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A cellular automaton (CA) exhibits ‘emergent defect dynamics’ (EDD)
if generic initial conditions rapidly coalesce into large, homogeneous
‘domains’ (exhibiting some spatial pattern) separated by moving ‘defects’.
There are many known examples of EDD in one-dimensional CA, but not
in higher dimensions. We describe the results of an automated search for
two-dimensional CA exhibiting EDD. We found a plethora of examples
of EDD, but we also found that the proportion of CA with EDD declines
rapidly with increasing neighbourhood size.
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A well-known phenomenon in one-dimensional cellular automata (CA) is the
emergence of homogeneous ‘domains’—each exhibiting some regular spa-
tial pattern—separated by defects (or ‘domain boundaries’ or ‘kinks’) which
evolve and propagate over time, and occasionally collide. This emergent
defect dynamics (EDD) is clearly visible, for example, in elementary cellular
automata #18, #22, #54, #62, #110, and #184. EDD in one-dimensional CAhas
been studied both empirically [1–5,11] and theoretically [6,8–10,13–16,19].
Recently, we have begun to develop a theory of EDD in multidimensional
CA [18, 20], but this theory is somewhat hampered by the dearth of known
multidimensional examples.

This paper describes the results of an automated search for EDD in two-
dimensional CA on the alphabet A := {0, 1}. We unearthed many CA
with complex and fascinating EDD, estimated the prevalence of EDD in
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various ‘spaces’ of two-dimensional CA, and obtained some statistics about
the qualitative properties of the EDD.

Domains and Defects. Heuristically, ‘domains’ and ‘defects’ are large-scale,
emergent structures which are visible in the spacetime diagrams of CA.
However, to study defects rigorously, we need a precise definition. Follow-
ing [18–20], we define defects relative to some reference subshift. A subshift
is a closed, shift-invariant subset X ⊂ AZ

D
. For example, the support of a

stationary Markov chain is a subshift of AZ (called a Markov shift). Any
spatially periodic pattern (e.g. checkerboard, stripes, etc.) corresponds to a
periodic subshift of AZ

2
. More generally, almost anything that might be called

‘spatial order’ corresponds to some subshift; see [12, 17].
If X ⊂ AZ

D
is a subshift, then for any finite K ⊂ Z

D , let XK :=
{xK ; x ∈ X} be the set of all X-admissible K-blocks. If z ∈ Z

D , then
XK = XK+z (because X is shift-invariant). We say X is a subshift of finite
type (SFT) if there is some finite K such that X = {a ∈ AZ

D
; aK+z ∈

XK, ∀z ∈ Z
D}. For example, if the elements of A are ‘Wang tiles’ (square

tiles with edge-matching constraints), then the set of admissible ‘tilings’ of Z
2

by A is an SFT of AZ
2
. If � : AZ

D−→AZ
D

is any CA, then the fixed-point set
of � is an SFT of AZ

D
, as is the set of P -periodic points (for any fixed P ∈ N).

If a ∈ AZ
D

, then the X-admissible region of a is A := {z ∈ Z
D;

aK+z ∈ XK}; this is the part of a which is covered by the ‘homogeneous
domains’ exhibiting the ‘regular pattern’ encoded in X. The complement
Z

D \A is the defective part of a. We can thus precisely define the ‘defects’ in
a, relative to any subshift X of finite type. (This definition can also be extended
to subshifts not of finite type, at the cost of considerable technical complexity;
see [18,20] for details). The reference subshift X is arbitrary, but the ‘correct’
choice is usually obvious from context: loosely speaking, X should be the
smallest subshift whose regular domains cover ‘most’ of the configuration a.

Search Methodology. Our search method was roughly as follows:

1. Let L be large (e.g. L := 1024), and let L := Z/L × Z/L be an L × L

square lattice with toroidal boundary conditions. Let a ∈ AL be a
random initial condition.

2. Let � : AL−→AL be a randomly generated 2-dimensional CA.

3. Compute b := �T (a) for some large T (e.g. T := 100)

4. Let ρ be the empirical probability distribution of k × k blocks in b
(where e.g. k := 3).

5. Examine ρ for the ‘statistical signature’ of emergent defects.

6. Isolate likely candidates and analyze their defect structure.
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Statistical signature of EDD. Let k ∈ N and let K := [0 . . . k)2 ⊂ Z
2. If

|A| = 2, then |AK| = 2k2
. For any c ∈ AK, let

ρ(c) := #{� ∈ L ; bK+� = c}
L2

(1)

be the ‘frequency’with which c appears in b := �T (a); thus, ρ : AK−→[0, 1]
is the ‘empirical’ probability distribution of K-blocks observed in b. To
detect EDD, let −N := {. . . , −3, −2, −1, 0}, and define the log-probability
histogram h : (−N)−→[0, 1] as follows:

h(−n) :=
∑

{ρ(c) ; c ∈ AK and 2−n−1 < ρ(c) ≤ 2−n}. (2)

In other words, h(−n) is the probability that a ρ-random K-block c will have
a probability ρ(c) close to 2−n.

