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Cellular Automata

Notational conventions:

• ZD := D-dimensional lattice.

• A := {0, 1} (alphabet of local states).

• AZD := space of ZD-indexed configurations a :=
[

az|z∈ZD
]

.

• Cellular automaton Φ : AZD−→AZD, computed by applying a local

rule φ at every point in space.

Neighbourhood:

K ⊂ ZD (finite set)

Local rule: φ: AK−→A

Let a ∈ AZD, a :=
[

az|z∈ZD
]

.

∀z ∈ ZD, let bz := φ
[

a(k+z)|k∈K
]

.

K

φ

a

b

φ
φ

This defines new configuration b :=
[

bz|z∈ZD
]

.

The CA induced by φ is function Φ: AZD −←⊃ defined: Φ(a) := b.
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Example: John H. Conway’s Game of Life

D := 2, K := [−1..1]2, and A := {0, 1}.

Φ(a)z :=







1 if az = 1 and K(a)z ∈ {3, 4} (‘survival’);

1 if az = 0 and K(a)z = 3 (‘birth’);

0 otherwise.

where K(a)z :=
∑

k∈K

az+k is ‘sum of local activity’. K :

· · · · ·
· ∗ ∗ ∗ ·
· ∗ ∗ ∗ ·
· ∗ ∗ ∗ ·
· · · · ·

Emergence of coherent structures:

Still lifes (equilibria) e.g. ‘block’, ‘hive’:
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Oscillators (standing waves) e.g. ‘Blinker’:
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Bugs (traveling waves) e.g. ‘Glider’:
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• • • . .
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• Universal computation & self-replicators (using ‘glider engineering’).
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Larger than Life Cellular Automata

Larger than Life is a family of ‘long-range’ generalizations of Conway’s

Game of Life, invented by Kellie Michele Evans.

D := 2; A := {0, 1}. Now K := [−K..K]× [−K..K] (for some K > 0).

Fix 0 ≤ s0 ≤ b0 ≤ b1 ≤ s1 ≤ 1.
[b0, b1] = birth interval.

[s0, s1] = survival interval.

Define Φ(a)z =







1 if az = 1 and s0 ≤ K(a)z ≤ s1 (‘survival’);

1 if az = 0 and b0 ≤ K(a)z ≤ b1 (‘birth’);

0 otherwise.

where K(a)z :=
1

|K|
∑

k∈K

az+k is ‘average local activity’.

Example: In Conway’s Life, K = 1, s0 = b0 = b1 = 1
3, and s1 = 4

9.

Evans’ Larger than Life CA usually have

0.2 ≤ s0 ≤ b0 ≤ 0.27 ≤ 0.3 ≤ b1 ≤ 0.35 ≤ s1 ≤ 0.5.

More generally, let K be any large ‘neighbourhood’ of origin, and let

K(a)z :=
∑

k∈K

ckaz+k for any positive coefficients {ck}k∈K with
∑

k∈K

ck = 1.

Evans’ LtL CA exhibit similar phenomena to Conway’s Life:

• Emergence of complex, persistent structures (‘life forms’)

• Universal computation.
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Life forms

Experimentally, Evans found that LtL CA possess many life forms:

• Still lifes (compactly supported fixed points).

[Graphics by M.P.]

• Oscillators (compact periodic solutions).

[Graphics by K.M. Evans]

• Bugs (compact propagating structures).

[Graphics by K.M. Evans]
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Evolution properties

If the parameters (s0, b0, b1, s1) are slowly varied, then the resulting life

forms ‘evolve’ as a function of (s0, b0, b1, s1).

[Graphics by K.M. Evans]
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Scaling properties

Observation: The life forms in longer-range LtL CA appear to be

rescaled, ‘high resolution’ versions of those in shorter range LtL CA.

K=25 K=50 K=75 K=100
[Graphics by M.P.]

s0 = b0 = 706
2601 < b1 = 958

2601 < s1 = 1216
2601 and K = [−K..K]2, where

K = 25, 50, 75, or 100.

