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Glossary

Configuration space and the shift: Let M be a finitely generated group or monoid (usu-
ally abelian). Typically, M = N := {0, 1, 2, . . .} or M = Z := {. . . ,−1, 0, 1, 2, . . .}, or M = NE,
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ZD, or ZD × NE for some D,E ∈ N. In some applications, M could be nonabelian (although
usually amenable), but to avoid notational complexity we will generally assume M is abelian and
additive, with operation ‘+’.

Let A be a finite set of symbols (called an alphabet). Let AM denote the set of all functions
a : M−→A, which we regard as M-indexed configurations of elements in A. We write such a
configuration as a = [am]m∈M, where am ∈ A for all m ∈ M, and refer to AM as configuration

space.
Treat A as a discrete topological space; then A is compact (because it is finite), so AM is

compact in the Tychonoff product topology. In fact, AM is a Cantor space: it is compact, perfect,
totally disconnected, and metrizable. For example, if M = ZD, then the standard metric on AZD

is defined d(a,b) = 2−∆(a,b), where ∆(a,b) := min {|z| ; az 6= bz}.
Any v ∈ M, determines a continuous shift map σv : AM−→AM defined by σv(a)m = am+v for

all a ∈ AM and m ∈ M. The set {σv}v∈M is then a continuous M-action on AM, which we denote
simply by “σ”.

If a ∈ AM and U ⊂ M, then we define aU ∈ AU by aU := [au]u∈U. If m ∈ M, then strictly
speaking, am+U ∈ Am+U; however, it will often be convenient to ‘abuse notation’ and treat am+U

as an element of AU in the obvious way.

Cellular automata: Let H ⊂ M be some finite subset, and let φ : AH−→A be a function
(called a local rule). The cellular automaton (CA) determined by φ is the function Φ : AM−→AM

defined by Φ(a)m = φ(am+H) for all a ∈ AM and m ∈ M. Curtis, Hedlund and Lyndon showed
that cellular automata are exactly the continuous transformations of AM which commute with
all shifts. (Hedlund, 1969, Theorem 3.4). We refer to H as the neighbourhood of Φ. For example,
if M = Z, then typically H := [−ℓ...r] := {−ℓ, 1 − ℓ, . . . , r − 1, r} for some left radius ℓ ≥ 0 and
right radius r ≥ 0. If ℓ ≥ 0, then φ can either define CA on AN or define a one-sided CA on AZ.
If M = ZD, then typically H ⊆ [−R...R]D, for some radius R ≥ 0. Normally we assume that ℓ, r,
and R are chosen to be minimal. Several specific classes of CA will be important to us:

Linear CA Let (A,+) be a finite abelian group (e.g. A = Z/p, where p ∈ N; usually p is prime).
Then Φ is a linear CA (LCA) if the local rule φ has the form

φ(aH) :=
∑

h∈H

ϕh(ah), ∀ aH ∈ AH, (0.1)

where ϕh : A−→A is an endomorphism of (A,+), for each h ∈ H. We say that Φ has scalar

coefficients if, for each h ∈ H, there is some scalar ch ∈ Z, so that ϕh(ah) := ch · ah; then
φ(aH) :=

∑
h∈H

chah. For example, if A = (Z/p,+), then all endomorphisms are scalar
multiplications, so all LCA have scalar coefficients.

If ch = 1 for all h ∈ H, then Φ has local rule φ(aH) :=
∑

h∈H
ah; in this case, Φ is called

an additive cellular automaton; see Additive Cellular Automata for more information.

Affine CA If (A,+) is a finite abelian group, then an affine CA is one with a local rule φ(aH) :=
c +

∑
h∈H

φh(ah), where c is some constant and where ϕh : A−→A are endomorphisms of
(A,+). Thus, Φ is an LCA if c = 0.

Permutative CA Suppose Φ : AZ−→AZ has local rule φ : A[−ℓ...r]−→A. Fix b = [b1−ℓ, . . . , br−1, br] ∈
A(−ℓ...r]. For any a ∈ A, define [ab] := [a, b1−ℓ, . . . , br−1, br] ∈ A[−ℓ...r]. We then define the
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function φb : A−→A by φb(a) := φ ([ab]). We say that Φ is left-permutative if φb : A−→A
is a permutation (i.e. a bijection) for all b ∈ A(−ℓ....r].

Likewise, given b = [b−ℓ, . . . , br−1] ∈ A[−ℓ...r) and c ∈ A, define [b c] := [b−ℓ, b1−ℓ . . . , br−1, c] ∈
A[−ℓ...r], and define bφ : A−→A by bφ(c) := φ ([b c]); then Φ is right-permutative if bφ :
A−→A is a permutation for all b ∈ A[−ℓ....r). We say Φ is bipermutative if it is both left-
and right-permutative. More generally, if M is any monoid, H ⊂ M is any neighbourhood,
and h ∈ H is any fixed coordinate, then we define h-permutativity for a CA on AM in the
obvious fashion.

For example, suppose (A,+) is an abelian group and Φ is an affine CA on AZ with local
rule φ(aH) = c +

∑r
h=−ℓ φh(ah). Then Φ is left-permutative iff φ−ℓ is an automorphism,

and right-permutative iff φr is an automorphism. If A = Z/p, and p is prime, then every

nontrivial endomorphism is an automorphism (because it is multiplication by a nonzero
element of Z/p, which is a field), so in this case, every affine CA is permutative in every
coordinate of its neighbourhood (and in particular, bipermutative). If A 6= Z/p, however,
then not all affine CA are permutative.

Permutative CA were introduced by Hedlund (1969)[§6], and are sometimes called permutive

CA. Right permutative CA on AN are also called toggle automata.

Subshifts: A subshift is a closed, σ-invariant subset X ⊂ AM. For any U ⊂ M, let XU :=
{xU ; x ∈ X} ⊂ AU. We say X is a subshift of finite type (SFT) if there is some finite U ⊂ M such
that X is entirely described by XU, in the sense that X =

{
x ∈ AM ; xU+m ∈ XU, ∀m ∈ M

}
.

In particular, if M = Z, then a (two-sided) Markov subshift is an SFT X ⊂ AZ determined by
a set X{0,1} ⊂ A{0,1} of admissible transitions; equivalently, X is the set of all bi-infinite directed
paths in a digraph whose vertices are the elements of A, with an edge a ; b iff (a, b) ∈ X{0,1}. If

M = N, then a one-sided Markov subshift is a subshift of AN defined in the same way.
If D ≥ 2, then an SFT in AZD

can be thought of as the set of admissible ‘tilings’ of RD by
Wang tiles corresponding to the elements of XU. (Wang tiles are unit squares [or (hyper)cubes]
with various ‘notches’ cut into their edges [or (hyper)faces] so that they can only be juxtaposed
in certain ways.)

A subshift X ⊆ AZD
is strongly irreducible (or topologically mixing) if there is some R ∈ N

such that, for any disjoint finite subsets V,U ⊂ ZD separated by a distance of at least R, and for
any u ∈ XU and v ∈ XV, there is some x ∈ X such that xU = u and xV = v.

Please see Symbolic Dynamics for more about subshifts.

Measures: For any finite subset U ⊂ M, and any b ∈ AU, let 〈b〉 :=
{
a ∈ AM ; aU := b

}
be

the cylinder set determined by b. Let B be the sigma-algebra on AM generated by all cylinder
sets. A (probability) measure µ on AM is a countably additive function µ : B−→[0, 1] such that
µ[AM] = 1. A measure on AM is entirely determined by its values on cylinder sets. We will be
mainly concerned with the following classes of measures:

Bernoulli measure Let β0 be a probability measure on A. The Bernoulli measure induced by
β0 is the measure β on AM such that, for any finite subset U ⊂ M, and any a ∈ AU, if
U := |U|, then β[〈a〉] =

∏
h∈H

β0(ah).

Invariant measure Let µ be a measure on AM, and let Φ : AM−→AM be a cellular automaton.
The measure Φµ is defined by Φµ(B) = µ(Φ−1(B)), for any B ∈ B. We say that µ is
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Φ-invariant (or that Φ is µ-preserving) if Φµ = µ. For more information, see Ergodic

Theory: Basic Examples and Constructions.

Uniform measure Let A := |A|. The uniform measure η on AM is the Bernoulli measure such
that, for any finite subset U ⊂ M, and any b ∈ AU, if U := |U|, then µ[〈b〉] = 1/AU .

The support of a measure µ is the smallest closed subset X ⊂ AM such that µ[X] = 1; we denote
this by supp (µ). We say µ has full support if supp (µ) = AM —equivalently, µ[C] > 0 for every

cylinder subset C ⊂ AM.

Notation: Let CA(AM) denote the set of all cellular automata on AM. If X ⊂ AM, then
let CA(X) be the subset of all Φ ∈ CA(AM) such that Φ(X) ⊆ X. Let Meas(AM) be the set of
all probability measures on AM, and let Meas(AM; Φ) be the subset of Φ-invariant measures. If
X ⊂ AM, then let Meas(X) be the set of probability measures µ with supp (µ) ⊆ X, and define
Meas(X; Φ) in the obvious way.

Font conventions: Upper case calligraphic letters (A,B, C, . . .) denote finite alphabets or

groups. Upper-case bold letters (A,B,C, . . .) denote subsets of AM (e.g. subshifts), lowercase

bold-faced letters (a,b, c, . . .) denote elements of AM, and Roman letters (a, b, c, . . .) are elements

of A or ordinary numbers. Lower-case sans-serif (. . . ,m, n, p) are elements of M, upper-case

hollow font (U,V,W, . . .) are subsets of M. Upper-case Greek letters (Φ,Ψ, . . .) are functions on

AM (e.g. CA, block maps), and lower-case Greek letters (φ,ψ, . . .) are other functions (e.g. local

rules, measures.)

1 Introduction

The study of CA as symbolic dynamical systems began with Hedlund (1969), and the
study of CA as measure-preserving systems began with Coven and Paul (1974) and Willson
(1975). The ergodic theory of CA is important for several reasons:

• CA are topological dynamical systems. We can gain insight into the topological
dynamics of a CA by identifying its invariant measures, and then studying the corre-
sponding measurable dynamics (see also Chaotic Behaviour of CA and Topo-

logical Dynamics of CA, as well as Blanchard et al. (1997) and Kůrka (2001)).

• CA are often proposed as stylized models of spatially distributed systems in statistical
physics —for example, as microscale models of hydrodynamics, or of atomic lattices
(see CA Modelling of Physical Systems and Lattice Gases and CA). In
this context, the distinct invariant measures of a CA correspond to distinct ‘phases’
of the physical system (see Phase Transitions in CA).

• CA can also act as information-processing systems (see CA as models of par-

allel computation and CA, universality of). Ergodic theory studies the
‘informational’ aspect of dynamical systems, so it is particularly suited to explicitly
‘informational’ dynamical systems like CA.
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In §2, we characterize the invariant measures for various classes of CA. Then, in §3, we
investigate which measures are ‘generic’ in the sense that they arise as the attractors for
some large class of initial conditions. In §4 we study the mixing and spectral properties of
CA as measure-preserving dynamical systems. Finally, in §5, we look at entropy.

These sections are logically independent, and can be read in any order.

2 Invariant measures for CA

2A The uniform measure vs. surjective cellular automata

The uniform measure η plays a central role in the ergodic theory of cellular automata,
because of the following result.

Theorem 2A.1 Let M = ZD × NE, let Φ ∈ CA(AM) and let η be the uniform measure on

AM. Then
(
Φ preserves η

)
⇐⇒

(
Φ is surjective

)
.

Proof sketch: “ =⇒ ” If Φ preserves η, then Φ must map supp (η) onto itself. But
supp (η) = AM; hence Φ is surjective.

“⇐=” The case D = 1 follows from a result of W.A. Blankenship and Oscar S. Rothaus,
which first appeared in (Hedlund, 1969, Theorem 5.4). The Blankenship-Rothaus The-
orem states that, if Φ ∈ CA(AZ) is surjective and has neighbourhood [−ℓ...r], then for
any k ∈ N and any a ∈ Ak, the Φ-preimage of the cylinder set 〈a〉 is a disjoint union of
exactly Ar+ℓ cylinder sets of length k + r + ℓ; it follows that µ[Φ−1〈a〉] = Ar+ℓ/Ak+r+ℓ =
A−k = µ〈a〉. This result was later reproved by Kleveland (1997)[Theorem 5.1]. The
special case A = {0, 1} was also proved by Shirvani and Rogers (1991)[Theorem 2.4].

The case D ≥ 2 follows from the multidimensional version of the Blankenship-Rothaus
Theorem, which was proved by Maruoka and Kimura (1976)[Theorem 2] (their proof
assumes that D = 2 and that Φ has a ‘quiescent’ state, but neither hypothesis is essen-
tial). Alternately, “⇐=” follows from recent, more general results of Meester, Burton,
and Steif; see Example 2B.4 below. 2

Example 2A.2: Let M = Z or N and consider CA on AM.

(a) Say that Φ is bounded-to-one if there is some B ∈ N such that every a ∈ AM has at

most B preimages. Then
(
Φ is bounded-to-one

)
⇐⇒

(
Φ is surjective

)
.

(b) Any posexpansive CA on AM is surjective (see §2D below).

(c) Any left- or right-permutative CA on AZ (or right-permutative CA on AN) is surjec-
tive. This includes, for example, most linear CA.

Hence, in any of these cases, Φ preserves the uniform measure. ♦
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Figure 1: A ‘diamond’ in AZ.

Proof: For (a), see (Hedlund, 1969, Theorem 5.9) or (Lind and Marcus, 1995, Corollary
8.1.20, p.271). For (b), see (Blanchard and Maass, 1997, Proposition 2.2) in the case
AN; their argument also works for AZ.

Part (c) follows from (b) because any permutative CA is posexpansive (Proposition 2D.1
below). There is also a simple direct proof for a right-permutative CA on AN: using
right-permutativity, you can systematically construct a preimage of any desired image
sequence, one entry at a time. See (Hedlund, 1969, Theorem 6.6) for the proof in AZ.
2

The surjectivity of a one-dimensional CA can be determined in finite time using certain
combinatorial tests (see Reversible CA). However, for D ≥ 2, it is formally undecidable
whether an arbitrary CA on AZD

is surjective (see The Tiling Problem and Unde-

cidability in CA). This problem is sometimes refered to as the Garden of Eden problem,
because an element of AZD

with no Φ-preimage is called a Garden of Eden (GOE) config-
uration for Φ (because it could only ever occur at the ‘beginning of time’). However, it is
known that a CA is surjective if it is ‘almost injective’ in a certain sense, which we now
specify.

Let (M, +) be any monoid, and let Φ ∈ CA(AM) have neighbourhood H ⊂ M. If B ⊂ M

is any subset, then we define

B := B + H = {b + h ; b ∈ B, h ∈ H}; and ∂B := B ∩ B∁.

If B is finite, then so is B (because H is finite). If Φ has local rule φ : AH−→A, then φ

induces a function ΦB : AB−→AB in the obvious fashion. A B-bubble (or B-diamond) is a

pair b,b′ ∈ AB such that:

b 6= b′; b∂B = b′
∂B; and ΦB(b) = ΦB(b′).

Suppose a, a′ ∈ AM are two configurations such that

a
B

= b, a′
B

= b′, and a
B∁ = a′

B∁ .

Then it is easy to verify that Φ(a) = Φ(a′). We say that a and a′ form a mutually
erasable pair (because Φ ‘erases’ the difference between a and a′.) Figure 1 is a schematic
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representation of this structure in the case D = 1 (hence the term ‘diamond’). If D = 2,
then a and a′ are like two membranes which are glued together everywhere except for a
B-shaped ‘bubble’. We say that Φ is pre-injective if any (and thus, all) of the following
three conditions hold:

• Φ admits no bubbles.

• Φ admits no mutually erasable pairs.

• For any c ∈ AM, if a, a′ ∈ Φ−1{c} are distinct, then a and a′ must differ in infinitely
many locations.

For example, any injective CA is preinjective (because a mutually erasable pair for Φ
gives two distinct Φ-preimages for some point). More to the point, however, if B is finite,
and Φ admits a B-bubble (b,b′), then we can embed N disjoint copies of B into M, and
thus, by making various choices between b and b′ on different translates, we obtain a
configuration with 2N distinct Φ-preimages (where N is arbitrarily large). But if some
configurations in AM have such a large number of preimages, then other configurations
in AM must have very few preimages, or even none. By extrapolating this combinatorial
argument along a Følner sequence of subsets of M (each packed with disjoint copies of B),
one can prove:

2A.3. Garden of Eden Theorem. Let M be a finitely generated amenable group

(e.g. M = ZD). Let Φ ∈ CA(AM).

(a) Φ is surjective if and only if Φ is pre-injective.

(b) Let X ⊂ AM be a strongly irreducible SFT such that Φ(X) ⊆ X. Then Φ(X) = X
if and only if Φ|X is pre-injective.

Proof: (a) The case M = Z2 was originally proved by Moore (1963) and Myhill (1963), while
the case M = Z was implicit in Hedlund (1969)[Lemma 5.11 and Theorems 5.9 and 5.12].
The case when M is a finite-dimensional group was proved by Mach̀ı and Mignosi (1993).
Finally, the general case was proved by Ceccherini-Silberstein et al. (1999)[Theorem 3].

(b) The case M = Z is (Lind and Marcus, 1995, Corollary 8.1.20) (actually this holds
for any sofic subshift); see also Fiorenzi (2000). The general case is (Fiorenzi, 2003,
Corollary 4.8). 2

2A.4. Incompressibility Corollary. Suppose M is a finitely generated amenable

group and Φ ∈ CA(AM). If Φ is injective, then Φ is surjective. 2
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Remarks 2A.5: (a) A cellular network is a CA-like system defined on an infinite, lo-
cally finite digraph, with different local rules at different nodes. By assuming a kind of
‘amenability’ for this digraph, and then imposing some weak global statistical symmetry
conditions on the local rules, Gromov (1999)[Theorem 8.F’] has generalized the GOE The-
orem 2A.3 to a large class of such cellular networks (which he calls ‘endomorphisms of
symbolic algebraic varieties’). See also Ceccherini-Silberstein et al. (2004).

(b) In the terminology suggested by Gottschalk (1973), Incompressibility Corollary
2A.4 says that the group M is surjunctive; Gottschalk claims that ‘surjunctivity’ was first
proved for all residually finite groups by Lawton (unpublished). For a recent direct proof
(not using the GOE theorem), see (Weiss, 2000, Theorem 1.6). Weiss also defines sofic
groups (a class containing both residually finite groups and amenable groups) and shows
that Corollary 2A.4 holds whenever M is a sofic group (Weiss, 2000, Theorem 3.2).

(c) If X ⊂ AM is an SFT such that Φ(X) ⊆ X, then Corollary 2A.4 holds as long as X
is ‘semi-strongly irreducible’; see Fiorenzi (2004)[Corollary 4.10]. ♦

2B Invariance of maxentropy measures

If X ⊂ AZD

is any subshift with topological entropy htop(X, σ), and µ ∈ Meas(X, σ) has
measurable entropy h(µ, σ), then in general, h(µ, σ) ≤ htop(X, σ); we say µ is a measure
of maximal entropy (or maxentropy measure) if h(µ, σ) = htop(X, σ). [See Example 5C.1(a)
for definitions.]

Every subshift admits one or more maxentropy measures. If D = 1 and X ⊂ AZ is
an irreducible subshift of finite type (SFT), then Parry (1964)[Theorem 10] showed that
X admits a unique maxentropy measure ηX (now called the Parry measure); see (Walters,
1982, Theorem 8.10, p.194) or (Lind and Marcus, 1995, §13.3, pp.443-444). Theorem 2A.1
is then a special case of the following result:

Theorem 2B.1 (Coven, Paul, Meester and Steif)
Let X ⊂ AZD

be an SFT having a unique maxentropy measure ηX, and let Φ ∈ CA(X).
Then Φ preserves ηX if and only if Φ(X) = X.

Proof: The case D = 1 is (Coven and Paul, 1974, Corollary 2.3). The case D ≥ 2 follows
from (Meester and Steif, 2001, Theorem 2.5(iii)), which states: if X and Y are SFTs,
and Φ : X−→Y is a factor mapping, and µ is a maxentropy measure on X, then Φ(µ)
is a maxentropy measure on Y. 2

For example, if X ⊂ AZ is an irreducible SFT and ηX is its Parry measure, and Φ(X) =
X, then Theorem 2B.1 says Φ(ηX) = ηX, as observed by Coven and Paul (1974)[Theorem
5.1]. Unfortunately, higher-dimensional SFTs do not, in general, have unique maxentropy
measures. Burton and Steif (1994) provided a plethora of examples of such nonuniqueness,
but they also gave a sufficient condition for uniqueness of the maxentropy measure, which
we now explain.
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Let X ⊂ AZD

be an SFT and let U ⊂ ZD. For any x ∈ X, let xU := [xu]u∈U be its
‘projection’ to AU, and let XU := {xU ; x ∈ X} ⊆ AU. Let V := U∁ ⊂ ZD. For any u ∈ AU

and v ∈ AV, let [uv] denote the element of AZD

such that [uv]U = u and [uv]V = v. Let

X(u) :=
{
v ∈ AV ; [uv] ∈ X

}

be the set of all “X-admissible completions” of u (thus, X(u) 6= ∅ ⇔ u ∈ XU). If
µ ∈ Meas(AZD

), and u ∈ AU, then let µ(u) denote the conditional measure on AV induced by
u. If U is finite, then µ(u) is just the restriction of µ to the cylinder set 〈u〉. If U is infinite,
then the precise definition of µ(u) involves a ‘disintegration’ of µ into ‘fibre measures’ (we
will suppress the details).

