) is a *moving* subsymmetry if \(\text{speed}(v, \tau) > 0 \) for all \(v \in \mathbb{V} \).

Example. Let \((\mathbb{V}, \bullet \rightarrow)\) be the Cayley digraph of a group or monoid (e.g. \(\mathbb{Z}^D \times \mathbb{N}^d \)). Fix \(w \in \mathbb{V} \). Define \(\tau : \mathbb{V} \rightarrow \mathbb{V} \) by \(\tau(v) := v + w \). Then \(\tau \) is a moving subsymmetry. (In fact, \(\text{speed}(v, \tau) = |w| \)).

Nonexample. Let \(\mathbb{V} = \mathbb{Z} \times \mathbb{N} \), with the digraph structure shown below.

Define subisometry \(\tau : \mathbb{V} \rightarrow \mathbb{V} \) by \(\tau(z, n) = (z + 1, n) \). Then \(\text{speed}(\tau, v) = 0 \), for all \(v \in \mathbb{V} \), because for any \(k \in \mathbb{N} \), there is a path from \(v \) to \(\tau^{(2^k)}(v) \) of length at most \(2k + 1 \).
Recall: τ is a moving subsymmetry if $\text{speed}(\nu, \tau) > 0$ for all $\nu \in \mathbb{V}$.

Example. Let $(\mathbb{V}, \bullet \rightarrow)$ be the Cayley digraph of a group or monoid (e.g. $\mathbb{Z}^D \times \mathbb{N}^d$). Fix $w \in \mathbb{V}$. Define $\tau: \mathbb{V} \rightarrow \mathbb{V}$ by $\tau(\nu) := \nu + w$. Then τ is a moving subsymmetry. (In fact, $\text{speed}(\nu, \tau) = |w|$).

Nonexample. Let $\mathbb{V} = \mathbb{Z} \times \mathbb{N}$, with the digraph structure shown below.

Define subisometry $\tau: \mathbb{V} \rightarrow \mathbb{V}$ by $\tau(\nu) = (\nu + 1, \eta)$. Then $\text{speed}(\tau, \nu) = 0$, for all $\nu \in \mathbb{V}$, because for any $k \in \mathbb{N}$, there is a path from ν to $\tau^{(2k)}(\nu)$ of length at most $2k + 1$. Thus, τ is not a moving subsymmetry.
A symbolic dynamical system \((A^\forall, \mathcal{X}, \Phi)\) is *positively expansive* if it is topologically conjugate to a one-sided shift.

We now come to our generalizations of Shereshevsky’s result.
A symbolic dynamical system \((A^\mathcal{V}, \mathcal{X}, \Phi)\) is *positively expansive* if it is topologically conjugate to a one-sided shift.

We now come to our generalizations of Shereshevsky’s result.

Theorem 1.
A symbolic dynamical system \((\mathcal{A}^\mathbb{V}, \mathcal{X}, \Phi)\) is *positively expansive* if it is topologically conjugate to a one-sided shift.

We now come to our generalizations of Shereshevsky’s result.

Theorem 1. Let \(\Phi : \mathcal{A}^\mathbb{V} \longrightarrow \mathcal{A}^\mathbb{V}\) be a continuous self-map with a *moving subsymmetry*.

A symbolic dynamical system \((\mathcal{A}^V, \mathcal{X}, \Phi)\) is *positively expansive* if it is topologically conjugate to a one-sided shift.

We now come to our generalizations of Shereshevsky’s result.

Theorem 1. Let \(\Phi : \mathcal{A}^V \rightarrow \mathcal{A}^V\) be a continuous self-map with a moving subsymmetry. If \(\dim(\mathcal{V}, \rightarrow) > 1\), then the system \((\mathcal{A}^V, \Phi)\) is *not* positively expansive.
A symbolic dynamical system \((A^\mathcal{V}, \mathcal{X}, \Phi)\) is \textit{positively expansive} if it is topologically conjugate to a one-sided shift.

We now come to our generalizations of Shereshevsky’s result.

Theorem 1. Let \(\Phi : A^\mathcal{V} \rightarrow A^\mathcal{V}\) be a continuous self-map with a moving subsymmetry. If \(\dim(\mathcal{V}, \bullet) > 1\), then the system \((A^\mathcal{V}, \Phi)\) is not positively expansive.

Theorem 2.
A symbolic dynamical system \((\mathcal{A}^\mathcal{V}, \mathcal{X}, \Phi)\) is \textit{positively expansive} if it is topologically conjugate to a one-sided shift.

We now come to our generalizations of Shereshevsky’s result.

Theorem 1. Let \(\Phi : \mathcal{A}^\mathcal{V} \longrightarrow \mathcal{A}^\mathcal{V}\) be a continuous self-map with a moving subsymmetry. If \(\dim(\mathcal{V}, \bullet \mapsto) > 1\), then the system \((\mathcal{A}^\mathcal{V}, \Phi)\) is not positively expansive.

Theorem 2. Let \((\mathcal{A}^\mathcal{V}, \mathcal{X}, \Phi)\) be a symbolic dynamical system with a moving subsymmetry, and suppose \(\mathcal{X}\) is \textit{weakly independent}.
Main results

A symbolic dynamical system \((A^V, X, \Phi)\) is *positively expansive* if it is topologically conjugate to a one-sided shift.

We now come to our generalizations of Shereshevsky’s result.

Theorem 1. Let \(\Phi : A^V \to A^V\) be a continuous self-map with a moving subsymmetry. If \(\dim(V, \implies) > 1\), then the system \((A^V, \Phi)\) is not positively expansive.

Theorem 2. Let \((A^V, X, \Phi)\) be a symbolic dynamical system with a moving subsymmetry, and suppose \(X\) is weakly independent.

- If \(\overline{h}(X) > 0\) and \(\dim(V, \implies) > 1\) then \((X, \Phi)\) is not positively expansive.
A symbolic dynamical system \((\mathcal{A}^\mathcal{V}, \mathcal{X}, \Phi)\) is \textit{positively expansive} if it is topologically conjugate to a one-sided shift.

We now come to our generalizations of Shereshevsky’s result.

Theorem 1. Let \(\Phi : \mathcal{A}^\mathcal{V} \rightarrow \mathcal{A}^\mathcal{V}\) be a continuous self-map with a moving subsymmetry. If \(\dim(\mathcal{V}, \rightarrow) > 1\), then the system \((\mathcal{A}^\mathcal{V}, \Phi)\) is not positively expansive.

Theorem 2. Let \((\mathcal{A}^\mathcal{V}, \mathcal{X}, \Phi)\) be a symbolic dynamical system with a moving subsymmetry, and suppose \(\mathcal{X}\) is weakly independent.

\begin{itemize}
 \item If \(\overline{h(\mathcal{X})} > 0\) and \(\overline{\dim(\mathcal{V}, \rightarrow)} > 1\) then \((\mathcal{X}, \Phi)\) is not positively expansive.

