Emergent Defect Dynamics in Two-Dimensional Cellular Automata AUTOMATA 2007 Fields Institute, Toronto

Marcus Pivato (Trent University) and Martin Delacourt (ENS Lyon)

http://euclid.trentu.ca/Defect

August 27, 2007

(ㅁ) (귀) (흔) (흔)

Sac

・ロト ・ 回 ・ ・ 言 ・ ・ 回 ・ ・ ロ ・

Almost any random initial configuration rapidly converges to large domains of some regular background pattern, separated by small *defects* (or *domain boundaries*) where this pattern breaks down.

(ロ) (同) (三) (三) (三) (0) (0)

Almost any random initial configuration rapidly converges to large domains of some regular background pattern, separated by small *defects* (or *domain boundaries*) where this pattern breaks down.

(ロ) (同) (三) (三) (三) (0) (0)

These defects move around like 'particles', governed by some emergent 'defect kinematics'.

Almost any random initial configuration rapidly converges to large domains of some regular background pattern, separated by small *defects* (or *domain boundaries*) where this pattern breaks down.

These defects move around like 'particles', governed by some emergent 'defect kinematics'.

When 'defect particles' collide, they coalesce or annihilate according to some emergent 'defect chemistry'.

[Skip]

▶ P. Grassberger [1983, 1984].

(日) (四) (三) (三)

- ▶ P. Grassberger [1983, 1984].
- ▶ Steven Wolfram [1983-2005]. (Mainly ECA #110).

- P. Grassberger [1983, 1984].
- ▶ Steven Wolfram [1983-2005]. (Mainly ECA #110).
- ▶ S. Wolfram and Doug Lind [1986]. (Classified defects of ECA #110).

= √Q (~

- P. Grassberger [1983, 1984].
- Steven Wolfram [1983-2005]. (Mainly ECA #110).
- ▶ S. Wolfram and Doug Lind [1986]. (Classified defects of ECA #110).

= √Q (~

▶ N. Boccara, J. Naser, M. Rogers [1991]. (ECAs 18, 54, 62, 184).

- P. Grassberger [1983, 1984].
- ► Steven Wolfram [1983-2005]. (Mainly ECA #110).
- ▶ S. Wolfram and Doug Lind [1986]. (Classified defects of ECA #110).
- ▶ N. Boccara, J. Naser, M. Rogers [1991]. (ECAs 18, 54, 62, 184).
- James Crutchfield and James Hanson's 'Computational Mechanics' [1992-2001]. (Also Cosma Shalizi, Wim Hordijk, Melanie Mitchell).

Jac.

- P. Grassberger [1983, 1984].
- ► Steven Wolfram [1983-2005]. (Mainly ECA #110).
- ▶ S. Wolfram and Doug Lind [1986]. (Classified defects of ECA #110).
- ▶ N. Boccara, J. Naser, M. Rogers [1991]. (ECAs 18, 54, 62, 184).
- James Crutchfield and James Hanson's 'Computational Mechanics' [1992-2001]. (Also Cosma Shalizi, Wim Hordijk, Melanie Mitchell).

(ロ) (同) (三) (三) (三) (0) (0)

• Harold V. McIntosh [1999, 2000].

 Concerning ECA#18, Lind [1984] conjectured: (i) Defects perform random walks.

 Concerning ECA#18, Lind [1984] conjectured: (i) Defects perform random walks. (ii) Defect density decays to zero through annihilations.

Sac

Concerning ECA#18, Lind [1984] conjectured: (i) Defects perform random walks. (ii) Defect density decays to zero through annihilations.

Jac.

Kari Eloranta [1993-1995] proved Lind's conjecture (i); studied quasirandom defect motion in 'partially permutive' CA.

- Concerning ECA#18, Lind [1984] conjectured: (i) Defects perform random walks. (ii) Defect density decays to zero through annihilations.
- Kari Eloranta [1993-1995] proved Lind's conjecture (i); studied quasirandom defect motion in 'partially permutive' CA.
- Petr Kůrka and Alejandro Maass [2000, 2002] studied CA convergence to limit sets through 'defect annihilation'. Kůrka [2003] proved Lind's conjecture (ii).

Jac.

