Positive expansiveness versus network dimension in symbolic dynamical systems

Marcus Pivato

Department of Mathematics, Trent University Peterborough, Ontario, Canada marcuspivato@trentu.ca

December 3, 2010

(1/21)

Let \mathcal{A} be a finite set ('alphabet'), let $D \in \mathbb{N}$, and let $\mathcal{A}^{\mathbb{Z}^D}$ be the set of all \mathbb{Z}^D -indexed *configurations* of symbols from \mathcal{A} , with the Cantor topology.

Let \mathcal{A} be a finite set ('alphabet'), let $D \in \mathbb{N}$, and let $\mathcal{A}^{\mathbb{Z}^D}$ be the set of all \mathbb{Z}^D -indexed *configurations* of symbols from \mathcal{A} , with the Cantor topology. A *cellular automaton* (CA) is a continuous function $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$ which commutes with all shifts.

Let \mathcal{A} be a finite set ('alphabet'), let $D \in \mathbb{N}$, and let $\mathcal{A}^{\mathbb{Z}^D}$ be the set of all \mathbb{Z}^D -indexed *configurations* of symbols from \mathcal{A} , with the Cantor topology. A *cellular automaton* (CA) is a continuous function $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$ which commutes with all shifts. One-dimensional CA are often positively expansive. But Mark Shereshevsky (1993,1996) showed:

If $D \ge 2$, then Φ cannot be positively expansive.

Let \mathcal{A} be a finite set ('alphabet'), let $D \in \mathbb{N}$, and let $\mathcal{A}^{\mathbb{Z}^D}$ be the set of all \mathbb{Z}^D -indexed *configurations* of symbols from \mathcal{A} , with the Cantor topology. A *cellular automaton* (CA) is a continuous function $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$ which commutes with all shifts. One-dimensional CA are often positively expansive. But Mark Shereshevsky (1993,1996) showed:

If $D \ge 2$, then Φ cannot be positively expansive.

In fact, Shereshevsky's result is much more general. Let \mathbb{G} be any finitely generated group, and consider the Cantor space $\mathcal{A}^{\mathbb{G}}$.

Let \mathcal{A} be a finite set ('alphabet'), let $D \in \mathbb{N}$, and let $\mathcal{A}^{\mathbb{Z}^D}$ be the set of all \mathbb{Z}^D -indexed *configurations* of symbols from \mathcal{A} , with the Cantor topology. A *cellular automaton* (CA) is a continuous function $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$ which commutes with all shifts. One-dimensional CA are often positively expansive. But Mark Shereshevsky (1993,1996) showed:

If $D \ge 2$, then Φ cannot be positively expansive. In fact, Shereshevsky's result is much more general. Let \mathbb{G} be any finitely generated group, and consider the Cantor space $\mathcal{A}^{\mathbb{G}}$. A CA is now a continuous function $\Phi : \mathcal{A}^{\mathbb{G}} \longrightarrow \mathcal{A}^{\mathbb{G}}$ which commutes with all \mathbb{G} -shifts.

Let \mathcal{A} be a finite set ('alphabet'), let $D \in \mathbb{N}$, and let $\mathcal{A}^{\mathbb{Z}^D}$ be the set of all \mathbb{Z}^D -indexed *configurations* of symbols from \mathcal{A} , with the Cantor topology. A *cellular automaton* (CA) is a continuous function $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$ which commutes with all shifts. One-dimensional CA are often positively expansive. But Mark Shereshevsky (1993,1996) showed:

If $D \ge 2$, then Φ cannot be positively expansive. In fact, Shereshevsky's result is much more general. Let \mathbb{G} be any finitely generated group, and consider the Cantor space $\mathcal{A}^{\mathbb{G}}$. A CA is now a continuous function $\Phi : \mathcal{A}^{\mathbb{G}} \longrightarrow \mathcal{A}^{\mathbb{G}}$ which commutes with all \mathbb{G} -shifts. \mathbb{G} has dimension D if a ball of radius r in the Cayley digraph of \mathbb{G} has cardinality of order $\mathcal{O}(r^D)$.

Let \mathcal{A} be a finite set ('alphabet'), let $D \in \mathbb{N}$, and let $\mathcal{A}^{\mathbb{Z}^D}$ be the set of all \mathbb{Z}^D -indexed *configurations* of symbols from \mathcal{A} , with the Cantor topology. A *cellular automaton* (CA) is a continuous function $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$ which commutes with all shifts. One-dimensional CA are often positively expansive. But Mark Shereshevsky (1993,1996) showed:

If $D \ge 2$, then Φ cannot be positively expansive. In fact, Shereshevsky's result is much more general. Let \mathbb{G} be any finitely generated group, and consider the Cantor space $\mathcal{A}^{\mathbb{G}}$. A CA is now a continuous function $\Phi : \mathcal{A}^{\mathbb{G}} \longrightarrow \mathcal{A}^{\mathbb{G}}$ which commutes with all \mathbb{G} -shifts. \mathbb{G} has dimension D if a ball of radius r in the Cayley digraph of \mathbb{G} has cardinality of order $\mathcal{O}(r^D)$. Let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{G}}$ be a closed, Φ -invariant, shift-invariant subset.

Let \mathcal{A} be a finite set ('alphabet'), let $D \in \mathbb{N}$, and let $\mathcal{A}^{\mathbb{Z}^D}$ be the set of all \mathbb{Z}^D -indexed *configurations* of symbols from \mathcal{A} , with the Cantor topology. A *cellular automaton* (CA) is a continuous function $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$ which commutes with all shifts. One-dimensional CA are often positively expansive. But Mark Shereshevsky (1993,1996) showed:

If $D \ge 2$, then Φ cannot be positively expansive. In fact, Shereshevsky's result is much more general. Let \mathbb{G} be any finitely generated group, and consider the Cantor space $\mathcal{A}^{\mathbb{G}}$. A CA is now a continuous function $\Phi : \mathcal{A}^{\mathbb{G}} \longrightarrow \mathcal{A}^{\mathbb{G}}$ which commutes with all \mathbb{G} -shifts.

 \mathbb{G} has dimension D if a ball of radius r in the Cayley digraph of \mathbb{G} has cardinality of order $\mathcal{O}(r^D)$. Let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{G}}$ be a closed, Φ -invariant, shift-invariant subset. Shereshevsky showed:

If $D \ge 2$, and \mathcal{X} has nonzero topological entropy, then the topological dynamical system (\mathcal{X}, Φ) cannot be positively expansive.

Let \mathcal{A} be a finite set ('alphabet'), let $D \in \mathbb{N}$, and let $\mathcal{A}^{\mathbb{Z}^D}$ be the set of all \mathbb{Z}^D -indexed *configurations* of symbols from \mathcal{A} , with the Cantor topology. A *cellular automaton* (CA) is a continuous function $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$ which commutes with all shifts. One-dimensional CA are often positively expansive. But Mark Shereshevsky (1993,1996) showed:

If $D \ge 2$, then Φ cannot be positively expansive. In fact, Shereshevsky's result is much more general. Let \mathbb{G} be any finitely generated group, and consider the Cantor space $\mathcal{A}^{\mathbb{G}}$. A CA is now a continuous function $\Phi : \mathcal{A}^{\mathbb{G}} \longrightarrow \mathcal{A}^{\mathbb{G}}$ which commutes with all \mathbb{G} -shifts.

 \mathbb{G} has dimension D if a ball of radius r in the Cayley digraph of \mathbb{G} has cardinality of order $\mathcal{O}(r^D)$. Let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{G}}$ be a closed, Φ -invariant, shift-invariant subset. Shereshevsky showed:

If $D \ge 2$, and \mathcal{X} has nonzero topological entropy, then the topological dynamical system (\mathcal{X}, Φ) cannot be positively expansive.

We will generalize Shereshevsky's result to a much broader class of *symbolic dynamical systems*. These are systems like a CA, but having an 'irregular' network topology.

(3/21)

Let \mathbb{V} be an infinite set of 'vertices'.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let \mathbb{V} be an infinite set of 'vertices'. Endow $\mathcal{A}^{\mathbb{V}}$ with the Cantor topology.

Let \mathbb{V} be an infinite set of 'vertices'. Endow $\mathcal{A}^{\mathbb{V}}$ with the Cantor topology. Let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset.

Let \mathbb{V} be an infinite set of 'vertices'. Endow $\mathcal{A}^{\mathbb{V}}$ with the Cantor topology. Let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Let $\Phi : \mathcal{X} \longrightarrow \mathcal{X}$ be a continuous function.

Let \mathbb{V} be an infinite set of 'vertices'. Endow $\mathcal{A}^{\mathbb{V}}$ with the Cantor topology. Let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Let $\Phi : \mathcal{X} \longrightarrow \mathcal{X}$ be a continuous function. We will call the triple $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ a *symbolic dynamical system*. **Examples.**

▶ *Subshift.* $\mathbb{V} = \mathbb{Z}$ or \mathbb{N} ; Φ =shift map; \mathcal{X} =shift-invariant subset.

- ▶ Subshift. V = Z or N; Φ =shift map; \mathcal{X} =shift-invariant subset.
- Cellular automaton. V = Z^D × N^d (or some group/monoid);
 X = A^V, and Φ commutes with all shifts.

- ► Subshift. $\mathbb{V} = \mathbb{Z}$ or \mathbb{N} ; Φ =shift map; \mathcal{X} =shift-invariant subset.
- Cellular automaton. V = Z^D × N^d (or some group/monoid);
 X = A^V, and Φ commutes with all shifts.
- ▶ *p*-ary odometer. $\mathbb{V} = \mathbb{N}$; $\mathcal{A} = \mathbb{Z}_{/p}$; $\mathcal{X} = \mathcal{A}^{\mathbb{N}}$; Φ =successor map.

- ▶ Subshift. V = Z or N; Φ =shift map; \mathcal{X} =shift-invariant subset.
- Cellular automaton. V = Z^D × N^d (or some group/monoid);
 X = A^V, and Φ commutes with all shifts.
- ▶ *p*-ary odometer. $\mathbb{V} = \mathbb{N}$; $\mathcal{A} = \mathbb{Z}_{/p}$; $\mathcal{X} = \mathcal{A}^{\mathbb{N}}$; Φ =successor map.
- Automaton network. \mathbb{V} is a directed graph, in which all vertices have finite in-degree. Each vertex has a finite state automaton (FSA) with statespace \mathcal{A} , which takes input from all its neighbours in the digraph. The map Φ encodes the simultaneous updating of all the FSAs.

Let \mathbb{V} be an infinite set of 'vertices'. Endow $\mathcal{A}^{\mathbb{V}}$ with the Cantor topology. Let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Let $\Phi : \mathcal{X} \longrightarrow \mathcal{X}$ be a continuous function. We will call the triple $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ a *symbolic dynamical system*. **Examples.**

- ▶ Subshift. V = Z or N; Φ =shift map; \mathcal{X} =shift-invariant subset.
- Cellular automaton. V = Z^D × N^d (or some group/monoid);
 X = A^V, and Φ commutes with all shifts.
- ▶ *p*-ary odometer. $\mathbb{V} = \mathbb{N}$; $\mathcal{A} = \mathbb{Z}_{/p}$; $\mathcal{X} = \mathcal{A}^{\mathbb{N}}$; Φ =successor map.
- Automaton network. \mathbb{V} is a directed graph, in which all vertices have finite in-degree. Each vertex has a finite state automaton (FSA) with statespace \mathcal{A} , which takes input from all its neighbours in the digraph. The map Φ encodes the simultaneous updating of all the FSAs.

In fact, we shall now see that *any* symbolic dynamical system can be seen as an automaton network.

Let $\mathbf{x} \in \mathcal{A}^{\mathbb{V}}$ and let $\mathbb{B} \subseteq \mathbb{V}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $\mathbf{x} \in \mathcal{A}^{\mathbb{V}}$ and let $\mathbb{B} \subseteq \mathbb{V}$. We define $\mathbf{x}_{\mathbb{B}} := [x_b]_{b \in \mathbb{B}}$ (an element of $\mathcal{A}^{\mathbb{B}}$).

Let $\mathbf{x} \in \mathcal{A}^{\mathbb{V}}$ and let $\mathbb{B} \subseteq \mathbb{V}$. We define $\mathbf{x}_{\mathbb{B}} := [x_b]_{b \in \mathbb{B}}$ (an element of $\mathcal{A}^{\mathbb{B}}$). Lemma. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system.

Let $\mathbf{x} \in \mathcal{A}^{\mathbb{V}}$ and let $\mathbb{B} \subseteq \mathbb{V}$. We define $\mathbf{x}_{\mathbb{B}} := [x_b]_{b \in \mathbb{B}}$ (an element of $\mathcal{A}^{\mathbb{B}}$). Lemma. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system. For all $\mathbf{v} \in \mathbb{V}$, there exists a finite subset $\mathbb{B}(\mathbf{v}, 1) \subseteq \mathbb{V}$ (the input neighbourhood for \mathbf{v}) and a function $\phi_{\mathbf{v}} : \mathcal{A}^{\mathbb{B}(\mathbf{v},1)} \longrightarrow \mathcal{A}$ (the local rule at \mathbf{v}), such that for all $\mathbf{x} \in \mathcal{X}$, we have

Let $\mathbf{x} \in \mathcal{A}^{\mathbb{V}}$ and let $\mathbb{B} \subseteq \mathbb{V}$. We define $\mathbf{x}_{\mathbb{B}} := [x_b]_{b \in \mathbb{B}}$ (an element of $\mathcal{A}^{\mathbb{B}}$). Lemma. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system. For all $v \in \mathbb{V}$, there exists a finite subset $\mathbb{B}(v, 1) \subseteq \mathbb{V}$ (the input neighbourhood for v) and a function $\phi_v : \mathcal{A}^{\mathbb{B}(v,1)} \longrightarrow \mathcal{A}$ (the local rule at v), such that for all $\mathbf{x} \in \mathcal{X}$, we have $\Phi(\mathbf{x})_v = \phi_v(\mathbf{x}_{\mathbb{B}(v,1)})$.

Let $\mathbf{x} \in \mathcal{A}^{\mathbb{V}}$ and let $\mathbb{B} \subseteq \mathbb{V}$. We define $\mathbf{x}_{\mathbb{B}} := [x_b]_{b \in \mathbb{B}}$ (an element of $\mathcal{A}^{\mathbb{B}}$). Lemma. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system. For all $\mathbf{v} \in \mathbb{V}$, there exists a finite subset $\mathbb{B}(\mathbf{v}, 1) \subseteq \mathbb{V}$ (the input neighbourhood for \mathbf{v}) and a function $\phi_{\mathbf{v}} : \mathcal{A}^{\mathbb{B}(\mathbf{v}, 1)} \longrightarrow \mathcal{A}$ (the local rule at \mathbf{v}), such that for all $\mathbf{x} \in \mathcal{X}$, we have $\Phi(\mathbf{x})_{\mathbf{v}} = \phi_{\mathbf{v}} (\mathbf{x}_{\mathbb{B}(\mathbf{v}, 1)})$.

Example. If $\Phi : \mathcal{A}^{\mathbb{Z}^{D}} \longrightarrow \mathcal{A}^{\mathbb{Z}^{D}}$ is a cellular automaton, then this is just the Curtis-Hedlund-Lyndon Theorem.

Let $\mathbf{x} \in \mathcal{A}^{\mathbb{V}}$ and let $\mathbb{B} \subseteq \mathbb{V}$. We define $\mathbf{x}_{\mathbb{B}} := [x_b]_{b \in \mathbb{B}}$ (an element of $\mathcal{A}^{\mathbb{B}}$). Lemma. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system. For all $\mathbf{v} \in \mathbb{V}$, there exists a finite subset $\mathbb{B}(\mathbf{v}, 1) \subseteq \mathbb{V}$ (the input neighbourhood for \mathbf{v}) and a function $\phi_{\mathbf{v}} : \mathcal{A}^{\mathbb{B}(\mathbf{v}, 1)} \longrightarrow \mathcal{A}$ (the local rule at \mathbf{v}), such that for all $\mathbf{x} \in \mathcal{X}$, we have $\Phi(\mathbf{x})_{\mathbf{v}} = \phi_{\mathbf{v}} (\mathbf{x}_{\mathbb{B}(\mathbf{v}, 1)})$.

