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Cellular Automata

CA are the ‘discrete analog’ of partial differential equations. They are
spatially distributed dynamical systems whose dynamics are driven by
local interactions governed by translationally equivariant rules.

e Space is a lattice Z” (for D > 1).

e The local state at each point in the lattice is an element of a finite

alphabet, e.g. A = {0, 1}.
e The global state is a Z"”-indexed configuration a : Z” —A.

The space of such configurations is denoted AZ”.

A generic element of AZ” will be denoted by a ;= [aZ]ZEzD} :

e The evolution is governed by a map P : AZ” —>AZD, computed by
applying a ‘local rule’ ¢ at every point in space.

Neighbourhood:
K C ZP (finite set)

Local rule: ¢: AX—A

This defines new configuration b := |:bz‘z€ZD:| :

The CA induced by ¢ is function ®: A% > defined: d(a) :=b.
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_ Example: Elementary Cellular Automaton #62
Let D=1 K:={-1,0,1}, and A :={0,1}.
Define ¢gy : {0, 117101 10,1} by:

</>62(O 0,1) = 1, ¢6(0,0,0) = 0;

2(07190) 1; ¢62(17170)
2(07171) - 17 ¢62(17171) — 07
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Such a nearest-neighbour CA on {0, 1}Z is called an Elementary Cel-
lular Automaton. Each ECA is described by an 8-bit binary number
(i.e. a number between 0 and 255) as follows:

If N = ng+2n;+2*n9+23n3+ 24+ 2°n5+2%n6 +2'n7 € [0...255)
then oy(ag,ar,as) := ng, where k = ag+ 2a; +4as € [0...7].

For example, the CA here is ECA#62, because 2! 422 +234244-2° = 62.
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Emergent Defect Dynamics in ECA#184
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Emergent Defect Dynamics in ECA#54
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Emergent Defect Dynamlcs in ECA#18

Invariant sofic subshift: @ = @ = @ (the Odd Shift).

Defects are ‘phase slips’:

[...00 010001 0L Q0000000 0000000000 1000100000 10...].

TV
orange even # of zeroes blue



Defect Particle ‘Chemistry’
ECA #184

1T+8—a Yty =0 S ol Bl

Empirical Work: e P. Grassberger [1983, 1984].

e Steven Wolfram [1983-2005]. (Mainly ECA #110).
e 5. Wolfram and Doug Lind [1986]. (Classified defects of ECA #110).
e N. Boccara, J. Naser, M. Rogers [1991]. (ECAs 18, 54, 62, 184).

e James Crutchfield and James Hanson’s ‘Computational Mechanics’
[1992-2001]. (Also Cosma Shalizi, Wim Hordijk, Melanie Mitchell).

o Harold V. McIntosh [1999, 2000].
Theoretical Work: e Doug Lind [1984] conjectured:
(i) Defects in ECA#18 perform random walks.

(ii) Defect density decays to zero through annihilations. Thus,
ECA#18 converges ‘in measure’ to the ‘odd’ sofic shift 1) = (0) S (0).

e Kari Eloranta [1993-1995] proved Lind’s conjecture (i); studied
quasirandom defect motion in ‘partially permutive” CA.

e Petr Kurka and Alejandro Maass [2000, 2002] studied CA convergence
to limit sets through ‘defect annihilation’. Kurka [2003] proved Lind’s
conjecture (ii).

e S. Wolfram and Matthew Cook [2002, 2004]: ECA #110 is computa-
tionally universal (used ‘defect physics’ to engineer universal computer).



Questions:

o What is a ‘defect’? What is a ‘reqular background pattern’?
e s there an ‘algebraic structure’ governing defect ‘chemistry’?

o Why do defects ‘persist’ over time instead of disappearing? Is
this related to aforementioned ‘algebraic structure’?

e What is the ‘kinematics’ by which defects propagate through space?

A subshift is a subset 21 C AZY of configurations, defined by stipulating
which ‘local patterns” may or may not occur around each point in Z%.

Topological Markov Shifts: (2)

Let D = 1. Let A := the vertices of a

directed graph. A sequence a € AZ C A= {0,1,2}
is admissible iff it describes an infinite

directed path through the graph. O

a= [..0,1,2,1,2,0,0,0,0,1,2,0,0,1,2,1,2,1,2,0,0,...]

Sofic Shift: Let D = 1. Like a topological Markov shift, but now several
vertices might be labelled with the same letter in A.

Example: @ = @ = @ (the Odd Shift from ECA#18).

[...00 01 0001 01 00 00 00 00 01 00 00 00 00 01 0100 01 00 00 O1. . .].
D

Let 2,):= set of YA-admissible ‘local patterns’ seen in B(r):= [—r...7]
A configuration a € AZ” is defective if there are points in Z” where
the local pattern in a is inadmissible —i.e. not in 2. These points are
called defects. Let D(a) C Z” be the set of these ‘defect points’ in a.

Let @ : AZ”— A%” be a CA. We say 2 is P-invariant if P(A) C A
Empirically, if a € AZ” has defects, then so does ®(a).

o~

Let 2:= {configurations with ‘“finite’ defects}. Then ®(2) C .
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Wang tilings

Let D = 2. Let A := set of square tiles, with notches on their edges
which dictate how the tiles can be assembled. These edge-matching
constraints determine a subshift 2 C AZQ, called a Wang tiling.

Checkerboard

Domino Lozenge Tiling Tiling
Tiling

eSS S ESESESENEY
ol —
“t "’ “; o" "’ “; “; “t “t “t “t
L\ N—Y
v, RN R RURAN R4 R4 R4 R4
e A e A ALY
v, v RAESATA SR
RIRANR RS AL AL T
Square Ice )
Tiling A SN G O S S R S A S A G A
EUR ARSI SN CU Tt t

Remark: Wang tilings and topological Markov shifts are subshifts
of finite type (SFTs), meaning they are determined entirely by ‘local
constraints’. Sofic shifts are a broader class, which may have ‘nonlocal’
constraints. (Defect theory more complicated, but still possible.)

Generalization to Z”: Idea: A = set of ‘atoms’, with certain admis-
sible ‘chemical bonds’™ between them. Thus, an admissible configuration
corresponds to a ‘crystalline solid’. Defects are ‘flaws’ in crystal structure.
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Questions:

e [s there an ‘algebraic structure’ governing defect ‘chemistry’?

e Why do defects ‘persist’ over time instead of disappearing? Is
this related to aforementioned ‘algebraic structure’?

o What is the ‘kinematics’ by which defects propagate through space?

Formalism: Fix D € N. For any r > 0, let B(r) := [—r..r]" c ZP.
Fix r > 0. Let 2, C AB) be a set of of admissible r-blocks.

The subshift of finite type (SF'T) determined by 2, is the set
20 = {a c AZD , Az B(r) € Q[(r), Vze ZD}
For any R > 0, let 2 ) be the projection of 2l to ABE)

Ifaec AZ” and z € ZP then a is defective at z if a, () & A
The defect set of a is the set D(a) of all such z.

Let @ : AZ”— A%” be a CA. We say 2 is P-invariant if P(A) C A
Empirically, if a € AZ” has defects, then so does ®(a).
We say a is finitely defectiveif, VR > 0, 3z € Z” with ap(z,p) € A(r).