- Concerning ECA#18, Lind [1984] conjectured: (i) Defects perform random walks. (ii) Defect density decays to zero through annihilations.
- Kari Eloranta [1993-1995] proved Lind's conjecture (i); studied quasirandom defect motion in 'partially permutive' CA.
- Petr Kůrka and Alejandro Maass [2000, 2002] studied CA convergence to limit sets through 'defect annihilation'. Kůrka [2003] proved Lind's conjecture (ii).

< 口 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ = ○ < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○

 S. Wolfram and Matthew Cook [2002, 2004]: ECA #110 is computationally universal (used 'defect physics' to build universal computer).

- Concerning ECA#18, Lind [1984] conjectured: (i) Defects perform random walks. (ii) Defect density decays to zero through annihilations.
- Kari Eloranta [1993-1995] proved Lind's conjecture (i); studied quasirandom defect motion in 'partially permutive' CA.
- Petr Kůrka and Alejandro Maass [2000, 2002] studied CA convergence to limit sets through 'defect annihilation'. Kůrka [2003] proved Lind's conjecture (ii).
- ► S. Wolfram and Matthew Cook [2002, 2004]: ECA #110 is computationally universal (used 'defect physics' to build universal computer).
- Pivato [Thr.Comp.Sci, 2007] analyzed 'defect particle kinematics' for 1D CA; identified 4 'kinematic regimes' depending on background pattern...

< 口 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ = ○ < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○

- Concerning ECA#18, Lind [1984] conjectured: (i) Defects perform random walks. (ii) Defect density decays to zero through annihilations.
- Kari Eloranta [1993-1995] proved Lind's conjecture (i); studied quasirandom defect motion in 'partially permutive' CA.
- Petr Kůrka and Alejandro Maass [2000, 2002] studied CA convergence to limit sets through 'defect annihilation'. Kůrka [2003] proved Lind's conjecture (ii).
- ► S. Wolfram and Matthew Cook [2002, 2004]: ECA #110 is computationally universal (used 'defect physics' to build universal computer).
- Pivato [Thr.Comp.Sci, 2007] analyzed 'defect particle kinematics' for 1D CA; identified 4 'kinematic regimes' depending on background pattern...
 - Ballistic regime: particles move deterministically.

- Concerning ECA#18, Lind [1984] conjectured: (i) Defects perform random walks. (ii) Defect density decays to zero through annihilations.
- Kari Eloranta [1993-1995] proved Lind's conjecture (i); studied quasirandom defect motion in 'partially permutive' CA.
- Petr Kůrka and Alejandro Maass [2000, 2002] studied CA convergence to limit sets through 'defect annihilation'. Kůrka [2003] proved Lind's conjecture (ii).
- ► S. Wolfram and Matthew Cook [2002, 2004]: ECA #110 is computationally universal (used 'defect physics' to build universal computer).
- Pivato [Thr.Comp.Sci, 2007] analyzed 'defect particle kinematics' for 1D CA; identified 4 'kinematic regimes' depending on background pattern...
 - Ballistic regime: particles move deterministically.
 - Diffusive regime: particles perform random walks.

- Concerning ECA#18, Lind [1984] conjectured: (i) Defects perform random walks. (ii) Defect density decays to zero through annihilations.
- Kari Eloranta [1993-1995] proved Lind's conjecture (i); studied quasirandom defect motion in 'partially permutive' CA.
- Petr Kůrka and Alejandro Maass [2000, 2002] studied CA convergence to limit sets through 'defect annihilation'. Kůrka [2003] proved Lind's conjecture (ii).
- ► S. Wolfram and Matthew Cook [2002, 2004]: ECA #110 is computationally universal (used 'defect physics' to build universal computer).
- Pivato [Thr.Comp.Sci, 2007] analyzed 'defect particle kinematics' for 1D CA; identified 4 'kinematic regimes' depending on background pattern...
 - Ballistic regime: particles move deterministically.
 - Diffusive regime: particles perform random walks.
 - ▶ *PDA* regime: particle can be described using 'pushdown automata'.