Example. If $\Phi : \mathcal{A}^{\mathbb{Z}^{D}} \longrightarrow \mathcal{A}^{\mathbb{Z}^{D}}$ is a cellular automaton, then this is just the Curtis-Hedlund-Lyndon Theorem.

For any $v, w \in \mathbb{V}$, write $v \leftrightarrow w$ if $v \in \mathbb{B}(w, 1)$.

Let $\mathbf{x} \in \mathcal{A}^{\mathbb{V}}$ and let $\mathbb{B} \subseteq \mathbb{V}$. We define $\mathbf{x}_{\mathbb{B}} := [x_b]_{b \in \mathbb{B}}$ (an element of $\mathcal{A}^{\mathbb{B}}$). Lemma. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system. For all $\mathbf{v} \in \mathbb{V}$, there exists a finite subset $\mathbb{B}(\mathbf{v}, 1) \subseteq \mathbb{V}$ (the input neighbourhood for \mathbf{v}) and a function $\phi_{\mathbf{v}} : \mathcal{A}^{\mathbb{B}(\mathbf{v}, 1)} \longrightarrow \mathcal{A}$ (the local rule at \mathbf{v}), such that for all $\mathbf{x} \in \mathcal{X}$, we have $\Phi(\mathbf{x})_{\mathbf{v}} = \phi_{\mathbf{v}} (\mathbf{x}_{\mathbb{B}(\mathbf{v}, 1)})$.

Example. If $\Phi : \mathcal{A}^{\mathbb{Z}^{D}} \longrightarrow \mathcal{A}^{\mathbb{Z}^{D}}$ is a cellular automaton, then this is just the Curtis-Hedlund-Lyndon Theorem.

For any $v, w \in V$, write $v \leftrightarrow w$ if $v \in \mathbb{B}(w, 1)$. This defines a directed graph structure on V, called the *network* of Φ .

Let $\mathbf{x} \in \mathcal{A}^{\mathbb{V}}$ and let $\mathbb{B} \subseteq \mathbb{V}$. We define $\mathbf{x}_{\mathbb{B}} := [x_b]_{b \in \mathbb{B}}$ (an element of $\mathcal{A}^{\mathbb{B}}$). Lemma. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system. For all $v \in \mathbb{V}$, there exists a finite subset $\mathbb{B}(v, 1) \subseteq \mathbb{V}$ (the input neighbourhood for v) and a function $\phi_v : \mathcal{A}^{\mathbb{B}(v,1)} \longrightarrow \mathcal{A}$ (the local rule at v), such that for all $\mathbf{x} \in \mathcal{X}$, we have $\Phi(\mathbf{x})_v = \phi_v (\mathbf{x}_{\mathbb{B}(v,1)})$.

Example. If $\Phi : \mathcal{A}^{\mathbb{Z}^{D}} \longrightarrow \mathcal{A}^{\mathbb{Z}^{D}}$ is a cellular automaton, then this is just the Curtis-Hedlund-Lyndon Theorem.

For any $v, w \in V$, write $v \leftrightarrow w$ if $v \in \mathbb{B}(w, 1)$. This defines a directed graph structure on V, called the *network* of Φ . **Example.** The network of a subshift on $\mathcal{A}^{\mathbb{N}}$.

Let $\mathbf{x} \in \mathcal{A}^{\mathbb{V}}$ and let $\mathbb{B} \subseteq \mathbb{V}$. We define $\mathbf{x}_{\mathbb{B}} := [x_b]_{b \in \mathbb{B}}$ (an element of $\mathcal{A}^{\mathbb{B}}$). Lemma. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system. For all $v \in \mathbb{V}$, there exists a finite subset $\mathbb{B}(v, 1) \subseteq \mathbb{V}$ (the input neighbourhood for v) and a function $\phi_v : \mathcal{A}^{\mathbb{B}(v,1)} \longrightarrow \mathcal{A}$ (the local rule at v), such that for all $\mathbf{x} \in \mathcal{X}$, we have $\Phi(\mathbf{x})_v = \phi_v (\mathbf{x}_{\mathbb{B}(v,1)})$.

Example. If $\Phi : \mathcal{A}^{\mathbb{Z}^{D}} \longrightarrow \mathcal{A}^{\mathbb{Z}^{D}}$ is a cellular automaton, then this is just the Curtis-Hedlund-Lyndon Theorem.

For any $v, w \in \mathbb{V}$, write $v \leftrightarrow w$ if $v \in \mathbb{B}(w, 1)$. This defines a directed graph structure on \mathbb{V} , called the *network* of Φ . **Example.** The network of a subshift on $\mathcal{A}^{\mathbb{Z}}$.

Let $\mathbf{x} \in \mathcal{A}^{\mathbb{V}}$ and let $\mathbb{B} \subseteq \mathbb{V}$. We define $\mathbf{x}_{\mathbb{B}} := [x_b]_{b \in \mathbb{B}}$ (an element of $\mathcal{A}^{\mathbb{B}}$). Lemma. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system. For all $\mathbf{v} \in \mathbb{V}$, there exists a finite subset $\mathbb{B}(\mathbf{v}, 1) \subseteq \mathbb{V}$ (the input neighbourhood for \mathbf{v}) and a function $\phi_{\mathbf{v}} : \mathcal{A}^{\mathbb{B}(\mathbf{v}, 1)} \longrightarrow \mathcal{A}$ (the local rule at \mathbf{v}), such that for all $\mathbf{x} \in \mathcal{X}$, we have $\Phi(\mathbf{x})_{\mathbf{v}} = \phi_{\mathbf{v}} (\mathbf{x}_{\mathbb{B}(\mathbf{v}, 1)})$.

Example. If $\Phi : \mathcal{A}^{\mathbb{Z}^{D}} \longrightarrow \mathcal{A}^{\mathbb{Z}^{D}}$ is a cellular automaton, then this is just the Curtis-Hedlund-Lyndon Theorem.

For any $v, w \in V$, write $v \leftrightarrow w$ if $v \in \mathbb{B}(w, 1)$. This defines a directed graph structure on V, called the *network* of Φ .

Example. The network of CA on \mathbb{Z}^2 (von Neumann neighbourhood)

Let $\mathbf{x} \in \mathcal{A}^{\mathbb{V}}$ and let $\mathbb{B} \subseteq \mathbb{V}$. We define $\mathbf{x}_{\mathbb{B}} := [x_b]_{b \in \mathbb{B}}$ (an element of $\mathcal{A}^{\mathbb{B}}$). Lemma. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system. For all $v \in \mathbb{V}$, there exists a finite subset $\mathbb{B}(v, 1) \subseteq \mathbb{V}$ (the input neighbourhood for v) and a function $\phi_v : \mathcal{A}^{\mathbb{B}(v,1)} \longrightarrow \mathcal{A}$ (the local rule at v), such that for all $\mathbf{x} \in \mathcal{X}$, we have $\Phi(\mathbf{x})_v = \phi_v \left(\mathbf{x}_{\mathbb{B}(v,1)}\right)$.

Example. If $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$ is a cellular automaton, then this is just the Curtis-Hedlund-Lyndon Theorem.

For any $v, w \in V$, write $v \leftrightarrow w$ if $v \in \mathbb{B}(w, 1)$. This defines a directed graph structure on V, called the *network* of Φ .

Example. The network of cellular automaton on \mathbb{Z}^2 (Moore neighbourhood)

Let $\mathbf{x} \in \mathcal{A}^{\mathbb{V}}$ and let $\mathbb{B} \subseteq \mathbb{V}$. We define $\mathbf{x}_{\mathbb{B}} := [x_b]_{b \in \mathbb{B}}$ (an element of $\mathcal{A}^{\mathbb{B}}$). Lemma. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system. For all $\mathbf{v} \in \mathbb{V}$, there exists a finite subset $\mathbb{B}(\mathbf{v}, 1) \subseteq \mathbb{V}$ (the input neighbourhood for \mathbf{v}) and a function $\phi_{\mathbf{v}} : \mathcal{A}^{\mathbb{B}(\mathbf{v}, 1)} \longrightarrow \mathcal{A}$ (the local rule at \mathbf{v}), such that for all $\mathbf{x} \in \mathcal{X}$, we have $\Phi(\mathbf{x})_{\mathbf{v}} = \phi_{\mathbf{v}} (\mathbf{x}_{\mathbb{B}(\mathbf{v}, 1)})$.

Example. If $\Phi : \mathcal{A}^{\mathbb{Z}^{D}} \longrightarrow \mathcal{A}^{\mathbb{Z}^{D}}$ is a cellular automaton, then this is just the Curtis-Hedlund-Lyndon Theorem.

For any $v, w \in V$, write $v \leftrightarrow w$ if $v \in \mathbb{B}(w, 1)$. This defines a directed graph structure on V, called the *network* of Φ .

Example. The network of an odometer.

Network Dimension

(5/21)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$\text{For any } \mathbb{U} \subset \mathbb{V} \text{, define } \mathbb{B}(\mathbb{U},1) := \mathbb{U} \cup \{ v \in \mathbb{V} \text{ ; } \exists \ u \in \mathbb{U} : \ v \bullet \hspace{-0.5mm} \rightarrow \hspace{-0.5mm} u \}.$

Network Dimension

(5/21)

For any $\mathbb{U} \subset \mathbb{V}$, define $\mathbb{B}(\mathbb{U}, 1) := \mathbb{U} \cup \{ v \in \mathbb{V} ; \exists u \in \mathbb{U} : v \leftrightarrow u \}$. Then inductively define $\mathbb{B}(\mathbb{U}, n+1) := \mathbb{B}(\mathbb{B}(\mathbb{U}, n), 1)$ for all $n \in \mathbb{N}$.
(5/21)

For any $\mathbb{U} \subset \mathbb{V}$, define $\mathbb{B}(\mathbb{U}, 1) := \mathbb{U} \cup \{ v \in \mathbb{V} ; \exists u \in \mathbb{U} : v \leftrightarrow u \}$. Then inductively define $\mathbb{B}(\mathbb{U}, n+1) := \mathbb{B}(\mathbb{B}(\mathbb{U}, n), 1)$ for all $n \in \mathbb{N}$. If $v \in \mathbb{V}$, then $\mathbb{B}(v, r)$ is the set of all $w \in \mathbb{V}$ such that there exists a directed path $w = v_1 \leftrightarrow v_2 \leftrightarrow \cdots \leftrightarrow v_s = v$ with $s \leq r$.

(5/21)

For any $\mathbb{U} \subset \mathbb{V}$, define $\mathbb{B}(\mathbb{U}, 1) := \mathbb{U} \cup \{ v \in \mathbb{V} ; \exists u \in \mathbb{U} : v \leftrightarrow u \}$. Then inductively define $\mathbb{B}(\mathbb{U}, n+1) := \mathbb{B}(\mathbb{B}(\mathbb{U}, n), 1)$ for all $n \in \mathbb{N}$. If $v \in \mathbb{V}$, then $\mathbb{B}(v, r)$ is the set of all $w \in \mathbb{V}$ such that there exists a directed path $w = v_1 \leftrightarrow v_2 \leftrightarrow \cdots \leftrightarrow v_s = v$ with $s \leq r$.

Define
$$\underline{\dim}_{\mathsf{v}}(\mathbb{V}, \bullet) := \liminf_{r \to \infty} \frac{\log |\mathbb{B}(\mathsf{v}, r)|}{\log(r)}$$
 ("lower dimension")

(5/21)

For any $\mathbb{U} \subset \mathbb{V}$, define $\mathbb{B}(\mathbb{U}, 1) := \mathbb{U} \cup \{v \in \mathbb{V} ; \exists u \in \mathbb{U} : v \leftrightarrow u\}$. Then inductively define $\mathbb{B}(\mathbb{U}, n+1) := \mathbb{B}(\mathbb{B}(\mathbb{U}, n), 1)$ for all $n \in \mathbb{N}$. If $v \in \mathbb{V}$, then $\mathbb{B}(v, r)$ is the set of all $w \in \mathbb{V}$ such that there exists a directed path $w = v_1 \leftrightarrow v_2 \leftrightarrow \cdots \leftrightarrow v_s = v$ with $s \leq r$.

$$\begin{array}{rcl} \text{Define} & \underline{\dim}_{\mathsf{v}}(\mathbb{V}, \, \bullet) & := & \liminf_{r \to \infty} \ \frac{\log |\mathbb{B}(\mathsf{v}, r)|}{\log(r)} & (\text{``lower dimension''}\,) \\ \text{and} & \overline{\dim}_{\mathsf{v}}(\mathbb{V}, \, \bullet) & := & \limsup_{r \to \infty} \ \frac{\log |\mathbb{B}(\mathsf{v}, r)|}{\log(r)} & (\text{``upper dimension''}\,). \end{array}$$

(5/21)

For any $\mathbb{U} \subset \mathbb{V}$, define $\mathbb{B}(\mathbb{U}, 1) := \mathbb{U} \cup \{v \in \mathbb{V} ; \exists u \in \mathbb{U} : v \leftrightarrow u\}$. Then inductively define $\mathbb{B}(\mathbb{U}, n+1) := \mathbb{B}(\mathbb{B}(\mathbb{U}, n), 1)$ for all $n \in \mathbb{N}$. If $v \in \mathbb{V}$, then $\mathbb{B}(v, r)$ is the set of all $w \in \mathbb{V}$ such that there exists a directed path $w = v_1 \leftrightarrow v_2 \leftrightarrow \cdots \leftrightarrow v_s = v$ with $s \leq r$.

If $\underline{\dim}_{\mathsf{v}}(\mathbb{V}, \bullet) = \overline{\dim}_{\mathsf{v}}(\mathbb{V}, \bullet)$, then denote common value by $\dim_{\mathsf{v}}(\mathbb{V}, \bullet)$.

(5/21)

For any $\mathbb{U} \subset \mathbb{V}$, define $\mathbb{B}(\mathbb{U}, 1) := \mathbb{U} \cup \{v \in \mathbb{V} ; \exists u \in \mathbb{U} : v \leftrightarrow u\}$. Then inductively define $\mathbb{B}(\mathbb{U}, n+1) := \mathbb{B}(\mathbb{B}(\mathbb{U}, n), 1)$ for all $n \in \mathbb{N}$. If $v \in \mathbb{V}$, then $\mathbb{B}(v, r)$ is the set of all $w \in \mathbb{V}$ such that there exists a directed path $w = v_1 \leftrightarrow v_2 \leftrightarrow \cdots \leftrightarrow v_s = v$ with $s \leq r$.

 $\begin{array}{lll} \text{Define} & \underline{\dim}_{\mathsf{v}}(\mathbb{V}, \bullet) & := & \liminf_{r \to \infty} \; \frac{\log |\mathbb{B}(\mathsf{v}, r)|}{\log(r)} & (\text{``lower dimension''}\,) \\ & \text{and} & \overline{\dim}_{\mathsf{v}}(\mathbb{V}, \bullet) & := & \limsup_{r \to \infty} \; \frac{\log |\mathbb{B}(\mathsf{v}, r)|}{\log(r)} & (\text{``upper dimension''}\,). \end{array}$

 $\text{Define} \quad \overline{\dim}(\mathbb{V}, \bullet) \ := \ \sup \big\{ \overline{\dim}_v(\mathbb{V}, \bullet) \ ; \ v \in \mathbb{V} \big\}; \\$

(5/21)

For any $\mathbb{U} \subset \mathbb{V}$, define $\mathbb{B}(\mathbb{U}, 1) := \mathbb{U} \cup \{v \in \mathbb{V} ; \exists u \in \mathbb{U} : v \leftrightarrow u\}$. Then inductively define $\mathbb{B}(\mathbb{U}, n+1) := \mathbb{B}(\mathbb{B}(\mathbb{U}, n), 1)$ for all $n \in \mathbb{N}$. If $v \in \mathbb{V}$, then $\mathbb{B}(v, r)$ is the set of all $w \in \mathbb{V}$ such that there exists a directed path $w = v_1 \leftrightarrow v_2 \leftrightarrow \cdots \leftrightarrow v_s = v$ with $s \leq r$.