Examples: (a) Suppose ρ is the uniform measure—i.e. ρ(c) = 2−k2
for all

c ∈ AK. Then h(−k2) = 1, and h(x) = 0 for all x �= −k2.
(b) If b is a constant configuration, then ρ is a point mass—i.e. ρ(c) = 1

for some c ∈ AK, and ρ(c′) = 0 for all other c′ ∈ AK. Then h(0) = 1, and
h(x) = 0 for all x < 0.

(c) Suppose b is a checkerboard, or a pattern of alternating stripes of width
one (vertical or horizontal). Then ρ is supported on two distinct K-blocks,
each with probability 2−1. Thus, h(−1) = 1, and h(x) = 0 for all x �= −1.

(d) Let P ⊂ Z
2 be a subgroup of index P , and suppose b is a P-periodic

pattern. Then ρ is supported on P distinct K-blocks, each with probability
1/P . Thus, h	− log2(P )
 = 1, and h(x) = 0 for all x �= 	− log2(P )
.

(e) Suppose b is a generic configuration for some stationary measure on AZ
2

with entropy η ∈ [0, 1]. If k is large enough, then the Shannon-MacMillan-
Brieman Theorem [7] says ρ(c) ≈ 2−ηk2

for roughly 2ηk2
distinct c ∈ AK,

and ρ(c′) ≈ 0 for all other c′ ∈ AK. Thus, h	−ηk2
 ≈ 1 while h(x) ≈ 0 for
all x �≈ ηk2.

In each case, h has a single ‘spike’at a particular log-probability value; this
value crudely measures the ‘complexity’ of the pattern in b. Now suppose that
b consisted mainly of this pattern, but also contained a few low-probability
‘defects’; this will slightly diminish the ‘spike’ in h, and introduce a small
‘tail’ of lower-probability events. This ‘spike and tail’ pattern is the statistical
signature of defects. However, for our automated search, we used a somewhat
simpler criterion: low entropy. The entropy of ρ is defined

η(ρ) := −
∑

c∈AK

ρ(c) · log2[ρ(c)] ≈
∞∑

n=0

nh(−n).

Thus, η(ρ) is small iff h(−n) is large for some small n ∈ N; this indicates
that large regions of b are admissible to some low-entropy (or zero-entropy)
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subshift. In practice, such a b almost always contains defects. Thus, we used
a cap η(ρ) ≤ η as a simple heuristic test for EDD. Empirically, we found
that setting η := 8.0 produced the best results (i.e. it detects all the CA which
clearly show EDD, and rejects most of the ones which don’t).�

CA search spaces. For any finite ‘neighbourhood’H ⊂ Z
2, let CA(H) be the set

of all CAon AZ
2

with a local rule φ : AH−→A. Clearly, |CA(H)| = |A||A||H|
.

Thus, if |A| = 2 and |H| = 3, then |CA(H)| = 223 = 256, but if |H| ≥ 5,
then |CA(H)| becomes astronomical. Each neighbourhood H thus determines
a ‘space’ of CA, to which we can apply our search procedure. If |H| = 3 or 4,
then it is feasible to search CA(H) exhaustively, but for larger H, it is only
feasible to search a statistically representative subset of CA(H).

We say H generates Z
2 if any z ∈ Z

2 can be written as a sum of ele-
ments in H (thus, every cell in Z

2 is eventually ‘visible’ to every other
cell). We considered all neighbourhoods H ⊆ {−1, 0, 1}2 which gener-
ated Z

2 (neglecting neighbourhoods which were duplicates under reflection
or rotation). We will indicate a neighbourhood by glyph which depicts its
shape in miniature. For example denotes the three-cell neighbourhood
{(1, 0), (0, 1), (−1, −1)}, while is the von Neumann neighbourhood and

is the Moore neighbourhood.

