RealLife: the continuum limit of Larger than Life cellular automata Marcus Pivato Trent University

http://xaravve.trentu.ca/pivato/Research/reallife.pdf

This research supported by NSERC Canada.

Notational conventions:

- \mathbb{Z}^D := *D*-dimensional lattice.
- $\mathcal{A} := \{0, 1\}$ (alphabet of local states).

• $\mathcal{A}^{\mathbb{Z}^D}$:= space of \mathbb{Z}^D -indexed configurations $\mathbf{a} := \left[a_{\mathbf{z}} |_{\mathbf{z} \in \mathbb{Z}^D} \right]$.

• Cellular automaton $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow \mathcal{A}^{\mathbb{Z}^D}$, computed by applying a *local* rule ϕ at every point in space.

The CA **induced by** ϕ is function $\Phi : \mathcal{A}^{\mathbb{Z}^D} \longrightarrow$ defined: $\Phi(\mathbf{a}) := \mathbf{b}$.

Example: John H. Conway's Game of Life _____

$$D := 2, \quad \mathbb{K} := [-1..1]^2, \quad \text{and } \mathcal{A} := \{0, 1\}.$$

$$\Phi(\mathbf{a})_{\mathbf{z}} := \begin{cases} 1 & \text{if } a_{\mathbf{z}} = 1 \text{ and } \Re(\mathbf{a})_{\mathbf{z}} \in \{3, 4\} & (\text{`survival'}); \\ 1 & \text{if } a_{\mathbf{z}} = 0 \text{ and } \Re(\mathbf{a})_{\mathbf{z}} = 3 & (\text{`birth'}); \\ 0 & \text{otherwise.} \end{cases}$$

where
$$\mathfrak{K}(\mathbf{a})_{\mathbf{z}} := \sum_{\mathbf{k} \in \mathbb{K}} a_{\mathbf{z}+\mathbf{k}}$$
 is 'sum of local activity'.

Emergence of coherent structures:

Still lifes (equilibria) e.g. 'block', 'hive':

Oscillators (standing waves) e.g. 'Blinker':

•	•]																		
.	•	٠				.	•		•			.		٠	•				•	•			
.	•	٠	•	•	\rightarrow	.	٠	٠	٠		\rightarrow	.		٠		•	\rightarrow	•	•	٠	٠	•	\longrightarrow
.	·	٠		•		.	•	•	•			.		٠	•			.	•	•	•		
	•	•	•	•			•	•	•	•			•	•	•	•		•	•	•	•	•	

Bugs (traveling waves) e.g. 'Glider':

• Universal computation & self-replicators (using 'glider engineering').

Larger than Life Cellular Automata

Larger than Life is a family of 'long-range' generalizations of Conway's *Game of Life*, invented by Kellie Michele Evans.

$$\begin{split} D &:= 2; \ \mathcal{A} := \{0, 1\}. \text{ Now } \mathbb{K} := [-K..K] \times [-K..K] \text{ (for some } K > 0) \\ \text{Fix } 0 \leq s_0 \leq b_0 \leq b_1 \leq s_1 \leq 1. \qquad \begin{bmatrix} b_0, b_1 \end{bmatrix} = \begin{array}{c} \text{birth interval.} \\ [s_0, s_1] = \begin{array}{c} \text{survival interval.} \\ [s_0, s_1] = \begin{array}{c} \text{survival interval.} \\ \end{bmatrix} \\ \text{Define } \Phi(\mathbf{a})_{\mathsf{z}} &= \begin{array}{c} 1 & \text{if } a_{\mathsf{z}} = 1 \text{ and } s_0 \leq \mathfrak{K}(\mathbf{a})_{\mathsf{z}} \leq s_1 & (\text{`survival'}); \\ 1 & \text{if } a_{\mathsf{z}} = 0 \text{ and } b_0 \leq \mathfrak{K}(\mathbf{a})_{\mathsf{z}} \leq b_1 & (\text{`birth'}); \\ 0 & \text{otherwise.} \\ \end{aligned} \\ \text{where } \left| \mathfrak{K}(\mathbf{a})_{\mathsf{z}} \right| &:= \begin{array}{c} \frac{1}{|\mathbb{K}|} \sum_{\mathsf{k} \in \mathbb{K}} a_{\mathsf{z}+\mathsf{k}} & \text{is `average local activity'.} \end{array} \end{split}$$

Example: In Conway's *Life*, K = 1, $s_0 = b_0 = b_1 = \frac{1}{3}$, and $s_1 = \frac{4}{9}$. Evans' *Larger than Life* CA usually have

 $0.2 \leq s_0 \leq b_0 \leq 0.27 \leq 0.3 \leq b_1 \leq 0.35 \leq s_1 \leq 0.5.$

More generally, let \mathbb{K} be any large 'neighbourhood' of origin, and let $\mathfrak{K}(\mathbf{a})_{\mathsf{z}} := \sum_{\mathsf{k} \in \mathbb{K}} c_{\mathsf{k}} a_{\mathsf{z}+\mathsf{k}}$ for any positive coefficients $\{c_{\mathsf{k}}\}_{\mathsf{k} \in \mathbb{K}}$ with $\sum_{\mathsf{k} \in \mathbb{K}} c_{\mathsf{k}} = 1$.

Evans' LtL CA exhibit similar phenomena to Conway's *Life*:

- Emergence of complex, persistent structures ('life forms')
- Universal computation.

Life forms _

Experimentally, Evans found that LtL CA possess many *life forms:*

• *Still lifes* (compactly supported fixed points).

[Graphics by K.M. Evans]

Evolution properties

If the parameters (s_0, b_0, b_1, s_1) are slowly varied, then the resulting life forms 'evolve' as a function of (s_0, b_0, b_1, s_1) .