 \item If \(\dim_v(\mathcal{V}, \rightarrow) = \overline{\dim_v(\mathcal{V}, \rightarrow)}\) for all \(v \in \mathcal{V}\), and \(\overline{h(\mathcal{X})} > 0\), and \(\overline{\dim(\mathcal{V}, \rightarrow)} > 1\), then \((\mathcal{X}, \Phi)\) is not positively expansive.
\end{itemize}
In fact, Theorems 1 and 2 are both special cases of a more general result.
In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph \((\mathbb{V}, \rightarrow)\), a vertex \(v \in \mathbb{V}\) has \textit{superlinear connectivity} if:

\[
\liminf_{r \to \infty} \frac{|B(v, r)|}{r} = \infty.
\]

\(B(v, r)\) := upstream ball of radius \(r\) around \(v\).
In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph \((\mathbb{V}, \bullet \rightarrow)\), a vertex \(v \in \mathbb{V}\) has superlinear connectivity if

\[
\liminf_{r \to \infty} \frac{|B(v, r)|}{r} = \infty. \quad (B(v, r):= \text{upstream ball of radius } r \text{ around } v.)
\]

Example. If \(\dim_v(\mathbb{V}, \bullet \rightarrow) > 1\), then \(v\) has superlinear connectivity.
In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph \((V, \rightarrow)\), a vertex \(v \in V\) has *superlinear connectivity* if
\[
\liminf_{r \to \infty} \frac{|B(v, r)|}{r} = \infty. \quad (B(v, r) := \text{upstream ball of radius } r \text{ around } v.)
\]

Example. If \(\dim_v(V, \rightarrow) > 1\), then \(v\) has superlinear connectivity. In particular, if \(V\) is a Cayley digraph of a group with dimension \(> 1\), then every vertex has superlinear connectivity.
More main results

In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph \((V, \cdot \rightarrow)\), a vertex \(v \in V\) has \textit{superlinear connectivity} if

\[
\liminf_{r \to \infty} \frac{|B(v, r)|}{r} = \infty. \quad (B(v, r) := \text{upstream ball of radius } r \text{ around } v.)
\]

Example. If \(\dim_v(V, \cdot \rightarrow) > 1\), then \(v\) has superlinear connectivity. In particular, if \(V\) is a Cayley digraph of a group with dimension \(> 1\), then every vertex has superlinear connectivity.

Theorem 0.
More main results

In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph \((V, \cdot \rightarrow)\), a vertex \(v \in V\) has superlinear connectivity if

\[
\liminf_{r \to \infty} \frac{|B(v, r)|}{r} = \infty. \quad (B(v, r) := \text{upstream ball of radius } r \text{ around } v.)
\]

Example. If \(\dim_v (V, \cdot \rightarrow) > 1\), then \(v\) has superlinear connectivity. In particular, if \(V\) is a Cayley digraph of a group with dimension \(> 1\), then every vertex has superlinear connectivity.

Theorem 0. Let \((A^V, \mathcal{X}, \Phi)\) be a symbolic dynamical system with a moving subsymmetry.
More main results

In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph \((V, \rightarrow)\), a vertex \(v \in V\) has superlinear connectivity if

\[
\liminf_{r \to \infty} \frac{|B(v, r)|}{r} = \infty. \quad (B(v, r) := \text{upstream ball of radius } r \text{ around } v.)
\]

Example. If \(\dim_v(V, \rightarrow) > 1\), then \(v\) has superlinear connectivity.

In particular, if \(V\) is a Cayley digraph of a group with dimension \(> 1\), then every vertex has superlinear connectivity.

Theorem 0. Let \((A^V, \mathcal{X}, \Phi)\) be a symbolic dynamical system with a moving subsymmetry. If \(\mathcal{X}\) is weakly independent, and there exists some \(v \in V\) with superlinear connectivity such that \(\bar{h}_v(\mathcal{X}) > 0\), then the system \((\mathcal{X}, \Phi)\) is not positively expansive.
In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph $(\mathbb{V}, \rightarrow)$, a vertex $v \in \mathbb{V}$ has superlinear connectivity if

$$\liminf_{r \to \infty} \frac{|B(v, r)|}{r} = \infty. \quad (B(v, r) := \text{upstream ball of radius } r \text{ around } v.)$$

Example. If $\dim_v(\mathbb{V}, \rightarrow) > 1$, then v has superlinear connectivity. In particular, if \mathbb{V} is a Cayley digraph of a group with dimension > 1, then every vertex has superlinear connectivity.

Theorem 0. Let $(\mathcal{A}^\mathbb{V}, \mathcal{X}, \Phi)$ be a symbolic dynamical system with a moving subsymmetry. If \mathcal{X} is weakly independent, and there exists some $v \in \mathbb{V}$ with superlinear connectivity such that $\overline{h}_v(\mathcal{X}) > 0$, then the system (\mathcal{X}, Φ) is not positively expansive.

Proof sketch. (by contradiction)
More main results

In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph \((\mathcal{V}, \rightarrow)\), a vertex \(v \in \mathcal{V}\) has *superlinear connectivity* if

\[
\liminf_{r \to \infty} \frac{|\mathcal{B}(v, r)|}{r} = \infty. \quad (\mathcal{B}(v, r) := \text{upstream ball of radius } r \text{ around } v.)
\]

Example. If \(\dim_v(\mathcal{V}, \rightarrow) > 1\), then \(v\) has superlinear connectivity.

In particular, if \(\mathcal{V}\) is a Cayley digraph of a group with dimension \(\geq 1\), then every vertex has superlinear connectivity.

Theorem 0. Let \((\mathcal{A}^\mathcal{V}, \mathcal{X}, \Phi)\) be a symbolic dynamical system with a moving subsymmetry. If \(\mathcal{X}\) is weakly independent, and there exists some \(v \in \mathcal{V}\) with superlinear connectivity such that \(\bar{h}_v(\mathcal{X}) > 0\), then the system \((\mathcal{X}, \Phi)\) is not positively expansive.

Proof sketch. (by contradiction) If \((\mathcal{X}, \Phi)\) is positively expansive, then there is some finite ‘window’ \(\mathcal{W} \subset \mathcal{V}\) such that for any \(x \in \mathcal{X}\), the data \([x_\mathcal{W}, \Phi(x)_\mathcal{W}, \Phi^2(x)_\mathcal{W}, \Phi^3(x)_\mathcal{W}, \ldots \Phi^t(x)_\mathcal{W}, \ldots]\) completely encodes \(x\).
More main results

In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph $\langle V, \rightarrow \rangle$, a vertex $v \in V$ has superlinear connectivity if

$$\liminf_{r \to \infty} \frac{|B(v, r)|}{r} = \infty.$$ ($B(v, r) :=$ upstream ball of radius r around v.)

Example. If $\dim_v(V, \rightarrow) > 1$, then v has superlinear connectivity. In particular, if V is a Cayley digraph of a group with dimension > 1, then every vertex has superlinear connectivity.

Theorem 0. Let (A^V, \mathcal{X}, Φ) be a symbolic dynamical system with a moving subsymmetry. If \mathcal{X} is weakly independent, and there exists some $v \in V$ with superlinear connectivity such that $h_v(\mathcal{X}) > 0$, then the system (\mathcal{X}, Φ) is not positively expansive.