Idea: a may have infinitely large defects, but a also has mﬁmtely large
‘nondefective’ regions. Let 2 := {finitely defective a € AZ"}. (A C A)

Lemma: If () C A, then $(A) C A

Also, ifa € A and a' = d(a), then the any defects in &’ are ‘close’
to corresponding defects in a. O

The Fine Print: To extend the definition of ‘defect’ to other subshifts (not of finite type), it

is necessary to introduce a ‘detection range’ R > 0. We must then talk about ‘defects of range R’.
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Domain Boundaries

Let G(a) = {z € Z" ; ais not defective at z}. Let G(a) C R” be
the union of all unit cubes whose corner vertices are all in G(a).

The defect in a is a domain boundary™* if G(a) is disconnected.

Examples: (a) If D = 1, then all defects are domain boundaries.

(b) (Monochromatic) Let A := {m,0}. Let Mo C A% be SFT such

that no m can be adjacent to a 0.

The following configuration has a domain boundary defect:

(c) (Checkerboard) Let A == {m,0}. Let €y C A% be SFT where no m

can be adjacent to a m, and no O can be adjacent to a O.

The following configuration has a domain boundary defect:

N

(%) If we considering a defect of range R > 0, then technically this is a domain boundary of range

R.
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Domain Boundaries

: L. j‘.’ E
(d) (Square ice) Let T = | ,+ ',%, N ’%.;. , .

Let Jee C ZZ° be the SFT defined by obvious edge-matching conditions.

The following configuration has a domain boundary defect:

A
4 4 4 4 Y J 4 J
. T, s T, e s e
A A A \/
Y
" - " - " - " - O’.‘i !

>

"
Y
.

L 2l
— TV
n'. n'.
o O
. .

(e) (Domino Tiling) Let D := >

Let Dom C D be the SFT defined by obvious edge-matching conditions.

The following configurations have domain boundary defects:
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Persistent Defects

Let @ : AZ” — AZ” be a CA, with ®() C 2. Let a € A. The defect
in a is P-persistent if ®'(a) also has a defect, for all ¢ > 0.

Tt
.

Question: These defects seem to be persistent. Are they? Why?

Essential Defects

A defect is essential if it cant be removed through a local change.
That is, V R > 0, if a’ € AZ” is obtained by modifying a in an R-
neighbourhood of defect, then a’ is also defective.

Proposition: If & : A—%2 is bijective (e.g. if A C Fix[®] or A C
Fix [®P] or 2 C Fix[®? o 0%]), then any essential defect 1s ®-persistent. O

LY [y LY [y Y [y Y [y LY [y
EEEEEEEEEEE .,
ENEEEEEEEEE SRR AN RN,
A A A
.-.-.- R A e DCL el O celaL O el
HEEEE TS T T T T T
. NN A aalE AR RN
- > > > >
n - i
KT

O s S s YL ; ; ; ;
HEE A I e
Y Y Y Y Y H H H H
AT S KT R T N
\ 4 A \ 4 A \ 4 A 4 \ 4 \
Y Y Y Y Y A Y Y Y Y
O S ST T ST S SR S NP S S
T v ¥ v ¥ v A v ¥ v ¥

¥

Question: These defects to be seem essential. Are they? Why?
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Interfaces (intuitive version)

Suppose 2, breaks into two (or more) disjoint subsets 2,y = B, LU &
(called (F,o)-transitive components), such that, for each a € Q[,

either  ais totally covered by 9B, )-blocks,
or ais totally covered by & -blocks,
but  a cannot have a mixture of B, )-blocks and €, )-blocks.

An interface is a domain boundary between a B, )-covered region and
a €(.-covered region. Such a boundary is necessarily an essential defect.

E).cample: Let 9t be the monochromatic ===========
shift. Then DMy = By U W), where HEEEEEEEEEN

(111 ooo ..... ...
%(1) = { T } al’ld mj(l) = { ooo }

HEE ooa

The defect at right is an interface.

Example: (ECA #184) Let A = {0, m}. Let &) := By UW 1) LU,
where By = {mmm}, 2y = {000}, and &) = {mom, omo}. This
yields 6 possible interfaces:

of 1 ¢y [ momom0]| (eemmmm . ] B a” &y [ . momom0| [CO0000. .. ] W)
wt: B[ . eemmmn|(momcmo. .| ¢ w Wy [ 000000 [(momomo .. | &y
G B[ . uemmmm| 000000, .| W) €: B [..000000] [memmm . . .| 27

P, (6) C &, and the & ,-propagation of these interfaces is as follows:

(o) (@) (8) (a7) (w7)

Theorem: If ® : A—% is surjective, then all interfaces are P-

persistent defects. O
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Interfaces (formal version)

A is (P, 0)-transitive if U U O 'o7*(9O) is dense in A, for any
teN ze7D
nonempty open O C 2A. (Equivalent: most (®,o)-orbits are dense in ).

Suppose 2l is not transitive, but A = 20 L - - - LA i, where A4, ..., Ax
are clopen (®, o)-transitive components.

(Q(l, .o, A are clopen) = (indicator functions are locally determined>
i.e. 3r > 0, and function  : A()—[1...K] such that, V a € 2,

(a c Q[k) <~ (K;(a]g(r)) = k) .

VzeZP let k,(a) == k(apq,)). Then k,(a) is also well-defined for any
a € 2l such that ap(,,) is *-admissible.

Ify,z € Z”, then a has an interface’ between y and z if y(a) # r,(a).

Example: 9o has two o-transitive compo- ===========

nents: My := all-black, and My := all-white.
This defect is an interface.

Nonexample: This is not an interface, be-
cause Pom Is o-transitive [Einsiedler, 2001]. In-

stead this is a ‘gap’ defect. , , , , , , , ,

Interfaces always form domain boundaries. Let Y1, ..., Yy be the con-
nected components of G(a). There is a function /C: [1... N]—][1... K] such
that for any n € [1...N] and any y € Y,,, ry(a) = K(n).

(1) Technically, this is an interface of range r, and this concept only makes sense for domain

boundaries of range R > r.



17

Persistence of Interfaces

A connected component Y,, of G is projective if, forall R > 0, dy € Y,
with ag(y r) € *A(r). (i.e. Y, contains arbitrarily large 2-admissible patches.)

Lemma: The interface in a is essential if there are two projective
components Y,, and Y,, with IC(n) # KC(m). O

Signature of the interface := restriction of K to projective components.

Example: Let 2 C A% Suppose a € A has defects di,...,dy with
Yo, ..., Yy being the [-admissible intervals between these defects:

YO dl Y1—> d2 Yg ---<—YN_1—> dN <—YN__...
Projective components: Yo & Y. .- Interface is essential if (0) # IC(N).

