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Abstract. A coupled cell system is a network of dynamical systems, or ‘cells’,
coupled together. Such systems can be represented schematically by a directed
graph whose nodes correspond to cells and whose edges represent couplings. A
symmetry of a coupled cell system is a permutation of the cells and edges that
preserves all internal dynamics and all couplings. It is well known that symmetry
can lead to patterns of synchronized cells, rotating waves, multirhythms, and
synchronized chaos. Recently, the introduction of a less stringent form of symmetry,
the ‘symmetry groupoid’, has shown that global group-theoretic symmetry is not the
only mechanism that can create such states in a coupled cell system. The symmetry
groupoid consists of structure-preserving bijections between certain subsets of the cell
network, the input sets. Here, we introduce a concept intermediate between the
groupoid symmetries and the global group symmetries of a network: ‘interior
symmetry’. This concept is closely related to the groupoid structure, but imposes
stronger constraints of a group-theoretic nature. We develop the local bifurcation
theory of coupled cell systems possessing interior symmetries, by analogy with sym-
metric bifurcation theory. The main results are analogues for ‘synchrony-breaking’
bifurcations of the Equivariant Branching Lemma for steady-state bifurcation, and
the Equivariant Hopf Theorem for bifurcation to time-periodic states.

Received 30 September 2003; accepted 20 September 2004

1. Introduction

A ‘coupled cell system’ is a system of ordinary differential equations (ODEs) whose
structure is that of a finite number of subsystems (‘cells’) that are coupled together.
That is, the dynamics of a given cell depends on the states of some of the other
cells, as well as its own state. Which cells are coupled can be specified by a ‘network’
or directed graph G, whose nodes are the cells and whose (directed) edges correspond
to couplings. That is, cell i influences cell j if there is a directed edge from node
i to node j.
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Abstractly, the topology of the network (especially when equipped with

‘labels’ specifying when two cells or two couplings are ‘the same’ (Stewart et al.,

2003) determines a class FP
G of ‘admissible’ vector fields. The corresponding ODEs

are precisely the coupled cell systems whose ‘architecture’ is that of G. It turns out

that many aspects of pattern-formation in coupled cell systems are primarily con-

sequences of the network topology, and that the precise choice of an admissible

vector field is of secondary significance.

At this level of generality, any dynamical system can be thought of as a coupled

cell system, and conversely. However, there is a significant difference in viewpoint.

A coupled cell system is equipped with a distinguished set of ‘observables’,

the states of the cells. Specifically, let C ¼ f1, . . . ,Ng and let the cells be indexed

by c 2 C. Equip each cell c with a phase space Pc (a finite-dimensional smooth

manifold, which for simplicity we shall take to be R
kðcÞ where k(c) is the number

of ‘degrees of freedom’ of cell c). Then the ‘total phase space’ for the system is

P ¼ P1 �� � �� PN

and the state of the system at time t is ðx1ðtÞ, . . . , xNðtÞÞ, where xcðtÞ 2 Pc is the

state of cell c at time t. The distinguished observables are then the natural

projections �c : P ! Pc from the total phase space to the phase spaces of the

cells. These projections are an important part of the structure, so that, for

example, the only permitted changes of variables are ones that preserve these

projections (Golubitsky and Stewart, 2002a; 2002b).

The existence of distinguished observables makes it meaningful to compare the

dynamics of distinct cells. For example, we may say that cells i, j are ‘synchro-

nous’ if xiðtÞ ¼ xjðtÞ for all t 2 R, or that they are ‘phase-related’ with ‘phase

difference’ � if both xi, xj are time-periodic and xjðtÞ ¼ xiðtþ �Þ. There now

exists a huge literature on synchrony, phase-relations, and more exotic dynami-

cal phenomena in coupled cell systems, often referred to simply as ‘networks’:

see, for example, Kuramoto (1984), Pecora and Carroll (1990), Boccaletti et al.

(2001), Wang (2002), and Watts and Strogatz (1998). The potential range of

applications of such systems is also huge, including communication via the

Internet, the spread of epidemics, food webs in ecosystems, metabolic networks

in the cell, neural circuits, networks of gene expression, commercial supply

chains, electrical power grids, transport networks, and crowd flow.

One strand in the literature focuses on the effect of the overall symmetry of the

network on the formation of spatial and spatio-temporal patterns (Golubitsky and

Stewart, 2002a; 2002b; Dionne et al., 1996a; 1996b). Applications include animal

locomotion (Buono, 1998; 2001; Buono and Golubitsky, 2001; Collins and Stewart,

1992; 1993a; 1993b; Golubitsky et al.; 1998) and speciation (Cohen and Stewart,

2000; Elmhirst, 1998; 2001; 2004; Dias and Stewart, 2003; Stewart, 2003a; 2003b;

Stewart et al., 2003; Vincent and Vincent, 2000). A continuum analogue has been

applied to visual perception (Bressloff et al., 2001a; 2001b; 2002).

The formal setting for this theory is the symmetry group of the network: the set

of permutations of the nodes that preserves the coupling structure. However,

the existence of global network symmetries is a very strong constraint, and it

turns out that for many purposes a weaker notion is preferable, the ‘symmetry

groupoid’ of the network (Stewart et al., 2003; Golubitsky et al., 2004; 2005).
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A groupoid is a generalization of a group, in which products of elements are
not always defined (Higgins, 1971). The symmetry groupoid is a formalization of
the ‘local symmetries’ of a coupled cell network that relate subsets of the network to
each other. In particular, the ‘admissible’ vector fields — those specified by the
network topology — are precisely those that are equivariant under the action of
the symmetry groupoid (Stewart et al. 2003).

