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Abstract. Let M = NP be the positive orthant of a D-dimensional lattice and let (G, +)
be a finite abelian group. Let & € GM be a subgroup shift, and let u be a Markov random
field whose support is &. Let ® : &— & be a linear cellular automaton. Under broad
conditions on G, we show that the Cesaro average N~ Z;]:/:_ol ®" () converges to a
measure of maximal entropy for the shift action on &.

1. Introduction and main results

Let (G, +) be a finite abelian group and let M = NP be the positive orthant of a
D-dimensional lattice. Let QM be the set of all M-indexed configurations of values in G,
which is a compact abelian topological group under componentwise addition. Let &
be a subgroup shift of GM. A cellular automaton (CA) on & is a continuous function
® : —> & which commutes with all M-shifts, 6™ : GM—GM m ¢ M. We call ® a
linear cellular automaton (LCA) on & if

@) =) ¢i-0'(g) forallg=(gn:meM)e®, (1)
iel
where [ € M is a finite subset and ¢; € Z for all i € 1. We say ® is proper if at least two
different coefficients ¢, ¢ are relatively prime to |G|, the cardinality of G.

The Haar measure on & is the unique Borel probability measure which is invariant
under translation by any element of . Under certain conditions (e.g. M = N), the
measure of maximal entropy of & for the shift action is unique and equal to the Haar
measure on &. In general, however, it is known that the measure of maximal entropy is not
unique (see the end of §2).
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If 1 is some probability measure on & and & is a CA on &, then ® asymprotically
randomizes  if

Jim Z " (n) = v, )

where v is some measure of maximal entropy on ® and convergence is in the weak*
topology.

This paper concerns the description of classes of measures that are randomized by LCA
on subgroup shifts. More specifically this study is done for subgroup shifts whose follower
cosets satisfy a special property called the follower lifting property (FLP).

We point out that this study has been done in previous work for the full shift GM. In that
case, the Haar measure corresponds to the uniform Bernoulli measure and it is the unique
measure of maximal entropy. A broad class of probability measures are asymptotically
randomized under the action of an LCA; these include any fully supported Markov measure
when M = N or any fully supported Markov random field, when M = N?, D > 2
(see [Lin84, MM98, FMMNO00, PY 02, Piv03, MHMO03, PY04, Piv05, PY06]).

Based on these results our strategy is the following: from the FLP property we can
reduce the action of an LCA on a subgroup shift to the action of an LCA on a full shift,
and then apply known results to establish asymptotic randomization.

In §2 we provide relevant background on LCA and subgroup shifts, and in §3 we
study the action of one-dimensional LCA on subgroup Markov shifts of G (simply called
Markov subgroups). We conclude this introduction by listing our main results.

THEOREM 1. Let & C GN be a transitive Markov subgroup with the FLP. If [ is any
M -step Markov measure on & with full support, and ® : &— & is any proper LCA, then
® asymptotically randomizes | to the Haar measure on ®.

If p is a prime number, an abelian p-group is a product of p-power cyclic groups
(e.g.if p =3,then G = Z;3 @ (Z/27)2 @ Zyg1 is a p-group). If G is a p-group, then
any Markov subgroup of G has the FLP (Theorem 20), so we get the following result.

COROLLARY 2. Let p € N be prime and let G be an abelian p-group. If & < GN is any
transitive Markov subgroup, and | is any M -step Markov measure on & with full support,
then any proper LCA acting on ® asymptotically randomizes u to the Haar measure on ®.

Any finite abelian group G is a product of p-groups, and an LCA on GV (respectively
subgroup shift) is a product of LCA on the separate p-group (respectively subgroup shift)
factors (Lemmas 7 and 9). Thus, Corollary 2 implies the following.

COROLLARY 3. Let G be any finite abelian group. Let & C GN be a transitive Markov
subgroup, and let . be a measure on & with full support. Suppose that G = G ®--- DGy
andpu = 1 ® --- Q uy, where G, is a py-group and [, is an My-step Markov measure
on Q,I? forn € {1,..., N}. Then any proper LCA acting on ® asymptotically randomizes
W to the Haar measure on .

In §4, we turn to D-dimensional LCA acting on a subgroup shift & C QND with G
a finite abelian p-group and D > 2. To extend the FLP method to higher dimensions,
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we interpret & as a Markov subgroup of QND_]. To formalize this interpretation, we
introduce the ring RIL and associated modules, and develop some basic homological
algebra. We generalize the FLP to a property called the ‘strong’ FLP, and show the
following.

THEOREM 4. Let p € N be prime and let G be an abelian p-group. If & € GM is a
subgroup shift with the strong FLP and | is a Markov random field on & with full support,
then any proper LCA acting on & asymptotically randomizes |4 to a measure of maximal
entropy on ®.

As before, using the decomposition results Lemmas 7 and 9, we obtain the following
corollary.

COROLLARY 5. Let G be any finite abelian group. Let & C GM be a subgroup shift
with the strong FLP, and let (v be a measure on & with full support. Suppose that
Gg=G1®---®Gyandu=u1 Q- Q un, where G, is a p,-group and [, is a Markov
random field on Q,ﬂwfor n e {l,..., N}. Then any proper LCA acting on & asymptotically
randomizes |4 to a measure of maximal entropy on &.

2. Preliminaries

In this section, we fix a finite abelian group (G, +) and we put M = NP, D > 2.
For integers Ry < Rp, let [R1, R2) := {Ry,..., R» — 1} and [Ry, R2] := {Ry, ..., R2}.
If I € M is finite, then elements of QH are called blocks. For g € QM we set
glr := (g : i € ) to be its projection to QH. Given a subset & C QM ablock h € QH is
&-admissible if for some g € &, g|; = h. Denote & the set of -admissible blocks in gl
The cylinder set associated to a block h € &y is [h] := {g € & : g|y = h}.

2.1. Topological dynamical systems. A topological dynamical system is a pair (X, T),
where X is a compact metric space and 7' : X — X is a continuous map.

Let M(X) be the space of all Borel probability measures on X. We equip M (X) with
the weak* topology: a sequence (u, : n € N) in M(X) converges in this topology to
uw € M(X) if and only if u,(f) m w(f) for every continuous function f : X—R.
A measure in M (X) has full support if it gives positive measure to any non-empty open
set.

A topological dynamical system (Y, S) is a factor of (X, T) if there is a continuous
onto map 7 : X—>Y (called a factor map) such that w o T = S o 7. If the factor map is
also one-to-one we say the systems are (topologically) conjugate. If © € M(X), then the
measure (i) € M(Y) is defined by 7 ()(B) = u(r~1(B)) for all Borel sets B C Y.
If T(nw) = p (where T(w) is defined analogously as 7w (r)) we say u is T-invariant.
Given invariant measures i € M(X) and v € M(Y), the factor map r defines a measure-
theoretical factor if () = v.

2.2.  Prime decomposition of abelian groups. Let p € N be a prime number. An abelian
group is said to be a p-group if every element of it has order pX for some k € N.