Fig. 18: Range 5 bug collection. Below each bug are the parameters $(\beta_1 = \delta_1, \beta_2, \delta_2)$ for the LtL rule that supports the bug. Also depicted are τ and $\vec{d} = (d_1, d_2)$, the bug's period and displacement vector, respectively.

Fig. 10. Collection of range 5 translation invariant bugs. Below each is its supporting rule, $(\beta_1 = \delta_1, \beta_2, \delta_2)$.

[Graphics by K.M. Evans]

Scaling properties

Observation: The life forms in longer-range LtL CA appear to be rescaled, 'high resolution' versions of those in shorter range LtL CA.

 $s_0 = b_0 = \frac{706}{2601} < b_1 = \frac{958}{2601} < s_1 = \frac{1216}{2601}$ and $\mathbb{K} = [-K..K]^2$, where K = 25, 50, 75, or 100.

Conjecture: (Evans) The life forms for LtL CA converge to continuum limits, which are life forms for a "Euclidean automaton"; a translationally-equivariant transformation of $\mathcal{A}^{\mathbb{R}^2}$.

Questions:

- What is the 'right' definition of 'Euclidean automaton'?
- Which Euclidean automata (EA) are the continuum limits of LtL CA?
- Do life forms of LtL CA 'evolve' toward life forms of these limit EA?
- How do the dynamics of the limit EA vary as the parameters (s₀, b₀, b₁, s₁) are varied? As the neighbourhood K is varied?
 How do life forms evolve as parameters/nhood change?

Euclidean Automata and RealLife

Let $D \geq 1$. Let λ be the *D*-dimensional Lebesgue measure on \mathbb{R}^D , and let $\mathbf{L}^{\infty} := \mathbf{L}^{\infty}(\mathbb{R}^D, \lambda)$.

Let $\mathcal{A} := \{0, 1\}$. Let $\mathcal{A}^{\mathbb{R}^D} \subset \mathbf{L}^{\infty}$ be the set of all **configurations**: Borel-measurable functions $\mathbf{a} : \mathbb{R}^D \longrightarrow \mathcal{A}$.

(Any $\mathbf{a} \in \mathcal{A}^{\mathbb{R}^D}$ is equivalent to a measurable subset of \mathbb{R}^D).

If $\vec{v} \in \mathbb{R}^D$, then define the shift map $\sigma^{\vec{v}} : \mathcal{A}^{\mathbb{R}^D} \longrightarrow \mathcal{A}^{\mathbb{R}^D}$ by $\sigma^{\vec{v}}(\mathbf{a}) = \mathbf{a}'$, where $\mathbf{a}'(x) = \mathbf{a}(x+v)$ for all $x \in \mathbb{R}^D$.

A Euclidean automaton (EA) is a function $\Phi : \mathcal{A}^{\mathbb{R}^D} \longrightarrow \mathcal{A}^{\mathbb{R}^D}$ which commutes with all shifts, and which is *determined by local information*, meaning that there is some compact neighbourhood $\mathbb{K} \subset \mathbb{R}^D$ around zero so that, if $\mathbf{a}, \mathbf{a}' \in \mathcal{A}^{\mathbb{R}^D}$, and $\mathbf{a}_{|\mathbb{K}} = \mathbf{a}'_{|\mathbb{K}}$, then $\Phi(\mathbf{a})(0) = \Phi(\mathbf{a}')(0)$. Let $\mathcal{K} := \{\mathfrak{k} \in \mathbf{L}^{\infty}(\mathbb{R}^D; \mathbb{R}^+); \text{ compact support, } \int_{\mathbb{R}^D} \mathfrak{k} = 1\}$ ('kernels'). Fix $\mathfrak{k} \in \mathcal{K}$. If $\mathbf{a} \in \mathcal{A}^{\mathbb{R}^D}$, then $\mathfrak{k} * \mathbf{a}(x) := \int_{\mathbb{R}^D} \mathfrak{k}(y) \cdot \mathbf{a}(x-y) d\lambda[y]$ average local activity. Example: Let $\mathbb{K} := \text{ compact neighbourhood of zero (eg. a ball), and}$

Example: Let $\mathbb{K} :=$ compact neighbourhood of zero (eg. a ball), and $\mathfrak{k} := \lambda[\mathbb{K}]^{-1} \mathbb{1}_{\mathbb{K}}$, then $\mathfrak{k} * \mathbf{a}(x) = \lambda[\mathbb{K}]^{-1} \int_{\mathbb{K}} \mathbf{a}(x-k) \ d\lambda[k]$.

RealLife: Fix $0 \le s_0 \le b_0 < b_1 \le s_1 \le 1$. Define $\Phi : \mathcal{A}^{\mathbb{R}^D} \longrightarrow$ by

 $\forall \mathbf{a} \in \mathcal{A}^{\mathbb{R}^{D}}, \ \Phi(\mathbf{a})(x) = \begin{cases} 1 & \text{if } \mathbf{a}(x) = 1 \text{ and } s_{0} \leq \mathbf{\mathfrak{k}} * \mathbf{a}(x) \leq s_{1} \text{ (`survival')} \\ 1 & \text{if } \mathbf{a}(x) = 0 \text{ and } b_{0} \leq \mathbf{\mathfrak{k}} * \mathbf{a}(x) \leq b_{1} \text{ (`birth')} \\ 0 & \text{otherwise.} \end{cases}$

Let $\Theta := \{(s_0, b_0, b_1, s_1) ; 0 \le s_0 \le b_0 < b_1 \le s_1 \le 1\}$ ('thresholds').

Then Φ depends on a choice of $\mathfrak{k} \in \mathcal{K}$ and $(s_0, b_0, b_1, s_1) \in \Theta$.

 Φ is called *RealLife* because it is the continuum limit of a sequences of LtL CA with 'birth interval' $[b_0, b_1]$ and 'survival interval' $[s_0, s_1]$.