In this paper we study a concept of ‘symmetry’ that is intermediate between the
global group symmetries of G and the local groupoid symmetries. We refer to this
concept as ‘interior symmetry’. Roughly speaking, an interior symmetry is a sym-
metry of some subset of cells, that fixes all cells that receive inputs from cells outside
that subset. Interior symmetries have a strong influence on pattern formation, and
the details of this influence differ from both the group and groupoid cases.

Our main objective in this paper is to initiate the ‘synchrony-breaking’ bifurcation
theory of not necessarily symmetric coupled cell systems in the presence of interior
symmetries, and in particular to prove analogues of the Equivariant Branching
Lemma and the Equivariant Hopf Theorem (Golubitsky and Stewart, 2002;
Golubitsky et al., 1988). Section 2 reviews the pertinent features of coupled cell
systems and their associated networks. In particular we give a formal definition of
a coupled cell network, explain its graphical representation, discuss admissible vector
fields, and recall the concept of a balanced equivalence relation. Section 3 defines
interior symmetries and establishes some of their properties. Section 4 sets up the
required properties of linearizations. Section 5 states and proves an analogue of the
Equivariant Branching Lemma, while section 6 states and proves an analogue of the
Equivariant Equivariant Hopf Theorem. We conclude with a typical simulation for
the time-periodic case.

2. Coupled cell systems and network topology

We recall the coupled cell network formalism. There are two versions: the original
version of [1], and the ‘multiarrow’ generalization of (Golubitsky et al., 2005), which
has important technical advantages (at the expense of slight complications in the
definition of a network). We therefore use the multiarrow version.

2.1. Formal definition of a coupled cell network
Definition 1. In the ‘multiarrow formalism’, a ‘coupled cell network’ G consists of:

(a) A finite set C ¼ f1, . . . ,Ng of ‘nodes’ or ‘cells’.
(b) An equivalence relation �C on cells in C.

The ‘type’ or ‘cell label’ of cell c is the �C -equivalence class [c]C of c.
(c) A finite set E of ‘edges’ or ‘arrows’.
(d) An equivalence relation �E on edges in E. The ‘type’ or ‘coupling label’ of

edge e is the �E -equivalence class [e]E of e.
(e) Two maps H : E ! C and T : E ! C.

For e 2 E we call H(e) the ‘head’ of e and T (e) the ‘tail’ of e.

Moreover, we require the following consistency condition:

(f) Equivalent arrows have equivalent tails and heads. That is, if e1, e2 2 E and
e1 �E e2, then

Hðe1Þ �C Hðe2Þ T ðe1Þ �C T ðe2Þ:
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Definition 2. Let c 2 C. Then the ‘input set’ of c is

IðcÞ ¼ e 2 E : HðeÞ ¼ c
� �

ð1Þ

An element of I(c) is called an ‘input edge’ or ‘input arrow’ of c.

Definition 3. The relation �I of ‘input equivalence’ on C is defined by c �I d if
and only if there exists an arrow type preserving bijection

� : IðcÞ ! Iðd Þ: ð2Þ

That is, for every input arrow i 2 IðcÞ

i �E � ðiÞ: ð3Þ

Such a bijection � is an ‘input isomorphism’ from c to d. Let B(c, d ) denote the set
of all input isomorphisms from c to d. Then the (disjoint) union

BG ¼
[

c, d 2C

Bðc, d Þ

is a groupoid (Higgins, 1971; Brown, 1987). We call BG the ‘groupoid of the net-
work’.

2.2. Graphical representation
We can represent abstract classes of networks with the same general ‘architecture’ by
labelled directed graphs. Figure 1 shows a simple example.

Here the node labels, drawn as the two circles and the square, indicate cells;
the symbols show that cells 1 and 2 have the same cell type, whereas cell 3 is different.
There are three types of edge label, drawn as different styles of arrow. These occur
in three edge-types: two identical arrows from cell 3 to cells 1 and 2, respectively; two
identical arrows between cells 1 and 2, one in each direction; an arrow from cell 1 to
cell 3.

We now explain how to interpret such a diagram as being representative of a class
of vector fields.

2.3. Admissible vector fields
We now define a class F

P
G of ‘admissible’ vector fields corresponding to a given

coupled cell network G on a total phase space P. For each cell in C select a ‘cell
phase space’ Pc. This is a smooth manifold of dimension �1, assumed for simplicity
to be a non-zero finite-dimensional vector space over R. We require

1 2

3

Figure 1. A 3-cell network without symmetry.
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c �C d ¼) Pc ¼ Pd

and we employ the same coordinate systems on Pc and Pd. The corresponding ‘total
phase space’ is

P ¼
Y
c2C

Pc

with coordinate system

x ¼ ðxcÞc2C:

More generally, let D ¼ fd1, . . . , dsg be any finite s-tuple of cells in C (so that in
particular the same cell can appear more than once in D). Define

PD ¼ Pd1
� � � � �Pds

:

Further, write

xD ¼ ðxd1 , . . . , xds Þ

where xdj 2 Pdj
. In particular, for a given cell c the ‘internal phase space’ is Pc and the

‘coupling phase space’ is

PT ðIðcÞÞ ¼ PT ði1Þ
� � � � � PT ðisÞ

where T ðIðcÞÞ denotes the ordered set of cells ðT ði1Þ, . . . , T ðisÞÞ as the arrows ik run
through I(c).