Theorem: If © : A-— is surjective, then all essential interfaces
are O-persistent. If a € A has an essential interface, then ®(a) also
has an essential interface, with the same signature as a. O

Example: (ECA #184) Let A = {0, m}. Let & := & U &, UG, where

& = {m}, &, .= {0}, and &, := {m0, Om}. (Here, m:=[. .. mmmm.. |
and B0 ;= [.. . mOmOmO. . ., etc.
Then &y U &, C Fix[P,,], while Dyl =0

& has three (®,,,, o)-transitive components, so 3 6 possible interfaces:

1847

at: G, [ . momond| eemmEm. .| & a”: G, |...momom0| (000000, . .| 6,
wt: Gy[.. anmmEm| [ (momCm0. . .| &, w™: G [...000000) (momomo. . .| &,
G: Gyg[... anmmmm|[000000. . .| & €: Gol... 000000 memmmn. . .| &

The ®,,,-propagation of these defects is as follows:

(o) (@) (8) (a”) (w7)
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Dislocations (intuitive version)

Suppose 2 has a spatiotemporally periodic structure. In any 2A-admissible
configuration, certain patterns must recur periodically in space and time.

A dislocation is a domain boundary between two regions which are
‘out of phase’ with respect to this periodic structure. Such a domain

ST

The spatiotemporally periodic structure of 2 is described by a subgroup
K C ZP*!. Each dislocation is characterized by a displacement § € A,
where A = ZPT1 /K is the quotient group.

boundary is necessarily an essential defect.

Example: The checkerboard shift &y is both
vertically and horizontally 2-periodic in space.
The domain boundary at right is a dislocation.

Example: (ECA#62) Let ©® = orbit of [...mm0 mm0 mm0...]. Then
CDG?’@ = 0,50 (D, d,,) is 3-periodic in both space and time, and A = Z 3.

Here are two dislocations in ® and their displacements:

2
G [CmmO] OO [mmO]

1
7y ]llD\?]llDll\

& ¥

Theorem: If & : A—%2 is surjective, then any nontrivial disloca-
tion is a P-persistent defect. Futhermore the displacement of each
dislocation is constant over time. O
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Do)

Here are seven dislocations in €&:

<muUAM@m L
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Dislocations in ECA#54 (intuitive version)

Let 9B := By LB, where By is the g-orbit of |. . . EEEOEERCEEEC . . |
and B is the o-orbit of [...coomooomooom. . ). Then @, (By) = By,
., (B1) = By, and <I>§4’€B = o2 Thus, (B, d,,) is spatiotemporally
periodic, and A = Z?/K, where K := 7Z(2,2) @ 7Z(0,4), Here are four

dislocations in ECA#54 and their displacements:

§=(0,3)+K

o g ol ol
_ Displacement Algebra and Defect Chemistry

When two displacement defects collide, the outcome can be partially
predicted by the algebra of the displacement group A.

ECA#62 ECA#184 ECA#54

Y+ =0
1+1=0 |(1,1)4(=1,1) = (0,2)




21

Dislocations (fomal version)

Let A C A%” be a ®-invariant subshift. Let A = (Aog; A1, ..., Ap) be
a (D + 1)-tuple of complex roots of unity. A rational eigenfunction
of %l with eigenvalue A is a function F': 2l——C such that:

Fod = \F, and Foo? = N°F, VzeZ".
Here, if z = (21, ..., zp), then we define A* = A{'--- AP,

Any rational eigenfunction is locally determined i.e. dr > 0, and
function f : A, ——C such that, Va € A, F(a) = f(ag())

VzeZP let f,(a) = f (ap(z,y). Then f,(a) is also well-defined for
any a € ¥ such that ap,, is J-admissible. If x,y E ZP then a has an
(A, ®)-dislocation* between x and y if fy(a)/f,(a) # N7

Example: Define F' : €y——{£1} by q-q.
local rule f : {m o0}—{£1} where h.
f(m) =1and f(O) = —1. Then F'is o-

cigenfunction with eigenvalue (—1, —1).

Nonexample: This is not a dislocation,

because Dom is o-mixXing [Einsiedler, 2001],

and thus, has no nontrivial eigenfunctions

[Keynes & Robertson, 1969].

Instead this is a ‘gap’ defect. C:

P

Dislocations always form domain boundaries. Let K := {k e ZP: X< = 1}.

For any connected components X, Y of G(a), 3 unique displacement

d € ZP+1 /K such that, for any x € X and y € Y, X_f;& = N\
X7 fy(a)

(1) Technically, this is a dislocation of range r, and this concept only makes sense for domain

boundaries of range R > r.
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Persistence of Dislocations

Lemma: The dislocation in a is essential if 3 two projective compo-
nents X and Y with a nontrivial displacement between them. O

If a has IV projective components, then the displacement matrix
is the antisymmetric N x N matrix of (ZP*!/K)-valued displacements
between them. Essential dislocations are persistent:

Theorem: If ® : A— is surjective, then all essential dislocations
are P-persistent. If a € A has essential dislocation, then ®(a) also
has essential dislocation, with the same displacement matrix as a. O

Example: (ECA#62) Let A = {m,0}. Let © be the three-periodic

g-orbit of mmO. Then & = 0.

oo

Let A := e*>™/3. Define F : ®——C by F(um0) =0, F(a0m) = ), and
F(Cmm) = \>. Then Foo = AF = Fo®
eigenvalue (A, \).

e, 50 F'is eigenfunction with

K =Z(3,0) ® Z(1,2), so displacements are elements of A = Z 3.

Below are three rational dislocations in ® and their displacements.

o [mmommn| oo0 [mmcmmen] 0 =3 =0¢€ Zj;
( (mEOmE0| 00 [ERCEEOE] 0=2€ Ly

¥ \IIDIID\?\ EECEECEE| 0=1€2Zy

The 3 and ~ defects are essential, hence persistent by the theorem.

The a defect is not essential, but is still persistent (not because of the theorem).
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Persistence of Dislocations in ECA #54

Let B = B LB, where B is the 4-periodic g-orbit of mmOm and 8B,
is the 4-periodic o-orbit of DOmO.

Then @54(%()) = %1, @54<%1) = %0, and q)i’% = o°.

Define F': B—{+1,+i} by F(umOm) = F(Omo0) 1;
F(mtmm) = F(m0Ooo) = i
F(Cumm) = F(00m) = —1;
F(mmm0) F(Ormo) —i.

Then Foo =iF = Fo®,_,, so F is eigenfunction with eigenvalue (i, 1).

547

K = Z(2,2) ® Z(0, 4), so displacements are elements of Z? /K.

Here are four rational dislocations in ECA#54 and their displacements:

0=1(0,2)+K

5§=(0,3)+K

All four have nontrivial displacement, so they are essential, .-, @, -persistent.
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Persistence of Dislocations in ECA #110

Let & C A% be the 14-periodic o-orbit of mmmommoomooo0D.  Then

20'4.

Do)

o be a o-eigenfunction with Floo =

3

MF so Fisa(®,,, o)-eigenfunction with eigenvalue

Let A := e™/7. Let F : €—{\F}}

AF. Then Fo®

(AL A).

K = 7Z(0, 14)®Z(1,10), so displacements are elements of Z? /K

Here are seven rational dislocations in &:

9 e Z/14
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All have nontrivial displacement, so they are essential and &, -persistent.
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Persistence of Dislocations in ECA #184

Let &, = {Om, m0}. Then ® o

184]@, —

Define F': &,—{£1} by F(Om) = 1 and F(m0) = —1. Then

Foo =—F = Fod , soF isecigenfunction with eigenvalue (—1, —1).

1847
K = Z(2,0) @ Z(1,1), so displacements are elements of Z?/K = Z .

Here are two dislocations and their displace-
ments:

~T [OROmCEOE \?\ OmCmCmOm| 0 =1 ¢ Z/Q
T [ORORCORCE Oomomomom] 6 =1 ¢ L

Both have nontrivial displacement, so they are v

essential and .  -persistent.