Let µU be the projection of µ onto AU. If supp (µ) ⊆ X, then supp (µU) ⊆ XU, and for
any u ∈ AU, supp

(
µ(u)

)
⊆ X(u). We say that µ is a Burton-Steif measure on X if:

(1) supp (µ) = X; and

(2) For any U ⊂ ZD whose complement U∁ is finite, and for µU-almost any u ∈ XU, the
measure µ(u) is uniformly distributed on the (finite) set X(u).

For example, if X = AZD

, then the only Burton-Steif measure is the uniform Bernoulli
measure. If X ⊂ AZ is an irreducible SFT, then the only Burton-Steif measure is the
Parry measure. If r > 0 and B := [−r...r]D ⊂ ZD, and X is an SFT determined by a set
of admissible words XB ⊂ AB, then it is easy to check that any Burton-Steif measure µ on
X must be a Markov random field with interaction range r.

Theorem 2B.2 (Burton and Steif) Let X ⊂ AZD

be a subshift of finite type.

(a) Any maxentropy measure on X is a Burton-Steif measure.

(b) If X is strongly irreducible, then any Burton-Steif measure on X is a maxentropy
measure for X.

Proof: (a) and (b) are Propositions 1.20 and 1.21 of Burton and Steif (1995), respectively.
For a proof in the case when X is a symmetric nearest-neighbour subshift of finite type,
see Propositions 1.19 and 4.1 of Burton and Steif (1994), respectively. 2

Any subshift admits at least one maxentropy measure, so any SFT admits at least one
Burton-Steif measure. Theorems 2B.1 and 2B.2 together imply:

Corollary 2B.3 If X ⊂ AZD

is an SFT which admits a unique Burton-Steif measure ηX,
then ηX is the unique maxentropy measure for X. Thus, if Φ ∈ CA(AM) and Φ(X) = X,
then Φ(ηX) = ηX. 2

Example 2B.4: If X = AZD

, then we get Theorem 2A.1, because the the unique Burton-
Steif measure on AZD

is the uniform Bernoulli measure. ♦
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Remark 2B.5: If X ⊂ AM is a subshift admitting a unique maxentropy measure µ, and
supp (µ) = X, then Weiss (2000)[Theorem 4.2] has observed that X automatically satisfies
Incompressibility Corollary 2A.4. In particular, this applies to any SFT having a unique
Burton-Steif measure. ♦

2C Periodic invariant measures

If P ∈ N, then a sequence a ∈ AZ is P -periodic if σP (a) = a. If A := |A|, then there are
exactly AP such sequences, and a measure µ on AZ is called P -periodic if µ is supported
entirely on these P -periodic sequences. More generally, if M is any monoid and P ⊂ M is
any submonoid, then a configuration a ∈ AM is P-periodic if σp(a) = a for all p ∈ P. (For
example, if M = Z and P := PZ, then the P-periodic configurations are the P -periodic
sequences). Let AM/P denote the set of P-periodic configurations. If P := |M/P|, then
|AM/P| = AP . A measure µ is called P-periodic if supp (µ) ⊆ AM/P.

Proposition 2C.1 Let Φ ∈ CA(AM). If P ⊂ M is any submonoid and |M/P| is finite,
then there exists a P-periodic, Φ-invariant measure.

Proof sketch: If Φ ∈ CA(AM), then Φ(AM/P) ⊆ AM/P. Thus, if µ is P-periodic, then
Φt(µ) is P-periodic for all t ∈ N. Thus, the Cesàro limit of the sequence {Φt(µ)}∞t=1 is
P-periodic and Φ-invariant. This Cesàro limit exists because AM/P is finite. 2

These periodic measures have finite (hence discrete) support, but by convex-combining
them, it is easy to obtain (nonergodic) Φ-invariant measures with countable, dense support.
When studying the invariant measures of CA, we usually regard these periodic measures
(and their convex combinations) as somewhat trivial, and concentrate instead on invariant
measures supported on aperiodic configurations.

2D Posexpansive and permutative CA

Let B ⊂ M be a finite subset, and let B := AB. If Φ ∈ CA(AM), then we define a continuous
function ΦN

B : AM−→BN by

ΦN

B(a) := [aB; Φ(a)B; Φ2(a)B; Φ3(a)B; . . .] ∈ BN. (2.1)

Clearly, ΦN
B ◦Φ = σ ◦ΦN

B . We say that Φ is B-posexpansive if ΦN
B is injective. Equivalently,

for any a, a′ ∈ AM, if a 6= a′, then there is some t ∈ N such that Φt(a)B 6= Φt(a′)B. We say
Φ is positively expansive (or posexpansive) if Φ is B-posexpansive for some finite B (it is easy
to see that this is equivalent to the usual definition of positive expansiveness a topological
dynamical system).

Thus, if X := ΦN
B
(AM) ⊂ BN, then X is a compact, shift-invariant subset of BN, and

ΦN
B : AM−→X is an isomorphism from the system (AM, Φ) to the one-sided subshift (X, σ),

which is sometimes called the canonical factor or column shift of Φ. The easiest examples
of posexpansive CA are one-dimensional, permutative automata.
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Proposition 2D.1 (a) Suppose Φ ∈ CA(AN) has neighbourhood [r...R], where 0 ≤
r < R. Let B := [0....R) and let B := AB. Then

(
Φ is right permutative

)
⇐⇒

(
Φ is B-posexpansive, and ΦN

B
(AN) = BN

)
.

(b) Suppose Φ ∈ CA(AZ) has neighbourhood [−L...R], where −L < 0 < R. Let
B := [−L....R), and let B := AB. Then

(
Φ is bipermutative

)
⇐⇒

(
Φ is B-posexpansive, and ΦN

B
(AZ) = BN

)
.

Thus, one-sided, right-permutative CA and two-sided, bipermutative CA are both topo-
logically conjugate the one-sided full shift (BN, σ), where B is an alphabet with |A|R+L

symbols (setting L = 0 in the one-sided case).

Proof: Suppose a ∈ AM (where M = N or Z). Draw a picture of the spacetime diagram for
Φ. For any t ∈ N, and any b ∈ B[0...t), observe how (bi)permutativity allows you to recon-
struct a unique a[−tL...tR) ∈ A[−tL...tR) such that b = (aB, Φ(a)B, , Φ2(a)B, . . . , Φt−1(a)B).
By letting t→∞, we see that the function ΦN

B
is a bijection between AM and BN. 2

Remark 2D.2: (a) The idea of Proposition 2D.1 is implicit in (Hedlund, 1969, Theo-
rem 6.7), but it was apparently first stated explicitly by Shereshevsky and Afrăımovich
(1992/93)[Theorem 1]. It was later rediscovered by Kleveland (1997)[Corollary 7.3] and
Fagnani and Margara (1998)[Theorem 3.2].

(b) Proposition 2D.1(b) has been generalized to higher dimensions by Allouche and Skordev
(2003)[Proposition 1], which states that a permutative CA on AZD

(with D ≥ 2) is conju-
gate to a full shift (KN, σ), where K is an uncountable, compact space. ♦

Proposition 2D.1 is quite indicative of the general case. Posexpansiveness occurs only
in one-dimensional CA, in which it takes a very specific form. To explain this, sup-
pose (M, ·) is a group with finite generating set G ⊂ M. For any r > 0, let B(r) :=
{g1 · g2 · · · gr ; g1, . . . , gr ∈ G}. The dimension (or growth degree) of (M, ·) is defined dim(M, ·) :=
lim sup

r→∞
log |B(r)| / log(r). It can be shown that this number is independent of the choice

of generating set G, and is always an integer. For example, dim(ZD, +) = D. If X ⊂ AM

is a subshift, then we define its topological entropy htop(X) with respect to dim(M) in the
obvious fashion [see Example 5C.1(a)].

Theorem 2D.3 Let Φ ∈ CA(AM).

(a) If M = ZD × NE with D + E ≥ 2, then Φ cannot be posexpansive.

(b) If M is any group with dim(M) ≥ 2, and X ⊆ AM is any subshift with htop(X) >
0, and Φ(X) ⊆ X, then the system (X, Φ) cannot be posexpansive.

11



(c) Suppose M = Z or N, and Φ has neighbourhood [−L....R] ⊂ M. Let L :=
max{0, L}, R := max{0, R} and B :=

[
−L....R

)
. If Φ is posexpansive, then Φ is

B-posexpansive.

Proof: (a) is (Shereshevsky, 1993, Corollary 2); see also (Finelli et al., 1998, Theorem 4.4).
Part (b) follows by applying (Shereshevsky, 1996, Theorem 1.1) to the natural extension
of (X, Φ).

(c) The case M = Z is (Kůrka, 1997, Proposition 7). The case M = N is (Blanchard and Maass,
1997, Proposition 2.3). 2

Proposition 2D.1 says bipermutative CA on AZ are conjugate to full shifts. Using his
formidable theory of textile systems, Nasu extended this to all posexpansive CA on AZ.

2D.4. Nasu’s Theorem. Let Φ ∈ CA(AZ) and let B ⊂ Z. If Φ is B-posexpansive,

then ΦN
B
(AZ) ⊆ BN is a one-sided SFT which is conjugate to a one-sided full shift CN for

some alphabet C with |C| ≥ 3.

Proof sketch: The fact that X := ΦN
B
(AZ) is an SFT follows from (Kůrka, 1997, Theorem

10) or (Kůrka, 2001, Theorem 10.1). Next, Theorem 3.12(1) on p.49 of Nasu (1995)
asserts that, if Φ is any surjective endomorphism of an irreducible, aperiodic, SFT Y ⊆
AZ, and (Y, Φ) is itself conjugate to an SFT, then (Y, Φ) is actually conjugate to a full
shift (CN, σ) for some alphabet C with |C| ≥ 3. Let Y := AZ and invoke Kůrka’s result.

For a direct proof not involving textile systems, see (Maass, 1996, Theorem 4.9). 2

Remarks 2D.5: (a) See Theorem 4A.4(d) for an ‘ergodic’ version of Theorem 2D.4.
(b) In contrast to Proposition 2D.1, Nasu’s Theorem 2D.4 does not say that ΦN

B(AZ)
itself is a full shift —only that it is conjugate to one. ♦

If (X, µ; Ψ) is a measure-preserving dynamical system (MPDS) with sigma-algebra B,
then a one-sided generator is a finite partition P ⊂ B such that

∨∞
t=0 Ψ−tP µ B. If P has C

elements, and C is a finite set with |C| = C, then P induces an essentially injective function
p : X−→CN such that p ◦ Ψ = σ ◦ p. Thus, if λ := p(µ), then (X, µ; Ψ) is measurably
isomorphic to the (one-sided) stationary stochastic process (CN, λ; σ). If Ψ is invertible,
then a (two-sided) generator is a finite partition P ⊂ B such that

∨∞
t=−∞ ΨtP µ B. The

Krieger Generator Theorem says every finite-entropy, invertible MPDS has a generator;
indeed, if h(Ψ, µ) ≤ log2(C), then (X, µ; Ψ) has a generator with C or less elements. (See
Ergodic Theory: Basic Examples and Constructions for more information.) If
|C| = C, then once again, P induces a measurable isomorphism from (X, µ; Ψ) to a two-
sided stationary stochastic process (CZ, λ; σ), for some stationary measure λ on AZ.
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2D.6. Universal Representation Corollary. Let M = N or Z, and let Φ ∈ CA(AM)
have neighbourhood H ⊂ M. Suppose that

either M = N, Φ is right-permutative, and H = [r...R] for some 0 ≤ r < R, and then let

C := R log2 |A|;

or M = Z, Φ is bipermutative, and H = [−L...R], and then let C := (L + R) log2 |A|
where L := max{0, L} and R := max{0, R};

or M = Z and Φ is positively expansive, and htop(A
M, Φ) = log2(C) for some C ∈ N.

(a) Let (X, µ; Ψ) be any MPDS with a one-sided generator having at most C elements.

Then there exists ν ∈ Meas(AM; Φ) such that the system (AM, ν; Φ) is measurably

isomorphic to (X, µ; Ψ).

(b) Let (X, µ; Ψ) be an invertible MPDS, with measurable entropy h(µ, φ) ≤ log2(C).
Then there exists ν ∈ Meas(AM; Φ) such that the natural extension of the system

(AM, ν; Φ) is measurably isomorphic to (X, µ, Ψ).

Proof: Under each of the three hypotheses, Proposition 2D.1 or Theorem 2D.4 yields a
topological conjugacy Γ : (CN, σ)−→(AM, Φ), where C is a set of cardinality C.

(a) As discussed above, there is a measure λ on CN such that (CN, λ; σ) is measurably
isomorphic to (X, µ, Ψ). Thus, ν := Γ[λ] is a Φ-invariant measure on AM, and (AM, ν; Φ)
is isomorphic to (CN, µ, Ψ) via Γ.

(b) As discussed above, there is a measure λ on CZ such that (CZ, λ; σ) is measurably
isomorphic to (X, µ, Ψ). Let λN be the projection of λ to CN; then (CN, λN; σ) is a
one-sided stationary process. Thus, ν := Γ[λN] is a Φ-invariant measure on AM, and
(AM, ν; Φ) is isomorphic to (CN, λN; σ) via Γ. Thus, the natural extension of (AM, ν; Φ)
is isomorphic to the natural extension of (CN, λN; σ), which is (CZ, λ; σ), which is in turn
isomorphic to (X, µ; Ψ). 2

Remark 2D.7: The Universal Representation Corollary implies that studying the mea-
surable dynamics of the CA Φ with respect to some arbitrary Φ-invariant measure ν will
generally tell us nothing whatsoever about Φ. For these measurable dynamics to be mean-
ingful, we must pick a measure on AM which is somehow ‘natural’ for Φ. First, this
measure should shift-invariant (because one of the defining properties of CA is that they
commute with the shift). Second, we should seek a measure which has maximal Φ-entropy
or is distinguished in some other way. (In general, the measures ν given by the Universal
Representation Corollary will neither be σ-invariant, nor have maximal entropy for Φ.) ♦

If ΦN ∈ CA(AN), and ΦZ ∈ CA(AZ) is the CA obtained by applying the same local
rule to all coordinates in Z, then ΦZ can never be posexpansive: if B = [−B...B], and
a, a′ ∈ AZ are any two sequences such that a(−∞...−B) 6= a′

(−∞...−B), then Φt(a)B = Φt(a′)B

for all t ∈ N, because the local rule of Φ only propagates information to the left. Thus, in
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particular, the posexpansive CA on AZ are completely unrelated to the posexpansive CA
on AN. Nevertheless, posexpansive CA on AN behave quite similarly to those on AZ.

Theorem 2D.8 Let Φ ∈ CA(AN) have neighbourhood [r...R], where 0 ≤ r < R, and let
B := [0...R). Suppose Φ is posexpansive. Then:

(a) X := ΦN
B
(AN) ⊆ BN is a topologically mixing SFT.

(b) The topological entropy of Φ is log2(k) for some k ∈ N.

(c) If η is the uniform measure on AN, then ΦN
B(η) is the Parry measure on X. Thus,

η is the maxentropy measure for Φ.

Proof: See (Blanchard and Maass, 1997, Corollary 3.7 and Theorems 3.8 and 3.9) or
(Maass, 1996, Theorem 4.8(1,2,4)). 2

Remarks: (a) See Theorem 4A.2 for an ‘ergodic’ version of Theorem 2D.8.
(b) The analog of Nasu’s Theorem 2D.4 (i.e. conjugacy to a full shift) is not true for

posexpansive CA on AN. See Boyle et al. (1997) for a counterexample.
(c) If Φ : AN−→AN is invertible, then we define the function ΦZ

B : AN−→BZ by extending
the definition of ΦN

B
to negative times. We say that Φ is expansive if ΦZ

B
is bijective for

some finite B ⊂ N. Expansiveness is a much weaker condition than positive expansiveness.
Nevertheless, the analog of Theorem 2D.8(a) is true: if Φ : AN−→AN is invertible and
expansive, then BZ is conjugate to a (two-sided) subshift of finite type; see (Nasu, 2002,
Theorem 1.3).

2E Measure rigidity in algebraic CA

Theorem 2A.1 makes the uniform measure η a ‘natural’ invariant measure for a surjective
CA Φ. However, Proposition 2C.1 and Corollary 2D.6 indicate that there are many other
(unnatural) Φ-invariant measures as well. Thus, it is natural to seek conditions under
which the uniform measure η is the unique (or almost unique) measure which is Φ-invariant,
shift-invariant, and perhaps ‘nondegenerate’ in some other sense —a phenomenon which
is sometimes called measure rigidity. Measure rigidity has been best understood when Φ is
compatible with an underlying algebraic structure on AM.

Let ⋆ : AM×AM−→AM be a binary operation (‘multiplication’) and let •−1 : AM−→AM

be an unary operation (‘inversion’) such that (AM, ⋆) is a group, and suppose both oper-
ations are continuous and commute with all M-shifts; then (AM, ⋆) is called a group shift.
For example, if (A, ·) is itself a finite group, and AM is treated as a Cartesian product
and endowed with componentwise multiplication, then (AM, ·) is a group shift. However,
not all group shifts arise in this manner; see Kitchens (1987, 2000); Kitchens and Schmidt
(1989, 1992) and Schmidt (1995). If (AM, ⋆) is a group shift, then a subgroup shift is a
closed, shift-invariant subgroup G ⊂ AM (i.e. G is both a subshift and a subgroup).
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If (G, ⋆) is a subgroup shift, then the Haar measure on G is the unique probability
measure ηG on G which is invariant under translation by all elements of G. That is,
if g ∈ G, and U ⊂ G is any measurable subset, and U ⋆ g := {u ⋆ g ; u ∈ U}, then
ηG[U ⋆ g] = ηG[U]. In particular, if G = AM, then ηG is just the uniform Bernoulli
measure on AM.

If (AM, ⋆) is a group shift, and G ⊆ AM is a subgroup shift, and Φ ∈ CA(AM), then
Φ is called an endomorphic (or algebraic) CA on G if Φ(G) ⊆ G and Φ : G−→G is
an endomorphism of (G, ⋆) as a topological group. Let ECA (G, ⋆) denote the set of
endomorphic CA on G. For example, suppose (A, +) is abelian, and let (G, ⋆) := (AM, +)
with the product group structure; then the endomorphic CA on AM are exactly the linear
CA. However, if (A, ·) is a nonabelian group, then endomorphic CA on (AM, ·) are not the
same as multiplicative CA.

Even in this context, CA admit many nontrivial invariant measures. For example, it is
easy to check the following:

Proposition 2E.1 Let AM be a group shift and let Φ ∈ ECA
(
AM, ⋆

)
. Let G ⊆ AM be

any Φ-invariant subgroup shift; then the Haar measure on G is Φ-invariant. 2

For example, if (A, +) is any nonsimple abelian group, and (AM, +) has the product
group structure, then AM admits many nontrivial subgroup shifts; see Kitchens (1987).
If Φ is any linear CA on AM with scalar coefficients, then every subgroup shift of AM is
Φ-invariant, so Proposition 2E.1 yields many nontrivial Φ-invariant measures. To isolate
η as a unique measure, we must impose further restrictions. The first nontrivial results in
this direction were by Host et al. (2003). Let h(Φ, µ) be the entropy of Φ relative to the
measure µ (see §5 for definition).

Proposition 2E.2 Let A := Z/p, where p is prime. Let Φ ∈ CA(AZ) be a linear CA with
neighbourhood {0, 1}, and let µ ∈ Meas(AZ; Φ, σ). If µ is σ-ergodic, and h(Φ, µ) > 0, then
µ is the Haar measure η on AZ.

Proof: See (Host et al., 2003, Theorem 12). 2

A similar idea is behind the next result, only with the roles of Φ and σ reversed. If µ
is a measure on AN, and b ∈ A[1...∞), then we define the conditional measure µ(b) on A by
µ(b)(a) := µ[x0 = a|x[1...∞) = b], where x is a µ-random sequence. For example, if µ is a
Bernoulli measure, then µ(b)(a) = µ[x0 = a], independent of b; if µ is a Markov measure,
then µ(b)(a) = µ[x0 = a|x1 = b1].

Proposition 2E.3 Let (A, ·) be any finite (possibly nonabelian) group, and let Φ ∈ CA(AN)
have multiplicative local rule φ : A{0,1}−→A defined by φ(a0, a1) := a0 · a1. Let µ ∈
Meas(AZ; Φ, σ). If µ is Φ-ergodic, then there is some subgroup C ⊂ A such that, for every
b ∈ A[1...∞], supp

(
µ(b)

)
is a right coset of C, and µ(b) is uniformly distributed on this coset.