Suppose c, d 2 C and c �I d. For any � 2 Bðc, dÞ, define the ‘pullback map’

�� : PT ðIðdÞÞ ! PT ðIðcÞÞ

by

ð��
ðzÞÞT ðiÞ ¼ zT ð�ðiÞÞ ð4Þ

for all i 2 IðcÞ and z 2 PT ðIðdÞÞ. We use pullback maps to relate different com-
ponents of a vector field associated with a given coupled cell network. Specifically,
the class of vector fields that is encoded by a coupled cell network is given in
Definition 4.

Definition 4. A vector field f : P ! P is ‘BG-equivariant’ or ‘G-admissible’ if:

(a) For all c 2 C the component fc(x) depends only on the internal phase space
variables xc and the coupling phase space variables xT ðIðcÞÞ; that is, there exists
f̂fc : Pc � PT ðIðcÞÞ ! Pc such that

fcðxÞ ¼ f̂fc xc, xT ðIðcÞÞ

� �
ð5Þ

(b) For all c, d 2 C and � 2 Bðc, d Þ

f̂fd xd , xT ðIðd ÞÞ

� �
¼ f̂fc xd ,�

�
ðxT ðIðd ÞÞÞ

� �
ð6Þ

for all x 2 P.
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For brevity, we write (6) as

f�ðcÞðxÞ ¼ fc �
�
ðxÞð Þ ð7Þ

for all x 2 P. However, when using (7) it is necessary to remember that fd (x) depends
only on the internal phase space variables xd and the coupling phase space variables
in xT ðIðd ÞÞ. Otherwise, ��

ðxÞ is not defined.
Observe that self-coupling is allowed (that is, Pc can be one of the factors in

PT ðIðcÞÞ) and multiple arrows between two cells are allowed (since the tail of two
arrows terminating in I(c) can be the same cell).

As in Lemma 4.5 (Stewart et al., 2003), any ‘BG-equivariant’ vector field F is
determined by one mapping f for each input equivalence class of cells. Each com-
ponent fc of F is invariant under the vertex group B(c, c). Indeed, if we choose one
such invariant function for one c in each �I -equivalence class, and transfer it to all
other components of F using pullbacks, then we have specified a unique admissible
vector field.

Example 1. Consider the network of figure 1. Cell phase spaces P1 and P2 are
identical and equal to R

k, whereas P3 ¼ R
‘ is not necessarily the same. Indeed, we

do not identify P3 with P2 even if ‘ ¼ k. Coordinates on P take the form ðx1, x2, x3Þ.
Admissible vector fields are those of the form

_x1x1 ¼ f ðx1, x2, x3Þ

_x2x2 ¼ f ðx2, x1, x3Þ

_x3x3 ¼ gðx3, x1Þ

ð8Þ

where x1, x2 2 R
k and x3 2 R

‘.

If the arrows between cells 1 and 2 are deleted, this network is the ‘master/slave’
system of equation of Pecora and Carroll (1990) with ðx1, x2, x3Þ ¼ ðw,w0, vÞ. They
study synchronization of w,w0; that is, of cells 1 and 2. We now look at why such
synchronization is reasonable.

2.4. Balanced equivalence relations
We formalize the concept of synchrony. We adopt a strong definition: cells c, d are
‘synchronous’ if xcðtÞ ¼ xdðtÞ for all t 2 R. This condition depends on the dynamic
trajectory x(t); that is, it depends on initial conditions. The point of view is that the
first step in understanding patterns of synchrony is to consider existence issues.
Questions such as the dynamic stability of the synchronous state, or various
weaker forms of synchrony, can then be placed in context.

Abstractly, the relation ‘c and d are synchronous’ is an equivalence relation on the
set of cells, so we formalize patterns of synchrony in terms of an equivalence relation
ffl on C. We assume that ffl is a refinement of �C; that is, if c ffl d, then c and d have
the same cell labels. (Otherwise ‘synchronous’ makes no sense.) The corresponding
‘polydiagonal’ is

�ffl ¼ x 2 P : xc ¼ xd whenever c ffl d 8c, d 2 C
� �

:
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This space is well defined since xc and xd lie in the same space Pc¼Pd. The poly-
diagonal �ffl is a linear subspace of P. It is precisely the subspace on which all cells in
the same ffl-equivalence class are synchronous.

Patterns of ‘robust’ synchrony are classified by a special type of equivalence
relation:

Definition 5. An equivalence relation ffl on C is ‘balanced’ if for every c, d 2 C with
c ffl d, there exists an input isomorphism � 2 Bðc, d Þ such that T ðiÞ ffl T ð�ðiÞÞ for all
i 2 IðcÞ.

In particular, Bðc, d Þ 6¼ ; implies c �I d. Hence, balanced equivalence relations
refine input equivalence �I.

Definition 6. Let ffl be an equivalence relation on C that refines �C. Then ffl is
‘robustly polysynchronous’ if �ffl is invariant under every vector field f 2 F

P
G. That

is

f ð�fflÞ � �ffl

for all f 2 F
P
G. Equivalently, if x(t) is a trajectory of any f 2 F

P
G, with initial con-

dition xð0Þ 2 �ffl, then xðtÞ 2 �ffl for all t 2 R.