184

_ Displacement Algebra and Defect Chemistry -

When two displacement defects collide, the outcome can be partially
predicted by the algebra of the displacement group Z”+1/K.

EC A#62 ECA#184 ECA#54

g

4

iy

4

ity
iy

4

~ 1
)

The Fine Print: Our definition of ‘displacement’ here is somewhat oversimplified. The ‘real’
definition is that a displacement is a character on the spectral group of (A, ®,0). This is nec-
essary to extend the theory of dislocations to irrational eigenvalues (e.g. in Sturmian shifts or

multidimensional SFTS) or discontinuous eigenfunctions (e.g. on sofic shifts, as in ECA#18).
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Cocycles

Let 2 C A% be a subshift. Let (G,-) be a (discrete) group. A
G-valued cocycle is continuous function C' : 7P x A—G satisfying
cocycle equation:

C(y+z,a) = Cly,o%(a)) -C(z,a), Vae A% and Vy,z e ZP.

Examples: (a) Let Je C Z% be square ice. Define ¢y, ¢o : T—{+£1} by

af:, ) =+l=al< ) and e )=l =of >) (4’ means

‘anything’). Define cocycle C : 7% X Jee—s17 as follows: b
2—1 -1 >

Vi€ e Vz=1(21,2)€Z% Clz,i) = ) aling)+ Y olin,). <y
=0 y=0

+—-|(}' ‘\/’J\~>

This is a height function (a Z-valued cocycle). These arise in tilings [e.g.
K. Eloranta 1999-2005, H.Cohn & J.Propp] and statistical mechanics [R.Baxter 1989].

(b) Let Dom C D% be dominoes. Let G = Z j2 * L5 be group of finite
products vhvhv - --vhv, where v and h are noncommuting generators
with v? = e = h%. Define ¢;, ¢y : T—G by
ci( 1 1) =vhv; () :=h; (s ):=hvh and ()=

z1—1 z9—1

VdeDom Vz=(2,2)cZ Clz,d) = Hcl o) | e2(dsyy):
= y=0

AAAA

amVame

(¢) If b : A——G is continuous, then function C(z, a) := b(c?(a))-b(a)™*

is a cocycle, called a coboundary.

(d) Let X = topological space. Let H =homeo(X). Then H-valued
cocycles are the fibre-wise maps of a skew product extension of the o-

action on A to a ZP-action on A x X. [R.Zimmer 1976-80, J.Kammeyer 1990-93]
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Cohomology

Two cocycles C and C" are cohomologous (C =~ (") if 3 continuous
transfer function b : A—G such that

C'(z,a) = b(o*(a))-C(z,a)-ba)™!, VzeZ” and acA
Let C := cohomology equivalence class of the cocycle C'.
ZY A, G):= {G-valued cocycles}.
H (2, G):= {cohomology equivalence classes in Z1(2, G)}.

If (G,-) is abelian, then Z1(2, G) is a group (under pointwise multipi-
cation), and H'(2A, G) is a quotient group, called the 1st cohomology
group of A (Wlth coefficients in Q) [see e.g. K.Schmidt (1995, 1998) for discussion]

Trails and locally determined cocycles

Let E = {z eZ?; z=(0,...,0,£1,0, ...,O)}. A trail is a sequence
¢ =(z0,21,...,25) C ZP, where, Vn € [1...N], Z, := (z, — z,_1) € E.

n

Let 7 > 0. Let ¢ : E x ;,y—G be such that, Ve, € E, Vaec,

(a) cle/,ape,)) - cle.ap()) = cle,ape.,)) - (e, ap;)). te.c(l) = ¢(
(b) C<_e7 aB(e,r)) - C(e7 a]B(7‘)>_1' Le. C(l) - C(T)_l

N
Then ¢(C,a) = H c(z),,ap(,, , ) depends only on z; and zy, not .

n=1
Example: If ( is closed (i.e. zy = zj) then ¢((,a) = eg.
Define cocycle O @ ZP x A—G as follows: V a € A, z € ZP,

C(z,a) == c¢(¢,a), (where ( is any trail from 0 to z). We say C is
locally determined with local rule c of radius r.

If G is discrete, then V continuous G-valued cocycles are locally determined.
For any r > 0, let Z!(2, G):= radius-r cocycles on .
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Cocycles and Cellular Automata

Proposition: Let 2l C AZ” be q subshift. Let ® : AZ° 5 AZ7 e
a cellular automaton with ®(A) C A. Let G be a group.

(a) Let C € ZYA,G) be cocycle. Define .C : ZP x A—G by
P,C(z,a) = C(z,P(a)). Then ¢,.C is also a cocycle on 2.

(b) If ® has radius R, and C' is locally determined with radius r, then
O,.C' is locally determined with radius v + R.

(c) Let C,C" € ZYA,G). If C ~ C', then ®*C =~ ®*C". Thus, O
induces a function @, : HY (A, G)—H (2, G).
(d) If (G,-) is abelian, then ®, is a group endomorphism. O

We will see that the ®-persistence of certain kinds of defects depends
critically on the surjectivity of the endomorphism ®,.

Question: When is O, surjective?
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Gap Defects: Definition
Some domain boundaries exhibit divergence in cocycle asymptotics.
Let C € ZYA, Z) be a range-r cocycle (i.e. ‘height function’).

Let a € 2. Let X be an infinite, simply-connected component of G, (a).
Fix x* € X. For any x € X, we define the height difference:

Calx',x) =« a),
where ¢ : #4(,)—7Z is ‘local rule’, and ¢ is any trail in X from x* to x.
(Well-defined independent of ¢ because X is a simply-connected.) Note:
Ca(x",x)] < K -dx(x*,x),

where K:= aglg(}f) lc(a)], and dx(x*, x):= min length (X-trail from x* to x).
Let Y be another infinite connected component of G,(a). Fix y* € Y.
For any y € Y, define Cy(y,y*) in the same way as Ca(x*,x) above. We
then define
Cly.x) = Cly,y")+C",x).
If X and Y were the same connected component (or if we could remove
the defect in a so that they were), then we expect

Cly,x) < K -dx(y,x)+const. =~ K|y —x|+ const.

C
We say there is a C-gap between X and Y if  sup M = 0.

yeY, xeX |y o X’

(This suggests that the defect separating X and Y is essential.)

Fine print: If G # Z, we can also define gaps for G-valued cocycles, by first defining an appropriate

pseudonorm ||e|| : G—R which satisfies the triangle inequality and is invariant under conjugation.
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Gaps in the Ice

» - 0d R 7 o i

Example: Consider the defective configuration in Jee shown above,
and let {x*,x;,x9,...} € X and {y*,y1,y2,...} C Y be as shown. Let
C € ZYZke, Z) be the cocycle with local rule

) =4l= cz(< Jand () = =1 = >)
Then C'(x*,x,) = nand C(y*,y,) = —n,s0o C(xy,y,) = 2n, Vn € N.