Proof: See (Pivato, 2005b, Theorem 3.1). 2
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Example 2E.4: Let Φ and µ be as in Proposition 2E.3. Let η be the Haar measure on
AN

(a) µ has complete connections if supp
(
µ(b)

)
= A for µ-almost all b ∈ A[1...∞). Thus, if µ

has complete connections in Proposition 2E.3, then µ = η.

(b1) Suppose h(µ, σ) > h0 := max{log2 |C| ; C a proper subgroup of A}. Then µ = η.

(b2) In particular, suppose A = (Z/p, +), where p is prime; then h0 = 0. Thus, if Φ has
local rule φ(a0, a1) := a0+a1, and µ is any σ-invariant, Φ-ergodic measure with h(µ, σ) > 0,
then µ = η. This is closely analogous to Proposition 2E.2, but ‘dual’ to it, because the
roles of Φ and σ are reversed in the ergodicity and entropy hypotheses.

(c) If C ⊂ A is a subgroup, and µ is the Haar measure on the subgroup shift CN ⊂ AN,
then µ satisfies the conditions of Proposition 2E.3. Other, less trivial possibilities also exist
(Pivato, 2005b, Examples 3.2(b,c)). ♦

If µ is a measure on AZ, and X,Y ⊂ AZ, then we say X essentially equals Y and write
X µ Y if µ[X△Y] = 0. If n ∈ N, then let

In(µ) :=
{
X ⊂ AZ ; σn(X) µ X

}

be the sigma-algebra of subsets of AZ which are ‘essentially’ σn-invariant. Thus, µ is σ-
ergodic if and only if I1(µ) is trivial (i.e. contains only sets of measure zero or one). We
say µ is totally σ-ergodic if In(µ) is trivial for all n ∈ N (see Ergodicity and Mixing

Properties).
Let (AZ, ∗) be any group shift. The identity element e of (AZ, ∗) is a constant sequence.

Thus, if Φ ∈ ECA
(
AZ, ∗

)
is surjective, then ker(Φ) :=

{
a ∈ AZ ; Φ(a) = e

}
is a finite,

shift-invariant subgroup of AZ (i.e. a finite collection of σ-periodic sequences).

Proposition 2E.5 Let (AZ, ∗) be a (possibly nonabelian) group shift, and let Φ ∈ ECA
(
AZ, ∗

)

be bipermutative, with neighbourhood {0, 1}. Let µ ∈ Meas(AZ; Φ, σ). Suppose that:

(IE) µ is totally ergodic for σ; (H) h(Φ, µ) > 0; and

(K) ker(Φ) contains no nontrivial σ-invariant subgroups.

Then µ is the Haar measure on AZ.

Proof: See (Pivato, 2005b, Theorem 5.2). 2

Example 2E.6: If A = Z/p and (AZ, +) is the product group, then Φ is a linear CA
and condition (c) is automatically satisfied, so Proposition 2E.5 becomes a special case of
Proposition 2E.2. ♦

If Φ ∈ ECA
(
AZ, ∗

)
, then we have an increasing sequence of finite, shift-invariant sub-

groups ker(Φ) ⊆ ker(Φ2) ⊆ ker(Φ3) ⊆ · · · . If K(Φ) :=

∞⋃

n=1

ker(Φn), then K(Φ) is a

countable, shift-invariant subgroup of (AZ, ∗).
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Theorem 2E.7 Let (AZ, +) be an abelian group shift, and let G ⊆ AZ be a subgroup shift.
Let Φ ∈ ECA (G, +) be bipermutative, and let µ ∈ Meas(G; Φ, σ). Suppose:

(I) IkP (µ) = I1(µ), where P is the lowest common multiple of the σ-periods of all elements
in ker(Φ), and k ∈ N is any common multiple of all prime factors of |A|.

(H) h(Φ, µ) > 0.

Furthermore, suppose that either:

(E1) µ is ergodic for the N × Z action (Φ, σ);

(K1) Every infinite, σ-invariant subgroup of K(Φ) ∩G is dense in G;

or:

(E2) µ is σ-ergodic;

(K2) Every infinite, (Φ, σ)-invariant subgroup of K(Φ) ∩G is dense in G.

Then µ is the Haar measure on G.

Proof: See Theorems 3.3 and 3.4 of Sablik (2007b), or Théorèmes V.4 and V.5 on p.115
of Sablik (2006). In the special case when G has topological entropy log2(p) (where
p is prime), Sobottka has given a different and simpler proof, by using his theory of
‘quasigroup shifts’ to establish an isomorphism between Φ and a linear CA on Z/p,
and then invoking Theorem 2E.2. See Theorems 7.1 and 7.2 of Sobottka (2007a), or
Teoremas IV.3.1 and IV.3.2 on pp.100-101 of Sobottka (2005). 2

Example 2E.8: (a) Let A := Z/p, where p is prime. Let Φ ∈ CA(AZ) be linear, with neigh-
bourhood {0, 1}, and let µ ∈ Meas(AZ; Φ, σ). Suppose that µ is (Φ, σ)-ergodic, h(Φ, µ) > 0,
and Ip(p−1)(µ) = I1(µ). Setting k = p and P = p−1 in Theorem 2E.7, we conclude that µ
is the Haar measure on AZ. This result first appeared as (Host et al., 2003, Theorem 13).

(b) If (AZ, ∗) is abelian, then Proposition 2E.5 is a special case of Theorem 2E.7 [hypothesis
(IE) of the former implies hypotheses (I) and (E2) of the latter, while (K) implies (K2)].
Note, however, that Proposition 2E.5 also applies to nonabelian groups. ♦

An algebraic ZD-action is an action of ZD by automorphisms on a compact abelian
group G. For example, if G ⊆ AZD

is an abelian subgroup shift, then σ is an algebraic
ZD-action. The invariant measures of algebraic ZD-actions have been studied by Schmidt
(1995)[§29], Silberger (2005)[§7], and Einsiedler (2004, 2005).

If Φ ∈ CA(G), then a complete history for Φ is a sequence (gt)t∈Z ∈ GZ such that
Φ(gt) = gt+1 for all t ∈ Z. Let ΦZ(G) ⊂ GZ ⊆ (AZD

)Z ∼= AZD+1
be the set of all complete

histories for Φ; then ΦZ(G) is a subshift of AZD+1
. If Φ ∈ ECA (G), then ΦZ(G) is itself an

abelian subgroup shift, and the shift action of ZD+1 on ΦZ(G) is thus an algebraic ZD+1-
action. Any (Φ, σ)-invariant measure on G extends in the obvious way to a σ-invariant
measure on ΦZ(G). Thus, any result about the invariant measures (or rigidity) of algebraic
ZD+1-actions can be translated immediately into a result about the invariant measures (or
rigidity) of endomorphic cellular automata.
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Proposition 2E.9 Let G ⊆ AZD

be an abelian subgroup shift and let Φ ∈ ECA (G).
Suppose µ ∈ Meas(G; Φ, σ) is (Φ, σ)-totally ergodic, and has entropy dimension d ∈ [1...D]
(see §5C). If the system (G, µ; Φ, σ) admits no factors whose d-dimensional measurable
entropy is zero, then there is a Φ-invariant subgroup shift G′ ⊆ G and some element x ∈ G
such that µ is the translated Haar measure on the ‘affine’ subset G′ + x.

Proof: This follows from (Einsiedler, 2005, Corollary 2.3). 2

If we remove the requirement of ‘no zero-entropy factors’, and instead require G and
Φ to satisfy certain technical algebraic conditions, then µ must be the Haar measure on G
(Einsiedler, 2005, Theorem 1.2). These strong hypotheses are probably necessary, because
in general, the system (G, σ, Φ) admits uncountably many distinct nontrivial invariant
measures, even if (G, σ, Φ) is irreducible, meaning that G contains no proper, infinite,
Φ-invariant subgroup shifts:

Proposition 2E.10 Let G ⊆ AZD

be an abelian subgroup shift, let Φ ∈ ECA (G), and
suppose (G, σ, Φ) is irreducible. For any s ∈ [0, 1), there exists a (Φ, σ)-ergodic measure
µ ∈ Meas(G; Φ, σ) such that h(µ, Φn ◦σz) = s ·htop(G, Φn ◦σz) for every n ∈ N and z ∈ ZD.

Proof: This follows from (Einsiedler, 2004, Corollary 1.4). 2

Let µ ∈ Meas(AM; σ) and let H ⊂ M be a finite subset. We say that µ is H-mixing if,
for any H-indexed collection {Uh}h∈H of measurable subsets of AM,

lim
n→∞

µ

[
⋂

h∈H

σnh(Uh)

]
=

∏

h∈H

µ [Uh] .

For example, if |H| = H , then any H-multiply σ-mixing measure (see §4A) is H-mixing.

Proposition 2E.11 Let G ⊆ AZD

be an abelian subgroup shift and let Φ ∈ ECA (G)
have neighbourhood H (with |H| ≥ 2). Suppose (G, σ, Φ) is irreducible, and let µ ∈
Meas(AZD

; Φ, σ). Then µ is H-mixing if and only if µ is the Haar measure of G.

Proof: This follows from (Schmidt, 1995, Corollary 29.5, p.289) (note that Schmidt uses
‘almost minimal’ to mean ‘irreducible’). 2

2F The Furstenberg conjecture

Let T1 = R/Z be the circle group, which we identify with the interval [0, 1). Define the
functions ×2,×3 : T1−→T1 by ×2(t) = 2t (mod 1) and ×3(t) = 3t (mod 1). Clearly,
these maps commute, and preserve the Lebesgue measure on T1. Furstenberg (1967)
speculated that the only nonatomic ×2- and ×3-invariant measure on T1 was the Lebesgue
measure. Rudolph (1990) showed that, if ρ is (×2,×3)-invariant measure and not Lebesgue,
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then the systems (T1, ρ,×2) and (T1, ρ,×2) have zero entropy; this was later generalized
by Johnson (1992) and Host (1995). It is not known whether any nonatomic measures
exist on T1 which satisfy Rudolph’s conditions; this is considered an outstanding problem
in abstract ergodic theory.

To see the connection between Furstenberg’s Conjecture and cellular automata, let
A = {0, 1, 2, 3, 4, 5}, and define the surjection Ψ : AN−→T1 by mapping each a ∈ AN to
the element of [0, 1) having a as its base-6 expansion. That is:

Ψ(a0, a1, a2, . . .) :=

∞∑

n=0

an

6n
.

The map Ψ is injective everywhere except on the countable set of sequences ending in
[000 . . .] or [555 . . .] (on this set, Ψ is 2-to-1). Furthermore, Ψ defines a semiconjugacy from
×2 and ×3 into two CA on AN. Let H := {0, 1}, and define local maps ξ2, ξ3 : AH−→A as
follows:

ξ2(a0, a1) =
[
2a0

]
6

+
⌈a1

3

⌉
and ξ3(a0, a1) =

[
3a0

]
6

+
⌈a1

2

⌉
,

where, [a]6 is the least residue of a, mod 6. If Ξp ∈ CA(AN) has local map ξp (for p = 2, 3),
then it is easy to check that Ξp corresponds to multiplication by p in base-6 notation. In
other words, Ψ ◦ ×p = Ξp ◦ Ψ for p = 2, 3.

If λ is the Lebesgue measure on T1, then Ψ(λ) = η, where η is the uniform Bernoulli
measure on AN. Thus, η is Ξ2- and Ξ3-invariant, and Furstenberg’s Conjecture asserts that
η is the only nonatomic measure on AN which is both Ξ2- and Ξ3-invariant. The shift map
σ : AN−→AN corresponds to multiplication by 6 in base-6 notation. Hence, Ξ2 ◦ Ξ3 = σ.
From this it follows that a measure µ is (Ξ2, Ξ3)-invariant if and only if µ is (Ξ2, σ)-invariant
if and only if µ is (σ, Ξ3)-invariant. Thus, Furstenberg’s Conjecture equivalently asserts
that η is the only stationary, Ξ3-invariant nonatomic measure on AN, and Rudolph’s result
asserts that η is the only such nonatomic measure with nonzero entropy; this is analogous
to the ‘measure rigidity’ results of §2E. The existence of zero-entropy, (σ, Ξ3)-invariant,
nonatomic measures remains an open question.

Remarks 2F.1: (a) There is nothing special about 2 and 3; the same results hold for
any pair of prime numbers.

(b) Lyons (1988) and Johnson and Rudolph (1995) have also established that a wide
variety of ×2-invariant probability measures on T1 will weak* converge, under the iteration
of ×3, to the Lebesgue measure (and vice-versa). In the terminology of §3A, these results
immediately translate into equivalent statements about the ‘asymptotic randomization’ of
initial probability measures on AN under the iteration of Ξ2 or Ξ3. ♦

2G Domains, defects, and particles

Suppose Φ ∈ CA(AZ), and there is a collection of Φ-invariant subshifts P1,P2, . . . ,PN ⊂ AZ

(called phases). Any sequence a can be expressed a finite or infinite concatenation

a = [. . .a−2 d−2 a−1 d−1 a0 d0 a1 d1 a2 · · · ],
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where each domain ak is a finite word (or half-infinite sequence) which is admissible to
phase Pn for some n ∈ [1...N ], and where each defect dk is a (possibly empty) finite word
(note that this decomposition may not be unique). Thus, Φ(a) = a′, where

a′ = [. . . a′
−2 d′

−2 a′
−1 d′

−1 a′
0 d′

0 a′
1 d′

1 a′
2 · · · ],

and, for every k ∈ Z, a′
k belongs to the same phase as ak. We say that Φ has stable phases

if, for any such a and a′ in AZ, it is the case that, for all k ∈ Z, |d′
k| ≤ |dk|. In other

words, the defects do not grow over time. However, they may propagate sideways; for
example, d′

k may be slightly to the right of dk, if the domain a′
k is larger than ak, while

the domain a′
k+1 is slightly smaller than ak+1. If ak and ak+1 belong to different phases,

then the defect dk is sometimes called a domain boundary (or ‘wall’, or ‘edge particle’). If
ak and ak+1 belong to the same phase, then the defect dk is sometimes called a dislocation
(or ‘kink’). (See also Computational Mechanics in CA.)

Often Pn = {p} where p = [. . . ppp . . .] is a constant sequence, or each Pn consists
of the σ-orbit of a single periodic sequence. More generally, the phases P1, . . . ,PN may
be subshifts of finite type. In this case, most sequences in AZ can be fairly easily and
unambiguously decomposed into domains separated by defects. However, if the phases are
more complex (e.g. sofic shifts), then the exact definition of a ‘defect’ is actually fairly
complicated —see Pivato (2007) for a rigorous discussion.

Example 2G.1: Let A = {0, 1} and let H = {−1, 0, 1}. Elementary cellular automa-
ton (ECA) #184 is the CA Φ : AZ−→AZ with local rule φ : AH−→A given as follows:
φ(a−1, a0, a1) = 1 if a0 = a1 = 1, or if a−1 = 1 and a0 = 0. On the other hand,
φ(a−1, a0, a1) = 0 if a−1 = a0 = 0, or if a1 = 0 and a0 = 1. Heuristically, each ‘1’
represents a ‘car’ moving cautiously to the right on a single-lane road. During each itera-
tion, each car will advance to the site in front of it, unless that site is already occupied, in
which case the car will remain stationary. ECA #184 exhibits one stable phase P, given
by the 2-periodic sequence [. . . 0101.0101 . . .] and its translate [. . . 1010.1010 . . .] (here the
decimal point indicates the zeroth coordinate), and Φ acts on P like the shift. The phase P
admits two dislocations of width 2. The dislocation d0 = [00] moves uniformly to the right,
while the dislocation d1 = [11] moves uniformly to the left. In the traffic interpretation, P
represents freely flowing traffic, d0 represents a stretch of empty road, and d1 represents a
traffic jam. ♦

Example 2G.2: Let A := Z/N , and let H := [−1...1]. The one-dimensional, N -colour
cyclic cellular automaton (CCAN ) Φ : AZ−→AZ has local rule φ : AH−→A defined:

φ(a) :=

{
a0 + 1 if there is some h ∈ H with ah = a0 + 1;

a0 otherwise.

(here, addition is mod N). The CCA has phases P0,P1, . . . ,PN−1, where Pa = {[. . . aaa . . .]}
for each a ∈ A. A domain boundary between Pa and Pa−1 moves with constant velocity
towards the Pa−1 side. All other domain boundaries are stationary. ♦
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In a particle cellular automaton (PCA), A = {∅}⊔P, where P is a set of ‘particle types’
and ∅ represents a vacant site. Each particle p ∈ P is assigned some (constant) velocity
vector v(p) ∈ (−H) (where H is the neighbourhood of the automaton). Particles propagate
with constant velocity through M until two particles try to simultaneously enter the same
site in the lattice, at which point the outcome is determined by a collision rule: a stylized
‘chemical reaction equation’. For example, an equation “p1 + p2 ; p3” means that, if
particle types p1 and p2 collide, they coalesce to produce a particle of type p3. On the
other hand, “p1 + p2 ; ∅” means that the two particles annihilate on contact. Formally,
given a set of velocities and collision rules, the local rule φ : AH−→A is defined

φ(a) :=

{
p if there is a unique h ∈ H and p ∈ P with ah = p and v(p) = −h;
q if

{
p ∈ P ; a−v(p) = p

}
= {p1, p2, . . . , pn}, and p1 + · · ·+ pn ; q.

Example 2G.3: The one-dimensional ballistic annihilation model (BAM) contains two
particle types: P = {±1}, with the following rules:

v(1) = 1, v(−1) = −1, and − 1 + 1 ; ∅.

(This CA is sometimes also called Just Gliders.) Thus, az = 1 if the cell z contains a
particle moving to the right with velocity 1, whereas az = −1 if the cell z contains a
particle moving left with velocity -1, and az = ∅ if cell z is vacant. Particles move with
constant velocity until they collide with oncoming particles, at which point both particles
are annihilated. If A := {±1, ∅} and H = [−1...1] ⊂ Z, then we can represent the BAM
using Φ ∈ CA(AZ) with local rule φ : AH−→A defined:

φ(a−1, a0, a1) :=





−1 if a1 = −1 and a−1, a0 ∈ {−1, ∅};
1 if a−1 = 1 and a0, a1 ∈ {1, ∅};
∅ otherwise.

♦

Particle CA can be seen as ‘toy models’ of particle physics or microscale chemistry. More
interestingly, however, one-dimensional PCA often arise as factors of coalescent-domain
CA, with the ‘particles’ tracking the motion of the defects.

Example 2G.4: (a) Let A := {0, 1} and let Φ ∈ CA(AZ) be ECA #184. Let B := {±1, 0},
and let Ψ ∈ CA(BZ) be the BAM. Let G := {0, 1}, and let Γ : AZ−→BZ be the block map
with local rule γ : AG−→B defined

γ(a0, a1) := 1 − a0 − a1 =





1 if [a0, a1] = [0, 0] = d0;
−1 if [a0, a1] = [1, 1] = d1;

0 otherwise.

Then Γ ◦ Φ = Ψ ◦ Γ; in other words, the BAM is a factor of ECA #184, and tracks the
motion of the dislocations.
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(b) Again, let Ψ ∈ CA(BZ) be the BAM. Let A = Z/3, and let Φ ∈ CA(AZ) be the 3-color
CCA. Let G := {0, 1}, and let Γ : AZ−→BZ be the block map with local rule γ : AG−→B
defined

γ(a0, a1) := (a0 − a1) mod 3.

Then Γ ◦ Φ = Ψ ◦ Γ; in other words, the BAM is a factor of CCA3, and tracks the motion
of the domain boundaries. ♦

Thus, it is often possible to translate questions about coalescent domain CA into ques-
tions about particle CA, which are generally easier to study. For example, the invariant
measures of the BAM have been completely characterized.

Proposition 2G.5 Let B = {±1, 0}, and let Ψ : AZ−→AZ be the BAM.

(a) The sets R := {0, 1}Z and L := {0,−1}Z are Φ-invariant, and Ψ acts as a right-
shift on R and as a left-shift on L.

(b) Let L+ := {0,−1}N and R− := {0, 1}−N, and let

X :=
{
a ∈ AZ ; ∃ z ∈ Z such that a(−∞...z] ∈ R− and a[z...∞) ∈ L+

}
.

Then X is Φ-invariant. For any x ∈ X, Φ acts as a right shift on a(−∞...z), and as a
left-shift on x(z...∞). (The boundary point z executes some kind of random walk.)

(c) Any Ψ-invariant measure on AZ can be written in a unique way as a convex
combination of four measures δ0, ρ, λ, and µ, where: δ0 is the point mass on the
‘vacuum’ configuration [. . . 0 0 0 . . .], ρ is any shift-invariant measure on R, λ is any
shift-invariant measure on L, and µ is a measure on X.

Furthermore, there exist shift-invariant measures µ− and µ+ on R− and L+, respec-
tively, such that, for µ-almost all x ∈ X, x(−∞...z] is µ−-distributed and x[z...∞) is
µ+-distributed.

