Crystallographic Defects in Cellular Automata

Marcus Pivato Trent University Peterborough, Ontario

http://xaravve.trentu.ca/pivato/Research/\#defects
This research was carried out during a research leave at Wesleyan University
in Middletown, Connecticut, and partially supported by the Van Vleck Fund.
This research was also partially supported by NSERC Canada.

Cellular Automata

\qquad
CA are the 'discrete analog' of partial differential equations. They are spatially distributed dynamical systems whose dynamics are driven by local interactions governed by translationally equivariant rules.

- Space is a lattice \mathbb{Z}^{D} (for $D \geq 1$).
- The local state at each point in the lattice is an element of a finite alphabet, e.g. $\mathcal{A}:=\{0,1\}$.
- The global state is a \mathbb{Z}^{D}-indexed configuration $\mathbf{a}: \mathbb{Z}^{D} \longrightarrow \mathcal{A}$.

The space of such configurations is denoted $\mathcal{A}^{\mathbb{Z}^{D}}$.
A generic element of $\mathcal{A}^{\mathbb{Z}^{D}}$ will be denoted by $\mathbf{a}:=\left[\left.a_{z^{2}}\right|_{z \in \mathbb{Z}^{D}}\right]$.

- The evolution is governed by a map $\Phi: \mathcal{A}^{\mathbb{Z}^{D}} \longrightarrow \mathcal{A}^{\mathbb{Z}^{D}}$, computed by applying a 'local rule' ϕ at every point in space.

Neighbourhood:
$\mathbb{K} \subset \mathbb{Z}^{D}$ (finite set)
Local rule: $\phi: \mathcal{A}^{\mathbb{K}} \longrightarrow \mathcal{A}$

Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^{D}}$,
$\mathbf{a}:=\left[\left.a_{z}\right|_{z \in \mathbb{Z}^{D}}\right]$.
$\forall \mathbf{z} \in \mathbb{Z}^{D}$, let $b_{\mathbf{z}}:=\phi\left[\left.a_{(\mathrm{k}+\mathrm{z})}\right|_{\mathbf{k} \in \mathbb{K}}\right]$.

This defines new configuration $\mathbf{b}:=\left[\left.b_{z}\right|_{z \in \mathbb{Z}^{D}}\right]$.
The CA induced by ϕ is function $\Phi: \mathcal{A}^{\mathbb{Z}^{D}} \triangleright$ defined: $\Phi(\mathbf{a}):=\mathbf{b}$.

Example: Elementary Cellular Automaton \#62 \qquad
Let $D:=1, \mathbb{K}:=\{-1,0,1\}$, and $\mathcal{A}:=\{0,1\}$.
Define $\phi_{62}:\{0,1\}^{\{-1,0,1\}} \longrightarrow\{0,1\}$ by:

$$
\begin{array}{ll}
\phi_{62}(0,0,1)=1 ; & \phi_{62}(0,0,0)=0 ; \\
\phi_{62}(0,1,0)=1 ; & \phi_{62}(1,1,0)=0 ; \\
\phi_{62}(0,1,1)=1 ; & \phi_{62}(1,1,1)=0 ; \\
\phi_{62}(1,0,0)=1 ; & \\
\phi_{62}(1,0,1)=1 . &
\end{array}
$$

(white $=0 ;$ black=1)
Such a nearest-neighbour CA on $\{0,1\}^{\mathbb{Z}}$ is called an Elementary Cellular Automaton. Each ECA is described by an 8-bit binary number (i.e. a number between 0 and 255) as follows:

If $N=n_{0}+2 n_{1}+2^{2} n_{2}+2^{3} n_{3}+2^{4} n_{4}+2^{5} n_{5}+2^{6} n_{6}+2^{7} n_{7} \in[0 . .255]$
then $\phi_{N}\left(a_{0}, a_{1}, a_{2}\right):=n_{k}$, where $k:=a_{0}+2 a_{1}+4 a_{2} \in[0 \ldots .7]$.
For example, the CA here is ECA\# 62 , because $2^{1}+2^{2}+2^{3}+2^{4}+2^{5}=62$.

Emergent Defect Dynamics in ECA\#62

Emergent Defect Dynamics in ECA\#184

(black=0; white=1)

Emergent Defect Dynamics in ECA\#54

Emergent Defect Dynamics in ECA\#110

4*)

Emergent Defect Dynamics in ECA\#18

Invariant sofic subshift: (1) \leftrightarrows (0) \leftrightarrows (0) (the Odd Shift). Defects are 'phase slips':
[$\cdots \underbrace{0001000101}_{\text {orange }} \underbrace{00000000000000}_{\text {even \# of zeroes }} \underbrace{100010000010}_{\text {blue }} \ldots]$.

Defect Particle 'Chemistry'

Empirical Work: - P. Grassberger [1983, 1984].

- Steven Wolfram [1983-2005]. (Mainly ECA \#110).
- S. Wolfram and Doug Lind [1986]. (Classified defects of ECA \#110).
- N. Boccara, J. Naser, M. Rogers [1991]. (ECAs 18, 54, 62, 184).
- James Crutchfield and James Hanson's 'Computational Mechanics' [1992-2001]. (Also Cosma Shalizi, Wim Hordijk, Melanie Mitchell).
- Harold V. McIntosh [1999, 2000].

Theoretical Work: - Doug Lind [1984] conjectured:
(i) Defects in ECA\#18 perform random walks.
(ii) Defect density decays to zero through annihilations. Thus, ECA\#18 converges 'in measure' to the 'odd' sofic shift (1) \leftrightarrows (0) \leftrightarrows (0).

- Kari Eloranta [1993-1995] proved Lind's conjecture (i); studied quasirandom defect motion in 'partially permutive' CA.
- Petr Kůrka and Alejandro Maass [2000, 2002] studied CA convergence to limit sets through 'defect annihilation'. Kůrka [2003] proved Lind's conjecture (ii).
- S. Wolfram and Matthew Cook [2002, 2004]: ECA \#110 is computationally universal (used 'defect physics' to engineer universal computer).

Questions:

- What is a 'defect'? What is a 'regular background pattern'?
- Is there an 'algebraic structure' governing defect 'chemistry'?
- Why do defects 'persist' over time instead of disappearing? Is this related to aforementioned 'algebraic structure'?
- What is the 'kinematics' by which defects propagate through space?

A subshift is a subset $\mathfrak{A} \subseteq \mathcal{A}^{\mathbb{Z}^{D}}$ of configurations, defined by stipulating which 'local patterns' may or may not occur around each point in \mathbb{Z}^{D}.

Topological Markov Shifts: Let $D=1$. Let $\mathcal{A}:=$ the vertices of a directed graph. A sequence $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}}$ is admissible iff it describes an infinite directed path through the graph.

$$
\mathbf{a}=[\ldots 0,1,2,1,2,0,0,0,0,1,2,0,0,1,2,1,2,1,2,0,0, \ldots]
$$

Sofic Shift: Let $D=1$. Like a topological Markov shift, but now several vertices might be labelled with the same letter in \mathcal{A}.

Example: (1) \leftrightarrows (0) \leftrightarrows (0 (the Odd Shift from ECA\#18). [...0001000101000000000100000000010100010000 01...].
Let $\mathfrak{A}_{(r)}$:= set of \mathfrak{A}-admissible 'local patterns' seen in $\mathbb{B}(r):=\left[-r_{\ldots} . . r\right]^{D}$
A configuration $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^{D}}$ is defective if there are points in \mathbb{Z}^{D} where the local pattern in \mathbf{a} is inadmissible -i.e. not in $\mathfrak{A}_{(r)}$. These points are called defects. Let $\mathbb{D}(\mathbf{a}) \subset \mathbb{Z}^{D}$ be the set of these 'defect points' in a.

Let $\Phi: \mathcal{A}^{\mathbb{Z}^{D}} \longrightarrow \mathcal{A}^{\mathbb{Z}^{D}}$ be a CA. We say \mathfrak{A} is Φ-invariant if $\Phi(\mathfrak{A}) \subseteq \mathfrak{A}$. Empirically, if $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^{D}}$ has defects, then so does $\Phi(\mathbf{a})$.

Let $\widetilde{\mathfrak{A}}:=$ \{configurations with 'finite' defects\}. Then $\Phi(\widetilde{\mathfrak{A}}) \subseteq \widetilde{\mathfrak{A}}$.

Let $D=2$. Let $\mathcal{A}:=$ set of square tiles, with notches on their edges which dictate how the tiles can be assembled. These edge-matching constraints determine a subshift $\mathfrak{A} \subset \mathcal{A}^{\mathbb{Z}^{2}}$, called a Wang tiling.

A defect corresponds to a 'hole' in the tiling:

Remark: Wang tilings and topological Markov shifts are subshifts of finite type (SFTs), meaning they are determined entirely by 'local constraints'. Sofic shifts are a broader class, which may have 'nonlocal' constraints. (Defect theory more complicated, but still possible.)

Generalization to \mathbb{Z}^{D} : Idea: $\mathcal{A}=$ set of 'atoms', with certain admissible 'chemical bonds' between them. Thus, an admissible configuration corresponds to a 'crystalline solid'. Defects are 'flaws' in crystal structure.

Questions:

- Is there an 'algebraic structure' governing defect 'chemistry'?
- Why do defects 'persist' over time instead of disappearing? Is this related to aforementioned 'algebraic structure'?
- What is the 'kinematics' by which defects propagate through space?

Formalism: Fix $D \in \mathbb{N}$. For any $r>0$, let $\mathbb{B}(r):=[-r \ldots r]^{D} \subset \mathbb{Z}^{D}$. Fix $r>0$. Let $\mathfrak{A}_{(r)} \subset \mathcal{A}^{\mathbb{B}(r)}$ be a set of of admissible r-blocks.

The subshift of finite type (SFT) determined by $\mathfrak{A}_{(r)}$ is the set

$$
\mathfrak{A}:=\left\{\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^{D}} ; \mathbf{a}_{\mathbf{z}+\mathbb{B}(r)} \in \mathfrak{A}_{(r)}, \forall \mathbf{z} \in \mathbb{Z}^{D}\right\}
$$

For any $R>0$, let $\mathfrak{A}_{(R)}$ be the projection of \mathfrak{A} to $\mathcal{A}^{\mathbb{B}(R)}$.
If $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^{D}}$ and $\mathbf{z} \in \mathbb{Z}^{D}$, then \mathbf{a} is defective at \mathbf{z} if $\mathbf{a}_{\mathbf{z}+\mathbb{B}(r)} \notin \mathfrak{A}_{(r)}$. The defect set of \mathbf{a} is the set $\mathbb{D}(\mathbf{a})$ of all such \mathbf{z}.

Let $\Phi: \mathcal{A}^{\mathbb{Z}^{D}} \longrightarrow \mathcal{A}^{\mathbb{Z}^{D}}$ be a CA. We say \mathfrak{A} is Φ-invariant if $\Phi(\mathfrak{A}) \subseteq \mathfrak{A}$.
Empirically, if $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^{D}}$ has defects, then so does $\Phi(\mathbf{a})$.
We say \mathbf{a} is finitely defective if, $\forall R>0, \exists \mathrm{z} \in \mathbb{Z}^{D}$ with $\mathbf{a}_{\mathbb{B}(z, R)} \in \mathfrak{A}_{(R)}$.
Idea: a may have infinitely large defects, but a also has infinitely large 'nondefective' regions. Let $\widetilde{\mathfrak{A}}:=\left\{\right.$ finitely defective $\left.\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^{D}}\right\} .(\mathfrak{A} \subset \widetilde{\mathfrak{A}})$

Lemma: If $\Phi(\mathfrak{A}) \subseteq \mathfrak{A}$, then $\Phi(\widetilde{\mathfrak{A}}) \subseteq \widetilde{\mathfrak{A}}$.
Also, if $\mathbf{a} \in \tilde{\mathfrak{A}}$ and \mathbf{a} ' $=\Phi(\mathbf{a})$, then the any defects in \mathbf{a}^{\prime} are 'close' to corresponding defects in \mathbf{a}.

The Fine Print: To extend the definition of 'defect' to other subshifts (not of finite type), it is necessary to introduce a 'detection range' $R>0$. We must then talk about 'defects of range R '.

Domain Boundaries

Let $\mathbb{G}(\mathbf{a}):=\left\{\mathbf{z} \in \mathbb{Z}^{D} ; \mathbf{a}\right.$ is not defective at $\left.\mathbf{z}\right\}$. Let $\mathbf{G}(\mathbf{a}) \subset \mathbb{R}^{D}$ be the union of all unit cubes whose corner vertices are all in $\mathbb{G}(\mathbf{a})$.

The defect in \mathbf{a} is a domain boundary* if $\mathbf{G}(\mathbf{a})$ is disconnected.
Examples: (a) If $D=1$, then all defects are domain boundaries.
(b) (Monochromatic) Let $\mathcal{A}:=\{\mathbf{\square}, \square\}$. Let $\mathfrak{M}_{\mathfrak{o}} \subset \mathcal{A}^{\mathbb{Z}^{2}}$ be SFT such that no ■ can be adjacent to a \square.

The following configuration has a domain boundary defect:

(c) (Checkerboard) Let $\mathcal{A}:=\{\mathbf{\square}, \square\}$. Let $\mathfrak{C h} \subset \mathcal{A}^{\mathbb{Z}^{2}}$ be SFT where no can be adjacent to a $■$, and no \square can be adjacent to a \square.