If $\underline{\dim}_{v}(\mathbb{V}, \bullet) = \overline{\dim}_{v}(\mathbb{V}, \bullet)$, then denote common value by $\dim_{v}(\mathbb{V}, \bullet)$. Define $\overline{\dim}(\mathbb{V}, \bullet) := \sup \{\overline{\dim}_{v}(\mathbb{V}, \bullet) ; v \in \mathbb{V}\};$ and $\underline{\dim}(\mathbb{V}, \bullet) := \inf \{\underline{\dim}_{v}(\mathbb{V}, \bullet) ; v \in \mathbb{V}\}.$

(5/21)

For any $\mathbb{U} \subset \mathbb{V}$, define $\mathbb{B}(\mathbb{U}, 1) := \mathbb{U} \cup \{v \in \mathbb{V} ; \exists u \in \mathbb{U} : v \leftrightarrow u\}$. Then inductively define $\mathbb{B}(\mathbb{U}, n+1) := \mathbb{B}(\mathbb{B}(\mathbb{U}, n), 1)$ for all $n \in \mathbb{N}$. If $v \in \mathbb{V}$, then $\mathbb{B}(v, r)$ is the set of all $w \in \mathbb{V}$ such that there exists a directed path $w = v_1 \leftrightarrow v_2 \leftrightarrow \cdots \leftrightarrow v_s = v$ with $s \leq r$.

If $\underline{\dim}_{v}(\mathbb{V}, \bullet) = \overline{\dim}_{v}(\mathbb{V}, \bullet)$, then denote common value by $\dim_{v}(\mathbb{V}, \bullet)$. Define $\overline{\dim}(\mathbb{V}, \bullet) := \sup \{\overline{\dim}_{v}(\mathbb{V}, \bullet) ; v \in \mathbb{V}\};$ and $\underline{\dim}(\mathbb{V}, \bullet) := \inf \{\underline{\dim}_{v}(\mathbb{V}, \bullet) ; v \in \mathbb{V}\}.$

If $\underline{\dim}(\mathbb{V}, \bullet) = \overline{\dim}(\mathbb{V}, \bullet)$, then denote common value by $\underline{\dim}(\mathbb{V}, \bullet)$.

(5/21)

For any $\mathbb{U} \subset \mathbb{V}$, define $\mathbb{B}(\mathbb{U}, 1) := \mathbb{U} \cup \{v \in \mathbb{V} ; \exists u \in \mathbb{U} : v \leftrightarrow u\}$. Then inductively define $\mathbb{B}(\mathbb{U}, n+1) := \mathbb{B}(\mathbb{B}(\mathbb{U}, n), 1)$ for all $n \in \mathbb{N}$. If $v \in \mathbb{V}$, then $\mathbb{B}(v, r)$ is the set of all $w \in \mathbb{V}$ such that there exists a directed path $w = v_1 \leftrightarrow v_2 \leftrightarrow \cdots \leftrightarrow v_s = v$ with $s \leq r$.

$$\text{ and } \underline{\dim}(\mathbb{V}, \, \bullet \!) \ := \ \inf \, \{ \underline{\dim}_v(\mathbb{V}, \, \bullet \!) \ ; \ v \in \mathbb{V} \}.$$

If $\underline{\dim}(\mathbb{V}, \bullet) = \overline{\dim}(\mathbb{V}, \bullet)$, then denote common value by $\dim(\mathbb{V}, \bullet)$. **Example.** If $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$ is a CA, then $\dim(\mathbb{Z}^D, \bullet) = D$.

(5/21)

For any $\mathbb{U} \subset \mathbb{V}$, define $\mathbb{B}(\mathbb{U}, 1) := \mathbb{U} \cup \{v \in \mathbb{V} ; \exists u \in \mathbb{U} : v \leftrightarrow u\}$. Then inductively define $\mathbb{B}(\mathbb{U}, n+1) := \mathbb{B}(\mathbb{B}(\mathbb{U}, n), 1)$ for all $n \in \mathbb{N}$. If $v \in \mathbb{V}$, then $\mathbb{B}(v, r)$ is the set of all $w \in \mathbb{V}$ such that there exists a directed path $w = v_1 \leftrightarrow v_2 \leftrightarrow \cdots \leftrightarrow v_s = v$ with $s \leq r$.

If $\underline{\dim}_{v}(\mathbb{V}, \bullet) = \overline{\dim}_{v}(\mathbb{V}, \bullet)$, then denote common value by $\dim_{v}(\mathbb{V}, \bullet)$.

$$\begin{array}{rcl} \text{Define} & \overline{\dim}(\mathbb{V}, \bullet) & := & \sup \left\{ \overline{\dim}_v(\mathbb{V}, \bullet) \; ; \; v \in \mathbb{V} \right\}; \\ \text{and} & \underline{\dim}(\mathbb{V}, \bullet) & := & \inf \left\{ \underline{\dim}_v(\mathbb{V}, \bullet) \; ; \; v \in \mathbb{V} \right\}. \end{array}$$

If $\underline{\dim}(\mathbb{V}, \bullet) = \overline{\dim}(\mathbb{V}, \bullet)$, then denote common value by $\dim(\mathbb{V}, \bullet)$. **Example.** If $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$ is a CA, then $\dim(\mathbb{Z}^D, \bullet) = D$. More generally, if \mathbb{G} is a group, and $\Phi : \mathcal{A}^{\mathbb{G}} \longrightarrow \mathcal{A}^{\mathbb{G}}$ is a CA, then $\dim(\mathbb{G}, \bullet) =$ the dimension of the group \mathbb{G} .

(6/21)

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset.

(6/21)

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. For any $\mathbb{B} \subseteq \mathbb{V}$, define $\mathcal{X}_{\mathbb{B}} := \{\mathbf{x}_{\mathbb{B}}; \mathbf{x} \in \mathcal{X}\}.$

(6/21)

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. For any $\mathbb{B} \subseteq \mathbb{V}$, define $\mathcal{X}_{\mathbb{B}} := \{\mathbf{x}_{\mathbb{B}}; \mathbf{x} \in \mathcal{X}\}$. For any $\mathbf{v} \in \mathbb{V}$, we define:

$$\underline{h}_{\mathsf{v}}(\mathcal{X}) := \liminf_{r \to \infty} \frac{\log_2 |\mathcal{X}_{\mathbb{B}(\mathsf{v},r)}|}{|\mathbb{B}(\mathsf{v},r)|} \quad (\text{``lower topological entropy''})$$

(6/21)

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. For any $\mathbb{B} \subseteq \mathbb{V}$, define $\mathcal{X}_{\mathbb{B}} := \{\mathbf{x}_{\mathbb{B}}; \mathbf{x} \in \mathcal{X}\}$. For any $\mathbf{v} \in \mathbb{V}$, we define:

$$\begin{split} \underline{h}_{\mathsf{v}}(\mathcal{X}) &:= \liminf_{r \to \infty} \frac{\log_2 |\mathcal{X}_{\mathbb{B}(\mathsf{v},r)}|}{|\mathbb{B}(\mathsf{v},r)|} \quad (\text{``lower topological entropy''}) \\ \text{and} \quad \overline{h}_{\mathsf{v}}(\mathcal{X}) &:= \limsup_{r \to \infty} \frac{\log_2 |\mathcal{X}_{\mathbb{B}(\mathsf{v},r)}|}{|\mathbb{B}(\mathsf{v},r)|} \quad (\text{``upper topological entropy''}). \end{split}$$

(6/21)

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. For any $\mathbb{B} \subseteq \mathbb{V}$, define $\mathcal{X}_{\mathbb{B}} := \{\mathbf{x}_{\mathbb{B}}; \mathbf{x} \in \mathcal{X}\}$. For any $\mathbf{v} \in \mathbb{V}$, we define:

$$\begin{array}{lll} \underline{h}_{\mathsf{v}}(\mathcal{X}) & := & \liminf_{r \to \infty} \frac{\log_2 |\mathcal{X}_{\mathbb{B}(\mathsf{v},r)}|}{|\mathbb{B}(\mathsf{v},r)|} & (\text{``lower topological entropy''}) \\ \text{and} & \overline{h}_{\mathsf{v}}(\mathcal{X}) & := & \limsup_{r \to \infty} \frac{\log_2 |\mathcal{X}_{\mathbb{B}(\mathsf{v},r)}|}{|\mathbb{B}(\mathsf{v},r)|} & (\text{``upper topological entropy''}). \end{array}$$

Clearly, $0 \leq \underline{h}_{\mathsf{v}}(\mathcal{X}) \leq \overline{h}_{\mathsf{v}}(\mathcal{X}) \leq \log_2 |\mathcal{A}|.$

(6/21)

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. For any $\mathbb{B} \subseteq \mathbb{V}$, define $\mathcal{X}_{\mathbb{B}} := \{\mathbf{x}_{\mathbb{B}}; \mathbf{x} \in \mathcal{X}\}$. For any $\mathbf{v} \in \mathbb{V}$, we define:

$$\begin{array}{lll} \underline{h}_{\mathsf{v}}(\mathcal{X}) & := & \liminf_{r \to \infty} \frac{\log_2 |\mathcal{X}_{\mathbb{B}(\mathsf{v},r)}|}{|\mathbb{B}(\mathsf{v},r)|} & (\text{``lower topological entropy''}) \\ \text{and} & \overline{h}_{\mathsf{v}}(\mathcal{X}) & := & \limsup_{r \to \infty} \frac{\log_2 |\mathcal{X}_{\mathbb{B}(\mathsf{v},r)}|}{|\mathbb{B}(\mathsf{v},r)|} & (\text{``upper topological entropy''}). \end{array}$$

Clearly, $0 \leq \underline{h}_{v}(\mathcal{X}) \leq \overline{h}_{v}(\mathcal{X}) \leq \log_{2} |\mathcal{A}|$. We define

$$\underline{h}(\mathcal{X}) := \inf_{\mathsf{v}\in\mathbb{V}} \underline{h}_{\mathsf{v}}(\mathcal{X})$$

(6/21)

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. For any $\mathbb{B} \subseteq \mathbb{V}$, define $\mathcal{X}_{\mathbb{B}} := \{\mathbf{x}_{\mathbb{B}}; \mathbf{x} \in \mathcal{X}\}$. For any $\mathbf{v} \in \mathbb{V}$, we define:

$$\begin{split} \underline{h}_{\mathsf{v}}(\mathcal{X}) &:= \lim \inf_{r \to \infty} \frac{\log_2 |\mathcal{X}_{\mathbb{B}(\mathsf{v},r)}|}{|\mathbb{B}(\mathsf{v},r)|} \quad (\text{``lower topological entropy''}) \\ \text{and} \quad \overline{h}_{\mathsf{v}}(\mathcal{X}) &:= \lim \sup_{r \to \infty} \frac{\log_2 |\mathcal{X}_{\mathbb{B}(\mathsf{v},r)}|}{|\mathbb{B}(\mathsf{v},r)|} \quad (\text{``upper topological entropy''}). \end{split}$$

Clearly, $0 \leq \underline{h}_{v}(\mathcal{X}) \leq \overline{h}_{v}(\mathcal{X}) \leq \log_{2} |\mathcal{A}|$. We define

$$\underline{h}(\mathcal{X}) := \inf_{\mathsf{v} \in \mathbb{V}} \underline{h}_{\mathsf{v}}(\mathcal{X}) \text{ and } \overline{h}(\mathcal{X}) := \sup_{\mathsf{v} \in \mathbb{V}} \overline{h}_{\mathsf{v}}(\mathcal{X}).$$

(6/21)

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. For any $\mathbb{B} \subseteq \mathbb{V}$, define $\mathcal{X}_{\mathbb{B}} := \{\mathbf{x}_{\mathbb{B}}; \mathbf{x} \in \mathcal{X}\}$. For any $\mathbf{v} \in \mathbb{V}$, we define:

$$\begin{array}{lll} \underline{h}_{\mathsf{v}}(\mathcal{X}) & := & \displaystyle \liminf_{r \to \infty} \frac{\log_2 |\mathcal{X}_{\mathbb{B}(\mathsf{v},r)}|}{|\mathbb{B}(\mathsf{v},r)|} & (\text{``lower topological entropy''}) \\ \text{and} & \overline{h}_{\mathsf{v}}(\mathcal{X}) & := & \displaystyle \limsup_{r \to \infty} \frac{\log_2 |\mathcal{X}_{\mathbb{B}(\mathsf{v},r)}|}{|\mathbb{B}(\mathsf{v},r)|} & (\text{``upper topological entropy''}). \end{array}$$

Clearly, $0 \leq \underline{h}_{v}(\mathcal{X}) \leq \overline{h}_{v}(\mathcal{X}) \leq \log_{2} |\mathcal{A}|$. We define

$$\underline{h}(\mathcal{X}) := \inf_{\mathsf{v} \in \mathbb{V}} \underline{h}_{\mathsf{v}}(\mathcal{X}) \text{ and } \overline{h}(\mathcal{X}) := \sup_{\mathsf{v} \in \mathbb{V}} \overline{h}_{\mathsf{v}}(\mathcal{X}).$$

If $\underline{h}(\mathcal{X}) = \overline{h}(\mathcal{X})$, then we denote their common value by $\underline{h}(\mathcal{X})$.

(6/21)

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. For any $\mathbb{B} \subseteq \mathbb{V}$, define $\mathcal{X}_{\mathbb{B}} := \{\mathbf{x}_{\mathbb{B}}; \mathbf{x} \in \mathcal{X}\}$. For any $\mathbf{v} \in \mathbb{V}$, we define:

$$\begin{array}{lll} \underline{h}_{\mathsf{v}}(\mathcal{X}) & := & \displaystyle \liminf_{r \to \infty} \frac{\log_2 |\mathcal{X}_{\mathbb{B}(\mathsf{v},r)}|}{|\mathbb{B}(\mathsf{v},r)|} & (\text{``lower topological entropy''}) \\ \text{and} & \overline{h}_{\mathsf{v}}(\mathcal{X}) & := & \displaystyle \limsup_{r \to \infty} \frac{\log_2 |\mathcal{X}_{\mathbb{B}(\mathsf{v},r)}|}{|\mathbb{B}(\mathsf{v},r)|} & (\text{``upper topological entropy''}). \end{array}$$

Clearly, $0 \leq \underline{h}_{v}(\mathcal{X}) \leq \overline{h}_{v}(\mathcal{X}) \leq \log_{2} |\mathcal{A}|$. We define

$$\underline{h}(\mathcal{X}) \ := \ \inf_{\mathsf{v} \in \mathbb{V}} \ \underline{h}_{\mathsf{v}}(\mathcal{X}) \quad \text{and} \quad \overline{h}(\mathcal{X}) \ := \ \sup_{\mathsf{v} \in \mathbb{V}} \ \overline{h}_{\mathsf{v}}(\mathcal{X}).$$

If $\underline{h}(\mathcal{X}) = \overline{h}(\mathcal{X})$, then we denote their common value by $h(\mathcal{X})$. Example. (a) $h(\mathcal{A}^{\mathbb{V}}) = \log_2 |\mathcal{A}|$.