Continuity Properties

Let $\mathbf{L}^{1} := \mathbf{L}^{1}(\mathbb{R}^{D}, \lambda)$. Let $\mathcal{A}^{\mathbb{R}^{D}} := \mathcal{A}^{\mathbb{R}^{D}} \cap \mathbf{L}^{1} = \begin{cases} \text{configurations whose supports} \\ \text{have finite measure} \end{cases}$. Then $\Phi(\mathcal{A}^{\mathbb{R}^{D}}) \subseteq \mathcal{A}^{\mathbb{R}^{D}}$. Extend Φ to function $\Phi : \mathbf{L}^{1} \longrightarrow \text{as follows: Let}$ $\mathfrak{b} := \mathbf{1}_{[b_{0},b_{1}]} \text{ and } \mathfrak{s} := \mathbf{1}_{[s_{0},s_{1}]}$. For any $\mathbf{a} \in \mathbf{L}^{1}$, define $\Phi(\mathbf{a})(x) := \mathbf{a}(x) \cdot \mathfrak{s} (\mathfrak{k} * \mathbf{a}(x)) + (1 - \mathbf{a}(x)) \cdot \mathfrak{b} (\mathfrak{k} * \mathbf{a}(x)), \quad \forall x \in \mathbb{R}^{D}$. If $\mathbf{a} \in \mathcal{A}^{\mathbb{R}^{D}}$, let $\alpha := \mathfrak{k} * \mathbf{a}$ and $M(\mathbf{a}) := \lambda \left[\alpha^{-1} \{s_{0}, b_{0}, s_{1}, b_{1} \} \right]$. Define $\mathcal{A}^{\mathbb{R}^{D}} := \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{R}^{D}} ; M(\mathbf{a}) = 0 \right\}.$

Theorem 1: If $(s_0, b_0, b_1, s_1) \in \Theta$, $\mathfrak{k} \in \mathcal{K}$, then Φ is \mathbf{L}^1 -continuous on ${}^{0}\!\mathcal{A}^{\mathbb{R}^D}$.

 $\mathcal{A}^{\mathbb{R}^D} \subsetneq \mathcal{A}^{\mathbb{R}^D}$: Let D = 2; let $\mathbb{K} := \left[\frac{-1}{2}, \frac{1}{2}\right]^2 \subset \mathbb{R}^2$ and $\mathfrak{k} := \mathbf{1}_{\mathbb{K}}$. Let $r := \sqrt{s_0}$ and $\mathbf{A} := [0, r]^2$, so $\lambda[\mathbf{A}] = s_0$. If $\mathbf{a} := \mathbf{1}_{\mathbf{A}}$, and $\alpha := \mathfrak{k} * \mathbf{a}$, then $\alpha(x) = s_0$ for $\forall x \in [r-1, 1]^2$. Thus, $M(\mathbf{a}) = \lambda\left([r-1, 1]^2\right) = (2-r)^2 > 0$, so $\mathbf{a} \notin \mathcal{A}^{\mathbb{R}^D}$.

 $\Phi \text{ is not } \mathbf{L}^{1}\text{-continuous on } {}^{1}\!\mathcal{A}^{\mathbb{R}^{D}}\text{: If } b_{0} > s_{0}\text{, then } \Phi(\mathbf{a}) = \mathbf{a}\text{. Let } \epsilon > 0\text{;}$ $\operatorname{let} \mathbf{r}' := \mathbf{r} - \epsilon/2\text{; let } \mathbf{A}' := [0, r']^{2}\text{; let } \mathbf{a}' := \mathbf{1}_{\mathbf{A}'}\text{. Then } \|\mathbf{a} - \mathbf{a}'\|_{1} < \epsilon\text{. But}$ $\lambda[\mathbf{A}'] < s_{0}\text{, so } \Phi(\mathbf{a}') = \mathbf{o} \text{ (zero config.), so } \|\Phi(\mathbf{a}) - \Phi(\mathbf{a}')\|_{1} = \lambda[\mathbf{A}] = s_{0}\text{.}$ $\mathbf{Theorem } \mathbf{2}\text{: } Fix \ (s_{0}, b_{0}, b_{1}, s_{1}) \in \Theta\text{. If } \mathfrak{k} \in \mathcal{K} \text{ is almost continuous}^{(*)}$ $\operatorname{then } {}^{0}\!\mathcal{A}^{\mathbb{R}^{D}} \text{ is a } \sigma\text{-invariant, dense } G\delta \text{ subset of } {}^{1}\!\mathcal{A}^{\mathbb{R}^{D}}\text{.}$ $(*) \text{ i.e. } \mathfrak{k} \text{ is continuous on open } \mathbf{Y} \subseteq \mathbb{R}^{D} \text{ and } \mathbf{Y}^{\complement} \text{ is 'thin': } \lim_{\epsilon \to 0} \lambda \left[\mathbb{B}(\mathbf{Y}^{\complement}, \epsilon)\right] = 0.$

To prove Theorem 1, we use

Lemma 1: Let $\mathbf{a}, \mathbf{a}' \in \mathbf{L}^1$. Let $\boldsymbol{\alpha} := \mathfrak{k} * \mathbf{a}$ and $\boldsymbol{\alpha}' := \mathfrak{k} * \mathbf{a}'$. Then: (a) $\|\Phi(\mathbf{a}) - \Phi(\mathbf{a}')\|_1 \leq 2\|\mathbf{a} - \mathbf{a}'\|_1 + \|\mathfrak{s} \circ \alpha - \mathfrak{s} \circ \alpha'\|_1 + \|\mathfrak{b} \circ \alpha - \mathfrak{b} \circ \alpha'\|_1$. (b) For any $\delta \geq 0$, define $\mathbf{b} = \mathbf{b} = \mathbf{b}$