1206 A. Maass et al

Suppose that 4 is an abelian group, and there are distinct primes p; < p2 < -+ < pn
such that

A=A & ---® Ay where A, is a p,-group, forall n € [1, N]. 3)

We call this a prime decomposition of A, and if A has prime decomposition A; ®- - - DAy,
then AM has prime decomposition .AllMI SRR AI]\VAI. Any finite abelian group G has a
(unique) prime decomposition [DF91, Theorem 5, §5.2], and it is a p-group if and only if

G=Zp» ®Ljps» ®---®Zypss, forsomeJ > 0andsy,s2,...,57 >20. (4)

Suppose that A = A1®- - - Ay and B = B1®- - -@By are the prime decompositions of
two abelian groups. If ®, : A, —> I3, are group homomorphisms for all n € [1, N], then
=0, - - P, : A—> B is the homomorphism such that, for any a = (ay, ..., ay)
e A, ®@) = (Pi(ay), ..., Dy(ay)). The following lemma is straightforward.

LEMMA 6. Suppose that A is an abelian group with prime decomposition (3). Let Z be a

subgroup of A.

@ Z=Z® - -®Zy, whereZ,={a, € A, :Iz2=(21,...,2N) € Z, 7 = ay} for
n €[1, N].

(b) IfQ = A/Z, then Q has prime decomposition Q| @ - - - ® Qn, where Q, = A,/ Z,
forn e[1, N].

(¢c) If B is another abelian group, with prime decomposition B = By & --- & By
(in particular, if B = Q), and ® : A—> B is any homomorphism, then there are
unique homomorphisms ®,, : A,—>B,, n € [1, N), suchthat ® = &1 @ ---d dy.

2.3. Subgroup shifts. Foranym € M, leta™ : GM_ M be the shift map, defined as
(6™(g)j = gj+m.forge M and j € M. In particular,if D = 1,0 = o ! is the left-shift
on QN .

A subgroup & C GM is said to be a subgroup shift if it is invariant under all M-shiftst. A
result of Kitchens and Schmidt (see [KS89, Corollary 3.8]) asserts that any subgroup shift
is a subshift of finite type. Hence, by replacing G with some power if necessary, we can
recode (by using a topological conjugacy) & as a nearest-neighbor subshift of finite type.
That is, if B = {0, l}D C M is the D-dimensional unit cube, there is a subgroup T < GB
such that

6 ={geG" : glpsm € Te. ¥m € M. )

In particular, if D = 1 and M = N, then B = {0, 1}. Thus, T € GO is the set
(subgroup) of admissible transitions, and & is a Markov subgroup:

& ={geG" : (gn, gnt1) € Ts, Vn € N}. (6)

If g € G, then a follower of g is any h € G so that (g, h) € Tg. Likewise, a predecessor
of gisany i € G suchthat (h, g) € Tg. A Markov subgroup & is proper if every g € G has

D D

T Subgroup shifts are often defined as shift-invariant subgroups of GZ” . However, any subshift of GZ” can be
D D D

projected to a subshift of QN and, conversely, any subshift of QN can be extended to a subshift of QZ ina

unique fashion. Thus, there is no loss of generality in restricting to GN" | and for our purposes it yields certain
technical advantages.
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at least one follower and at least one predecessor. We can assume without loss of generality
that all Markov subgroups are proper (if not we replace & by &= (Mpen 0" (®)).

A sequence (go, 81,---,8N) € G0N is B-admissible if (gn, gn+1) € Tg for all
n € [0,N—1]. A Markov subgroup & is transitive if every element h € G is
reachable from any element g € G, meaning that there is some &-admissible sequence
(g,81,...,8N—-1,h) for some N > 0.

Subgroup shifts succumb to a p-group decomposition as follows.

LEMMA 7. Suppose that G has prime decomposition G| @ --- ® Gy. If & C QM is a
subgroup shift, then & = &1 @ --- @ Sy, where &, C g}}’“ is a subgroup shift for all
n € [l,N].

2.4. Linear cellular automata. Recall from the introduction the definition of a proper
linear cellular automaton (PLCA).

LEMMA 8. ®& is invariant under the action of LCA acting on GM.

Proof. If ®: GM — GM js the LCA (1) and g € &, then ¢; - 0'(g) € & forall i € L.
Thus, &(g) € &. O

More generally, suppose that R is a commutative ring and G is an R-module.
An R-LCA is one of the form (1), where ¢; € R foralli € 1.
LCA have a p-group decomposition analogous to Lemma 6(c) as follows.

LEMMA 9. Suppose that G has prime decomposition G1@®- - -®Gy and & = &1D- - -dBy
as in Lemma 7. If ® : &—& is a (proper) LCA, then there are (proper) LCA
D, :86,—8,, forn € [1, N], suchthat ® = d1 @ --- P Dy.

Lemmas 7 and 9 allow us to reduce the study of asymptotic randomization by LCA
acting on subgroup shifts to the case of GM, where G is a p-group for some prime p € N.

2.5. The Haar measure. Let & be a subgroup shift of M and n € M(®) the Haar
measure. Lemma 17(a) in §3 characterizes n when & is a Markov subgroup of G
The Haar measure is uniformly distributed on & in the following sense.

LEMMA 10. IfI € M is finite and ny is the projection of n to &1, then ny is the uniform
measure on 1.

Proof. ®j is a finite group, and #ny is the Haar measure on &, so 5y is uniform. O

Let (I : R > 0) be an increasing sequence of finite subsets of M verifying that for any
R’ > 0 there is some R > 0 such that [0, R']° C Ik, and let G = ®1,. The ropological
entropy of ® C QM (with respect to o) is defined by

. 1
hiop(®) = ngnOo m log |&R|.
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If w is a shift invariant measure on &, then the measurable entropy of v (with respect to o)

is defined by
1

hu(®) = = lim o ) ulg) - log u(lg)-
geby
Note that neither notion of entropy depends on the sequence (Ig : R > 0).

A measure of maximal entropy on & is a shift invariant measure u© € M(®) such
that 7, (&) = hyp(®). The next result summarizes prior results about maximal-entropy
measures for subgroup shifts.

PROPOSITION 11. The Haar measure n is a measure of maximal entropy on & [Sch95,
Proposition 13.5, p. 111].

If & C GN is a transitive Markov subgroup, then 1 is the unique measure of maximal
entropy [Ber69].

If D > 2, then n is the unique measure of maximal entropy if and only if & has no
zero-entropy, nontrivial measurable factors for n [Sch95, Theorem 20.15, p. 171].

3. Asymptotic randomization of Markov subgroups
Throughout this section D = 1, M = N and (G, +) is a finite abelian group. Let & C gN
be a Markov subgroup, as in (6). For any g € G, the follower set of g is the set

Fe(g) ={heG:(g,h) €T}

Put Zg = Fg(0) (mnemonic: ‘2’ is for ‘zero’).