(6/21)

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. For any $\mathbb{B} \subseteq \mathbb{V}$, define $\mathcal{X}_{\mathbb{B}} := \{\mathbf{x}_{\mathbb{B}}; \mathbf{x} \in \mathcal{X}\}$. For any $\mathbf{v} \in \mathbb{V}$, we define:

$$\begin{array}{lll} \underline{h}_{\mathsf{v}}(\mathcal{X}) & := & \displaystyle \liminf_{r \to \infty} \frac{\log_2 |\mathcal{X}_{\mathbb{B}(\mathsf{v},r)}|}{|\mathbb{B}(\mathsf{v},r)|} & (\text{``lower topological entropy''}) \\ \text{and} & \overline{h}_{\mathsf{v}}(\mathcal{X}) & := & \displaystyle \limsup_{r \to \infty} \frac{\log_2 |\mathcal{X}_{\mathbb{B}(\mathsf{v},r)}|}{|\mathbb{B}(\mathsf{v},r)|} & (\text{``upper topological entropy''}). \end{array}$$

Clearly, $0 \leq \underline{h}_{v}(\mathcal{X}) \leq \overline{h}_{v}(\mathcal{X}) \leq \log_{2} |\mathcal{A}|$. We define

$$\underline{h}(\mathcal{X}) \ := \ \inf_{\mathsf{v} \in \mathbb{V}} \ \underline{h}_{\mathsf{v}}(\mathcal{X}) \quad \text{and} \quad \overline{h}(\mathcal{X}) \ := \ \sup_{\mathsf{v} \in \mathbb{V}} \ \overline{h}_{\mathsf{v}}(\mathcal{X}).$$

If $\underline{h}(\mathcal{X}) = \overline{h}(\mathcal{X})$, then we denote their common value by $h(\mathcal{X})$. **Example.** (a) $h(\mathcal{A}^{\mathbb{V}}) = \log_2 |\mathcal{A}|$. (b) Suppose $\mathbb{V} = \mathbb{Z}^D$ (with Cayley digraph), and $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{Z}^D}$ is a *D*-dimensional subshift. Then $h(\mathcal{X})$ is the (*D*-dimensional) topological entropy of \mathcal{X} .

(7/21)

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset.

(7/21)

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Say that \mathcal{X} is *weakly independent* if there is some constant $\epsilon > 0$ such that, for any disjoint balls $\mathbb{B}_1, \ldots, \mathbb{B}_N \subset \mathbb{V}$,

$$\log_2 |\mathcal{X}_{\mathbb{B}_1 \sqcup \cdots \sqcup \mathbb{B}_N}| \geq \epsilon \sum_{n=1}^N \log_2 |\mathcal{X}_{\mathbb{B}_n}|.$$

(7/21)

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Say that \mathcal{X} is *weakly independent* if there is some constant $\epsilon > 0$ such that, for any disjoint balls $\mathbb{B}_1, \ldots, \mathbb{B}_N \subset \mathbb{V}$,

$$\log_2 |\mathcal{X}_{\mathbb{B}_1 \sqcup \cdots \sqcup \mathbb{B}_N}| \geq \epsilon \sum_{n=1}^N \log_2 |\mathcal{X}_{\mathbb{B}_n}|.$$

This is a 'topological mixing' condition:

(7/21)

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Say that \mathcal{X} is *weakly independent* if there is some constant $\epsilon > 0$ such that, for any disjoint balls $\mathbb{B}_1, \ldots, \mathbb{B}_N \subset \mathbb{V}$,

$$\log_2 |\mathcal{X}_{\mathbb{B}_1 \sqcup \cdots \sqcup \mathbb{B}_N}| \geq \epsilon \sum_{n=1}^N \log_2 |\mathcal{X}_{\mathbb{B}_n}|.$$

This is a 'topological mixing' condition: the information contained in balls $\mathbb{B}_1, \ldots, \mathbb{B}_{N-1}$ has limited power to predict the contents of ball \mathbb{B}_N .

(7/21)

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Say that \mathcal{X} is *weakly independent* if there is some constant $\epsilon > 0$ such that, for any disjoint balls $\mathbb{B}_1, \ldots, \mathbb{B}_N \subset \mathbb{V}$,

$$\log_2 |\mathcal{X}_{\mathbb{B}_1 \sqcup \cdots \sqcup \mathbb{B}_N}| \geq \epsilon \sum_{n=1}^N \log_2 |\mathcal{X}_{\mathbb{B}_n}|.$$

This is a 'topological mixing' condition: the information contained in balls $\mathbb{B}_1, \ldots, \mathbb{B}_{N-1}$ has limited power to predict the contents of ball \mathbb{B}_N . **Example.**

(7/21)

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Say that \mathcal{X} is *weakly independent* if there is some constant $\epsilon > 0$ such that, for any disjoint balls $\mathbb{B}_1, \ldots, \mathbb{B}_N \subset \mathbb{V}$,

$$\log_2 |\mathcal{X}_{\mathbb{B}_1 \sqcup \cdots \sqcup \mathbb{B}_N}| \geq \epsilon \sum_{n=1}^N \log_2 |\mathcal{X}_{\mathbb{B}_n}|.$$

This is a 'topological mixing' condition: the information contained in balls $\mathbb{B}_1, \ldots, \mathbb{B}_{N-1}$ has limited power to predict the contents of ball \mathbb{B}_N .

Example. For all $v \in A$, let $A_v \subseteq A$ with $|A_v| \ge 2$.

(7/21)

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Say that \mathcal{X} is *weakly independent* if there is some constant $\epsilon > 0$ such that, for any disjoint balls $\mathbb{B}_1, \ldots, \mathbb{B}_N \subset \mathbb{V}$,

$$\log_2 |\mathcal{X}_{\mathbb{B}_1 \sqcup \cdots \sqcup \mathbb{B}_N}| \geq \epsilon \sum_{n=1}^N \log_2 |\mathcal{X}_{\mathbb{B}_n}|.$$

This is a 'topological mixing' condition: the information contained in balls $\mathbb{B}_1, \ldots, \mathbb{B}_{N-1}$ has limited power to predict the contents of ball \mathbb{B}_N .

Example. For all $v \in A$, let $A_v \subseteq A$ with $|A_v| \ge 2$. Let $\mathcal{X} := \prod_{v \in \mathbb{V}} A_v \subseteq A^{\mathbb{V}}$; then $\underline{h}(\mathcal{X}) \ge 1$, and \mathcal{X} is weakly independent.

(7/21)

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Say that \mathcal{X} is *weakly independent* if there is some constant $\epsilon > 0$ such that, for any disjoint balls $\mathbb{B}_1, \ldots, \mathbb{B}_N \subset \mathbb{V}$,

$$\log_2 |\mathcal{X}_{\mathbb{B}_1 \sqcup \cdots \sqcup \mathbb{B}_N}| \geq \epsilon \sum_{n=1}^N \log_2 |\mathcal{X}_{\mathbb{B}_n}|.$$

This is a 'topological mixing' condition: the information contained in balls $\mathbb{B}_1, \ldots, \mathbb{B}_{N-1}$ has limited power to predict the contents of ball \mathbb{B}_N .

Example. For all $v \in A$, let $A_v \subseteq A$ with $|A_v| \ge 2$. Let $\mathcal{X} := \prod_{v \in \mathbb{V}} A_v \subseteq A^{\mathbb{V}}$; then $\underline{h}(\mathcal{X}) \ge 1$, and \mathcal{X} is weakly independent. In particular, the space $\mathcal{X} = A^{\mathbb{V}}$ itself is weakly independent.

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Say that \mathcal{X} is *weakly independent* if there is some constant $\epsilon > 0$ such that, for any disjoint balls $\mathbb{B}_1, \ldots, \mathbb{B}_N \subset \mathbb{V}$,

$$\log_2 |\mathcal{X}_{\mathbb{B}_1 \sqcup \cdots \sqcup \mathbb{B}_N}| \geq \epsilon \sum_{n=1}^N \log_2 |\mathcal{X}_{\mathbb{B}_n}|.$$

This is a 'topological mixing' condition: the information contained in balls $\mathbb{B}_1, \ldots, \mathbb{B}_{N-1}$ has limited power to predict the contents of ball \mathbb{B}_N .

Example. For all $v \in A$, let $A_v \subseteq A$ with $|A_v| \ge 2$. Let $\mathcal{X} := \prod_{v \in \mathbb{V}} A_v \subseteq A^{\mathbb{V}}$; then $\underline{h}(\mathcal{X}) \ge 1$, and \mathcal{X} is weakly independent. In particular, the space $\mathcal{X} = A^{\mathbb{V}}$ itself is weakly independent.

A subisometry of (\mathbb{V}, \bullet) is an injection $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ such that, for all $v, w \in \mathbb{V}$, we have $(v \bullet w) \iff (\tau(v) \bullet \tau(w))$.

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Say that \mathcal{X} is *weakly independent* if there is some constant $\epsilon > 0$ such that, for any disjoint balls $\mathbb{B}_1, \ldots, \mathbb{B}_N \subset \mathbb{V}$,

$$\log_2 |\mathcal{X}_{\mathbb{B}_1 \sqcup \cdots \sqcup \mathbb{B}_N}| \geq \epsilon \sum_{n=1}^N \log_2 |\mathcal{X}_{\mathbb{B}_n}|.$$

This is a 'topological mixing' condition: the information contained in balls $\mathbb{B}_1, \ldots, \mathbb{B}_{N-1}$ has limited power to predict the contents of ball \mathbb{B}_N .

Example. For all $v \in A$, let $A_v \subseteq A$ with $|A_v| \ge 2$. Let $\mathcal{X} := \prod_{v \in \mathbb{V}} A_v \subseteq A^{\mathbb{V}}$; then $\underline{h}(\mathcal{X}) \ge 1$, and \mathcal{X} is weakly independent. In particular, the space $\mathcal{X} = A^{\mathbb{V}}$ itself is weakly independent.

A subisometry of (\mathbb{V}, \bullet) is an injection $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ such that, for all $v, w \in \mathbb{V}$, we have $(v \bullet w) \iff (\tau(v) \bullet \tau(w))$. Thus, for all $v \in \mathbb{V}$ and r > 0, we have $\tau[\mathbb{B}(v, r)] \subseteq \mathbb{B}[\tau(v), r]$ (with equality if τ is surjective).

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Say that \mathcal{X} is *weakly independent* if there is some constant $\epsilon > 0$ such that, for any disjoint balls $\mathbb{B}_1, \ldots, \mathbb{B}_N \subset \mathbb{V}$,

$$\log_2 |\mathcal{X}_{\mathbb{B}_1 \sqcup \cdots \sqcup \mathbb{B}_N}| \geq \epsilon \sum_{n=1}^N \log_2 |\mathcal{X}_{\mathbb{B}_n}|.$$

This is a 'topological mixing' condition: the information contained in balls $\mathbb{B}_1, \ldots, \mathbb{B}_{N-1}$ has limited power to predict the contents of ball \mathbb{B}_N .

Example. For all $v \in A$, let $A_v \subseteq A$ with $|A_v| \ge 2$. Let $\mathcal{X} := \prod_{v \in \mathbb{V}} A_v \subseteq A^{\mathbb{V}}$; then $\underline{h}(\mathcal{X}) \ge 1$, and \mathcal{X} is weakly independent. In particular, the space $\mathcal{X} = A^{\mathbb{V}}$ itself is weakly independent.

A subisometry of (\mathbb{V}, \bullet) is an injection $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ such that, for all $v, w \in \mathbb{V}$, we have $(v \bullet w) \iff (\tau(v) \bullet \tau(w))$. Thus, for all $v \in \mathbb{V}$ and r > 0, we have $\tau[\mathbb{B}(v, r)] \subseteq \mathbb{B}[\tau(v), r]$ (with equality if τ is surjective). **Example.**

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Say that \mathcal{X} is *weakly independent* if there is some constant $\epsilon > 0$ such that, for any disjoint balls $\mathbb{B}_1, \ldots, \mathbb{B}_N \subset \mathbb{V}$,

$$\log_2 |\mathcal{X}_{\mathbb{B}_1 \sqcup \cdots \sqcup \mathbb{B}_N}| \geq \epsilon \sum_{n=1}^N \log_2 |\mathcal{X}_{\mathbb{B}_n}|.$$

This is a 'topological mixing' condition: the information contained in balls $\mathbb{B}_1, \ldots, \mathbb{B}_{N-1}$ has limited power to predict the contents of ball \mathbb{B}_N .

Example. For all $v \in A$, let $A_v \subseteq A$ with $|A_v| \ge 2$. Let $\mathcal{X} := \prod_{v \in \mathbb{V}} A_v \subseteq A^{\mathbb{V}}$; then $\underline{h}(\mathcal{X}) \ge 1$, and \mathcal{X} is weakly independent. In particular, the space $\mathcal{X} = A^{\mathbb{V}}$ itself is weakly independent.

A subisometry of (\mathbb{V}, \bullet) is an injection $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ such that, for all $v, w \in \mathbb{V}$, we have $(v \bullet w) \iff (\tau(v) \bullet \tau(w))$. Thus, for all $v \in \mathbb{V}$ and r > 0, we have $\tau[\mathbb{B}(v, r)] \subseteq \mathbb{B}[\tau(v), r]$ (with equality if τ is surjective). **Example.** Let (\mathbb{V}, \bullet) =Cayley digraph of a group/monoid (e.g. $\mathbb{Z}^D \times \mathbb{N}^d$).

Let (\mathbb{V}, \bullet) be a digraph, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Say that \mathcal{X} is *weakly independent* if there is some constant $\epsilon > 0$ such that, for any disjoint balls $\mathbb{B}_1, \ldots, \mathbb{B}_N \subset \mathbb{V}$,

$$\log_2 |\mathcal{X}_{\mathbb{B}_1 \sqcup \cdots \sqcup \mathbb{B}_N}| \geq \epsilon \sum_{n=1}^N \log_2 |\mathcal{X}_{\mathbb{B}_n}|.$$

This is a 'topological mixing' condition: the information contained in balls $\mathbb{B}_1, \ldots, \mathbb{B}_{N-1}$ has limited power to predict the contents of ball \mathbb{B}_N .

Example. For all $v \in A$, let $A_v \subseteq A$ with $|A_v| \ge 2$. Let $\mathcal{X} := \prod_{v \in \mathbb{V}} A_v \subseteq A^{\mathbb{V}}$; then $\underline{h}(\mathcal{X}) \ge 1$, and \mathcal{X} is weakly independent. In particular, the space $\mathcal{X} = A^{\mathbb{V}}$ itself is weakly independent.

A subisometry of (\mathbb{V}, \bullet) is an injection $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ such that, for all $v, w \in \mathbb{V}$, we have $(v \bullet w) \iff (\tau(v) \bullet \tau(w))$. Thus, for all $v \in \mathbb{V}$ and r > 0, we have $\tau[\mathbb{B}(v, r)] \subseteq \mathbb{B}[\tau(v), r]$ (with equality if τ is surjective). **Example.** Let (\mathbb{V}, \bullet) =Cayley digraph of a group/monoid (e.g. $\mathbb{Z}^D \times \mathbb{N}^d$). Fix $w \in \mathbb{V}$. Define $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ by $\tau(v) := v + w$. Then τ is a subisometry of the substant of th

(8/21)

Recall: a *subisometry* of (\mathbb{V}, \bullet) is an injection $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ such that, for all $v, w \in \mathbb{V}$, we have $(v \bullet w) \iff (\tau(v) \bullet \tau(w))$.

(8/21)

Recall: a *subisometry* of (\mathbb{V}, \bullet) is an injection $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ such that, for all $v, w \in \mathbb{V}$, we have $(v \bullet w) \iff (\tau(v) \bullet \tau(w))$.

For any $\mathbf{a} \in \mathcal{A}^{\mathbb{V}}$, define $\tau(\mathbf{a}) := \mathbf{a}'$, where $a'_{\mathsf{v}} := a_{\tau(\mathsf{v})}$ for all $\mathsf{v} \in \mathbb{V}$.

