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Epistemic social choice theory (2/18)

Suppose a group of agents wants to determine the correct answer to some
objective, factual question.
Assume all the agents have the same values or preferences.
The only conflict is over their beliefs about objective facts.
Question. Can the agents use some voting procedure reconcile their
contradictory beliefs and arrive at the ‘best’ collective decision?

Examples:

◮ Condorcet’s (1785) Jury Theorem: Under certain hypotheses, simple
majority vote is a maximum likelihood estimator (MLE) when society
must answer a yes/no question.

◮ H.P. Young (1986,1988,1995,1997): the Kemeny rule and the Borda
rule are MLEs, when society faces a preference-aggregation problem
involving more than two alternatives. (See also Conitzer and Sandholm

(2005), Conitzer et al. (2009), Xia et al (2010), and Conitzer and Xia

(2011).)
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We can distinguish between three sorts of questions:

1. A question about the best action or policy. (e.g: climate change).

◮ Group wants to maximize value of a (universally agreed) utility function.
◮ Decision should be an expected utility maximizer (EUM).

2. A question about facts, with some obvious background probability
distribution over the possible answers (e.g. weather).

◮ No utility function. ‘Background knowledge’ represented by a prior

probability distribution over the possible answers.
◮ Assume a probabilistic relationship between the correct answer and the

signals sent by voters.
◮ Use Bayes rule to compute a posterior probability distribution.
◮ Then choose the maximum a posteriori (MAP) estimator: the answer(s)

with the largest posterior probability.

3. A question about facts, with no obvious background probability
distribution. (e.g. cause of Permian-Triassic extinction)

◮ Begin with uniformly distributed prior distribution. (‘Insufficient reason’)
◮ Apply Bayes rule to identify the most likely outcome: the maximum

likelihood estimator (MLE).
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Notation: Voting rules (4/18)

◮ Let I := {1, 2, 3, . . . ,N}, represent a set of voters.

◮ Let V be the set of signals which could be sent by each voter.

◮ A profile is a list v = (v1, v2, v3, . . . , vN), which assigns a signal vi in V
to each voter i in I.

◮ Let VI be the set of all profiles.

◮ Let X be the set of alternatives available to society (e.g. possible
actions, possible answers to some question).

◮ A voting rule is a correspondence F from VI to X
For any profile v in VI , we obtain a nonempty (usually singleton)
subset F (v) ⊆ X .

Question. What voting rules can be interpreted as MLE, MAP, or EUM
procedures, given suitable assumptions about the nature of the decision
problem and the private information of each voter?
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Scoring rules: Definition and examples (5/18)

Let S be a function from I × V × X into R.
For any v in VI , let FS(v) be the set of all element(s) x in X which
maximize the sum S(1, v1, x) + S(2, v2, x) + · · · + S(N, vN , x).
This correspondence FS from VI into X is the scoring rule defined by S .
Many common voting rules are scoring rules. For example:

◮ Plurality rule: V = X . S(i , v , x) :=

{

1 if v = x ;
0 if v 6= x .

◮ Approval vote: V := {all subsets of X}. S(i , v , x) :=

{

1 if x ∈ v ;
0 if x /∈ v .

◮ Range voting: V := { all functions mapping each element of X into a
real number between 0 and 1}. S(i , v , x) := v(x).

◮ Borda rule: V := {all strict rankings of X}. S(i , v , x) := r if x is
ranked rth from the bottom according to the ranking v .

◮ Kemeny rule: V = X = { all strict rankings over A} (where A is some
set of alternatives). S(i , v , x) := # of pairs where v and x agree.



Scoring rules: Definition and examples (5/18)

Let S be a function from I × V × X into R.
For any v in VI , let FS(v) be the set of all element(s) x in X which
maximize the sum S(1, v1, x) + S(2, v2, x) + · · · + S(N, vN , x).
This correspondence FS from VI into X is the scoring rule defined by S .
Many common voting rules are scoring rules. For example:

◮ Plurality rule: V = X . S(i , v , x) :=

{

1 if v = x ;
0 if v 6= x .

◮ Approval vote: V := {all subsets of X}. S(i , v , x) :=

{

1 if x ∈ v ;
0 if x /∈ v .

◮ Range voting: V := { all functions mapping each element of X into a
real number between 0 and 1}. S(i , v , x) := v(x).