Proof sketch. (by contradiction) If (\mathcal{X}, Φ) is positively expansive, then there is some finite ‘window’ $\mathcal{W} \subset V$ such that for any $x \in \mathcal{X}$, the data $[x_{\mathcal{W}}, \Phi(x)_{\mathcal{W}}, \Phi^2(x)_{\mathcal{W}}, \Phi^3(x)_{\mathcal{W}}, \ldots \Phi^t(x)_{\mathcal{W}}, \ldots]$ completely encodes x. But if $v \in V$ has superlinear connectivity and $h_v(\mathcal{X}) > 0$, then the information content of $x_{B(v, r)}$ grows superlinearly as $r \to \infty$.

In fact, Theorems 1 and 2 are both special cases of a more general result.

In a digraph $(\mathcal{V}, \rightarrow)$, a vertex $v \in \mathcal{V}$ has superlinear connectivity if

$$\liminf_{r \to \infty} \frac{|B(v, r)|}{r} = \infty. \quad (B(v, r) := \text{upstream ball of radius } r \text{ around } v.)$$

Example. If $\dim_v(\mathcal{V}, \rightarrow) > 1$, then v has superlinear connectivity.

In particular, if \mathcal{V} is a Cayley digraph of a group with dimension > 1, then every vertex has superlinear connectivity.

Theorem 0. Let $(A^\mathcal{V}, \mathcal{X}, \Phi)$ be a symbolic dynamical system with a moving subsymmetry. If \mathcal{X} is weakly independent, and there exists some $v \in \mathcal{V}$ with superlinear connectivity such that $\overline{h}_v(\mathcal{X}) > 0$, then the system (\mathcal{X}, Φ) is not positively expansive.

Proof sketch. (by contradiction) If (\mathcal{X}, Φ) is positively expansive, then there is some finite ‘window’ $\mathcal{W} \subset \mathcal{V}$ such that for any $x \in \mathcal{X}$, the data $[x_\mathcal{W}, \Phi(x)_\mathcal{W}, \Phi^2(x)_\mathcal{W}, \Phi^3(x)_\mathcal{W}, \ldots, \Phi^t(x)_\mathcal{W}, \ldots]$ completely encodes x.

But if $v \in \mathcal{V}$ has superlinear connectivity and $\overline{h}_v(\mathcal{X}) > 0$, then the information content of $x_{B(v, r)}$ grows superlinearly as $r \to \infty$. It is impossible to transmit all this information through \mathcal{W} quickly enough as $t \to \infty$.
Theorem 0. Let \((\mathcal{A}^V, \mathcal{X}, \Phi)\) be a symbolic dynamical system with a moving subsymmetry. If \(\mathcal{X}\) is weakly independent, and there exists some \(v \in V\) with superlinear connectivity such that \(h_v(\mathcal{X}) > 0\), then the system \((\mathcal{X}, \Phi)\) is not positively expansive.

Remarks.
Theorem 0. Let \((A^V, \mathcal{X}, \Phi)\) be a symbolic dynamical system with a moving subsymmetry. If \(\mathcal{X}\) is weakly independent, and there exists some \(v \in V\) with superlinear connectivity such that \(h_v(\mathcal{X}) > 0\), then the system \((\mathcal{X}, \Phi)\) is not positively expansive.

Remarks.

- Theorems 0 - 2 apply even if the moving subsymmetry \(\tau\) and its iterates are the only symmetries of the system \((A^V, \mathcal{X}, \Phi)\).
Theorem 0. Let \((AV, X, \Phi)\) be a symbolic dynamical system with a moving subsymmetry. If \(X\) is weakly independent, and there exists some \(v \in V\) with superlinear connectivity such that \(h_v(X) > 0\), then the system \((X, \Phi)\) is not positively expansive.

Remarks.

- Theorems 0 - 2 apply even if the moving subsymmetry \(\tau\) and its iterates are the only symmetries of the system \((AV, X, \Phi)\).
 In particular, we do not require the symmetry group of \((AV, X, \Phi)\) to itself have growth dimension greater than 1.
Theorem 0. Let \((\mathcal{A}^V, \mathcal{X}, \Phi)\) be a symbolic dynamical system with a moving subsymmetry. If \(\mathcal{X}\) is weakly independent, and there exists some \(v \in V\) with superlinear connectivity such that \(\bar{h}_v(\mathcal{X}) > 0\), then the system \((\mathcal{X}, \Phi)\) is not positively expansive.

Remarks.

> Theorems 0 - 2 apply even if the moving subsymmetry \(\tau\) and its iterates are the only symmetries of the system \((\mathcal{A}^V, \mathcal{X}, \Phi)\). In particular, we do not require the symmetry group of \((\mathcal{A}^V, \mathcal{X}, \Phi)\) to itself have growth dimension greater than 1.

> The ‘weak independence’ condition in Theorems 0 and 2 is probably unnecessary. (It is absent from Shereshevsky’s original result).
Main results: remarks

Theorem 0. Let \((A^V, \mathcal{X}, \Phi)\) be a symbolic dynamical system with a moving subsymmetry. If \(\mathcal{X}\) is weakly independent, and there exists some \(v \in V\) with superlinear connectivity such that \(h_v(\mathcal{X}) > 0\), then the system \((\mathcal{X}, \Phi)\) is not positively expansive.

Remarks.

- Theorems 0 - 2 apply even if the moving subsymmetry \(\tau\) and its iterates are the only symmetries of the system \((A^V, \mathcal{X}, \Phi)\). In particular, we do not require the symmetry group of \((A^V, \mathcal{X}, \Phi)\) to itself have growth dimension greater than 1.

- The ‘weak independence’ condition in Theorems 0 and 2 is probably unnecessary. (It is absent from Shereshevsky’s original result). However, it is not clear how to dispense with it.
Theorem 0. Let (A^V, \mathcal{X}, Φ) be a symbolic dynamical system with a moving subsymmetry. If \mathcal{X} is weakly independent, and there exists some $v \in V$ with superlinear connectivity such that $\overline{h}_v(\mathcal{X}) > 0$, then the system (\mathcal{X}, Φ) is not positively expansive.

Remarks.

- Theorems 0 - 2 apply even if the moving subsymmetry τ and its iterates are the only symmetries of the system (A^V, \mathcal{X}, Φ). In particular, we do not require the symmetry group of (A^V, \mathcal{X}, Φ) to itself have growth dimension greater than 1.

- The ‘weak independence’ condition in Theorems 0 and 2 is probably unnecessary. (It is absent from Shereshevsky’s original result). However, it is not clear how to dispense with it.

- The existence of a moving subsymmetry is also probably unnecessary. However, some condition is required beyond merely superlinear connectivity and nonzero entropy. This is shown by the next counterexample....
Let \mathcal{V} be the digraph shown above.
Let \mathbb{V} be the digraph shown above. Let $\mathbb{V}_{\Box} := \text{set of 'box' vertices, indexed by } M := \{0, 2, 6, 12, 20, \ldots, m_k, \ldots\}$, where $m_k := \sum_{i=0}^{k} 2^j$.
Let \mathbb{V} be the digraph shown above. Let $\mathbb{V}_{\Box} := \text{set of ‘box’ vertices, indexed by } \mathbb{M} := \{0, 2, 6, 12, 20, \ldots, m_k, \ldots\}$, where $m_k := \sum_{i=0}^{k} 2j$. Let $\mathbb{V}_{\circ} := \text{set of ‘circle’ vertices};$ then $\mathbb{V} = \mathbb{V}_{\Box} \cup \mathbb{V}_{\circ}$.
Let V be the digraph shown above. Let $V_{\square} := \text{set of 'box' vertices, indexed by } M := \{0, 2, 6, 12, 20, \ldots, m_k, \ldots\}$, where $m_k := \sum_{i=0}^{k} 2j$. Let $V_{\circ} := \text{set of 'circle' vertices; then } V = V_{\square} \cup V_{\circ}$. Let $A := \mathbb{Z}/2 \times \mathbb{Z}/2$.
Let \mathbb{V} be the digraph shown above. Let $\mathbb{V}^{\Box} := \text{set of 'box' vertices}$, indexed by $\mathbb{M} := \{0, 2, 6, 12, 20, \ldots, m_k, \ldots\}$, where $m_k := \sum_{i=0}^{k} 2j$.