Conjecture: (Evans) The life forms for LtL CA converge to con-

tinuum limits, which are life forms for a “Euclidean automaton”; a

translationally-equivariant transformation of AR2
.

Questions:

• What is the ‘right’ definition of ‘Euclidean automaton’?

• Which Euclidean automata (EA) are the continuum limits of LtL CA?

• Do life forms of LtL CA ‘evolve’ toward life forms of these limit EA?

• How do the dynamics of the limit EA vary as the parameters (s0, b0, b1, s1)

are varied? As the neighbourhood K is varied?

How do life forms evolve as parameters/nhood change?
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Euclidean Automata and RealLife

Let D ≥ 1. Let λ be the D-dimensional Lebesgue measure on RD, and

let L∞ := L∞(RD, λ).

Let A := {0, 1}. Let ARD ⊂ L∞ be the set of all configurations:

Borel-measurable functions a : RD−→A.

(Any a ∈ ARD is equivalent to a measurable subset of RD).

If ~v ∈ RD, then define the shift map σ~v : ARD−→ARD by σ~v(a) = a′,

where a′(x) = a(x + v) for all x ∈ RD.

A Euclidean automaton (EA) is a function Φ : ARD−→ARD which

commutes with all shifts, and which is determined by local information,

meaning that there is some compact neighbourhood K ⊂ RD around zero

so that, if a, a′ ∈ ARD, and a|K = a′|K , then Φ(a)(0) = Φ(a′)(0).

Let K :=
{

k ∈ L∞(RD;R+) ; compact support,
∫

RD k = 1
}

(‘kernels’).

Fix k ∈ K. If a ∈ ARD, then k ∗ a(x) :=

∫

RD
k(y) ·a(x−y) dλ[y]

average
local

activity
.

Example: Let K := compact neighbourhood of zero (eg. a ball), and

k := λ[K]−111K, then k ∗ a(x) = λ[K]−1
∫

K a(x− k) dλ[k].

RealLife: Fix 0 ≤ s0 ≤ b0 < b1 ≤ s1 ≤ 1. Define Φ : ARD −←⊃ by

∀ a ∈ ARD, Φ(a)(x) =







1 if a(x) = 1 and s0 ≤ k ∗ a(x) ≤ s1 (‘survival’)

1 if a(x) = 0 and b0 ≤ k ∗ a(x) ≤ b1 (‘birth’)

0 otherwise.

Let Θ := {(s0, b0, b1, s1) ; 0 ≤ s0 ≤ b0 < b1 ≤ s1 ≤ 1} (‘thresholds’).

Then Φ depends on a choice of k ∈ K and (s0, b0, b1, s1) ∈ Θ.

Φ is called RealLife because it is the continuum limit of a sequences of

LtL CA with ‘birth interval’ [b0, b1] and ‘survival interval’ [s0, s1].
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Continuity Properties

Let L1 := L1(RD, λ). Let 1ARD := ARD∩L1 =
{

configurations whose supports
have finite measure

}

.

Then Φ(1ARD) ⊆ 1ARD. Extend Φ to function Φ : L1−←⊃ as follows: Let

b := 11[b0,b1] and s := 11[s0,s1]. For any a ∈ L1, define

Φ(a)(x) := a(x) ·s (k ∗ a(x)) + (1−a(x)) ·b (k ∗ a(x)) , ∀ x ∈ RD.

If a ∈ 1ARD, let α := k ∗ a and M(a) := λ
[

α−1{s0, b0, s1, b1}
]

. Define

0ARD :=
{

a ∈ 1ARD ; M(a) = 0
}

.

Theorem 1: If (s0, b0, b1, s1) ∈ Θ, k ∈ K, then Φ is L1-continuous on 0ARD.