C 2
But ‘Xn —Yn‘ =2,VnéeN so lim ’ ‘(Xn’yT)’ = lim = = 0O
n—o0 x—y n—oo

Cl(

hence there is a gap between X and Y.
Example: Let C' : Z* X Qom——G = Z 5 * Z 5 have local rule:
c( [ 1) =vhv; a(:2):=h (s )=hvh andes( () :=v.

Let Z := {cyclic subgroup generated by vh} C G. Then (Z,-) = (Z,+),
and for all d € Dom and 2z € 272, C(2z,d) € Z.

Let Dy C D?*? be the alphabet of Dom-admissible 2 x 2 blocks. Let
Dy C DQZQ be ‘recoding’ of Dom in this alphabet. Then 272 acts on ®s in
the obvious way, and C yields a cocycle C' : 2Z% x Do—Z = 7.
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Gaps in Dominoes

In the Dem-configuration shown above, C’(x*, x,)

= (vhvh)" = 2n,
while C'(y*,y,) = h*" = 0,50 C'(y,,x,) = n, foralln € N.
Cl ny Jyn :
But |x, —y,| =4,V n €N, so hm‘ (Xu: Y| ~ lim — = oo
n—oo  |x —y] n—oo 4
In the Dom-configuration shown above, €' (x*,x,) = (vhvh)" = 2n,
while C'(y*,y,) = (hvhv)" = —2n,s0 C'(y,,x,) = —4n, VY n € N.

Cl nsy Jn —4
But |x, —y,| =4,V n € N, so lim C7(x yl)’ n

| = hm—A:—oo
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Persistence of Gaps

Theorem: If d: AZ” — A2 s q CA, () C A, and endomorphism
d, : HYA,Z) > C+— Codc H' A, Z)

1 surjective, then any gap s ®-persistent.

Example: 1f T := {£ s 0 oo}, and @« 78 —T% is CA

with ®(Je) C Jee, and ®, : H(Tee, Z)—H(Tee, Z) is surjective, then @
cannot destroy the ice gap (or even change the ‘difference in slope’).

Proof idea: First show that C-gaps depend only on cohomology class of C| i.e.:

Lemma: If C' =~ C’, then any C-gap is also a C’'-gap. &

Now suppose a has C-gap. Now ®, is surjective, so find C" € Z! such that
®,C" =~ C. Then a also has (®,C")-gap. But this implies that ®(a) has C’ gap. O

Sharp Gaps are Essential

A gap in G,(a) is sharp if, for all R > r > 0, there exists constant
K = K(R,r) € N such that, for any y € G,(a), 3 x € Gp(a) in same
connected component X of G,(a) as y, with dx(x,y) < K.

Idea: The gap does not ramify into lots of ‘tributaries’.

Example: If 2 is a subshift of finite type, and defect set D(a) is confined
to a thickened hyperplane [as in previous three examples] then the gap is sharp.

Theorem: Sharp gaps are essential defects.
Proof idea: First show:

Lemma: The existence of a gap does not depend on the choice of reference
points x* € X and y* € Y. %

Thus, we can always move our basepoint x* and ‘gap-detection’ sequence {xi, x, . . .

far away from gap. Thus, a gap is ‘detectable’ from any distance; hence it cannot

I T P T B P P M
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Defect Codimension

A domain boundary is a defect of codimension 1.

Fix r € N. Let G,( {z c 7" ; ap(z,r) € Ql(r)}. (Loosely, this is
the complement of a radlus—r neighbourhood around the defects in a.)

Let G,(a) := union of all unit cubes whose corners are all in G, (a).

We say a has a (range r) codimension (k + 1) defect if the kth
homotopy group ;. [G,(a)] is nontrivial®).

Examples of Codimension-Two Defects:
In Jee: In Dom:

[due to S. Lightwood, via M. Einsiedler, 2001]

The sequence of inclusions Gi(a) 2 Go(a) 2 Gs(a) 2 --- yields
sequence of homomorphisms

Tk [Gl(a)} — Tk [Gg(a)} — T} [G3(a)] - ...

Define 7, [G(a)]:= inverse limit of this sequencel?) (detects ‘extremely
large scale” homotopy properties).

Say a has a projective codimension (k + 1) defect if 7, [Goo(a)] # {0}.

(%) Strictly speaking, we must fix a basepoint and a connected component of G,..

() We must fix a proper base ray, and assume G, has unique connected component for large .



The ‘Ice Cube’ Shift: Codimensior

Defect Codimension in 3D

34
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Trail Homotopy

Let Y C Z” and let ¢ and ¢’ be trails in Y.

¢ and ¢’ are homotopic in Y (notation: ¢ ~ (') if we can move from
¢ to ¢’ through a sequence of transformations like:

SR
C

If Y is connected, then every homotopy class of m(Y) can be represented
as a (trail) homotopy class of trails in Y.

Hence regard m(Y) = {group of Y-homotopy classes of Y-trails}.
Lemma: Let C € Z'(A,G). Let a € A. Let ¢ be closed trail in G,(a).

(a) If ¢ = (" in Gy(a), then C(C,a) = C((',a).

(e.g. If ¢ is nullhomotopic in G,(a), then C((,a) = eg.)
(b) Suppose (G,-) is abelian. If C =~ C' then C({,a) = C'((,a).

We say that a has a C-pole if C((,a) # eg
for some closed trail ¢ € m[G,(a)].

Example: Recall C @ Jee x Z*—7
a(s ) =+l=c(q ) e

) et e ) ]
If ¢ is the clockwise trail around the defect, >-11|E_v»v»v_’ +177°
then C'((,a) = 8. Thus, a has a pole. L, % T

+1!
12X (+1) +4 x (-1)

v
Vv

v
Vv

V

AL ‘
v |> v |> v |> A |> A_r
=8
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Poles and Residues

Proposition: Let a € 2. Let C € Z1(,G).

(a) Res,C : m[G,(a)] > (+— C(¢,a) € G is a group homomorphism.
(b) If (G,-) is abelian, and C' ~ C" then Res,C = Res,C’'. Thus, we
get group homomorphism

Resa 1 Hay(A, G) x m[G(a)]x 3 (C,¢) — C((,a) €G. O

The configuration a has a G-pole if Res, is nontrivial homomorphism.
The function Res, acts as an algebraic ‘signature’ of the defect in a.

Theorem: G-poles are essential defects. O

Persistence of Poles

Theorem: If the function @, : H}(A,G) > C +— (C o ®) € H(,G)

s surjective, then all G-poles are O-persistent.

Example: If ¢ : 72— 7% was a CA with ®(Jee) € O(Jee), and P, was
surjective, then the ice pole would persist under ®. &
Proof idea: Let R :=radius(®). If a € A and a’ := ®(a), then G,+r(a) C G,(a).
This yields homomorphisms ®; : 71 [G,1r(a)]—71[G,(b)], for all r € N.

Lemma: For all ( € m[G,g(a)] and C' € ZHA,G), if ¢ := ®+(() and
C % ,(C"), then C'(al,(") = C(a,C). o

Now, if a has a C-pole for some C' € Z(2A, G), then there exists ¢ € m |G, r(a)]
with C'(a, ¢) nontrivial.

®, is surjective, so 3 C" € Z1(A, G) with ®.C" = C. Let ' := ®;(¢) € m[G,(a')].
Then C'(a’, (") = C(a,() is nontrivial. Thus a’ has a C'-pole. O

Remark: We can also characterize poles using the fundamental cocycles of [K.Schmidt,
1998].



