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Invariant measures for bipermutative cellular automata.
(English. English summary)
Discrete Contin. Dyn. Syst. 12 (2005), no. 4, 723–736.
The antecedent of this article is a result proved in [B. Host, A. Maass
and S. A. Mart́ınez, Discrete Contin. Dyn. Syst. 9 (2003), no. 6, 1423–
1446; MR2017675 (2004i:37022)] that states that for one-dimensional
affine cellular automata Φ on a finite field, a Φ-invariant measure
of positive entropy, which is shift(σ)-invariant and σ-ergodic too, is
by necessity the uniform Bernoulli measure. In this spirit, the article
considers one-dimensional cellular automata Φ with a configuration
space equipped with a topological group structure such that σ is a
group automorphism. If Φ is a group endomorphism of the configura-
tion space and is specified by a local rule that is a right-sided nearest
neighbor group multiplication then a measure which is Φ-invariant,
σ-invariant, totally σ-ergodic and has positive entropy is necessarily
the uniform Bernoulli measure. Another result is proved in this ar-
ticle for one-dimensional cellular automata Φ on nonabelian groups
with a nearest neighbor multiplication local rule. In this situation a
measure which is Φ-invariant, Φ-ergodic and σ-invariant is necessarily
supported on a right coset of a subgroup and is uniformly distributed
on this coset. Jesús Uŕıas (San Luis Potośı)
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Limit measures for affine cellular automata. II. (English.
English summary)
Ergodic Theory Dynam. Systems 24 (2004), no. 6, 1961–1980.
Introduction: “Let A be a finite abelian group, with the discrete
topology. If M is any set, then AM is a compact abelian group when
endowed with the Tikhonov product topology and componentwise
addition. If (M,+) is an abelian monoid (for example, a lattice: ZD×
NE), then the action of M on itself by translation induces a natural
shift action of M on the configuration space: for all e ∈M and a ∈
AM, define σe[a] = [bm|m∈M] where for all m ∈M, bm = ae+m.

“A linear cellular automaton (LCA) is a continuous endomorphism
F:AM ←↩ which commutes with all shift maps. If µ is a measure on
AM, it is natural to consider the sequence of measures {Fnµ|n∈N}
and ask whether this sequence converges in the weak∗ topology on
the space M[AM] of Borel probability measures on AM. If {Fnµ|n∈N}
does not itself converge, we might hope at least for convergence in
density (i.e., convergence of a subsequence {Fjµ|j∈J}, where J ⊂ N is
a subset of Cesàro density 1) or convergence of the Cesàro average
(1/N)

∑N
n=1 Fnµ.

“Let η denote the Haar measure on AM. Since η is invariant
under the algebraic operations of AM, it seems like a natural limit
point for {Fnµ|n∈N}. Indeed, D. Lind [Phys. D 10 (1984), no. 1-2,
36–44; MR0762651 (86g:68128)] has shown that, if A = Z2, F is
the automaton defined by F(a)0 = a(−1) + a1 and µ is any Bernoulli
measure, then

weak∗− lim
N→∞

1
N

N∑
n=1

Fnµ= η.

Lind also showed that {Fnµ|n∈N} does not converge to η: convergence
fails along the subsequence {F(2n)µ|n∈N}.

“Later, Ferrari, Maass, Mart́ınez and Ney showed similar Cesàro
convergence results in a variety of special cases [P. A. Ferrari et
al., Ergodic Theory Dynam. Systems 20 (2000), no. 6, 1657–1670;
MR1804951 (2001k:37017); A. Maass and S. A. Mart́ınez, in Cellular
automata and complex systems (Santiago, 1996), 37–54, Kluwer Acad.
Publ., Dordrecht, 1999;MR1672858]. Recently, in Part I [Ergodic
Theory Dynam. Systems 22 (2002), no. 4, 1269–1287; MR1926287
(2004b:37017)], we developed broad sufficient conditions for conver-
gence. The concepts of harmonic mixing for measures and diffusion
for LCA were introduced: if µ is a harmonically mixing probability
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measure and F a diffusive LCA, then {Fnµ|n∈N} weak∗ converges to η
in density and, thus, also in the Cesàro mean.

“This paper is a continuation of Part I. First we will extend the
results on the diffusion of LCA to a broader class of abelian groups: in
§3, to the case when A = Zn, for any n ∈ N, and then in §4, to the case
when A = (Z/pr)J (p prime, J, r ∈ N). Next, in §5, we demonstrate
harmonic mixing for any Markov random field on A(ZD) with full
support.”
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Symmetry groupoids and patterns of synchrony in coupled
cell networks. (English. English summary)
SIAM J. Appl. Dyn. Syst. 2 (2003), no. 4, 609–646 (electronic).
In this paper the authors introduce the formalism of symmetry
groupoids for networks, which generalizes the more common con-
cept of symmetry based on group actions. This formalism is applied
to networks of coupled dynamical systems, and it allows one to explain
the formation of patterns of synchrony in cases where the network
does not share the symmetry of such patterns.