Let $\mathbb{V}_o := \text{set of 'circle' vertices}$; then $\mathbb{V} = \mathbb{V}^{\Box} \cup \mathbb{V}_o$.

Let $\mathcal{A} := \mathbb{Z}/2 \times \mathbb{Z}/2$. Thus $\forall \ n \in \mathbb{N}$, the state of vertex n is an ordered pair (a_n, b_n), where $a_n, b_n \in \mathbb{Z}/2$.
Let \mathcal{V} be the digraph shown above. Let $\mathcal{V}_{\square} := \text{set of ‘box’ vertices, indexed by } M := \{0, 2, 6, 12, 20, \ldots, m_k, \ldots\}$, where $m_k := \sum_{i=0}^{k} 2j$. Let $\mathcal{V}_c := \text{set of ‘circle’ vertices;}$ then $\mathcal{V} = \mathcal{V}_{\square} \cup \mathcal{V}_c$.

Let $\mathcal{A} := \mathbb{Z}/2 \times \mathbb{Z}/2$. Thus $\forall \ n \in \mathbb{N}$, the state of vertex n is an ordered pair $\left(\frac{a_n}{b_n}\right)$, where $a_n, b_n \in \mathbb{Z}/2$. Let $\mathcal{X} := \{a \in \mathcal{A}^\mathcal{V}; b_n = 0, \forall \ n \in \mathcal{V}_c\}$.

An expansive system of dimension two
Let V be the digraph shown above. Let $V_\square := \text{set of 'box' vertices, indexed by } \mathbb{M} := \{0, 2, 6, 12, 20, \ldots, m_k, \ldots\}$, where $m_k := \sum_{i=0}^{k} 2j$.

Let $V_\circ := \text{set of 'circle' vertices};$ then $V = V_\square \sqcup V_\circ$.

Let $A := \mathbb{Z}/2 \times \mathbb{Z}/2$. Thus $\forall n \in \mathbb{N}$, the state of vertex n is an ordered pair $\left(\frac{a_n}{b_n}\right)$, where $a_n, b_n \in \mathbb{Z}/2$. Let $\mathcal{X} := \{a \in A^V; b_n = 0, \forall n \in V_\circ\}$.

Thus, if \mathcal{X}_n is the projection of \mathcal{X} onto vertex n, then $\mathcal{X}_n = \mathbb{Z}/2 \times \mathbb{Z}/2$ if $n \in V_\square$, and $\mathcal{X}_n = \mathbb{Z}/2 \times \{0\}$ if $n \in V_\circ$.
Let \mathbb{V} be the digraph shown above. Let $\mathbb{V}_\square := \text{set of 'box' vertices, indexed by } M := \{0, 2, 6, 12, 20, \ldots, m_k, \ldots\}$, where $m_k := \sum_{i=0}^{k} 2j$. Let $\mathbb{V}_\circ := \text{set of 'circle' vertices};$ then $\mathbb{V} = \mathbb{V}_\square \sqcup \mathbb{V}_\circ$.

Let $\mathcal{A} := \mathbb{Z}/2 \times \mathbb{Z}/2$. Thus $\forall \ n \in \mathbb{N}$, the state of vertex n is an ordered pair $\left(\frac{a_n}{b_n}\right)$, where $a_n, b_n \in \mathbb{Z}/2$. Let $\mathcal{X} := \{a \in \mathcal{A}^\mathbb{V}; \ b_n = 0, \ \forall \ n \in \mathbb{V}_\circ\}$. Thus, if \mathcal{X}_n is the projection of \mathcal{X} onto vertex n, then $\mathcal{X}_n = \mathbb{Z}/2 \times \mathbb{Z}/2$ if $n \in \mathbb{V}_\square$, and $\mathcal{X}_n = \mathbb{Z}/2 \times \{0\}$ if $n \in \mathbb{V}_\circ$.

For any $n \in \mathbb{V}_\circ$, define $\phi_n : \mathcal{X}_{n+1} \longrightarrow \mathcal{X}_n$ by $\phi_n \left(\frac{a_{n+1}}{b_{n+1}}\right) = \left(\frac{a_{n+1}}{0}\right)$ (i.e. ϕ_n just copies the first coordinate of vertex $n + 1$ into vertex n).
For any $n \in \mathbb{V}_\circ$, define $\phi_n : \mathcal{X}_{n+1} \rightarrow \mathcal{X}_n$ by $\phi_n \left(\begin{array}{c} a_{n+1} \\ b_{n+1} \end{array} \right) = \left(\begin{array}{c} a_{n+1} \\ 0 \end{array} \right)$.
An expansive system of dimension two

For any $n \in \mathbb{V}_\circ$, define $\phi_n : X_{n+1} \rightarrow X_n$ by $\phi_n \left(\begin{array}{c} a_{n+1} \\ b_{n+1} \end{array} \right) = \left(\begin{array}{c} a_{n+1} \\ 0 \end{array} \right)$.

For any $m_k \in \mathbb{V}_\square$, define $\phi_{m_k} : X_{(m_k)+1} \times X_{m(k+1)} \rightarrow X_{m_k}$ as follows:

$$
\phi_{m_k} \left(\begin{array}{c} a(m_k)+1 \\ 0 \\ a_{m(k+1)} \\ b_{m(k+1)} \end{array} \right) := \left(\begin{array}{c} a(m_k)+1 \\ a_{m(k+1)} + b_{m(k+1)} \end{array} \right).
$$
For any \(n \in \mathbb{V}_\circ \), define \(\phi_n : \mathcal{X}_{n+1} \to \mathcal{X}_n \) by \(\phi_n \left(\begin{array}{c} a_{n+1} \\ b_{n+1} \end{array} \right) = \left(\begin{array}{c} a_{n+1} \\ 0 \end{array} \right) \).

For any \(m_k \in \mathbb{V}_\square \), define \(\phi_{m_k} : \mathcal{X}_{(m_k)+1} \times \mathcal{X}_{m(k+1)} \to \mathcal{X}_{m_k} \) as follows:

\[
\phi_{m_k} \left(\begin{array}{c} a(m_k)+1 \\ 0 \\
\end{array}, \begin{array}{c} a_{m(k+1)} \\ b_{m(k+1)} \end{array} \right) := \left(\begin{array}{c} a(m_k)+1 \\ a_{m(k+1)} + b_{m(k+1)} \end{array} \right)
\]

Theorem.
An expansive system of dimension two

For any $n \in \mathbb{V}_\circ$, define $\phi_n : \mathcal{X}_{n+1} \rightarrow \mathcal{X}_n$ by $\phi_n \left(\begin{pmatrix} a_n+1 \\ b_{n+1} \end{pmatrix} \right) = \left(\begin{pmatrix} a_n+1 \\ 0 \end{pmatrix} \right)$.