LEMMA 12. Let & C QN be a Markov subgroup. Then:

(@) Zg is a normal subgroup of G;

(b) forany g € G, Fg(g) is a coset of Zg;

() let Qu = G/Zg be the quotient group, and define Fg : G—> Qg by Fg(g) =
Fe(g); then Fg is a group homomorphism;

(d) let mg : G—> Qg be the quotient epimorphism (i.e. wg(g) = g + Z2¢); then
6 ={ged": Fe(gn) = 76 (gr+1), Vn € NJ.

Proof. Parts (a) and (b) are parts (ii) and (iii) of Proposition 3 in [Kit87], while (c) is

discussed at the beginning of [Kit87, §4]. Part (d) then follows by definition. O

Throughout this section, let & C GN be a Markov subgroup and Z = Zg. Let Q = Qg

be the quotient group and let F = Fg and 7 = mg be the morphisms associated to & as
in Lemma 12.

3.1. The follower lifting property. We say & has the FLP if the map F lifts to a
homomorphism L : G—>G such that 7 o L = F. In other words, we can transform
diagram (7A) into commuting diagram (7B):

g g gL ......... »G
(7A) 0 (7B) 0

7
It follows that, for any g € G, F(g) = L(g) + Z.
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The FLP allows us to project & into the full shift Z%, so that the dynamics of shifts and
LCA on & are reduced to shifts and LCA on ZN. We recall that Ts € G {0.1} §s defined
from (6).

LEMMA 13. Assume that & has the FLP.

(a) For(g,h) € Ty, define (g, h) = h — L(g). Let A; &—> ZN be the corresponding
block map, A(g), = 6(gn,8gn+1) for g € & andn € N. Then A is a group
homomorphism.

(b) Define V; 8—G x ZN by W(g) = (go; A(g)) for g € &. Then V is a group
isomorphism.

(c) W is a conjugacy between (6, 6) and (G x ZN, &), where 6; G x ZN—G x 2N
is defined by 0 (g;2) = (5(g:2); 0 (2)), with 5(g;2) = L(g) + 20, for g € G and
z e ZN.

(d ForgeGandz e ZN et cW(g:2) = c(g;2), and form > 1, let c"™(g;z) =
s(c™V(g;z); 6™~ (). Then for anym > 1, 3™ (g; 2) = (" (g; 2); 0™ (2)).

Proof. (a) L is a homomorphism, so § and A are homomorphisms.

(b) ¥ is a homomorphism because A is a homomorphism. To show W is invertible,
letg € Gandz = (z, : n € N) € ZN_ Define g € GN as follows: go = g and
gn+1 = L(gn) +zn forn > 0. Then g € &, W(g) = (g; z) and g is the unique element
with this property.

(c)Letg = (g, : n € N) € & and W (g) = (go; Z), so z = A(g). By the definitions
above, we get

V(o (g) =(g1:Aca(g) =(g1;0 o A(g))
= (L(go) + 8(go, &1); 0 (2)) = (L(go) + z0; 0 (2)) = 7 (g0; 2).

(d) This follows inductively from (c). O

LEMMA 14. Assume & has the FLP. Let ® be a (proper) LCA on & as in (I).

Define ® : G x ZN—G x 2N py &(g;z) = i Gi(giz), forge Gandz € zN,

Then:

(a) W isaconjugacy between (&, ®) and (G X zZN, 5);

(b) forg € Gandz € 2N, ®(g;2) = (Dg(g; 2); Pz(2), where Bg(g;2) =
Yoicl®i cD(g;z) and 53(1) =D ¥ - ol (z); thus, 53 is itself a (proper)
LCA on 2N,

Proof. (a) ¥ is a homomorphism, so Lemma 13(d) implies that

U (D(g) = w(Z @i oa"(g>) =) ¢gi-(Woo )@ =) ¢ @ oW)(g) = D(¥(g),

iel iel iel

for any g € &. Then (b) follows from Lemma 13(e). O

Example 15. Let us revisit the example introduced in [Kit87] and check the FLP. Let G =
74 ® Zj>. Write an element of G as (f), where x € Z;4 and y € Z;, and an element of
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GN as (;) where x € Z/4N andy € Z/ZN. Let

(’5:{(;) EQN:xn+yn+yn+1=0m0d2,VneN}.

£-r{())- ()] -2

and Q = G/Z = Z,. For any (;g) egq,

F((ﬁﬁ)) - {();1) X1 € Zyaand y1 =30+ 0 mOdz} - <(XO+Y(())) modz) 2
Thus,
(()=0)==()+=
y y y
L(Go) = (s mos2)
Yo (xo + yo) mod 2/’

then 7 o L = F, which proves that & has the FLP.
Now, § : Tg— Z is defined by

() C) = (o= ot v o)
yo) \i ~ \(y1 — (x0 + yo)) mod 2

X1
o)
For any (;8) €Gand (j) € ZN we have

(o (0) = (s (767))

LEMMA 16. Assume & has the FLP. Let u € M(®) be a o -invariant N-step Markov
measure with full support on &. Then A(u) € M(ZN) is a o-invariant (N + 1)-step
Markov measure with full support on ZN.

Then

Hence, if

Proof. A(w) is o -invariant and Markov because A is a block map whose local map 3§
looks at only two consecutive symbols. A(u) has full support because A is surjective by
Lemma 13(b). O

LEMMA 17. Let n be the Haar measure on &. Then:
(a) for any B-admissible sequence (go, - .., gN),

1 1
n(go,....gnD = —;

1G] 1ZIV°
(b) 1y (B) = hiop(®) = log|Z|.

Proof. For any g € G, |F¢(g)| = |Z|. Thus, there are exactly |G| - |Z|Y ®&-admissible
words of length (N + 1). Part (a) follows because 7 must give all |G| - | Z|" words equal
mass (Lemma 10). Part (b) follows from the definitions of measurable and topological
entropy. U
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PROPOSITION 18. Assume that ® is transitive and has the FLP. Let p € M(®) be
o -invariant. Then p is the Haar measure on & if and only if A(p) is the Haar measure
on ZN.

Proof. ‘==": Lemma 13(a), (b) says that A is a group epimorphism from & to ZN.

‘—": suppose that A(p) is the Haar measure on ZN (i.e. the uniform Bernoulli
measure). Since (ZN, A(p), o) is a measure-theoretical factor of (&, p, o), then
Lemma 17(b) implies

102 |Z] = hapy(ZY) < hy(8) < hy(®) = log| Z|.

Thus, h,(®) = log|Z|. However, n is the unique maximal-entropy measure on & by
Proposition 11; hence, p = 7. O

COROLLARY 19. Assume & is transitive and has the FLP. Let ® be an LCA acting on
G asin (1) and p € M(®). Then ® asymptotically randomizes w if and only if ®z
asymptotically randomizes A(1).