The aim of the paper is attained by establishing two results about
the consequences that the existence of groupoid symmetries in a cou-
pled cell network G has for the dynamics generated by G-admissible
vector fields.

Prerequisites.
A coupled cell network G is a directed graph with cells (vertices) in

the set C and arrows in E⊂ C×C, supplied with equivalence relations
∼C and ∼E on cells and arrows respectively. In addition it is assumed
that ∆C := {(c, c): c ∈ C} is contained in E, that the equivalence
relations ∼C and ∼E are compatible, and that arrows in ∆C are never
equivalent to arrows in E r ∆C.

Two cells c, d ∈ C are input equivalent, which is denoted c ∼I d, if
there exists a bijection

β: I(c) := {i ∈ C: (i, c) ∈ E}→ I(d) := {i ∈ C: (i, d) ∈ E}

such that (i, c)∼E (β(i), d) for each i ∈ I(c). Such a bijection is called
an input isomorphism. The collection of all input isomorphisms from
c to its input equivalent cell d is denoted B(c, d), and the disjoint
union BG =

⋃̇
c,d∈CB(c, d) is the symmetry groupoid of the coupled

cell network G.
Each cell c ∈ C is associated to a cell phase space Pc, which is

assumed to be a finite-dimensional real vector space. It is required
that Pc = Pd whenever c∼C d. This defines a total phase space, which
is the Cartesian product P =

∏
c∈C Pc. Each input isomorphism β ∈

B(c, d) induces a pullback map β∗:
∏

i∈I(d) Pi →
∏

j∈I(c) Pj such that
β∗(xi) = xβ(j). A vector field f :P → P is G-admissible if for each c ∈
C, fc(x) depends only on {xi: i ∈ I(c)}. It is also required that for all
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c, d ∈ C and β ∈B(c, d), fβ(c)(x) = f(β∗({xi: i ∈ I(c)})).
A cell equivalence relation ./ defines the polydiagonal subspace

∆./ := {x ∈ P : xc = xd whenever c ./ d ∀c, d ∈ C} ⊂ P . The trajectory
x(t) of the vector field f :P → P is ./-polysynchronous if c ./ d implies
xc(t) = xd(t) for all t ∈ R. A polysynchronous state x ∈ ∆./ is what
one calls a pattern of synchrony.

The relation ./ is robustly polysynchronous if f(∆./)⊂∆./ for each
G-admissible vector field. The relation ./ is balanced if for all c, d ∈ C

such that c ./ d and c 6= d, there exists γ ∈ B(c, d) such that i ./ γ(i)
for all i ∈ I(c).

A map ϕ:C1→ C2 from the cells of the networks G1 to the cells of
the network G2 is a factor map if: it is onto, (d, d′) is an arrow of G2
if and only if (d, d′) = (ϕ(c), ϕ(c′)) for some arrow (c, c′) of G1, and β2
is an input isomorphism of G2 if and only if β2 ◦ϕ = ϕ ◦ β1 for some
input isomorphisms β1 of G2.

A choice of a phase space P =
∏

c∈C1
Pc for the network G1 deter-

mines a corresponding phase space P :=
∏

d∈C2
Pc, c ∈ ϕ−1({d}), for

the network G2. The vector field f :P → P induces a vector field for
f :P → P as follows. Let α:P → P be such that α(y)c = yd for each
c ∈ ϕ−1({d}); then f(y) = α−1(f(α(y))) for each y ∈ P .

Results.
The first main result gives a complete characterization of the

robustly polysynchronous equivalence relations on C. It establishes
that an equivalence relation ./ is robustly polysynchronous if and
only if it is balanced.

The second main result establishes that, given a factor map ϕ:G1→
G2, any G1-admissible vector field in the chosen phase space f :P → P
induces a G2-admissible vector field in the corresponding phase space
f :P → P .

Comments.
It is from the second result mentioned above that one can explain

the existence of patterns of synchrony in a network which does not
share the symmetry of such patterns. This comes from the fact that
a network may admit quotient networks which have symmetries even
when the original network has none.

The article proceeds in a very pedagogical way, illustrating each
new notion with clear examples. It starts with an example-based
informal discussion about symmetries and invariant subspaces, and
the relation between them. Though it is a mathematical paper whose
aim is to establish rigorous results, it may be easily followed by a
nonspecialist, and could be very useful for physicists and engineers
working in applications. Edgardo Ugalde (San Luis Potośı)
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Let (B, ·) be a finite group, M a lattice, and V ⊂ M a finite set
of coordinates. Fix an ordering v: {0, 1, . . . , I} → V. A multiplicative
cellular automaton (MCA) G:BM→ BM has local map g:BV→ B of
the form

g(b|V) = g ·
I∏
i=0

gi(bv[i]),

where g ∈ B, and for each i = 0, . . . , I, gi is an endomorphism of the
group (B, ·).