37

The Conway-Lagarias Tiling Group

Let W be a (finite) set of notched square prototiles (to tile R?). The tile
complex of W is a 2-dimensional cell complex X defined as follows:

e For cach z € Z” and each w € W, there is a w-shaped 2-cell in X,
positioned in space ‘over’ z. Each notched edge of w is a 1-cell in X.

e If z and 7 are adjacent in Z2, and tiles w and w’ ‘match’ along the
corresponding edge, then glue together tiles (w,z) and (w',z’) in X.

Example: (Piece of tile-complex for Dom). Each square contains four

2-cells { 2], [] ’ |:|} Between each vertex-pair 3 two edges {|, »}.

3 natural projection IT : X—R? (sending the vertices of X" into Z?).
(Admissible Wh-tiling w of ]RQ) = (Continuous [I-section ¢y : R2—>X)
(‘Partial’ Wh-tiling w of U C R2> = (‘Partial’ [I-section Gy : U—>X)
In the second case, ¢ defines homomorphism ¢, : 71 (U)——m1(X). Then:
(UC—hole in w can be admissibly ﬁued) —
(cjv—image of any loop in U is nullhomotopic) — (qjv IS trivial) :

7m1(X) = ‘tile homotopy group’ [J.H.Conway & J.C.Lagarias, 1990; W.Thurston, 1990]
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__Higher homotopy/homology groups for Wang tiles

Let W be a (finite) set of D-dimensional notched hypercubic Wang
tiles (to tile R”). Build a D-dimensional cell complex X analogous to
before. Get projection IT : X—R” such that T1(X") = Z".

(Admissible W-tiling w of R” ) = (Continuous [I-section ¢y : RY —>X> :

(‘Partial’ Wh-tiling w of U C RD) = (‘Partial’ [I-section Gy : U—>X> :
In this case, for all k£ € N, the section ¢y, defines homomorphisms:

TkSw - 7Tk(U, U) — Wk(X, .CU); (z,u = suitable basepoints)
HySw : Hk;(U, Q) — Hk;(X, Q), ((G,+) = some coefficient group, e.g. G = Z)
He : HHU,G) — HY(X,G)

(Hole in w s ﬁllable) N (Wkgw, Hicw and Hecy are trivial, ¥V k € N).

"Homotopy/homology groups for subshifts of finite type _

Let A be a finite alphabet. Let A C AZ” be a subshift of finite type
of radius r > 0. Fix R > r. Treat VW := 2 py as Wang tiles with obvious
edge-matching conditions. Get tile complex X . Then:

(a - Ql) = (W—admissible tiling of RP ) & <H—Section G, RP —>XR> .

Idea: Use homotopy/(co)homology groups of X p as invariant for 24 (and
get algebraic invariants for codimension-(k + 1) defects in 20).

Problems:

i] There 3 many different Wang representations for 2. None is ‘canon-
ical’. Different Wang representations may yield non-isomorphic groups.

[ii] Wang representations (and hence, their homotopy/homology groups)
do not behave well under subshift homomorphisms (i.e. CA).
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___The Geller-Propp Projective Fundamental Group ____

Solution: There are natural surjections X, «— X, 11 «— X, 49 < - -+

Get homomorphisms m (X, z,) «— m(Xya1, Tra1) — Tp(Xpao, Tpag) — -

(Here, {x} are basepoints determined by some fixed a € 2.)

Define kth projective homotopy group (2, a):= inverse limit

of this sequence. (If k& = 1 this is the projective fundamental group of
W.Geller & J.Propp, 1995).

Likewise, we define kth projective (co)homology groups

Hk<m7 g) = lim (Hk(Xra g) — Hk(X'r—Ha g) A Hk(XH—Qa g) — )

HERA,G) = lim (HNX,,G) — H*X,11,G) — HH (Xip2,G) — )
e [somorphism invariants of 2. e Detects codimension (k+1) defects.

Basepoint Freedom

The definition of 7;(2A) depends upon a chosen ‘basepoint’ a € 2.

We say 2 is basepoint free in dimension k if, for any a, a’ € A, there
is a canonical isomorphism 7(2(, a) = 7,(2A, a’).

Proposition:

(a) Suppose 110 : XV——7ZP is injective for all large enough r € N,
Then A is basepoint-free in all dimensions.

Suppose (A, o) is topologically weakly mizing [i.e. the Cartesian product
(2 x 2,0 x o) is topologically transitive]. Then.:

(b) If m (A, a) is abelian, then A is basepoint free in dimension 1.

(c) If m (2, a) is trivial, then A is basepoint free in all dimensions. O
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Projective Groups and Cellular Automata

Proposition: Let &: A2 — A%" be o CA with ®(A) C A. Then @
induces group endomorphisms:
ma®: mg(A,a) — we(A,a’) (= wy(A,a) if basepoint free)
Ha®: Hy(A,G) — Hq(A,G)
HI®: HY A, G) — HUA,G).

Proof: (Idea) If ® has radius ¢, then ® induces a cellular map @, : Xpi,—Xp
for all R > r, which yields corresponding homotopy/(co)homology homomor-
phisms. The resulting infinite commuting ladder of homomorphisms defines a
homomorphism of the inverse/direct limit groups. O

Recall that |G (a)] := inverse limit of 7[G,.(a)] as r—o0.
Likewise define Hk [Goo (a)] (direct limit) and Hk[GOC(a)] (inverse limit), VEkeN.

If a € 2, then a defines ‘partial’ II-section ¢, : G r(a)—Xp for all
R > r. This induces group homomorphisms:

Hka: Hk[GR(a),g] E— Hk(XRag>;
H'a: H'(Xg, G) — H'[Gg(a),G];
ma: | [Ggr(a)] — m(Xpg).

The resulting infinite commuting ladders of homomorphisms define homo-
morphisms of the inverse/direct limit groups. Thus, we have:

Theorem: (a) Any a € A induces group homomorphisms:
Hia: Hip[Goo(a), Gl—Hp(A, G) and H*a: H¥(A, G)—H"[G(a),G].

(b) If A is basepoint-free in dimension k, then a also induces a group
homomorphism mia : |G (a)|—m(2A).

We call mpa (resp. ‘Hpa or H*a) the kth homotopy (resp. (co)homology)

signature of a; if it is nontrivial, we say a has a homotopy (resp.
(co)homology) defect of codimension (k + 1).
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Persistence of Homotopy/(co)homology Defects

Theorem: Let A ¢ AL be SFT. Let &: AZ” — AZ” be CA with
d(A) C A

(a) Suppose U is basepoint-free in dimension k. If mp® @ mp(A)— 7 (A)
is injective, then every homotopy defect of codimension (k + 1) is
d-persistent.

(b) If Hi® : Hip(A, G)—Hr(A, G) is injective, then every homology
defect of codimension (k+ 1) is ®-persistent.