◮ Borda rule: V := {all strict rankings of X}. S(i , v , x) := r if x is
ranked rth from the bottom according to the ranking v .

◮ Kemeny rule: V = X = { all strict rankings over A} (where A is some
set of alternatives). S(i , v , x) := # of pairs where v and x agree.



Scoring rules: Definition and examples (5/18)

Let S be a function from I × V × X into R.
For any v in VI , let FS(v) be the set of all element(s) x in X which
maximize the sum S(1, v1, x) + S(2, v2, x) + · · · + S(N, vN , x).
This correspondence FS from VI into X is the scoring rule defined by S .
Many common voting rules are scoring rules. For example:

◮ Plurality rule: V = X . S(i , v , x) :=

{

1 if v = x ;
0 if v 6= x .

◮ Approval vote: V := {all subsets of X}. S(i , v , x) :=

{

1 if x ∈ v ;
0 if x /∈ v .

◮ Range voting: V := { all functions mapping each element of X into a
real number between 0 and 1}. S(i , v , x) := v(x).

◮ Borda rule: V := {all strict rankings of X}. S(i , v , x) := r if x is
ranked rth from the bottom according to the ranking v .

◮ Kemeny rule: V = X = { all strict rankings over A} (where A is some
set of alternatives). S(i , v , x) := # of pairs where v and x agree.



Scoring rules: Definition and examples (5/18)

Let S be a function from I × V × X into R.
For any v in VI , let FS(v) be the set of all element(s) x in X which
maximize the sum S(1, v1, x) + S(2, v2, x) + · · · + S(N, vN , x).
This correspondence FS from VI into X is the scoring rule defined by S .
Many common voting rules are scoring rules. For example:

◮ Plurality rule: V = X . S(i , v , x) :=

{

1 if v = x ;
0 if v 6= x .

◮ Approval vote: V := {all subsets of X}. S(i , v , x) :=

{

1 if x ∈ v ;
0 if x /∈ v .

◮ Range voting: V := { all functions mapping each element of X into a
real number between 0 and 1}. S(i , v , x) := v(x).

◮ Borda rule: V := {all strict rankings of X}. S(i , v , x) := r if x is
ranked rth from the bottom according to the ranking v .

◮ Kemeny rule: V = X = { all strict rankings over A} (where A is some
set of alternatives). S(i , v , x) := # of pairs where v and x agree.



Scoring rules: Definition and examples (5/18)

Let S be a function from I × V × X into R.
For any v in VI , let FS(v) be the set of all element(s) x in X which
maximize the sum S(1, v1, x) + S(2, v2, x) + · · · + S(N, vN , x).
This correspondence FS from VI into X is the scoring rule defined by S .
Many common voting rules are scoring rules. For example:

◮ Plurality rule: V = X . S(i , v , x) :=

{

1 if v = x ;
0 if v 6= x .

◮ Approval vote: V := {all subsets of X}. S(i , v , x) :=

{

1 if x ∈ v ;
0 if x /∈ v .

◮ Range voting: V := { all functions mapping each element of X into a
real number between 0 and 1}. S(i , v , x) := v(x).

◮ Borda rule: V := {all strict rankings of X}. S(i , v , x) := r if x is
ranked rth from the bottom according to the ranking v .

◮ Kemeny rule: V = X = { all strict rankings over A} (where A is some
set of alternatives). S(i , v , x) := # of pairs where v and x agree.



Scoring rules: Definition and examples (5/18)

Let S be a function from I × V × X into R.
For any v in VI , let FS(v) be the set of all element(s) x in X which
maximize the sum S(1, v1, x) + S(2, v2, x) + · · · + S(N, vN , x).
This correspondence FS from VI into X is the scoring rule defined by S .
Many common voting rules are scoring rules. For example:

◮ Plurality rule: V = X . S(i , v , x) :=

{

1 if v = x ;
0 if v 6= x .

◮ Approval vote: V := {all subsets of X}. S(i , v , x) :=

{

1 if x ∈ v ;
0 if x /∈ v .

◮ Range voting: V := { all functions mapping each element of X into a
real number between 0 and 1}. S(i , v , x) := v(x).

◮ Borda rule: V := {all strict rankings of X}. S(i , v , x) := r if x is
ranked rth from the bottom according to the ranking v .

◮ Kemeny rule: V = X = { all strict rankings over A} (where A is some
set of alternatives). S(i , v , x) := # of pairs where v and x agree.