Proof of Theorem 1. Let u be an N-step Markov measure on & with full support.
From Lemma 16 we get that A(u) is an (N + 1)-step Markov measure with full support
on ZN. Thus, Corollary 10 and Theorem 12 of [PY02] and Theorem 9 of [PY04]
together imply that ) z (which is proper) asymptotically randomizes A(r). Now apply
Corollary 19. O

3.2. Sufficient conditions for the FLP. Suppose that G is a p-group as in (4). Let p®
be the largest power of p in the decomposition (4), and let R = Z/ s, treated as a ring.
Then G is an R-module. An R-module P is projective if, given any commuting diagram
(8A) below (where S : N —> M is an R-module epimorphism), there exists an R-module
homomorphism L : P—> N such that we get the commuting diagram (8B):

P N yI— L ......... N
\ ls o \ ls
(8A) M (8B) M (8)

A free R-module is one of the form R & - - - @ R. Any free R-module is projective.

PROPOSITION 20. Let p be prime, and let G be an abelian p-group. Then any Markov
subgroup & < GN has the FLP.

Proof. Let G = Ljpy ®Zyjps2 @ -+ @ Zypsy. Puts = max{sy,..., sy} and R = Z,ps.
Then G is an R-module. Let P = R/ = R @ --- & R (J times), then P is a free (thus
projective) R-module.

CLAIM 1. G is isomorphic to a submodule of P.

Proof. Letrj =s —sj forall j € [1, J]. Then define vy : G—P by

Y((z1,...,20) = (P"z1,...,p7zy) forany (z1,...,27) €G.
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IfG = ¥(G) € P, then ¥ : G—>G is an R-module isomorphism. o
N g
P
A~
%A) Q

At this point we have diagram (9A).
CLAIM 2. There is a map F: P—>Q such that F o Y = F, as in diagram (9B).

Proof. Since Q is a quotient of G, we know that Q is also a p-group, and Q = Z/pQ] &)
Zyjpar @ -+ @ Zypax , where g < s for all k € [1, K]. Thus, Q is also an R-module.
We can embed Q into RX by repeating the argument of Claim 1. We will thus assume that
O C RX . The homomorphism F : G—> Q can then be written as

F(g) = (Fo(g), F1(g), ..., Fk(g)) foranyg e g,

where for each k € [0, K], Fy : G—> R is a homomorphism of the form:

J
Fi(@i, 22, .-, 20)) = ) Fjk(z)) forany (z1,22,...,27) €6,
Jj=1
for some homomorphisms Fj; : Z/p:_,—>7€. Now, R = Zjps and s = r; + s,

so there is some f;; € Z/ps,- such that F;(z) = p'/ - fjx -z, forany z € Z/ps,-.
Define Fjx : R—>R by Fji(r) = fji -r,forany r € R. Then define Fy : P—> R by

J
Fir((ri,ra, ..., 1ry)) = Z Fix(rj) forany (ri,ra,...,rj) € R =P.
=1
It follows that F¢ o Y = F}. Finally, define F:P—RK by

F(p) = (F1(p), F2(p), ..., Fk(p)) forany p € P.

We conclude that F o v =F. o
Now P is projective, so we can find a morphism L:P—¢G yielding diagram (9C).
Define L = L o W to get commuting diagram (9D). Then 7w o L = F, as desired. a
Proof of Corollary 2. Proposition 20 says & has the FLP. Now apply Theorem 1. a

4. Randomization of multidimensional subgroup shifts

We will generalize the results of §3 by treating a (D + 1)-dimensional subgroup shift as a

one-dimensional Markov group, whose alphabet is itself a D-dimensional subgroup shift.
We first fix some notation for this section. Let L = N? and M = NP+! = L x N.

Let p € N be prime, and let G be the abelian p-group:

G=@Zp)"®Z)))* ®---®(Z;ps)"™ forsomeJ > 0andsi,s2,...,s;7 = 0. (10)
Let R =Z,,s (as aring). Then G is an R-module.
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Set i = QH‘. Any element of QM can be seen as an N-indexed sequence of elements
in Y. In other words, QM is naturally isomorphic to the full shift N, Likewise,
if & < GM is a nearest-neighbor group shift, then we can interpret & as a Markov
subgroup of 4N, Then elements of & can be written as g = (g, : n € N) e U,
Define Uy = {u € i :u =gy forsomeg € &}. Then iy is a subgroup shift of 4 (and
possibly Ll # ).

Now we introduce some machinery to make these statements precise.

4.1. The ring RL and its modules. An R-LCA is a map & : U— 4 defined by

D= Z @i -0’ where I C L is a finite subset and ¢; € R foralli € L.
iel
If RL is the set of all R-LCA on 4, then RIL is a ring under addition and function
composition. Indeed, RIL is isomorphic to the ring R[oq, ..., op] of formal polynomials
in D indeterminants o1, .. ., 0p, with coefficients in the ring R. Here, each o; corresponds
to the shift along the ith axis of LL.

An RIL-module is a compact, metrizable abelian topological group together with a
continuous RIL-action. For example, GL is an RL-module, where o1, . . ., op, act as shifts
along the D axes, and other elements of RIL act as LCA in the obvious way. If M is an
‘RL-module, then a submodule is a closed subgroup N' € M which is invariant under
‘R-multiplication and under all L-shifts; we then write A' < M. For example, if ¥ C gL
is a subgroup shift, then Lemma 8 says that 2 is an RIL-submodule of G

The most obvious examples of RIL-modules are subgroup shifts of G, but some
RL-modules (in particular, quotient modules) do not admit a natural subgroup shift
representation. If N' < M, then the quotient module is the quotient group Q@ = M /N
with the quotient topology, the natural action of R and with L acting on Q as follows:
fix m € M and let (m + N) be the corresponding coset; then for any ¢ € L, a‘(m +
N) = al(m) + N is another coset (because N is L-shift-invariant). To show that Q is
an RIL-module, it remains to show the following.

LEMMA 21. Q is compact and metrizable, and 1L acts continuously on Q.

Proof. Q is the continuous image of the compact space M, hence Q is compact.
A topological group is metrizable if and only if it is first-countable [Wil70, 38C, p. 259],
hence M is first-countable. The continuous open image of a first-countable space is
first-countable [Wil70, 16A(#3), p. 113], therefore Q is also first-countable and finally
metrizable.

To see that IL acts continuously, observe that any neighborhood of the coset (m + N)
has the form (B + N), where B € M is a neighborhood of m € M. However, then
o B+ N)=0"4B)+ N is a neighborhood of ¢ ¢ (m + N) = ¢t (m) + N. m]

If M and NV are RIL-modules, then a morphism is a continuous group homomorphism
® : M—> N which commutes with the RIL-action. For example:
° any LCA & : QL—>QL is an RL-module endomorphism of QH‘;
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° if & C QH‘ and H C HL are subgroup shifts (regarded as RIL-modules), then an
‘RL-morphism from & to § is just a block map ¢ : &—§ which is also a group
homomorphism;

° if ' < M are RL-modules, and Q@ = M/N is the quotient module, then the
quotient map 7 : M—> Q is an RIL-epimorphism.

4.2. Direct sums. If M and N are two RL-modules, then their direct sum M & N
is the product group M x N endowed with the product topology, with R and L
acting componentwise. Now suppose that (M, : n € N) is a countable family of
RIL-modules. The direct sum @, .y M, is the Cartesian product [ [, M,, endowed
with the Tychonoff product topology and componentwise addition, with R and L acting
componentwisef. For the RIL-module M we define MY = D, cny Mn, where M,, = M
foralln € N.