The following configuration has a domain boundary defect:

(*) If we considering a defect of range $R>0$, then technically this is a domain boundary of range R.

Domain Boundaries \qquad
(d) (Square ice) Let $\mathcal{I}:=\{\underset{\sim}{a}$,

Let $\Im_{\mathfrak{c e}} \subset \mathcal{I}^{\mathbb{Z}^{2}}$ be the SFT defined by obvious edge-matching conditions.
The following configuration has a domain boundary defect:

(e) (Domino Tiling) Let $\mathcal{D}:=\{\square, \square, \square, \square\}$.

Let $\mathfrak{D}_{\mathrm{om}} \subset \mathcal{D}^{\mathbb{Z}^{2}}$ be the SFT defined by obvious edge-matching conditions.
The following configurations have domain boundary defects:

\qquad
Let $\Phi: \mathcal{A}^{\mathbb{Z}^{D}} \longrightarrow \mathcal{A}^{\mathbb{Z}^{D}}$ be a CA , with $\Phi(\mathfrak{A}) \subseteq \mathfrak{A}$. Let $\mathbf{a} \in \widetilde{\mathfrak{A}}$. The defect in \mathbf{a} is Φ-persistent if $\Phi^{t}(\mathbf{a})$ also has a defect, for all $t \geq 0$.

Question: These defects seem to be persistent. Are they? Why?
Essential Defects
A defect is essential if it can't be removed through a local change. That is, $\forall R>0$, if $\mathbf{a}^{\prime} \in \mathcal{A}^{\mathbb{Z}^{D}}$ is obtained by modifying \mathbf{a} in an R neighbourhood of defect, then \mathbf{a}^{\prime} is also defective.

Proposition: If $\Phi: \mathfrak{A} \longrightarrow \mathfrak{A}$ is bijective (e.g. if $\mathfrak{A} \subseteq$ Fix $[\Phi]$ or $\mathfrak{A} \subseteq$ Fix $\left[\Phi^{p}\right]$ or $\mathfrak{A} \subseteq$ Fix $\left[\Phi^{p} \circ \sigma^{q}\right]$), then any essential defect is Φ-persistent.

Question: These defects to be seem essential. Are they? Why?

Suppose $\mathfrak{A}_{(r)}$ breaks into two (or more) disjoint subsets $\mathfrak{A}_{(r)}=\mathfrak{B}_{(r)} \sqcup \mathfrak{C}_{(r)}$ (called (F, σ)-transitive components), such that, for each $\mathbf{a} \in \mathfrak{A}$,
either \mathbf{a} is totally covered by $\mathfrak{B}_{(r)}$-blocks, or \mathbf{a} is totally covered by $\mathfrak{C}_{(r)}$-blocks,
but a cannot have a mixture of $\mathfrak{B}_{(r)}$-blocks and $\mathfrak{C}_{(r)}$-blocks.
An interface is a domain boundary between a $\mathfrak{B}_{(r)}$-covered region and a $\mathfrak{C}_{(r)}$-covered region. Such a boundary is necessarily an essential defect.

Example: Let \mathfrak{M} be the monochromatic shift. Then $\mathfrak{M}_{(1)}:=\mathfrak{B}_{(1)} \sqcup \mathfrak{W}_{(1)}$, where $\mathfrak{B}_{(1)}:=\{\boldsymbol{\#}\}$ and $\mathfrak{W}_{(1)}:=\left\{\begin{array}{c}\text { 㗊 } \\ \text { 知 }\end{array}\right\}$.
The defect at right is an interface.

Example: $(\mathrm{ECA} \# 184)$ Let $\mathcal{A}=\{\square, \mathbf{\square}\}$. Let $\mathfrak{G}_{(1)}:=\mathfrak{B}_{(1)} \sqcup \mathfrak{W}_{(1)} \sqcup \mathfrak{C}_{(1)}$, where $\mathfrak{B}_{(1)}:=\{\boldsymbol{\square}\}, \mathfrak{W}_{(1)}:=\{\square \square \square\}$, and $\mathfrak{C}_{(1)}:=\{\boldsymbol{\square} \square, \square \square\}$. This yields 6 possible interfaces:
$\Phi_{184}(\mathfrak{G}) \subseteq \mathfrak{G}$, and the Φ_{184}-propagation of these interfaces is as follows:

Theorem: If $\Phi: \mathfrak{A} \longrightarrow \mathfrak{A}$ is surjective, then all interfaces are Φ persistent defects.

Interfaces (formal version)
\mathfrak{A} is (Φ, σ)-transitive if $\bigcup \bigcup \Phi^{-t} \sigma^{-\mathrm{z}}(\mathfrak{O})$ is dense in \mathfrak{A}, for any $t \in \mathbb{N}_{z \in \mathbb{Z}^{D}}$
nonempty open $\mathfrak{O} \subset \mathfrak{A}$. (Equivalent: most (Φ, σ)-orbits are dense in $\mathfrak{A})$.
Suppose \mathfrak{A} is not transitive, but $\mathfrak{A}=\mathfrak{A}_{1} \sqcup \cdots \sqcup \mathfrak{A}_{K}$, where $\mathfrak{A}_{1}, \ldots, \mathfrak{A}_{K}$ are clopen (Φ, σ)-transitive components.
$\left(\mathfrak{A}_{1}, \ldots, \mathfrak{A}_{K}\right.$ are clopen $) \Rightarrow($ indicator functions are locally determined $)$ i.e. $\exists r>0$, and function $\kappa: \mathfrak{A}_{(r)} \longrightarrow[1 \ldots K]$ such that, $\forall \mathbf{a} \in \mathfrak{A}$,

$$
\left(\mathbf{a} \in \mathfrak{A}_{k}\right) \quad \Longleftrightarrow \quad\left(\kappa\left(\mathbf{a}_{\mathbb{B}(r)}\right)=k\right)
$$

$\forall \mathbf{z} \in \mathbb{Z}^{D}$, let $\kappa_{\mathbf{z}}(\mathbf{a}):=\kappa\left(\mathbf{a}_{\mathbb{B}(\mathrm{z}, r)}\right)$. Then $\kappa_{\mathbf{z}}(\mathbf{a})$ is also well-defined for any $\mathbf{a} \in \widetilde{\mathfrak{A}}$ such that $\mathbf{a}_{\mathbb{B}(z, r)}$ is \mathfrak{A}-admissible.

If $\mathbf{y}, \mathbf{z} \in \mathbb{Z}^{D}$, then \mathbf{a} has an interface ${ }^{\dagger}$ between \mathbf{y} and \mathbf{z} if $\kappa_{\mathbf{y}}(\mathbf{a}) \neq \kappa_{\mathbf{z}}(\mathbf{a})$.
Example: \mathfrak{M}_{0} has two σ-transitive components: $\mathfrak{M}_{0}:=$ all-black, and $\mathfrak{M}_{1}:=$ all-white. This defect is an interface.

Nonexample: This is not an interface, because $\mathfrak{D o m}_{\mathrm{om}}$ is σ-transitive [Einsiedler, 2001]. Instead this is a 'gap' defect.

Interfaces always form domain boundaries. Let $\mathbb{Y}_{1}, \ldots, \mathbb{Y}_{N}$ be the connected components of $\mathbb{G}(\mathbf{a})$. There is a function $\mathcal{K}:[1 \ldots N] \longrightarrow[1 \ldots K]$ such that for any $n \in[1 \ldots N]$ and any $\mathrm{y} \in \mathbb{Y}_{n}, \kappa_{\mathrm{y}}(\mathbf{a})=\mathcal{K}(n)$.
(\dagger) Technically, this is an interface of range r, and this concept only makes sense for domain boundaries of range $R \geq r$.

Persistence of Interfaces

A connected component \mathbb{Y}_{n} of \mathbb{G} is projective if, for all $R>0, \exists \mathbf{y} \in \mathbb{Y}_{n}$ with $\mathbf{a}_{\mathbb{B}(y, R)} \in \mathfrak{A}_{(R)}$. (i.e. \mathbb{Y}_{n} contains arbitrarily large \mathfrak{A}-admissible patches.)

Lemma: The interface in a is essential if there are two projective components \mathbb{Y}_{n} and \mathbb{Y}_{m} with $\mathcal{K}(n) \neq \mathcal{K}(m)$.

Signature of the interface := restriction of \mathcal{K} to projective components.
Example: Let $\mathfrak{A} \subset \mathcal{A}^{\mathbb{Z}}$. Suppose $\mathbf{a} \in \widetilde{\mathfrak{A}}$ has defects $\mathbf{d}_{1}, \ldots, \mathbf{d}_{N}$ with $\mathbb{Y}_{0}, \ldots, \mathbb{Y}_{N}$ being the \mathfrak{A}-admissible intervals between these defects:
$-\mathbb{Y}_{0} \longrightarrow \mathbf{d}_{1} \longleftarrow \mathbb{Y}_{1} \longrightarrow \mathbf{d}_{2} \longleftarrow \mathbb{Y}_{2} \longrightarrow \cdots \longleftarrow \mathbb{Y}_{N-1} \longrightarrow \mathbf{d}_{N} \longleftarrow \mathbb{Y}_{N}-\cdots$
Projective components: $\mathbb{Y}_{0} \& \mathbb{Y}_{N} . \therefore$ Interface is essential if $\mathcal{K}(0) \neq \mathcal{K}(N)$.
Theorem: If $\Phi: \mathfrak{A} \longrightarrow \mathfrak{A}$ is surjective, then all essential interfaces are Φ-persistent. If $\mathbf{a} \in \widetilde{\mathfrak{A}}$ has an essential interface, then $\Phi(\mathbf{a})$ also has an essential interface, with the same signature as \mathbf{a}.

Example: (ECA \#184) Let $\mathcal{A}=\{\square, \mathbf{\square}\}$. Let $\mathfrak{G}:=\mathfrak{G}_{0} \sqcup \mathfrak{G}_{1} \sqcup \mathfrak{G}_{*}$, where $\mathfrak{G}_{0}:=\{\overline{\mathbf{\square}}\}, \mathfrak{G}_{1}:=\{\overline{\bar{\square}}\}$, and $\mathfrak{G}_{*}:=\{\overline{\mathbf{\square}}, \bar{\square}\}$. (Here, $\overline{\boldsymbol{\square}}:=[\ldots \boldsymbol{\square} \boldsymbol{\square} \boldsymbol{\square} \ldots]$ and $\bar{\square}:=[\ldots \square \square \ldots]$, etc.

Then $\mathfrak{G}_{0} \cup \mathfrak{G}_{1} \subset \operatorname{Fix}\left[\Phi_{184}\right]$, while $\left.\Phi_{184}\right|_{\mathfrak{G}_{*}}=\sigma$.
\mathfrak{G} has three $\left(\Phi_{184}, \sigma\right)$-transitive components, so $\exists 6$ possible interfaces:

The Φ_{184}-propagation of these defects is as follows:

Suppose \mathfrak{A} has a spatiotemporally periodic structure. In any \mathfrak{A}-admissible configuration, certain patterns must recur periodically in space and time.

A dislocation is a domain boundary between two regions which are 'out of phase' with respect to this periodic structure. Such a domain boundary is necessarily an essential defect.

Example: The checkerboard shift $\mathfrak{C}_{\mathfrak{h}}$ is both vertically and horizontally 2 -periodic in space. The domain boundary at right is a dislocation.

The spatiotemporally periodic structure of \mathfrak{A} is described by a subgroup $\mathbb{K} \subset \mathbb{Z}^{D+1}$. Each dislocation is characterized by a displacement $\delta \in \Delta$, where $\Delta:=\mathbb{Z}^{D+1} / \mathbb{K}$ is the quotient group.

Example: (ECA\#62) Let $\mathfrak{D}=$ orbit of $[\ldots \square \square \square \square \square \square \square \square . .$.$] . Then$ $\left.\Phi_{62}\right|_{\mathfrak{D}}=\sigma$, so $\left(\mathfrak{D}, \Phi_{62}\right)$ is 3-periodic in both space and time, and $\Delta \cong \mathbb{Z}_{/ 3}$.

Here are two dislocations in \mathfrak{D} and their displacements:

Theorem: If $\Phi: \mathfrak{A} \longrightarrow \mathfrak{A}$ is surjective, then any nontrivial dislocation is a Φ-persistent defect. Futhermore the displacement of each dislocation is constant over time.

Dislocations in ECA\#184 (intuitive version)
Let $\mathfrak{G}_{*}=$ orbit of $[\ldots \square \square \square \square \square]$. Then $\left.\Phi_{184}\right|_{\mathfrak{G}_{*}}=\sigma$, so $\left(\mathfrak{G}_{*}, \Phi_{184}\right)$ is 2-periodic in both space and time, and $\Delta \cong \mathbb{Z}_{/ 2}$.