Proof of Theorem 1: Let $\mathbf{a} \in \mathcal{A}^{\mathbb{R}^D}$ and $\mathbf{a}' \in \mathbf{L}^1$, with $\|\mathbf{a} - \mathbf{a}'\|_1 < \delta$. If $\alpha := \mathfrak{k} * \mathbf{a}$ and $\alpha' := \mathfrak{k} * \mathbf{a}'$, then

$$\begin{split} \|\Phi(\mathbf{a}) - \Phi(\mathbf{a}')\|_{1} & \leq \\ \lim_{(\mathbf{a}) \to 0} 2\|\mathbf{a} - \mathbf{a}'\|_{1} + \|\mathfrak{s} \circ \alpha - \mathfrak{s} \circ \alpha'\|_{1} + \|\mathfrak{b} \circ \alpha - \mathfrak{b} \circ \alpha'\|_{1} \\ & \leq \\ \lim_{(\mathbf{bc})} 2\delta + M^{s}_{\mathbf{a}}(K\delta) + M^{b}_{\mathbf{a}}(K\delta). \end{split}$$

(a) is by Lemma 1(a). (bc) is by Lemma 1(b,c). But $M(\mathbf{a}) = 0$, so $M^s_{\mathbf{a}}(K\delta) + M^b_{\mathbf{a}}(K\delta) \xrightarrow{\delta \to 0} 0$, by Lemma 1(d).

Proof sketch of Theorem 2: If $\mathbf{a} \notin \mathcal{A}^{\mathbb{R}^D}$, then $\lambda[\alpha^{-1}\{r\}] > 0$ for some $r \in \{s_0, b_0, b_1, s_1\}$. This is a 'fragile' property, which can be disrupted by small perturbation. Example: approximate \mathbf{a} with disjoint union of boxes; then slightly shrink box sizes.

Life forms: $\mathbf{a} \in \mathcal{A}^{\mathbb{R}^D}$ is a still life for Φ if $\Phi(\mathbf{a}) = \mathbf{a}$.

If $P \in \mathbb{N}$, then **a** is a *P*-oscillator if $\Phi^P(\mathbf{a}) = \mathbf{a}$.

If $P \in \mathbb{N}$ and $\vec{v} \in \mathbb{R}^D$, then **a** is a *P*-periodic bug with velocity \vec{v} if $\Phi^P(\mathbf{a}) = \sigma^{P\vec{v}}(\mathbf{a})$.

Evolution: If threshold parameters (s_0, b_0, b_1, s_1) change continuously, or kernel \mathfrak{k} changes continuously, then the corresponding *RealLife* EA Φ should also change continuously, and its 'life forms' should continuously 'evolve' as a function of (s_0, b_0, b_1, s_1) and \mathfrak{k} .

Formally: let $\{\Phi_n : \mathbf{L}^1 \supseteq\}_{n=1}^{\infty}$ be sequence of RealLife EA. Let $\mathfrak{A} \subset \mathbf{L}^1$ be σ -invariant subset. $\{\Phi_n\}_{n=1}^{\infty}$ evolves to Φ on \mathfrak{A} if, for any $\{\mathbf{a}_n\}_{n=1}^{\infty} \subset \mathbf{L}^1$ with \mathbf{L}^1 -lim $\mathbf{a}_n = \mathbf{a} \in \mathfrak{A}$, the following holds:

(a) If
$$\Phi_n(\mathbf{a}_n) = \mathbf{a}_n$$
 for all $n \in \mathbb{N}$, then $\Phi(\mathbf{a}) = \mathbf{a}$. (still lifes $\xrightarrow[n \to \infty]{}$ still lifes)
(b) Let $P \in \mathbb{N}$, and suppose $\Phi^p(\mathbf{a}) \in \mathfrak{A}$ for all $p \in [0...P)$.

[i] If $\Phi_n^P(\mathbf{a}_n) = \mathbf{a}_n$ for all $n \in \mathbb{N}$, then $\Phi^P(\mathbf{a}) = \mathbf{a}$. (oscillators) [ii] If $\vec{v} \in \mathbb{R}^D$ and $\Phi_n^P(\mathbf{a}_n) = \sigma^{P\vec{v}}(\mathbf{a}_n)$ for all $n \in \mathbb{N}$, then $\Phi^P(\mathbf{a}) = \sigma^{P\vec{v}}(\mathbf{a})$. (bugs $\xrightarrow[n \to \infty]{}$ bugs)

Theorem 3: Fix $(s_0, b_0, b_1, s_1) \in \Theta$. Let $\{\mathbf{t}_n\}_{n=1}^{\infty} \subset \mathcal{K}$. For all $n \in \mathbb{N}$, let $\Phi_n : \mathbf{L}^1 \longrightarrow \mathbf{L}^1$ be the RealLife EA defined by (s_0, b_0, b_1, s_1) and \mathbf{t}_n . Suppose \mathbf{L}^1 -lim $\mathbf{t}_n = \mathbf{t}$. Let Φ be the RealLife EA defined by (s_0, b_0, b_1, s_1) (s_0, b_0, b_1, s_1) and \mathbf{t} . Then

(a)
$$\mathbf{L}^{1}_{n\to\infty} \Phi_{n}(\mathbf{a}) = \Phi(\mathbf{a}), \text{ for all } \mathbf{a} \in \mathcal{A}^{\mathbb{R}^{D}}.$$

(b) If $\sup_{n\in\mathbb{N}} \|\mathfrak{k}_n\|_{\infty} < \infty$, then $\{\Phi_n\}_{n=1}^{\infty}$ evolves to Φ on $\mathcal{A}^{\mathbb{R}^D}$.

Proof of Thm 3(a): Fix $\mathbf{a} \in {}^{\mathcal{O}}\!\!\mathcal{A}^{\mathbb{R}^D}$.