Scoring rules: Definition and examples (5/18)

Let S be a function from I × V × X into R.
For any v in VI , let FS(v) be the set of all element(s) x in X which
maximize the sum S(1, v1, x) + S(2, v2, x) + · · · + S(N, vN , x).
This correspondence FS from VI into X is the scoring rule defined by S .
Many common voting rules are scoring rules. For example:

◮ Plurality rule: V = X . S(i , v , x) :=

{

1 if v = x ;
0 if v 6= x .

◮ Approval vote: V := {all subsets of X}. S(i , v , x) :=

{

1 if x ∈ v ;
0 if x /∈ v .

◮ Range voting: V := { all functions mapping each element of X into a
real number between 0 and 1}. S(i , v , x) := v(x).

◮ Borda rule: V := {all strict rankings of X}. S(i , v , x) := r if x is
ranked rth from the bottom according to the ranking v .

◮ Kemeny rule: V = X = { all strict rankings over A} (where A is some
set of alternatives). S(i , v , x) := # of pairs where v and x agree.



Scoring rules: Definition and examples (5/18)

Let S be a function from I × V × X into R.
For any v in VI , let FS(v) be the set of all element(s) x in X which
maximize the sum S(1, v1, x) + S(2, v2, x) + · · · + S(N, vN , x).
This correspondence FS from VI into X is the scoring rule defined by S .
Many common voting rules are scoring rules. For example:

◮ Plurality rule: V = X . S(i , v , x) :=

{

1 if v = x ;
0 if v 6= x .

◮ Approval vote: V := {all subsets of X}. S(i , v , x) :=

{

1 if x ∈ v ;
0 if x /∈ v .

◮ Range voting: V := { all functions mapping each element of X into a
real number between 0 and 1}. S(i , v , x) := v(x).

◮ Borda rule: V := {all strict rankings of X}. S(i , v , x) := r if x is
ranked rth from the bottom according to the ranking v .

◮ Kemeny rule: V = X = { all strict rankings over A} (where A is some
set of alternatives). S(i , v , x) := # of pairs where v and x agree.



Scoring rules: Definition and examples (5/18)

Let S be a function from I × V × X into R.
For any v in VI , let FS(v) be the set of all element(s) x in X which
maximize the sum S(1, v1, x) + S(2, v2, x) + · · · + S(N, vN , x).
This correspondence FS from VI into X is the scoring rule defined by S .
Many common voting rules are scoring rules. For example:

◮ Plurality rule: V = X . S(i , v , x) :=

{

1 if v = x ;
0 if v 6= x .

◮ Approval vote: V := {all subsets of X}. S(i , v , x) :=

{

1 if x ∈ v ;
0 if x /∈ v .

◮ Range voting: V := { all functions mapping each element of X into a
real number between 0 and 1}. S(i , v , x) := v(x).

◮ Borda rule: V := {all strict rankings of X}. S(i , v , x) := r if x is
ranked rth from the bottom according to the ranking v .

◮ Kemeny rule: V = X = { all strict rankings over A} (where A is some
set of alternatives). S(i , v , x) := # of pairs where v and x agree.



Scoring rules: Anonymity and vetos (6/18)

◮ All of these scoring rules are anonymous: S(i , v , x) = S(j , v , x) for all
i and j in I, all v in V, and all x in X .

◮ Thus, all voters have exactly the same “weight”.

◮ A non-anonymous scoring rule is Weighted plurality rule.

Now V = X , and S(i , v , x) :=

{

wi if v = x ;
0 if v 6= x .

(Here, wi is the weight of voter i).

◮ If S(i , v , x) = −∞ for some i in I, v in V and x in X , then voter i

can effectively “veto” the choice x by sending the signal v .

◮ A rule has no vetos if this is never the case.