Here are two dislocations, both with displacement $1 \in \mathbb{Z}_{/ 2}$:

Dislocations in ECA\#110
 $\left.\Phi_{110}\right|_{\mathfrak{E}}=\sigma^{4}$, so $\left(\mathfrak{E}, \Phi_{110}\right)$ is spatiotemporally periodic, and $\Delta \cong \mathbb{Z}_{/ 14}$. Here are seven dislocations in \mathfrak{E} :

Dislocations in ECA \＃54（intuitive version）
Let $\mathfrak{B}:=\mathfrak{B}_{0} \sqcup \mathfrak{B}_{1}$ ，where \mathfrak{B}_{0} is the σ－orbit of $[\ldots$ חmanamana \ldots ］ and \mathfrak{B}_{1} is the σ－orbit of $\left[\ldots\right.$ ．．．．．．］．Then $\Phi_{54}\left(\mathfrak{B}_{0}\right)=\mathfrak{B}_{1}$ ， $\Phi_{54}\left(\mathfrak{B}_{1}\right)=\mathfrak{B}_{0}$ ，and $\left.\Phi_{54}^{2}\right|_{\mathfrak{B}}=\sigma^{2}$ ．Thus，$\left(\mathfrak{B}, \Phi_{54}\right)$ is spatiotemporally periodic，and $\Delta=\mathbb{Z}^{2} / \mathbb{K}$ ，where $\mathbb{K}:=\mathbb{Z}(2,2) \oplus \mathbb{Z}(0,4)$ ，Here are four dislocations in ECA\＃54 and their displacements：

$$
\delta=(0,3)+\mathbb{K}
$$

$\delta=(1,1)+\mathbb{K}$

Displacement Algebra and Defect Chemistry
When two displacement defects collide，the outcome can be partially predicted by the algebra of the displacement group Δ ．

		ECA\＃184	EC	\＃54
$\begin{gathered} \gamma+\beta \rightarrow \alpha \\ 2+1 \equiv 0 \end{gathered}$	$\begin{gathered} \gamma+\alpha \rightarrow \gamma \\ 2+0 \equiv 2 \end{gathered}$	$\left\lvert\, \begin{gathered} \gamma^{+}+\gamma^{-} \rightarrow \emptyset \\ 1+1 \equiv 0 \end{gathered}\right.$	$\begin{gathered} \gamma^{+}+\gamma^{-} \rightarrow \beta \\ (1,1)+(-1,1)=(0,2) \end{gathered}$	$\begin{aligned} \gamma^{+}+\beta & \rightarrow \gamma^{-} \\ (1,1)+(0,2) & \equiv(-) \end{aligned}$

Dislocations (fomal version)
Let $\mathfrak{A} \subset \mathcal{A}^{\mathbb{Z}^{D}}$ be a Φ-invariant subshift. Let $\boldsymbol{\lambda}:=\left(\lambda_{0} ; \lambda_{1}, \ldots, \lambda_{D}\right)$ be a $(D+1)$-tuple of complex roots of unity. A rational eigenfunction of \mathfrak{A} with eigenvalue $\boldsymbol{\lambda}$ is a function $F: \mathfrak{A} \longrightarrow \mathbb{C}$ such that:

$$
F \circ \Phi=\lambda_{0} F, \quad \text { and } \quad F \circ \sigma^{z}=\lambda^{z} F, \quad \forall \mathrm{z} \in \mathbb{Z}^{D}
$$

Here, if $\mathbf{z}=\left(z_{1}, \ldots, z_{D}\right)$, then we define $\boldsymbol{\lambda}^{\mathbf{z}}:=\lambda_{1}^{z_{1}} \cdots \lambda_{D}^{z_{D}}$.
Any rational eigenfunction is locally determined i.e. $\exists r>0$, and function $f: \mathfrak{A}_{(r)} \longrightarrow \mathbb{C}$ such that, $\forall \mathbf{a} \in \mathfrak{A}, \quad F(\mathbf{a})=f\left(\mathbf{a}_{\mathbb{B}(r)}\right)$.
$\forall \mathbf{z} \in \mathbb{Z}^{D}$, let $f_{\mathrm{z}}(\mathbf{a}):=f\left(\mathbf{a}_{\mathbb{B}(\mathbf{z}, r)}\right)$. Then $f_{\mathbf{z}}(\mathbf{a})$ is also well-defined for any $\mathbf{a} \in \widetilde{\mathfrak{A}}$ such that $\mathbf{a}_{\mathbb{B}(z, r)}$ is \mathfrak{A}-admissible. If $\mathrm{x}, \mathrm{y} \in \mathbb{Z}^{D}$, then \mathbf{a} has an (\mathfrak{A}, Φ)-dislocation ${ }^{\ddagger}$ between x and y if $f_{\mathrm{x}}(\mathbf{a}) / f_{\mathrm{y}}(\mathbf{a}) \neq \lambda^{\mathrm{x}-\mathrm{y}}$.
Example: Define $F: \mathfrak{C}_{\mathfrak{h}} \longrightarrow\{ \pm 1\}$ by local rule $f:\{\boldsymbol{\square}, \square\} \longrightarrow\{ \pm 1\}$ where $f(\mathbf{\square})=1$ and $f(\square)=-1$. Then F is σ eigenfunction with eigenvalue $(-1,-1)$.

Nonexample: This is not a dislocation, because $\mathfrak{D}_{\mathrm{om}}$ is σ-mixing [Einsiedler, 2001], and thus, has no nontrivial eigenfunctions [Keynes \& Robertson, 1969].
Instead this is a 'gap' defect.

Dislocations always form domain boundaries. Let $\mathbb{K}:=\left\{\mathrm{k} \in \mathbb{Z}^{D} ; \boldsymbol{\lambda}^{\mathrm{k}}=1\right\}$. For any connected components \mathbb{X}, \mathbb{Y} of $\mathbb{G}(\mathbf{a}), \exists$ unique displacement $\boldsymbol{\delta} \in \mathbb{Z}^{D+1} / \mathbb{K}$ such that, for any $\mathrm{x} \in \mathbb{X}$ and $\mathbf{y} \in \mathbb{Y}, \frac{f_{x}(\mathbf{a})}{\lambda^{x-y} f_{y}(\mathbf{a})}=\boldsymbol{\lambda}^{\boldsymbol{\delta}}$.
(\ddagger) Technically, this is a dislocation of range r, and this concept only makes sense for domain boundaries of range $R \geq r$.

Persistence of Dislocations

\qquad
Lemma:The dislocation in a is essential if \exists two projective components \mathbb{X} and \mathbb{Y} with a nontrivial displacement between them.

If a has N projective components, then the displacement matrix is the antisymmetric $N \times N$ matrix of $\left(\mathbb{Z}^{D+1} / \mathbb{K}\right)$-valued displacements between them. Essential dislocations are persistent:

Theorem: If $\Phi: \mathfrak{A} \longrightarrow \mathfrak{A}$ is surjective, then all essential dislocations are Φ-persistent. If $\mathbf{a} \in \widetilde{\mathfrak{A}}$ has essential dislocation, then $\Phi(\mathbf{a})$ also has essential dislocation, with the same displacement matrix as a.

Example: $(\mathrm{ECA} \# 62)$ Let $\mathcal{A}=\{\mathbf{■}, \square\}$. Let \mathfrak{D} be the three-periodic σ-orbit of $\boldsymbol{\square}$. Then $\left.\Phi_{62}\right|_{\mathfrak{D}}=\sigma$.

Let $\lambda:=e^{2 \pi \mathrm{i} / 3}$. Define $F: \mathfrak{D} \longrightarrow \mathbb{C}$ by $F(\overline{\Pi \square})=\square, F(\overline{\square \square})=\lambda$, and $F\left(\square\right.$ ■I) $=\lambda^{2}$. Then $F \circ \sigma=\lambda F=F \circ \Phi_{62}$, so F is eigenfunction with eigenvalue (λ, λ).
$\mathbb{K}=\mathbb{Z}(3,0) \oplus \mathbb{Z}(1,2)$, so displacements are elements of $\Delta \cong \mathbb{Z}_{/ 3}$.
Below are three rational dislocations in \mathfrak{D} and their displacements.

The β and γ defects are essential, hence persistent by the theorem.
The α defect is not essential, but is still persistent (not because of the theorem).

\qquad
Let $\mathfrak{B}:=\mathfrak{B}_{0} \sqcup \mathfrak{B}_{1}$, where \mathfrak{B}_{0} is the 4-periodic σ-orbit of $\boldsymbol{\square} \square$ and \mathfrak{B}_{1} is the 4 -periodic σ-orbit of $\overline{\text { IIC }}$.

Then $\Phi_{54}\left(\mathfrak{B}_{0}\right)=\mathfrak{B}_{1}, \quad \Phi_{54}\left(\mathfrak{B}_{1}\right)=\mathfrak{B}_{0}, \quad$ and $\left.\Phi_{54}^{2}\right|_{\mathfrak{B}}=\sigma^{2}$.
Define $F: \mathfrak{B} \longrightarrow\{ \pm 1, \pm \mathbf{i}\}$ by $\quad F(\overline{\mathrm{~m} \square})=F(\overline{\mathrm{ITD}})=1$; $F(\overline{\text { ■II }})=F(\overline{\text { पID }})=\mathbf{i} ;$ $F(\overline{\square I T})=F(\square \square \square)=-1 ;$ $F(\overline{\text { IITCI}})=F(\overline{\square \square \square})=-\mathbf{i}$.

Then $F \circ \sigma=\mathbf{i} F=F \circ \Phi_{54}$, so F is eigenfunction with eigenvalue (\mathbf{i}, \mathbf{i}).
$\mathbb{K}:=\mathbb{Z}(2,2) \oplus \mathbb{Z}(0,4)$, so displacements are elements of $\mathbb{Z}^{2} / \mathbb{K}$.
Here are four rational dislocations in ECA\#54 and their displacements:

$$
\delta=(0,3)+\mathbb{K}
$$

$$
\delta=(0,2)+\mathbb{K}
$$

All four have nontrivial displacement, so they are essential, $\therefore \Phi_{54}$-persistent.

 $\left.\Phi_{110}\right|_{\mathscr{E}}=\sigma^{4}$.

Let $\lambda:=e^{\pi \mathrm{i} / 7}$. Let $F: \mathfrak{E} \longrightarrow\left\{\lambda^{k}\right\}_{k=0}^{13}$ be a σ-eigenfunction with $F \circ \sigma=$ λF. Then $F \circ \Phi_{110}=\lambda^{4} F$, so F is a $\left(\Phi_{184}, \sigma\right)$-eigenfunction with eigenvalue $\left(\lambda^{4} ; \lambda\right)$.
$\mathbb{K}=\mathbb{Z}(0,14) \oplus \mathbb{Z}(1,10)$, so displacements are elements of $\mathbb{Z}^{2} / \mathbb{K} \cong \mathbb{Z}_{/ 14}$.
Here are seven rational dislocations in \mathfrak{E} :

All have nontrivial displacement, so they are essential and Φ_{110}-persistent.

Let $\mathfrak{G}_{*}=\{\bar{\square}, \bar{\Pi} \bar{\square}\}$. Then $\left.\Phi_{184}\right|_{\mathfrak{G}_{*}}=\sigma$.
Define $F: \mathfrak{G}_{*} \longrightarrow\{ \pm 1\}$ by $F(\overline{\square \mathbf{\Xi}})=1$ and $F(\overline{\bar{\square}})=-1$. Then
$F \circ \sigma=-F=F \circ \Phi_{184}$, so F is eigenfunction with eigenvalue $(-1,-1)$.
$\mathbb{K}=\mathbb{Z}(2,0) \oplus \mathbb{Z}(1,1)$, so displacements are elements of $\mathbb{Z}^{2} / \mathbb{K} \cong \mathbb{Z}_{/ 2}$.
Here are two dislocations and their displacements:

Both have nontrivial displacement, so they are
 essential and Φ_{184}-persistent.

Displacement Algebra and Defect Chemistry
When two displacement defects collide, the outcome can be partially predicted by the algebra of the displacement group $\mathbb{Z}^{D+1} / \mathbb{K}$.

The Fine Print: Our definition of 'displacement' here is somewhat oversimplified. The 'real' definition is that a displacement is a character on the spectral group of $(\mathfrak{A}, \Phi, \sigma)$. This is necessary to extend the theory of dislocations to irrational eigenvalues (e.g. in Sturmian shifts or multidimensional SFTS) or discontinuous eigenfunctions (e.g. on sofic shifts, as in ECA\#18).

Cocycles

Let $\mathfrak{A} \subseteq \mathcal{A}^{\mathbb{Z}^{D}}$ be a subshift. Let (\mathcal{G}, \cdot) be a (discrete) group. A \mathcal{G}-valued cocycle is continuous function $C: \mathbb{Z}^{D} \times \mathfrak{A} \longrightarrow \mathcal{G}$ satisfying cocycle equation:
$C(\mathrm{y}+\mathrm{z}, \mathbf{a})=C\left(\mathbf{y}, \sigma^{\mathrm{z}}(\mathbf{a})\right) \cdot C(\mathbf{z}, \mathbf{a}), \quad \forall \mathbf{a} \in \mathcal{A}^{\mathbb{Z}^{D}}$ and $\forall \mathrm{y}, \mathrm{z} \in \mathbb{Z}^{D}$.
Examples: (a) Let $\mathfrak{I r e} \subset \mathcal{I}^{\mathbb{Z}^{2}}$ be square ice. Define $c_{1}, c_{2}: \mathcal{I} \longrightarrow\{ \pm 1\}$ by
 'anything'). Define cocycle $C: \mathbb{Z}^{2} \times \Im_{\mathrm{Ie}} \longrightarrow \mathbb{Z}$ as follows:
$\forall \mathbf{i} \in \mathscr{I}_{\mathfrak{c}}, \quad \forall \mathbf{z}=\left(z_{1}, z_{2}\right) \in \mathbb{Z}^{2}, \quad C(\mathbf{z}, \mathbf{i}):=\sum_{x=0}^{z_{1}-1} c_{1}\left(i_{x, 0}\right)+\sum_{y=0}^{z_{2}-1} c_{2}\left(i_{z_{1}, y}\right)$.