LEMMA 22. Let M be an RIL-module. Then:
(@ MNis an RM-module;
b)  if M =L, then MN = ¢V = M 45 RM-modules.

For the rest of the section, let 4l = QL and YN = QM, as in Lemma 22. To avoid
confusion, we will use g7 to indicate the action of L on f, which we apply componentwise
to sequences in SN We will use oy to indicate the shift on elements of YN , which are
treated as N-indexed sequences. Finally, oy, indicates the action of Ml = IL. x N obtained
by combining or and Oy Ifg e QM, then we write g = (go, 81, 82,...) € ilN, where,
foralln € N, g, = g|1x(n} is an element of L.

43. Markov RL-modules. Consider the direct sum 4V as an RIL-module under op and
the natural action of R. An RIL-submodule shift of $N is a closed RIL-submodule U C N
which is also op-invariant. A Markov RIL-submodule is an RIL-submodule shift 20 which
is determined by some set of admissible transitions Ty < $(10.1} quch that

U ={uei: (u,, uy) € Ty, Vn € N}. (11)

For any u € 4, let F3(u) = {v € &l : (u, v) € Ty} be the followers of u. Note that Fg3(u)
could be empty.

PROPOSITION 23. Let & C GM be a nearest-neighbor subgroup shift as in (5). Then:
(@) & is a Markov RIL-submodule of i,
Let 3 = Fg(0) C U be the follower set of the zero configuration in 3 (mnemonic: ‘3’
is for ‘zero’). Then:
(b) 3 is an RIL-submodule of 4,
(¢c) foranyu € Ug, Fg () is a coset of 3;
(d) let Q = Ug/3 be the quotient RIL-module, and define F : Ug—> Q by F(u) =
Fe ), then F is an RIL-module morphism;

T Note that this differs from the algebraic direct sum of modules, where only finitely many coordinates can be
non-zero.
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() let 1 : Uy—>3 be the quotient map (i.e. w(w) = u + 3), then & =
{ue ilg : F(u,) = 7(u,41), Vn € NL

Proof. (a) let B and T be as in (5), and define
Se ={g€ G 1 glpro € To, VL € L. (12)

Ifuv € 4 = GL let [u, v] be the corresponding element of GL*{0-1} Then for any
ueiN ue&ifand only if [u,, u,+1] € Sg, for all n € N. In other words, (11) is true.
Also, & is a group and is opg-invariant. It follows that & is a Markov RLL-submodule.

(b) We must show that 3 is a closed, oy -invariant subgroup of iUg. We will use the
following claim.

CLAIM 1. If Sg is as in (12), then Sg is a subgroup shift in (GO,

3is o —invariant. Letu € 1, and let £ € L. Then, from definitions of 3 and Sg, and the
claim, we get

(ue3) < ([0,ul € Sp) < ([6%0),0')] € Sp) > ([0,0‘(W)] € S&)
<~ (ot(u) € 3).

3 is closed. Let {z,},en € 3 be a sequence with limit z € ${. We must show z € 3 also.
For all n € N, treat [0, z,,] as an element of ghbx{o.1}, By hypothesis, [0, z,] € Sg for all
n € N. However, Sg is closed (Claim 1). Hence, lim,_, » [0, z,] = [0, z] is also in Sg.
We conclude that z € 3.

3 is a group. This follows from the fact that Sg is a group (Claim 1).

(¢c)Letu € Ug and let v, w € Fg(u). We want to show that (v — w) € 3. Observe that
[u, v] € S and [u, w] € Sg. Since Sg is a group (Claim 1), [u, v] — [u, w] = [0, (v—w)]
is also in 3, which means (v — w) € 3.

(d) F is a group homomorphism. Let uj, up € g and suppose that F(u;) = v; + 3 and
F(uy) = vo+3. We want to show that F(u; +up) = (vi+v2)+3. Observe that [uy, v{] €
Sw and [ug, v2] € Sg. However, Sg is a group, so [ug, vi] 4+ [up, v2] = [u; +up, vi + va]
isin Sg; thus, F(u; + up) = (vi + v2) + 3.

F commutes with o;. Let u € Ug and m € L. Suppose F(u) = v + 3. Thus,
[u,v] € Sg and [0 (u), 6™ (V)] € S (Claim 1 says Sg is oy -invariant). Hence,
Fe" () =0"(V) +3=0"(v+3) =" (F(w).

F is continuous. Let {u,},cy < Ug be a sequence converging to u € &, and let
F(u,) = v, + 3. We want to show that the sequence {v, + 3},eny € Q converges to
F(u) =v+ 3.

Letu, = u, —uand let v), = v, — v. Hence, lim,_, u,, = 0, and it suffices to show
that the sequence {v), + 3},ey € Q converges to F(0) = 3. Recall that the element v/, can
be any representative of its coset; it suffices to show that we can pick elements such that
limy,— 00 v, = 0, in which case lim, 0oV, + 3 =04+ 3 = 3.

Let R > 0. Since lim;,_ u; = 0, we know that there is some N > 0 such that, for all
n >N, u;l|[07R]D = O|[07R]D (i.e. u, is constantly zero inside of [0, R1P). Thus, we can
pick v such that v), |[0, R—21P = O|[07 R—2]P- We conclude lim,,—, »c v, = 0 as required.

(e) Follows from the definition of F and 7. O
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4.4. The FLP. Let ® C GM be a nearest-neighbor subgroup shift as in (5). Then & is
a Markov RIL-submodule of ¢~ by Proposition 23. Let 3 and Q be as in Proposition 23,
with morphisms F : {g—>Q and 7 : Ug—> Q. We say that & has the FLP if the map
F lifts to an RL-morphism L : ${g —>$lg such that 7 o L = F. In other words, we can
transform diagram (13A) into commuting diagram (13B):

L
Ug Ug b P —— »lg
= s mnnny- F V4
(13A) %) (13B) 0 (13)

It follows that for any u € Ug, Fg(u) = L(u) + 3. The FLP allows us to project & into
a full shift on 3V, so that the dynamics of LCA on & are reduced to the dynamics of LCA
on 3N, In what follows L : $lg —> e will always be the lifting map of a nearest-neighbor
subgroup shift & with the FLP.

LEMMA 24. Suppose that & has the FLP.

(a) Let Sg be as in (12). For any (v,w) € Sg, let 5(v,w) = w — L(v) and let
A : 86— 3N be the block map A(g)y = 6(8n, 8n+1) forg € G andn € N. Treat &
and 3N as RIL-modules under componentwise oy -action. Then A is an RIL-module
morphism.

(b) Define V : 6—> g x 3N by W (g) = (go; A(g)), g € &. Then V is an RIL-module
isomorphism.