Log probability landscapes. Suppose we compute the log-probability his-
togram (2) for many CA in CA(H), and treat each histogram as a one-
dimensional ‘slice’ of a two-dimensional surface. We must shuffle the
histogram ‘slices’ so that they are arranged not in terms of any numerical
code representing the underlying CA, but rather, so that similar histograms
(i.e. with spikes in roughly the same locations) are placed close to one another.
The result is a rugged but surprisingly regular ‘landscape’, whose major fea-
tures correspond to clusters of CA having asymptotic measures with similar
statistical properties. These landscapes can be seen as abstract depictions of
the large-scale structure of the CA universe.

Figure 1( ) shows the ‘probability landscape’ of all 256 CA in CA( ),
obtained using k = 3. The ridge (A) at the far end is caused by 38 CA which
appear to almost-preserve the uniform measure: all the mass of the histogram
h is concentrated on y ∈ {−9, −10}, which means that ρ(c) ≈ 2−9 for
all c ∈ AK [Figure 2( A) shows a closeup of this ridge]. The ‘mountain
range’ (B) is CA which do not preserve the uniform measure, but which do
not converge rapidly to any low-entropy measure. The low ridges (C) are CA
which show some indication of of EDD, but where the asymptotic probabil-
ity measure is still quite complex. Finally, the ridges (D) in the right-hand

�We obtained more refined results (i.e. less ‘false positives’) using more multifaceted statisti-
cal criteria, but these criteria were too complicated and ad hoc to admit any simple scientific
interpretation.
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FIGURE 1
Log probability landscapes: large-scale view.
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FIGURE 2
Log probability landscapes: closeups

corner are caused by CA which unambiguously manifest EDD; the asymp-
totic probability measure is almost all supported on one or more simple
periodic background patterns, with the remaining probability supported on
defect structures. Figure 2( D) shows a closeup of region (D).

The ‘wall’ (a) in Figure 2( D) is caused by 32 nilpotent CA, which con-
verge to a constant (all-zeros or all-ones) configuration. The massif (b) is
caused by 6 CA whose asymptotic subshift X has exactly 2 elements (e.g.
2-periodic flickering between all-zeros and all-ones). The ridge (c) is about
30 CA with 4 ≤ |X| ≤ 16 (juxtapositions of checkerboards, stripes, etc.). The
low mounds (d) are caused by the low-probability defects.

Figure 1( ) shows the probability landscape generated by the 65536 ele-
ments of CA( ). The picture is very similar to the landscape of CA( );
features (A)–(D) have the same interpretation. Figure 2( D) shows a closeup
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of region (D) in Figure 1( ). The ‘wall’ (a) is caused by approximately 7400
nilpotent CA. The ‘teeth’ (b) are caused by approximately 2000 CA whose
asymptotic subshift X has cardinality 2 (e.g. flickering, cow pattern, width-
one stripes or checkerboard). The teeth (c) are caused by approximately 600
CA where 3 < |X| ≤ 8. The low mounds (d) are caused by defects.

Figure 1( ) shows the probability landscape generated from a random
sample of 100 000 out of the 4 294 967 296 elements of CA( ). The picture is
similar to the landscape for CA( ) and CA( ), but the proportion of CA with
EDD is much smaller. Finally, Figure 1( ) shows the probability landscape
of CA( ). Now |CA( )| = 229 ≈ 10154, so exhaustive coverage is out of
the question; instead this landscape was generated using a random sample
of size 70 000. The difference between Figure 1( ) and Figures 1( , ,

) is obvious: the ‘ridges’ indicating EDD are totally absent. Of the 70 000
Moore CA we tested, less than 0.01% exhibited any statistical signature of
EDD. Indeed, the pronounced ridge along the line y = −9 suggests (but does
not prove) that the vast majority of Moore CA ‘almost preserve’ the uniform
measure (or at least, its 3 × 3 marginal).

EDD vs. Neighbourhood size. Figures 1 and 2 indicate a striking phenomenon:
the proportion of CA exhibiting EDD declines sharply as the neighbourhood
size increases. This is illustrated clearly in Figure 3. Almost 70% of the CA in
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FIGURE 3
The percentage of CA(H) exhibiting η(ρ) < 8.0 (a crude test of EDD), as a function of |H|.
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CA( ) and CA( ) satisfy the criterion η(ρ) < 8.0 (upon visual inspection,
most of these exhibit visible EDD, so the ‘true’ proportion of EDD is around
45%–50% in both cases). In contrast, only 35% of CA( ) satisfy η(ρ) < 8.0
(and only 30% of CA( ) exhibit EDD); for CA with larger neighbourhoods,
the proportion is even less. The proportion of EDD in CA( ) is virtually zero.
We have no explanation for this phenomenon, but it is robust under several
variations of experimental parameters:

• Neighbourhood shape. All neighbourhoods with the same cardinality
have roughly the same proportion of EDD. In Figure 3, the separate
columns over each number n correspond to all ‘generating’ neighbour-
hoods H ⊆ {−1, 0, 1}2 with |H| = n (modulo rotations and reflections).
For example, the two columns over n = 3 correspond to and . We
arranged the columns in decreasing order of height, for clarity. There is
some variation amongst neighbourhoods of cardinality n, but it is small
compared to the difference between these and any neighbourhood of
cardinality n+1.