This is a height function (a \mathbb{Z}-valued cocycle). These arise in tilings [e.g. K. Eloranta 1999-2005, H.Cohn \& J.Propp] and statistical mechanics [R.Baxter 1989].
(b) Let $\mathfrak{D o m}_{\mathrm{om}} \subset \mathcal{D}^{\mathbb{Z}^{2}}$ be dominoes. Let $\mathcal{G}:=\mathbb{Z}_{/ 2} * \mathbb{Z}_{/ 2}$ be group of finite products $v h v h v \cdots v h v$, where v and h are noncommuting generators with $v^{2}=e=h^{2}$. Define $c_{1}, c_{2}: \mathcal{I} \longrightarrow \mathcal{G}$ by

$\forall \mathbf{d} \in \mathfrak{D}_{\mathrm{om}}, \forall \mathbf{z}=\left(z_{1}, z_{2}\right) \in \mathbb{Z}^{2}, C(\mathbf{z}, \mathbf{d}):=\prod_{x=0}^{z_{1}-1} c_{1}\left(d_{x, 0}\right) \cdot \prod_{y=0}^{z_{2}-1} c_{2}\left(d_{z_{1}, y}\right)$.
(c) If $b: \mathfrak{A} \longrightarrow \mathcal{G}$ is continuous, then function $C(\mathbf{z}, \mathbf{a}):=b\left(\sigma^{z}(\mathbf{a})\right) \cdot b(\mathbf{a})^{-1}$ is a cocycle, called a coboundary.
(d) Let $\mathbf{X}=$ topological space. Let $\mathcal{H}=$ homeo(\mathbf{X}). Then \mathcal{H}-valued cocycles are the fibre-wise maps of a skew product extension of the σ action on \mathfrak{A} to a \mathbb{Z}^{D}-action on $\mathfrak{A} \times \mathbf{X}$. [R.Zimmer 1976-80, J.Kammeyer 1990-93]

Cohomology

Two cocycles C and C^{\prime} are cohomologous $\left(C \approx C^{\prime}\right)$ if \exists continuous transfer function $b: \mathfrak{A} \longrightarrow \mathcal{G}$ such that

$$
C^{\prime}(\mathbf{z}, \mathbf{a})=b\left(\sigma^{\mathbf{z}}(\mathbf{a})\right) \cdot C(\mathbf{z}, \mathbf{a}) \cdot b(\mathbf{a})^{-1}, \quad \forall \mathbf{z} \in \mathbb{Z}^{D}, \text { and } \mathbf{a} \in \mathfrak{A} .
$$

Let $\underline{C}:=$ cohomology equivalence class of the cocycle C.
$\mathcal{Z}^{1}(\mathfrak{A}, \mathcal{G}):=\{\mathcal{G}$-valued cocycles $\}$.
$\mathcal{H}^{1}(\mathfrak{A}, \mathcal{G}):=\left\{\right.$ cohomology equivalence classes in $\left.\mathcal{Z}^{1}(\mathfrak{A}, \mathcal{G})\right\}$.
If (\mathcal{G}, \cdot) is abelian, then $\mathcal{Z}^{1}(\mathfrak{A}, \mathcal{G})$ is a group (under pointwise multipication), and $\mathcal{H}^{1}(\mathfrak{A}, \mathcal{G})$ is a quotient group, called the 1 st cohomology group of \mathfrak{A} (with coefficients in \mathcal{G}). [see e.g. K.Schmidt $(1995,1998)$ for discussion]

Trails and locally determined cocycles
Let $\mathbb{E}:=\left\{\mathbf{z} \in \mathbb{Z}^{D} ; \mathbf{z}=(0, \ldots, 0, \pm 1,0, \ldots, 0)\right\}$. A trail is a sequence $\zeta=\left(\mathrm{z}_{0}, \mathrm{z}_{1}, \ldots, \mathrm{z}_{N}\right) \subset \mathbb{Z}^{D}$, where, $\forall n \in[1 \ldots N], \mathrm{z}_{n}^{\prime}:=\left(\mathrm{z}_{n}-\mathrm{z}_{n-1}\right) \in \mathbb{E}$.

Let $r>0$. Let $c: \mathbb{E} \times \mathfrak{A}_{(r)} \longrightarrow \mathcal{G}$ be such that, $\forall \mathrm{e}, \mathrm{e}^{\prime} \in \mathbb{E}, \quad \forall \mathbf{a} \in \mathfrak{A}$,
(a) $c\left(\mathrm{e}^{\prime}, \mathbf{a}_{\mathbb{B}(e, r)}\right) \cdot c\left(\mathrm{e}, \mathbf{a}_{\mathbb{B}(r)}\right)=c\left(\mathbf{e}, \mathbf{a}_{\mathbb{B}\left(e^{\prime}, r\right)}\right) \cdot c\left(\mathrm{e}^{\prime}, \mathbf{a}_{\mathbb{B}(r)}\right)$. i.e. $c(\vec{\uparrow})=c(\xrightarrow{\dagger})$
(b) $\quad c\left(-\mathrm{e}, \mathbf{a}_{\mathbb{B}(e, r)}\right)=c\left(\mathrm{e}, \mathbf{a}_{\mathbb{B}(r)}\right)^{-1}$. \quad i.e. $c(\downarrow)=c(\uparrow)^{-1}$

Then $c(\zeta, \mathbf{a}):=\prod_{n=1}^{N} c\left(\mathbf{z}_{n}^{\prime}, \mathbf{a}_{\mathbb{B}\left(\mathbf{z}_{n-1}, r\right)}\right)$ depends only on \mathbf{z}_{0} and \mathbf{z}_{N}, not ζ.
Example: If ζ is closed (i.e. $\mathbf{z}_{N}=\mathbf{z}_{0}$) then $c(\zeta, \mathbf{a})=e_{\mathcal{G}}$.
Define cocycle $C: \mathbb{Z}^{D} \times \mathfrak{A} \longrightarrow \mathcal{G}$ as follows: $\forall \mathbf{a} \in \mathfrak{A}, \mathbf{z} \in \mathbb{Z}^{D}$, $C(\mathbf{z}, \mathbf{a}):=c(\zeta, \mathbf{a})$, (where ζ is any trail from 0 to \mathbf{z}). We say C is locally determined with local rule c of radius r.

If \mathcal{G} is discrete, then \forall continuous \mathcal{G}-valued cocycles are locally determined. For any $r>0$, let $\mathcal{Z}_{r}^{1}(\mathfrak{A}, \mathcal{G})$:= radius- r cocycles on \mathfrak{A}.

Cocycles and Cellular Automata

Proposition: Let $\mathfrak{A} \subset \mathcal{A}^{\mathbb{Z}^{D}}$ be a subshift. Let $\Phi: \mathcal{A}^{\mathbb{Z}^{D}} \longrightarrow \mathcal{A}^{\mathbb{Z}^{D}}$ be a cellular automaton with $\Phi(\mathfrak{A}) \subseteq \mathfrak{A}$. Let \mathcal{G} be a group.
(a) Let $C \in \mathcal{Z}^{1}(\mathfrak{A}, \mathcal{G})$ be cocycle. Define $\Phi_{*} C: \mathbb{Z}^{D} \times \mathfrak{A} \longrightarrow \mathcal{G}$ by $\Phi_{*} C(\mathbf{z}, \mathbf{a})=C(\mathbf{z}, \Phi(\mathbf{a}))$. Then $\Phi_{*} C$ is also a cocycle on \mathfrak{A}.
(b) If Φ has radius R, and C is locally determined with radius r, then $\Phi_{*} C$ is locally determined with radius $r+R$.
(c) Let $C, C^{\prime} \in \mathcal{Z}^{1}(\mathfrak{A}, \mathcal{G})$. If $C \approx C^{\prime}$, then $\Phi^{*} C \approx \Phi^{*} C^{\prime}$. Thus, Φ induces a function $\Phi_{*}: \mathcal{H}^{1}(\mathfrak{A}, \mathcal{G}) \longrightarrow \mathcal{H}^{1}(\mathfrak{A}, \mathcal{G})$.
(d) If (\mathcal{G}, \cdot) is abelian, then Φ_{*} is a group endomorphism.

We will see that the Φ-persistence of certain kinds of defects depends critically on the surjectivity of the endomorphism Φ_{*}.

Question: When is Φ_{*} surjective?

Gap Defects: Definition

Some domain boundaries exhibit divergence in cocycle asymptotics.
Let $C \in \mathcal{Z}_{r}^{1}(\mathfrak{A}, \mathbb{Z})$ be a range- r cocycle (i.e. 'height function').
Let $\mathbf{a} \in \widetilde{\mathfrak{A}}$. Let \mathbb{X} be an infinite, simply-connected component of $\mathbb{G}_{r}(\mathbf{a})$. Fix $x^{*} \in \mathbb{X}$. For any $x \in \mathbb{X}$, we define the height difference:

$$
\mathbf{C}_{\mathbf{a}}\left(\mathrm{x}^{*}, \mathbf{x}\right):=c(\zeta, \mathbf{a}),
$$

where $c: \mathfrak{A}_{(r)} \longrightarrow \mathbb{Z}$ is 'local rule', and ζ is any trail in \mathbb{X} from x^{*} to x .
(Well-defined independent of ζ because \mathbb{X} is a simply-connected.) Note:

$$
\left|C_{\mathbf{a}}\left(\mathrm{x}^{*}, \mathrm{x}\right)\right| \leq K \cdot d_{\mathbb{X}}\left(\mathrm{x}^{*}, \mathrm{x}\right)
$$

where $K:=\max _{\mathbf{a} \in \mathfrak{A}(r)}|c(\mathbf{a})|$, and $d_{\mathbb{X}}\left(\mathbf{x}^{*}, \mathbf{x}\right):=$ min length (\mathbb{X}-trail from \mathbf{x}^{*} to \mathbf{x}).
Let \mathbb{Y} be another infinite connected component of $\mathbb{G}_{r}(\mathbf{a})$. Fix $y^{*} \in \mathbb{Y}$. For any $\mathrm{y} \in \mathbb{Y}$, define $C_{\mathbf{a}}\left(\mathrm{y}, \mathrm{y}^{*}\right)$ in the same way as $C_{\mathbf{a}}\left(\mathrm{x}^{*}, \mathrm{x}\right)$ above. We then define

$$
\mathrm{C}(\mathrm{y}, \mathrm{x}):=C\left(\mathrm{y}, \mathrm{y}^{*}\right)+C\left(\mathrm{x}^{*}, \mathrm{x}\right) .
$$

If \mathbb{X} and \mathbb{Y} were the same connected component (or if we could remove the defect in a so that they were), then we expect

$$
C(\mathrm{y}, \mathrm{x}) \leq K \cdot d_{\mathbb{X}}(\mathrm{y}, \mathrm{x})+\text { const. } \approx K|\mathrm{y}-\mathrm{x}|+\text { const. }
$$

We say there is a C-gap between \mathbb{X} and \mathbb{Y} if $\sup _{y \in \mathbb{Y}, ~}^{x \in \mathbb{X}} \frac{|C(\mathrm{y}, \mathrm{x})|}{|\mathrm{y}-\mathrm{x}|}=\infty$.
(This suggests that the defect separating \mathbb{X} and \mathbb{Y} is essential.)
Fine print: If $\mathcal{G} \neq \mathbb{Z}$, we can also define gaps for \mathcal{G}-valued cocycles, by first defining an appropriate pseudonorm $\|\bullet\|: \mathcal{G} \longrightarrow \mathbb{R}$ which satisfies the triangle inequality and is invariant under conjugation.

Gaps in the Ice

Example: Consider the defective configuration in $\widetilde{\mathfrak{I c e}^{e}}$ shown above, and let $\left\{\mathrm{x}^{*}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots\right\} \subset \mathbb{X}$ and $\left\{\mathrm{y}^{*}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots\right\} \subset \mathbb{Y}$ be as shown. Let $C \in \mathcal{Z}^{1}\left(\mathcal{I}_{\mathfrak{c}}, \mathbb{Z}\right)$ be the cocycle with local rule

Then $C\left(\mathrm{x}^{*}, \mathrm{x}_{n}\right)=n$ and $C\left(\mathrm{y}^{*}, \mathrm{y}_{n}\right)=-n$, so $C\left(\mathrm{x}_{n}, \mathrm{y}_{n}\right)=2 n, \forall n \in \mathbb{N}$.
But $\left|\mathrm{x}_{n}-\mathrm{y}_{n}\right|=2, \forall n \in \mathbb{N}$, so $\lim _{n \rightarrow \infty} \frac{\left|C\left(\mathrm{x}_{n}, \mathrm{y}_{n}\right)\right|}{|\mathrm{x}-\mathrm{y}|}=\lim _{n \rightarrow \infty} \frac{2 n}{2}=\infty$; hence there is a gap between \mathbb{X} and \mathbb{Y}.

Example: Let $C: \mathbb{Z}^{2} \times \mathfrak{D o m}_{\longrightarrow \mathcal{G}}:=\mathbb{Z}_{/ 2} * \mathbb{Z}_{/ 2}$ have local rule:
 Let $\mathcal{Z}:=\{$ cyclic subgroup generated by $v h\} \subset \mathcal{G}$. Then $(\mathcal{Z}, \cdot) \cong(\mathbb{Z},+)$, and for all $\mathbf{d} \in \mathfrak{D}_{\mathrm{om}}$ and $2 \mathbf{z} \in 2 \mathbb{Z}^{2}, C(2 z, \mathbf{d}) \in \mathcal{Z}$.