The main theorem on balanced equivalence relations is Theorem 4.3 of
(Golubitsky et al., 2005):

Theorem 1. Let ffl be an equivalence relation on a coupled cell network. Then ffl is
robustly polysynchronous if and only if ffl is balanced.

Example 2. We continue with our running example, the 3-cell network of figure 1.
There is an equivalence relation ffl for which 1 ffl 2; its equivalence classes are {1, 2}
and {3}. The corresponding polydiagonal is �ffl ¼ fx : x1 ¼ x2g ¼ fðx, x, yÞg. On this
subspace the differential equations become

_xx ¼ f ðx, x, yÞ

_xx ¼ f ðx, x, yÞ

_yy ¼ gðy, xÞ:

ð9Þ

Since the first two equations are identical, �ffl is invariant under all admissible vector
fields. Thus the synchrony is ‘robust’.

The relation ffl is also balanced. The only condition to verify is that cells 1 and 2,
which are ffl-equivalent but distinct, have input sets that are isomorphic by an
isomorphism that preserves ffl-equivalence classes. The input sets are

Ið1Þ ¼ f1, 2, 3g Ið2Þ ¼ f2, 1, 3g

where as a convention we list the ‘base point’ c of I(c) first. The permutation
� : Ið1Þ!Ið2Þ with �ð1Þ ¼ 2, �ð2Þ ¼ 1, �ð3Þ ¼ 3 is an input isomorphism that
preserves ffl-equivalence classes. That is, ffl is balanced as claimed.

3. Interior symmetries

The main concept involved in the bifurcation theorems that we discuss in later
sections is the notion of an ‘interior symmetry’. Roughly, this is a permutation of
cells that preserves a certain amount of input structure. Before defining ‘interior
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symmetry’ we recall (Golubitsky and Stewart, 2002; et al., 1988) that a ‘symmetry’ g
of a differential equation

_xx ¼ f ðxÞ

with phase space X ¼ R
k is a linear map x 7! gx on X that commutes with f;

that is, g satisfies

f ðgxÞ ¼ g f ðxÞ ð10Þ

for all x 2 X . Next we discuss symmetry in the context of coupled systems.
In the multiarrow formulation, a ‘network symmetry’ consists of two bijections

g : C ! C and gE : E ! E where g preserves input equivalence and gE preserves edge
equivalence; that is, gðcÞ �I c and gEðiÞ �E i. In addition, the two bijections must
satisfy the consistency conditions

gðHðiÞÞ ¼ H gEðiÞÞ
�

and g T ðiÞð Þ ¼ T gEðiÞ
� �

: ð11Þ

Next we relate network symmetries to (ODE) symmetries. Suppose that the
input equivalence preserving cell permutation g is a network symmetry in the
sense that there is an edge equivalence preserving arrow permutation gE that satisfies
(11). Then g commutes with every G-admissible vector field f : P ! P; that is, g and f
satisfy (10). Note that equivariance holds independently of the choice of gE because
of the invariance of the component fc under the vertex group B(c, c).

Finally, we introduce interior symmetries: an important concept for the local
bifurcation theory of coupled cell networks.

Definition 7. Let S � C be a subset of cells, and let IðSÞ ¼ fi 2 E : HðiÞ 2 Sg. The
pair ð�, �EÞ is an ‘interior symmetry’ on S if � : C ! C is an input equivalence pre-
serving permutation that is the identity on the complement of S, �E : E ! E is an
edge equivalence preserving permutation that is the identity on the complement of
I(S), and the pair satisfies (11) for all i 2 IðSÞ.

Given a vertex permutation �, there is often a unique edge permutation �E satisfy-
ing the consistency condition (11). In this case, we can refer to � ‘itself ’ as an interior
symmetry (because �E is implicitly defined by �). We will adopt this convention
throughout the remainder of the paper.

The ‘interior symmetry group’ �S is the set of all interior symmetries on S. It is
obviously a group. The interior symmetry group �C on the whole network C is the
usual symmetry group � of the entire coupled cell system.

Example 3. We now relate our running example, the 3-cell network of figure 1, to
interior symmetries. Because of the (dotted) arrow from cell 1 to cell 3, the permuta-
tion ð1 2Þ 2 S3 is not a group symmetry of the network, but it is an interior symmetry
on the subset S ¼ f1, 2g.

A state ðx1, x2, x3Þ is fixed by this interior symmetry if and only if x1 ¼ x2, that
is, cells 1 and 2 are synchronous. That is, they lie in the polydiagonal
�ffl ¼ fx : x1 ¼ x2g ¼ fðx,x, yÞg corresponding to the balanced equivalence relation
ffl whose equivalence classes are f1, 2g, f3g.

In the context of interior symmetry we can characterize the polydiagonal group-
theoretically, as a fixed-point subspace. Specifically, groupoid-equivariance of the
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cell system implies that

fSð�xS , xCnSÞ ¼ �fSðxS, xCnSÞ ð12Þ

where fS is the cell system vector field on the cells in S and � 2 �S.
Suppose that T � �S is a subgroup. Then

FixPðTÞ ¼ ðxS , xCnSÞ 2 P : �xS ¼ xS 8� 2 T
� �

ð13Þ

Proposition 1. Let T be a subgroup of �S, and let f be a G-admissible vector field.
Then the subspace ðTÞ is flow-invariant for f.