For any $m_k \in \mathbb{V}_\square$, define $\phi_{m_k} : \mathcal{X}_{(m_k)+1} \times \mathcal{X}_{m(k+1)} \rightarrow \mathcal{X}_{m_k}$ as follows:

$$\phi_{m_k} \left(\begin{pmatrix} a(m_k)+1 \\ 0 \end{pmatrix} , \begin{pmatrix} a_{m(k+1)}+1 \\ b_{m(k+1)} \end{pmatrix} \right) := \begin{pmatrix} a(m_k)+1 \\ a_{m(k+1)} + b_{m(k+1)} \end{pmatrix}.$$

Theorem. (a) $h(\mathcal{X}) \geq 1$, and \mathcal{X} is weakly independent; and
For any \(n \in \mathbb{V}_\circ \), define \(\phi_n : \mathcal{X}_{n+1} \rightarrow \mathcal{X}_n \) by
\[
\phi_n \left(\begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} \right) = \begin{pmatrix} a_{n+1} \\ 0 \end{pmatrix}.
\]

For any \(m_k \in \mathbb{V}_\square \), define \(\phi_{m_k} : \mathcal{X}_{(m_k)+1} \times \mathcal{X}_{m(k+1)} \rightarrow \mathcal{X}_{m_k} \) as follows:

\[
\phi_{m_k} \left(\begin{pmatrix} a_{(m_k)+1} \\ 0 \\ b_{m(k+1)} \end{pmatrix}, \begin{pmatrix} a_{m(k+1)} \\ b_{m(k+1)} \end{pmatrix} \right) := \begin{pmatrix} a_{(m_k)+1} \\ a_{m(k+1)} + b_{m(k+1)} \end{pmatrix}.
\]

Theorem. (a) \(h(\mathcal{X}) \geq 1 \), and \(\mathcal{X} \) is weakly independent; and (b) \(\dim_v(\mathbb{V}, \rightarrow) = 2 \) for all \(v \in \mathbb{V} \); but
An expansive system of dimension two

For any \(n \in V_\circ \), define \(\phi_n : X_{n+1} \rightarrow X_n \) by
\[
\phi_n \left(\begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} \right) = \begin{pmatrix} a_{n+1} \\ 0 \end{pmatrix}.
\]
For any \(m_k \in V_\square \), define \(\phi_{m_k} : X_{m(k+1)+1} \times X_{m(k+1)} \rightarrow X_{m_k} \) as follows:
\[
\phi_{m_k} \left(\begin{pmatrix} a_{m(k)+1} \\ b_{m(k)+1} \\ 0 \end{pmatrix} , \begin{pmatrix} a_{m(k+1)} \\ b_{m(k+1)} \end{pmatrix} \right) := \begin{pmatrix} a_{m(k)+1} \\ a_{m(k+1)} + b_{m(k+1)} \end{pmatrix}.
\]

Theorem. (a) \(h(X) \geq 1 \), and \(X \) is weakly independent; and
(b) \(\dim_v(V, \rightarrow) = 2 \) for all \(v \in V \); but
(c) The system \((X, \Phi) \) is positively expansive.
An expansive system of dimension two

For any \(n \in \mathbb{V}_\circ \), define \(\phi_n : X_{n+1} \rightarrow X_n \) by
\[
\phi_n \left(\begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} \right) = \begin{pmatrix} a_{n+1} \\ 0 \end{pmatrix}.
\]

For any \(m_k \in \mathbb{V}_\square \), define \(\phi_{m_k} : X_{(m_k)+1} \times X_{m(k+1)} \rightarrow X_{m_k} \) as follows:
\[
\phi_{m_k} \left(\begin{pmatrix} a_{(m_k)+1} \\ 0 \end{pmatrix}, \begin{pmatrix} a_{m(k+1)} \\ b_{m(k+1)} \end{pmatrix} \right) := \begin{pmatrix} a_{(m_k)+1} \\ a_{m(k+1)} + b_{m(k+1)} \end{pmatrix}.
\]

Theorem. (a) \(h(X) \geq 1 \), and \(X \) is weakly independent; and
(b) \(\dim_v(\mathbb{V}, \rightarrow) = 2 \) for all \(v \in \mathbb{V} \); but
(c) The system \((X, \Phi)\) is positively expansive.

Proof sketch.
For any \(n \in \mathbb{N} \) define \(\phi_n : \mathcal{X}_{n+1} \rightarrow \mathcal{X}_n \) by
\[
\phi_n \left(\begin{array}{c} a_{n+1} \\ b_{n+1} \end{array} \right) = \left(\begin{array}{c} a_n \\ 0 \end{array} \right).
\]
For any \(m_k \in \mathbb{N} \) define \(\phi_{m_k} : \mathcal{X}(m_k)_{n+1} \times \mathcal{X}(k)_{m_{k+1}} \rightarrow \mathcal{X}_{m_k} \) as follows:
\[
\phi_{m_k} \left(\left(\begin{array}{c} a(m_k) \\ 0 \end{array} \right), \left(\begin{array}{c} a_{m(k+1)} \\ b_{m(k+1)} \end{array} \right) \right) := \left(\begin{array}{c} a(m_k)+1 \\ a_{m(k+1)} + b_{m(k+1)} \end{array} \right).
\]

Theorem. (a) \(h(\mathcal{X}) \geq 1 \), and \(\mathcal{X} \) is weakly independent; and
(b) \(\dim_{\mathbb{V}}(\mathcal{V}, \mathcal{X}) = 2 \) for all \(v \in \mathcal{V} \); but
(c) The system \((\mathcal{X}, \Phi) \) is positively expansive.

Proof sketch. (a) is obvious from the definition of \(\mathcal{X} \).
Theorem. (a) $h(\mathcal{X}) \geq 1$, and \mathcal{X} is weakly independent; and
(b) $\dim_v(\mathcal{V}, \cdot \mapsto) = 2$ for all $v \in \mathcal{V}$; but
(c) The system (\mathcal{X}, Φ) is positively expansive.

Proof sketch. (b) (Case $v = 0$) The figure shows $\mathcal{B}(0, r)$ for $r = 1, 2, \ldots, 7$.
Theorem. (a) \(h(\mathcal{X}) \geq 1 \), and \(\mathcal{X} \) is weakly independent; and (b) \(\dim_v(\mathcal{V}, \to) = 2 \) for all \(v \in \mathcal{V} \); but (c) The system \((\mathcal{X}, \Phi) \) is positively expansive.

Proof sketch. (b) (Case \(v = 0 \)) The figure shows \(\mathcal{B}(0, r) \) for \(r = 1, 2, \ldots, 7 \). Clearly, \(|\mathcal{B}(0, r)| \) grows quadratically as \(r \to \infty \).
Theorem. (a) \(h(\mathcal{X}) \geq 1 \), and \(\mathcal{X} \) is weakly independent; and
(b) \(\dim_v(\mathcal{V}, \bullet \to) = 2 \) for all \(v \in \mathcal{V} \); but
(c) The system \((\mathcal{X}, \Phi) \) is positively expansive.