Let $\mathcal{D}_{2} \subset \mathcal{D}^{2 \times 2}$ be the alphabet of $\mathfrak{D o m}_{\text {om-admissible }} 2 \times 2$ blocks. Let $\mathfrak{D}_{2} \subset \mathcal{D}_{2}^{\mathbb{Z}^{2}}$ be 'recoding' of $\mathfrak{D o m}$ in this alphabet. Then $2 \mathbb{Z}^{2}$ acts on \mathfrak{D}_{2} in the obvious way, and C yields a cocycle $C^{\prime}: 2 \mathbb{Z}^{2} \times \mathfrak{D}_{2} \longrightarrow \mathcal{Z} \cong \mathbb{Z}$.

Gaps in Dominoes

In the $\widetilde{\mathfrak{D}_{\mathrm{om}}}$-configuration shown above, $C^{\prime}\left(\mathrm{x}^{*}, \mathrm{x}_{n}\right)=(v h v h)^{n} \cong 2 n$, while $C^{\prime}\left(\mathrm{y}^{*}, \mathrm{y}_{n}\right)=h^{2 n} \cong 0$, so $C^{\prime}\left(\mathrm{y}_{n}, \mathrm{x}_{n}\right)=n$, for all $n \in \mathbb{N}$.

But $\left|\mathrm{x}_{n}-\mathrm{y}_{n}\right|=4, \forall n \in \mathbb{N}$, so $\lim _{n \rightarrow \infty} \frac{\left|C^{\prime}\left(\mathrm{x}_{n}, \mathrm{y}_{n}\right)\right|}{|\mathrm{x}-\mathrm{y}|}=\lim _{n \rightarrow \infty} \frac{n}{4}=\infty$.

In the $\widetilde{\mathfrak{D}_{\mathrm{om}}}$-configuration shown above, $C^{\prime}\left(\mathrm{x}^{*}, \mathrm{x}_{n}\right)=(v h v h)^{n} \cong 2 n$, while $C^{\prime}\left(\mathrm{y}^{*}, \mathrm{y}_{n}\right)=(h v h v)^{n} \cong-2 n$, so $C^{\prime}\left(\mathrm{y}_{n}, \mathrm{x}_{n}\right)=-4 n, \forall n \in \mathbb{N}$.

$$
\text { But }\left|\mathrm{x}_{n}-\mathrm{y}_{n}\right|=4, \forall n \in \mathbb{N} \text {, so } \lim \frac{\left|C^{\prime}\left(\mathrm{x}_{n}, \mathrm{y}_{n}\right)\right|}{1}=\lim \frac{-4 n}{\square}=-\infty .
$$

Persistence of Gaps

Theorem: If $\Phi: \mathcal{A}^{\mathbb{Z}^{D}} \rightarrow \mathcal{A}^{\mathbb{Z}^{D}}$ is a $C A, \Phi(\mathfrak{A}) \subseteq \mathfrak{A}$, and endomorphism

$$
\Phi_{*}: \mathcal{H}^{1}(\mathfrak{A}, \mathbb{Z}) \ni C \mapsto C \circ \Phi \in \mathcal{H}^{1}(\mathfrak{A}, \mathbb{Z})
$$

is surjective, then any gap is Φ-persistent.
 with $\Phi\left(\Im_{\mathfrak{c e}}\right) \subseteq \mathfrak{I c e}$, and $\Phi_{*}: \mathcal{H}^{1}\left(\mathfrak{I}_{\mathfrak{c}}, \mathbb{Z}\right) \longrightarrow \mathcal{H}^{1}\left(\mathfrak{I}_{\mathfrak{c e}}, \mathbb{Z}\right)$ is surjective, then Φ cannot destroy the ice gap (or even change the 'difference in slope').

Proof idea: First show that C-gaps depend only on cohomology class of C, i.e.:
Lemma: If $C \approx C^{\prime}$, then any C-gap is also a C^{\prime}-gap.
Now suppose a has C-gap. Now Φ_{*} is surjective, so find $C^{\prime} \in \mathcal{Z}^{1}$ such that $\Phi_{*} C^{\prime} \approx C$. Then a also has $\left(\Phi_{*} C^{\prime}\right)$-gap. But this implies that $\Phi(\mathbf{a})$ has C^{\prime} gap.

Sharp Gaps are Essential

A gap in $\mathbb{G}_{r}(\mathbf{a})$ is sharp if, for all $R \geq r \geq 0$, there exists constant $K=K(R, r) \in \mathbb{N}$ such that, for any $\mathrm{y} \in \mathbb{G}_{r}(\mathbf{a}), \exists \mathrm{x} \in \mathbb{G}_{R}(\mathbf{a})$ in same connected component \mathbb{X} of $\mathbb{G}_{r}(\mathbf{a})$ as \mathbf{y}, with $d_{\mathbb{X}}(\mathbf{x}, \mathrm{y}) \leq K$.

Idea: The gap does not ramify into lots of 'tributaries'.
Example: If \mathfrak{A} is a subshift of finite type, and defect set $\mathbb{D}(\mathbf{a})$ is confined to a thickened hyperplane [as in previous three examples] then the gap is sharp.

Theorem: Sharp gaps are essential defects.
Proof idea: First show:
Lemma: The existence of a gap does not depend on the choice of reference points $\mathrm{x}^{*} \in \mathbb{X}$ and $\mathrm{y}^{*} \in \mathbb{Y}$.

Thus, we can always move our basepoint x^{*} and 'gap-detection' sequence $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots\right\}$ far away from gap. Thus, a gap is 'detectable’ from any distance; hence it cannot

Defect Codimension

A domain boundary is a defect of codimension 1 .
Fix $r \in \mathbb{N}$. Let $\mathbb{G}_{r}(\mathbf{a}):=\left\{\mathbf{z} \in \mathbb{Z}^{D} ; \mathbf{a}_{\mathbb{B}(\mathbf{z}, r)} \in \mathfrak{A}_{(r)}\right\}$. (Loosely, this is the complement of a radius- r neighbourhood around the defects in a.)

Let $\mathbf{G}_{\mathrm{r}}(\mathbf{a}):=$ union of all unit cubes whose corners are all in $\mathbb{G}_{r}(\mathbf{a})$.
We say a has a (range r) codimension $(k+1)$ defect if the k th homotopy group $\pi_{k}\left[\mathbf{G}_{r}(\mathbf{a})\right]$ is nontrivial $\left.{ }^{*}\right)$.

Examples of Codimension-Two Defects:
In $\Im_{c e}$:
In $\mathfrak{D o m}_{\text {: }}$

[due to S. Lightwood, via M. Einsiedler, 2001]

The sequence of inclusions $\mathbb{G}_{1}(\mathbf{a}) \supseteq \mathbb{G}_{2}(\mathbf{a}) \supseteq \mathbb{G}_{3}(\mathbf{a}) \supseteq \cdots$ yields sequence of homomorphisms

$$
\pi_{k}\left[\mathbf{G}_{1}(\mathbf{a})\right] \longleftarrow \pi_{k}\left[\mathbf{G}_{2}(\mathbf{a})\right] \longleftarrow \pi_{k}\left[\mathbf{G}_{3}(\mathbf{a})\right]
$$

\qquad
Define $\pi_{k}\left[\mathbf{G}_{\infty}(\mathbf{a})\right]$:= inverse limit of this sequence ${ }^{(\dagger)}$ (detects 'extremely large scale' homotopy properties).

Say a has a projective codimension $(k+1)$ defect if $\pi_{k}\left[\mathbf{G}_{\infty}(\mathbf{a})\right] \neq\{0\}$.
(*) Strictly speaking, we must fix a basepoint and a connected component of \mathbf{G}_{r}.
(\dagger) We must fix a proper base ray, and assume \mathbf{G}_{r} has unique connected component for large r.

Defect Codimension in 3D

The 'Ice Cube' Shift:

Codimension-2 Defect

Codimension-3 Defect

Trail Homotopy

Let $\mathbb{Y} \subseteq \mathbb{Z}^{D}$ and let ζ and ζ^{\prime} be trails in \mathbb{Y}.
ζ and ζ^{\prime} are homotopic in \mathbb{Y} (notation: $\zeta \approx \zeta^{\prime}$) if we can move from ζ to ζ^{\prime} through a sequence of transformations like:

If \mathbf{Y} is connected, then every homotopy class of $\pi_{1}(\mathbf{Y})$ can be represented as a (trail) homotopy class of trails in \mathbb{Y}.

Hence regard $\pi_{1}(\mathbb{Y})=\{$ group of \mathbb{Y}-homotopy classes of \mathbb{Y}-trails $\}$. Lemma: Let $C \in \mathcal{Z}_{r}^{1}(\mathfrak{A}, \mathcal{G})$. Let $\mathbf{a} \in \widetilde{\mathfrak{A}}$. Let ζ be closed trail in $\mathbb{G}_{r}(\mathbf{a})$.
(a) If $\zeta \approx \zeta^{\prime}$ in $\mathbb{G}_{r}(\mathbf{a})$, then $C(\zeta, \mathbf{a})=C\left(\zeta^{\prime}, \mathbf{a}\right)$.
(e.g. If ζ is nullhomotopic in $\mathbb{G}_{r}(\mathbf{a})$, then $C(\zeta, \mathbf{a})=e_{\mathcal{G}}$.)
(b) Suppose (\mathcal{G}, \cdot) is abelian. If $C \approx C^{\prime}$ then $C(\zeta, \mathbf{a})=C^{\prime}(\zeta, \mathbf{a})$.

We say that a has a C-pole if $C(\zeta, \mathbf{a}) \neq e_{\mathcal{G}}$ for some closed trail $\zeta \in \pi_{1}\left[\mathbb{G}_{r}(\mathbf{a})\right]$.
Example: Recall C : $\mathfrak{I r e} \times \mathbb{Z}^{2} \longrightarrow \mathbb{Z}$

If ζ is the clockwise trail around the defect, then $C(\zeta, \mathbf{a})=8$. Thus, a has a pole.

Poles and Residues

Proposition: Let $\mathbf{a} \in \widetilde{\mathfrak{A}}$. Let $C \in \mathcal{Z}_{r}^{1}(\mathfrak{A}, \mathcal{G})$.
(a) $\operatorname{Res}_{\mathbf{a}} C: \pi_{1}\left[\mathbb{G}_{r}(\mathbf{a})\right] \ni \underline{\zeta} \mapsto C(\zeta, a) \in \mathcal{G}$ is a group homomorphism.
(b) If (\mathcal{G}, \cdot) is abelian, and $C \approx C^{\prime}$ then $\operatorname{Res}_{\mathbf{a}} C=\operatorname{Res}_{\mathbf{a}} C^{\prime}$. Thus, we get group homomorphism
$\operatorname{Res}_{\mathbf{a}}: \mathcal{H}_{\mathrm{dy}}(\mathfrak{A}, \mathcal{G}) \times \pi_{1}\left[\mathbb{G}_{\infty}(\mathbf{a})\right] \times \ni(\underline{C}, \underline{\zeta}) \mapsto C(\zeta, a) \in \mathcal{G}$.
The configuration a has a \mathcal{G}-pole if $\operatorname{Res}_{\mathbf{a}}$ is nontrivial homomorphism. The function $\operatorname{Res}_{\mathbf{a}}$ acts as an algebraic 'signature' of the defect in \mathbf{a}.

Theorem: \mathcal{G}-poles are essential defects.

Persistence of Poles

Theorem: If the function $\Phi_{*}: \mathcal{H}^{1}(\mathfrak{A}, \mathcal{G}) \ni C \mapsto(C \circ \Phi) \in \mathcal{H}^{1}(\mathfrak{A}, \mathcal{G})$ is surjective, then all \mathcal{G}-poles are Φ-persistent.
Example: If $\Phi: \mathcal{I}^{\mathbb{Z}^{2}} \longrightarrow \mathcal{I}^{\mathbb{Z}^{2}}$ was a CA with $\Phi\left(\mathcal{I}_{\mathfrak{c e}}\right) \subseteq \Phi\left(\mathcal{I}_{\mathfrak{c} e}\right)$, and Φ_{*} was surjective, then the ice pole would persist under Φ.

Proof idea: Let $R:=\operatorname{radius}(\Phi)$. If $\mathbf{a} \in \tilde{\mathfrak{A}}$ and $\mathbf{a}^{\prime}:=\Phi(\mathbf{a})$, then $\mathbb{G}_{r+R}(\mathbf{a}) \subseteq \mathbb{G}_{r}\left(\mathbf{a}^{\prime}\right)$.
This yields homomorphisms $\Phi_{\dagger}: \pi_{1}\left[\mathbb{G}_{r+R}(\mathbf{a})\right] \longrightarrow \pi_{1}\left[\mathbb{G}_{r}(\mathbf{b})\right]$, for all $r \in \mathbb{N}$.
Lemma: For all $\zeta \in \pi_{1}\left[\mathbb{G}_{r+R}(\mathbf{a})\right]$ and $C^{\prime} \in \mathcal{Z}_{r}^{1}(\mathfrak{A}, \mathcal{G})$, if $\zeta^{\prime}:=\Phi_{\uparrow}(\zeta)$ and $C \approx \Phi_{*}\left(C^{\prime}\right)$, then $C^{\prime}\left(\mathbf{a}^{\prime}, \zeta^{\prime}\right)=C(\mathbf{a}, \zeta)$.