Proof. The equivalence relation on cells defined by i ffl j if i, j 2 S lie on the same
T orbit is a balanced equivalence relation. Apply Theorem 6.5 of (Stewart et al.,
2003) to show that the subspace

�ffl ¼ x 2 P : xc ¼ xd whenever c ffl d 8c, d 2 Cg
�

is flow-invariant. Finally note that FixðTÞ ¼ �ffl. œ

For related observations see Dias and Stewart (2004).

4. Linear theory and local bifurcation theory

With these preliminaries out of the way, we now turn to the main aim of this paper,
which is to analyse some special types of local bifurcation in coupled cell systems:
‘synchrony-breaking’ bifurcations. These occur when a synchronous state loses
stability and bifurcates to a state with less synchrony. Such bifurcations can be
considered to be a generalization of symmetry-breaking bifurcations in symmetric
coupled cell systems.

In the context of symmetry-breaking, there are two main local bifurcation
theorems (Golubitsky and Stewart, 2002; Golubitsky et al., 1988). The
Equivariant Branching Lemma (see chapter XIII, section 3 of (Golubitsky et al.,
1988)) proves the existence of certain branches of symmetry-breaking steady states;
the Equivariant Hopf Theorem (see chapter XVI, section 4 of Golubitsky et al.,
1988) proves the existence of certain branches of spatio-temporal symmetry-breaking
time-periodic states. We will prove analogues of both of these theorems for coupled
cell systems in a groupoid-equivariant setting. The analogue of the Equivariant
Branching Lemma is a natural generalization of the symmetric case, but the
analogue of the Equivariant Hopf Theorem has novel and rather restrictive features.
In particular, instead of proving the existence of states with certain spatio-temporal
symmetries, we prove the existence of states whose linearizations on certain subsets
of cells, near bifurcation, are superpositions of synchronous states with states having
spatio-temporal symmetries.

Interior symmetries induce extra structure on linearized eigenvalues, and this
structure controls the synchrony-breaking local bifurcations.

Example 4. The network of figure 1 has the admissible vector fields in (8). Let
x0 ¼ ðx1, x1, x3Þ be a synchronous equilibrium and let J be the Jacobian matrix at
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that equilibrium. Then

J ¼

a b c
b a c
d 0 e

2
4

3
5

where a , b are k� k matrices, c is a k� ‘ matrix, d is an ‘� k, and e is an ‘� ‘
matrix.

In this example S ¼ f1, 2g, �S ¼ Z2, and FixPð�SÞ ¼ fðx, x, yÞ; x 2 R
k, y 2 R

l
g.

Let W ¼ fðx, 	 x, 0Þ; x 2 R
k
g; then W is a complementary subspace to FixPð�SÞ on

which �S acts non-trivially (as 	I ). Since FixPð�SÞ is flow-invariant, the matrix J
written in the decomposition W 
 FixPð�SÞ as J is block lower triangular. Indeed

ĴJ ¼

a	 b 0 0

0 aþ b c

d d e

2
664

3
775:

Thus synchrony-breaking bifurcations occur when the eigenvalues of JjW are cri-
tical (that is, the k� k matrix a	 b has zero real part eigenvalues). In (17)
and Lemma 1 (a) we show that this kind of decomposition occurs generally for
linearizations about a synchronous equilibrium supported by an interior symmetry
group.

We discuss steady-state and Hopf bifurcations from ‘polysynchronous’ equilibria
(that is, equilibria in FixPð�SÞ) that break interior symmetry.

The action of the group �S decomposes S as

S ¼ S1 [ � � � [ Sk

where each Sj is an orbit of the action. Let

W ¼

n
x 2 P : xj ¼ 0 8j 2 CnS and

X
i2S‘

xi ¼ 0 for 1 � ‘ � k
o
: ð14Þ

Note that W is a �S-invariant subspace.
We can write the state space P as

P ¼ W 
 FixPð�SÞ: ð15Þ

In particular, (14) implies that vectors in W, when written in coupled cell coordi-
nates, have zero components on all cells not in S.

Bifurcation theory concerns changes in solutions of an ODE as parameters are
varied, so we introduce an explicit bifurcation parameter �2R. We assume that f
(hence also its components fc) depend on �, and that the ODE

_xx ¼ f ðx, �Þ ð16Þ

has a ‘trivial’ equilibrium x0 2 FixPð�SÞ. In the present context, we assume that

f ðx0, �Þ � 0

and that the bifurcation occurs at �¼ 0. Let L ¼ ðdf Þx0 . Proposition 1 implies that
FixPð�SÞ is invariant under L, so that L has the block form

L ¼
A 0
C B

� �
ð17Þ
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with respect to the decomposition (15); that is, A : W ! W and B : FixPð�SÞ !

FixPð�SÞ. Thus the eigenvalues of L are the eigenvalues of A, together with those
of B.

Local bifurcation (steady-state or Hopf) occurs when some eigenvalue of L has
zero real part. That eigenvalue is either associated with A or with B, and it is the
former case that concerns us here. We say that f undergoes a bifurcation at x0 that
‘breaks interior symmetry’ if A has an eigenvalue with zero real part. In this case,
steady-state bifurcation occurs when A has a zero eigenvalue, and Hopf bifurcation
occurs whenA has a conjugate pair of purely imaginary eigenvalues. In the Hopf case,
wemay assume (after rescaling time if necessary) that the purely imaginary eigenvalues
of A are 
i. We assume that the centre subspace E(L)¼E(A) and that the centre
subspace E(A) is equal to kerA in steady-state bifurcation, and to the real eigenspace

EðAÞ ¼ x 2 P : ðA2
þ 1Þx ¼ 0

� �
in Hopf bifurcation. The structure of L in (17) has several important implications:

Lemma 1

(a) A commutes with the action of �S on W.
(b) A vector u 2 FixPð�SÞ is an eigenvector of B with eigenvalue � if and only if u is

an eigenvector of L with eigenvalue �.
(c) If w 2 W is an eigenvector of A with eigenvalue �, then there exists an

eigenvector v of L with eigenvalue � of the form

v ¼ wþ u

where u 2 FixPð�SÞ.
(d) The centre subspace E(A) is �S-invariant.