Then $\Phi(\mathbf{a}) = \mathbf{a} \cdot (\mathbf{s} \circ \alpha) + (1 - \mathbf{a}) \cdot (\mathbf{b} \circ \alpha), \quad \text{where } \boldsymbol{\alpha} := \mathbf{\mathfrak{k}} * \mathbf{a}.$ and $\Phi_n(\mathbf{a}) = \mathbf{a} \cdot (\mathbf{s} \circ \alpha_n) + (1 - \mathbf{a}) \cdot (\mathbf{b} \circ \alpha_n), \quad \text{where } \boldsymbol{\alpha}_n := \mathbf{\mathfrak{k}}_n * \mathbf{a}.$ Thus, $\Phi_n(\mathbf{a}) - \Phi(\mathbf{a})$ $= \mathbf{a} \cdot (\mathbf{s} \circ \alpha_n - \mathbf{s} \circ \alpha) + (1 - \mathbf{a}) \cdot (\mathbf{b} \circ \alpha_n - \mathbf{b} \circ \alpha).$ Thus, $\|\Phi_n(\mathbf{a}) - \Phi(\mathbf{a})\|_1$ $\leq \|\mathbf{a}\|_{\infty} \cdot \|\mathbf{s} \circ \alpha_n - \mathbf{s} \circ \alpha\|_1 + \|1 - \mathbf{a}\|_{\infty} \cdot \|\mathbf{b} \circ \alpha_n - \mathbf{b} \circ \alpha\|_1.$ $\leq \|\mathbf{s} \circ \alpha_n - \mathbf{s} \circ \alpha\|_1 + \|\mathbf{b} \circ \alpha_n - \mathbf{b} \circ \alpha\|_1$ $\leq \|\mathbf{s} \circ \alpha_n - \mathbf{s} \circ \alpha\|_1 + \|\mathbf{b} \circ \alpha_n - \mathbf{b} \circ \alpha\|_1$

where (b) is by Lemma 1(b). But

 $\|\alpha_n - \alpha\|_{\infty} = \|(\mathfrak{k}_n - \mathfrak{k}) * \mathbf{a}\|_{\infty} \leq \|\mathfrak{k}_n - \mathfrak{k}\|_1 \cdot \|\mathbf{a}\|_{\infty} = \|\mathfrak{k}_n - \mathfrak{k}\|_1 \xrightarrow{\text{hypoth}} 0.$ (*) is Young's inequality. Thus, $\|\Phi_n(\mathbf{a}) - \Phi(\mathbf{a})\|_1 \xrightarrow{n \to \infty} 0$, by Lemma 1(d).

To establish 'evolution', we use equicontinuity. If $\{\Phi_n: \mathbf{L}^1 \rightleftharpoons\}_{n=1}^{\infty}$ are EA, and $\mathbf{a} \in \mathbf{L}^1$, then $\{\Phi_n\}_{n=1}^{\infty}$ is **equicontinuous** at \mathbf{a} if, for any $\gamma > 0$, there is some $\delta > 0$ so that, for any $\mathbf{a}' \in \mathbf{L}^1$,

$$\left(\|\mathbf{a}' - \mathbf{a}\|_1 < \delta \right) \Longrightarrow \left(\text{for all } n \in \mathbb{N}, \|\Phi_n(\mathbf{a}') - \Phi_n(\mathbf{a})\|_1 < \gamma \right).$$

Proposition A: Let $\mathfrak{A} \subset \mathbf{L}^1$ be a σ -invariant subset. If $\{\Phi_n\}_{n=1}^{\infty}$ is equicontinuous and converges to Φ at all points in \mathfrak{A} , then $\{\Phi_n\}_{n=1}^{\infty}$ evolves to Φ on \mathfrak{A} .

Proof sketch of Theorem 3(b): Must show that $\{\Phi_n\}_{n=1}^{\infty}$ is equicontinuous at every $\mathbf{a} \in \mathcal{A}^{\mathbb{R}^D}$. As in **Theorem 1** (continuity), we use **Lemma 1** to find a suitable δ for each γ .

Life forms and Evolution: Kernel Convergence

Corollary: Fix $(s_0, b_0, b_1, s_1) \in \Theta$. Let $\mathbb{K} \subset \mathbb{R}^D$ and $\mathfrak{k} := \lambda [\mathbb{K}]^{-1} \mathbb{1}_{\mathbb{K}}$. Example t $\{\mathbb{K}_n \subset \mathbb{R}^D\}_{n=1}^{\infty}$, and for any $n \in \mathbb{N}$, let $\Phi_n : \mathbb{L}^1 \longrightarrow \mathbb{L}^1$ be the RealLife EA defined by (s_0, b_0, b_1, s_1) and $\mathfrak{k}_n := \lambda [\mathbb{K}_n]^{-1} \mathbb{1}_{\mathbb{K}_n}$.

Suppose $\lim_{n \to \infty} \lambda[\mathbb{K}_n \Delta \mathbb{K}] = 0$. Then $\mathbf{L}^1 - \lim_{n \to \infty} \Phi_n(\mathbf{a}) = \Phi(\mathbf{a})$, for all $\mathbf{a} \in {}^{0}\!\mathcal{A}^{\mathbb{R}^D}$, and $\{\Phi_n\}_{n=1}^{\infty}$ evolves to Φ on ${}^{0}\!\mathcal{A}^{\mathbb{R}^D}$.