Now, if a has a C-pole for some $C \in \mathcal{Z}^{1}(\mathfrak{A}, \mathcal{G})$, then there exists $\zeta \in \pi_{1}\left[\mathbb{G}_{r+R}(\mathbf{a})\right]$ with $C(\mathbf{a}, \zeta)$ nontrivial.
Φ_{*} is surjective, so $\exists C^{\prime} \in \mathcal{Z}^{1}(\mathfrak{A}, \mathcal{G})$ with $\Phi_{*} C^{\prime} \approx C$. Let $\zeta^{\prime}:=\Phi_{\dagger}(\zeta) \in \pi_{1}\left[\mathbb{G}_{r}\left(\mathbf{a}^{\prime}\right)\right]$. Then $C^{\prime}\left(\mathbf{a}^{\prime}, \zeta^{\prime}\right)=C(\mathbf{a}, \zeta)$ is nontrivial. Thus \mathbf{a}^{\prime} has a C^{\prime}-pole.

Remark: We can also characterize poles using the fundamental cocycles of [K.Schmidt, 1998].

The Conway-Lagarias Tiling Group

Let \mathcal{W} be a (finite) set of notched square prototiles (to tile \mathbb{R}^{2}). The tile complex of \mathcal{W} is a 2 -dimensional cell complex \mathbf{X} defined as follows:

- For each $\mathbf{z} \in \mathbb{Z}^{D}$ and each $w \in \mathcal{W}$, there is a w-shaped 2-cell in \mathbf{X}, positioned in space 'over' \mathbf{z}. Each notched edge of w is a 1 -cell in \mathbf{X}.
- If \mathbf{z} and \mathbf{z}^{\prime} are adjacent in \mathbb{Z}^{2}, and tiles w and w^{\prime} 'match' along the corresponding edge, then glue together tiles (w, \mathbf{z}) and $\left(w^{\prime}, \mathbf{z}^{\prime}\right)$ in \mathbf{X}.

Example: (Piece of tile-complex for $\mathfrak{D}_{\mathrm{om}}$). Each square contains four 2-cells $\{\square, \square, \square, \square\}$. Between each vertex-pair \exists two edges $\{\mid,>\}$.

\exists natural projection $\Pi: \mathbf{X} \longrightarrow \mathbb{R}^{2}$ (sending the vertices of \mathbf{X}^{0} into \mathbb{Z}^{2}).
$\left(\right.$ Admissible \mathcal{W}-tiling \mathbf{w} of $\left.\mathbb{R}^{2}\right) \cong\left(\right.$ Continuous Π-section $\left.\varsigma_{\mathrm{w}}: \mathbb{R}^{2} \longrightarrow \mathbf{X}\right)$ ('Partial' \mathcal{W}-tiling \mathbf{w} of $\left.\mathbf{U} \subset \mathbb{R}^{2}\right) \cong\left(\right.$ 'Partial' Π-section $\left.\varsigma_{\mathbf{w}}: \mathbf{U} \longrightarrow \mathbf{X}\right)$ In the second case, $\varsigma_{\mathbf{w}}$ defines homomorphism $\varsigma_{\mathrm{w}}^{*}: \pi_{1}(\mathbf{U}) \longrightarrow \pi_{1}(\mathbf{X})$. Then: $\left(\mathbf{U}^{\complement}\right.$-hole in \mathbf{w} can be admissibly filled $) \Longrightarrow$
$\left(\varsigma_{\mathrm{w}}^{*}\right.$-image of any loop in \mathbf{U} is nullhomotopic $) \Longleftrightarrow\left(\varsigma_{\mathrm{w}}^{*}\right.$ is trivial $)$. $\pi_{1}(\mathbf{X})=$ 'tile homotopy group' [J.H.Conway \& J.C.Lagarias, 1990; W.Thurston, 1990]

Higher homotopy/homology groups for Wang tiles

Let \mathcal{W} be a (finite) set of D-dimensional notched hypercubic Wang tiles (to tile \mathbb{R}^{D}). Build a D-dimensional cell complex \mathbf{X} analogous to before. Get projection $\Pi: \mathbf{X} \longrightarrow \mathbb{R}^{D}$ such that $\Pi\left(\mathbf{X}^{0}\right)=\mathbb{Z}^{D}$.
$\left(\right.$ Admissible \mathcal{W}-tiling \mathbf{w} of $\left.\mathbb{R}^{D}\right) \cong\left(\right.$ Continuous Π-section $\left.\varsigma_{\mathbf{w}}: \mathbb{R}^{D} \longrightarrow \mathbf{X}\right)$.
('Partial' \mathcal{W}-tiling w of $\left.\mathbf{U} \subset \mathbb{R}^{D}\right) \cong\left(\right.$ 'Partial' Π-section $\left.\varsigma_{\mathrm{w}}: \mathbf{U} \longrightarrow \mathbf{X}\right)$.
In this case, for all $k \in \mathbb{N}$, the section $\varsigma_{\mathbf{w}}$ defines homomorphisms:
$\pi_{\mathrm{k}} \varsigma_{\mathrm{w}}: \pi_{k}(\mathbf{U}, u) \longrightarrow \pi_{k}(\mathbf{X}, x) ; \quad(x, u=$ suitable basepoints $)$
$\mathcal{H}_{\mathrm{k}} \varsigma_{\mathrm{w}}: \mathcal{H}_{k}(\mathbf{U}, \mathcal{G}) \longrightarrow \mathcal{H}_{k}(\mathbf{X}, \mathcal{G}) ; \quad((\mathcal{G},+)=$ some coefficient group, e.g. $\mathcal{G}=\mathbb{Z})$
$\mathcal{H}^{\mathrm{k}} \varsigma_{\mathrm{w}}: \mathcal{H}^{k}(\mathbf{U}, \mathcal{G}) \longrightarrow \mathcal{H}^{k}(\mathbf{X}, \mathcal{G})$
$($ Hole in \mathbf{w} is fillable $) \Longrightarrow\left(\pi_{k} \varsigma_{\mathbf{w}}, \mathcal{H}_{k} \varsigma_{\mathbf{w}}\right.$ and $\mathcal{H}^{k} \varsigma_{\mathbf{w}}$ are trivial, $\left.\forall k \in \mathbb{N}\right)$.

Homotopy/homology groups for subshifts of finite type -

Let \mathcal{A} be a finite alphabet. Let $\mathfrak{A} \subset \mathcal{A}^{\mathbb{Z}^{D}}$ be a subshift of finite type of radius $r>0$. Fix $R \geq r$. Treat $\mathcal{W}:=\mathfrak{A}_{(R)}$ as Wang tiles with obvious edge-matching conditions. Get tile complex \mathbf{X}_{R}. Then:
$(\mathbf{a} \in \mathfrak{A}) \cong\left(\mathcal{W}\right.$-admissible tiling of $\left.\mathbb{R}^{D}\right) \cong\left(\Pi\right.$-section $\left.\varsigma_{\mathbf{a}}: \mathbb{R}^{D} \longrightarrow \mathbf{X}_{R}\right)$.
Idea: Use homotopy/(co)homology groups of \mathbf{X}_{R} as invariant for \mathfrak{A} (and get algebraic invariants for codimension- $(k+1)$ defects in $\widetilde{\mathfrak{A}})$.

Problems:

[i] There \exists many different Wang representations for \mathfrak{A}. None is 'canonical'. Different Wang representations may yield non-isomorphic groups.
[ii] Wang representations (and hence, their homotopy/homology groups) do not behave well under subshift homomorphisms (i.e. CA).

The Geller-Propp Projective Fundamental Group

\qquad
Solution: There are natural surjections $\mathbf{X}_{r} \leftarrow \mathbf{X}_{r+1} \leftarrow \mathbf{X}_{r+2} \leftarrow \cdots$
Get homomorphisms $\pi_{k}\left(\mathbf{X}_{r}, x_{r}\right) \leftarrow \pi_{k}\left(\mathbf{X}_{r+1}, x_{r+1}\right) \leftarrow \pi_{k}\left(\mathbf{X}_{r+2}, x_{r+2}\right) \leftarrow \cdots$
(Here, $\left\{x_{k}\right\}$ are basepoints determined by some fixed $\mathbf{a} \in \mathfrak{A}$.)
Define k th projective homotopy group $\pi_{k}(\mathfrak{A}, \mathbf{a}):=$ inverse limit of this sequence. (If $k=1$ this is the projective fundamental group of W.Geller \& J.Propp, 1995).

Likewise, we define k th projective (co)homology groups

$$
\begin{aligned}
\mathcal{H}_{\mathrm{k}}(\mathfrak{A}, \mathcal{G}) & :=\underset{\leftarrow}{\lim }\left(\mathcal{H}_{k}\left(\mathbf{X}_{r}, \mathcal{G}\right) \leftarrow \mathcal{H}_{k}\left(\mathbf{X}_{r+1}, \mathcal{G}\right) \leftarrow \mathcal{H}_{k}\left(\mathbf{X}_{r+2}, \mathcal{G}\right) \leftarrow \cdots\right) \\
\mathcal{H}^{\mathrm{k}}(\mathfrak{A}, \mathcal{G}) & :=\underset{\longrightarrow}{\lim }\left(\mathcal{H}^{k}\left(\mathbf{X}_{r}, \mathcal{G}\right) \rightarrow \mathcal{H}^{k}\left(\mathbf{X}_{r+1}, \mathcal{G}\right) \rightarrow \mathcal{H}^{k}\left(\mathbf{X}_{r+2}, \mathcal{G}\right) \rightarrow \cdots\right)
\end{aligned}
$$

- Isomorphism invariants of \mathfrak{A} - Detects codimension $(k+1)$ defects. Basepoint Freedom

The definition of $\pi_{k}(\mathfrak{A})$ depends upon a chosen 'basepoint' $\mathbf{a} \in \mathfrak{A}$.
We say \mathfrak{A} is basepoint free in dimension k if, for any $\mathbf{a}, \mathbf{a}^{\prime} \in \mathfrak{A}$, there is a canonical isomorphism $\pi_{k}(\mathfrak{A}, \mathbf{a}) \cong \pi_{k}\left(\mathfrak{A}, \mathbf{a}^{\prime}\right)$.

Proposition:

(a) Suppose $\Pi_{r}^{0}: \mathbf{X}_{r}^{0} \longrightarrow \mathbb{Z}^{D}$ is injective for all large enough $r \in \mathbb{N}$. Then \mathfrak{A} is basepoint-free in all dimensions.

Suppose (\mathfrak{A}, σ) is topologically weakly mixing [i.e. the Cartesian product $(\mathfrak{A} \times \mathfrak{A}, \sigma \times \sigma)$ is topologically transitive]. Then:
(b) If $\pi_{1}(\mathfrak{A}, \mathbf{a})$ is abelian, then \mathfrak{A} is basepoint free in dimension 1 .
(c) If $\pi_{1}(\mathfrak{A}, \mathbf{a})$ is trivial, then \mathfrak{A} is basepoint free in all dimensions.

Projective Groups and Cellular Automata

Proposition: Let $\Phi: \mathcal{A}^{\mathbb{Z}^{D}} \longrightarrow \mathcal{A}^{\mathbb{Z}^{D}}$ be a CA with $\Phi(\mathfrak{A}) \subseteq \mathfrak{A}$. Then Φ induces group endomorphisms:

$$
\begin{aligned}
& \pi_{\mathrm{d}} \Phi: \pi_{d}(\mathfrak{A}, \mathbf{a}) \longrightarrow \pi_{d}\left(\mathfrak{A}, \mathbf{a}^{\prime}\right) \quad\left(\cong \pi_{d}(\mathfrak{A}, \mathbf{a}) \text { if basepoint free }\right) \\
& \mathcal{H}_{\mathrm{d}} \Phi: \mathcal{H}_{d}(\mathfrak{A}, \mathcal{G}) \longrightarrow \mathcal{H}_{d}(\mathfrak{A}, \mathcal{G}) \\
& \mathcal{H}^{\mathrm{d}} \Phi: \mathcal{H}^{d}(\mathfrak{A}, \mathcal{G}) \longrightarrow \mathcal{H}^{d}(\mathfrak{A}, \mathcal{G}) .
\end{aligned}
$$

Proof: (Idea) If Φ has radius q, then Φ induces a cellular map $\Phi_{*}: \mathbf{X}_{R+q} \longrightarrow \mathbf{X}_{R}$ for all $R \geq r$, which yields corresponding homotopy/(co)homology homomorphisms. The resulting infinite commuting ladder of homomorphisms defines a homomorphism of the inverse/direct limit groups.