Proof. Part (a) follows from Proposition 1 and the chain rule. Parts (b) and (c) are
consequences of the block form of L. Part (d) follows because part (a) implies that all
eigenspaces of A are �S-invariant. œ

In our bifurcation studies we shall assume:

(1) Critical eigenvalues � (0 in steady-state bifurcation and 
i in Hopf bifur-
cation) extend uniquely and smoothly to eigenvalues �ð�Þ for � near 0.

(2) The ‘eigenvalue crossing condition’

d

d�
Reð�Þð0Þ 6¼ 0 ð18Þ

is valid.

5. Interior symmetry branching lemma

Recall (Golubitsky and Stewart, 2002; Dionne et al., 1996a; 1996b) that an ‘axial’
subgroup of a group action on a vector space is an isotropy subgroup whose fixed-
point subspace is one-dimensional. Recall that Lemma 1(d) implies that �S acts on
kerA. We can now prove a generalization of the Equivariant Branching Lemma to
coupled cell systems.

Theorem 2. Assume that kerL and kerA have the same dimension. Let T� �S be an
axial subgroup of the action of �S on kerA, and assume the eigenvalue crossing
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condition (18). Then there exists a unique branch of equilibria, bifurcating from ðx0, 0Þ,
with symmetry group T.

Proof. By Proposition 1, FixPðTÞ is flow-invariant. Now, T is an axial subgroup for
the action of �S on kerA; hence dim FixkerAðTÞ ¼ 1. But Fixker AðTÞ ¼ FixPðTÞ \
kerA; hence dimðFixPðTÞ \ kerAÞ ¼ 1, so the bifurcation of f jFixPðTÞ�R is a simple
eigenvalue bifurcation. Moreover, since f jFixPð�SÞ�R is non-singular at �¼ 0, there is
a unique branch of trivial solutions to f¼ 0 in FixPð�SÞ � R. By the usual implicit
function theorem argument (Golubitsky et al., 1988), the eigenvalue crossing
condition implies the existence of a unique branch of non-trivial solutions to f¼ 0
in FixPðTÞ � R. œ

Remark 1. Liapunov–Schmidt reduction (see chapter I, section 3 of (Golubitsky
and Schaeffer, 1985)) applied to the equation f¼ 0 yields a reduced equation g¼ 0,
where

g : kerL� R ! kerL

whose solutions are in one-to-one correspondence with the solutions of f¼ 0 near the
origin. Even though Theorem 2 proves the simultaneous existence of branches of
solutions to g¼ 0 corresponding to each axial subgroup T, the reduced mapping g
satisfies no obvious symmetry constraints. In particular:

(1) The group �S does not act (naturally) on kerL, even though it does act on
kerA.

(2) The bifurcating branches can be transcritical, even when the symmetry con-
dition N�S

ðTÞ=T ffi Z2 (where N�S
ðTÞ is the normalizer of T in �S, see

(Golubitsky et al. 1988)) would imply that generic equivariant bifurcations
are pitchfork bifurcations.

An example illustrating the second point is the 3-cell network of figure 1, where we
assume that each cell has one-dimensional internal dynamics. In this example,
S ¼ f1, 2g and �S ¼ Z2ð1 2Þ. Generically, the bifurcating branch is transcritical.
To ensure this, it is enough to assume that the coupling from cell 1 to cell 3 is
non-zero at linear level.

6. Interior symmetry Hopf Theorem

We now generalize the Equivariant Hopf Theorem (see chapter XVI of (Golubitsky
et al., 1988)) to the context of interior symmetries of coupled cell systems. We begin
this process by recalling the Equivariant Hopf Theorem.

Let x(t) be a 2�-periodic solution of a system of ODEs with symmetry group �.
A ‘spatio-temporal’ symmetry of x(t) is a pair ðg, �Þ 2 �� S

1 such that

gxðtÞ ¼ xðtþ �Þ:

Here S1 is the circle group of phase shifts modulo the period. The group of (spatio-
temporal) symmetries of a periodic solution is a subgroup � � �� S

1. The
subgroup K ¼ � \ � consists of the purely spatial symmetries of x(t). It is known
that K must be an isotropy subgroup of the �-action (Golubitsky and Stewart, 2002;
Buono and Golubitsky, 2001; Golubitsky et al., 1988).

Consider now the context of �-equivariant vector fields F : Rn
� R ! R

n where �
is a (compact Lie) group, so that

Fðgx, �Þ ¼ gFðx, �Þ 8g 2 �:
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Assume that F has a �-invariant equilibrium x0 for all �, that is

Fðx0, �Þ � 0:

Suppose that x0 undergoes a Hopf bifurcation at �¼ 0. After rescaling time, we may
suppose that

L ¼ ðdxF Þx0

has eigenvalues that include 
i when � ¼ 0. Note that L commutes with � since
x0 is a �-invariant equilibrium.