Proof: (a) and (b) are obvious; (c) is (Belitsky and Ferrari, 2005, Theorem 1). 2

Remark 2G.6: (a) Proposition 2G.5(c) can be immediately translated into a complete
characterization of the invariant measures of ECA #184, via the factor map Γ in Example
2G.4(a); see (Belitsky and Ferrari, 2005, Theorem 2). Likewise, using the factor map in
Example 2G.4(b) we get a complete characterization of the invariant measures for CCA3.

(b) Proposition 3B.7 and Corollaries 3B.8 and 3B.9 describe the limit measures of the
BAM, CCA3, and ECA #184. Also, Blank (2003) has characterized invariant measures for
a broad class of multilane, multi-speed traffic models (including ECA#184); see Remark
3B.10(b).

(c) Kůrka (2005) has defined, for any Φ ∈ CA(AZ), a construction similar to the set
X in Proposition 2G.5(b). For any n ∈ N and z ∈ Z, let Sz,n be the set of fixed points
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of Φn ◦ σz; then Sz,n is a subshift of finite type, which Kůrka calls a signal subshift with
velocity v = z/n. (For example, if Φ is the BAM, then R = S1,1 and L = S−1,1.)

Now, suppose that z1/n1 > z2/n2 > · · · > zJ/nJ . The join of the signal subshifts
Sz1,n1,Sz2,n2, . . . ,SzJ ,nJ

is the set S of all infinite sequences [a1 a2 . . . aJ ], where for all
j ∈ [1..J ], aj is a (possibly empty) finite word or (half-)infinite sequence admissible to the
subshift Szj ,nj

. (For example, if S is the join of S1,1 = R and S−1,1 = L from Proposition
2G.5(a), then S = L ∪ X ∪ R.) It follows that S ⊆ Φ(S) ⊆ Φ2(S) ⊆ · · · . If we define
Φ∞(S) :=

⋃∞
t=0 Φt(S), then Φ∞(S) ⊆ Φ∞(AZ), where Φ∞(AZ) :=

⋂∞
t=0 Φt(AZ) is the omega

limit set of Φ (Kůrka, 2005, Proposition 5). The support of any Φ-invariant measure must
be contained in Φ∞(AZ), so invariant measures may be closely related to the joins of signal
subshifts.

In the case of the BAM, it is not hard to check that Φ∞(S) = S = Φ∞(AZ); this suggests
an alternate proof of Proposition 2G.5(c). It would be interesting to know whether a
conclusion analogous to Proposition 2G.5(c) holds for other Φ ∈ CA(AZ) such that Φ∞(AZ)
is a join of signal subshifts. ♦

3 Limit measures and other asymptotics

3A Asymptotic randomization by linear cellular automata

The results of §2E suggest that the uniform Bernoulli measure η is the ‘natural’ measure
for algebraic CA, because η is the unique invariant measure satisfying any one of several
collections of reasonable criteria. In this section, we will see that η is ‘natural’ in quite
another way: it is the unique limit measure for linear CA from a large set of initial
conditions.

If {µn}
∞
n=1 is a sequence of measures on AM, then this sequence weak* converges to the

measure µ∞ (“wk*lim
n→∞

µn = µ∞”) if, for all cylinder sets B ⊂ AM, lim
n→∞

µn[B] = µ∞[B].

Equivalently, for all continuous functions f : AM−→C, we have

lim
n→∞

∫

AM

f dµn =

∫

AM

f dµ∞.

The Cesàro average (or Cesàro limit) of {µn}
∞
n=1 is wk*lim

N→∞

1

N

N∑

n=1

µn, if this limit exists.

Let µ ∈ Meas(AM) and let Φ ∈ CA(AM). For any t ∈ N, the measure Φtµ is defined by
Φtµ(B) = µ(φ−t(B)), for any measurable subset B ⊂ AM. We say that Φ asymptotically
randomizes µ if the Cesàro average of the sequence {φnµ}∞n=1 is η. Equivalently, there is a
subset J ⊂ N of density 1, such that

wk*lim
j→∞
j∈J

Φjµ = η.

The uniform measure η is the measure of maximal entropy on AM. Thus, asymptotic
randomization is kind of ‘Second Law of Thermodynamics’ for CA.
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Let (A, +) be a finite abelian group, and let Φ be a linear cellular automaton (LCA)
on AM. Recall that Φ has scalar coefficients if there is some finite H ⊂ M, and integer
coefficients {ch}h∈H so that Φ has a local rule of the form

φ(aH) :=
∑

h∈H

chah, (3.1)

An LCA Φ is proper if Φ has scalar coefficients as in eqn.(3.1), and if, furthermore, for
any prime divisor p of |A|, there are at least two h, h′ ∈ H such that ch 6≡ 0 6≡ ch′ mod p.
For example, if A = Z/n for some n ∈ N, then every LCA on AM has scalar coefficients;
in this case, Φ is proper if, for every prime p dividing n, at least two of these coefficients
are coprime to p. In particular, if A = Z/p for some prime p, then Φ is proper as long as
|H| ≥ 2.

Let PLCA
(
AM

)
be the set of proper linear CA on AM. If µ ∈ Meas(AM), recall that µ

has full support if µ[B] > 0 for every cylinder set B ⊂ AM.

Theorem 3A.1 Let (A, +) be a finite abelian group, let M := ZD×NE for some D, E ≥ 0,
and let Φ ∈ PLCA

(
AM

)
. Let µ be any Bernoulli measure or Markov random field on AM

having full support. Then Φ asymptotically randomizes µ.

History: Theorem 3A.1 was first proved for simple one-dimensional LCA randomizing
Bernoulli measures on AZ, where A was a cyclic group. In the case A = Z/2, The-
orem 3A.1 was independently proved for the nearest-neighbour XOR CA (having local
rule φ(a−1, a0, a1) = a−1 + a1 mod 2) by Miyamoto (1979) and Lind (1984). This re-
sult was then generalized to A = Z/p for any prime p by Cai and Luo (1993). Next,
Maass and Mart́ınez (1998) duplicated the Miyamoto/Lind result for the binary Ledrappier
CA (local rule φ(a0, a1) = a0 + a1 mod 2). Soon after, Ferrari et al. (2000) considered the
case when A was an abelian group of order pk (p prime), and proved Theorem 3A.1 for
any Ledrappier CA (local rule φ(a0, a1) = c0a0 + c1a1, where c0, c1 6≡ 0 mod p) acting on
any measure on AZ having full support and ‘rapidly decaying correlations’ (see Part II(a)
below). For example, this includes any Markov measure on AZ with full support. Next,
Pivato and Yassawi (2002) generalized Theorem 3A.1 to any PLCA acting on any fully
supported N -step Markov chain on AZ or any nontrivial Bernoulli measure on AZD×NE

,
where A = Z/pk (p prime). Finally, Pivato and Yassawi (2004) proved Theorem 3A.1 in
full generality, as stated above. ♦.

The proofs of Theorem 3A.1 and its variations all involve two parts:

Part I. A careful analysis of the local rule of Φt (for all t ∈ N), showing that the neigh-
bourhood of Φt grows large as t→∞ (and in some cases, contains large ‘gaps’).

Part II. A demonstration that the measure µ exhibits ‘rapidly decaying correlations’ be-
tween widely separated elements of M; hence, when these elements are combined
using Φt, it is as if we are summing independent random variables.

24



Part I: Any linear CA with scalar coefficients can be written as a ‘Laurent polynomial
of shifts’. That is, if Φ has local rule (3.1), then for any a ∈ AM,

Φ(a) :=
∑

h∈H

chσ
h(a) (where we add configurations componentwise).

We indicate this by writing “Φ = F (σ)”, where F ∈ Z[x±1
1 , x±1

2 , . . . , x±1
D ] is the D-variable

Laurent polynomial defined:

F (x1, . . . , xD) :=
∑

(h1,...,hD)∈H

chx
h1
1 xh1

2 . . . xhD

D .

For example, if Φ is the nearest-neighbour XOR CA, then Φ = σ−1 + σ1 = F (σ), where
F (x) = x−1 + x. If Φ is a Ledrappier CA, then Φ = c0Id + c1σ

1 = F (σ), where F (x) =
c0 + c1x.

It is easy to verify that, if F and G are two such polynomials, and Φ = F (σ) while
Γ = G(σ), then Φ◦Γ = (F ·G)(σ), where F ·G is the product of F and G in the polynomial
ring Z[x±1

1 , x±1
2 , . . . , x±1

D ]. In particular, this means that Φt = F t(σ) for all t ∈ N. Thus,
iterating an LCA is equivalent to computing the powers of a polynomial.

If A = Z/p, then we can compute the coefficients of F t modulo p. If p is prime,
then this can be done using a result of Lucas (1878), which provides a formula for the
binomial coefficient

(
a
b

)
in terms of the base-p expansions of a and b. For example, if p = 2,

then Lucas’ theorem says that Pascal’s triangle, modulo 2, looks like a ‘discrete Sierpinski
triangle’, made out of 0’s and 1’s.1 Thus, Lucas’ Theorem, along with some combinatorial
lemmas about the structure of base-p expansions, provides the machinery for Part I.

Part II: There are two approaches to analyzing probability measures on AM; one using
renewal theory, and the other using harmonic analysis.

II(a) Renewal theory: This approach was developed by Maass, Mart́ınez and their
collaborators. Loosely speaking, if µ ∈ Meas(AZ, σ) has sufficiently large support and
sufficiently rapid decay of correlations (e.g. a Markov chain), and a ∈ AZ is a µ-random
sequence, then we can treat a as if there is a sparse, randomly distributed set of ‘renewal
times’ when the normal stochastic evolution of a is interupted by independent, random
‘errors’. By judicious use of Part I described above, one can use this ‘renewal process’ to
make it seem as though Φt is summing independent random variables.

For example, if (A, +) be an abelian group of order pk where p is prime, and µ ∈
Meas(AZ; σ) has complete connections [see Example 2E.4(a)] and summable decay [which
means that a certain sequence of coefficients (measuring long-range correlation) decays

1This is why fragments of the Sierpinski triangle appear frequently in the spacetime diagrams of linear
CA on A = Z/2, a phenomenon which has inspired much literature on ‘fractals and automatic sequences in
cellular automata’; see Willson (1984a,b, 1986, 1987a,b); Takahashi (1990, 1992, 1993); von Haeseler et al.
(1992, 1993, 1995a,b, 2001a,b); Allouche et al. (1996, 1997); Allouche (1999); Barbé et al. (1995, 2003);
and Mauldin and Skordev (2000).
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fast enough that its sum is finite], and Φ ∈ CA(AZ) is a Ledrappier CA, then Ferrari et al.
(2000)[Theorem 1.3] showed that Φ asymptotically randomizes µ. (For example, this ap-
plies to any N -step Markov chain with full support on on AZ.) Furthermore, if A =

Z/p × Z/p, and Φ ∈ CA(AZ) has linear local rule φ
([

x0

y0

]
,
[

x1

y1

])
= (y0, x0 + y1), then

Maass and Mart́ınez (1999) showed that Φ randomizes any Markov measure with full sup-
port on AZ. Maass and Mart́ınez again handled Part II using renewal theory. How-
ever, in this case, Part I involves some delicate analysis of the (noncommutative) algebra
of the matrix-valued coefficients; unfortunately, their argument does not generalize to
other LCA with noncommuting, matrix-valued coefficients. (However, Proposition 8 of
Pivato and Yassawi (2004) suggests a general strategy for dealing with such LCA).

II(b) Harmonic analysis: This approach to Part II was implicit in the early work of
Lind (1984) and Cai and Luo (1993), but was developed in full generality by Pivato and Yassawi
(2002, 2004, 2006). We regard AM as a direct product of copies of the group (A, +), and
endow it with the product group structure; then (AM, +) a compact abelian topological
group. A character on (AM, +) is a continuous group homomorphism χ : AM−→T, where
T := {c ∈ C ; |c| = 1} is the unit circle group. If µ is a measure on AM, then the Fourier

coefficients of µ are defined: µ̂[χ] =

∫

AM

χ dµ, for every character χ.

If χ : AM−→T is any character, then there is a unique finite subset K ⊂ M (called the
support of χ) and a unique collection of nontrivial characters χk : A−→T for all k ∈ K,
such that,

χ(a) =
∏

k∈K

χk(ak), ∀ a ∈ AM. (3.2)

We define rank [χ] := |K|. The measure µ is called harmonically mixing if, for all ǫ > 0,

there is some R such that for all characters χ,
(
rank [χ] ≥ R

)
=⇒

(
|µ̂[χ]| < ǫ

)
.

The set Hm
(
AM

)
of harmonically mixing measures on AM is quite inclusive. For ex-

ample, if µ is any (N -step) Markov chain with full support on AZ, then µ ∈ Hm
(
AZ

)

(Pivato and Yassawi, 2002, Propositions 8 and 10), and if ν ∈ Meas(AZ) is absolutely con-
tinuous with respect to this µ, then ν ∈ Hm

(
AZ

)
also (Pivato and Yassawi, 2002, Corollary

9). If A = Z/p (p prime) then any nontrivial Bernoulli measure on AM is harmonically
mixing (Pivato and Yassawi, 2002, Proposition 6). Furthermore, if µ ∈ Meas(AZ; σ) has
complete connections and summable decay, then µ ∈ Hm

(
AZ

)
(Host et al., 2003, The-

orem 23). If M := Meas(AM; C) is the set of all complex-valued measures on AM, then
M is Banach algebra (i.e. it is a vector space under the obvious definition of addition and
scalar multiplication for measures, and a Banach space under the total variation norm, and
finally, since AM is a topological group, M is a ring under convolution). Then Hm

(
AM

)
is

an ideal in M, is closed under the total variation norm, and is dense in the weak* topology
on M (Pivato and Yassawi, 2002, Propositions 4 and 7).

Finally, if µ is any Markov random field on AM which is locally free (which roughly
means that the boundary of any finite region does not totally determine the interior of
that region), then µ ∈ Hm

(
AM

)
(Pivato and Yassawi, 2006, Theorem 1.3). In particular,
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this implies:

Proposition 3A.2 If (A, +) is any finite group, and µ ∈ Meas(AM) is any Markov random
field with full support, then µ is harmonically mixing.

Proof: This follows from (Pivato and Yassawi, 2006, Theorem 1.3). It is also a special case
of (Pivato and Yassawi, 2004, Theorem 15). 2

If χ is a character, and Φ is a LCA, then χ◦Φt is also a character, for any t ∈ N (because
it is a composition of two continuous group homomorphisms). We say Φ is diffusive if there
is a subset J ⊂ N of density 1, such that, for every character χ of AM,

lim
J∋j→∞

rank
[
χ ◦ Φj

]
= ∞.

Proposition 3A.3 Let (A, +) be any finite abelian group and let M be any monoid. If µ
is harmonically mixing and Φ is diffusive, then Φ asymptotically randomizes µ.

Proof: See (Pivato and Yassawi, 2004, Theorem 12). 2

Proposition 3A.4 Let (A, +) be any abelian group and let M := ZD × NE for some
D, E ≥ 0. If Φ ∈ PLCA

(
AM

)
, then Φ is diffusive.

Proof: The proof uses Lucas’ theorem, as described in Part I above. See (Pivato and Yassawi,
2002, Theorem 15) for the case A = Z/p when p prime. See (Pivato and Yassawi, 2004,
Theorem 6) for the case when A is any cyclic group. That proof easily extends to any
finite abelian group A: write A as a product of cyclic groups and decompose Φ into
separate automata over these cyclic factors. 2

Proof of Theorem 3A.1: Combine Propositions 3A.2, 3A.3, and 3A.4. 2

Remarks 3A.5: (a) Proposition 3A.4. can be generalized: we do not need the coef-
ficients of Φ to be integers, but merely to be a collection of automorphisms of A which
commute with one another (so that Lucas’ theorem from Part I is still applicable). See
(Pivato and Yassawi, 2004, Theorem 9).

(b) For simplicity, we stated Theorem 3A.1 for measures with full support; however,
Proposition 3A.3 actually applies to many Markov random fields without full support,
because harmonic mixing only requires ‘local freedom’ (Pivato and Yassawi, 2006, Theorem
1.3). For example, the support of a Markov chain on AZ is Markov subshift. If A = Z/p

(p prime), then Proposition 3A.3 yields asymptotic randomization of the Markov chain
as long as the transition digraph of the underlying Markov subshift admits at least two
distinct paths of length 2 between any pair of vertices in A. More generally, if M = ZD,
then the support of any Markov random field on AZD

is an SFT, which we can regard as
the set of all tilings of RD by a certain collection of Wang tiles. If A = Z/p (p prime), then
Proposition 3A.3 yields asymptotic randomization of the Markov random field as long as
the underlying Wang tiling is flexible enough that any hole can always be filled in at least
two ways; see (Pivato and Yassawi, 2006, §1). ♦
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Remarks 3A.6: Generalizations and Extensions.
(a) Pivato and Yassawi (2006)[Thm 3.1] proved a variation of Theorem 3A.3 where

diffusion (of Φ) is replaced with a slightly stronger condition called dispersion, so that
harmonic mixing (of µ) can be replaced with a slightly weaker condition called dispursion
mixing (DM). It is unknown whether all proper linear CA are dispersive, but a very large
class are (including, for example, Φ = Id+σ). Any uniformly mixing measure with positive
entropy is DM (Pivato and Yassawi, 2006, Theorem 5.2); this includes, for example, any
mixing quasimarkov measure (i.e. the image of a Markov measure under a block map;
these are the natural measures supported on sofic shifts). Quasimarkov measures are not,
in general, harmonically mixing (Pivato and Yassawi, 2006, §2), but this result shows they
are still asymptotically randomized by most linear CA.

(b) Suppose G ⊂ AZD

is a σ-transitive subgroup shift (see §2E for definition), and
let Φ ∈ PLCA (G). If G satisfies an algebraic condition called the follower lifting property
(FLP) and µ is any Markov random field with supp (µ) = G, then Maass et al. (2006a) have
shown that Φ asymptotically randomizes µ to a maxentropy measure on G. Furthermore,
if D = 1, then this maxentropy measure is the Haar measure on G. In particular, if A is an
abelian group of prime-power order, then any transitive Markov subgroup G ⊂ AZ satisfies
the FLP, so this result holds for any multistep Markov measure on G. See also Maass et al.
(2006b) for the special case when Φ ∈ CA(AZ) has local rule φ(x0, x1) = x0 + x1. In the
special case when Φ has local rule φ(x0, x1) = c0x0 + c1x1 +a, the result has been extended
to measures with complete connections and summable decay; see (Sobottka, 2005, Teorema
III.2.1, p.71) or see Maass et al. (2006c).

(c) All the aforementioned results concern asymptotic randomization of initial measures
with nonzero entropy. Is nonzero entropy either necessary or sufficient for asymptotic
randomization? First let XN ⊂ AZ be the set of N -periodic points (see §2C) and suppose
supp (µ) ⊆ XN . Then the Cesàro limit of {Φt(µ)}t∈N will also be a measure supported on
XN , so µ∞ cannot be the uniform measure on AZ. Nor, in general, will µ∞ be the uniform
measure on XN ; this follows from Jen’s (1988) exact characterization of the limit cycles of
linear CA acting on XN .

What if µ is a quasiperiodic measure, such as the unique σ-invariant measure on a
Sturmian shift? There exist quasiperiodic measures on (Z/2)

Z which are not asymptotically
randomized by the Ledrappier CA (Pivato, 2005a, §15). But it is unknown whether this
extends to all quasiperiodic measures or all linear CA.

There is also a measure µ on AZ which has zero σ-entropy, yet is still asymptotically
randomized by Φ (Pivato and Yassawi, 2006, §8). Loosely speaking, µ is a Toeplitz measure
with a very low density of ‘bit errors’. Thus, µ is ‘almost’ deterministic (so it has zero
entropy), but by sufficiently increasing the density of ‘bit errors’, we can introduce just
enough randomness to allow asymptotic randomization to occur.

(d) Suppose (G, ·) is a nonabelian group and Φ : GZ−→GZ has multiplicative local rule
φ(g) := gn1

h1
gn2
h2

· · · gnJ

hJ
, for some {h1, . . . , hJ} ⊂ Z (possibly not distinct) and n1, . . . , nJ ∈ N.

If G is nilpotent, then G can be decomposed into a tower of abelian group extensions; this
induces a structural decomposition of Φ into a tower of skew products of ‘relative’ linear
CA. This strategy was first suggested by Moore (1998), and was developed by Pivato
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(2003)[Theorem 21], who proved a version of Theorem 3A.1 in this setting.
(e) Suppose (Q, ⋆) is a quasigroup —that is, ⋆ is a binary operation such that for

any q, r, s ∈ Q, (q ⋆ r = q ⋆ s) ⇐⇒ (r = s) ⇐⇒ (r ⋆ q = s ⋆ q). Any finite
associative quasigroup has an identity, and any associative quasigroup with an identity is
a group. However there are also many nonassociative finite quasigroups. If we define a
‘multiplicative’ CA Φ : QZ−→QZ with local rule φ : Q{0,1}−→Q given by φ(q0, q1) = q0⋆q1,
then it is easy to see that Φ is bipermutative if and only if (Q, ⋆) is a quasigroup. Thus,
quasigroups seem to provide the natural algebraic framework for studying bipermutative
CA; this was first proposed by Moore (1997), and later explored by Host et al. (2003)[§3],
Pivato (2005b)[§2], and Sobottka (2005, 2007a,b).