Recall that $\pi_{\mathrm{k}}\left[\mathbb{G}_{\infty}(\mathbf{a})\right]:=$ inverse limit of $\pi_{k}\left[\mathbb{G}_{r}(\mathbf{a})\right]$ as $r \rightarrow \infty$.
Likewise define $\mathcal{H}^{k}\left[\mathbb{G}_{\infty}(\mathbf{a})\right]$ (direct limit) and $\mathcal{H}_{k}\left[\mathbb{G}_{\infty}(\mathbf{a})\right]$ (inverse limit), $\forall k \in \mathbb{N}$.
If $\mathbf{a} \in \widetilde{\mathfrak{A}}$, then a defines 'partial' Π-section $\varsigma_{\mathbf{a}}: \mathbf{G}_{R}(\mathbf{a}) \longrightarrow \mathbf{X}_{R}$ for all $R \geq r$. This induces group homomorphisms:

$$
\begin{aligned}
\mathcal{H}_{k} \mathbf{a}: \mathcal{H}_{k}\left[\mathbb{G}_{R}(\mathbf{a}), \mathcal{G}\right] & \longrightarrow \mathcal{H}_{k}\left(\mathbf{X}_{R}, \mathcal{G}\right) ; \\
\mathcal{H}^{k} \mathbf{a}: \mathcal{H}^{k}\left(\mathbf{X}_{R}, \mathcal{G}\right) & \longrightarrow \mathcal{H}^{k}\left[\mathbb{G}_{R}(\mathbf{a}), \mathcal{G}\right] ; \\
\pi_{k} \mathbf{a}: \pi_{k}\left[\mathbb{G}_{R}(\mathbf{a})\right] & \longrightarrow \pi_{k}\left(\mathbf{X}_{R}\right)
\end{aligned}
$$

The resulting infinite commuting ladders of homomorphisms define homomorphisms of the inverse/direct limit groups. Thus, we have:
Theorem: (a) Any $\mathbf{a} \in \widetilde{\mathfrak{A}}$ induces group homomorphisms: $\mathcal{H}_{\mathrm{k}} \mathrm{a}: \mathcal{H}_{k}\left[\mathbb{G}_{\infty}(\mathbf{a}), \mathcal{G}\right] \longrightarrow \mathcal{H}_{k}(\mathfrak{A}, \mathcal{G})$ and $\mathcal{H}^{\mathrm{k}} \mathbf{a}: \mathcal{H}^{k}(\mathfrak{A}, \mathcal{G}) \longrightarrow \mathcal{H}^{k}\left[\mathbb{G}_{\infty}(\mathbf{a}), \mathcal{G}\right]$. (b) If \mathfrak{A} is basepoint-free in dimension k, then a also induces a group homomorphism $\pi_{k} \mathbf{a}: \pi_{k}\left[\mathbb{G}_{\infty}(\mathbf{a})\right] \longrightarrow \pi_{k}(\mathfrak{A})$.

We call $\pi_{k} \mathbf{a}$ (resp. $\mathcal{H}_{k} \mathbf{a}$ or $\mathcal{H}^{k} \mathbf{a}$) the k th homotopy (resp. (co)homology) signature of a; if it is nontrivial, we say a has a homotopy (resp. (co)homology) defect of codimension $(k+1)$.

Persistence of Homotopy/(co)homology Defects

Theorem: Let $\mathfrak{A} \subset \mathcal{A}^{\mathbb{Z}^{D}}$ be SFT. Let $\Phi: \mathcal{A}^{\mathbb{Z}^{D}} \rightarrow \mathcal{A}^{\mathbb{Z}^{D}}$ be CA with $\Phi(\mathfrak{A}) \subseteq \mathfrak{A}$.
(a) Suppose \mathfrak{A} is basepoint-free in dimension k. If $\pi_{k} \Phi: \pi_{k}(\mathfrak{A}) \longrightarrow \pi_{k}(\mathfrak{A})$ is injective, then every homotopy defect of codimension $(k+1)$ is Φ-persistent.
(b) If $\mathcal{H}_{k} \Phi: \mathcal{H}_{k}(\mathfrak{A}, \mathcal{G}) \longrightarrow \mathcal{H}_{k}(\mathfrak{A}, \mathcal{G})$ is injective, then every homology defect of codimension $(k+1)$ is Φ-persistent.
(c) If $\mathcal{H}^{k} \Phi: \mathcal{H}^{k}(\mathfrak{A}, \mathcal{G}) \longrightarrow \mathcal{H}^{k}(\mathfrak{A}, \mathcal{G})$ is surjective, then every cohomology defect of codimension $(k+1)$ is Φ-persistent.

This follows from:
Theorem: Let $\Phi: \mathcal{A}^{\mathbb{Z}^{D}} \longrightarrow \mathcal{A}^{\mathbb{Z}^{D}}$ be a $C A$ with $\Phi(\mathfrak{A}) \subseteq \mathfrak{A}$. Let $\mathbf{a} \in \widetilde{\mathfrak{A}}$ and let $\Phi(\mathbf{a})=\mathbf{b}$. Then we have commuting diagrams:

$$
\begin{aligned}
& \mathcal{H}_{k}\left[\mathbb{G}_{\infty}(\mathbf{a}), \mathcal{G}\right] \xrightarrow{\mathcal{H}_{k} \iota} \mathcal{H}_{k}\left[\mathbb{G}_{\infty}(\mathbf{b}), \mathcal{G}\right] \quad \mathcal{H}^{k}\left[\mathbb{G}_{\infty}(\mathbf{a}), \mathcal{G}\right] \stackrel{\mathcal{H}^{k} \iota}{\longleftrightarrow} \mathcal{H}^{k}\left[\mathbb{G}_{\infty}(\mathbf{b}), \mathcal{G}\right] \\
& \mathcal{H}_{k} \mathrm{a} \downarrow \quad \downarrow \mathcal{H}_{k} \mathbf{b} \quad \mathcal{H}^{k} \uparrow \uparrow \mathcal{H}^{k} \mathbf{b} \\
& \mathcal{H}_{k}(\mathfrak{A}, \mathcal{G}) \quad \xrightarrow{\mathcal{H}_{k} \Phi} \quad \mathcal{H}_{k}(\mathfrak{A}, \mathcal{G}) \quad \mathcal{H}^{k}(\mathfrak{A}, \mathcal{G}) \quad \stackrel{\mathcal{H}^{k} \Phi}{\longleftrightarrow} \quad \mathcal{H}^{k}(\mathfrak{A}, \mathcal{G})
\end{aligned}
$$

If \mathfrak{A} is basepoint-free, we also get a commuting diagram:

Proof: (Idea) Stick together all the aforementioned infinite commuting ladders to get infinite commuting 'girder', which yields commuting square of inverse limit homomorphisms.

Equivariant (co)Homology

Question: Is there a higher-codimension analog to the codimension2 'poles' from dynamical cohomology?

Let $k \in \mathbb{N}$. A (cubic) k-chain is a formal 'sum' of k-dimensional cubes in \mathbb{R}^{D} with vertices in \mathbb{Z}^{D} (combinatorial analog of $火$-dimensional submanifold'). Fix an abelian group $(\mathcal{G},+)$. Define $\mathcal{C}_{\mathrm{k}}:=\{$ free abelian group of cubic k-chains $\}$. $\mathcal{C}^{\mathrm{k}}(\mathcal{G}):=\{$ (cubic) k-cochains $\}=\left\{\right.$ homomorphisms $\left.c: \mathcal{C}_{k} \longrightarrow \mathcal{G}\right\}$. (combinatorial analog of k - k dimensional differential forms').
\mathbb{Z}^{D} acts on \mathbb{R}^{D} by shifts. This induces \mathbb{Z}^{D}-action on \mathcal{C}_{k}, and thus on \mathcal{C}^{k}.
Let $\mathfrak{A} \subset \mathcal{A}^{\mathbb{Z}^{D}}$ be subshift. An equivariant cochain on \mathfrak{A} is a continuous function $C: \mathfrak{A} \longrightarrow \mathcal{Z}^{k}(\mathcal{G})$ which commutes with all \mathbb{Z}^{D}-shifts.

Idea: For any $\mathbf{a} \in \mathfrak{A}, C(\mathbf{a})$ is a cochain. If $\zeta \in \mathcal{C}_{k}$ is any chain, then

$$
C\left(\sigma^{\mathbf{z}}(\mathbf{a})\right)[\zeta]=C(\mathbf{a})\left[\sigma^{\mathrm{z}}(\zeta)\right] .
$$

Let $\mathcal{C}_{\text {eq }}^{\mathrm{k}}(\mathfrak{A}, \mathcal{G}):=$ \{equivariant k-chains \}. There is a natural coboundary operator $\delta^{\mathrm{k}}: \mathcal{C}_{\mathrm{eq}}^{k} \longrightarrow \mathcal{C}_{\mathrm{eq}}^{k+1}$. Let $\mathcal{Z}_{\mathrm{eq}}^{\mathrm{k}}:=\operatorname{ker}\left(\delta^{k}\right)$ be the group of equivariant cocycles.

Examples: (a) Recall that a 'dynamical' cocycle is a function c : $\mathbb{Z}^{D} \times \mathfrak{A} \longrightarrow \mathcal{G}$ such that

$$
c(\mathbf{y}+\mathbf{z}, \mathbf{a})=c\left[\mathbf{y}, \sigma^{\mathbf{z}}(\mathbf{a})\right]+c(\mathbf{z}, \mathbf{a}) .
$$

Any dynamical cocycle defines an equivariant cocycle $C \in \mathcal{Z}_{\text {eq }}^{1}$ as follows: for any chain $\zeta \in \mathcal{C}_{k}$, treat ζ as a 'trail' and define $C(\zeta, \mathbf{a})$ as before.
(b) (Equivariant cocycle $C \in \mathcal{Z}_{\text {eq }}^{2}$ on 'ice cube' shift) This picture shows how to evaluate C on a single 2-cell (i.e. oriented square). To evaluate C on 2-chain, sum values on all constituent 2-cells.

Equivariant Cohomology vs. Dynamical Cohomology _

Let $\mathcal{B}_{\text {eq }}^{\mathrm{k}}:=\operatorname{image}\left(\delta^{k-1}\right)$ (equivariant coboundaries).
Define equivariant cohomology group $\mathcal{H}_{\mathrm{eq}}^{k}(\mathfrak{A}, \mathcal{G}):=\mathcal{Z}_{\mathrm{eq}}^{k} / \mathcal{B}_{\mathrm{eq}}^{k}$.
$\mathcal{Z}_{\text {eq }}^{k}$ and $\mathcal{B}_{\text {eq }}^{k}$ are σ-invariant. Thus, σ induces \mathbb{Z}^{D}-action on $\mathcal{H}_{\text {eq }}^{k}$. Let

$$
\begin{aligned}
\mathcal{Z}_{\mathrm{dy}}^{1}(\mathfrak{A}, \mathcal{G}) & :=\text { \{dynamical cocycles }\} ; \\
\mathcal{H}_{\mathrm{dy}}^{1}(\mathfrak{A}, \mathcal{G}) & :=\text { 'dynamical' cohomology group. }
\end{aligned}
$$

Theorem: Let $(\mathcal{G},+)$ be abelian. There are canonical isomorphisms:

$$
\mathcal{Z}_{\mathrm{eq}}^{1}(\mathfrak{A}, \mathcal{G}) \cong \mathcal{Z}_{\mathrm{dy}}^{1}(\mathfrak{A}, \mathcal{G}) \quad \text { and } \quad \mathcal{H}_{\mathrm{eq}}^{1}(\mathfrak{A}, \mathcal{G}) \cong \mathcal{H}_{\mathrm{dy}}^{1}(\mathfrak{A}, \mathcal{G}) .
$$

Proof idea: Given $C \in \mathcal{Z}_{\mathrm{dy}}^{1}$, define $C^{\prime} \in \mathcal{Z}_{\text {eq }}^{1}$ as follows: for any chain $\zeta \in \mathcal{C}_{k}$, represent ζ with (sum of) trails ζ^{\prime}, and then define $C^{\prime}(\zeta, \mathbf{a}):=C\left(\zeta^{\prime}, \mathbf{a}\right)$. This sends cocycles to cocycles because $\left(\delta^{1} C^{\prime} \equiv 0\right) \Longleftrightarrow\left(C^{\prime}\left(\partial_{2} \xi, \mathbf{a}\right)=0\right.$ for all $\left.\xi \in \mathcal{C}_{2}\right)$ $\Longleftrightarrow\left(C\left(\zeta^{\prime}, \mathbf{a}\right)=0\right.$ for any closed trail ζ^{\prime} in $\left.\mathbb{Z}^{D}\right)$.

Codimension- k poles

Let $\partial_{k}: \mathcal{C}_{k} \longrightarrow \mathcal{C}_{k-1}$ be combinatorial 'boundary' operator
Let $\mathcal{Z}_{\mathrm{k}}:=\operatorname{ker}\left(\partial_{k}\right)=\{k$-dimensional cycles $\}$ ('submanifolds without boundary').
Example: $\mathcal{Z}_{1}:=\{($ sums of $)$ closed trails $\}$.
If $C \in \mathcal{Z}_{\mathrm{eq}}^{k}(\mathfrak{A}, \mathcal{G})$, and $\mathbf{a} \in \mathfrak{A}$, and $\zeta \in \mathcal{Z}_{k}$, then $C(\mathbf{a}, \zeta)=0$.
If \mathcal{G} is discrete, then C is 'locally determined' by rule of radius $R>0$.
If $\mathbf{a} \in \widetilde{\mathfrak{A}}$, and ζ stays inside $\mathbb{G}_{r}(\mathbf{a})$ (for some $r \geq R$), then $C(\mathbf{a}, \zeta)$ is still well-defined.
a has a C-pole (of radius r) if there is some cycle ζ such that $C(\mathbf{a}, \zeta) \neq 0$. a has a projective C-pole if a has a radius-r pole for all large $r \in \mathbb{N}$.

Example: Codimension-3 pole in Ice Cube shift

Let \mathfrak{Q} be the 'ice cube' shift.
Recall the equivariant 2-cocycle $C \in \mathcal{Z}_{\text {eq }}^{2}(\mathfrak{Q})$ defined:

Let a be the defective configuration at left.