(8/21)

Recall: a *subisometry* of (\mathbb{V}, \bullet) is an injection $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ such that, for all $v, w \in \mathbb{V}$, we have $(v \bullet w) \iff (\tau(v) \bullet \tau(w))$.

For any $\mathbf{a} \in \mathcal{A}^{\mathbb{V}}$, define $\tau(\mathbf{a}) := \mathbf{a}'$, where $a'_{\mathsf{v}} := a_{\tau(\mathsf{v})}$ for all $\mathsf{v} \in \mathbb{V}$. This yields a surjection $\tau : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$.

Recall: a subisometry of (\mathbb{V}, \bullet) is an injection $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ such that, for all $v, w \in \mathbb{V}$, we have $(v \bullet w) \iff (\tau(v) \bullet \tau(w))$.

For any $\mathbf{a} \in \mathcal{A}^{\mathbb{V}}$, define $\tau(\mathbf{a}) := \mathbf{a}'$, where $a'_{\mathsf{v}} := a_{\tau(\mathsf{v})}$ for all $\mathsf{v} \in \mathbb{V}$. This yields a surjection $\tau : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$.

Let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Let $\Phi : \mathcal{X} \longrightarrow \mathcal{X}$ be a continuous map.
Recall: a subisometry of (\mathbb{V}, \bullet) is an injection $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ such that, for all $v, w \in \mathbb{V}$, we have $(v \bullet w) \iff (\tau(v) \bullet \tau(w))$.

For any $\mathbf{a} \in \mathcal{A}^{\mathbb{V}}$, define $\tau(\mathbf{a}) := \mathbf{a}'$, where $a'_{\mathsf{v}} := a_{\tau(\mathsf{v})}$ for all $\mathsf{v} \in \mathbb{V}$. This yields a surjection $\tau : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$.

Let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Let $\Phi : \mathcal{X} \longrightarrow \mathcal{X}$ be a continuous map. We say τ is a *subsymmetry* of the symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ if $\tau(\mathcal{X}) = \mathcal{X}$ and $\tau \circ \Phi = \Phi \circ \tau$.

(8/21)

Recall: a subisometry of (\mathbb{V}, \bullet) is an injection $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ such that, for all $v, w \in \mathbb{V}$, we have $(v \bullet w) \iff (\tau(v) \bullet \tau(w))$.

For any $\mathbf{a} \in \mathcal{A}^{\mathbb{V}}$, define $\tau(\mathbf{a}) := \mathbf{a}'$, where $a'_{\mathsf{v}} := a_{\tau(\mathsf{v})}$ for all $\mathsf{v} \in \mathbb{V}$. This yields a surjection $\tau : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$.

Let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Let $\Phi : \mathcal{X} \longrightarrow \mathcal{X}$ be a continuous map. We say τ is a *subsymmetry* of the symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ if $\tau(\mathcal{X}) = \mathcal{X}$ and $\tau \circ \Phi = \Phi \circ \tau$.

Example. Let $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$ be a CA, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{Z}^D}$ be a subshift with $\Phi(\mathcal{X}) = \mathcal{X}$. Then any shift map is a subsymmetry of $(\mathcal{A}^{\mathbb{Z}^D}, \mathcal{X}, \Phi)$._____

Recall: a subisometry of (\mathbb{V}, \bullet) is an injection $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ such that, for all $v, w \in \mathbb{V}$, we have $(v \bullet w) \iff (\tau(v) \bullet \tau(w))$.

For any $\mathbf{a} \in \mathcal{A}^{\mathbb{V}}$, define $\tau(\mathbf{a}) := \mathbf{a}'$, where $a'_{\mathsf{v}} := a_{\tau(\mathsf{v})}$ for all $\mathsf{v} \in \mathbb{V}$. This yields a surjection $\tau : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$.

Let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Let $\Phi : \mathcal{X} \longrightarrow \mathcal{X}$ be a continuous map. We say τ is a *subsymmetry* of the symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ if $\tau(\mathcal{X}) = \mathcal{X}$ and $\tau \circ \Phi = \Phi \circ \tau$.

Example. Let $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$ be a CA, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{Z}^D}$ be a subshift with $\Phi(\mathcal{X}) = \mathcal{X}$. Then any shift map is a subsymmetry of $(\mathcal{A}^{\mathbb{Z}^D}, \mathcal{X}, \Phi)$._____

For any $v, w \in \mathbb{V}$, let d(v, w) be the length of the shortest *undirected* path in (\mathbb{V}, \bullet) from v to w (or ∞ if there is no such path); then d is a metric on each undirected-path component of \mathbb{V} .

Recall: a *subisometry* of (\mathbb{V}, \bullet) is an injection $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ such that, for all $v, w \in \mathbb{V}$, we have $(v \bullet w) \iff (\tau(v) \bullet \tau(w))$.

For any $\mathbf{a} \in \mathcal{A}^{\mathbb{V}}$, define $\tau(\mathbf{a}) := \mathbf{a}'$, where $a'_{\mathsf{v}} := a_{\tau(\mathsf{v})}$ for all $\mathsf{v} \in \mathbb{V}$. This yields a surjection $\tau : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$.

Let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Let $\Phi : \mathcal{X} \longrightarrow \mathcal{X}$ be a continuous map. We say τ is a *subsymmetry* of the symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ if $\tau(\mathcal{X}) = \mathcal{X}$ and $\tau \circ \Phi = \Phi \circ \tau$.

Example. Let $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$ be a CA, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{Z}^D}$ be a subshift with $\Phi(\mathcal{X}) = \mathcal{X}$. Then any shift map is a subsymmetry of $(\mathcal{A}^{\mathbb{Z}^D}, \mathcal{X}, \Phi)$._____

For any $v, w \in \mathbb{V}$, let d(v, w) be the length of the shortest *undirected* path in (\mathbb{V}, \bullet) from v to w (or ∞ if there is no such path); then d is a metric on each undirected-path component of \mathbb{V} .

For any $v \in \mathbb{V}$, let $\operatorname{speed}(v, \tau) := \lim_{n \to \infty} \frac{d[v, \tau^n(v)]}{n}$.

(8/21)

Recall: a subisometry of (\mathbb{V}, \bullet) is an injection $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ such that, for all $v, w \in \mathbb{V}$, we have $(v \bullet w) \iff (\tau(v) \bullet \tau(w))$.

For any $\mathbf{a} \in \mathcal{A}^{\mathbb{V}}$, define $\tau(\mathbf{a}) := \mathbf{a}'$, where $a'_{\mathsf{v}} := a_{\tau(\mathsf{v})}$ for all $\mathsf{v} \in \mathbb{V}$. This yields a surjection $\tau : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$.

Let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Let $\Phi : \mathcal{X} \longrightarrow \mathcal{X}$ be a continuous map. We say τ is a *subsymmetry* of the symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ if $\tau(\mathcal{X}) = \mathcal{X}$ and $\tau \circ \Phi = \Phi \circ \tau$.

Example. Let $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$ be a CA, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{Z}^D}$ be a subshift with $\Phi(\mathcal{X}) = \mathcal{X}$. Then any shift map is a subsymmetry of $(\mathcal{A}^{\mathbb{Z}^D}, \mathcal{X}, \Phi)$._____

For any $v, w \in \mathbb{V}$, let d(v, w) be the length of the shortest *undirected* path in (\mathbb{V}, \bullet) from v to w (or ∞ if there is no such path); then d is a metric on each undirected-path component of \mathbb{V} .

For any $v \in \mathbb{V}$, let speed $(v, \tau) := \lim_{n \to \infty} \frac{d[v, \tau^n(v)]}{n}$. This limit is well-defined and constant on each undirected-path component of (\mathbb{V}, \bullet) .

(8/21)

Recall: a *subisometry* of (\mathbb{V}, \bullet) is an injection $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ such that, for all $v, w \in \mathbb{V}$, we have $(v \bullet w) \iff (\tau(v) \bullet \tau(w))$.

For any $\mathbf{a} \in \mathcal{A}^{\mathbb{V}}$, define $\tau(\mathbf{a}) := \mathbf{a}'$, where $a'_{\mathsf{v}} := a_{\tau(\mathsf{v})}$ for all $\mathsf{v} \in \mathbb{V}$. This yields a surjection $\tau : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$.

Let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{V}}$ be a closed subset. Let $\Phi : \mathcal{X} \longrightarrow \mathcal{X}$ be a continuous map. We say τ is a *subsymmetry* of the symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ if $\tau(\mathcal{X}) = \mathcal{X}$ and $\tau \circ \Phi = \Phi \circ \tau$.

Example. Let $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$ be a CA, and let $\mathcal{X} \subseteq \mathcal{A}^{\mathbb{Z}^D}$ be a subshift with $\Phi(\mathcal{X}) = \mathcal{X}$. Then any shift map is a subsymmetry of $(\mathcal{A}^{\mathbb{Z}^D}, \mathcal{X}, \Phi)$._____

For any $v, w \in \mathbb{V}$, let d(v, w) be the length of the shortest *undirected* path in (\mathbb{V}, \bullet) from v to w (or ∞ if there is no such path); then d is a metric on each undirected-path component of \mathbb{V} .

For any $v \in \mathbb{V}$, let $\operatorname{speed}(v, \tau) := \lim_{n \to \infty} \frac{d[v, \tau^n(v)]}{n}$. This limit is well-defined and constant on each undirected-path component of (\mathbb{V}, \bullet) . We say that τ is a *moving* subsymmetry if $\operatorname{speed}(v, \tau) \ge 0$ for all $v \in \mathbb{V}$.

(9/21)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recall: τ is a *moving* subsymmetry if speed $(v, \tau) > 0$ for all $v \in \mathbb{V}$.

Recall: τ is a *moving* subsymmetry if speed $(v, \tau) > 0$ for all $v \in \mathbb{V}$. **Example.** Let (\mathbb{V}, \bullet) be the Cayley digraph of a group or monoid (e.g. $\mathbb{Z}^D \times \mathbb{N}^d$).

Recall: τ is a *moving* subsymmetry if speed $(v, \tau) > 0$ for all $v \in \mathbb{V}$.

Example. Let (\mathbb{V}, \bullet) be the Cayley digraph of a group or monoid (e.g. $\mathbb{Z}^D \times \mathbb{N}^d$). Fix $w \in \mathbb{V}$. Define $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ by $\tau(v) := v + w$. Then τ is a moving subsymmetry. (In fact, speed $(v, \tau) = |w|$).

Recall: τ is a *moving* subsymmetry if speed $(v, \tau) > 0$ for all $v \in \mathbb{V}$.

Example. Let (\mathbb{V}, \bullet) be the Cayley digraph of a group or monoid (e.g. $\mathbb{Z}^D \times \mathbb{N}^d$). Fix $w \in \mathbb{V}$. Define $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ by $\tau(v) := v + w$. Then τ is a moving subsymmetry. (In fact, speed $(v, \tau) = |w|$).

Recall: τ is a *moving* subsymmetry if speed $(v, \tau) > 0$ for all $v \in \mathbb{V}$.

Example. Let (\mathbb{V}, \bullet) be the Cayley digraph of a group or monoid (e.g. $\mathbb{Z}^D \times \mathbb{N}^d$). Fix $w \in \mathbb{V}$. Define $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ by $\tau(v) := v + w$. Then τ is a moving subsymmetry. (In fact, speed $(v, \tau) = |w|$).

Recall: τ is a *moving* subsymmetry if speed $(v, \tau) > 0$ for all $v \in \mathbb{V}$.

Example. Let (\mathbb{V}, \bullet) be the Cayley digraph of a group or monoid (e.g. $\mathbb{Z}^D \times \mathbb{N}^d$). Fix $w \in \mathbb{V}$. Define $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ by $\tau(v) := v + w$. Then τ is a moving subsymmetry. (In fact, speed $(v, \tau) = |w|$).

Recall: τ is a *moving* subsymmetry if speed $(v, \tau) > 0$ for all $v \in \mathbb{V}$.

Example. Let (\mathbb{V}, \bullet) be the Cayley digraph of a group or monoid (e.g. $\mathbb{Z}^D \times \mathbb{N}^d$). Fix $w \in \mathbb{V}$. Define $\tau : \mathbb{V} \longrightarrow \mathbb{V}$ by $\tau(v) := v + w$. Then τ is a moving subsymmetry. (In fact, speed $(v, \tau) = |w|$).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

A symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ is *positively expansive* if it is topologically conjugate to a one-sided shift.

We now come to our generalizations of Shereshevsky's result.

A symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ is *positively expansive* if it is topologically conjugate to a one-sided shift.

We now come to our generalizations of Shereshevsky's result.

Theorem 1.

A symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ is *positively expansive* if it is topologically conjugate to a one-sided shift.

We now come to our generalizations of Shereshevsky's result.

Theorem 1. Let $\Phi : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$ be a continuous self-map with a moving subsymmetry.

A symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ is *positively expansive* if it is topologically conjugate to a one-sided shift.

We now come to our generalizations of Shereshevsky's result.

Theorem 1. Let $\Phi : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$ be a continuous self-map with a moving subsymmetry. If $\underline{\dim}(\mathbb{V}, \bullet) > 1$, then the system $(\mathcal{A}^{\mathbb{V}}, \Phi)$ is not positively expansive.

A symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ is *positively expansive* if it is topologically conjugate to a one-sided shift.

We now come to our generalizations of Shereshevsky's result.

Theorem 1. Let $\Phi : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$ be a continuous self-map with a moving subsymmetry. If $\underline{\dim}(\mathbb{V}, \bullet) > 1$, then the system $(\mathcal{A}^{\mathbb{V}}, \Phi)$ is not positively expansive.

Theorem 2.

A symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ is *positively expansive* if it is topologically conjugate to a one-sided shift.

We now come to our generalizations of Shereshevsky's result.

Theorem 1. Let $\Phi : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$ be a continuous self-map with a moving subsymmetry. If $\underline{\dim}(\mathbb{V}, \bullet) > 1$, then the system $(\mathcal{A}^{\mathbb{V}}, \Phi)$ is not positively expansive.

Theorem 2. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system with a moving subsymmetry, and suppose \mathcal{X} is weakly independent.

A symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ is *positively expansive* if it is topologically conjugate to a one-sided shift.

We now come to our generalizations of Shereshevsky's result.

Theorem 1. Let $\Phi : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$ be a continuous self-map with a moving subsymmetry. If $\underline{\dim}(\mathbb{V}, \bullet) > 1$, then the system $(\mathcal{A}^{\mathbb{V}}, \Phi)$ is not positively expansive.

Theorem 2. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system with a moving subsymmetry, and suppose \mathcal{X} is weakly independent.

▶ If $\overline{h}(\mathcal{X}) > 0$ and $\underline{\dim}(\mathbb{V}, \bullet) > 1$ then (\mathcal{X}, Φ) is not positively expansive.

A symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ is *positively expansive* if it is topologically conjugate to a one-sided shift.

We now come to our generalizations of Shereshevsky's result.

Theorem 1. Let $\Phi : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$ be a continuous self-map with a moving subsymmetry. If $\underline{\dim}(\mathbb{V}, \bullet) > 1$, then the system $(\mathcal{A}^{\mathbb{V}}, \Phi)$ is not positively expansive.

Theorem 2. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system with a moving subsymmetry, and suppose \mathcal{X} is weakly independent.

If h(X) > 0 and dim(V, ↔) > 1 then (X, Φ) is not positively expansive.

▶ If $\underline{\dim}_{v}(\mathbb{V}, \bullet) = \overline{\dim}_{v}(\mathbb{V}, \bullet)$ for all $v \in \mathbb{V}$, and $\underline{h}(\mathcal{X}) > 0$, and $\overline{\dim}(\mathbb{V}, \bullet) > 1$, then (\mathcal{X}, Φ) is not positively expansive.

(11/21)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

In fact, Theorems 1 and 2 are both special cases of a more general result.