Note that QZ is a quasigroup under componentwise ⋆-multiplication. A quasigroup shift
is a subshift X ⊂ QZ which is also a subquasigroup; it follows that Φ(X) ⊆ X. If X and
Φ satisfy certain strong algebraic conditions, and µ ∈ Meas(X; σ) has complete connections
and summable decay, then the sequence {Φtµ}∞t=1 Cesàro -converges to some limit µ∞; see
(Sobottka, 2007a, Theorem 6.3), or (Sobottka, 2005, Teorema IV.5.3, p.107). However, it is
unknown whether µ∞ is equal to the Parry measure on X (which would be the appropriate
notion of ‘asymptotic randomization’ in this context).

♦

3B Hybrid modes of self-organization

Most cellular automata do not asymptotically randomize; instead they seem to converge
to limit measures concentrated on small (i.e. low-entropy) subsets of the statespace AM

—a phenomenon which can be interpreted as a form of ‘self-organization’. Exact limit
measures have been computed for a few CA. For example, let A = {0, 1, 2} and let Φ ∈
CA(AZD

) be the Greenberg-Hastings model (a simple model of an an excitable medium).
Durrett and Steif (1991) showed that, if D ≥ 2 and µ is any Bernoulli measure on AZD

,
then µ∞ := wk*lim

t→∞
Φtµ exists; µ∞-almost all points are 3-periodic for Φ, and although

µ∞ is not a Bernoulli measure, the system (AZD

, µ∞, σ) is measurably isomorphic to a
Bernoulli system.

In other cases, the limit measure cannot be exactly computed, but can still be esti-
mated. For example, let A = {±1}, θ ∈ (0, 1), and R > 0, and let Φ ∈ CA(AZ) be the
(R, θ)-threshold voter CA (where each cell computes the fraction of its radius-R neigh-
bours which disagree with its current sign, and negates its sign if this fraction is at least
θ). Durrett and Steif (1993) and Fisch and Gravner (1995) have described the long-term
behaviour of Φ in the limit as R→∞. If θ < 1/2, then every initial condition falls into
a two-periodic orbit (and if θ < 1/4, then every cell simply alternates its sign). Let η be
the uniform Bernoulli measure on AZ; if 1/2 < θ, then for any finite subset B ⊂ Z, if R is
large enough, then ‘most’ initial conditions (relative to η) converge to orbits that are fixed
inside B. Indeed, there is a critical value θc ≈ 0.6469076 such that, if θc < θ, and R is
large enough, then ‘most’ initial conditions (for η) are already fixed inside B.

However, for most CA, it is difficult to determine the limit measures. Except for the
linear CA of §3A, there is no large class of CA whose limit measures have been exactly
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characterized. Often, it is much easier to study the dynamical asymptotics of CA at a
purely topological level.

If Φ ∈ CA(AM), then AM ⊇ Φ(AM) ⊇ Φ2(AM) ⊇ · · · . The limit set of Φ is the
nonempty subshift Φ∞(AM) :=

⋂∞
t=1 Φt(AM). For any a ∈ AM, the omega-limit set of a is

the set ω(a, Φ) of all cluster points of the Φ-orbit {Φt(a)}∞t=1. A closed subset X ⊂ AM

is a (Conley) attractor if there exists a clopen subset U ⊇ X such that Φ(U) ⊆ U and
X =

⋂∞
t=1 Φt(U). It follows that ω(Φ,u) ⊆ X for all u ∈ U. For example, Φ∞(AM) is

an attractor (let U := AM). The topological attractors of CA were analyzed by Hurley
(1990a, 1991, 1992), who discovered severe constraints on the possible attractor structures
a CA could exhibit (see Topological Dynamics of CA and also CA, Classification

of).
Within pure topological dynamics, attractors and (omega) limit sets are the natural for-

malizations of the heuristic notion of ‘self-organization’. The corresponding formalization
in pure ergodic theory is the weak* limit measure. However, both weak* limit measures
and topological attractors fail to adequately describe the sort of self-organization exhib-
ited by many CA. Thus, several ‘hybrid’ notions self-organization have been developed,
which combine topological and measurable criteria. These hybrid notions are more flexible
and inclusive than purely topological notions. However, they do not require the explicit
computation (or even the existence) of weak* limit measures, so in practice they are much
easier to verify than purely ergodic notions.

Milnor-Hurley µ-attractors: If X ⊂ AM is a closed subset, then for any a ∈ AM, we
define d(a,X) := inf

x∈X

d(a,x). If Φ ∈ CA(AM), then the basin (or realm) of X is the set

Basin(X) :=
{
a ∈ AM ; lim

t→∞
d

(
Φt(a),X

)
= 0

}
=

{
a ∈ AM ; ω(a, Φ) ⊆ X

}
.

If µ ∈ Meas(AM), then X is a µ-attractor if µ[Basin(X)] > 0; we call X a lean µ-attractor if
in addition, µ[Basin(X)] > µ[Basin(Y)] for any proper closed subset Y ( X. Finally, a µ-
attractor X is minimal if µ[Basin(Y)] = 0 for any proper closed subset Y ( X. For example,
if X is a µ-attractor, and (X, Φ) is minimal as a dynamical system, then X is a minimal
µ-attractor. This concept was introduced by Milnor (1985a,b) in the context of smooth
dynamical systems; its ramifications for CA were first explored by Hurley (1990b, 1991).

If µ ∈ Meas(AZD

, σ), then µ is weakly σ-mixing if, for any measurable sets U,V ⊂ AZD

,
there is a subset J ⊂ ZD of density 1 such that lim

J∋j→∞
µ[σj(U)∩V] = µ[U] ·µ[V] (see §4A).

For example, any Bernoulli measure is weakly mixing. A subshift X ⊂ AZD

is σ-minimal
if X contains no proper nonempty subshifts. For example, if X is just the σ-orbit of some
σ-periodic point, then X is σ-minimal.

Proposition 3B.1 Let Φ ∈ CA(AM), let µ ∈ Meas(AM, σ), and let X be a µ-attractor.

(a) If µ is σ-ergodic, and X ⊂ AM is a subshift, then µ[Basin(X)] = 1.

(b) If M is countable, and X is σ-minimal subshift with µ[Basin(X)] = 1, then X is
lean.
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(c) Suppose M = ZD and µ is weakly σ-mixing.

[i] If X is a minimal µ-attractor, then X is a subshift, so µ[Basin(X)] = 1, and thus
X is the only lean µ-attractor of Φ.

[ii] If X is a Φ-periodic orbit which is also a lean µ-attractor, then X is minimal,
µ[Basin(X)] = 1, and X contains only constant configurations.

Proof: (a) If X is σ-invariant, then Basin(X) is also σ-invariant; hence µ[Basin(X)] = 1
because µ is σ-ergodic.

(b) Suppose Y ( X was a proper closed subset with µ [Basin(Y)] = 1. For any m ∈ M,

it is easy to check that Basin (σm[Y]) = σm [Basin(Y)]. Thus, if Ỹ :=
⋂

m∈M
σm(Y), then

Basin(Ỹ) =
⋂

m∈M
σm [Basin(Y)], so µ

[
Basin(Ỹ)

]
= 1 (because M is countable). Thus, Ỹ is

nonempty, and is a subshift of X. But X is σ-minimal, so Ỹ = X, which means Y = X.
Thus, X is a lean µ-attractor.

(c) In the case when µ is a Bernoulli measure, (c)[i] is (Hurley, 1990b, Theorem B)
or (Hurley, 1991, Proposition 2.7), while (c)[ii] is (Hurley, 1991, Theorem A). Hurley’s
proofs easily extend to the case when µ is weakly σ-mixing. The only property we require
of µ is this: for any nontrivial measurable sets U,V ⊂ AZD

, and any z ∈ ZD, there is
some x, y ∈ ZD with z = x − y, such that µ[σy(U) ∩V] > 0 and µ[σx(U) ∩V] > 0. This
is clearly true if µ is weakly mixing (because if J ⊂ ZD has density 1, then J∩ (z+J) 6= ∅
for any z ∈ ZD).

Proof sketch for (c)[i]: If X is a (minimal) µ-attractor, then so is σy(X), and Basin[σy(X)] =
σy(Basin[X]). Thus, weak mixing yields x, y ∈ ZD such that Basin[σx(X)] ∩ Basin[X] and
Basin[σy(X)]∩Basin[X] are both nontrivial. But the basins of distinct minimal µ-attractors
must be disjoint; thus σx(X) = X = σy(X). But x − y = z, so this means σz(X) = X.
This holds for all z ∈ ZD, so X is a subshift, so (a) implies µ[Basin(X)] = 1. 2

Section 4 of Hurley (1990b) contains several examples showing that the minimal topo-
logical attractor of Φ can be different from its minimal µ-attractor. For example, a CA
can have different minimal µ-attractors for different choices of µ. On the other hand, there
is a CA possessing a minimal topological attractor but with no minimal µ-attractors for
any Bernoulli measure µ.

Hilmy-Hurley Centers: Let a ∈ AM. For any closed subset X ⊂ AM, we define

µa[X] := lim inf
N→∞

1

N

N∑

n=1

11X(Φt(a)).

(Thus, if µ is a Φ-ergodic measure on AM, then Birkhoff’s Ergodic Theorem asserts that
µa[X] = µ[X] for µ-almost all a ∈ AM). The center of a is the set:

Cent(a, Φ) :=
⋂ {

closed subsets X ⊆ AM ; µa[X] = 1
}
.
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Thus, Cent(a, Φ) is the smallest closed subset such that µa[Cent(a, Φ)] = 1. If X ⊂ AM is
closed, then the well of X is the set

Well(X) :=
{
a ∈ AM ; Cent(a, Φ) ⊆ X

}
.

If µ ∈ Meas(AM), then X is a µ-center if µ[Well(X)] > 0; we call X a lean µ-center if in
addition, µ[Well(X)] > µ[Well(Y)] for any proper closed subset Y ( X. Finally, a µ-center
X is minimal if µ[Well(Y)] = 0 for any proper closed subset Y ( X. This concept was
introduced by Hilmy (1936) in the context of smooth dynamical systems; its ramifications
for CA were first explored by Hurley (1991).

Proposition 3B.2 Let Φ ∈ CA(AM), let µ ∈ Meas(AM, σ), and let X be a µ-center.

(a) If µ is σ-ergodic, and X ⊂ AM is a subshift, then µ[Well(X)] = 1.

(b) If M is countable, and X is σ-minimal subshift with µ[Well(X)] = 1, then X is
lean.

(c) Suppose M = ZD and µ is weakly σ-mixing. If X is a minimal µ-center, then X
is a subshift, X is the only lean µ-center, and µ[Well(X)] = 1.

Proof: (a) and (b) are very similar to the proofs of Proposition 3B.1(a,b).

(c) is proved for Bernoulli measures as (Hurley, 1991, Theorem B). The proof is quite
similar to Proposition 3B.1(c)[i], and again, we only need µ to be weakly mixing. 2

Section 4 of Hurley (1991) contains several examples of minimal µ-centers which are
not µ-attractors. In particular, the analogue of Proposition 3B.1(c)[ii] is false for µ-centers.

Kůrka-Maass µ-limit sets: If Φ ∈ CA(AM) and µ ∈ Meas(AM, σ), then Kůrka and Maass
define the µ-limit set of Φ:

Λ(Φ, µ) :=
⋂ {

closed subsets X ⊂ AM ; lim
t→∞

Φtµ(X) = 1
}
.

It suffices to take this intersection only over all cylinder sets X. By doing this, we see that
Λ(µ, Φ) is a subshift of AM, and is defined by the following property: for any finite B ⊂ M

and any word b ∈ AB, b is admissible to Λ(Φ, µ) if and only if lim inf
t→∞

Φtµ[b] > 0.

Proposition 3B.3 Let Φ ∈ CA(AM) and µ ∈ Meas(AM, σ).

(a) If wk*lim
t→∞

Φtµ = ν, then Λ(Φ, µ) = supp (ν).

Suppose M = Z.

(b) If Φ is surjective and has an equicontinuous point, and µ has full support on AZ,
then Λ(Φ, µ) = AZ.
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(c) If Φ is left- or right-permutative and µ is connected (see below), then Λ(Φ, µ) =
AZ.

Proof: For (a), see (Kůrka and Maass, 2000, Proposition 2). For (b,c), see (Kůrka, 2003,
Theorems 2 and 3); for earlier special cases of these results, see also (Kůrka and Maass,
2000, Propositions 4 and 5). 2

Remarks 3B.4: (a) In Proposition 3B.3(c), the measure µ is connected if there is some
constant C > 0 such that, for any finite word b ∈ A∗, and any a ∈ A, we have µ[b a] ≥
C · µ[b] and µ[ab] ≥ C · µ[b]. For example, any Bernoulli, Markov, or N -step Markov
measure with full support is connected. Also, any measure with ‘complete connections’
[see Example 2E.4(a)] is connected.

(b) Proposition 3B.3(a) shows that µ-limit sets are closely related to the weak* limits
of measures. Recall from §3A that the uniform Bernoulli measure η is the weak* limit of
a large class of initial measures under the action of linear CA. Presumably the same result
should hold for a much larger class of permutative CA, but so far this is unproven [see
Remarks 3A.6(d,e)]. Proposition 3B.3(a,c) implies that the limit measure of a permutative
CA (if it exists) must have full support —hence it can’t be ‘too far’ from η. ♦

Kůrka’s measure attractors: Let Mσ
inv := Meas(AM, σ) have the weak* topology, and

define Φ∗ : Mσ
inv−→Mσ

inv by Φ∗(µ) = µ ◦ Φ−1. Then Φ∗ is continuous, so we can treat
(Mσ

inv, Φ∗) itself as a compact topological dynamical system. The “weak* limit measures”
of Φ are simply the attracting fixed points of (Mσ

inv, Φ∗). However, even if the Φ∗-orbit of a
measure µ does not weak* converge to a fixed point, we can still consider the omega-limit
set of µ. In particular, the limit set Φ∞

∗ (Mσ
inv) is the union of the omega-limit sets of all

σ-invariant initial measures under Φ∗. Kůrka defines the measure attractor of Φ:

MeasAttr(Φ) :=
⋃

{supp (µ) ; µ ∈ Φ∞
∗ (Mσ

inv)} ⊆ AM.

(The bar denotes topological closure.) A configuration a ∈ AZD

is densely recurrent if any
word which occurs in a does so with nonzero frequency. Formally, for any finite B ⊂ ZD

lim sup
N→∞

#
{

z ∈ [−N...N ]D ; aB+z = aB

}

(2N + 1)D
> 0.

If X ⊂ AZD

is a subshift, then the densely recurrent subshift of X is the closure D of the set
of all densely recurrent points in X. If µ ∈ Mσ

inv(X), then the Birkhoff Ergodic Theorem
implies that supp (µ) ⊆ D; see (Akin, 1993, Proposition 8.8, p.164). From this it follows
that Mσ

inv(X) = Mσ
inv(D). On the other hand, D =

⋃
{supp (µ) ; µ ∈ Mσ

inv(D)}. In other
words, densely recurrent subshifts are the only subshifts which are ‘covered’ by their own
set of shift-invariant measures.
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Proposition 3B.5 Let Φ ∈ CA(AZD

). Let D be the densely recurrent subshift of Φ∞(AZD

).
Then D = MeasAttr(Φ), and Φ∞(Mσ

inv) = Meas(D, σ).

Proof: Case D = 1 is (Kůrka, 2005, Proposition 13). The same proof works for D ≥ 2. 2

Synthesis: The various hybrid modes of self-organization are related as follows:

Proposition 3B.6 Let Φ ∈ CA(AM).

(a) Let µ ∈ Meas(AM, σ) and let X ⊂ AM be any closed set.

[i] If X is a topological attractor and µ has full support, then X is a µ-attractor.

[ii] If X is a µ-attractor, then X is a µ-center.

[iii] Suppose M = ZD, and that µ is weakly σ-mixing. Let Y be the intersection of
all topological attractors of Φ. If Φ has a minimal µ-attractor X, then X ⊆ Y.

[iv] If µ is σ-ergodic, then Λ(Φ, µ) ⊆
⋂{

X ⊆ AM ; X a subshift and µ-attractor
}

⊆

Φ∞(AZD

).

[v] Thus, if µ is σ-ergodic and has full support, then

Λ(Φ, µ) ⊆
⋂{

X ⊆ AM ; X a subshift and a topological attractor
}
.

[vi] If X is a subshift, then
(
Λ(Φ, µ) ⊆ X

)
⇐⇒

(
ω(Φ∗, µ) ⊆ Mσ

inv(X)
)
.

(b) Let M = ZD. Let B be the set of all Bernoulli measures on AZD

, and for any
β ∈ B, let Xβ be the minimal β-attractor for Φ (if it exists).

There is a comeager subset A ⊂ AZD

such that
⋃

β∈B

Xβ ⊆
⋂

a∈A

ω(a, Φ).

(c) MeasAttr(Φ) =
⋃{

Λ(Φ, µ) ; µ ∈ Mσ
inv(AM)

}
.

(d) If M = ZD, then MeasAttr(Φ) ⊆ Φ∞(AZD

).

Proof: (a)[i]: If U is a clopen subset and Φ∞(U) = X, then U ⊆ Basin(X); thus, 0 <
µ[U] ≤ µ[Basin(X)], where the “<” is because µ has full support.

(a)[ii]: For any a ∈ AM, it is easy to see that Cent(a, Φ) ⊆ ω(a, Φ). Thus, Well(X) ⊇
Basin(X). Thus, µ[Well(X)] ≥ µ[Basin(X)] > 0.

(a)[iii] is (Hurley, 1990b, Proposition 3.3). (Again, Hurley states and proves this in the
case when µ is a Bernoulli measure, but his proof only requires weak mixing).

(a)[iv]: Let X be a subshift and a µ-attractor; we claim that Λ(Φ, µ) ⊆ X. Proposition
3B.1(a) says µ[Basin(X)] = 1. Let B ⊂ M be any finite set. If b ∈ AB \ XB, then

{
a ∈ AM ; ∃T ∈ N such that ∀t ≥ T , Φt(a)B 6= b

}
⊇ Basin(X).
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It follows that the left-hand set has µ-measure 1, which implies that limt→∞ Φtµ〈b〉 = 0
—hence b is a forbidden word in Λ(Φ, µ).

Thus, all the words forbidden in X are also forbidden in Λ(Φ, µ). Thus Λ(Φ, µ) ⊆ X.
[The case M = Z of (a)[iv] appears as (Kůrka and Maass, 2000, Proposition 1).]

(a)[v] follows from (a)[iv] and (a)[i].

(a)[vi] is (Kůrka, 2003, Proposition 1) or (Kůrka, 2005, Proposition 10); the argument
is fairly similar to (a)[iv]. (Kůrka assumes M = Z, but this is not necessary.)

(b) is (Hurley, 1990b, Proposition 5.2).

(c) Let X ⊂ AM be a subshift and let Mσ
inv = Mσ

inv(AM). Then

(
MeasAttr(Φ) ⊆ X

)

⇐⇒
(
supp (ν) ⊆ X, ∀ ν ∈ Φ∞

∗ (Mσ
inv)

)
⇐⇒

(
ν ∈ Mσ

inv(X), ∀ ν ∈ Φ∞
∗ (Mσ

inv)
)

⇐⇒
(
Φ∞

∗ (Mσ
inv) ⊆ Mσ

inv(X)
)

⇐⇒
(
ω(Φ∗, µ) ⊆ Mσ

inv(X), ∀µ ∈ Mσ
inv

)

⇐
(∗)
⇒

(
Λ(Φ, µ) ⊆ X, ∀µ ∈ Mσ

inv

)
⇐⇒

(⋃
{Λ(Φ, µ) ; µ ∈ Mσ

inv} ⊆ X
)

.

where (∗) is by (a)[vi]. It follows that MeasAttr(Φ) =
⋃ {

Λ(Φ, µ) ; µ ∈ Mσ
inv(AM)

}
.

(d) follows immediately from Proposition 3B.5. 2

Examples and Applications: The most natural examples of these hybrid modes of
self-organization arise in the particle cellular automata (PCA) introduced in §2G. The
long-term dynamics of a PCA involves a steady reduction in particle density, as particles
coalesce or annihilate one another in collisions. Thus, presumably, for almost any initial
configuration a ∈ AZ, the sequence {Φt(a)}∞t=1 should converge to the subshift Z of con-
figurations containing no particles (or at least, no particles of certain types), as t→∞.
Unfortunately, this presumption is generally false if we interpret ‘convergence’ in the strict
topological dynamical sense: the occasional particles will continue to wander near the ori-
gin at arbitrarily large times in the future orbit of a (albeit with diminishing frequency), so
ω(a, Φ) will not be contained in Z. However, the presumption becomes true if we instead
employ one of the more flexible hybrid notions introduced above. For example, most initial
probability measures µ should converge, under iteration of Φ to a measure concentrated on
configurations with few or no particles; hence we expect that Λ(µ, Φ) ⊆ Z. As discussed
in §2G, a result about self-organization in a PCA can sometimes be translated into an
analogous result about self-organization in associated coalescent-domain CA.