AA
K

h

h

H H

r

r

1r-1

r-1

1
B

0ARD ( 1ARD: Let D = 2; let K :=
[−1

2 ,
1
2

]2 ⊂ R2 and k := 11K. Let

r :=
√
s0 and A := [0, r]2, so λ[A] = s0. If a := 11A, and α := k ∗ a,

then α(x) = s0 for ∀ x ∈ [r − 1, 1]2. Thus, M(a) = λ
(

[r − 1, 1]2
)

=

(2− r)2 > 0, so a 6∈ 0ARD.

Φ is not L1-continuous on 1ARD: If b0 > s0, then Φ(a) = a. Let ε > 0;

let r′ := r−ε/2; let A′ := [0, r′]2; let a′ := 11A′. Then ‖a− a′‖1 < ε. But

λ[A′] < s0, so Φ(a′) = o (zero config.), so ‖Φ(a)− Φ(a′)‖1 = λ[A] = s0.

Theorem 2: Fix (s0, b0, b1, s1) ∈ Θ. If k ∈ K is almost continuous(∗)

then 0ARD is a σ-invariant, dense Gδ subset of 1ARD.

(∗) i.e. k is continuous on open Y ⊆ RD and Y{ is ‘thin’: lim
ε→0

λ
[

B(Y{, ε)
]

= 0.
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To prove Theorem 1, we use

Lemma 1: Let a, a′ ∈ L1. Let α := k ∗ a and α′ := k ∗ a′. Then:

(a) ‖Φ(a)− Φ(a′)‖1 ≤ 2‖a− a′‖1+‖s ◦ α− s ◦ α′‖1+‖b ◦ α− b ◦ α′‖1.

(b) For any δ ≥ 0, define

s0 b0 b1
s1

δδ δδ δδ δδ

0 1Ws
δ

Wb
δ

Ws
δ := (s0 − δ, s0 + δ) ∪ (s1 − δ, s1 + δ) and M s

a(δ) := λ
[

α−1(WS
δ )
]

;

Wb
δ := (b0 − δ, b0 + δ) ∪ (b1 − δ, b1 + δ) and M b

a(δ) := λ
[

α−1(Wb
δ)
]

.

Then ‖s ◦ α′ − s ◦ α‖1 ≤ M s
a (‖α′ − α‖∞)

and ‖b ◦ α′ − b ◦ α‖1 ≤ M b
a (‖α′ − α‖∞).

(c) Let K := ‖k‖∞. Then ‖α′ − α‖∞ ≤ K·‖a− a′‖1. (Young’s Inequality)

(d) If M(a) = 0, then lim
δ→0

M s
a(δ) = 0 = lim

δ→0
M b

a(δ). (Radon property)

Proof of Theorem 1: Let a ∈ 0ARD and a′ ∈ L1, with ‖a− a′‖1 < δ. If

α := k ∗ a and α′ := k ∗ a′, then

‖Φ(a)− Φ(a′)‖1 ≤
(a)

2‖a− a′‖1 + ‖s ◦ α− s ◦ α′‖1 + ‖b ◦ α− b ◦ α′‖1

≤
(bc)

2δ + M s
a(Kδ) + M b

a(Kδ).

(a) is by Lemma 1(a). (bc) is by Lemma 1(b,c). But M(a) = 0, so

M s
a(Kδ) + M b

a(Kδ)−−−−δ→0−→0, by Lemma 1(d). 2

Proof sketch of Theorem 2: If a 6∈ 0ARD, then λ[α−1{r}] > 0 for some

r ∈ {s0, b0, b1, s1}. This is a ‘fragile’ property, which can be disrupted

by small perturbation. Example: approximate a with disjoint union of

boxes; then slightly shrink box sizes. 2
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Life forms and Evolution: Kernel Convergence

Life forms: a ∈ ARD is a still life for Φ if Φ(a) = a.

If P ∈ N, then a is a P -oscillator if ΦP (a) = a.