In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph (\mathbb{V}, \bullet) , a vertex $v \in \mathbb{V}$ has *superlinear connectivity* if $\liminf_{r \to \infty} \frac{|\mathbb{B}(v, r)|}{r} = \infty$. $(\mathbb{B}(v, r):=$ upstream ball of radius r around v.)

In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph (\mathbb{V}, \bullet) , a vertex $v \in \mathbb{V}$ has *superlinear connectivity* if $\liminf_{r \to \infty} \frac{|\mathbb{B}(v, r)|}{r} = \infty. \quad (\mathbb{B}(v, r):= \text{upstream ball of radius } r \text{ around } v.)$ **Example.** If $\dim_v(\mathbb{V}, \bullet) > 1$, then v has superlinear connectivity.

In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph (\mathbb{V}, \bullet) , a vertex $v \in \mathbb{V}$ has *superlinear connectivity* if $\liminf_{r \to \infty} \frac{|\mathbb{B}(v, r)|}{r} = \infty$. $(\mathbb{B}(v, r):=$ upstream ball of radius r around v.) **Example.** If $\underline{\dim}_v(\mathbb{V}, \bullet) > 1$, then v has superlinear connectivity. In particular, if \mathbb{V} is a Cayley digraph of a group with dimension > 1, then every vertex has superlinear connectivity.

In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph (\mathbb{V}, \bullet) , a vertex $v \in \mathbb{V}$ has *superlinear connectivity* if $\liminf_{r \to \infty} \frac{|\mathbb{B}(v, r)|}{r} = \infty$. $(\mathbb{B}(v, r):=$ upstream ball of radius r around v.) **Example.** If $\underline{\dim}_v(\mathbb{V}, \bullet) > 1$, then v has superlinear connectivity. In particular, if \mathbb{V} is a Cayley digraph of a group with dimension > 1, then every vertex has superlinear connectivity.

Theorem 0.

(11/21)

In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph (\mathbb{V}, \bullet) , a vertex $v \in \mathbb{V}$ has *superlinear connectivity* if $\liminf_{r \to \infty} \frac{|\mathbb{B}(v, r)|}{r} = \infty$. $(\mathbb{B}(v, r):=$ upstream ball of radius r around v.) **Example.** If $\underline{\dim}_v(\mathbb{V}, \bullet) > 1$, then v has superlinear connectivity. In particular, if \mathbb{V} is a Cayley digraph of a group with dimension > 1, then every vertex has superlinear connectivity.

Theorem 0. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system with a moving subsymmetry.

In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph (\mathbb{V}, \bullet) , a vertex $v \in \mathbb{V}$ has *superlinear connectivity* if $\liminf_{r \to \infty} \frac{|\mathbb{B}(v, r)|}{r} = \infty$. $(\mathbb{B}(v, r):=$ upstream ball of radius r around v.) **Example.** If $\underline{\dim}_{v}(\mathbb{V}, \bullet) > 1$, then v has superlinear connectivity. In particular, if \mathbb{V} is a Cayley digraph of a group with dimension > 1, then every vertex has superlinear connectivity.

Theorem 0. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system with a moving subsymmetry. If \mathcal{X} is weakly independent, and there exists some $v \in \mathbb{V}$ with superlinear connectivity such that $\overline{h}_v(\mathcal{X}) > 0$, then the system (\mathcal{X}, Φ) is not positively expansive.

In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph (\mathbb{V}, \bullet) , a vertex $v \in \mathbb{V}$ has *superlinear connectivity* if $\liminf_{r \to \infty} \frac{|\mathbb{B}(v, r)|}{r} = \infty$. $(\mathbb{B}(v, r):=$ upstream ball of radius r around v.) **Example.** If $\underline{\dim}_{v}(\mathbb{V}, \bullet) > 1$, then v has superlinear connectivity. In particular, if \mathbb{V} is a Cayley digraph of a group with dimension > 1, then every vertex has superlinear connectivity.

Theorem 0. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system with a moving subsymmetry. If \mathcal{X} is weakly independent, and there exists some $v \in \mathbb{V}$ with superlinear connectivity such that $\overline{h}_v(\mathcal{X}) > 0$, then the system (\mathcal{X}, Φ) is not positively expansive. **Proof sketch.** (by contradiction)

In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph (\mathbb{V}, \bullet) , a vertex $v \in \mathbb{V}$ has *superlinear connectivity* if $\liminf_{r \to \infty} \frac{|\mathbb{B}(v, r)|}{r} = \infty$. $(\mathbb{B}(v, r):=$ upstream ball of radius *r* around *v*.) **Example.** If $\underline{\dim}_{v}(\mathbb{V}, \bullet) > 1$, then *v* has superlinear connectivity. In particular, if \mathbb{V} is a Cayley digraph of a group with dimension > 1, then

every vertex has superlinear connectivity.

Theorem 0. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system with a moving subsymmetry. If \mathcal{X} is weakly independent, and there exists some $v \in \mathbb{V}$ with superlinear connectivity such that $\overline{h}_v(\mathcal{X}) > 0$, then the system (\mathcal{X}, Φ) is not positively expansive.

Proof sketch. (by contradiction) If (\mathcal{X}, Φ) *is* positively expansive, then there is some finite 'window' $\mathbb{W} \subset \mathbb{V}$ such that for any $\mathbf{x} \in \mathcal{X}$, the data $[\mathbf{x}_{\mathbb{W}}, \ \Phi(\mathbf{x})_{\mathbb{W}}, \ \Phi^{2}(\mathbf{x})_{\mathbb{W}}, \ \Phi^{3}(\mathbf{x})_{\mathbb{W}}, \ \dots \ \Phi^{t}(\mathbf{x})_{\mathbb{W}}, \ \dots]$ completely encodes \mathbf{x} .

In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph (\mathbb{V}, \bullet) , a vertex $v \in \mathbb{V}$ has *superlinear connectivity* if $\liminf_{r \to \infty} \frac{|\mathbb{B}(v, r)|}{r} = \infty$. $(\mathbb{B}(v, r):=$ upstream ball of radius r around v.) **Example.** If $\underline{\dim}_v(\mathbb{V}, \bullet) > 1$, then v has superlinear connectivity. In particular, if \mathbb{V} is a Cayley digraph of a group with dimension > 1, then

Theorem 0. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system with a moving subsymmetry. If \mathcal{X} is weakly independent, and there exists some $v \in \mathbb{V}$ with superlinear connectivity such that $\overline{h}_v(\mathcal{X}) > 0$, then the system (\mathcal{X}, Φ) is not positively expansive.

every vertex has superlinear connectivity.

Proof sketch. (by contradiction) If (\mathcal{X}, Φ) *is* positively expansive, then there is some finite 'window' $\mathbb{W} \subset \mathbb{V}$ such that for any $\mathbf{x} \in \mathcal{X}$, the data $[\mathbf{x}_{\mathbb{W}}, \ \Phi(\mathbf{x})_{\mathbb{W}}, \Phi^2(\mathbf{x})_{\mathbb{W}}, \ \Phi^3(\mathbf{x})_{\mathbb{W}}, \ \dots \ \Phi^t(\mathbf{x})_{\mathbb{W}}, \ \dots]$ completely encodes \mathbf{x} . But if $\mathbf{v} \in \mathbb{V}$ has superlinear connectivity and $\overline{h}_{\mathbf{v}}(\mathcal{X}) > 0$, then the information content of $\mathbf{x}_{\mathbb{B}}(\mathbf{v},r)$ grows superlinearly as $r \to \infty$.

In fact, Theorems 1 and 2 are both special cases of a more general result. In a digraph (\mathbb{V}, \bullet) , a vertex $v \in \mathbb{V}$ has *superlinear connectivity* if $\liminf_{r \to \infty} \frac{|\mathbb{B}(v, r)|}{r} = \infty$. $(\mathbb{B}(v, r) := \text{upstream ball of radius } r \text{ around } v.)$ **Example.** If $\underline{\dim}_v(\mathbb{V}, \bullet) > 1$, then v has superlinear connectivity. In particular, if \mathbb{V} is a Cayley digraph of a group with dimension > 1, then

In particular, if V is a Cayley digraph of a group with dimension > 1, ther every vertex has superlinear connectivity.

Theorem 0. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system with a moving subsymmetry. If \mathcal{X} is weakly independent, and there exists some $v \in \mathbb{V}$ with superlinear connectivity such that $\overline{h}_v(\mathcal{X}) > 0$, then the system (\mathcal{X}, Φ) is not positively expansive.

Proof sketch. (by contradiction) If (\mathcal{X}, Φ) *is* positively expansive, then there is some finite 'window' $\mathbb{W} \subset \mathbb{V}$ such that for any $\mathbf{x} \in \mathcal{X}$, the data $[\mathbf{x}_{\mathbb{W}}, \Phi(\mathbf{x})_{\mathbb{W}}, \Phi^2(\mathbf{x})_{\mathbb{W}}, \Phi^3(\mathbf{x})_{\mathbb{W}}, \dots \Phi^t(\mathbf{x})_{\mathbb{W}}, \dots]$ completely encodes \mathbf{x} . But if $\mathbf{v} \in \mathbb{V}$ has superlinear connectivity and $\overline{h}_{\mathbf{v}}(\mathcal{X}) > 0$, then the information content of $\mathbf{x}_{\mathbb{B}(\mathbf{v},r)}$ grows superlinearly as $r \to \infty$. It is impossible to transmit all this information through \mathbb{W} quickly enough as $t \to \infty$.

(12/21)

Theorem 0. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system with a moving subsymmetry. If \mathcal{X} is weakly independent, and there exists some $v \in \mathbb{V}$ with superlinear connectivity such that $\overline{h}_v(\mathcal{X}) > 0$, then the system (\mathcal{X}, Φ) is not positively expansive. Remarks.

Theorem 0. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system with a moving subsymmetry. If \mathcal{X} is weakly independent, and there exists some $v \in \mathbb{V}$ with superlinear connectivity such that $\overline{h}_v(\mathcal{X}) > 0$, then the system (\mathcal{X}, Φ) is not positively expansive. **Remarks.**

Theorems 0 - 2 apply even if the moving subsymmetry τ and its iterates are the *only* symmetries of the system (A^V, X, Φ).

Theorem 0. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system with a moving subsymmetry. If \mathcal{X} is weakly independent, and there exists some $v \in \mathbb{V}$ with superlinear connectivity such that $\overline{h}_v(\mathcal{X}) > 0$, then the system (\mathcal{X}, Φ) is not positively expansive. **Remarks.**

Theorems 0 - 2 apply even if the moving subsymmetry τ and its iterates are the *only* symmetries of the system (A^V, X, Φ).
 In particular, we do *not* require the symmetry group of (A^V, X, Φ) to itself have growth dimension greater than 1.

Theorem 0. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system with a moving subsymmetry. If \mathcal{X} is weakly independent, and there exists some $v \in \mathbb{V}$ with superlinear connectivity such that $\overline{h}_v(\mathcal{X}) > 0$, then the system (\mathcal{X}, Φ) is not positively expansive. **Remarks.**

- Theorems 0 2 apply even if the moving subsymmetry τ and its iterates are the *only* symmetries of the system (A^V, X, Φ).
 In particular, we do *not* require the symmetry group of (A^V, X, Φ) to itself have growth dimension greater than 1.
- The 'weak independence' condition in Theorems 0 and 2 is probably unnecessary. (It is absent from Shereshevsky's original result).
Main results: remarks

Theorem 0. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system with a moving subsymmetry. If \mathcal{X} is weakly independent, and there exists some $v \in \mathbb{V}$ with superlinear connectivity such that $\overline{h}_v(\mathcal{X}) > 0$, then the system (\mathcal{X}, Φ) is not positively expansive. **Remarks.**

- Theorems 0 2 apply even if the moving subsymmetry τ and its iterates are the *only* symmetries of the system (A^V, X, Φ).
 In particular, we do *not* require the symmetry group of (A^V, X, Φ) to itself have growth dimension greater than 1.
- The 'weak independence' condition in Theorems 0 and 2 is probably unnecessary. (It is absent from Shereshevsky's original result). However, it is not clear how to dispense with it.

(日) (同) (三) (三) (三) (○) (○)

Main results: remarks

Theorem 0. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ be a symbolic dynamical system with a moving subsymmetry. If \mathcal{X} is weakly independent, and there exists some $v \in \mathbb{V}$ with superlinear connectivity such that $\overline{h}_v(\mathcal{X}) > 0$, then the system (\mathcal{X}, Φ) is not positively expansive. **Remarks.**

- Theorems 0 2 apply even if the moving subsymmetry τ and its iterates are the *only* symmetries of the system (A^V, X, Φ).
 In particular, we do *not* require the symmetry group of (A^V, X, Φ) to itself have growth dimension greater than 1.
- The 'weak independence' condition in Theorems 0 and 2 is probably unnecessary. (It is absent from Shereshevsky's original result). However, it is not clear how to dispense with it.
- The existence of a moving subsymmetry is also probably unnecessary. However, some condition is required beyond merely superlinear connectivity and nonzero entropy. This is shown by the next counterexample....

< □ > < □ > < □ > < □ > < □ > < □ >

э

Let \mathbb{V} be the digraph shown above.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

(13/21)

Let \mathbb{V} be the digraph shown above. Let \mathbb{V}_{\Box} := set of 'box' vertices, indexed by $\mathbb{M} := \{0, 2, 6, 12, 20, \dots, m_k, \dots\}$, where $m_k := \sum_{i=0}^k 2j$. Let \mathbb{V}_{\circ} := set of 'circle' vertices; then $\mathbb{V} = \mathbb{V}_{\Box} \sqcup \mathbb{V}_{\circ}$. Let $\mathcal{A} := \mathbb{Z}_{/2} \times \mathbb{Z}_{/2}$.

(13/21)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let \mathbb{V} be the digraph shown above. Let $\mathbb{V}_{\Box} := \text{set of 'box' vertices, indexed}$ by $\mathbb{M} := \{0, 2, 6, 12, 20, \dots, m_k, \dots\}$, where $m_k := \sum_{i=0}^k 2j$. Let $\mathbb{V}_\circ := \text{set of 'circle' vertices; then } \mathbb{V} = \mathbb{V}_{\Box} \sqcup \mathbb{V}_\circ$. Let $\mathcal{A} := \mathbb{Z}_{/2} \times \mathbb{Z}_{/2}$. Thus $\forall n \in \mathbb{N}$, the state of vertex *n* is an ordered pair $\binom{a_n}{b_n}$, where $a_n, b_n \in \mathbb{Z}_{/2}$.

(13/21)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Let \mathbb{V} be the digraph shown above. Let $\mathbb{V}_{\Box} := \text{set of 'box' vertices, indexed}$ by $\mathbb{M} := \{0, 2, 6, 12, 20, \dots, m_k, \dots\}$, where $m_k := \sum_{i=0}^k 2j$. Let $\mathbb{V}_\circ := \text{set of 'circle' vertices; then } \mathbb{V} = \mathbb{V}_{\Box} \sqcup \mathbb{V}_\circ$. Let $\mathcal{A} := \mathbb{Z}_{/2} \times \mathbb{Z}_{/2}$. Thus $\forall n \in \mathbb{N}$, the state of vertex *n* is an ordered pair $\binom{a_n}{b_n}$, where $a_n, b_n \in \mathbb{Z}_{/2}$. Let $\mathcal{X} := \{\mathbf{a} \in \mathcal{A}^{\mathbb{V}}; b_n = 0, \forall n \in \mathbb{V}_\circ\}$.