Proposition 3B.7 Let A = {0,±1} and let Ψ ∈ CA(AZ) be the Ballistic Annihilation Model
(BAM) from Example 2G.3. Let R := {0, 1}Z and L := {0,−1}Z.
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(a) If µ ∈ Meas(AZ, σ), then ν = wk*limt→∞ Ψt(µ) exists, and has one of three forms:
either ν ∈ Meas(R, σ), or ν ∈ Meas(L, σ), or ν = δ0, the point mass on the sequence
0 = [. . . 000 . . .].

(b) Thus, the measure attractor of Φ is R ∪ L (note that R ∩ L = {0}).

(c) In particular, if µ is a Bernoulli measure on AZ with µ[+1] = µ[−1], then ν = δ0.

(d) Let µ be a Bernoulli measure on AZ.

[i] If µ[+1] > µ[−1], then R is a µ-attractor —i.e. µ[Basin(R)] > 0.

[ii] If µ[+1] < µ[−1], then L is a µ-attractor.

[iii] If µ[+1] = µ[−1], then {0} is not a µ-attractor, because µ[Basin{0}] = 0. How-
ever, Λ(Φ, µ) = {0}.

Proof: (a) is Theorem 6 of Belitsky and Ferrari (2005), and (b) follows from (a). (c) follows
from Theorem 2 of Fisch (1992). (d)[i,ii] were first observed by Gilman (1987)[§3, pp.111-
112], and later by Kůrka and Maass (2002)[Example 4]. (d)[iii] follows immediately from
(c): the statement Λ(Φ, µ) = {0} is equivalent to asserting that limt→∞ Φtµ[±1] =
0, which a consequence of (c). Another proof of (d)[iii] is (Kůrka and Maass, 2002,
Proposition 11); see also (Kůrka and Maass, 2000, Example 3). 2

Corollary 3B.8 Let A = Z/3, let Φ ∈ CA(AZ) be the CCA3 [see Example 2G.2], and let

η be the uniform Bernoulli measure on AZ. Then wk*lim
t→∞

Φt(η) =
1

3
(δ0 + δ1 + δ2), where

δa is the point mass on the sequence [. . . aaa . . .] for each a ∈ A.

Proof: Combine Proposition 3B.7(c) with the factor map Γ in Example 2G.4(b). See
Theorem 1 of Fisch (1992) for details. 2

Corollary 3B.9 Let A = {0, 1}, let Φ ∈ CA(AZ) be ECA#184 [see Example 2G.1].

(a) MeasAttr(Φ) = R ∪ L, where R ⊂ AZ is the set of sequences not containing [11],
and L ⊂ AZ is the set of sequences not containing [00].

(b) If η is the uniform Bernoulli measure on AZ, then wk*lim
t→∞

Φt(η) =
1

2
(δ0 + δ1),

where δ0 and δ1 are the point masses on [. . . 010.101 . . .] and [. . . 101.010 . . .].

(c) Let µ be a Bernoulli measure on AZ.

[i] If µ[0] > µ[1], then R is a µ-attractor —i.e. µ[Basin(R)] > 0.

[ii] If µ[0] < µ[1], then L is a µ-attractor.

Proof sketch: Let Γ be the factor map from Example 2G.4(a). To prove (a), apply Γ to
Proposition 3B.7(b); see (Kůrka, 2005, Example 5, §9) for details. To prove (b), apply
Γ to Proposition 3B.7(c); see (Kůrka and Maass, 2002, Proposition 12) for details. To
prove (c), apply Γ to Proposition 3B.7(d)[i,ii]; 2
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Remarks 3B.10: (a) The other parts of Proposition 3B.7 can likewise be translated
into equivalent statements about the measure attractors and µ-attractors of CCA3 and
ECA#184.

(b) Recall that ECA#184 is a model of single-lane, traffic, where each car is either
stopped or moving rightwards at unit speed. Blank (2003) has extended Corollary 3B.9(c)
to a much broader class of CA models of multi-lane, multi-speed traffic. For any such
model, let R ⊂ AZ be the set of ‘free flowing’ configurations where each car has enough
space to move rightwards at its maximum possible speed. Let L ⊂ AZ be the set of
‘jammed’ configurations where the cars are so tightly packed that the jammed clusters
can propagate (leftwards) through the cars at maximum speed. If µ is any Bernoulli
measure, then µ[Basin(R)] = 1 if the µ-average density of cars is greater than 1/2, whereas
µ[Basin(L)] = 1 if the density is less than 1/2 (Blank, 2003, Theorems 1.2 and 1.3). Thus,
L⊔R is a (non-lean) µ-attractor, although not a topological atractor (Blank, 2003, Lemma
2.13). ♦

Example 3B.11: A cyclic addition and ballistic annihilation model (CABAM) contains
the same ‘moving’ particles ±1 as the BAM [Example 2G.3], but also has one or more
‘stationary’ particle types. Let 3 ≤ N ∈ N, and let P = {1, 2, . . . , N −1} ⊂ Z/N , where we
identify N − 1 with −1, modulo N . It will be convenient to represent the ‘vacant’ state ∅
as 0; thus, A = Z/N . The particles 1 and −1 have velocities and collisions as in the BAM,
namely:

v(1) = 1, v(−1) = −1, and − 1 + 1 ; ∅.

We set v(p) = 0, for all p ∈ [2...N − 2], and employ the following collision rule:

If p−1 + p0 + p1 ≡ q, (mod N), then p−1 + p0 + p1 ; q. (3.3)

(here, any one of p−1, p0, p1, or q could be 0, signifying vacancy). For example, if N = 5
and a (rightward moving) type +1 particle strikes a (stationary) type 3 particle, then the
+1 particle is annihilated and the 3 particle turns into a (stationary) 4 particle. If another
+1 particle hits the 4 particle, then both are annihilated, leaving a vacancy (0).

Let B = Z/N , and let Ψ ∈ CA(BZ) be the CABAM. Then the set of fixed points of Ψ
is F =

{
f ∈ BZ ; fz 6= ±1, ∀ z ∈ Z

}
. Note that, if b ∈ Basin[F] —that is, if ω(b, Ψ) ⊆ F

—then in fact lim
t→∞

Ψt(b) exists and is a Ψ-fixed point.

Proposition 3B.12 Let B = Z/N , let Ψ ∈ CA(BZ) be the CABAM, and let η be the
uniform Bernoulli measure on BZ. If N ≥ 5, then F is a ‘global’ η-attractor —that is,
η[Basin(F)] = 1. However, if N ≤ 4, then η[Basin(F)] = 0.

Proof: See Theorem 1 of Fisch (1990). 2

Let A = Z/N and let Φ ∈ CA(AZ) be the N -colour CCA from Example 2G.2. Then
the set of fixed points of Φ is F =

{
f ∈ AZ ; fz − fz+1 6= ±1, ∀ z ∈ Z

}
. Note that, if

a ∈ Basin[F], then in fact lim
t→∞

Φt(a) exists and is a Φ-fixed point.
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Corollary 3B.13 Let A = Z/N , let Φ ∈ CA(AZ) be the N-colour CCA, and let η be the
uniform Bernoulli measure on AZ If N ≥ 5, then F is a ‘global’ η-attractor —that is,
η[Basin(F)] = 1. However, if N ≤ 4, then η[Basin(F)] = 0.

Proof sketch: Let B = Z/N and let Ψ ∈ CA(BZ) be the N -particle CABAM. Construct
a factor map Γ : AZ−→BZ with local rule γ(a0, a1) := (a0 − a1) mod N , similar
to Example 2G.4(b). Then Γ ◦ Φ = Ψ ◦ Γ, and the Ψ-particles track the Φ-domain
boundaries. Now apply Γ to Proposition 3B.12. 2

Example 3B.14: Let A = {0, 1} and let H = {−1, 0, 1}. Elementary Cellular Automaton
#18 is the one-dimensional CA with local rule φ : AH−→A given: φ[100] = 1 = φ[001],
and φ(a) = 0 for all other a ∈ AH.

Empirically, ECA #18 has one stable phase: the odd sofic shift S, defined by the A-
labelled digraph 1© ⇆ 0© ⇆ 0©. In other words, a sequence is admissible to S as long as
an pair of consecutive ones are separated by an odd number of zeroes. Thus, a defect is any
word of the form 102m1 (where 02m represents 2m zeroes) for any m ∈ N. Thus, defects
can be arbitrarily large, they can grow and move arbitrarily quickly, and they can coalesce
across arbitrarily large distances. Thus, it is impossible to construct a particle CA which
tracks the motion of these defects. Nevertheless, in computer simulations, one can visually
follow the moving defects through time, and they appear to perform random walks. Over
time, the density of defects decreases as they randomly collide and annihilate. This was
empirically observed by Grassberger (1984a,b) and Boccara et al. (1991). Lind (1984)[§5]
conjectured that this gradual elimination of defects caused almost all initial conditions to
converge, in some sense, to S under application of Φ.

Eloranta and Nummelin (1992) proved that the defects of Φ individually perform ran-
dom walks. However, the motions of neighbouring defects are highly correlated. They
are not independent random walks, so one cannot use standard results about stochastic
interacting particle systems to conclude that the defect density converges to zero. To solve
problems like this, Kůrka (2003) developed a theory of ‘particle weight functions’ for CA.

Let A∗ be the set of all finite words in the alphabet A. A particle weight function is a
bounded function p : A∗−→N, so that, for any a ∈ AZ, we interpret

#p(a) :=
∞∑

r=0

∑

z∈Z

p(a[z...z+r]) and δp(a) :=
∞∑

r=0

lim
N→∞

1

2N

N∑

z=−N

p(a[z...z+r])

to be, respectively the ‘number of particles’ and ‘density of particles’ in configuration a
(clearly #p(a) is finite if and only if δp(a) = 0). The function p can count the single-letter
‘particles’ of a PCA, or the short-length ‘domain boundaries’ found in ECA#184 and the
CCA of Examples 2G.1 and 2G.2. However, p can also track the arbitrarily large defects
of ECA#18. For example, define p18(102m1) = 1 (for any m ∈ N), and define p18(a) = 0
for all other a ∈ A∗.

Let Zp :=
{
a ∈ AZ ; #p(a) = 0

}
be the set of vacuum configurations. (For example,

if p = p18 as above, then Zp is just the odd sofic shift S.) If the iteration of a CA Φ
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decreases the number (or density) of particles, then one expects Zp to be a limit set for Φ
in some sense. Indeed, if µ ∈ Mσ

inv := Meas(AZ, σ), then we define ∆p(µ) :=
∫
AZ δp dµ. If Φ

is ‘p-decreasing’ in a certain sense, then ∆p acts as a Lyapunov function for the dynamical
system (Mσ

inv, Φ∗). Thus, with certain technical assumptions, we can show that, if µ ∈ Mσ
inv

is connected, then Λ(µ, Φ) ⊆ Zp (Kůrka, 2003, Theorem 8). Furthermore, under certain
conditions, MeasAttr(Φ) ⊆ Zp (Kůrka, 2003, Theorem 7). Using this machinery, Kůrka
proved:

Proposition 3B.15 Let Φ : AZ−→AZ be ECA#18, and let S ⊂ AZ be the odd sofic shift.
If µ ∈ Meas(AZ, σ) is connected, then Λ(µ, Φ) ⊆ S.

Proof: See Example 6.3 of Kůrka (2003). 2

4 Measurable Dynamics

If Φ ∈ CA(AM) and µ ∈ Meas(AM, Φ), then the triple (AM, µ; Φ) is a measure-preserving
dynamical system (MPDS), and thus, amenable to the methods of classical ergodic theory.

4A Mixing and Ergodicity

If Φ ∈ CA(AM), then the topological dynamical system (AM, Φ) is topologically transitive (or
topologically ergodic) if, if, for any open subsets U,V ⊆ AM, there exists t ∈ N such that
U ∩ Φ−t(V) 6= ∅. Equivalently, there exists some a ∈ AM whose orbit O(a) := {Φt(a)}∞t=0

is dense in AM. If µ ∈ Meas(AM, Φ), then the system (AM, µ; Φ) is ergodic if, for any
measurable U,V ⊆ AM, there exists some t ∈ N such that µ[U ∩ Φ−t(V)] > 0. The
system (AM, µ; Φ) is totally ergodic if (AM, µ; Φn) is ergodic for every n ∈ N. The system
(AM, µ; Φ) is (strongly) mixing if, for any measurable U,V ⊆ AM.

lim
t→∞

µ
[
U ∩ Φ−t(V)

]
= µ[U] · µ[V]. (4.1)

The system (AM, µ; Φ) is weakly mixing if the limit (4.1) holds as n→∞ along an increasing
subsequence {tn}

∞
n=1 of density one —i.e. such that limn→∞ tn/n = 1. For any M ∈ N, we

say (AM, µ; Φ) is M-mixing if, for any measurable U0,U1, . . . ,UM ⊆ AM.

lim
|tn−tm|→∞

∀ n6=m∈[0...M]

µ

[
M⋂

m=0

Φ−tm(Um)

]
=

M∏

m=0

µ[Um] (4.2)

(thus, ‘strong’ mixing is 1-mixing). We say (AM, µ; Φ) is multimixing (or mixing of all orders)
if (AM, µ; Φ) is M-mixing for all M ∈ N.

We say (AM, µ; Φ) is a Kolmogorov endomorphism if its natural extension is a Kolmogorov
automorphism (see Ergodic Theory: Basic Examples and Constructions for the
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definition of natural extension; see Ergodicity and Mixing Properties for the defini-
tion of the Kolmogorov (or “K”) property.) We say (AM, µ; Φ) is a Bernoulli endomorphism if
its natural extension is measurably isomorphic to a system (BZ, β; σ), where β ∈ Meas(BZ; σ)
is a Bernoulli measure.

The following chain of implications is well-known

Theorem 4A.1 Let Φ ∈ CA(AM), let µ ∈ Meas(AM; Φ), and let X = supp (µ). Then X is
a compact, Φ-invariant set. Furthermore:

(µ, Φ) is Bernoulli =⇒ (µ, Φ) is Kolmogorov =⇒ (µ, Φ) is multimixing =⇒ (µ, Φ) is
mixing =⇒ (µ, Φ) is weakly mixing =⇒ (µ, Φ) is totally ergodic =⇒ (µ, Φ) is ergodic
=⇒ The system (X, Φ) is topologically transitive =⇒ Φ : X−→X is surjective.

Proof: See see Ergodicity and Mixing Properties. 2

Theorem 4A.2 Let Φ ∈ CA(AN) be posexpansive (see §2D). Then (AN, Φ) has topological
entropy log2(k) for some k ∈ N, Φ preserves the uniform measure η, and (AN, η; Φ) is a
uniformly distributed Bernoulli endomorphism on an alphabet of cardinality k.

Proof: Extend the argument of Theorem 2D.8. See (Blanchard and Maass, 1997, Corollary
3.10) or (Maass, 1996, Theorem 4.8(5)). 2

Example 4A.3: Suppose Φ ∈ CA(AN) is right-permutative, with neighbourhood [r...R],
where 0 ≤ r < R. Then htop(Φ) = log2(|A|R), so Theorem 4A.2 says that (AN, η; Φ) is a
uniformly distributed Bernoulli endomorphism on the alphabet B := AR.

In this case, it is easy to see this directly. If ΦN
B

: AN−→BN is as in eqn.(2.1), then
β := ΦN

B(η) is the uniform Bernoulli measure on BN, and ΦN
B is an isomorphism from

(AN, µ; Φ) to (BN, β; σ). ♦

Theorem 4A.4 Let Φ ∈ CA(AZ) have neighbourhood [L...R]. Suppose that
either (a) 0 ≤ L < R and Φ is right-permutative;

or (b) L < R ≤ 0 and Φ is left-permutative;
or (c) L < R and Φ is bipermutative;
or (d) Φ is posexpansive.

Then Φ preserves the uniform measure η, and (AZ, η; Φ) is a Bernoulli endomorphism.

Proof: For cases (a) and (b), see (Shereshevsky, 1992a, Theorem 2.2). For case (c), see
(Shereshevsky, 1992a, Theorem 2.7) or (Kleveland, 1997, Corollary 7.3). For (d), extend
the argument of Theorem 2D.4; see (Maass, 1996, Theorem 4.9). 2
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Theorem 4A.5 Let Φ ∈ CA(AZ) have neighbourhood [L...R]. Suppose that
either (a) Φ is surjective and 0 < L ≤ R;

or (b) Φ is surjective and L ≤ R < 0;
or (c) Φ is right-permutative and R 6= 0;
or (d) Φ is left-permutative and L 6= 0.

Then Φ preserves η, and (AZ, η; Φ) is a Kolmogorov endomorphism.

Proof: Cases (a) and (b) are (Shereshevsky, 1992a, Theorem 2.4). Cases (c) and (d) are
Shereshevsky (1997). 2

Corollary 4A.6 Any CA satisfying the hypotheses of Theorem 4A.5 is multimixing.

Proof: This follows from Theorems 4A.1 and 4A.5. See also (Shirvani and Rogers, 1991,
Theorem 3.2) for a direct proof that any CA satisfying hypotheses (a) or (b) is 1-mixing.
See (Kleveland, 1997, Theorem 6.6) for a proof that any CA satisfying hypotheses (c)
or (d) is multimixing. 2

Let Φ ∈ CA(AZD

) have neighbourhood H. An element x ∈ H is extremal if 〈x, x〉 > 〈x, h〉
for all h ∈ H\{x}. We say Φ is extremally permutative if Φ is permutative in some extremal
coordinate.

Theorem 4A.7 Let Φ ∈ CA(AZD

) and let η be the uniform measure. If Φ is extremally
permutative, then (AZD

, η; Φ) is mixing.

Proof: See (Willson, 1975, Theorem A) for the case D = 2 and A = Z/2. Willson
described Φ as ‘linear’ in an extremal coordinate (which is equivalent to permutative
when A = Z/2), and then concluded that Φ was ‘ergodic’ —however, he did this by
explicitly showing that Φ was mixing. His proof technique easily generalizes to any
extremally permutative CA on any alphabet, and any D ≥ 1. 2

Theorem 4A.8 Let A = Z/m. Let Φ ∈ CA(AZD

) have linear local rule φ : AH−→A given
by φ(aH) =

∑
h∈H

ch · ah, where ch ∈ Z for all h ∈ H. Let η be the uniform measure on

AZD

. The following are equivalent:

(a) Φ preserves η and (AZD

, η, Φ) is ergodic.

(b) (AZD

, Φ) is topologically transitive.

(c) gcd{ch}06=h∈H is coprime to m.

(d) For all prime divisors p of m, there is some nonzero h ∈ H such that ch is not
divisible by p.

Proof: (Cattaneo et al., 2000, Theorem 3.2); see also Cattaneo et al. (1997). For a different
proof in the case D = 2, see (Sato, 1997, Theorem 6). 2
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4B Spectral Properties

If µ ∈ Meas(AM), then let L2
µ = L2(AM, µ) be the set of measurable functions f : AM−→C

such that ‖f‖2 := (
∫
AM |f |2 dµ)1/2 is finite. If Φ ∈ CA(AM) and µ ∈ Meas(AM, Φ), then Φ

defines a unitary linear operator Φ∗ : L2
µ−→L2

µ by Φ∗(f) = f ◦Φ for all f ∈ L2
µ. If f ∈ L2

µ,
then f is an eigenfunction of Φ, with eigenvalue c ∈ C, if Φ∗(f) = c · f . By definition of Φ∗,
any eigenvalue must be an element of the unit circle T := {c ∈ C ; |c| = 1}. Let SΦ ⊂ T

be the set of all eigenvalues of Φ, and for any s ∈ SΦ, let Es(Φ) :=
{
f ∈ L2

µ ; Φ∗f = sf
}

be the corresponding eigenspace. For example, if f is constant µ-almost everywhere, then

f ∈ E1(Φ). Let E(Φ) :=
⊔

s∈SΦ

Es(Φ). Note that SΦ is a group. Indeed, if s1, s2 ∈ SΦ, and

f1 ∈ Es1 and f2 ∈ Es2, then (f1f2) ∈ Es1s2 and (1/f1) ∈ E1/s1 . Thus, SΦ is called the
spectral group of Φ.

If s ∈ SΦ, then heuristically, an s-eigenfunction is an ‘observable’ of the dynamical
system (AM, µ; Φ) which exhibits quasiperiodically recurrent behaviour. Thus, the spectral
properties of Φ characterize the ‘recurrent aspect’ of its dynamics (or the lack thereof).
For example:

• (AM, µ; Φ) is ergodic ⇐⇒ E1(Φ) contains only constant functions ⇐⇒
dim[Es(Φ)] = 1 for all s ∈ SΦ.