If P ∈ N and ~v ∈ RD, then a is a P -periodic bug with velocity ~v

if ΦP (a) = σP~v(a).

Evolution: If threshold parameters (s0, b0, b1, s1) change continu-

ously, or kernel k changes continuously, then the corresponding RealLife

EA Φ should also change continuously, and its ‘life forms’ should contin-

uously ‘evolve’ as a function of (s0, b0, b1, s1) and k.

Formally: let {Φn : L1−←⊃}∞n=1 be sequence of RealLife EA. Let A ⊂ L1

be σ-invariant subset. {Φn}∞n=1 evolves to Φ on A if, for any {an}∞n=1 ⊂ L1

with L1−lim
n→∞

an = a ∈ A, the following holds:

(a) If Φn(an) = an for all n ∈ N, then Φ(a) = a. (still lifes −−−−n→∞−→ still lifes)

(b) Let P ∈ N, and suppose Φp(a) ∈ A for all p ∈ [0...P ).

[i] If ΦP
n (an) = an for all n ∈ N, then ΦP (a) = a. (oscillators→oscillators)

[ii] If ~v ∈ RD and ΦP
n (an) = σP~v(an) for all n ∈ N, then ΦP (a) =

σP~v(a). (bugs −−−−n→∞−→ bugs)

Theorem 3: Fix (s0, b0, b1, s1) ∈ Θ. Let {kn}∞n=1 ⊂ K. For all

n ∈ N, let Φn : L1−→L1 be the RealLife EA defined by (s0, b0, b1, s1)

and kn. Suppose L1−lim
n→∞

kn = k. Let Φ be the RealLife EA defined by

(s0, b0, b1, s1) and k. Then

(a) L1−lim
n→∞

Φn(a) = Φ(a), for all a ∈ 0ARD.

(b) If sup
n∈N
‖kn‖∞ <∞, then {Φn}∞n=1 evolves to Φ on 0ARD.
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Proof of Thm 3(a): Fix a ∈ 0ARD.

Then Φ(a) = a · (s ◦ α) + (1− a) · (b ◦ α), where α := k ∗ a.

and Φn(a) = a · (s ◦ αn) + (1− a) · (b ◦ αn), where αn := kn ∗ a.

Thus, Φn(a)− Φ(a)

= a · (s ◦ αn − s ◦ α) + (1− a) · (b ◦ αn − b ◦ α) .

Thus, ‖Φn(a)− Φ(a)‖1
≤ ‖a‖∞ · ‖s ◦ αn − s ◦ α‖1 + ‖1− a‖∞ · ‖b ◦ αn − b ◦ α‖1.
≤ ‖s ◦ αn − s ◦ α‖1 + ‖b ◦ αn − b ◦ α‖1
≤
([)

M s
a (‖αn − α‖∞) + M b

a (‖αn − α‖∞) ,

where ([) is by Lemma 1(b). But

‖αn − α‖∞ = ‖(kn − k) ∗ a‖∞ ≤
(∗)
‖kn − k‖1·‖a‖∞ = ‖kn − k‖1 −−−−

hypoth
n→∞−→ 0.

(∗) is Young’s inequality. Thus, ‖Φn(a)− Φ(a)‖1−−−−n→∞−→0, by Lemma 1(d).

2

To establish ‘evolution’, we use equicontinuity. If {Φn: L1−←⊃}∞n=1 are

EA, and a ∈ L1, then {Φn}∞n=1 is equicontinuous at a if, for any γ > 0,

there is some δ > 0 so that, for any a′ ∈ L1,
(

‖a′ − a‖1 < δ
)

=⇒
(

for all n ∈ N, ‖Φn(a′)− Φn(a)‖1 < γ
)

.

Proposition A: Let A ⊂ L1 be a σ-invariant subset. If {Φn}∞n=1

is equicontinuous and converges to Φ at all points in A, then {Φn}∞n=1

evolves to Φ on A.