There is a natural action of S1 on E(L) given by the exponential expðsLÞ, and
this action commutes with � since L commutes with �. Recall (Golubitsky and
Stewart, 2002; Dionne et al., 1996a; 1996b) that an isotropy subgroup � � �� S

1

is ‘C-axial’ if

dimFixEðLÞð�Þ ¼ 2:

Suppose that the eigenvalue � that extends i at �¼ 0 crosses the imaginary axis
with non-zero speed as � varies. Then the Equivariant Hopf Theorem states that for
each C-axial subgroup �, there is a branch of periodic solutions emanating from
ðx0, 0Þ with spatio-temporal symmetry group �. The proof uses Liapunov–Schmidt
reduction in the context of loop spaces: see chapter XIV, section 4 of (Golubitsky
et al. 1988).

We now prove a generalization: for each C-axial subgroup � of the action of a
group of interior symmetries on C, there is also a branch of periodic solutions
emanating from this bifurcation point, whose structure is related to �, but in a
less straightforward way.

6.1. Hopf Theorem with interior symmetry
We pursue the same proof strategy to derive an analogue of the Equivariant
Hopf Theorem for interior symmetries. Let G be a coupled cell network, let
S � C, and suppose that there is an interior symmetry group �S . Let f be a
G-admissible vector field. In general, f is not �S-equivariant, and L does not com-
mute with �S. However, the block matrix A defined in (17) does commute with �S,
so there is a natural �S � S

1-action on E(A), where S1 acts by expðsAÞ. Let
� � �S � S

1 be a subgroup. The ‘spatial subgroup’ of � is K ¼ � \�S.

Definition 8. The subgroup � � �S � S
1 is ‘spatially C-axial’ if

dimFixEiðAÞð�Þ ¼ dimFixEiðAÞðK Þ ¼ 2 ð19Þ

where K is the spatial subgroup of �.

We require the following concept:

Definition 9. The ODE (16) undergoes a ‘synchrony-breaking Hopf bifurcation’ at
x0 when �¼ 0 if:

(a) After rescaling time, the linearization L ¼ ðdf Þx0 at �¼ 0 has eigenvalues 
i
coming from A, as defined in Lemma 1(c).

(b) The eigenvalue crossing condition (18) holds.

We use the term ‘synchrony-breaking’ because the equilibrium state is assumed to
be in FixPð�SÞ (and hence synchronous on each �S-orbit in S), whereas the Hopf
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bifurcation critical eigenvectors (corresponding to a critical eigenvalue of A in (17))
are assumed to be transverse to FixPð�SÞ (which leads to periodic solutions not in
FixPð�SÞ and hence with less synchrony).

The generalization of the Equivariant Hopf Theorem is:

Theorem 3. Consider the coupled cell system (16). Let S be a subset of cells
with interior symmetry group �S, and let x0 2 FixPð�SÞ be an equilibrium of f.
Assume that a synchrony-breaking Hopf bifurcation occurs at x0 when �¼ 0. Let
� � �S � S

1 be a spatially C-axial subgroup, with spatial subgroup K. Then gener-
ically there exists a family of periodic solutions of (16), bifurcating from ðx0, 0Þ
and having period near 2�, that is synchronous on any two cells in S lying in
the same K-orbit. Moreover, to lowest order in the bifurcation parameter �, the
solution x(t) is of the form

xðtÞ � uðtÞ þ wðtÞ ð20Þ

where uðtÞ ¼ etLu0 is synchronous on �S group orbits of cells in S and wðtÞ ¼ etLv0 has
exact � spatio-temporal symmetries on cells in S.

Proof. We adapt the proof of the Equivariant Hopf Theorem (Golubitsky et al.,
1988), which uses Liapunov–Schmidt reduction, to the context of a synchrony-
breaking Hopf bifurcation that breaks interior symmetry. Let C2�ðPÞ be the loop
space consisting of all continuous 2�-periodic functions from S1 into P, with the C0

norm. The Hopf Theorem concerns periodic solutions to differential equations near
a point where the Jacobian matrix has purely imaginary eigenvalues. We have
rescaled time so that those purely imaginary eigenvalues are 
i, so we look for
periodic solutions with period near 2�. By introducing a perturbed period parameter
� we can rescale time again, from t to s ¼ ð1þ �Þt, and consider 2�-periodic solutions
to the equation

F vðsÞ, �, �ð Þ � ð1þ �Þ
dv

ds
	 f ðvðsÞ, �Þ ¼ 0: ð21Þ

Near the trivial equilibrium ð0, 0, 0Þ these solutions are zeros of the mapping

F : C12�ðPÞ � R� R ! C2�ðPÞ

defined in (21), where C
1
2�ðPÞ consists of the continuously differentiable functions in

C2�ðPÞ with the C1 norm.
The linearization of F about the origin is

LðvðsÞÞ ¼
dv

ds
	 LvðsÞ

and kerðLÞ consists of all functions vðsÞ ¼ ReðeisvÞ where v is an eigenvector of L
associated to the eigenvalue i.

As is well known (Golubitsky et al., 1988), the operator F is S1-equivariant
with respect to the phase shift action of S1 on loop space. In the standard Hopf
Theorem, the kernel kerðLÞ is two-dimensional, and Liapunov–Schmidt reduction in
the presence of symmetry leads to a reduced equation that can be solved for a unique
branch of 2�-periodic solutions as long as the eigenvalue crossing condition is valid.