• (AM, µ; Φ) is weakly mixing (see §4A) ⇐⇒ E(Φ) contains only constant functions
⇐⇒ (AM, µ; Φ) is ergodic and SΦ = {1}.

We say (AM, µ; Φ) has discrete spectrum if L2
µ is spanned by E(Φ). In this case, (AM, µ; Φ)

is measurably isomorphic to an MPDS defined by translation on a compact abelian group
(e.g. an irrational rotation of a torus, an odometer, etc.). Please refer to the article
Spectral Properties for more information.

If µ ∈ Meas(AM, σ), then there is a natural unitary M-action on L2
µ, where σm

∗ (f) =

f ◦ σm
∗ . A character of M is a monoid homomorphism χ : M−→T. The set M̂ of all

characters is a group under pointwise multiplication, called the dual group of M. If f ∈ L2
µ

and χ ∈ M̂, then f is a χ-eigenfunction of (AM, µ; σ) if σm
∗ (f) = χ(m) · f for all m ∈ M;

then χ is called a eigencharacter. The spectral group of (AM, µ; σ) is then the subgroup

Sσ ⊂ M̂ of all eigencharacters. For any χ ∈ Sσ, let Eχ(σ) be the corresponding eigenspace,

and let E(σ) :=
⊔

χ∈SΦ

Eχ(σ).

• (AM, µ; σ) is ergodic ⇐⇒ E1(σ) contains only constant functions ⇐⇒
dim[Eχ(σ)] = 1 for all χ ∈ Sσ.

• (AM, µ; σ) is weakly mixing ⇐⇒ E(σ) contains only constant functions ⇐⇒
(AM, µ; σ) is ergodic and Sσ = {11} .

(AM, µ; σ) has discrete spectrum if L2
µ is spanned by E(σ). In this case, the system

(AM, µ; σ) is measurably isomorphic to an action of M by translations on a compact abelian
group.
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Example 4B.1: Let M = Z; then any character χ : Z−→T has the form χ(n) = cn for
some c ∈ T, so a χ-eigenfunction is just a eigenfunction with eigenvalue c. In this case, the
aforementioned spectral properties for the Z-action by shifts are equivalent to the corre-
sponding spectral properties of the CA Φ = σ1. Bernoulli measures and irreducible Markov
chains are weakly mixing. On other hand, several important classes of symbolic dynamical
systems have discrete spectrum, including Sturmian shifts, constant-length substitution
shifts, and regular Toeplitz shifts. See Symbolic dynamics. ♦

Proposition 4B.2 Let Φ ∈ CA(AM), and let µ ∈ Meas(AM; Φ, σ) be σ-ergodic.

(a) E(σ) ⊆ E(Φ).

(b) If (AM, µ; σ) has discrete spectrum, then so does (AM, µ; Φ).

(c) Suppose µ is Φ-ergodic. If (AM, µ; σ) is weakly mixing, then so is (AM, µ; Φ).

Proof: (a) Suppose χ ∈ M̂ and f ∈ Eχ. Then f ◦ Φ ∈ Eχ also, because for all m ∈ M,
f ◦Φ◦σm = f ◦σm◦Φ = χ(m)·f ◦Φ. But if (AM, µ; σ) is ergodic, then dim[Eχ(σ)] = 1;
hence f ◦ Φ must be a scalar multiple of f . Thus, f is also an eigenfunction for Φ. (b)
follows from (a).

(c) By reversing the roles of Φ and σ in (a), we see that E(Φ) ⊆ E(σ). But if (AM, µ; σ)
is weakly mixing, then E(σ) = {constant functions}. Thus, (AM, µ; Φ) is also weakly
mixing. 2

Example 4B.3: (a) Let µ be any Bernoulli measure on AM. If µ is Φ-invariant and
Φ-ergodic, then (AM, µ; Φ) is weakly mixing (because (AM, µ; σ) is weakly mixing).

(b) Let P ∈ N and suppose µ is a Φ-invariant measure supported on the set XP of P -
periodic sequences (see Proposition 2C.1). Then (AZ, µ; σ) has discrete spectrum (with
rational eigenvalues). But XP is finite, so the system (XP , Φ) is also periodic; hence
(AZ, µ; Φ) also has discrete spectrum (with rational eigenvalues).

(c) Downarowicz (1997) has constructed an example of a regular Toeplitz shift X ⊂ AZ

and Φ ∈ CA(AZ) (not the shift) such that Φ(X) ⊆ X. Any regular Toeplitz shift is uniquely
ergodic, and the unique shift-invariant measure µ has discrete spectrum; thus, (AZ, µ; Φ)
also has discrete spectrum. ♦

Aside from Examples 4B.3(b,c), the literature contains no examples of discrete-spectrum,
invariant measures for CA; this is an interesting area for future research.
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5 Entropy

Let Φ ∈ CA(AM). For any finite B ⊂ M, let B := AB, let ΦN
B : AN−→BN be as in eqn.(2.1),

and let X := ΦN
B
(AM) ⊆ AN; then define

Htop(B; Φ) := htop(X) = lim
T→∞

1

T
log2(#X[0...T )).

If µ ∈ Meas(AM, Φ), let ν := ΦN
B
(µ); then ν is a σ-invariant measure on BN. Define

Hµ(B; Φ) := hν(σ) = − lim
T→∞

1

T

∑

b∈B[0...T )

ν[b] log2(ν[b]).

The topological entropy of (AM, Φ) and the measurable entropy of (AM, Φ, µ) are then defined

htop(Φ) := sup
B⊂M

finite

Htop(B; Φ) and hµ(Φ) := sup
B⊂M

finite

Hµ(B; Φ).

The famous Variational Principle states that htop(Φ) = sup
{
hµ(Φ) ; µ ∈ Meas(AM; Φ)

}
.

(Please see Entropy in Ergodic Theory for more information).
If M has more than one dimension (e.g. M = ZD or ND for D ≥ 2) then most CA

on AM have infinite entropy. Thus, entropy is mainly of interest in the case M = Z or
N. Coven (1980) was the first to compute the topological entropy of a CA; he showed
that htop(Φ) = 1 for a large class of left-permutative, one-sided CA on {0, 1}N (which have
since been called Coven CA). Later, Lind (1987) showed how to construct a CA whose
topological entropy was any element of an uncountable dense subset of R+, defined using
Perron numbers. Theorems 2D.4 and 2D.8(b) above characterize the topological entropy
of posexpansive CA. However, Hurd et al. (1992) showed that there is no algorithm which
can compute the topological entropy of an arbitrary CA.

Measurable entropy has also been computed for a few special classes of CA. For example,
if Φ ∈ CA(AZ) is bipermutative with neighbourhood {0, 1} and µ ∈ Meas(AZ, Φ; σ) is σ-
ergodic, then hµ(Φ) = log2(K) for some integer K ≤ |A| (Pivato, 2005b, Thm 4.1). If
η is the uniform measure, and Φ is posexpansive, then Theorems 4A.2 and 4A.4 above
characterize hη(Φ). Also, if Φ satisfies the conditions of Theorem 4A.5, then hη(Φ) > 0,
and furthermore, all factors of the MPDS (AZ, µ; Φ) also have positive entropy.

However, unlike abstract dynamical systems, CA come with an explicit spatial ‘geom-
etry’. The most fruitful investigations of CA entropy are those which have interpreted
entropy in terms of how information propagates through this geometry.

5A Lyapunov Exponents

Wolfram (1985) suggested that the propagation speed of ‘perturbations’ in a one-dimensional
CA Φ could transform ‘spatial’ entropy [i.e. h(σ)] into ‘temporal’ entropy [i.e. h(Φ)]. He
compared this propagation speed to the ‘Lyapunov exponent’ of a smooth dynamical sys-
tem: it determines the exponential rate of divergence between two initially close Φ-orbits
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(Wolfram, 1986, pp.172, 261 and 514). Shereshevsky (1992b) formalized Wolfram’s intu-
ition and proved the conjectured entropy relationship; his results were later improved by
Tisseur (2000). Let Φ ∈ CA(AZ), let a ∈ AZ, and let z ∈ Z. Define

W+
z (a) :=

{
w ∈ AZ ; w[z...∞) = a[z...∞)

}
,

and W−
z (a) :=

{
w ∈ AZ ; w(−∞...z] = a(−∞...z]

}
.

Thus, we obtain each w ∈ W+
z (a) [respectively W−

z (a)] by ‘perturbing’ a somewhere to
the left [resp. right] of coordinate z. Next, for any t ∈ N, define

Λ̃+
t (a) := min

{
z ∈ N ; Φt

[
W+

0 (a)
]
⊆ W+

z

(
Φt[a]

)}
,

and Λ̃−
t (a) := min

{
z ∈ N ; Φt

[
W−

0 (a)
]
⊆ W−

−z

(
Φt[a]

)}
.

Thus, Λ̃±
t measures the farthest distance which any perturbation of a at coordinate 0 could

have propagated by time t. Next, define Λ±
t (a) := max

z∈Z
Λ̃±

t (a). Then Shereshevsky (1992b)

defined the (maximum) Lyapunov exponents

λ+(Φ, a) := lim
t→∞

1

t
Λ+

t (a), and λ−(Φ, a) := lim
t→∞

1

t
Λ−

t (a),

whenever these limits exist. Let G(Φ) :=
{
g ∈ AZ ; λ±(Φ, g) both exist

}
. The subset

G(Φ) is ‘generic’ within AZ in a very strong sense, and the Lyapunov exponents detect
‘chaotic’ topological dynamics.

Proposition 5A.1 Let Φ ∈ CA(AZ).

(a) Let µ ∈ Meas(AZ; σ). Suppose that either: [i] µ is also Φ-invariant; or: [ii] µ is
σ-ergodic and supp (µ) is a Φ-invariant subset. Then µ(G) = 1.

(b) The set G and the functions λ±(Φ, •) are (Φ, σ)-invariant. Thus, if µ is either
Φ-ergodic or σ-ergodic, then there exist constants λ±

µ (Φ) ≥ 0 such that λ±(Φ, g) =
λ±

µ (Φ) for µ-almost all g ∈ G.

(c) If Φ is posexpansive, then there is a constant c > 0 such that λ±(Φ, g) ≥ c for all
g ∈ G.

(d) Let η be the uniform Bernoulli measure. If Φ is surjective, then htop(Φ) ≤(
λ+

η (Φ) + λ−
η (Φ)

)
· log |A|.

Proof: (a) follows from the fact that, for any a ∈ AZ, the sequence [Λ±
t (a)]t∈N is subadditive

in t. Condition [i] is (Shereshevsky, 1992b, Theorem 1), and follows from Kingman’s
subadditive ergodic theorem. Condition [ii] is (Tisseur, 2000, Proposition 3.1).

(b) is clear by definition of λ±. (c) is (Finelli et al., 1998, Theorem 5.2). (d) is (Tisseur,
2000, Proposition 5.3). 2
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For any Φ-ergodic µ ∈ Meas(AZ; Φ, σ), Shereshevsky (1992b)[Theorem 2] showed that
hµ(Φ) ≤

(
λ+

µ (Φ) + λ−
µ (Φ)

)
· hµ(σ). Tisseur later improved this estimate. For any T ∈ N,

let

Ĩ+
T (a) := min

{
z ∈ N ; ∀ t ∈ [1...T ], Φt

[
W+

−z(a)
]
⊆ W+

0

(
Φt[a]

)}

and Ĩ−
T (a) := min

{
z ∈ N ; ∀ t ∈ [1...T ], Φt

[
W−

z (a)
]
⊆ W−

0

(
Φt[a]

)}
.

Next, for any µ ∈ Meas(AZ, σ), define Î±
T (µ) :=

∫

AZ

Ĩ±
T (a) dµ[a].

Tisseur then defined the average Lyapunov exponents: I±
µ (Φ) := lim inf

T→∞
Î±
T (µ)/T .

Theorem 5A.2 Let Φ ∈ CA(AZ) and let µ ∈ Meas(AZ; σ).

(a) If supp (µ) is Φ-invariant, then I+
µ (Φ) ≤ λ+

µ (Φ) and I−
µ (Φ) ≤ λ−

µ (Φ), and one or
both inequalities are sometimes strict.

(b) If µ is σ-ergodic and Φ-invariant, then hµ(Φ) ≤
(
I+
µ (Φ) + I−

µ (Φ)
)
· hµ(σ), and

this inequality is sometimes strict.

(c) If supp (µ) contains Φ-equicontinuous points, then I+
µ (Φ) = I−

µ (Φ) = hµ(Φ) = 0.

Proof: See Tisseur (2000): (a) is Proposition 3.2 and Example 6.1; (b) is Theorem 5.1 and
Example 6.2; and (c) is Proposition 5.2. 2

5B Directional Entropy

Milnor (1986, 1988) introduced directional entropy to capture the intuition that infor-
mation in a CA propagates in particular directions with particular ‘velocities’, and that
different CA ‘mix’ information in different ways. Classical entropy is unable to detect
this informational anisotropy. For example, if A = {0, 1} and Φ ∈ CA(AZ) has local rule
φ(a0, a1) = a0 +a1 (mod 2), then htop(Φ) = 1 = htop(σ), despite the fact that Φ vigorously
‘mixes’ information together and propagates any ‘perturbation’ outwards in an expand-
ing cone, whereas σ merely shifts information to the left in a rigid and essentially trivial
fashion.

If Φ ∈ CA(AZD

), then a complete history for Φ is a sequence (at)t∈Z ∈ (AZD

)Z ∼= AZD+1

such that Φ(at) = at+1 for all t ∈ Z. Let XHist := XHist(Φ) ⊂ AZD+1
be the subshift of

all complete histories for Φ, and let σ be the ZD+1 shift action on XHist; then (XHist; σ)
is conjugate to the natural extension of the system (Y; Φ, σ), where Y := Φ∞(AM) :=⋂∞

t=1 Φt(AZD

) is the omega-limit set of Φ. If µ ∈ Meas(AZD

; Φ, σ), then supp (µ) ⊆ Y, and
µ extends to a σ-invariant measure µ̃ on XHist in the obvious way.

Let ~v = (v0; v1, . . . , vD) ∈ R × RD ∼= RD+1. For any bounded open subset B ⊂ RD+1

and T > 0, let B(T~v) := {b + t~v ; b ∈ B and t ∈ [0, T ]} be the ‘sheared cylinder’ in RD+1
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with cross-section B and length T |~v| in the direction ~v, and let B(T~v) := B(T~v) ∩ ZD+1.
Let XHist

B(T~v) :=
{
xB(T~v) ; x ∈ XHist(Φ)

}
. We define

Htop(Φ;B,~v) := lim sup
T→∞

1

T
log2[#XHist

B(T~v)];

and Hµ(Φ;B,~v) := − lim sup
T→∞

1

T

∑

x∈XHist
B(T~v)

µ̃[x] log2(µ̃[x]).

We then define the ~v-directional topological entropy and ~v-directional µ-entropy of Φ by

htop(Φ;~v) := sup
B⊂RD+1

open & bounded

htop(Φ;B,~v); (5.1)

and hµ(Φ;~v) := sup
B⊂RD+1

open & bounded

hµ(Φ;B,~v). (5.2)

Proposition 5B.1 Let Φ ∈ CA(AZD

) and let µ ∈ Meas(AZD

; Φ, σ).

(a) Directional entropy is homogeneous. That is, for any ~v ∈ RD+1 and r > 0,
htop(Φ, r~v) = r · htop(Φ,~v) and hµ(Φ, r~v) = r · hµ(Φ,~v).

(b) If ~v = (t; z) ∈ Z×ZD, then htop(Φ,~v) = htop(Φ
t ◦σz) and hµ(Φ,~v) = hµ(Φt ◦σz).

(c) There is an extension of the Z × ZD-system (XHist, Φ; σ) to an R × RD-system

(X̃, Φ̃, σ̃) such that, for any ~v = (t;~u) ∈ R × RD we have htop(Φ,~v) = htop(Φ̃
t ◦ σ̃~u).

For any µ ∈ Meas(AZD

; Φ, σ), there is an extension µ̃ ∈ Meas(X̃; Φ̃, σ̃) such that for

any ~v = (t;~u) ∈ R × RD we have hµ(Φ,~v) = heµ(Φ̃t ◦ σ̃~u).

Proof: (a,b) follow from the definition. (c) is (Park, 1999, Proposition 2.1). 2

Remark 5B.2: Directional entropy can actually be defined for any continuous ZD+1-
action on a compact metric space, and in particular, for any subshift of AZD+1

. The
directional entropy of a CA Φ is then just the directional entropy of the subshift XHist(Φ).
Proposition 5B.1 holds for any subshift. ♦

Directional entropy is usually infinite for multidimensional CA (for the same reason
that classical entropy is usually infinite). Thus, most of the analysis has been for one-
dimensional CA. For example, Kitchens and Schmidt (1992)[§1] studied the directional
topological entropy of one-dimensional linear CA, while Smillie (1988)[Proposition 1.1]
computed the directional topological entropy for ECA#184. If Φ is linear, then the function
~v 7→ htop(Φ,~v) is piecewise linear and convex, but if Φ is ECA#184, it is neither.

If ~v has rational entries, then Proposition 5B.1(a,b) shows that h(Φ,~v) is a rational
multiple of the classical entropy of some composite CA, which can be computed through
classical methods. However, if ~v is irrational, then h(Φ,~v) is quite difficult to compute using
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the formulae (5.1) and (5.2), and Proposition 5B.1(c), while theoretically interesting, is
not very computationally useful. Can we compute h(Φ,~v) as the limit of h(Φ,~vk) where
{~vk}

∞
k=1 is a sequence of rational vectors tending to ~v? In other words, is directional entropy

continuous as a function of ~v? What other properties has h(Φ,~v) as a function of ~v?

Theorem 5B.3 Let Φ ∈ CA(AZ) and let µ ∈ Meas(AZ; Φ).

(a) The function R2 ∋ ~v 7→ hµ(Φ,~v) ∈ R is continuous.

(b) Suppose there is some (t, z) ∈ N×Z with t ≥ 1, such that Φt ◦σz is posexpansive.
Then the function R2 ∋ ~v 7→ htop(Φ,~v) ∈ R is convex, and thus, Lipschitz-continuous.

(c) However, there exist other Φ ∈ CA(AZ) for which the function R2 ∋ ~v 7→ htop(Φ,~v) ∈
R is not continuous.

(d) Suppose Φ has neighbourhood [−ℓ...r] ⊂ Z. If ~v = (t; x) ∈ R2, then let zℓ := x−ℓt
and zr := x + rt. Let L := log |A|.

[i] Suppose zℓ · zr ≥ 0. Then hµ(Φ;~v) ≤ max{|zℓ|, |zr|} · L. Furthermore:

• If Φ is right-permutative, and |zℓ| ≤ |zr|, then hµ(Φ;~v) = |zr| · L.

• If Φ is left-permutative, and |zr| ≤ |zℓ|, then hµ(Φ;~v) = |zr| · L.

[ii] Suppose zℓ · zr ≤ 0. Then hµ(Φ;~v) ≤ |zr − zℓ| · L.

Furthermore, if Φ is bipermutative in this case, then hµ(Φ;~v) = |zr − zℓ| · L.

Proof: (a) is (Park, 1999, Corollary 3.3), while (b) is (Sablik, 2006, Théorème III.11 and
Corollaire III.12, pp.79-80). (c) is (Smillie, 1988, Proposition 1.2).

(d) summarizes the main results of Courbage and Kamiński (2002). See also (Milnor,
1988, Example 6.2) for an earlier analysis of permutative CA in the case r = ℓ = 1; see
also (Boyle and Lind, 1997, Example 6.4) and (Kitchens and Schmidt, 1992, §1) for the
special case when Φ is linear. 2

Remarks 5B.4: (a) In fact, the conclusion of Theorem 5B.3(b) holds as long as Φ has
any posexpansive directions (even irrational ones). A posexpansive direction is analogous
to an expansive subspace (see §5C), and is part of Sablik’s theory of ‘directional dynamics’
for one-dimensional CA; see Remark 5C.10(b) below. Using this theory, Sablik has also
shown that hµ(Φ;~v) = 0 = htop(Φ,~v) whenever ~v is an equicontinuous direction for Φ,
whereas hµ(Φ;~v) 6= 0 6= htop(Φ,~v) whenever ~v is a right- or left posexpansive direction for
Φ. See (Sablik, 2006, §III.4.5-§III.4.6, pp.86-88).

(b) Courbage and Kamiński have defined a ‘directional’ version of the Lyapunov ex-
ponents introduced in §5A. If Φ ∈ CA(AZ), a ∈ AZ and ~v = (t; z) ∈ N × Z, then
λ±

~v (Φ, a) := λ±(Φt ◦ σz, a), where λ± are defined as in §5A. If ~v ∈ R2 is irrational,
then the definition of λ±

~v (Φ, a) is somewhat more subtle. For any Φ and a, the function
R2 ∋ ~v 7→ λ±

~v (Φ, a) ∈ R is homogeneous and continuous (Courbage and Kamiński, 2006,
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Lemma 2 and Proposition 3). If µ ∈ Meas(AZ; Φ, σ) is σ-ergodic, then λ±
~v (Φ, •) is constant

µ-almost everywhere, and is related to hµ(Φ;~v) through an inequality exactly analogous
to Theorem 5A.2(b); see (Courbage and Kamiński, 2006, Theorem 1). ♦

Cone Entropy: For any ~v ∈ RD+1, any angle θ > 0, and any N > 0, we define

K(N~v, θ) :=
{
z ∈ ZD+1 ; |z| ≤ N |~v| and z • ~v/|z||~v| ≥ cos(θ)

}
.