Let $\zeta \in \mathcal{Z}_{2}$ be the 2-cycle on right (the oriented boundary of a $3 \times 3 \times 3$ cube).

Then
$C(\mathbf{a}, \zeta)$
$=30-24$
$=6$.
Thus, the defeet in a is a C-pole with residue 6 .

Persistence of Poles

Theorem: Projective poles are essential defects.
Proof idea: Similar to 'dynamical' cohomology proof for codimension-2 poles.
Theorem: Let $\mathfrak{A} \subset \mathcal{A}^{\mathbb{Z}^{D}}$ be an SFT. Let $\Phi: \mathcal{A}^{\mathbb{Z}^{D}} \rightarrow \mathcal{A}^{\mathbb{Z}^{D}}$ be a $C A$ with $\Phi(\mathfrak{A}) \subseteq \mathfrak{A}$. Fix $d \in[1 \ldots D]$.
(a) Define $\Phi_{*}: \mathcal{C}_{\text {eq }}^{d}(\mathfrak{A}, \mathcal{G}) \longrightarrow \mathcal{C}_{\text {eq }}^{d}(\mathfrak{A}, \mathcal{G})$ by $\Phi_{*} C(\mathbf{a}, \zeta):=C[\Phi(\mathbf{a}), \zeta]$.

This induces endomorphism $\mathcal{H}_{\text {eq }}^{d} \Phi: \mathcal{H}_{\text {eq }}^{d}(\mathfrak{A}, \mathcal{G}) \longrightarrow \mathcal{H}_{\text {eq }}^{d}(\mathfrak{A}, \mathcal{G})$.
(b) Suppose $\mathcal{H}_{\text {eq }}^{d} \Phi$ is an epimorphism.
[i] If \mathcal{G} is the additive group of a field (e.g. $\mathcal{G}=\mathbb{Z}_{/ p}$ for p prime), then all projective \mathcal{G}-poles are Φ-persistent.
[ii] If $d=1$ or D, then any projective d-pole is Φ-persistent.

Invariant Cohomology

Questions: (a) What is relationship between the (dynamical) cocycles of \mathfrak{A} and the (co)homology groups of Wang tile cell complex of \mathfrak{A} ?
(b) What is relationship between poles and (co)homology defects? $\forall r \geq R:=\operatorname{radius}(\mathfrak{A})$, let $\mathbf{X}_{r}:=$ radius- r Wang tile cell complex for \mathfrak{A}.

The σ-action on \mathfrak{A} induces natural \mathbb{Z}^{D}-action on \mathbf{X}_{r}; hence on $\mathcal{H}^{k}\left(\mathbf{X}_{r}, \mathcal{G}\right)$.
Let $\mathcal{H}_{\text {inv }}^{k}\left(\mathbf{X}_{r}, \mathcal{G}\right):=$ group of \mathbb{Z}^{D}-fixed elements of $\mathcal{H}^{k}\left(\mathbf{X}_{r}, \mathcal{G}\right)$. We define the k th invariant cohomology group of \mathfrak{A} :

$$
\mathcal{H}_{\mathrm{inv}}^{\mathrm{k}}(\mathfrak{A}, \mathcal{G}):=\underset{\longrightarrow}{\lim }\left(\mathcal{H}_{\mathrm{inv}}^{k}\left(\mathbf{X}_{R+1}, \mathcal{G}\right) \rightarrow \mathcal{H}_{\mathrm{inv}}^{k}\left(\mathbf{X}_{R+2}, \mathcal{G}\right) \rightarrow \mathcal{H}_{\mathrm{inv}}^{k}\left(\mathbf{X}_{R+3}, \mathcal{G}\right) \rightarrow \cdots\right)
$$

Theorem: Let $\mathfrak{A} \subset \mathcal{A}^{\mathbb{Z}^{D}}$ be SFT. Let $(\mathcal{G},+)$ be discrete abelian group. There is a natural isomorphism $\mathcal{H}_{\text {inv }}^{d}(\mathfrak{A}, \mathcal{G}) \cong \mathcal{H}_{\text {eq }}^{d}(\mathfrak{A}, \mathcal{G})$.
In particular, $\mathcal{H}_{\text {inv }}^{1}(\mathfrak{A}, \mathcal{G}) \cong \mathcal{H}_{\mathrm{dy}}^{1}(\mathfrak{A}, \mathcal{G})$.
Thus moles are $\mathcal{H}^{d}(\mathfrak{A} \mathcal{G})$-cohomoloov defects

Finite State Machines

A finite state machine (FSM) has a finite set of internal states \mathcal{S}, finite input alphabet \mathcal{I} and output alphabet \mathcal{O}, and update rule

$$
\Upsilon: \mathcal{I} \times \mathcal{S} \longrightarrow \mathcal{S} \times \mathcal{O}
$$

If FSM begins in state s_{0}, and receives input stream $i_{0}, i_{1}, i_{2}, \ldots, i_{N-1}$, then it proceeds through states $s_{1}, s_{2}, \ldots, s_{N}$ and produces output $o_{1}, o_{1}, \ldots, o_{N}$, where, for every $n \in[0 \ldots N)$,

$$
\Upsilon\left(i_{n}, s_{n}\right)=\left(s_{n+1}, o_{n+1}\right)
$$

Diagramatically:

Defect Particle Kinematics

A defect particle in \mathbf{a} is a defect which is finite in size and whose size in $\Phi^{t}(\mathbf{a})$ remains bounded for all $t>0$. Defect particles act like FSM:

Internal state $=\mathfrak{A}$-inadmissible symbol-sequence inside defect.
Input $=\mathfrak{A}$-admissible symbols on boundary of defect.
Output $=$ Instantaneous velocity.
Example: Defect particles in ECA\#54:

Defect Particle Kinematics

Example: The \mathbf{A} and \mathbf{B} defect particles of ECA\#110:

$$
\mathcal{S}=\mathcal{A}^{[-5 . . .5]} \cong \mathcal{A}^{11}
$$

$$
\mathrm{L}=5 \longleftrightarrow \mathrm{~W}=11 \longrightarrow \mathrm{R}=5
$$

$$
\mathrm{L}=6 . \Perp \mathrm{W}=13 \leftrightarrow \mathrm{R}=0
$$

Remarks: - The width of inadmissible region fluctuates over time. We define the width of the defect to be the maximum width it ever obtains. This defines the effective 'state space' of the FSM representation.

- If \mathfrak{A} is (Φ, σ)-periodic (as in these examples), then the FSM is driven by periodic input, so its long-term behaviour is periodic.
- The defect velocity fluctuates over time, but there is a long-term 'average' velocity obtained by averaging over the period.

Pushdown Automata and Turing Machines

A pushdown automaton (PDA) is an FSM augmented with 'last in, first out' memory model called a stack. The machine can 'push' symbols onto the stack, and later 'pop' them off the stack in reverse order.

A Turing machine is an FSM augmented with a biinfinite random access memory model called a 'tape'. The FSM acts has a 'head' which can read/write symbols as it moves along the tape.

One-dimensional CA: Kinematic Regimes

In one-dimensional CA, the particle kinematics depends upon the kind of subshifts found to the right and left of the particle.

Defect Kinematic Regimes		σ-dynamics Φ-dynamics	Right Side (σ, Φ)-Dynamics			
		Zero Entropy, σ-periodic Φ-Periodic or Φ-Fixed	Rightregular Rightresolving	Nonzero σ-Entropy, Not σ-periodic		
	σ-dynamics			Φ-Periodic or Φ-Fixed	Anything else	
	$\begin{array}{cc} \text { Zero Entropy, } & => \\ \sigma \text {-periodic } \end{array}$		Ballistic	Diffusive Diffusive	Autonomous PDA	Complicated
	Left-regular	Left-resolving	Diffusive		Markov PDA	
	Nonzero σ-Entropy,	Φ-Periodic or Φ-Fixed	Autonomous PDA	Markov PDA	Turing Machine	Complicated
	Not σ-periodic	Anything else	Complicated		Complicated	

Ballistic: Defect has (Φ, σ)-periodic subshifts on both sides. Acts like FSM driven by periodic input. Moves with constant average velocity through periodic background. Examples: ECAs 54, 62, 110, and 184

Diffusive: Regular, Φ-resolving subshifts on one or both sides. Acts like FSM driven by Markov process. Performs generalized random walk. Example: ECA \#18.

Turing Machine: Defect moves through Φ-fixed, positive σ-entropy background, and modifies background as it goes. Acts like Turing machine: particle is the 'head', and inert background is the 'tape'.

Autonomous Pushdown Automaton: Φ-fixed, positive σ-entropy domain on one side (which acts as a 'stack' memory), and zero-entropy domain on the other side. Acts like a PDA without external input.

Markov PDA: Φ-fixed, positive σ-entropy domain on one side (acts as a 'stack'), and regular Φ-resolving subshift on the other. Acts like a PDA driven by a Markov process.

Regular Markov Subshifts \& Resolving CA

$\forall a \in \mathcal{A}$, let $\mathcal{F}(a) \subseteq \mathcal{A}$ be a set of 'admissible followers'. Write $a \sim b$ if $b \in \mathcal{F}(a)$.

The corresponding Markov subshift $\mathfrak{A} \subset \mathcal{A}^{\mathbb{Z}}$ is the set of all infinite sequences $[\cdots \leadsto a \leadsto b \leadsto c \leadsto d \leadsto \cdots]$ (Every SFT can be recoded thus.)

Let $\mathcal{P}(a):=\{b \in \mathcal{A} ; b \leadsto a\}$ be the set of admissible 'predecessors'.
\mathfrak{A} is regular if $\exists F \in \mathbb{N}$ such that $\#[\mathcal{F}(a)]=F$ for all $a \in \mathcal{A}$, and $\exists P \in \mathbb{N}$ such that $\#[\mathcal{P}(a)]=P$ for all $a \in \mathcal{A}$.

$$
\begin{array}{ll}
\mathcal{F}(1)=\{2,3\} ; & \mathcal{P}(1)=\{4,5\} \\
\mathcal{F}(2)=\{3,4\} ; & \mathcal{P}(2)=\{5,1\} \\
\mathcal{F}(3)=\{4,5\} ; & \mathcal{P}(3)=\{1,2\} \\
\mathcal{F}(4)=\{5,1\} ; & \mathcal{P}(4)=\{2,3\} \\
\mathcal{F}(5)=\{1,2\} ; & \mathcal{P}(5)=\{3,4\}
\end{array}
$$

Let $\Phi: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ be a CA with local rule $\phi: \mathcal{A}^{3} \longrightarrow \mathcal{A}$. Suppose $\Phi(\mathfrak{A}) \subset \mathfrak{A}$. Let $(b \sim c \sim d)$ and let $x:=\phi(b, c, d)$.
If $d \leadsto e$, then $x \leadsto \phi(c, d, e)$. Thus, we get function $\phi_{c, d}: \mathcal{F}(d) \longrightarrow \mathcal{F}(x)$. We say Φ is right-resolving if $\phi_{c, d}$ is bijective for all such (c, d).
If $a \leadsto b$, then $\phi(a, b, c) \leadsto x$. Thus, we get function $\phi^{b, c}: \mathcal{P}(b) \longrightarrow \mathcal{P}(x)$. We say Φ is left-resolving if $\phi^{b, c}$
 is bijective for all such (b, c).
Φ is resolving if it is both left- and right- resolving.
Examples: (a) Permutative CA acting on full shift $\mathfrak{A}=\mathcal{A}^{\mathbb{Z}}$.
(b) Linear CA acting on Markov subgroup. (Here \mathcal{A} is a group, so $\mathcal{A}^{\mathbb{Z}}$ is a group. $\mathfrak{A} \subset \mathcal{A}^{\mathbb{Z}}$ is a subgroup, and $\Phi: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ is endomorphism.)

Diffusive Defect Particle Kinematics

The Parry measure μ is the measure of maximal entropy on \mathfrak{A}. It is Markov measure given equal transition probability to all $b \in \mathcal{F}(a)$.

Theorem: Let $\mathfrak{A} \subset \mathcal{A}^{\mathbb{Z}}$ be regular Markov subshift. Let Φ : $\mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ be $C A$ with $\Phi(\mathfrak{A}) \subseteq \mathfrak{A}$ and Φ resolving on \mathfrak{A}. Let $\mu=$ Parry measure on \mathfrak{A}. (Then $\Phi \mu=\mu$.)

Let $\mathbf{l} \in \mathcal{A}^{(-\infty \ldots 0)}$ be μ-random, left-infinite \mathfrak{A}-admissible sequence.
Let $\mathbf{r} \in \mathcal{A}^{[W \ldots \infty)}$ be μ-random, right-infinite \mathfrak{A}-admissible sequence.
Let $\mathbf{w} \in \mathcal{A}^{[0 \ldots W)}$ be 'defect' word. Set initial condition: $\mathbf{a}:=$ l.w.r.
Define $\zeta: \mathbb{N} \longrightarrow \mathbb{Z}$ by $\zeta(t):=$ position of defect in $\Phi^{t}(\mathbf{a})$. Then ζ is a generalized random walk. [i.e. increments of ζ are a hidden Markov process]. (Generalizes Eloranta [1993-1995]; similar result for 0 -width defects in 'partially permutive' CA.)

Proof idea: The defect motion is driven by ' μ-random information' coming in from the left and right, as follows:

μ-random cells determined by μ-random initial conditions

Diffusive Defect Particle Kinematics

Scale: 50×50 (space \times time)

Scale: $300 \times 6000($ space \times time $)$