(c) If HF® - H* (A, G)—HF (U, G) is surjective, then every cohomology
defect of codimension (k+ 1) is ®-persistent. O

This follows from:

Theorem: Let &: AZ"— A% be a CA with D(A) C A. Leta € A
and let ®(a) = b. Then we have commuting diagrams:

Hi[Goola), 6] 25 HGo(b).G]  H'Gwla),G] <o HMGao(b), ]
Hya l l H;.b HEa T T HFb
Hi2,6) 2 MR, G) Mg Y kLG

If A is basepoint-free, we also get a commuting diagram:

Tl

Tk [GOO (a) ’ w] e Tk [GOO (b) ) w]

WkaJ/ J/ka

Wk(I)

5 (2A) — 5 (2A)

Proof: (Idea) Stick together all the aforementioned infinite commuting ladders to
get infinite commuting ‘girder’, which yields commuting square of inverse limit
homomorphisms. O
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Equivariant (co)Homology

Question: Is there a higher-codimension analog to the codimension-
2 ‘poles’ from dynamical cohomology?

Let k£ € N. A (cubic) k-chain is a formal ‘sum’ of k-dimensional cubes
in ]RD with vertices in ZD (combinatorial analog of ‘k-dimensional submanifold’). Fix an
abelian group (G, +). Define Cy := {free abelian group of cubic k-chains}.

C¥(G) = {(cubic) k-cochains} = {homomorphisms ¢ : C,—G}.

(combinatorial analog of ‘k-dimensional differential forms’).

ZP acts on R by shifts. This induces Z”-action on Cj,, and thus on C*.

Let A C AZ” be subshift. An equivariant cochain on 2 is a
continuous function C' : A— Z* (G) which commutes with all 7.P_ghifts.

Idea: For any a € A, C(a) is a cochain. If { € Cj, is any chain, then

C(o*(a))[¢] = Cla)lo*(¢)]

Let CX (2, G) = {equivariant k-chains}. There is a natural cobound-
ary operator 0% : Ck——CE™. Let ZX = ker(6%) be the group of equiv-
ariant cocycles.

Examples: (a) Recall that a ‘dynamical’ cocycle is a function ¢ :
7P x A——G such that
cly +z,a) = cly,o*(a)] + c(z,a).

Any dynamical cocycle defines an equivariant cocycle C' € Z, as follows:
for any chain ¢ € Cy, treat ¢ as a ‘trail” and define C'({, a) as before.

(b) (Equivariant cocycle C € Z& on
“ice cube’ shift) This picture shows how
to evaluate C' on a single 2-cell (i.e. ori-
ented square). To evaluate C' on 2-chain,
sum values on all constituent 2-cells.
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__Equivariant Cohomology vs. Dynamical Cohomology
Let BY, := image(6*~1) (equivariant coboundaries).
Define equivariant cohomology group H% (A, G) = Z&/B%.
Zk and B, are o-invariant. Thus, o induces ZP-action on HE,. Let
Z1,(2A,G) = {dynamical cocycles};
Hi (2A,G) = ‘dynamical’ cohomology group.
Theorem: Let (G,+) be abelian. There are canonical isomorphisms:
Za(U,0) = ZL(A,G) and  Hau(A,G) = HL, (A, G).

Proof idea: Given C' € Zj,, define C' € Zl as follows: for any chain ¢ € C,
represent ( with (sum of) trails ¢/, and then define C'({,a) := C(¢’,a). This sends
cocycles to cocycles because (510’ = 0) = (C’(@gf, a)=0 forall € € C’g)

= (C’(C’, a) = 0 for any closed trail ' in ZD>. O

Codimension-k poles

Let 0y : C,—Cj._1 be combinatorial ‘boundary’ operator

Let Zy := ker(0)) = {k-dimensional cycles} (‘submanifolds without boundary’).
Example: Z; := {(sums of) closed trails}.

IfC e Z5(A,G), and a € A, and ¢ € Z;, then C(a, () = 0.

If G is discrete, then C'is ‘locally determined’ by rule of radius R > 0.

If a € A, and ¢ stays inside G,(a) (for some r > R), then C(a, () is
still well-defined.

a has a C-pole (of radius r) if there is some cycle ¢ such that C'(a, ¢) # 0.

a has a projective C-pole if a has a radius-r pole for all large r € N.
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_ Example: Codimension-3 pole in Ice Cube shift _

Thus, the de-
fect In a 1is
a C-pole with
residue 6.

Let a be the defective config-
uration at left.

Let ( € Z5 be the 2-cycle on
right (the oriented boundary
of a3 x 3 x 3 cube).

9 9
+9 -3

+8 -4

+9 -3

+4 -5
+30 -24=6
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Persistence of Poles

Theorem: Projective poles are essential defects.

Proof idea: Similar to ‘dynamical’ cohomology proof for codimension-2 poles. O

Theorem: Let A A" be an SFT. Let ®: AX” — A%” be o CA
with ®(A) CA. Fiz d € [1...D].

(a) Define @, : C&4 (A, G)—CL(A, G) by ©.C(a, () = C[d(a),].
This induces endomorphism HL® : HL (A, G)—HL(A, G).
(b) Suppose HL® is an epimorphism.
i] If G is the additive group of a field (e.g. G = Z, for p prime),
then all projective G-poles are ®-persistent.

ii] If d =1 or D, then any projective d-pole is ®-persistent. O

Invariant Cohomology

Questions: (a) What is relationship between the (dynamical) cocycles
of A and the (co)homology groups of Wang tile cell complex of A?

(b) What is relationship between poles and (co)homology defects?
Vr > R :=radius(2), let X, := radius-r Wang tile cell complex for .
The o-action on 2 induces natural Z”-action on X,; hence on H*(X,., G).

Let HE (X, G):= group of ZP-fixed elements of H*(X,, G). We define
the kth invariant cohomology group of .

Hiknv<m7 g) = 1in (Hi]flv(XR—}—l) g) — Hikr;lv(XR—i—Qp g) — Hikr;lv(XR—F?); g) —

Theorem: Let 2% C AZ” be SFT. Let (G, +) be discrete abelian group.
There is a natural isomorphism HZ, (A, G) = HL(A, G).
In particular, Hy, (A, G) = Hi, (A, G). O

Thiie nalec are ML (D1 C)cohamalaocy defocta
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Finite State Machines

Ouft]

A finite state machine (FSM) has a finite set of internal states S,
finite input alphabet T and output alphabet O, and update rule

T: I xS—Sx0O

If FSM begins in state sy, and receives input stream ¢, 1, %2, ...,15_1,

then it proceeds through states s, s, . .., sy and produces output o1, 01, . ..

where, for every n € [0...N),

T<Zn7 Sn> - (Sn—i—ly On—l—l)
Diagramatically:
20 1 19 13 e v o IN_1
| | | l |
S0 Sq S9 S3 ... —> SN—-1 —> SN
NN NN \

01 092 03 O4 ... ... ... ON
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Defect Particle Kinematics

A defect particle in a is a defect which is finite in size and whose
size in ®'(a) remains bounded for all ¢ > 0. Defect particles act like FSM:

Internal state = A-inadmissible symbol-sequence inside defect.
Input = A-admissible symbols on boundary of defect.
Output = Instantaneous velocity.