Proof sketch of Theorem 3(b): Must show that {Φn}∞n=1 is

equicontinuous at every a ∈ 0ARD. As in Theorem 1 (continuity), we

use Lemma 1 to find a suitable δ for each γ. 2
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Life forms and Evolution: Kernel Convergence

Corollary: Fix (s0, b0, b1, s1) ∈ Θ. Let K ⊂ RD and k := λ[K]−111K.

Let {Kn ⊂ RD}∞n=1, and for any n ∈ N, let Φn : L1−→L1 be the

RealLife EA defined by (s0, b0, b1, s1) and kn := λ[Kn]−111Kn.

Suppose lim
n→∞

λ[Kn4K] = 0. Then L1−lim
n→∞

Φn(a) = Φ(a), for all

a ∈ 0ARD, and {Φn}∞n=1 evolves to Φ on 0ARD.

PSfrag replacements

K4 K5 K6 K7 K8 K9 K

Life forms and Evolution: Threshold Convergence

Theorem 4: Fix k ∈ K. Let {(sn0 , bn0 , bn1 , sn1)}∞n=1 ⊂ Θ. For each n ∈
N, let Φn : L1−→L1 be the RealLife EA defined by (sn0 , b

n
0 , b

n
1 , s

n
1) and

k. Suppose lim
n→∞

(sn0 , b
n
0 , b

n
1 , s

n
1) = (s0, b0, b1, s1). Let Φ be the RealLife

EA defined by (s0, b0, b1, s1) and k. Then

(a) L1−lim
n→∞

Φn(a) = Φ(a), for all a ∈ 0ARD.

(b) {Φn}∞n=1 evolves to Φ on 0ARD.

Proof: Similar strategy to proof of Theorem 3. 2

Interpretation: The dynamics of Φ change continuously as functions

of the kernel k and threshold parameters (s0, b0, b1, s1).

Question: What sort of bifurcation phenomena occur as we vary

(s0, b0, b1, s1) or k?
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From Larger than Life to RealLife

For any ε > 0, let Bε be the sigma-algebra

generated by ε-length cubes with centres in

lattice εZD ⊂ RD. (‘pixels’)

Let L1
ε := L1(RD,Bε, λ). Then L1

ε
∼= `1(ZD).

Let εARD := 1ARD ∩L1
ε . Then εARD ∼= 1AZD.

ε 2ε−ε−2ε

ε

2ε

−ε

−2ε

We can define a ‘discretized’ RealLife EA Φε : L1
ε
−←⊃ that is dynamically

isomorphic to a Larger than Life CA with radius ∼ 1/ε.

To show that RealLife is ‘continuum limit’ of LtL CA, we extend Φε to

a function Φε : L1−→L1
ε , and show that Φε converges to Φ as ε→0.

Theorem 5: Fix (s0, b0, s1, b1) ∈ Θ and k ∈ K. Let Φ be the

resulting RealLife EA.

(a) If a ∈ 0ARD, then L1−lim
ε→0

Φε(a) = Φ(a).

(b) If lim
n→∞

εn = 0, then {Φεn}∞n=1 evolves to Φ on 0ARD.

Remarks: (a) We cannot simulate RealLife on computer; we can only

simulate large-radius LtL CA. Theorem 5(a) says this will yield ‘good

approximation’ of RealLife.

(b) Evans empirically found that LtL CA of increasingly large radii

have life forms that are virtually identical after rescaling. Theorem 5(b)

suggests (but doesn’t prove) that RealLife EA have life forms which are

morphologically similar to those seen by Evans in LtL CA.
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Discretization of RealLife

LetM(εZD) = {measures on εZD}. If k ∈ K, define k̄ε ∈M(εZD) by

k̄ε :=
∑

z∈ZD
kz δεz, where, for all z ∈ ZD, δεz := point mass at εz,

and kz :=

∫

C(z,ε)

k(c) dλ[c], where C(z, ε) :=
(

unique ε-cube in Bε
which contains εz

)

.