◮ All the scoring rules described above have no vetos.
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Maximum a posteriori estimators (7/18)

Let X represent a set of possible “states of nature”. The true state is
unknown. Specify a prior probability distribution over X .
Suppose that each voter has partial information about the true state, and
this determines the way she votes.
For each i in I and x in X , specify a probability distribution over V (the
error model), which describes the sort of signal which voter i is likely to
send if the true state of nature is x .
Assume that the signals of different voters are conditionally independent
random variables, for any state of nature.
A scenario is a combination of a prior and an error model.
This scenario is anonymous if all voters are equally competent, and receive
the same quantity and quality of information (i.e. for any x in X , we have
the same probability distribution on V for every i in I).
If the conditional probability of voter i sending signal v is zero, given state
of nature x , then the scenario says certain events are “impossible”.
If this never occurs, for any i in I, v in V, and x in X , then we say the
scenario has no impossibilities.
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MAP rationalizability (8/18)

Given any scenario C, and any profile v in VI , we can use Bayes rule to
compute the posterior distribution over X , conditional on v.
The maximum a posteriori estimator determined by C and v is the set
MAP(C, v) := {element(s) of X which have maximal probability in this
posterior distribution}. (This is MLE if we use the uniform prior.)
A voting rule F is MAP-rationalizable if there exists some scenario C such
that F (v) = MAP(C, v) for all v in VI .
F is anonymously MAP-rationalizable if the scenario C is anonymous.

Theorem 1 (Pivato, 2011): A voting rule is MAP-rationalizable if and

only if it is a scoring rule.

Furthermore, it is anonymously MAP-rationalizable if and only if it is an

anonymous scoring rule.

Finally, it has no vetos if and only if the corresponding scenario has no

impossibilities.

Example: The (weighted) plurality, Borda, Kemeny, approval, and
range-voting rules are all MAP-rationalizable.
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Metric rules (9/18)

The fact that voting rule F can be rationalized by some scenario C does not
imply that C is a realistic description of the epistemic problem facing society.
What would a realistic description look like?

Often X has a sort of “geometry”: some elements of X are “close
together” (i.e. similar), while other elements are “far apart” (dissimilar).
Suppose each voter makes a guess of the correct answer in X (i.e. V = X ),
and her guess is more likely to be close to the right answer than far away.
Formally: there is a (decreasing) real-valued function Ei such that, if the
right answer is x , then for any v in X , the probability that voter i guesses v

is given by Ei [d(x , v)] (where d(x , v) = “distance” between x and v).
This is called a metric error model.

The scoring rule described in Theorem 1 is then a metric voting rule: for
each i in I and x and v in X , the value of S(i , v , x) is a decreasing
function of the distance between v and x .
The prior probability distribution on X translates into a “bias function” β,
and the rule chooses all x in X which maximize the sum

β(x) + S(1, v1, x) + S(2, v2, x) + .... + S(N, vN , x).
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The prior probability distribution on X translates into a “bias function” β,
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The median rule (10/18)

Suppose the function Ei is exponentially decaying.
(i.e. Ei (r) = ai/br

i
for some constants ai , bi > 0).

Then (for suitable prior probability distribution) the MAP is the weighted

median rule. For any profile v in VI , this rule picks the element(s) of X
which minimize the sum

w1 d(x , v1) + w2 d(x , v2) + · · · + wN d(x , vN),

where w1, w2, . . . ,wN are nonnegative “weights” assigned to the voters.

The rule is anonymous if and only if a1 = a2 = · · · = aN and
b1 = b2 = · · · = bN (or equivalently, w1 = w2 = · · · = wN = 1). This yields
the (unweighted) median rule, which minimizes d(x , v1) + · · · + d(x , vN).

The space X is called homogeneous if the geometry of X “looks the same”
around each x in X . (Example: a sphere or a plane.)
In this case, the median rule is the MLE for any anonymous exponential
error model (i.e. Ei (r) = a/br , for all i in I, for some constants a, b ≥ 0 which

are independent of i).
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Examples of median rule (11/18)

Kemeny rule. Let A be a set of alternatives (e.g. presidential candidates)
Let X := {all preference relations over A}.
For any x and y in X , let d(x , y) := # of pairs in A on which the orders of
x and y disagree (this is the Kendall metric).
Then (X , d) is a homogeneous space.
The median rule on X is the Kemeny rule

This rule is the MLE for any anonymous exponential error model on X ;
this was first noted by Young (1986,1988,1995,1997).

Committee selection. Let A be a set of possible candidates for some
committee. Let n ≤ |A|.
Let X := {all committees comprised of exactly n candidates}
For all x and y in X , let d(x , y) := # of candidates on which x and y

disagree.
Then (X , d) is a homogeneous space. Thus, again, the median rule is the
MLE for any anonymous exponential error model on X .
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Gaussian errors and the averaging rule (12/18)

Let X be a homogeneous subset of R
M , with standard Euclidean distance.