 $_$ Life forms and Evolution: Threshold Convergence $_$

Theorem 4: Fix $\mathfrak{k} \in \mathcal{K}$. Let $\{(s_0^n, b_0^n, b_1^n, s_1^n)\}_{n=1}^{\infty} \subset \Theta$. For each $n \in \mathbb{N}$, let $\Phi_n : \mathbf{L}^1 \longrightarrow \mathbf{L}^1$ be the RealLife EA defined by $(s_0^n, b_0^n, b_1^n, s_1^n)$ and \mathfrak{k} . Suppose $\lim_{n \to \infty} (s_0^n, b_0^n, b_1^n, s_1^n) = (s_0, b_0, b_1, s_1)$. Let Φ be the RealLife EA defined by (s_0, b_0, b_1, s_1) and \mathfrak{k} . Then

- (a) $\mathbf{L}^{1}_{n\to\infty} \Phi_{n}(\mathbf{a}) = \Phi(\mathbf{a}), \text{ for all } \mathbf{a} \in \mathcal{A}^{\mathbb{R}^{D}}.$
- (b) $\{\Phi_n\}_{n=1}^{\infty}$ evolves to Φ on ${}^{\mathcal{A}}\mathbb{R}^D$.

Proof: Similar strategy to proof of Theorem 3.

Interpretation: The dynamics of Φ change *continuously* as functions of the kernel \mathfrak{k} and threshold parameters (s_0, b_0, b_1, s_1) .

Question: What sort of bifurcation phenomena occur as we vary (s_0, b_0, b_1, s_1) or \mathfrak{k} ?

From Larger than Life to RealLife

We can define a 'discretized' **RealLife** EA Φ_{ϵ} : $\mathbf{L}^{1}_{\epsilon}$ that is dynamically isomorphic to a **Larger than Life** CA with radius ~ $1/\epsilon$.

To show that **RealLife** is 'continuum limit' of LtL CA, we extend Φ_{ϵ} to a function $\Phi_{\epsilon} : \mathbf{L}^1 \longrightarrow \mathbf{L}^1_{\epsilon}$, and show that Φ_{ϵ} converges to Φ as $\epsilon \longrightarrow 0$.

Theorem 5: Fix $(s_0, b_0, s_1, b_1) \in \Theta$ and $\mathfrak{k} \in \mathcal{K}$. Let Φ be the resulting RealLife EA.

(a) If $\mathbf{a} \in {}^{0}\!\!\mathcal{A}^{\mathbb{R}^{D}}$, then $\mathbf{L}^{1}_{\epsilon \to 0} \Phi_{\epsilon}(\mathbf{a}) = \Phi(\mathbf{a})$.

(b) If $\lim_{n\to\infty} \epsilon_n = 0$, then $\{\Phi_{\epsilon_n}\}_{n=1}^{\infty}$ evolves to Φ on $\mathcal{A}^{\mathbb{R}^D}$.

Remarks: (a) We cannot simulate *RealLife* on computer; we can only simulate large-radius LtL CA. Theorem 5(a) says this will yield 'good approximation' of *RealLife*.

(b) Evans empirically found that LtL CA of increasingly large radii have life forms that are virtually identical after rescaling. Theorem 5(b) suggests (but doesn't prove) that *RealLife* EA have life forms which are morphologically similar to those seen by Evans in LtL CA.

Discretization of RealLife

Let $\mathcal{M}(\epsilon \mathbb{Z}^D) = \{ \text{measures on } \epsilon \mathbb{Z}^D \}$. If $\mathfrak{k} \in \mathcal{K}$, define $\overline{\mathfrak{k}}_{\epsilon} \in \mathcal{M}(\epsilon \mathbb{Z}^D)$ by $\overline{\mathfrak{k}}_{\epsilon} := \sum_{\mathbf{z} \in \mathbb{Z}^D} k_{\mathbf{z}} \delta_{\epsilon \mathbf{z}}$, where, for all $\mathbf{z} \in \mathbb{Z}^D$, $\delta_{\epsilon \mathbf{z}} :=$ point mass at $\epsilon \mathbf{z}$, and $k_{\mathbf{z}} := \int_{\mathbf{C}(\mathbf{z},\epsilon)} \mathfrak{k}(c) \ d\lambda[c]$, where $\mathbf{C}(\mathbf{z},\epsilon) := \begin{pmatrix} \text{unique } \epsilon\text{-cube in } \mathcal{B}_{\epsilon} \\ \text{which contains } \epsilon \mathbf{z} \end{pmatrix}$. Define $\overline{\Phi}_{\epsilon} : \mathbf{L}^1_{\epsilon} \longrightarrow \mathbf{L}^1_{\epsilon}$ by $\overline{\Phi}_{\epsilon}(\mathbf{a}) := \mathbf{a} \cdot \mathfrak{s} \circ (\overline{\mathfrak{k}}_{\epsilon} * \mathbf{a}) + (1 - \mathbf{a}) \cdot \mathfrak{b} \circ (\overline{\mathfrak{k}}_{\epsilon} * \mathbf{a}), \quad \forall \mathbf{a} \in \mathbf{L}^1_{\epsilon}.$ Claim: $\overline{\Phi}_{\epsilon}(\mathbf{L}^1_{\epsilon}) \subseteq \mathbf{L}^1_{\epsilon}$, and $\overline{\Phi}_{\epsilon}(\epsilon \mathcal{A}^{\mathbb{R}^D}) \subseteq \epsilon \mathcal{A}^{\mathbb{R}^D}.$

Proof: If $\mathbf{a} \in \mathbf{L}^{1}_{\epsilon}$ (ie. \mathbf{a} is \mathcal{B}_{ϵ} -measurable), then $\boldsymbol{\alpha} := \overline{\mathfrak{k}}_{\epsilon} * \mathbf{a}$ is also \mathcal{B}_{ϵ} -measurable. Thus, $\mathfrak{b} \circ \alpha$ and $\mathfrak{s} \circ \alpha$ are also \mathcal{B}_{ϵ} -measurable. Thus, $\overline{\Phi}_{\epsilon}(\mathbf{a})$ is \mathcal{B}_{ϵ} -measurable.