In this paper the author first shows how a pseudoproduct decom-
position B = A ?C leads to a decomposition G = F ?H of the MCA as
a skew product of a MCA H:CM→ CM, and a so-called multiplicative
relative cellular automaton F:AM×CM→AM.

Among other interesting applications, this decomposition allows
the author to extend his previous result with R. Yassawi [Ergodic
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Theory Dynam. Systems 22 (2002), no. 4, 1269–1287; MR1926287
(2004b:37017)] concerning the weak convergence of the iterates of a
harmonic measure under the action of an affine cellular automaton.
In the present paper the author proves that for (B, ·) nilpotent and
µ ∈M[BM] harmonic, if G: BM→ BM is multiplicative, then

wk∗ lim
J3j→∞

Gjµ= ηB,

where J ⊂ N is a set of density 1, and ηB is the uniform measure in
BM. This implies in particular the weak convergence of the Cesàro
averages (1/N)

∑N−1
j=0 Gjµ towards the uniform measure ηB.

Another application of the decomposition G = F ?H concerns the
Abramov formula for the entropy of a skew product.

Edgardo Ugalde (San Luis Potośı)
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Given a discrete abelian group X and a finite discrete space A, AX

denotes the space of maps from X to A. A mapping F :AX → AX is
a cellular automaton if F commutes with all shifts σx, where for each
x ∈ X the shift σx:AX → AX is defined by (σxf)(y) = f(x+ y) for
each f ∈ AX and y ∈ X. Given another abelian group (G,+) and a
map ϕ:A→G, one can consider the induced operator Sϕ:D ⊂AX →
G defined by Sϕ(f) =

∑
x∈X ϕ(f(x)), where D ⊂ AX is the subset

consisting of all f such that only finitely many terms in the sum are
nonzero in G. The paper studies the question of when such a map Sϕ
is invariant under a cellular automaton F . Several characterizations of
such conservation laws are given. The question of determining when
there exist cellular automata for which a given Sϕ is invariant is also
raised, and detailed results are given in the case that both groups G
and X are the integers. Michael Hurley (1-CWR)
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Ergodic Theory Dynam. Systems 22 (2002), no. 4, 1269–1287.
Let A be a finite abelian group and F :AK → AK be a linear cellular
automaton, where K is a countable monoid like N,Z, or Zd. Let µ be
a probability measure on AK . In this paper a formalism is proposed so
that the sequence (F nµ)n∈N weakly converges in density to the Haar
measure of the group, in particular, the Cesàro average.

Two notions are defined. (1) Harmonically mixing measures: A
probability measure µ on AK is called harmonically mixing if for all
ε > 0 there is some R> 0 such that for any character ψ ∈ ÂK ,

rank(ψ)>R⇒ |µ̂(ψ)|< ε.

In particular, it is proved that non-trivial Bernoulli measures and
Markov measures whose transition matrices do not have zero en-
tries are harmonically mixing. (2) Diffusive in density linear cellular
automata: A linear cellular automaton F :AK →AK is said to be dif-
fusive in density if for any non-trivial character ψ ∈ ÂK there is a
subset J ⊆ N of Cesàro density one such that

lim
j→∞
j∈J

rank(ψ ◦F j) =∞.

The authors prove that if p is a prime number and A= Zp, then any
non-trivial cellular automaton on AZd

is diffusive in density.
Using these notions the main result of the paper is stated: Theorem.

If F :AK →AK is a diffusive in density linear cellular automaton and
µ is a harmonically mixing probability measure on AK , then for some
J ⊆ N of Cesàro density one,

lim
j→∞
j∈J

F jµ= Haar.
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Building a stationary stochastic process from a
finite-dimensional marginal. (English. English summary)
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Let A be a finite alphabet, let D ≥ 1 be an integer, and let U⊆ ZD be
a subset. For a measure µU on AU we ask if µU is the projection of a
shift-invariant (stationary) measure µ on AZD

. For this to be the case
µU must satisfy invariance within the set U—the measure µU must be
locally stationary.

For D = 1 and U being an interval the answer to the above question
is given by the so-called Markov extension. Here any locally stationary
measure µU is the projection of a shift-invariant measure µ.

For D > 1 the situation is more complex. The author provides
another two necessary conditions: the entropy condition and the
tiling condition. The later relates the existence of the shift-invariant
measure µ to the tiling problem. If µU is the projection of µ, every
element x ∈ suppµ ⊆ AZD

can be viewed as a tiling using the tiles
in suppµU. Finally the existence of the invariant measure µ is, in
general, formally undecidable. Manfred Einsiedler (1-PRIN)
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