• Convergence time. We looked for the criterion η(ρ) < 8.0 in CA( )

and CA( ) at times T = 10, 20, . . . , 80, 90, 100, 200, 300, 400, and
500. The results are shown in Figure 4. Initially, as T ↗ 100, there is
a rapid increase in the the percent of CA with η(ρ) < 8.0; However,
after T = 100, this levels off; this strongly suggests that almost all the
convergence to EDD occurs during the first 100 iterations.

• Block size. We examined the probability distributions on A[0...k)2
for

k = 3, 4 and 5. The three curves are shown in Figure 4, and clearly
follow the same trajectory. Thus, using a large K does not seem to
increase the proportion of detected EDD.

Interfaces and Dislocations. We earlier defined defects by comparison to some
‘reference subshift’ X ⊂ AZ

D
. Many defects in b can then be understood as

manifestations of ‘global structural properties’ of b, relative to the topological
dynamical system (X, σ ) (where σ denotes the Z

D-action by shifts on X). If
X is �-invariant, then � must preserve these ‘structural properties’, so � can
neither create nor destroy defects—it can only move and combine them. The
structural properties of defects were investigated in [18, 20].

For example, suppose X = X1 � X2, where X1 and X2 are themselves
nontrivial subshifts (called transitive components of X). Then an element
of X either belongs to X1 or X2. A domain boundary in b can then separate a
X1-admissible region from a X2-admissible region, as shown in Figure 5(A);
we call this an interface. If �(X1) = X1 and �(X2) = X2, then any such
interface is preserved by � [20, Prop. 2.3].

Some structural properties can be associated with algebraic invariants. For
example, let P ⊂ Z

D be a subgroup of finite index, and suppose that X
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FIGURE 4
The percentage of CA(H) satisfying η(ρ) < 8.0 (i.e. potentially having EDD), as a function of

time. The three curves are the generated using the probability distribution on A[0...k)2
for k = 3,

4 and 5.

(A) An interface (B) A dislocation

FIGURE 5

is P-periodic—i.e. for any x ∈ X and any p ∈ P, we have σ p(x) = x.
A domain boundary in b can then separate two regions which are ‘out of
phase’ with respect to this P-periodic structure; we call this a dislocation.
To any dislocation, we can associate a displacement : a unique element in
the quotient group Z

D/P. Like an interface, a dislocation is �-invariant;
furthermore, its displacement is constant over time. If two dislocations collide,
then we simply add their displacements together in Z

D/P; see [20, § 3.1].
For example, if X ⊂ AZ

2
is the checkerboard, then P is the subgroup of

all ‘diagonal’ shifts, generated by (1, 1) and (1, −1). Thus, Z
2/P ∼= Z/2; this
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# of periodic transitive components in EDD background pattern

CA 1 2 3 4 5 6

40 15.6% 25 9.77% 0 0% 3 1.17% 5 1.95% 0 0%

10790 16.5% 202 0.31% 8 0.012% 14 0.021% 6 0.0091% 12 0.018%
∗ 3370 11.2% 63 0.21% 7 0.023% 0 0% 0 0% 0 0%

TABLE 1
The number (and percent) of CA exhibiting EDD and a background pattern with some
number of periodic transitive components.
(∗) Statistics generated from a sample of 30000 vN CA.

reflects the fact that there are only two distinct ‘phases’ of the checkerboard.
A dislocation in a checkerboard configuration is a domain boundary between
one phase and the other, as in Figure 5(B).

Given a configuration b ∈ AL, it is possible to automatically identify
the smallest subshift X such that ‘most’ of b is X-admissible. We can then
count the number of periodic transitive components of X; if there are N tran-
sitive components, then there are N(N − 1)/2 distinct types of interfaces.
Table 1 presents this data for all members of CA( ) and CA( ), as well as a
representative sample of CA( ).