Proof sketch. (b) (Case \(v = 0 \)) The figure shows \(\mathcal{B}(0, r) \) for \(r = 1, 2, \ldots, 7 \). Clearly, \(|\mathcal{B}(0, r)| \) grows quadratically as \(r \to \infty \). Thus, \(\dim_0(\mathcal{V}, \bullet \to) = 2 \).
Theorem. (a) $h(\mathcal{X}) \geq 1$, and \mathcal{X} is weakly independent; and
(b) $\dim_v(\mathcal{V}, \rightarrow) = 2$ for all $v \in \mathcal{V}$; but
(c) The system (\mathcal{X}, Φ) is positively expansive.

Proof sketch. (b) (Case $v = 0$) The figure shows $B(0, r)$ for $r = 1, 2, \ldots, 7$. Clearly, $|B(0, r)|$ grows quadratically as $r \to \infty$. Thus, $\dim_0(\mathcal{V}, \rightarrow) = 2$. The proof for other $v \in \mathcal{V}$ is similar.
Theorem. (a) $h(\mathcal{X}) \geq 1$, and \mathcal{X} is weakly independent; and
(b) $\dim_v(\mathcal{V}, \cdot \rightarrow) = 2$ for all $v \in \mathcal{V}$; but
(c) The system (\mathcal{X}, Φ) is positively expansive.

Proof sketch. (c) Straightforward computation shows that the data $x_0, \Phi(x)_0, \Phi^2(x)_0, \Phi^3(x)_0, \Phi^4(x)_0, \ldots, \Phi^t(x)_0, \ldots$ is sufficient to reconstruct x, for any $x \in \mathcal{X}$.
Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?
Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. No.
Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. No. We just constructed a 2-dimensional system that was positively expansive, hence conjugate to a subshift (a 1-dim system).
Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. No. We just constructed a 2-dimensional system that was positively expansive, hence conjugate to a subshift (a 1-dim system).

But network dimension is invariant under a stronger kind of conjugacy.
Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. No. We just constructed a 2-dimensional system that was positively expansive, hence conjugate to a subshift (a 1-dim system).

But network dimension is invariant under a stronger kind of conjugacy. Given a symbolic dynamical system $(\mathcal{A}^\mathcal{V}, \mathcal{X}, \Phi)$, one can define a metric d on \mathcal{X} such that Φ is Lipschitz relative to d.
Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. No. We just constructed a 2-dimensional system that was positively expansive, hence conjugate to a subshift (a 1-dim system).

But network dimension *is* invariant under a stronger kind of conjugacy. Given a symbolic dynamical system $(\mathcal{A}^\mathcal{X}, \mathcal{X}, \Phi)$, one can define a metric d on \mathcal{X} such that Φ is *Lipschitz* relative to d. That is: there is some constant $\lambda > 0$ such that, for all $x, y \in \mathcal{X}$, we have $d(\Phi(x), \Phi(y)) \leq \lambda \cdot d(x, y)$.
Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. No. We just constructed a 2-dimensional system that was positively expansive, hence conjugate to a subshift (a 1-dim system).

But network dimension is invariant under a stronger kind of conjugacy. Given a symbolic dynamical system \((A^V, \mathcal{X}, \Phi)\), one can define a metric \(d\) on \(\mathcal{X}\) such that \(\Phi\) is Lipschitz relative to \(d\). That is: there is some constant \(\lambda > 0\) such that, for all \(x, y \in \mathcal{X}\), we have \(d(\Phi(x), \Phi(y)) \leq \lambda \cdot d(x, y)\).

(Rough idea: Fix \(v \in V\). Define \(d\) so that \(x, y \in \mathcal{X}\), are “\(d\)-close” if \(x_{B(v,r)} = y_{B(v,r)}\) for some large \(r > 0\).)
Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. No. We just constructed a 2-dimensional system that was positively expansive, hence conjugate to a subshift (a 1-dim system).

But network dimension is invariant under a stronger kind of conjugacy. Given a symbolic dynamical system \((\mathcal{A}^V, \mathcal{X}, \Phi)\), one can define a metric \(d\) on \(\mathcal{X}\) such that \(\Phi\) is Lipschitz relative to \(d\). That is: there is some constant \(\lambda > 0\) such that, for all \(x, y \in \mathcal{X}\), we have \(d(\Phi(x), \Phi(y)) \leq \lambda \cdot d(x, y)\).

(\textbf{Rough idea:} Fix \(v \in V\). Define \(d\) so that \(x, y \in \mathcal{X}\), are “\(d\)-close” if \(x_B(v, r) = y_B(v, r)\) for some large \(r > 0\).)

One can then assign a dimension \(\text{dim}(\mathcal{X}, d)\) to the metric space \((\mathcal{X}, d)\).
Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. No. We just constructed a 2-dimensional system that was positively expansive, hence conjugate to a subshift (a 1-dim system).

But network dimension is invariant under a stronger kind of conjugacy. Given a symbolic dynamical system \((A^V, \mathcal{X}, \Phi)\), one can define a metric \(d\) on \(\mathcal{X}\) such that \(\Phi\) is Lipschitz relative to \(d\). That is: there is some constant \(\lambda > 0\) such that, for all \(x, y \in \mathcal{X}\), we have \(d(\Phi(x), \Phi(y)) \leq \lambda \cdot d(x, y)\).

(Rough idea: Fix \(v \in V\). Define \(d\) so that \(x, y \in \mathcal{X}\), are “\(d\)-close” if \(x_{B(v, r)} = y_{B(v, r)}\) for some large \(r > 0\).)

One can then assign a dimension \(\dim(\mathcal{X}, d)\) to the metric space \((\mathcal{X}, d)\). Under suitable conditions, this metric is *dimensionally compatible* with the network topology of \((V, \rightarrow)\), meaning that \(\dim(\mathcal{X}, d) = \dim(V, \rightarrow)\).
Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. No. We just constructed a 2-dimensional system that was positively expansive, hence conjugate to a subshift (a 1-dim system).

But network dimension *is* invariant under a stronger kind of conjugacy. Given a symbolic dynamical system \((A^\mathcal{V}, \mathcal{X}, \Phi)\), one can define a metric \(d\) on \(\mathcal{X}\) such that \(\Phi\) is *Lipschitz* relative to \(d\). That is: there is some constant \(\lambda > 0\) such that, for all \(x, y \in \mathcal{X}\), we have \(d(\Phi(x), \Phi(y)) \leq \lambda \cdot d(x, y)\).

(Rough idea: Fix \(v \in A^\mathcal{V}\). Define \(d\) so that \(x, y \in \mathcal{X}\), are “\(d\)-close” if \(x_{B(v, r)} = y_{B(v, r)}\) for some large \(r > 0\).)

One can then assign a dimension \(\dim(\mathcal{X}, d)\) to the metric space \((\mathcal{X}, d)\). Under suitable conditions, this metric is *dimensionally compatible* with the network topology of \((A^\mathcal{V}, \bullet \rightarrow)\), meaning that \(\dim(\mathcal{X}, d) = \dim(\mathcal{V}, \bullet \rightarrow)\).