(13/21)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let \mathbb{V} be the digraph shown above. Let $\mathbb{V}_{\Box} := \text{set of 'box' vertices, indexed}$ by $\mathbb{M} := \{0, 2, 6, 12, 20, \dots, m_k, \dots\}$, where $m_k := \sum_{i=0}^k 2j$. Let $\mathbb{V}_\circ := \text{set of 'circle' vertices; then } \mathbb{V} = \mathbb{V}_{\Box} \sqcup \mathbb{V}_\circ$. Let $\mathcal{A} := \mathbb{Z}_{/2} \times \mathbb{Z}_{/2}$. Thus $\forall n \in \mathbb{N}$, the state of vertex n is an ordered pair $\binom{a_n}{b_n}$, where $a_n, b_n \in \mathbb{Z}_{/2}$. Let $\mathcal{X} := \{\mathbf{a} \in \mathcal{A}^{\mathbb{V}}; b_n = 0, \forall n \in \mathbb{V}_\circ\}$. Thus, if \mathcal{X}_n is the projection of \mathcal{X} onto vertex n, then $\mathcal{X}_n = \mathbb{Z}_{/2} \times \mathbb{Z}_{/2}$ if $n \in \mathbb{V}_{\Box}$, and $\mathcal{X}_n = \mathbb{Z}_{/2} \times \{0\}$ if $n \in \mathbb{V}_\circ$.

(13/21)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let \mathbb{V} be the digraph shown above. Let $\mathbb{V}_{\Box} :=$ set of 'box' vertices, indexed by $\mathbb{M} := \{0, 2, 6, 12, 20, \dots, m_k, \dots\}$, where $m_k := \sum_{i=0}^k 2j$. Let $\mathbb{V}_\circ :=$ set of 'circle' vertices; then $\mathbb{V} = \mathbb{V}_{\Box} \sqcup \mathbb{V}_\circ$. Let $\mathcal{A} := \mathbb{Z}_{/2} \times \mathbb{Z}_{/2}$. Thus $\forall n \in \mathbb{N}$, the state of vertex *n* is an ordered pair $\binom{a_n}{b_n}$, where $a_n, b_n \in \mathbb{Z}_{/2}$. Let $\mathcal{X} := \{\mathbf{a} \in \mathcal{A}^{\mathbb{V}}; b_n = 0, \forall n \in \mathbb{V}_\circ\}$. Thus, if \mathcal{X}_n is the projection of \mathcal{X} onto vertex *n*, then $\mathcal{X}_n = \mathbb{Z}_{/2} \times \mathbb{Z}_{/2}$ if $n \in \mathbb{V}_{\Box}$, and $\mathcal{X}_n = \mathbb{Z}_{/2} \times \{0\}$ if $n \in \mathbb{V}_\circ$. For any $n \in \mathbb{V}_\circ$, define $\phi_n : \mathcal{X}_{n+1} \longrightarrow \mathcal{X}_n$ by $\phi_n \binom{a_{n+1}}{b_{n+1}} = \binom{a_{n+1}}{0}$ (i.e. ϕ_n just copies the first coordinate of vertex n + 1 into vertex n).

(13/21)

For any $n \in \mathbb{V}_{\circ}$, define $\phi_n : \mathcal{X}_{n+1} \longrightarrow \mathcal{X}_n$ by $\phi_n \begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} a_{n+1} \\ 0 \end{pmatrix}$.

(14/21)

▲口▶▲圖▶▲圖▶▲圖▶ ▲国 シックの

For any $n \in \mathbb{V}_{\circ}$, define $\phi_n : \mathcal{X}_{n+1} \longrightarrow \mathcal{X}_n$ by $\phi_n \begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} a_{n+1} \\ 0 \end{pmatrix}$. For any $m_k \in \mathbb{V}_{\square}$, define $\phi_{m_k} : \mathcal{X}_{(m_k)+1} \times \mathcal{X}_{m_{(k+1)}} \longrightarrow \mathcal{X}_{m_k}$ as follows: $\phi_{m_k}\left(\begin{pmatrix}a_{(m_k)+1}\\0\end{pmatrix}, \begin{pmatrix}a_{m_{(k+1)}}\\b_{m_{(k+1)}}\end{pmatrix}\right) := \begin{pmatrix}a_{(m_k)+1}\\a_{m_{(k+1)}}+b_{m_{(k+1)}}\end{pmatrix}.$

(14/21)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ Q ()~.

For any $n \in \mathbb{V}_{\circ}$, define $\phi_n : \mathcal{X}_{n+1} \longrightarrow \mathcal{X}_n$ by $\phi_n \begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} a_{n+1} \\ 0 \end{pmatrix}$. For any $m_k \in \mathbb{V}_{\square}$, define $\phi_{m_k} : \mathcal{X}_{(m_k)+1} \times \mathcal{X}_{m_{(k+1)}} \longrightarrow \mathcal{X}_{m_k}$ as follows: $\phi_{m_k}\left(\begin{pmatrix}a_{(m_k)+1}\\0\end{pmatrix}, \begin{pmatrix}a_{m_{(k+1)}}\\b_{m_{(k+1)}}\end{pmatrix}\right) := \begin{pmatrix}a_{(m_k)+1}\\a_{m_{(k+1)}}+b_{m_{(k+1)}}\end{pmatrix}.$

Theorem.

(14/21)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へぐ

For any $n \in \mathbb{V}_{\circ}$, define $\phi_n : \mathcal{X}_{n+1} \longrightarrow \mathcal{X}_n$ by $\phi_n \begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} a_{n+1} \\ 0 \end{pmatrix}$. For any $m_k \in \mathbb{V}_{\square}$, define $\phi_{m_k} : \mathcal{X}_{(m_k)+1} \times \mathcal{X}_{m_{(k+1)}} \longrightarrow \mathcal{X}_{m_k}$ as follows: $\phi_{m_k}\left(\begin{pmatrix}a_{(m_k)+1}\\0\end{pmatrix}, \begin{pmatrix}a_{m_{(k+1)}}\\b_{m_{(k+1)}}\end{pmatrix}\right) := \begin{pmatrix}a_{(m_k)+1}\\a_{m_{(k+1)}}+b_{m_{(k+1)}}\end{pmatrix}.$ **Theorem.** (a) $\underline{h}(\mathcal{X}) \geq 1$, and \mathcal{X} is weakly independent; and

▲口▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

For any $n \in \mathbb{V}_{\circ}$, define $\phi_n : \mathcal{X}_{n+1} \longrightarrow \mathcal{X}_n$ by $\phi_n \begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} a_{n+1} \\ 0 \end{pmatrix}$. For any $m_k \in \mathbb{V}_{\square}$, define $\phi_{m_k} : \mathcal{X}_{(m_k)+1} \times \mathcal{X}_{m_{(k+1)}} \longrightarrow \mathcal{X}_{m_k}$ as follows: $\phi_{m_k}\left(\begin{pmatrix}a_{(m_k)+1}\\0\end{pmatrix}, \begin{pmatrix}a_{m_{(k+1)}}\\b_{m_{(k+1)}}\end{pmatrix}\right) := \begin{pmatrix}a_{(m_k)+1}\\a_{m_{(k+1)}}+b_{m_{(k+1)}}\end{pmatrix}.$ **Theorem.** (a) $\underline{h}(\mathcal{X}) \geq 1$, and \mathcal{X} is weakly independent; and (b) $\dim_{\mathsf{v}}(\mathbb{V}, \bullet) = 2$ for all $\mathsf{v} \in \mathbb{V}$; but

| ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ◆ ■ ● の Q @

For any $n \in \mathbb{V}_{\circ}$, define $\phi_n : \mathcal{X}_{n+1} \longrightarrow \mathcal{X}_n$ by $\phi_n \begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} a_{n+1} \\ 0 \end{pmatrix}$. For any $m_k \in \mathbb{V}_{\square}$, define $\phi_{m_k} : \mathcal{X}_{(m_k)+1} \times \mathcal{X}_{m_{(k+1)}} \longrightarrow \mathcal{X}_{m_k}$ as follows: $\phi_{m_k}\left(\begin{pmatrix}a_{(m_k)+1}\\0\end{pmatrix}, \begin{pmatrix}a_{m_{(k+1)}}\\b_{m_{(k+1)}}\end{pmatrix}\right) := \begin{pmatrix}a_{(m_k)+1}\\a_{m_{(k+1)}}+b_{m_{(k+1)}}\end{pmatrix}.$ **Theorem.** (a) $h(\mathcal{X}) \geq 1$, and \mathcal{X} is weakly independent; and (b) dim_v($\mathbb{V}, \bullet \to$) = 2 for all $v \in \mathbb{V}$; but (c) The system (\mathcal{X}, Φ) is positively expansive.

For any $n \in \mathbb{V}_{\circ}$, define $\phi_n : \mathcal{X}_{n+1} \longrightarrow \mathcal{X}_n$ by $\phi_n \begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} a_{n+1} \\ 0 \end{pmatrix}$. For any $m_k \in \mathbb{V}_{\square}$, define $\phi_{m_k} : \mathcal{X}_{(m_k)+1} \times \mathcal{X}_{m_{(k+1)}} \longrightarrow \mathcal{X}_{m_k}$ as follows: $\phi_{m_k}\left(\begin{pmatrix}a_{(m_k)+1}\\0\end{pmatrix}, \begin{pmatrix}a_{m_{(k+1)}}\\b_{m_{(k+1)}}\end{pmatrix}\right) := \begin{pmatrix}a_{(m_k)+1}\\a_{m_{(k+1)}}+b_{m_{(k+1)}}\end{pmatrix}.$ **Theorem.** (a) $h(\mathcal{X}) \geq 1$, and \mathcal{X} is weakly independent; and (b) dim_v($\mathbb{V}, \bullet \to$) = 2 for all $v \in \mathbb{V}$; but (c) The system (\mathcal{X}, Φ) is positively expansive. Proof sketch.

For any $n \in \mathbb{V}_{\circ}$, define $\phi_n : \mathcal{X}_{n+1} \longrightarrow \mathcal{X}_n$ by $\phi_n \begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} a_{n+1} \\ 0 \end{pmatrix}$. For any $m_k \in \mathbb{V}_{\square}$, define $\phi_{m_k} : \mathcal{X}_{(m_k)+1} \times \mathcal{X}_{m_{(k+1)}} \longrightarrow \mathcal{X}_{m_k}$ as follows: $\phi_{m_k}\left(\begin{pmatrix}a_{(m_k)+1}\\0\end{pmatrix}, \begin{pmatrix}a_{m_{(k+1)}}\\b_{m_{(k+1)}}\end{pmatrix}\right) := \begin{pmatrix}a_{(m_k)+1}\\a_{m_{(k+1)}}+b_{m_{(k+1)}}\end{pmatrix}.$ **Theorem.** (a) $\underline{h}(\mathcal{X}) \geq 1$, and \mathcal{X} is weakly independent; and (b) dim_v($\mathbb{V}, \bullet \to$) = 2 for all $v \in \mathbb{V}$; but (c) The system (\mathcal{X}, Φ) is positively expansive. **Proof sketch.** (a) is obvious from the definition of \mathcal{X} .

 $r = 1, 2, \ldots, 7.$

 $r=1,2,\ldots,7$. Clearly, $|\mathbb{B}(0,r)|$ grows quadratically as $r{
ightarrow}\infty$.

r = 1, 2, ..., 7. Clearly, $|\mathbb{B}(0, r)|$ grows quadratically as $r \to \infty$. Thus, $\dim_0(\mathbb{V}, \bullet) = 2$.

r = 1, 2, ..., 7. Clearly, $|\mathbb{B}(0, r)|$ grows quadratically as $r \to \infty$. Thus, $\dim_0(\mathbb{V}, \bullet) = 2$. The proof for other $v \in \mathbb{V}$ is similar.

(b) $\dim_{v}(\mathbb{V}, \bullet) = 2$ for all $v \in \mathbb{V}$; but

(c) The system (\mathcal{X}, Φ) is positively expansive.

Proof sketch. (c) Straightforward computation shows that the data x_0 , $\Phi(\mathbf{x})_0$, $\Phi^2(\mathbf{x})_0$, $\Phi^3(\mathbf{x})_0$, $\Phi^4(\mathbf{x})_0$, ..., $\Phi^t(\mathbf{x})_0$, ... is sufficient to reconstruct \mathbf{x} , for any $\mathbf{x} \in \mathcal{X}$.

(16/21)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

(16/21)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy? **Answer.** *No.*

(16/21)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. *No.* We just constructed a 2-dimensional system that was positively expansive, hence conjugate to a subshift (a 1-dim system).

(16/21)

Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. *No.* We just constructed a 2-dimensional system that was positively expansive, hence conjugate to a subshift (a 1-dim system).

But network dimension is invariant under a stronger kind of conjugacy.

(16/21)

Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. *No.* We just constructed a 2-dimensional system that was positively expansive, hence conjugate to a subshift (a 1-dim system).

But network dimension *is* invariant under a stronger kind of conjugacy. Given a symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$, one can define a metric *d* on \mathcal{X} such that Φ is *Lipschitz* relative to *d*.

Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. *No.* We just constructed a 2-dimensional system that was positively expansive, hence conjugate to a subshift (a 1-dim system).

But network dimension *is* invariant under a stronger kind of conjugacy. Given a symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$, one can define a metric d on \mathcal{X} such that Φ is *Lipschitz* relative to d. That is: there is some constant $\lambda > 0$ such that, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, we have $d(\Phi(\mathbf{x}), \Phi(\mathbf{y})) \leq \lambda \cdot d(\mathbf{x}, \mathbf{y})$.

Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. *No.* We just constructed a 2-dimensional system that was positively expansive, hence conjugate to a subshift (a 1-dim system).

But network dimension *is* invariant under a stronger kind of conjugacy. Given a symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$, one can define a metric d on \mathcal{X} such that Φ is *Lipschitz* relative to d. That is: there is some constant $\lambda > 0$ such that, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, we have $d(\Phi(\mathbf{x}), \Phi(\mathbf{y})) \leq \lambda \cdot d(\mathbf{x}, \mathbf{y})$. (Rough idea: Fix $v \in \mathbb{V}$. Define d so that $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, are "d-close" if $\mathbf{x}_{\mathbb{B}(v,r)} = \mathbf{y}_{\mathbb{B}(v,r)}$ for some large r > 0.)

Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. *No.* We just constructed a 2-dimensional system that was positively expansive, hence conjugate to a subshift (a 1-dim system).

But network dimension *is* invariant under a stronger kind of conjugacy. Given a symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$, one can define a metric don \mathcal{X} such that Φ is *Lipschitz* relative to d. That is: there is some constant $\lambda > 0$ such that, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, we have $d(\Phi(\mathbf{x}), \Phi(\mathbf{y})) \leq \lambda \cdot d(\mathbf{x}, \mathbf{y})$. (**Rough idea:** Fix $\mathbf{v} \in \mathbb{V}$. Define d so that $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, are "d-close" if $\mathbf{x}_{\mathbb{B}(\mathbf{v},r)} = \mathbf{y}_{\mathbb{B}(\mathbf{v},r)}$ for some large r > 0.) One can then assign a dimension $\dim(\mathcal{X}, d)$ to the metric space (\mathcal{X}, d) .

Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. *No.* We just constructed a 2-dimensional system that was positively expansive, hence conjugate to a subshift (a 1-dim system).

But network dimension *is* invariant under a stronger kind of conjugacy. Given a symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$, one can define a metric don \mathcal{X} such that Φ is *Lipschitz* relative to d. That is: there is some constant $\lambda > 0$ such that, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, we have $d(\Phi(\mathbf{x}), \Phi(\mathbf{y})) \leq \lambda \cdot d(\mathbf{x}, \mathbf{y})$. (**Rough idea:** Fix $\mathbf{v} \in \mathbb{V}$. Define d so that $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, are "d-close" if $\mathbf{x}_{\mathbb{B}(\mathbf{v},r)} = \mathbf{y}_{\mathbb{B}(\mathbf{v},r)}$ for some large r > 0.) One can then assign a dimension dim (\mathcal{X}, d) to the metric space (\mathcal{X}, d) . Under suitable conditions, this metric is *dimensionally compatible* with the network topology of (\mathbb{V}, \bullet) , meaning that dim $(\mathcal{X}, d) = \dim(\mathbb{V}, \bullet)$. **Question.** Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. *No.* We just constructed a 2-dimensional system that was positively expansive, hence conjugate to a subshift (a 1-dim system).