In the equivariant context, however, kerðLÞ may be high-dimensional. The proof
of the Equivariant Hopf Theorem proceeds by restricting the Liapunov–Schmidt
reduced equation to FixPð�Þ. Since � is C-axial, FixPð�Þ is two-dimensional, so
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we can complete the proof as in the standard Hopf Theorem. That approach
does not work in the context of interior symmetries (since the fixed-point sub-
space of � in loop space need not be F -invariant). However, the fixed-point
subspace of the spatial subgroup K is F -invariant (by Proposition 1). Since � is
spatially C-axial, FixP(K ) is two-dimensional, and the proof now proceeds as in
the equivariant case.

The form of the eigenvectors in Lemma 1(c) implies that at linear level the solution
of (16), with period near 2�, is of the form

vðtÞ ¼ wðtÞ þ uðtÞ

where wðtÞ 2 FixW ð�Þ and uðtÞ 2 FixPð�SÞ. In particular, w(t) has spatio-
temporal symmetry � on cells in S, and u(t) is synchronous on �S group orbits of
cells in S. œ

Remark 2.

(1) The theorem asserts no restrictions on vj(t) when j 62 S.
(2) The structure in (20) does impose genuine restrictions. Suppose, for the sake of

illustration, that � defines a rotating wave. That is

� ¼ hð	, �Þi � �S � S
1

where 	 is a k-cycle on S, with jSj ¼ k, and � ¼ 2�=k for the period 2� case.
Then on S ¼ f0, . . . , k	 1g we have

w0ðtÞ ¼ w1ðtþ 2�=kÞ ¼ � � � ¼ wk	1 tþ 2ðk	 1Þ�=kð Þ

and
u0ðtÞ ¼ u1ðtÞ ¼ � � � ¼ uk	1ðtÞ

for all t. To first order in �, near bifurcation, the wave v(t) satisfies

vjðtÞ � wjðtÞ þ ujðtÞ:

If we define
yjðtÞ ¼ vjþ1ðtÞ 	 vjðtÞ � wjþ1ðtÞ 	 wjðtÞ

(subscripts modulo k) then

yjðtÞ � y0ðtþ 2�j=kÞ

is an approximate rotating wave. For a general periodic state, no such relation
on differences holds.

Example 5. Consider the four-cell network whose diagram is figure 2. Set
S ¼ f1, 2, 3g; observe that on the right is a Z3-symmetric network and on the left
is a network with one missing connection and Z3 interior symmetry. We compare
Hopf bifurcations in the two networks.

1

2 3

4 1

2 3

4

Figure 2. (Left) Z3 interior symmetry in a 4-cell example. (Right)
Z3-symmetric network.
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Symmetry-breaking Hopf bifurcation that breaks Z3 symmetry leads to periodic
solutions that are exact rotating waves in cells 1–3, and triple frequency motion in
cell 4. Interior symmetry-breaking Hopf bifurcation leads to periodic solutions
that, to first order, are the sum of a periodic rotating wave and a periodic state
that is synchronous on S; in addition, cell 4 has the same frequency as cells 1–3.
Therefore, the time series x1 	 x2, x2 	 x3, x3 	 x1 form an approximate rotating
wave.

In the interior symmetry case we test these conclusions using one-dimensional cells
with equations

_xx1 ¼ 	x1 þ 0:5x21 	 x31 þ �x3 þ 2x4

_xx2 ¼ 	x2 þ 0:5x22 	 x32 þ �x1 þ 2x4

_xx3 ¼ 	x3 þ 0:5x23 	 x33 þ �x2 þ 2x4

_xx4 ¼ 	x4 þ 0:5x24 	 x34 	 ðx1 þ x3Þ ð22Þ

where � ¼ 	2:05. In the symmetry case we adapt (22) by changing the coupling term
in the equation for _xx4 to 	ðx1 þ x2 þ x3Þ.

A simulation is given in figure 3. The upper panels show superimposed
time series from all cells; cell 4 in black is the smallest in amplitude. The
lower panels show the triple frequency exhibited by cell 4 in the symmetric
case. In figure 4 we see the rotating wave in the symmetric case on the right

0 5 10 15 20 25 30 35 40 45 50
− 0.25

− 0.2

− 0.15

− 0.1

− 0.05

0

0.05

0.1

0.15

0.2

0.25

t
0 5 10 15 20 25 30 35 40 45 50

 − 0.5

 − 0.4

 − 0.3

 − 0.2

 − 0.1

0

0.1

0.2

0.3

0.4

0.5

t

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
 −0.08

 −0.06

 −0.04

−0.02

0

0.02

0.04

0.06

0.08

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−3.05

−3

−2.95

−2.9

−2.85

−2.8

 2.75

 2.7

 2.65

 2.6
x 10 

3

x1x1

x 4x 4

Figure 3. (Left) Z3 interior symmetry in a 4-cell example. (Right) Z3-symmetric
network. Upper panels show time series from all cells; lower panels show x1
versus x4.
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Figure 4. Simulations in cells 1–3 viewed in difference coordinates x1 	 x2, x2 	 x3,
x3 	 x1. (Left) Approximate rotating wave in Z3 interior symmetry. (Right)
Exact rotating wave in Z3-symmetric network.
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and the approximate rotating wave in coordinates x1 	 x2, x2 	 x3, x3 	 x1 on
the left.
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