Let \((\mathcal{X}', d')\) be another metric space, and let \(\Gamma : \mathcal{X} \rightarrow \mathcal{X}'\) be a continuous function.
Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. No. We just constructed a 2-dimensional system that was positively expansive, hence conjugate to a subshift (a 1-dim system).

But network dimension *is* invariant under a stronger kind of conjugacy. Given a symbolic dynamical system \((\mathcal{A}^V, \mathcal{X}, \Phi)\), one can define a metric \(d\) on \(\mathcal{X}\) such that \(\Phi\) is *Lipschitz* relative to \(d\). That is: there is some constant \(\lambda > 0\) such that, for all \(x, y \in \mathcal{X}\), we have \(d(\Phi(x), \Phi(y)) \leq \lambda \cdot d(x, y)\).

(Rough idea: Fix \(v \in V\). Define \(d\) so that \(x, y \in \mathcal{X}\), are “\(d\)-close” if \(x_B(v, r) = y_B(v, r)\) for some large \(r > 0\).)**

One can then assign a dimension \(\dim(\mathcal{X}, d)\) to the metric space \((\mathcal{X}, d)\). Under suitable conditions, this metric is *dimensionally compatible* with the network topology of \((V, \bullet \rightarrow)\), meaning that \(\dim(\mathcal{X}, d) = \dim(V, \bullet \rightarrow)\).
Hölder Conjugacy invarance

Recall: a continuous function $\Gamma : (\mathcal{X}, d) \rightarrow (\mathcal{X}', d')$ is Hölder if there are constants $\eta, \lambda \in (0, \infty)$ such that, for any $x_1, x_2 \in \mathcal{X}$,

$$d'(\Gamma(x_1), \Gamma(x_2)) \leq \lambda \cdot d(x_1, x_2)^\eta.$$
Recall: a continuous function $\Gamma : (\mathcal{X}, d) \rightarrow (\mathcal{X}', d')$ is Hölder if there are constants $\eta, \lambda \in (0, \infty)$ such that, for any $x_1, x_2 \in \mathcal{X}$,

$$d'(\Gamma(x_1), \Gamma(x_2)) \leq \lambda \cdot d(x_1, x_2)^\eta.$$

Proposition. Let (\mathcal{X}, d) and (\mathcal{X}', d') be metric spaces.
Recall: a continuous function $\Gamma : (\mathcal{X}, d) \to (\mathcal{X}', d')$ is Hölder if there are constants $\eta, \lambda \in (0, \infty)$ such that, for any $x_1, x_2 \in \mathcal{X}$,

$$d'(\Gamma(x_1), \Gamma(x_2)) \leq \lambda \cdot d(x_1, x_2)^\eta.$$

Proposition. Let (\mathcal{X}, d) and (\mathcal{X}', d') be metric spaces. Let $\Gamma : \mathcal{X} \to \mathcal{X}'$ be a (d, d')-Hölder surjection. Then $\dim(\mathcal{X}, d) \geq \dim(\mathcal{X}', d')$.

Recall: a continuous function $\Gamma : (\mathcal{X}, d) \rightarrow (\mathcal{X}', d')$ is Hölder if there are constants $\eta, \lambda \in (0, \infty)$ such that, for any $x_1, x_2 \in \mathcal{X}$,

$$d'(\Gamma(x_1), \Gamma(x_2)) \leq \lambda \cdot d(x_1, x_2)^\eta.$$

Proposition. Let (\mathcal{X}, d) and (\mathcal{X}', d') be metric spaces.

- Let $\Gamma : \mathcal{X} \rightarrow \mathcal{X}'$ be a (d, d')-Hölder surjection. Then $\dim(\mathcal{X}, d) \geq \dim(\mathcal{X}', d')$.

- If Γ is a (d, d')-biHölder homeomorphism, then $\dim(\mathcal{X}, d) = \dim(\mathcal{X}', d')$.

Recall: a continuous function \(\Gamma : (\mathcal{X}, d) \rightarrow (\mathcal{X}', d') \) is Hölder if there are constants \(\eta, \lambda \in (0, \infty) \) such that, for any \(x_1, x_2 \in \mathcal{X} \),

\[
 d' \left(\Gamma(x_1), \Gamma(x_2) \right) \leq \lambda \cdot d(x_1, x_2)^\eta.
\]

Proposition. Let \((\mathcal{X}, d)\) and \((\mathcal{X}', d')\) be metric spaces.

- Let \(\Gamma : \mathcal{X} \rightarrow \mathcal{X}' \) be a \((d, d')\)-Hölder surjection. Then
 \[\dim(\mathcal{X}, d) \geq \dim(\mathcal{X}', d').\]

- If \(\Gamma \) is a \((d, d')\)-biHölder homeomorphism, then
 \[\dim(\mathcal{X}, d) = \dim(\mathcal{X}', d').\]

Corollary. Let \((A^\mathbb{V}, \mathcal{X}_1, \Phi_1)\) and \((B^\mathbb{W}, \mathcal{X}_2, \Phi_2)\) be two symbolic dynamical systems, and let \(d_1\) and \(d_2\) be dimensionally compatible Lipschitz metrics on \(\mathcal{X}_1\) and \(\mathcal{X}_2\) respectively.
Recall: a continuous function \(\Gamma : (X, d) \rightarrow (X', d') \) is Hölder if there are constants \(\eta, \lambda \in (0, \infty) \) such that, for any \(x_1, x_2 \in X \),

\[
d'(\Gamma(x_1), \Gamma(x_2)) \leq \lambda \cdot d(x_1, x_2)^\eta.
\]

Proposition. Let \((X, d) \) and \((X', d') \) be metric spaces.

- Let \(\Gamma : X \rightarrow X' \) be a \((d, d')\)-Hölder surjection. Then \(\dim(X, d) \geq \dim(X', d') \).
- If \(\Gamma \) is a \((d, d')\)-biHölder homeomorphism, then \(\dim(X, d) = \dim(X', d') \).

Corollary. Let \((A^V, X_1, \Phi_1) \) and \((B^W, X_2, \Phi_2) \) be two symbolic dynamical systems, and let \(d_1 \) and \(d_2 \) be dimensionally compatible Lipschitz metrics on \(X_1 \) and \(X_2 \) respectively.

- If there is a factor mapping \((X_1, \Phi_1) \rightarrow (X_2, \Phi_2) \) which is \((d_1, d_2)\)-Hölder, then \(\dim(V, \bullet \rightarrow_1) \geq \dim(W, \bullet \rightarrow_2) \).
Hölder Conjugacy invarance

Recall: a continuous function $\Gamma : (\mathcal{X}, d) \rightarrow (\mathcal{X}', d')$ is Hölder if there are constants $\eta, \lambda \in (0, \infty)$ such that, for any $x_1, x_2 \in \mathcal{X}$,

$$d'(\Gamma(x_1), \Gamma(x_2)) \leq \lambda \cdot d(x_1, x_2)\eta.$$

Proposition. Let (\mathcal{X}, d) and (\mathcal{X}', d') be metric spaces.