But network dimension *is* invariant under a stronger kind of conjugacy. Given a symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$, one can define a metric don \mathcal{X} such that Φ is *Lipschitz* relative to d. That is: there is some constant $\lambda > 0$ such that, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, we have $d(\Phi(\mathbf{x}), \Phi(\mathbf{y})) \leq \lambda \cdot d(\mathbf{x}, \mathbf{y})$. (**Rough idea:** Fix $\mathbf{v} \in \mathbb{V}$. Define d so that $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, are "d-close" if $\mathbf{x}_{\mathbb{B}(\mathbf{v},r)} = \mathbf{y}_{\mathbb{B}(\mathbf{v},r)}$ for some large r > 0.) One can then assign a dimension dim (\mathcal{X}, d) to the metric space (\mathcal{X}, d) . Under suitable conditions, this metric is *dimensionally compatible* with the network topology of (\mathbb{V}, \bullet) , meaning that dim $(\mathcal{X}, d) = \dim(\mathbb{V}, \bullet)$.

Let (\mathcal{X}', d') be another metric space, and let $\Gamma : \mathcal{X} \longrightarrow \mathcal{X}'$ be a continuous function.

Question. Is the network dimension of a symbolic dynamical system invariant under topological conjugacy?

Answer. *No.* We just constructed a 2-dimensional system that was positively expansive, hence conjugate to a subshift (a 1-dim system).

But network dimension *is* invariant under a stronger kind of conjugacy. Given a symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$, one can define a metric don \mathcal{X} such that Φ is *Lipschitz* relative to d. That is: there is some constant $\lambda > 0$ such that, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, we have $d(\Phi(\mathbf{x}), \Phi(\mathbf{y})) \leq \lambda \cdot d(\mathbf{x}, \mathbf{y})$. (**Rough idea:** Fix $\mathbf{v} \in \mathbb{V}$. Define d so that $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, are "d-close" if $\mathbf{x}_{\mathbb{B}(\mathbf{v},r)} = \mathbf{y}_{\mathbb{B}(\mathbf{v},r)}$ for some large r > 0.) One can then assign a dimension dim (\mathcal{X}, d) to the metric space (\mathcal{X}, d) . Under suitable conditions, this metric is *dimensionally compatible* with the network topology of (\mathbb{V}, \bullet) , meaning that dim $(\mathcal{X}, d) = \dim(\mathbb{V}, \bullet)$.

Let (\mathcal{X}', d') be another metric space, and let $\Gamma : \mathcal{X} \longrightarrow \mathcal{X}'$ be a continuous function. Say Γ is Hölder if there are constants $\eta, \lambda \in (0, \infty)$ such that, for all $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$, we have $d'(\Gamma(\mathbf{x}_1), \Gamma(\mathbf{x}_2)) \leq \lambda \cdot d(\mathbf{x}_1, \mathbf{x}_2)^{\eta}$.

Hölder Conjugacy invarance

(17/21)

Recall: a continuous function $\Gamma : (\mathcal{X}, d) \longrightarrow (\mathcal{X}', d')$ is Hölder if there are constants $\eta, \lambda \in (0, \infty)$ such that, for any $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$,

 $d'\left(\mathsf{\Gamma}(\mathsf{x}_1), \ \mathsf{\Gamma}(\mathsf{x}_2)
ight) \quad \leq \quad \lambda \cdot d(\mathsf{x}_1, \mathsf{x}_2)^\eta.$

Hölder Conjugacy invarance

(17/21)

Recall: a continuous function $\Gamma : (\mathcal{X}, d) \longrightarrow (\mathcal{X}', d')$ is Hölder if there are constants $\eta, \lambda \in (0, \infty)$ such that, for any $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$,

$$d'\left(\mathsf{\Gamma}(\mathsf{x}_1), \ \mathsf{\Gamma}(\mathsf{x}_2)
ight) \quad \leq \quad \lambda \cdot d(\mathsf{x}_1, \mathsf{x}_2)^\eta.$$

Proposition. Let (\mathcal{X}, d) and (\mathcal{X}', d') be metric spaces.
(17/21)

Recall: a continuous function $\Gamma : (\mathcal{X}, d) \longrightarrow (\mathcal{X}', d')$ is Hölder if there are constants $\eta, \lambda \in (0, \infty)$ such that, for any $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$,

$$d'\left(\mathsf{\Gamma}(\mathbf{x}_1), \ \mathsf{\Gamma}(\mathbf{x}_2)
ight) \quad \leq \quad \lambda \cdot d(\mathbf{x}_1, \mathbf{x}_2)^\eta.$$

Proposition. Let (\mathcal{X}, d) and (\mathcal{X}', d') be metric spaces.

Let Γ : X→X' be a (d, d')-Hölder surjection. Then dim(X, d) ≥ dim(X', d').

Recall: a continuous function $\Gamma : (\mathcal{X}, d) \longrightarrow (\mathcal{X}', d')$ is Hölder if there are constants $\eta, \lambda \in (0, \infty)$ such that, for any $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$,

$$d'\left(\mathsf{\Gamma}(\mathsf{x}_1), \ \mathsf{\Gamma}(\mathsf{x}_2)
ight) \quad \leq \quad \lambda \cdot d(\mathsf{x}_1, \mathsf{x}_2)^\eta.$$

Proposition. Let (\mathcal{X}, d) and (\mathcal{X}', d') be metric spaces.

- Let Γ : X→X' be a (d, d')-Hölder surjection. Then dim(X, d) ≥ dim(X', d').
- If Γ is a (d, d')-biHölder homeomorphism, then dim(X, d) = dim(X', d').

Recall: a continuous function $\Gamma : (\mathcal{X}, d) \longrightarrow (\mathcal{X}', d')$ is Hölder if there are constants $\eta, \lambda \in (0, \infty)$ such that, for any $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$,

$$d'\left(\mathsf{\Gamma}(\mathsf{x}_1), \ \mathsf{\Gamma}(\mathsf{x}_2)
ight) \quad \leq \quad \lambda \cdot d(\mathsf{x}_1, \mathsf{x}_2)^\eta.$$

Proposition. Let (\mathcal{X}, d) and (\mathcal{X}', d') be metric spaces.

- Let Γ : X→X' be a (d, d')-Hölder surjection. Then dim(X, d) ≥ dim(X', d').
- If Γ is a (d, d')-biHölder homeomorphism, then dim(X, d) = dim(X', d').

Corollary. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}_1, \Phi_1)$ and $(\mathcal{B}^{\mathbb{W}}, \mathcal{X}_2, \Phi_2)$ be two symbolic dynamical systems, and let d_1 and d_2 be dimensionally compatible Lipschitz metrics on \mathcal{X}_1 and \mathcal{X}_2 respectively.

<ロト 4 回 ト 4 回 ト 4 回 ト 1 回 9 Q Q</p>

Recall: a continuous function $\Gamma : (\mathcal{X}, d) \longrightarrow (\mathcal{X}', d')$ is Hölder if there are constants $\eta, \lambda \in (0, \infty)$ such that, for any $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$,

$$d'\left(\mathsf{\Gamma}(\mathsf{x}_1), \ \mathsf{\Gamma}(\mathsf{x}_2)
ight) \quad \leq \quad \lambda \cdot d(\mathsf{x}_1, \mathsf{x}_2)^\eta.$$

Proposition. Let (\mathcal{X}, d) and (\mathcal{X}', d') be metric spaces.

- Let Γ : X→X' be a (d, d')-Hölder surjection. Then dim(X, d) ≥ dim(X', d').
- If Γ is a (d, d')-biHölder homeomorphism, then dim(X, d) = dim(X', d').

Corollary. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}_1, \Phi_1)$ and $(\mathcal{B}^{\mathbb{W}}, \mathcal{X}_2, \Phi_2)$ be two symbolic dynamical systems, and let d_1 and d_2 be dimensionally compatible Lipschitz metrics on \mathcal{X}_1 and \mathcal{X}_2 respectively.

▶ If there is a factor mapping $(\mathcal{X}_1, \Phi_1) \longrightarrow (\mathcal{X}_2, \Phi_2)$ which is (d_1, d_2) -Hölder, then dim $(\mathbb{V}, \bullet_1) \ge \dim(\mathbb{W}, \bullet_2)$.

Recall: a continuous function $\Gamma : (\mathcal{X}, d) \longrightarrow (\mathcal{X}', d')$ is Hölder if there are constants $\eta, \lambda \in (0, \infty)$ such that, for any $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$,

$$d'\left(\mathsf{\Gamma}(\mathsf{x}_1), \ \mathsf{\Gamma}(\mathsf{x}_2)
ight) \quad \leq \quad \lambda \cdot d(\mathsf{x}_1, \mathsf{x}_2)^\eta.$$

Proposition. Let (\mathcal{X}, d) and (\mathcal{X}', d') be metric spaces.

- Let Γ : X→X' be a (d, d')-Hölder surjection. Then dim(X, d) ≥ dim(X', d').
- If Γ is a (d, d')-biHölder homeomorphism, then dim(X, d) = dim(X', d').

Corollary. Let $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}_1, \Phi_1)$ and $(\mathcal{B}^{\mathbb{W}}, \mathcal{X}_2, \Phi_2)$ be two symbolic dynamical systems, and let d_1 and d_2 be dimensionally compatible Lipschitz metrics on \mathcal{X}_1 and \mathcal{X}_2 respectively.

- ▶ If there is a factor mapping $(\mathcal{X}_1, \Phi_1) \longrightarrow (\mathcal{X}_2, \Phi_2)$ which is (d_1, d_2) -Hölder, then dim $(\mathbb{V}, \bullet_1) \ge \dim(\mathbb{W}, \bullet_2)$.
- If (X₁, Φ₁) and (X₂, Φ₂) are conjugate via a bi-Hölder homeomorphism, then dim(V, ↔₁) = dim(W, ↔₂).

We have shown that the positive expansiveness of $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ is related to the network dimension of the digraph (\mathbb{V}, \bullet) .

We have shown that the positive expansiveness of $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ is related to the network dimension of the digraph (\mathbb{V}, \bullet) .

Question. What other dynamical properties of $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ are influenced by the geometry of the digraph (\mathbb{V}, \bullet) ?

We have shown that the positive expansiveness of $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ is related to the network dimension of the digraph (\mathbb{V}, \bullet) .

Question. What other dynamical properties of $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ are influenced by the geometry of the digraph (\mathbb{V}, \bullet) ?

One could also go the other way. Start with an infinite digraph (\mathbb{V}, \bullet) , and randomly generate a continuous self-map $\Phi : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$, such that (\bullet) is the network of Φ .

We have shown that the positive expansiveness of $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ is related to the network dimension of the digraph (\mathbb{V}, \bullet) .

Question. What other dynamical properties of $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ are influenced by the geometry of the digraph (\mathbb{V}, \bullet) ?

One could also go the other way. Start with an infinite digraph (\mathbb{V}, \bullet) , and randomly generate a continuous self-map $\Phi : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$, such that (\bullet) is the network of Φ .

Question. What are the 'generic' (i.e. almost-certain) properties of $(\mathcal{A}^{\mathbb{V}}, \Phi)$, and how do they depend on the geometry of (\mathbb{V}, \bullet) ?

We have shown that the positive expansiveness of $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ is related to the network dimension of the digraph (\mathbb{V}, \bullet) .

Question. What other dynamical properties of $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ are influenced by the geometry of the digraph (\mathbb{V}, \bullet) ?

One could also go the other way. Start with an infinite digraph (\mathbb{V}, \bullet) , and randomly generate a continuous self-map $\Phi : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$, such that (\bullet) is the network of Φ .

Question. What are the 'generic' (i.e. almost-certain) properties of $(\mathcal{A}^{\mathbb{V}}, \Phi)$, and how do they depend on the geometry of (\mathbb{V}, \bullet) ? **Conjecture** If dim $(\mathbb{V}, \bullet) \leq 1$, then almost surely, $(\mathcal{A}^{\mathbb{V}}, \Phi)$ is equicontinuous. If dim $(\mathbb{V}, \bullet) > 1$, then almost surely, $(\mathcal{A}^{\mathbb{V}}, \Phi)$ is sensitive. (The intuition here comes from percolation theory).

We have shown that the positive expansiveness of $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ is related to the network dimension of the digraph (\mathbb{V}, \bullet) .

Question. What other dynamical properties of $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ are influenced by the geometry of the digraph (\mathbb{V}, \bullet) ?

One could also go the other way. Start with an infinite digraph (\mathbb{V}, \bullet) , and randomly generate a continuous self-map $\Phi : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$, such that (\bullet) is the network of Φ .

Question. What are the 'generic' (i.e. almost-certain) properties of $(\mathcal{A}^{\mathbb{V}}, \Phi)$, and how do they depend on the geometry of (\mathbb{V}, \bullet) ? **Conjecture** If dim $(\mathbb{V}, \bullet) \leq 1$, then almost surely, $(\mathcal{A}^{\mathbb{V}}, \Phi)$ is equicontinuous. If dim $(\mathbb{V}, \bullet) > 1$, then almost surely, $(\mathcal{A}^{\mathbb{V}}, \Phi)$ is sensitive. (The intuition here comes from percolation theory). **Question.** Suppose we take a symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \Phi)$ and

'mutate' it, by changing the local rule at a small number of vertices.

We have shown that the positive expansiveness of $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ is related to the network dimension of the digraph (\mathbb{V}, \bullet) .

Question. What other dynamical properties of $(\mathcal{A}^{\mathbb{V}}, \mathcal{X}, \Phi)$ are influenced by the geometry of the digraph (\mathbb{V}, \bullet) ?

One could also go the other way. Start with an infinite digraph (\mathbb{V}, \bullet) , and randomly generate a continuous self-map $\Phi : \mathcal{A}^{\mathbb{V}} \longrightarrow \mathcal{A}^{\mathbb{V}}$, such that (\bullet) is the network of Φ .

Question. What are the 'generic' (i.e. almost-certain) properties of $(\mathcal{A}^{\mathbb{V}}, \Phi)$, and how do they depend on the geometry of (\mathbb{V}, \bullet) ? **Conjecture** If dim $(\mathbb{V}, \bullet) \leq 1$, then almost surely, $(\mathcal{A}^{\mathbb{V}}, \Phi)$ is equicontinuous. If dim $(\mathbb{V}, \bullet) > 1$, then almost surely, $(\mathcal{A}^{\mathbb{V}}, \Phi)$ is sensitive. (The intuition here comes from percolation theory).

Question. Suppose we take a symbolic dynamical system $(\mathcal{A}^{\mathbb{V}}, \Phi)$ and 'mutate' it, by changing the local rule at a small number of vertices. What topological-dynamical properties are 'robust' under such mutations, and how does this depend on the geometry of (\mathbb{V}, \bullet) ?

Thank you.

These presentation slides are available at

<http://euclid.trentu.ca/pivato/Research/network.pdf>

For more information, see

Positive expansiveness versus network dimension in symbolic dynamical systems, to appear in Theoretical Computer Science (2011).

<http://arxiv.org/abs/0907.2935>

Introduction: Shereshevsky's result

Symbolic dynamical systems

Definition & examples

The network of a symbolic dynamical system

Network Dimension

Entropy

Local independence and subisometries Subisometries and subsymmetries

Moving subsymmetries

Main results

Theorems 1 and 2

Theorem 0

Remarks

An expansive system of dimension two

Construction

Theorem statement

Proof sketch

Conjugacy invariance

Dimension is not a conjugacy invariant...

...but it is a Hölder conjugacy invariant

Conclusion