For all $\mathbf{a} \in \mathbf{L}^1$, let $\overline{\mathbf{a}}_{\epsilon} \in \mathbf{L}^1_{\epsilon}$ be *conditional expectation* of \mathbf{a} given \mathcal{B}_{ϵ} :

For any
$$x \in \mathbb{R}^D$$
, $\overline{\mathbf{a}}_{\epsilon}(x) := \frac{1}{\epsilon^D} \int_{\mathbf{C}(x,\epsilon)} \mathbf{a}(c) \ d\lambda[c]$,

where $\mathbf{C}(x, \epsilon)$:= the unique ϵ -cube in \mathcal{B}_{ϵ} which contains x.

To extend $\overline{\Phi}_{\epsilon}$ to $\Phi_{\epsilon} : \mathbf{L}^1 \longrightarrow \mathbf{L}^1_{\epsilon}$, define $\Phi_{\epsilon}(\mathbf{a}) := \overline{\Phi}_{\epsilon}(\overline{\mathbf{a}}_{\epsilon}), \ \forall \ \mathbf{a} \in \mathbf{L}^1$. **Note:** $\Phi_{\epsilon}(\mathbf{a}) = \overline{\Phi}_{\epsilon}(\mathbf{a})$ for all $\mathbf{a} \in \mathbf{L}^1_{\epsilon}$ (because $\overline{\mathbf{a}}_{\epsilon} = \mathbf{a}$ for any $\mathbf{a} \in \mathbf{L}^1_{\epsilon}$.)

Suppress distinction between Φ_{ϵ} and $\overline{\Phi}_{\epsilon}$: write both as " Φ_{ϵ} ".

Proof of Theorem 5

If $\mathbf{a} = \mathbf{1}_{\mathbf{A}}$ for some $\mathbf{A} \subset \mathbb{R}^{D}$, then define $L(\mathbf{a}) := \lambda[\partial \mathbf{A}]$. Define $\partial_{\mathbf{A}} \mathbb{R}^{D} := \left\{ \mathbf{a} \in \partial_{\mathbf{A}} \mathbb{R}^{D} ; L(\mathbf{a}) = 0 \right\}.$ ('configs with thin boundary') **Claim 1:** $\partial_{\mathbf{A}} \mathbb{R}^{D}$ is a \mathbf{L}^{1} -dense subset of $\partial_{\mathbf{A}} \mathbb{R}^{D}$.

Proof sketch: Any measurable set can be approximated by a finite disjoint union \mathbf{U} of cubes. Then $\partial \mathbf{U}$ is finite disjoint union of faces, so it has zero volume.

Claim 2: (a) If
$$\mathbf{a} \in {}^{1}\!\mathcal{A}^{\mathbb{R}^{D}}$$
, then $\lim_{\epsilon \to 0} \|\overline{\mathbf{a}}_{\epsilon} - \mathbf{a}\|_{1} = 0$.

(b) If $\mathbf{a} \in \partial \mathcal{A}^{\mathbb{R}^D}$, then $\lim_{\epsilon \to 0} \left\| \overline{\mathbf{t}}_{\epsilon} * \overline{\mathbf{a}}_{\epsilon} - \mathbf{t} * \mathbf{a} \right\|_{\infty} = 0$.

Proof sketch: (a): Martingale convergence theorem.

(b): Let $\mathbf{a} := \mathbf{1}_{\mathbf{A}}$ for $\mathbf{A} \subset \mathbb{R}^{D}$. Then $\overline{\mathbf{a}}_{\epsilon}(x) = \mathbf{a}(x) \in \{0, 1\}$ for all x not ϵ -close to $\partial \mathbf{A}$. Thus, $\overline{\mathbf{t}}_{\epsilon} * \overline{\mathbf{a}}_{\epsilon} = \mathbf{t} * \mathbf{a}$ outside of ϵ -radius of $\partial \mathbf{A}$, while $\overline{\mathbf{t}}_{\epsilon} * \overline{\mathbf{a}}_{\epsilon} \sim \mathbf{t} * \mathbf{a}$ inside of ϵ -radius of $\partial \mathbf{A}$ (by convolutional 'smoothing'). \diamond

Claim 3: If
$$\mathbf{a} \in \mathcal{A}^{\mathbb{R}^D}$$
, then $\mathbf{L}^1_{\epsilon \to 0} \Phi_{\epsilon}(\mathbf{a}) = \Phi(\mathbf{a})$.

Proof sketch: Similar to Theorem 3(a), but using Claim 2.

Claim 4: $\{\Phi_{\epsilon}\}_{\epsilon>0}$ is \mathbf{L}^{1} -equicontinuous at every $\mathbf{a} \in \mathcal{A}^{\mathbb{R}^{D}}$.

Proof sketch: Similar to Theorems 3(b) and 4(b): use Lemma 1 to control continuity of Φ_{ϵ} .

Theorem 5(a): Follows from Claims 1, 3, and 4.

Theorem 5(b): Follows from (a), Claim 4, and Proposition A. \Box

_Still lifes in *RealLife*: Disks, Diamonds, and Squares ____

Evans empirically found many still lifes in various *Larger than Life* CA. Many of these still lifes are roughly 'ball'-shaped or 'annulus'-shaped (but distorted by kernel geometry and lattice anisotropy).

Proposition B: Let D = 2. Let $\|\bullet\|_*$ be norm on \mathbb{R}^2 . $\forall r > 0$, let $\bigcirc(r) := \{x \in \mathbb{R}^D ; \|x\|_* \le r\}$. Let $\mathbb{K} := \bigcirc(1)$, and $\mathfrak{k} := \lambda[\mathbb{K}]^{-1} \cdot \mathbf{1}_{\mathbb{K}}$.