Geometrically, this is the set of all ZD+1-lattice points in a cone of length N |~v| which
subtends an angle of 2θ around an axis parallel to ~v, and which has its apex at the origin.
If Φ ∈ CA(AZD

), then let XHist(N~v, θ) :=
{
xK(N~v,θ) ; x ∈ XHist(Φ)

}
. If µ ∈ Meas(AZD

; Φ),
and µ̃ is the extension of µ to XHist, then the cone entropy of (Φ, µ) in direction ~v is defined

hcone

µ (Φ,~v) := − lim
θց0

lim
N→∞

1

N

∑

x∈XHist(N~v,θ)

µ̃[x] log2(µ̃[x]).

Park (1995, 1996) attributes this concept to Doug Lind. Like directional entropy, cone
entropy can be defined for any continuous ZD+1-action, and is generally infinite for multi-
dimensional CA. However, for one-dimensional CA, Park has proved:

Theorem 5B.5 If Φ ∈ CA(AZ), µ ∈ Meas(AZ; Φ) and ~v ∈ R2, then hcone
µ (Φ,~v) = hµ(Φ,~v).

Proof: See (Park, 1996, Theorem 1). 2

5C Entropy Geometry and Expansive Subdynamics

Directional entropy is the one-dimensional version of a multidimensional ‘entropy density’
function, which was introduced by Milnor (1988) to address the fact that classical and
directional entropy are generally infinite for multidimensional CA. Milnor’s ideas were
then extended by Boyle and Lind (1997), using their theory of expansive subdynamics.

Let X ⊂ AZD+1
be a subshift, and let µ ∈ Meas(X; σ). For any bounded B ⊂ RD+1, let

B := B ∩ ZD+1, let XB := XB, and then define

HX(B) := log2 |XB| and Hµ(B) := −
∑

x∈XB

µ[x] log2(µ[x]).

The topological entropy dimension dim(X) is the smallest d ∈ [0, D+1] having some con-
stant c > 0 such that, for any finite B ⊂ RD+1, HX(B) ≤ c · diam [B]d. The measurable
entropy dimension dim(µ) is defined similarly, only with Hµ in place of HX. Note that
dim(µ) ≤ dim(X), because Hµ(B) ≤ HX(B) for all B ⊂ RD+1.

For any bounded B ⊂ RD+1 and ‘scale factor’ s > 0, let sB := {sb ; b ∈ B}. For any
radius r > 0, let (sB)r :=

{
x ∈ RD+1 ; d(x, sB) ≤ r

}
. Define the d-dimensional topological

entropy density of B by

hd
X

(B) := sup
r>0

lim sup
s→∞

HX[(sB)r]/sd. (5.3)
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Define d-dimensional measurable entropy density hd
µ(B) similarly, only using Hµ instead of

HX. Note that, for any d < dim(X) [respectively, d < dim(µ)], hd
X

(B) [resp. hd
µ(B)] will

be infinite, whereas for for any d > dim(X) [resp. d > dim(µ)], hd
X

(B) [resp. hd
µ(B)] will

be zero; hence dim(X) [resp. dim(µ)] is the unique value of d for which the function hd
X

[resp. hd
µ] defined in eqn.(5.3) is nontrivial.

Example 5C.1: (a) If d = D +1, and B is a unit cube centred at the origin, then hD+1
X

(B)
[resp. hD+1

µ (B)] is just the classical (D +1)-dimensional topological [resp. measurable]
entropy of X [resp. µ] as a (D+1)-dimensional subshift [resp. random field]; see Entropy

in Ergodic Theory.

(b) However, the most important case for Milnor (1988) (and us) is when X = XHist(Φ)
for some Φ ∈ CA(AZD

). In this case, dim(µ) ≤ dim(X) ≤ D < D+1. In particular,
if d = 1, then for any ~v ∈ RD+1, if B := {r~v ; r ∈ [0, 1]}, then h1

X
(B) = htop(Φ;~v) and

h1
µ(B) = hµ(Φ;~v) are directional entropies of §5B. ♦

In general, dim(µ) and dim(X) may not be integers, but the theory is best developed in
the case when they are. For any d ∈ [0, D+1], let λd be a d-dimensional Hausdorff measure
on RD+1. For example, if d ∈ [1 . . .D+1], and P ⊂ RD+1 is a d-plane (i.e. a d-dimensional
linear subspace of RD+1), then λd restricts to a d-dimensional Lebesgue measure on P.

Theorem 5C.2 Let X ⊂ AZD+1
be a subshift, and let µ ∈ Meas(X; σ). Let d = dim(X) [or

dim(µ)] and let hd be hd
X

[or hd
µ]. Let B,C ⊂ RD+1 be compact sets. Then

(a) hd(B) is well-defined and finite.

(b) If B ⊆ C then hd(B) ≤ hd(C).

(c) hd(B ∪ C) ≤ hd(B) + hd(C).

(d) hd(B+ ~v) = hd(B) for any ~v ∈ RD+1.

(e) hd(sB) = sd · hd(B) for any s > 0.

(f) There is some constant c such that hd(B) ≤ cλd(B) for all compact B ⊂ RD+1.

(g) If d ∈ N, then for any d-plane P ⊂ RD+1, there is some Hd(P) ≥ 0 such that
hd(B) = Hd(P) · λd(B) for any compact subset B ⊂ P with λd(∂B) = 0.

(h) There is a constant H
d

X
< ∞ such that Hd

X
(P) ≤ H

d

X
for all d-planes P.

Proof: See (Milnor, 1988, Theorems 1 and 2 and Corollary 1), or see (Boyle and Lind,
1997, Theorems 6.2, 6.3, and 6.13). 2
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Example 5C.3: Let Φ ∈ CA(AZD

) and let X := XHist(Φ). If P := {0} × RD, then HD(P)
is the classical D-dimensional entropy of the omega limit set Y := Φ∞(AZD

); heuristically,
this measures the asymptotic level of ‘spatial disorder’ in Y. If P ⊂ RD+1 is some other
D-plane, then HD(P) measures some combination of the ‘spatial disorder’ of Y with the
dynamical entropy of Φ. ♦

Let d ∈ [1 . . .D+1], and let P ⊂ RD+1 be a d-plane. For any r > 0, let P(r) :={
z ∈ ZD+1 ; d(z,P) < r

}
. We say P is expansive for X if there is some r > 0 such that, for

any x,y ∈ X,
(
xP(r) = yP(r)

)
⇐⇒ (x = y). If P is spanned by d rational vectors, then

P ∩ ZD+1 is a rank-d sublattice L ⊂ ZD+1, and P is expansive if and only if the induced
L-action on X is expansive. However, if P is ‘irrational’, then expansiveness is a more
subtle concept; see (Boyle and Lind, 1997, §2) for more information.

If Φ ∈ CA(AZD

) and X = XHist(Φ), then Φ is quasi-invertible if X admits an expansive
D-plane P (this is a natural extension of Milnor’s (1988; §7) definition in terms of ‘causal
cones’). Heuristically, if we regard ZD+1 as ‘spacetime’ (in the spirit of special relativity),
then P can be seen as ‘space’, and any direction transversal to P can be interpreted as the
flow of ‘time’.

Example 5C.4: (a) If Φ is invertible, then it is quasi-invertible, because {0} × RD is an
expansive D-plane (recall that the zeroth coordinate is time).

(b) Let Φ ∈ CA(AZ) , so that X ⊂ AZ2
. Let Φ have neighbourhood [−ℓ...r], with −ℓ ≤

0 ≤ r, and let L ⊂ R2 be a line with slope S through the origin.

[i] If Φ is right-permutative, and 0 < S < 1/ℓ, then L is expansive for X.

[ii] If Φ is left-permutative, and −1/r < S < 0, then L is expansive for X.

[iii] If Φ is bipermutative, and −1/r < S < 0 or 0 < S < 1/ℓ, then L is expansive for X.

[iv] If Φ is posexpansive (see §2D) then the ‘time’ axis L = R × {0} is expansive for X.

Hence, in any of these cases, Φ is quasi-invertible. (Presumably, something similar is true
for multidimensional permutative CA.) ♦

Proposition 5C.5 Let Φ ∈ AZD

, let X = XHist(Φ), let µ ∈ Meas(X; σ), and let Hd and

H
d

X
be as in Theorem 5C.2(g,h).

(a) If HD
X

({0} × RD) = 0, then H
D

X
= 0.

(b) Let d ∈ [1...D], and suppose that X admits an expansive d-plane. Then:

[i] dim(X) ≤ d;

[ii] There is a constant H
d

µ < ∞ such that Hd
µ(P) ≤ H

d

µ for all d-planes P;

[iii] If Hd(P) = 0 for some expansive d-plane P, then H
d

= 0.
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Proof: (a) is (Milnor, 1988, Corollary 3), (b)[i] is (Shereshevsky, 1996, Corollary 1.4), and
(b)[ii] is (Boyle and Lind, 1997, Theorem 6.19(2)).

(b)[iii]: See (Boyle and Lind, 1997, Theorem 6.3(4)) for “H
d

X
= 0”. See (Boyle and Lind,

1997, Theorem 6.19(1)) for “H
d

µ = 0”. 2

If d ∈ [1 . . .D+1], then a d-frame in RD+1 is a d-tuple F := (~v1, . . . ,~vd), where
~v1, . . . ,~vd ∈ RD+1 are linearly independent. Let Frame(D+1, d) be the set of all d-frames in
RD+1; then Frame(D+1, d) is an open subset of RD+1 × · · · × RD+1 =: R(D+1)×d. Let

Expans(X, d) := {F ∈ Frame(D+1, d) ; span(F) is expansive for X}.

Then Expans(X, d) is an open subset of Frame(D +1, d), by (Boyle and Lind, 1997, Lemma
3.4). A connected component of Expans(X, d) is called an expansive component for X. For
any F ∈ Frame(D+1, d), let [F] be the d-dimensional parallellipiped spanned by F, and let
hd
X

(F) := hd
X

([F]) = Hd
X

(span(F)) · λd([F]), where the last equality is by Theorem 5C.2(g).
The next result is a partial extension of Theorem 5B.3(b).

Proposition 5C.6 Let X ⊂ AZD+1
be a subshift, suppose d := dim(X) ∈ N, and let

C ⊂ Expans(X, d) be an expansive component. Then the function hd
X

: C−→R is convex in
each of its d distinct RD+1-valued arguments. Thus, hd

X
is Lipschitz-continuous on C.

Proof: See (Boyle and Lind, 1997, Theorem 6.9(1,4)). 2

For measurable entropy, we can say much more. Recall that a d-linear form is a function
ω : R(D+1)×d−→R which is linear in each of its d distinct RD+1-valued arguments.

Theorem 5C.7 Let X ⊂ AZD+1
be a subshift and let µ ∈ Meas(X; σ). Suppose d :=

dim(µ) ∈ N, and let C ⊂ Expans(X, d) be an expansive component for X. Then there is a
d-linear form ω : R(D+1)×d−→R such that hd

µ agrees with ω on C.

Proof: (Boyle and Lind, 1997, Theorem 6.16). 2

Theorem 5C.7 means that there is an orthonormal (D+1−d)-frame W := (~wd+1, . . . ,~wD+1)
(transversal to all frames in C) such that, for any d-frame V := (~v1, . . . ,~vd) ∈ C,

hd
µ(V) = |det(~v1, . . . ,~vd;~wd+1, . . . ,~wD+1)| .

Thus, the d-plane orthogonal to {~wd+1, . . . ,~wD+1} is the d-plane which maximizes Hd
µ —this

is the d-plane manifesting the most rapid decay of correlation with distance. On the other
hand, span(W) is the (D + 1 − d)-plane along which correlations decay the most slowly.
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Example 5C.8: Let Φ ∈ CA(AZD

) be quasi-invertible, and let P be an expansive D-plane
for X := XHist(Φ) [see Example 5C.4]. The D-frames spanning P fall into two expansive
components (related by orientation-reversal); let C be union of these two components. Let
µ ∈ Meas(AZD

; Φ), and extend µ to a σ-invariant measure on X. In this case, Theorem
5C.7 is equivalent to (Milnor, 1988, Theorem 4), which says there a unit vector ~w ∈ RD+1

such that, for any D-frame (~v1, . . . ,~vD) ∈ C, hd
µ(F) = |det(~v1, . . . ,~vD;~w)|. Thus, Hd

µ(P)
is maximized when P is the hyperplane orthogonal to ~w. Heuristically, ~w points in the
direction of minimum correlation decay (or maximum ‘causality’) —the direction which
could most properly be called ‘time’ for the MPDS (Φ, µ). ♦

Theorem 5C.7 yields the following generalization the Variational Principle:

Theorem 5C.9 Let X ⊂ AZD+1
be a subshift and suppose d := dim(X) ∈ N.

(a) If F ∈ Expans(X, d), then there exists µ ∈ Meas(X; σ) such that hd
X

(F) = hd
µ(F).

(b) Let C ⊂ Expans(X, d) be an expansive component for X. There exists some µ ∈
Meas(X; σ) such that hd

X
= hd

µ on C if and only if hd
X

is a d-linear form on C.

Proof: (Boyle and Lind, 1997, Proposition 6.24 and Theorem 6.25). 2

Remark 5C.10: (a) If G ⊂ AZD

is an abelian subgroup shift and Φ ∈ ECA (G), then
XHist(Φ) is a subgroup shift of AZD+1

, which can be viewed as an algebraic ZD+1-action
(see discussion prior to Proposition 2E.9). In this context, the expansive subspaces of
XHist(Φ) have been completely characterized by Einsiedler et al. (2001)[Theorem 8.4]. Fur-
thermore, certain dynamical properties (such as positive entropy, completely positive en-
tropy, or Bernoullicity) are common amongst all elements of each expansive component
of XHist(Φ) (Einsiedler et al., 2001, Theorem 9.8). If G1 and G2 are subgroup shifts,
and Φk ∈ ECA (Gk) and µk ∈ Meas(G; Φ, σ) for k = 1, 2, with dim(µ1) = dim(µ2) = 1,
then Einsiedler and Ward (2005) have given conditions for the measure-preserving systems
(G1, µ1; Φ1, σ) and (G2, µ2; Φ2, σ) to be disjoint.

(b) Boyle and Lind’s ‘expansive subdynamics’ concerns expansiveness along certain
directions in the space-time diagram of a CA. Recently, M. Sablik has developed a theory
of directional dynamics, which explores other topological dynamical properties (such as
equicontinuity and sensitivity to initial conditions) along spatiotemporal directions in a
CA; see (Sablik, 2006, Chapitre II) or Sablik (2007a). ♦

6 Future directions and open problems

1. We now have a fairly good understanding of the ergodic theory of linear and/or
‘abelian’ CA. The next step is to extend these results to CA with nonlinear and/or
nonabelian algebraic structures. In particular:
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(a) Almost all the measure rigidity results of §2E are for endomorphic CA on abelian
group shifts, except for Propositions 2E.3 and 2E.5. Can we extend these results
to CA on nonabelian group shifts or other permutative CA?

(b) Likewise, the asymptotic randomization results of §3A are almost exclusively
for linear CA with scalar coefficients. Can we extend these results to LCA with
noncommuting, matrix-valued coefficients? (The problem is: if the coefficients
do not commute, then the ‘polynomial representation’ and Lucas’ theorem be-
come inapplicable.) Also, can we obtain similar results for multiplicative CA
on nonabelian groups? [See Remark 3A.6(d).] What about other permutative
CA? [See Remark 3A.6(e).]

2. Cellular automata are often seen as models of spatially distributed computation.
Meaningful ‘computation’ could possibly occur when a CA interacts with a highly
structured initial configuration (e.g. a substitution sequence), whereas such compu-
tation is probably impossible in the roiling cauldron of noise arising from a mixing,
positive entropy measure (e.g. a Bernoulli measure or Markov random field). Yet
almost all the results in this article concern the interaction of CA with such mixing,
positive-entropy measures. Almost nothing is known about the interaction of CA
with non-mixing and/or zero-entropy measures, such as the unique stationary mea-
sures on substitution shifts, automatic shifts, regular Toeplitz shifts, quasisturmian
shifts, and many other ‘finite rank’ systems. In particular:

(a) The invariant measures discussed in §2 all have nonzero entropy [see, however,
Example 4B.3(c)]. Are there any nontrivial zero-entropy measures for interest-
ing CA?

(b) The results of §3A all concern the asymptotic randomization of initial measures
with nonzero entropy, except for Remark 3A.6(c). Are there similar results for
zero-entropy measures?

(c) Zero-entropy systems often have an appealing combinatorial description via
cutting-and-stacking constructions, Bratteli diagrams, or finite state machines.
Likewise, CA admit a combinatorial description (via local rules). How do these
combinatorial descriptions interact?

3. As we saw in §2G, and also in Propositions 3B.7-3B.15, emergent defect dynamics
can be a powerful tool for analyzing the measurable dynamics of CA. Defects in
one-dimensional CA generally act like ‘particles’, and their ‘kinematics’ is fairly well-
understood. However, in higher dimensions, defects can be much more topologically
complicated (e.g. they can look like curves or surfaces), and their evolution in time
is totally mysterious. Can we develop a theory of multidimensional defect dynamics?

4. Almost all the results about mixing and ergodicity in §4A are for one-dimensional
(mostly permutative) CA and for the uniform measure on AZ. Can similar results be
obtaned for other CA and/or measures on AZ? What about CA in AZD

for D ≥ 2?
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5. Let µ be a (Φ, σ)-invariant measure on AM. Proposition 4B.2 suggests an intrigu-
ing correspondence between certain spectral properties (namely, weak mixing and
discrete spectrum) for the system (AM, µ; σ) and those for the system (AM, µ; Φ).
Does a similar correspondence hold for other spectral properties, such as continuous
spectrum, Lebesgue spectral type, spectral multiplicity, rigidity, or mild mixing?

6. Let X ∈ AZD+1
be a subshift admitting an expansive D-plane P ⊂ RD+1. As discussed

in §5C, if we regard ZD+1 as ‘spacetime’, then we can treat P as a ‘space’, and a
transversal direction as ‘time’. Indeed, if P is spanned by rational vectors, then the
Curtis-Hedlund-Lyndon theorem implies that X is isomorphic to the history shift of
some invertible Φ ∈ CA(AZD

) acting on some Φ-invariant subshift Y ⊆ AZD

(where
we embed ZD in P). If P is irrational, then this is not the case; however, X still seems
very much like the history shift of a spatially distributed symbolic dynamical system,
closely analogous to a CA, except with a continually fluctuating ‘spatial distribution’
of state information, and perhaps with occasional nonlocal interactions. For example,
Proposition 5C.5(b)[i] implies that dim(X) ≤ D, just as for a CA. How much of the
theory of invertible CA can be generalized to such systems?

I will finish with the hardest problem of all. Cellular automata are tractable mainly
because of their homogeneity: CA are embedded in a highly regular spatial geometry (i.e.
a lattice or other Cayley digraph) with the same local rule everywhere. However, many of
the most interesting spatially distributed symbolic dynamical systems are not nearly this
homogeneous. For example:

• CA are often proposed as models of spatially distributed physical systems. Yet in
many such systems (e.g. living tissues, quantum ‘foams’), the underlying geometry
is not a flat Euclidean space, but a curved manifold. A good discrete model of such
a manifold can be obtained through a Voronoi tesselation of sufficient density; a
realistic symbolic dynamical model would be a CA-like system defined on the dual
graph of this Voronoi tesselation.

• As mentioned in question #3, defects in multidimensional CA may have the geometry
of curves, surfaces, or other embedded submanifolds (possibly with varying nonzero
thickness). To model the evolution of such a defect, we could treat it as a CA-
like object whose underlying geometry is an (evolving) manifold, and whose local
rules (although partly determined by the local rule of the original CA) are spatially
heterogenous (because they are also influenced by incoming information from the
ambient ‘nondefective’ space).

• The CA-like system arising in question #6 has a D-dimensional planar geometry, but
the distribution of ‘cells’ within this plane (and, presumably, the local rules between
them) are constantly fluctuating.

More generally, any topological dynamical system on a Cantor space can be represented
as a cellular network: a CA-like system defined on an infinite digraph, with different local

55



rules at different nodes. Gromov (1999) has generalized the Garden of Eden Theorem
2A.3 to this setting [see Remark 2A.5(a)]. However, other than Gromov’s work, basically
nothing is known about such systems. Can we generalize any of the theory of cellular
automata to cellular networks? Is it possible to develop a nontrivial ergodic theory for
such systems?
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