(c) WV isaconjugacy between (8, o) and (g x 3N.G), where @ - $lg x 3N— g x
3N is defined by o (u; v) = (¢ (u; v); GN(V)), where ¢(u; v) = L(u) + vo, for all
ue g andv e 3N

(d) Foru e Uy andz € 3N ler cDw;z) = c(u; z), and forn > 1, let c™(u;z) =
c(¢™D(u; z); aﬁ_l(z)). Then, for anyn € N, " (u; z) = (¢ (u; 2); oy (2)).

Proof. (a) and (b): L is a morphism, so § and A are morphisms. Thus, W is a morphism.
The remainder of the proof is exactly as in Lemma 13. a

Example 25. We have the following.

(a) Let D =0. Then L = NO is the trivial group and M = N. Interpret R as RN?; then
G is an RN%-module, and Proposition 23 becomes Lemma 12. Here diagram (13)
becomes diagram (7), the FLP for Markov subgroups.

(b) LetG =R = Zpyandlet D = 1, sothat L = N, M = N2 and 4 = GN,
LetJ = {(0,0), (0, 1), (1,0)} < N2, and define

® = {ge g . Zs-gm+,~ = 0 mod 27, Vm ENZ}.
jel
Then Ug = 4,

Se = {s eGN0I 3 50,04 =0mod 27, Ve € N} and
jel
3={zeGV:3.2/ =0mod27,V¢ e N} = 2V,
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where Z := {0, 9, 18} is the cyclic subgroup of Z /27 generated by 9. Thus,
Q=u/3=g"/z2N=@g/z)N =P,
where P = Z /9 and = represents RN !_module isomorphism. For any g € G,
Fo(g ={he G :3h, = -3¢ —3gs+1 mod 27, V£ e N} =f+ 3,

where f = —g — 0y (g) € gN.

Put L(g) = f, then L : {{—— 4l is an RIL-module homomorphism (i.e. an R-LCA)
and Fg(g) = L(g) + 3. Hence, ® has the FLP.

Foru,ve Y,é6(u,v) = v+ (u +0L(u)) € 4. Thus, forany g = (g, : n € N) € &,
A(@ =v = (v :neN) e 3N where v, = gut1 + (8 + 0y (81)). Clearly,
A : &—> 3" is an RN-module homomorphism. Put, ¥ (g) = (go; v), thus,

5 (go; v) = L(g) + vo = (—go — oy,(g0)) + Vo
= (—go — o7 (g0)) + g1 + (go + oy.(g0)) = g1,

in accord with Lemma 24(c).
(¢) AgainletL =N, M = N2 and 4 = GN. Now, however, let § = R = Z > and let
K = {(0,0), (0, 1), (1, 1)} € N?. Define

= {geQM:ng+k=0mod2,VmeN2}.
keK

Then g = and 3 = {z€ G : zp + 241 =0mod 2, VL € N} = {0,1} = Z»,

where 0 = (000...)and1 = (1 11...). Define0 = 1 and 1 = 0, and for any

g:(gg:EEN)EQN,let§=1+g=(§Z:EEN).Theng+3={g,§},and

Q=4/3={lg.8:8€d")
Forany g € GN, Fes(g) = (h € GN : hy + hyy1 = ge mod 2, V¢ € N}.

n

—
In this example & does not have the FLP. To see this, letd, = (0 ... 0 1000...).
Then Fg(d,) = {h,, h,}, where

h,=0...00111...) and h,=1...11000...).

n n

So, if L : {—> 4l satisfies diagram (13), then either L(d,) = h, or L(d,) = h,.
Suppose that L(d,) = h,,. Since L is an RN-module homomorphism, L commutes
with oy . Thus, 1 = of""'(h,) = o' (L@,)) = L(of"' (@) = LO) =0, a
contradiction. Hence, we must have L(d,) = h,,, for all n € N. However, L must

also be continuous. Hence, 1 = lim;, .o h;, = lim,, .o L(d;) = L(im, s d;) =
L(0) = 0, again, a contradiction. O

LetyJ C $IN be a Markov RIL-submodule. An RIL-LCA on U is a function ® : G—> U
given by
®(u) = qu,- ol (w) forallue 9, (14)
iel
where I € N is some finite subset and ¢; € RL for all i € I. Thus, the maps ¢; are
themselves R-LCA on subgroups of 4l. It is easy to verify the following.
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PROPOSITION 26. Identify GM = N as in Lemma 22. Let ® : &—>® be some map.
Then ® is an R-LCA on & (as a subgroup of GM) if and only if ® is an RIL-LCA on &
(as an RILL-submodule ofiiN).

LEMMA 27. Assume ® has the FLP and let ® : & —> & be an RIL-LCA as in (14). Define

® : g x 3N— g x 3N by d(u; z) = > icp @i 00 (u; z), foranyu € Ug and z € 3N,

Then:

(a) W isaconjugacy between (&, ®) and (Mg x 3N, CT));

(b) foru € U and z € 3N, dw;z) = (Py(w; z), P3(2)), where dy(u;z) =
Yoicrdio cD(u; z) and where 5153 =D i o a& is itself an RL-LCA on 3N,

Proof. The proof is analogous to Lemma 14. a

Foranyl € Mand R > 0, letI(R) = {j e M : |i — j| < R forsome i € I}, and let
ol = I(R) \ I. A measure u € M(®) is a Markov random field (MRF) of range R if for
any finite subsets [ € M and J € M\ I(R), and any G-admissible blocks u € Gl v e gorl
andw e GJ,

pulnfwinivh) _ p(ulniv)  wdwln v
u(vl) () u(vl)

In other words, the events [u] and [w] are conditionally independent given [v].

LEMMA 28. Let p € M(®). If p is a (o-invariant) MRF with full support on &, then
A(w) is a (o-invariant) MRF with full support on 3N,

Proof. The proof is analogous to Lemma 16. a

PROPOSITION 29. Assume & has the FLP and let i € M(®). Then:

(a) W is a measure of maximal entropy on & if and only if A(u) is of maximal entropy
on SN;

(b) @ asymptotically randomizes i if and only if 53 asymptotically randomizes A(1),
where ® and 53 are as in Lemma 27.

Proof. If & has the FLP, then L : g—>iUg is an RL-morphism, that is, a CA.
Suppose that L has local rule Ljyc : g[O~R]“—>g for some R > 0, such that for any
£ elLandu € U, L(u)y = Lioc(u] 0+00. R]D). The local map Ljoc acts naturally on any

block of {4 containing translations of [0, NR]? for any N > 0. a

For N > 0, let A(N) = {(¢,n) e M:n € [0, N]and ¢ € [0, (N — n)R1P} € M, and
let A(N) = {(¢,n) e M:n e[l, Nland ¢ € [0, (N — n)R]P}. For example, if L = N
and R = 2 then A(4) = {(0,1),...,(6,1),(0,2),...,(4,2),(0,3), (1, 3), (2,3), (0,4)}
and A(4) = A4) U{(0,0),...,(8,0)}.

Forany N > 0, let 8xx0 = {gljg yg12x0) - & € &) S GIONRIP

CLAIM L. Forany N > 0, |&av)| = [Enxol - I(SN)A(N)I.