Suppose $s_0 \leq \frac{1}{4}$. Let $\mathbb{R} < \min\{\sqrt{b_0}, \frac{1}{2}\}$. If $\mathbf{A} \subseteq \mathbf{O}(\mathbb{R})$, and $s_0 \cdot \lambda[\mathbb{K}] \leq \lambda[\mathbf{A}]$ then $\mathbf{a} := \mathbf{1}_{\mathbf{A}}$ is a still life.

In particular, if $\bigcirc(\sqrt{s_0}) \subseteq \mathbf{A} \subseteq \bigcirc(R)$, then **a** is a still life. (There is a similar result for higher dimensions)

Examples: Let $s_0 \leq \frac{1}{4} < b_0$, and $R < \frac{1}{2}$.

- ℓ^1 norm: For any r > 0, let $\mathbb{D}(r) := \left\{ x = (x_1, x_2) \in \mathbb{R}^D ; |x_1| + |x_2| \le r \right\}$ (diamond). Let $\mathfrak{k} := \frac{1}{2} \mathbb{1}_{\mathbb{D}(1)}$. Then $\mathbb{1}_{\mathbf{D}(r)}$ is a still life, $\forall r \in \left[\sqrt{s_0}, \frac{1}{2}\right]$.
- ℓ^2 norm: For any r > 0, let $\mathbb{B}(r) := \{x \in \mathbb{R}^2 ; |x| \le r\}$ (disk). Let $\mathfrak{k} := \frac{1}{\pi} \mathfrak{1}_{\mathbb{B}(1)}$. Then $\mathfrak{1}_{\mathbb{B}(r)}$ is a still life for any $r \in [\sqrt{s_0}, \frac{1}{2})$,
- ℓ^{∞} norm: For any r > 0, let $\mathbb{C}(r) := [-r, r]^2$ (square). Let $\mathfrak{k} := \frac{1}{4} \mathbb{1}_{\mathbb{C}(1)}$. Then $\mathbb{1}_{\mathbb{C}(r)}$ is a still life for any $r \in [\sqrt{s_0}, \frac{1}{2})$.

Still lifes in *RealLife*: Balls and Bubbles:

 $\begin{aligned} \mathbf{\mathfrak{k}} \text{ is rotationally symmetric if there exists function } \kappa : [0, \infty) \longrightarrow [0, \infty) \\ \text{such that } \mathbf{\mathfrak{k}}(x) &= \kappa |x| \text{ for all } x \in \mathbb{R}^{D} \text{.} \\ \text{If } R & > 0, \text{ let } \mathbb{B}(R) := \{x \in \mathbb{R}^{D} \text{ ; } |x| \leq R\} \text{ and } \mathbf{b}_{R} := \mathbf{1}_{\mathbb{B}(R)} \in {}^{1}\!\mathcal{A}^{\mathbb{R}^{D}} \text{.} \\ \text{If } r & \oplus [0, R], \text{ let } \mathbb{A}(r, R) := \{x \in \mathbb{R}^{D} \text{ ; } r \leq |x| \leq R\} \text{ be the bubble} \\ \text{with inder radius } r \text{ and outer radius } R \text{ (e.g. if } D = 2, \text{ then } \mathbb{A}(r, R) \text{ is an } \\ \text{annulus} \text{.} \text{.} \\ \text{Let } \mathbf{a}_{r,R} := \mathbf{1}_{\mathbb{A}(r,R)} \in {}^{1}\!\mathcal{A}^{\mathbb{R}^{D}} \text{.} \end{aligned}$

Proposition C: Suppose Φ has rotationally symmetric kernel \mathfrak{k} .

- (a) There are differentiable increasing functions $\underline{S}_1 : [0, \infty) \longrightarrow [0, \infty)$ and $\beta : [0, \infty) \longrightarrow [0, 1]$ so that, for any R > 0, if $s_0 \leq \beta(R) < b_0$ and $\underline{S}_1(R) \leq s_1$, then \mathbf{b}_R is a still life.
- (b) Let $\Delta := \{(r, R) ; 0 < r < R\}$. There are differentiable functions $\beta, \underline{B}_0, \overline{B}_1, \underline{S}_1 : \Delta \longrightarrow [0, 1]$ so that, for any $(r, R) \in \Delta$, if $s_0 \leq \beta(r, R) < b_0$, $\underline{S}_1(r, R) \leq s_1$, and either $\underline{B}_0(r, R) < b_0$ or $b_1 < \overline{B}_1(r, R)$ then $\mathbf{a}_{r,R}$ is a still life.

Other results: Similar existence theorem for still lifes shaped like thin, infinitely extended 'slabs', or like gently undulating 'curtains'.

Also, still life property is 'stable' under small perturbations in a Hausdorffstyle metric on ${}^{1}\!\mathcal{A}^{\mathbb{R}^{D}}$. **Oscillators & Bugs in** *RealLife***:** We have proved the existence of some *still lifes* for *RealLife* EA, but not oscillators or bugs.

Empirically, *Larger than Life* CA have oscillators and bugs. Theorem 5(b) says these should 'evolve' to oscillators and bugs for *RealLife*. But this is not a proof.

Converse of Theorem 5(b): Does existence of life forms for *RealLife* imply existence of life forms for large-radius LtL CA?

(As yet there is only empirical evidence for most life forms in LtL.)

PDEs for boundary dynamics: Simulations of *RealLife* show objects with 'smooth' boundaries, which 'smoothly' evolve over time.

Can this motion be described by a suitable system of partial differential equations?

Could these PDEs be used to prove existence of oscillators/bugs?

Computation: J.H. Conway built a universal computer in *Life*. K.M. Evans built a universal computer in one LtL CA (*Bosco's Rule*).

Can *RealLife* simulate a universal computer?

Replication: Conway also built a 'universal constructor' in *Life*. This yields 'life forms' capable of *self-replication* (and potentially, mutation and natural selection).

Are the self-replicating structures in *RealLife*?