Consider an anonymous Gaussian error model on X (i.e. Ei (r) = 1
C

exp
(

−r
2

2σ
2

)

for all i in I, for some constants σ,C ≥ 0 which are independent of i).

The corresponding MLE is the metric voting rule where
S(i , v , x) = −d(x , v)2 for all i in I, v in V, and x in X .
This just chooses the element(s) of X which are closest to the average vote
v1 + v2 + · · · + vN

N
(an M-dimensional vector in R

M).

Example. Let A be a set of N social alternatives.
A ranking of A is a bijection from A into the set {1, 2, ...,N}. Regard such
a ranking as a vector in R

A.
Let X be the set of all such rankings (a subset of R

A). Then X is
homogeneous.
In this case, the averaging rule (i.e. the MLE for any Gaussian error model
on the space of rankings) is the Borda rule.
(Variations of this setup yield MLE-rationalizations of other “ranking”
rules, including the plurality rule and anti-plurality rule.)
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Quasiutilitarian rules as expected utility maximizers (13/18)

In a quasiutilitarian rule, each voter assigns a numerical “score” to each
social alternative. She can give the same score to two or more alternatives
(unlike Borda or (anti)plurality).
The rule chooses alternative with the highest average score. For example:

◮ Classical utilitarianism (CU) allows the score to be any real number.

◮ Range voting allows score to be any number between 0 and 1.

◮ Approval voting requires the score to be either 0 or 1.

Suppose that the score a voter gives to an alternative is her estimate of the
“social utility” of that alternative. Each voter’s estimates could be
wrong. But under reasonable assumptions about the voters, one can show:

If the average score of alternative a is higher than the average

score of alternative b, then the conditionally expected utility of a,

given this information, is higher than the conditionally expected

utility of b.

It follows that any quasiutilitarian rule is an expected utility maximizer.
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Problems (14/18)

As we’ve seen, many voting rules can be “rationalized” as MAP, MLE, or
EUM rules for some prior probability distribution and error model.
But there are some foundational problems with this entire program.

1. It begins with a familiar voting rule, and then “rationalizes” it with
some probabilistic scenario, after the fact.
But this is backwards. One should begin by specifying a prior
probability distribution and an error model for the voters which
captures the underlying epistemic problem as realistically as possible.
Then compute the MLE/MAP/EUM for this model. This may or may
not end up being a familiar voting rule.

2. It assumes that the errors of different voters are independent random
variables.
But this is totally unrealistic. Voters come from similar cultural and
educational backgrounds, draw upon the same public (mis)information,
and communicate with each another. (Dietrich & Spiekerman, 2011).
Also: the desire to conform or avoid conflict may lead to “herding” or
“groupthink”.
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Problems (15/18)

As we’ve seen, many voting rules can be “rationalized” as MAP, MLE, or
EUM rules for some prior probability distribution and error model.
But there are some foundational problems with this entire program.

3. It neglects strategic dishonesty on the part of the voters.
But even if all voters have same objectives, they may still have
incentives to exaggerate, or suppress countervailing evidence, to
counteract what they regard as the bias or misperceptions of the other
voters (Austen-Smith & Bank, 1996, etc.)

4. It assumes that it is possible to accurately specify the prior probability
distribution and the error model of the voters.
But in most practical problems (e.g. recent debates over climate
change and macroeconomics), this is not realistic.
Some rationalizations (e.g. the Condorcet Jury Theorem, or my
EUM-rationalization of quasiutilitarian rules) are fairly ‘robust’ to
misspecification of the error model.
However, others (e.g. the MAP-rationalization of a scoring rule) are
not.
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Interestingly, scientists do not resolve disagreements by “voting”.

Instead, they deliberate, scrutinize their theories, and zero in on those gaps
in the empirical data which allow the dissensus to even exist, and fill these
gaps as efficiently as possible (through new experiments).

This deliberation and empirical exploration continues until little or no
dissensus remains, at which point voting is no longer necessary.
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gaps as efficiently as possible (through new experiments).

This deliberation and empirical exploration continues until little or no
dissensus remains, at which point voting is no longer necessary.



Thank you.

These presentation slides are available at

<http://euclid.trentu.ca/pivato/Research/episteme2011.pdf>

The paper is available at

<http://euclid.trentu.ca/pivato/Research/stat epist.pdf>

A longer and more technical version is available at

<http://mpra.ub.uni-muenchen.de/30292>
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