Define Φε : L1
ε−→L1

ε by

Φε(a) := a · s ◦ (k̄ε ∗ a) + (1− a) · b ◦ (k̄ε ∗ a), ∀a ∈ L1
ε .

Claim: Φε(L
1
ε) ⊆ L1

ε , and Φε(
εARD) ⊆ εARD.

Proof: If a ∈ L1
ε (ie. a is Bε-measurable), then α := k̄ε ∗ a is also

Bε-measurable. Thus, b◦α and s◦α are also Bε-measurable. Thus, Φε(a)

is Bε-measurable. 2

For all a ∈ L1, let aε ∈ L1
ε be conditional expectation of a given Bε:

For any x ∈ RD, aε(x) :=
1

εD

∫

C(x,ε)

a(c) dλ[c],

where C(x, ε) := the unique ε-cube in Bε which contains x.

To extend Φε to Φε : L1−→L1
ε , define Φε(a) := Φε(aε), ∀ a ∈ L1.

Note: Φε(a) = Φε(a) for all a ∈ L1
ε (because aε = a for any a ∈ L1

ε .)

Suppress distinction between Φε and Φε: write both as “Φε”.
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Proof of Theorem 5

If a = 11A for some A ⊂ RD, then define L(a) := λ[∂A]. Define

∂ARD :=
{

a ∈ 0ARD ; L(a) = 0
}

. (‘configs with thin boundary’)

Claim 1: ∂ARD is a L1-dense subset of 0ARD.

Proof sketch: Any measurable set can be approximated by a finite

disjoint union U of cubes. Then ∂U is finite disjoint union of faces, so it

has zero volume. ♦

Claim 2: (a) If a ∈ 1ARD, then lim
ε→0
‖aε − a‖1 = 0.

(b) If a ∈ ∂ARD, then lim
ε→0

∥

∥k̄ε ∗ aε − k ∗ a
∥

∥

∞ = 0.

Proof sketch: (a): Martingale convergence theorem.

(b): Let a := 11A for A ⊂ RD. Then aε(x) = a(x) ∈ {0, 1} for all x

not ε-close to ∂A. Thus, k̄ε ∗ aε = k ∗ a outside of ε-radius of ∂A, while

k̄ε ∗ aε ∼ k ∗ a inside of ε-radius of ∂A (by convolutional ‘smoothing’).

♦

Claim 3: If a ∈ ∂ARD, then L1−lim
ε→0

Φε(a) = Φ(a).

Proof sketch: Similar to Theorem 3(a), but using Claim 2. ♦

Claim 4: {Φε}ε>0 is L1-equicontinuous at every a ∈ 0ARD.

Proof sketch: Similar to Theorems 3(b) and 4(b): use Lemma 1 to

control continuity of Φε. ♦

Theorem 5(a): Follows from Claims 1, 3, and 4.

Theorem 5(b): Follows from (a), Claim 4, and Proposition A. 2



16

Still lifes in RealLife: Disks, Diamonds, and Squares

Evans empirically found many still lifes in various Larger than Life CA.

Many of these still lifes are roughly ‘ball’-shaped or ‘annulus’-shaped (but

distorted by kernel geometry and lattice anisotropy).

Proposition B: Let D = 2. Let ‖•‖∗ be norm on R2. ∀ r > 0, let
⊙

(r) :=
{

x ∈ RD ; ‖x‖∗ ≤ r
}

. Let K :=
⊙

(1), and k := λ[K]−1 · 11K.

Suppose s0 ≤ 1
4. Let R < min{

√
b0,

1
2}. If A ⊆

⊙

(R), and

s0 · λ[K] ≤ λ[A] then a := 11A is a still life.

In particular, if
⊙

(
√
s0) ⊆ A ⊆

⊙

(R), then a is a still life.