Filtering images to reveal defects. Let b := �T (a) and K := [0 . . . k)2,
and let ρ be as in Eqn. (1). For all � ∈ L, let g� := ρ(b�+K); this yields
a configuration g ∈ [0, 1]L. If we visualize g as a ‘greyscale’ pixel-map
image, then regular domains in b will appear as light grey (high probability)
areas, whereas defects will appear as dark grey (low probability) regions.
Figure 6 shows some typical examples of this procedure. Furthermore, the
interfaces and/or dislocations in b can be revealed by automatically colour-
coding each connected component of the light-grey region according to its
transitive component and/or phase; animations generated using this process
are available at http://xaravve.trentu.ca/DefectAnims.

A partial catalogue of EDD CA. Clearly it is not possible (or very useful)
here to list the many thousands of CA we have found which exhibit EDD.
Furthermore, such a list would be very incomplete, both due to our inherently
imprecise heuristics for identifying EDD, and the smallness of our dataset
compared to the vast CA-spaces they sample.

It is possible to give a fairly complete catalogue of EDD in CA( ) (which
has only 256 members). Space constraints make it impossible to provide
detailed information about each EDD CA; instead we have crudely classi-
fied them according to the number of distinct periodic patterns which they
manifest. CA with one pattern exhibit dislocation defects; CA with two or
more patterns exhibit both dislocations and interfaces. We only list CA with
‘interesting’ dynamics (e.g. not nilpotent, not eventually fixed/periodic).
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6284
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FIGURE 6
Left: Raw image. Right: Probabilistically filtered image, revealing defects.
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We encode each CA using a Wolfram-style number, as follows: First the
cells with coordinates (i, j) in the neighbourhood are numbered in increasing
order of (3j+i). Thus, the cells (−1, −1), (1, 0), and (0, 1) of are numbered

0, 1, and 2, respectively. This maps {0, 1} −→{0, 1}{0,1,2} ∼= {0, . . . , 7} by

translating each element of {0, 1} into a 3-bit binary number in the obvious

way. Thus, any local rule (a map A −→{0, 1}) is translated into a map
{0, . . . , 7}−→{0, 1}, which is then treated as an 8-bit binary number, between
0 and 255. By translating this numerical code back into a local rule, it is easy
to simulate the following CA on a computer and observe their dynamics.

Two patterns. 11, 13, 14, 31, 35, 43, 47, 49, 50, 55, 59, 69, 77, 79, 81,
84, 87, 93, 113, 115, 117, 142, 143, 178, 179, 212, 213.

Four patterns. 232.

Five patterns. 62, 94, 118, 131, 133, 145.

For CA( ) (with 65536 members), we will provide only a short list of
interesting examples.

One pattern.

Checkerboard. 7, 71, 199, 263, 311, 327, 423, 455, 519, 567, 583,
711, 775, 791, 807, 823, 839, 855.

Stripes of width 2. 61, 93, 110, 125, 126, 234, 281, 29, 317, 345,
385, 403, 46, 554, 574, 61, 618, 62, 642, 4714.

Stripes of width 3. 537, 601, 6042.

Two patterns. 119, 407, 679.

Checkerboard vs. Irregular. 55.

Three patterns. 599.

Four patterns. 359.

Five patterns. 295, 535.

For larger CA spaces, we are somewhat like astronomers trying to cata-
logue and classify the stars in the sky. Compiling such a catalogue will be
a fascinating but endless project.

Conclusions. Emergent defect dynamics seems to be ubiquitous in two-
dimensional CA. Even in the simplest classes of two-dimensional CA, our
automated search uncovered a menagerie of examples. This preliminary
exploration raises many questions.

• We have surveyed only 2-dimensional boolean CA (i.e. A = {0, 1}).
What is the prevalence of EDD in CAwith larger alphabets? What about
higher dimensions?
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• Why is EDD common in CA with smaller neighbourhoods (e.g.
and ), yet very rare in CA with larger neighbhourhoods (e.g. )?

• In many of the CAwe discovered, the defects exhibit complex emergent
behaviour. For example, domain boundaries often move and evolve in
complex ways. Is it possible to develop a mathematical description of
domain boundary motion?

• In CAwhich converge to a spatially periodic structure, we automatically
identified and classified the resulting dislocations. However, most CA
with EDD do not converge to a simple spatially periodic structure. The
theory of dislocations in [20] also applies to subshifts with quasiperiodic
structure (e.g. Sturmian shifts, substitution shifts, Toeplitz shifts, etc.);
however, we presently have no method to automatically identify such
quasiperiodic structures and the corresponding dislocations.

• The theory in [18] describes an entirely different class of ‘(co)homo-
logical defects’, which can exist even without spatially periodic
structure. Theoretically, these defects can have quite complex proper-
ties and interactions. However, as yet, we have no algorithm to identify
and classify such defects.
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