- Let $\Gamma : \mathcal{X} \rightarrow \mathcal{X}'$ be a (d, d')-Hölder surjection. Then $\dim(\mathcal{X}, d) \geq \dim(\mathcal{X}', d').$

- If Γ is a (d, d')-biHölder homeomorphism, then $\dim(\mathcal{X}, d) = \dim(\mathcal{X}', d').$

Corollary. Let $(\mathcal{A}^{\mathcal{V}}, \mathcal{X}_1, \Phi_1)$ and $(\mathcal{B}^{\mathcal{W}}, \mathcal{X}_2, \Phi_2)$ be two symbolic dynamical systems, and let d_1 and d_2 be dimensionally compatible Lipschitz metrics on \mathcal{X}_1 and \mathcal{X}_2 respectively.

- If there is a factor mapping $(\mathcal{X}_1, \Phi_1) \rightarrow (\mathcal{X}_2, \Phi_2)$ which is (d_1, d_2)-Hölder, then $\dim(\mathcal{V}, \rightarrow_1) \geq \dim(\mathcal{W}, \rightarrow_2).$

- If (\mathcal{X}_1, Φ_1) and (\mathcal{X}_2, Φ_2) are conjugate via a bi-Hölder homeomorphism, then $\dim(\mathcal{V}, \rightarrow_1) = \dim(\mathcal{W}, \rightarrow_2).$
We have shown that the positive expansiveness of \((A^V, \mathcal{X}, \Phi)\) is related to the network dimension of the digraph \((V, \bullet \rightarrow)\).
We have shown that the positive expansiveness of (A^V, X, Φ) is related to the network dimension of the digraph $(V, \bullet \rightarrow)$.

Question. What other dynamical properties of (A^V, X, Φ) are influenced by the geometry of the digraph $(V, \bullet \rightarrow)$?
We have shown that the positive expansiveness of \((A^V, X, \Phi)\) is related to the network dimension of the digraph \((V, \bullet \rightarrow)\).

Question. What other dynamical properties of \((A^V, X, \Phi)\) are influenced by the geometry of the digraph \((V, \bullet \rightarrow)\)?

One could also go the other way. Start with an infinite digraph \((V, \bullet \rightarrow)\), and randomly generate a continuous self-map \(\Phi : A^V \rightarrow A^V\), such that \((\bullet \rightarrow)\) is the network of \(\Phi\).
We have shown that the positive expansiveness of \((A^V, \mathcal{X}, \Phi)\) is related to the network dimension of the digraph \((V, \bullet \to)\).

Question. What other dynamical properties of \((A^V, \mathcal{X}, \Phi)\) are influenced by the geometry of the digraph \((V, \bullet \to)\)?

One could also go the other way. Start with an infinite digraph \((V, \bullet \to)\), and randomly generate a continuous self-map \(\Phi : A^V \to A^V\), such that \((\bullet \to)\) is the network of \(\Phi\).

Question. What are the ‘generic’ (i.e. almost-certain) properties of \((A^V, \Phi)\), and how do they depend on the geometry of \((V, \bullet \to)\)?
We have shown that the positive expansiveness of \((\mathcal{A}^V, \mathcal{X}, \Phi)\) is related to the network dimension of the digraph \((\mathcal{V}, \bullet \rightarrow)\).

Question. What other dynamical properties of \((\mathcal{A}^V, \mathcal{X}, \Phi)\) are influenced by the geometry of the digraph \((\mathcal{V}, \bullet \rightarrow)\)?

One could also go the other way. Start with an infinite digraph \((\mathcal{V}, \bullet \rightarrow)\), and randomly generate a continuous self-map \(\Phi : \mathcal{A}^V \rightarrow \mathcal{A}^V\), such that \((\bullet \rightarrow)\) is the network of \(\Phi\).

Question. What are the ‘generic’ (i.e. almost-certain) properties of \((\mathcal{A}^V, \Phi)\), and how do they depend on the geometry of \((\mathcal{V}, \bullet \rightarrow)\)?

Conjecture If \(\dim(\mathcal{V}, \bullet \rightarrow) \leq 1\), then almost surely, \((\mathcal{A}^V, \Phi)\) is equicontinuous. If \(\dim(\mathcal{V}, \bullet \rightarrow) > 1\), then almost surely, \((\mathcal{A}^V, \Phi)\) is sensitive. (The intuition here comes from percolation theory).
We have shown that the positive expansiveness of \((A^V, \mathcal{X}, \Phi)\) is related to the network dimension of the digraph \((V, \bullet \rightarrow)\).

Question. What other dynamical properties of \((A^V, \mathcal{X}, \Phi)\) are influenced by the geometry of the digraph \((V, \bullet \rightarrow)\)?

One could also go the other way. Start with an infinite digraph \((V, \bullet \rightarrow)\), and randomly generate a continuous self-map \(\Phi : A^V \rightarrow A^V\), such that \((\bullet \rightarrow)\) is the network of \(\Phi\).

Question. What are the ‘generic’ (i.e. almost-certain) properties of \((A^V, \Phi)\), and how do they depend on the geometry of \((V, \bullet \rightarrow)\)?

Conjecture If \(\dim(V, \bullet \rightarrow) \leq 1\), then almost surely, \((A^V, \Phi)\) is equicontinuous. If \(\dim(V, \bullet \rightarrow) > 1\), then almost surely, \((A^V, \Phi)\) is sensitive. (The intuition here comes from percolation theory).

Question. Suppose we take a symbolic dynamical system \((A^V, \Phi)\) and ‘mutate’ it, by changing the local rule at a small number of vertices.
We have shown that the positive expansiveness of \((A^V, X, \Phi)\) is related to the network dimension of the digraph \((V, \to)\).

Question. What other dynamical properties of \((A^V, X, \Phi)\) are influenced by the geometry of the digraph \((V, \to)\)?

One could also go the other way. Start with an infinite digraph \((V, \to)\), and randomly generate a continuous self-map \(\Phi : A^V \to A^V\), such that \((\to)\) is the network of \(\Phi\).

Question. What are the ‘generic’ (i.e. almost-certain) properties of \((A^V, \Phi)\), and how do they depend on the geometry of \((V, \to)\)?

Conjecture If \(\dim(V, \to) \leq 1\), then almost surely, \((A^V, \Phi)\) is equicontinuous. If \(\dim(V, \to) > 1\), then almost surely, \((A^V, \Phi)\) is sensitive. (The intuition here comes from percolation theory).

Question. Suppose we take a symbolic dynamical system \((A^V, \Phi)\) and ‘mutate’ it, by changing the local rule at a small number of vertices. What topological-dynamical properties are ‘robust’ under such mutations, and how does this depend on the geometry of \((V, \to)\)?
Thank you.

These presentation slides are available at

For more information, see

<http://arxiv.org/abs/0907.2935>
Introduction: Shereshevsky’s result

Symbolic dynamical systems
 Definition & examples
 The network of a symbolic dynamical system
 Network Dimension
 Entropy
 Local independence and subisometries
 Subisometries and subsymmetries
 Moving subsymmetries

Main results
 Theorems 1 and 2
 Theorem 0
 Remarks

An expansive system of dimension two
 Construction
 Theorem statement
 Proof sketch

Conjugacy invariance
 Dimension is not a conjugacy invariant...
...but it is a Hölder conjugacy invariant

Conclusion