(There is a similar result for higher dimensions)

Rs

A
s

s

s

1/2

1/2

1/2

Diamond

Disk

Square
L1

L2

Loo

Examples: Let s0 ≤ 1
4 < b0, and R < 1

2.

`1 norm: For any r > 0, letD(r) :=
{

x = (x1, x2) ∈ RD ; |x1| + |x2| ≤ r
}

(diamond). Let k := 1
211D(1). Then 11D(r) is a still life, ∀ r ∈

[√
s0,

1
2

)

.

`2 norm: For any r > 0, let B(r) :=
{

x ∈ R2 ; |x| ≤ r
}

(disk). Let

k := 1
π11B(1). Then 11B(r) is a still life for any r ∈

[√
s0,

1
2

)

,

`∞ norm: For any r > 0, let C(r) := [−r, r]2 (square). Let k := 1
411C(1).

Then 11C(r) is a still life for any r ∈
[√
s0,

1
2

)

.
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Still lifes in RealLife: Balls and Bubbles:

k is rotationally symmetric if there exists function κ : [0,∞)−→[0,∞)

such that k(x) = κ|x| for all x ∈ RD.

If R > 0, let B(R) :=
{

x ∈ RD ; |x| ≤ R
}

and bR := 11B(R) ∈ 1ARD.

If r ∈ [0, R], let A(r, R) :=
{

x ∈ RD ; r ≤ |x| ≤ R
}

be the bubble

with inner radius r and outer radius R (e.g. if D = 2, then A(r, R) is an

annulus). Let ar,R := 11A(r,R) ∈ 1ARD.

R R

r

P
S

frag
rep

lacem
ents

B(R)
A(r, R)

0 10.5

0.7

0

0.5

0.6

0.4

0.3

0.2

0.1

R

s0

b0

b1

s1

PSfrag replacements

β

S 1

Proposition C: Suppose Φ has rotationally symmetric kernel k.

(a) There are differentiable increasing functions S1 : [0,∞)−→[0,∞)

and β : [0,∞)−→[0, 1] so that, for any R > 0, if s0 ≤ β(R) < b0
and S1(R) ≤ s1, then bR is a still life.

(b) Let ∆ := {(r, R) ; 0 < r < R}. There are differentiable functions

β,B0, B1, S1 : ∆−→[0, 1] so that, for any (r, R) ∈ ∆, if s0 ≤
β(r, R) < b0, S1(r, R) ≤ s1, and either B0(r, R) < b0 or b1 <

B1(r, R) then ar,R is a still life.

Other results: Similar existence theorem for still lifes shaped like

thin, infinitely extended ‘slabs’, or like gently undulating ‘curtains’.

Also, still life property is ‘stable’ under small perturbations in a Hausdorff-

style metric on 1ARD.
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Open Questions

Oscillators & Bugs in RealLife: We have proved the existence of some

still lifes for RealLife EA, but not oscillators or bugs.

Empirically, Larger than Life CA have oscillators and bugs. Theorem

5(b) says these should ‘evolve’ to oscillators and bugs for RealLife.

But this is not a proof.

Converse of Theorem 5(b): Does existence of life forms for RealLife

imply existence of life forms for large-radius LtL CA?

(As yet there is only empirical evidence for most life forms in LtL.)

PDEs for boundary dynamics: Simulations of RealLife show objects

with ‘smooth’ boundaries, which ‘smoothly’ evolve over time.

Can this motion be described by a suitable system of partial differen-

tial equations?

Could these PDEs be used to prove existence of oscillators/bugs?

Computation: J.H. Conway built a universal computer in Life.

K.M. Evans built a universal computer in one LtL CA (Bosco’s Rule).

Can RealLife simulate a universal computer?

Replication: Conway also built a ‘universal constructor’ in Life. This

yields ‘life forms’ capable of self-replication (and potentially, muta-

tion and natural selection).

Are the self-replicating structures in RealLife?