Proof. Suppose that g € &y and write g = (g0, g1, ..., gn), Where g, € GlO.(N=-mRI”

Thus, go € Gyxo C (uQﬁ)[O,NR]II Let fi = Lioc(g0) € (uQﬁ)[O’(N,l)R]D, and
forall n € [2,N], letf, = Lioc(f,—1) € (ﬂ@)[o)(an)R]D. Then g, = f, + z,,
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where z,, € 3[(N7n)R]D. Then gg and (z1,...,zN) € (SN)A(N) completely determine g.
Conversely, any element of &) can be generated in this fashion by choosing some g €

Bnxo and some z = (zj, ..., zy) € (3N)aw). Thus, 1Samm| = 1ENxol - BN Al O
CLAIM 2. We claim that hop(®) = hiop(3Y).

Proof. It follows from the definition of topological entropy that

hioo(®) = lim loglBaml _ lim log |8y 0| + log(|(3M) A )
TN AN T N AMV)]

log |(3™) Al . log |& N o]

— 1 _ N

= am An) Nooo AN uop(37)- -
CLAIM 3. We claim that h, () = ha(u)(3Y).
Proof. As in Claim 2, we have

(@) == Jim > udgh-log(uigh). (15)

geQﬁéw)

Let ¢ := A(u), and use the bijection vy > g8 = (80;2) € Gnxo X (SN)A(N) from
Claim 1 to see that

> u(ig) -log u(igh

gEQSé(N)

= > > wudgoD - ¢z - Hog(u(goh) + log(¢ (1])]

2068 x02ze(3N)a(w)

= Y ulgoD -logulg) + > ¢(lzD) -log(z (2.

20€G 0 2e(3M) )

Substituting the last expression into (15) yields

hy () =— li
w(O) == A
X( Z w([gol) - log n([gol) + Z §([Z])'10g(§([l])))
20€B %0 2e(3N) aw)
1
=— li -1 = h (3.
i 6(3;) £([2]) - log(¢ ([21) = he (3%)
z A(N)
Finally, Claims 2 and 3 yield (a), and then Lemma 27(a) yields (b). O

Suppose that D = 1, so that L = N and M = N2, If & c GM has the FLP, then
Lemma 24(b) yields an isomorphism ¥ : &—> g x 3N, where g € GN and 3 ¢ GV
are themselves one-dimensional Markov subgroups. We will say that & has the strong FLP
if the group 3 also has the FLP, as described in §3.1.

If D>2(andM = ND‘H), and & C QM has the FLP, then we get an isomorphism
U B6—Ug X 3N , where Ug C QND and 3 C QND. We inductively define & to have the
strong FLP if the group 3 has the FLP as a subgroup shift of QND.
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For example, if G is a p-group, and & C QN2 has the FLP, then G automatically has the
strong FLP, because Proposition 20 implies that 3 C GN has the FLP.

PROPOSITION 30. Let & C QNDH have the strong FLP.

(@) There is aﬁnite abelian group Z, and for each d € [1, D], there is a subgroup
shift Uy C QN , and a topologlcal group isomorphism T': &—>®, where & :
Up x 111571 X o0 X LIII\ID X QND ZNDH.

(b) If d: &—& is an LCA, then there is an LCA ® z : ZNPH —>ZND+], there is a
homomorphism D QND X ZNDH—>QND and, for every d € [1, D], there is a
homomorphism

501: ilgwfd X oo0 X 1111\1071 X QND X ZNDH—)M?D#
such that, if we define ®: &—>® by

D(up, ..., uy, g z)

= (®pup,...,u;,g2),..., 2(ur, uy, g z), ®1(uy, g 2); Po(g; 2); P=(2)),
(16)

then T is a conjugacy from (&, ®) to (&, D).

Let u € M(®), and let { € M(ZND+I) be the projection of I' () to 2N Then:

(¢) wisao-invariant MRF with full support on & if and only if ¢ is a o -invariant MRF
with full support on ZNDH,

(d) @ asymptotically randomizes 1 if and only if ® z asymptotically randomizes ¢ .

Proof (By induction on D.) If D = 0, then & = G x ZN. Thus, if we set ' = W, then (a)
is Lemma 13(b), (b) is just Lemma 14, (c) is Lemma 16 and (d) is Corollary 19.
Suppose that the proposition is true for D = k — 1, and let D = k. Lemma 24(b) yields
an isomorphism ¥ : &—4p x 3N where Up C QND and 3 C QND are subgroup shifts.
(a) 3 has the strong FLP, so induction yields an isomorphism

I 3—3 = $Up_|x uﬁ_z X oo X LIIFD_Z X QND_] X ZND,

where Uy, ..., Up_1 C QND_I and Z are as described above. We extend this to an
isomorphism

Py 3N 3 =l el ot g 2N
by applying I'3 componentwise.

Now, forany g € &,if W (g) = (up, 3) € Up x 3N then define ') := (up, F?(g)) €
.

(b) Lemma 27(b) yields an LCA <I>3 3N_ 3N and a homomorphlsm o D Up x
3 —>$p so that U is a conjugacy from (&, ®) to (LUp X 3N <I>) where CD(u 3) =
(®p(u,3), P3G). o

As in (14), write ®3 = Zid(ﬁ’ o af\], where I C N, and,' for each i € 1,
#' : 3—>3 is an LCA. By induction, for each i € I, we can find P 2ZNP__ ZNP
a homomorphism 56 G x ZND—>Q and, for all d € [1, D), a homomorphism
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52, :il?n_d_] X - ~qu1\11)_2 x GNP~ XZND—>H§D_d_I such that, if we deﬁneai 1 3—3
analogously to (16), then ¢ o I3 =T30¢".

Identify 2N~ (ZND)N, and define ®z: (1271\11))1\1—)(21\10)N by &z :=
Zidaiz o of.  Identify gV’ = (@GN"HN| and define @p: GV THN x
VYN @V YN by By = Y, 6p o ol For each d e [1,D), identify
N = @WlN"TTHN and define Bg: ()TN x o x (@PTHN 5 (GNPTHN
(ZND)N—>(11§D_d_I)N by &y = Zid@, o 0. If we define @3 : EN—>EN

analogously to (16), then it follows that ®3 o F§ = F§ o 53. Finally, for any

(up;up—1,...,u1,8;2Z) € 6 = Up X EN, let ®p(up;up—_ig,...,u, g z) =
5D(uD,3), where 3 = (F?)_l(uD_l, ...,u1,8,2) € SN. If we define ® : 6—&
as in (16), then (b) follows.

Prove (c) by inductively applying Lemma 28. Prove (d) by inductively applying
Proposition 29(b). O

Proof of Theorem 4. If u is an MRF with full support on &, then Proposition 30(c) says
that ¢ is an MRF with full support on ZNPH Thus, Theorems 12 and 15 of [PY02] and
Theorem 6 of [PY04] together imply that ® z asymptotically randomizes ¢. Now apply
Proposition 30(d). g

4.5. Sufficient conditions for the FLP. Let 0 C GY be a subgroup shift. An endo-
morphic cellular automaton (ECA) is a CA & : Y—*J that is also an endomorphism of
5 as a topological group. For example, all LCA are ECA, but not vice versa. It is not hard
to show the following.