Example: Defect particles in ECA#54:

d»lgd()gdl ;dz

S = A2 g5
T, 110, 0) =11
Y (Oumm ,(TT7T W, meCE ) <(mC a0
pg( suul =n sles spE( [ [ [
Y (mnCH , emmEn , (EEE ) (111

S:A[—l...2}gA4
Yo, IO , M0 ) =Im

Y(Oumm, (TTH ,meH ) =W
TEIO, AN [T ) <(eee.
Y(uaC, emmm (Oums ) =117

S=A

(1w, O =mm]) =, 1)
Y(Oumm O (TH]) =, )

T(I_I_IJ’D , ] ):(D, 1)
T(I:III , O I ):(l:l’ 1)

S=A
T(E.:‘]’D ) .:I:'])=(D7'1)

Y(Oumm , 0, mmm]) =, -1)
Yo ,O , m01) =, -1)
Y(Oumm ,O0 , mmm]) =, -1)

, 0)
, 0)
,0)
, 0)

, 0)
, 0)
,0)
, 0)
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Defect Particle Kinematics

Example: The A and B defect particles of ECA#110:

(e}

[y

=)

—

> > >

=)

—_

\S}

[«

—_

\S]

CWww Wwww

(O8]

Remarks: e The width of inadmissible region fluctuates over time.
We define the width of the defect to be the maximum width it ever
obtains. This defines the effective ‘state space’ of the FSM representation.

o [fAis (P, 0)-periodic (as in these examples), then the FSM is driven
by periodic input, so its long-term behaviour is periodic.

e The defect velocity fluctuates over time, but there is a long-term
‘average’ velocity obtained by averaging over the period.

Lol =[~lo] ~[~[=i

(=l afel=l6] o] of<y
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_ Pushdown Automata and Turing Machines

|||||||||||» In Out=0 i
Push 1 v
. S \@T
; wosel 1
(]
' ‘ 1 H Out=1
Out=0 / X Pop
\
AS
N\
N\
N\
AS
N\
A
N N
N
N\
N\
N 1
N I
N |
\\ |
N N I
NN N
NN N
NN al
NN |
NN
N NN |
D AN \\ |
. VR W VRS W W W VI /S

Stack

A pushdown automaton (PDA) is an FSM augmented with ‘last in,
first out’” memory model called a stack. The machine can ‘push’ symbols
onto the stack, and later ‘pop’ them off the stack in reverse order.

Tape Roller

<= Tlo[1[o]1[1]o]1]o[1][1]ofofofo]1]o[1[1][1]o[1[o[1[1[o[1]o[1[1[o[ofolol o[ 1] 1[1]o[ 1[0 1] 1[0 s 0 ]| =

=]
3
aQ

=

A Turing machine is an FSM augmented with a biinfinite random

access memory model called a ‘tape’. The FSM acts has a ‘head’ which
can read /write symbols as it moves along the tape.
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One-dimensional CA: Kinematic Regimes

In one-dimensional CA, the particle kinematics depends upon the kind
of subshifts found to the right and left of the particle.

Defect Right Side (c,%)-Dynamics
Kinematic o-dynamics Zero Er}trqpy, Right- Nonzero 6-Entropy,
Regimes _ G-pgriodic | regular Not ¢-periodic
v . - .
o-dynamics | d-dynamics | P-Periodic nght'_ ‘I"g eﬁf’dlg Anything
or d-Fixed | resolving o else
3 |Zero Entropy, L, ®-Periodic L. Diffusive | Autonomous
z o-periodic - or ®-Fixed | Ballistic PDA .
g oo Complicated
A Left-regular Left-resolving Diffusive . Diffusive Markov
o) . DA
Y| Nonzero ®-Periodic | Autonomous | Markov Turing Complicated
S| o-Entropy, | or ®-Fixed PDA PDA Machine |
z Anything . - , .
E Not o-periodic alse Complhcated : Comphcated:

Ballistic: Defect has (®, o)-periodic subshifts on both sides. Acts
like FSM driven by periodic input. Moves with constant average velocity
through periodic background. Examples: ECAs 54, 62, 110, and 184

Diffusive: Regular, ®-resolving subshifts on one or both sides. Acts
like FSM driven by Markov process. Performs generalized random walk.

Example: ECA #18.

Turing Machine: Defect moves through ®-fixed, positive o-entropy
background, and modifies background as it goes. Acts like Turing machine:
particle is the ‘head’, and inert background is the ‘tape’.

Autonomous Pushdown Automaton: ®-fixed, positive o-entropy
domain on one side (which acts as a ‘stack’ memory), and zero-entropy
domain on the other side. Acts like a PDA without external input.

Markov PDA: ®-fixed, positive o-entropy domain on one side (acts
as a ‘stack’), and regular ®-resolving subshift on the other. Acts like a
PDA driven by a Markov process.
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VaeA let Fla)C A be aset of ‘admissible followers’. Write a ~ b if

b e Fla).

The corresponding Markov subshift 2 C A% is the set of all infinite
sequences |-+ - ~» a ~> b~> ¢~ d~» -+ -] (Every SFT can be recoded thus.)

Let P(a) :={b € A; b~ a} be the set of admissible ‘predecessors’.

2 is regular if 3F € N such that #[F(a)] = F for all a € A, and

JP € N such that #[P(a)] = P for all a € A.

Example: F(1)={2,3};
3)  F(2)={3,4};

]:(3) — {47 5}7

F(4)={51}

4) F(B)={1,2},

P(1)
P(2)
P(3)
P(4)
P(5)

{4,5}
19,1}
11,2}
12,3}
13,4}

Let & : A?— A% be a CA with local rule ¢ : A3>—A. Suppose

P(A) C A. Let (b~ c~> d) and let x = ¢(b, ¢, d).

If d ~ e, then x ~ ¢(c,d,e). Thus, we get function
Gea @ F(d)—F(x). We say ¢ is right-resolving if
bc.q is bijective for all such (¢, d).

If a ~ b, then ¢(a,b,c) ~ x. Thus, we get function
"¢ . P(b)—P(x). We say @ is left-resolving if ¢**
is bijective for all such (b, ¢).

® is resolving if it is both left- and right- resolving.

a

bic|d|e

. / 20
¢ (a) e P(x)

RS < 4_

O.q(e) € F(x)

Examples: (a) Permutative CA acting on full shift % = AZ.

(b) Linear CA acting on Markov subgroup. (Here A is a group, so A%
is a group. 2 C AZ is a subgroup, and ® : AZ— A% is endomorphism.)
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Diffusive Defect Particle Kinematics

The Parry measure p is the measure of maximal entropy on 2I. It
is Markov measure given equal transition probability to all b € F(a).

Theorem: Let A C A% be reqular Markov subshift. Let ® :
AZ— AL be CA with ®(A) C A and O resolving on A. Let p =
Parry measure on A. (Then ®p = p.)

Let 1 € A=%-0) pe y-random, left-infinite A-admissible sequence.
Let v € A" be p-random, right-infinite A-admissible sequence.
Let w € AVW) be ‘defect’ word. Set initial condition: a := L.w.r.

Define ¢ : N—7Z by ((t) := position of defect in ®'(a). Then ( is a
generalized random walk. [i.e. increments of ¢ are a hidden Markov process].

(Generalizes Eloranta [1993-1995]; similar result for 0-width defects in ‘partially permutive’ CA.)

Proof idea: The defect motion is driven by ‘pg-random information’
coming in from the left and right, as follows:

1 . r

AR AR AR AT AN 7, AW
Legend: \N\Jiiiii/ZZ Initial conditions Il Defect particle path

Z u-random cells determined by p-random initial conditions
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