LEMMA 31. Let ® : LB—>*U be a CA. Then ® is an ECA if and only if ® is an
RL-endomorphism of U as an RIL-module.

Let & C GM be a nearest-neighbor subgroup shift. Then & is a Markov RIL-submodule
of UN by Proposition 23. Let 3 and Q be as in Proposition 23, with morphisms F : {—> Q
and 77 : 4—> Q. Write elements of & as g = (g, : n € N) € ¢V,

PROPOSITION 32. The subgroup shift & has the FLP if and only if there exists an ECA
L : e —>Ug such that & = {(g, :n € N) € U : g1 — L(gs) € 3.Vn € NJ.

Proof. ‘=" Suppose that & satisfies the FLP. Let L : {{g—>4lg be as in diagram (13).
Then L : Ug—>LUg is an RL-morphism, so Lemma 31 says that L is an ECA.
Ifg fe g thenw(g — L) = n(g) — n (LK) = n(g) — F(f). Thus, the following
are equivalent: (i) (g — L(f)) € 3; (ii) 7 (g — L(f)) = 0; and (iii) 7 (g) = F(f).
Hence,
G&={g,:neN)e ilg 2 (gn+1) = F(gn),Vn € N} (by Proposition 23(e))
={(g,:neN)e ilg 2 (81 — L(8n)) € 3,Vn € N} as desired.

‘" Suppose that & = {(g,:neN) eily gy — L(g) €3, ¥neN} with L :
e —>Ug an ECA. Clearly, ¢ (0) = 3 and for any b € g, Fe(b) = L(b) + 3.
It follows that 7 o L = F, in accord with diagram (13). O
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Example 33. In Example (25b) D = 1, soL = Nand M = N2, Also, G = Z /27, and
Uy = 8 =GN, and 3 = 2N, where Z = {0, 9, 18}. Finally, L : GN—GN is the LCA
L@ =—-g—oL(®.

4.6. Natural extension to 7ZP. Let pry : QZD—>QND be the projection map.
Any subshift & C QND has a natural extension to a unique subshift 6 C QZD such
that & = prN(g). If « € GL (ZP) is a linear transformation, then « induces a continuous
group automorphism o : QZD—>QZD such that, if g = (g, : z € ZP) € QZD, then
a.(g) = (g, : z € ZP) where g, = go() forall z € ZP. If &, 9 GZ" are two subshifts
of QZD, we say that & is a-equivalent to Hifa (B =916, H C QND are two subshifts
of QND, with natural extensions & and $), respectively, then we say & is a-equivalent to §)
if & and §) are a-equivalent.

Any shift invariant measure yu € M(QND) extends to a unique shift invariant measure
n € M(QZD) such that pry(@) = p, and any cellular automaton & : QND—>QND
extends to a unique CA @ : QZD —>QZD such that pry o ® = ® o pry. We say the triple
(&, I, D) is the natural extension of (&, u, ).

If o € GL(ZP) and z € Z, then 6% 0 oy = oy 0 6@, Thus, if ® : G&° —GZ"
is a (linear) CA, and we define ¥ = a, o ® o o] !, then W is also a (linear) CA, and
,o® =Voa, IfB,§H C QZD are subshifts, and &t € M(B) and T € M(H) are
shift invariant measures, ®, ¥ : QZD—>QZD are CA, then (@, w, D) is a-equivalent to
(9,7, 9) if 0x (&) =9, ax(@) =Tand ¥ = a5 0 D o oz*_l o 0¢ for some z € ZP.

If®, 9N C QND are two subshifts of QND and u,v € M(QND) are two shift invariant
measures, and ¢, ¥ : QND—>QND are two CA, then we say that the triple (&, u, ®) is
affine equivalent to ($), v, W) if (&, u, ®) has natural extension (&, 1z, ®) and ($), v, ¥)
has natural extension (5, v, W), and (@, w, D) is a-equivalent to (E, v, U), for some
a € GL (ZP).

LEMMA 34. Suppose (8, u, ®) is affine equivalent to (9, v, V). Then ® asymptotically
randomizes u on & if and only if ¥ asymptotically randomizes v on ).

Proof. Let (&, t, ®) and (9, 7, ¥) be the natural extensions as above. Let ® = a; 0 ® o

7! and suppose W = ® o o< for some z € ZP. However, 1« and v are shift invariant,
and " (V) = @y 0 ®" o a ! 0 &y (L) = &y 0 ®" (7). Thus, the following are equivalent:
(i) ® randomizes u on &; (ii) ® randomizes 7x on &; (iii) ® randomizes vV on 9 (v) ¥
randomizes v on §; (v) ¥ randomizes v on §). O

o

PROPOSITION 35. Suppose that & C QND is a subgroup shift which is affine-equivalent
to a subgroup shift $ C QND having the strong FLP. If u is a Markov random field with
full support on &, then any PLCA acting on & asymptotically randomizes |4 to a measure
of maximal entropy on ®.

Proof. Suppose a € GL (ZP) defines an affine equivalence of & and $). If i € M(QND),
letx € M(QZD) be its extension, V = o, () and v = pry(w). If p is an MRF with full
support on &, then v is an MRF with full support on $).
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Let ® : GN” —GN” be a PLCA as in (1), and let ® : GZ° —G%” be its natural
exteirjsion. Put ® = aso®do a*’l. Then ® = Zieﬁ@ ol where T = o~ () and for each
iel,g = Do (i)-

We want to project ® to an LCA on QND, but T ¢ NP, because some of the elements

of/]l\may have negative coordinates. Let z = (z1,...,zp), where for each d € [1, D],
zg = —minf{ig:i = (if,...,ip) €L}. Nowlet ¥ = & o0? = YV . o/, where

J=1+z C NP, and where for each j € J, Vj = @j—z. Then W projects to an LCA
v QND—>QND and (&, u, ®) is affine equivalent to (), v, ¥). Theorem 4 says that ¥
asymptotically randomizes v; hence Lemma 34 implies that ® also randomizes . O

Example 36. If & is from Example 25(c), then & = (g € QZZ; Y keK 8tk =
0mod 2,Vz € Z?}. Now, define « : Z>—7? by a(x, y) = (x, —y). Then a(K) = J,
where J is as in Example (25b). Thus, a*(g) ={h € QZZ; Zjej h,,; =0,Vz € Z2}
=: §. Finally, let $) = pry(9) = (h € ¢ : 3, ;huy; = 0,Vn € N2}, Then & is
a-equivalent to §.

& does not have the FLP, but & is affine equivalent to £, and § satisfies the conditions of
Proposition 32 (similarly to Example 33). Thus, $ has the FLP. Hence, Proposition 35 says
that any PLCA asymptotically randomizes any MRF with full support on & to a measure
of maximal entropy on &.
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