- Concerning ECA#18, Lind [1984] conjectured: (i) Defects perform random walks. (ii) Defect density decays to zero through annihilations.
- Kari Eloranta [1993-1995] proved Lind's conjecture (i); studied quasirandom defect motion in 'partially permutive' CA.
- Petr Kůrka and Alejandro Maass [2000, 2002] studied CA convergence to limit sets through 'defect annihilation'. Kůrka [2003] proved Lind's conjecture (ii).
- ► S. Wolfram and Matthew Cook [2002, 2004]: ECA #110 is computationally universal (used 'defect physics' to build universal computer).
- Pivato [Thr.Comp.Sci, 2007] analyzed 'defect particle kinematics' for 1D CA; identified 4 'kinematic regimes' depending on background pattern...
 - Ballistic regime: particles move deterministically.
 - Diffusive regime: particles perform random walks.
 - ▶ *PDA* regime: particle can be described using 'pushdown automata'.

nac

Turing regime: particle acts like moving 'head' of Turing machine.

Persistence of Defects

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^{D}}$, and suppose $\mathbf{b} := \Phi^{100}(\mathbf{a})$ exhibits 'domains' and 'defects'.

Persistence of Defects

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^D}$, and suppose $\mathbf{b} := \Phi^{100}(\mathbf{a})$ exhibits 'domains' and 'defects'.

Question: What is a 'regular domain', anyways?

Persistence of Defects

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^{D}}$, and suppose $\mathbf{b} := \Phi^{100}(\mathbf{a})$ exhibits 'domains' and 'defects'.

(ロ) (同) (三) (三) (三) (0) (0)

Question: What is a 'regular domain', anyways?

Idea: Each 'regular domain' in b is a fragment from some *subshift*.

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^{D}}$, and suppose $\mathbf{b} := \Phi^{100}(\mathbf{a})$ exhibits 'domains' and 'defects'.

Question: What is a 'regular domain', anyways?

Idea: Each 'regular domain' in **b** is a fragment from some *subshift*.

(A *subshift* is a closed, shift-invariant subset of $\mathcal{A}^{\mathbb{Z}^D}$; it is the set of all

configurations which can be 'tiled' with some set of 'admissible blocks').

(ロ) (同) (三) (三) (三) (0) (0)

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^{D}}$, and suppose $\mathbf{b} := \Phi^{100}(\mathbf{a})$ exhibits 'domains' and 'defects'.

Question: What is a 'regular domain', anyways?

Idea: Each 'regular domain' in **b** is a fragment from some *subshift*. (A *subshift* is a closed, shift-invariant subset of $\mathcal{A}^{\mathbb{Z}^{D}}$; it is the set of all configurations which can be 'tiled' with some set of 'admissible blocks'). **Question:** Why do the defects in **b** 'persist' under iteration of Φ ? Why are they not destroyed? Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^D}$, and suppose $\mathbf{b} := \Phi^{100}(\mathbf{a})$ exhibits 'domains' and 'defects'.

Question: What is a 'regular domain', anyways?

Idea: Each 'regular domain' in **b** is a fragment from some *subshift*. (A *subshift* is a closed, shift-invariant subset of $\mathcal{A}^{\mathbb{Z}^{D}}$; it is the set of all configurations which can be 'tiled' with some set of 'admissible blocks'). **Question:** Why do the defects in **b** 'persist' under iteration of Φ ? Why are they not destroyed?

Idea: Some defects are manifestations of 'global structural properties' of **b** (relative to the topological dynamics of the underlying subshifts).

- ロ > - 4 目 > - 4 目 > - 4 目 > - 9 9 9 9

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^D}$, and suppose $\mathbf{b} := \Phi^{100}(\mathbf{a})$ exhibits 'domains' and 'defects'.

Question: What is a 'regular domain', anyways?

Idea: Each 'regular domain' in **b** is a fragment from some *subshift*. (A *subshift* is a closed, shift-invariant subset of $\mathcal{A}^{\mathbb{Z}^D}$; it is the set of all configurations which can be 'tiled' with some set of 'admissible blocks'). **Question:** Why do the defects in **b** 'persist' under iteration of Φ ? Why are they not destroyed?

Idea: Some defects are manifestations of 'global structural properties' of **b** (relative to the topological dynamics of the underlying subshifts). If Φ 'respects' the underlying subshifts, then it must preserve these structural properties; hence the defects can neither be created nor destroyed, but only moved around and combined with other defects.

Interfaces

[Skip]

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{U} \subset \mathbb{Z}^2$ and $\mathbb{V} \subset \mathbb{Z}^2$ be two 'regular domains' in \mathbf{b} .

Interfaces

[Skip]

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{U} \subset \mathbb{Z}^2$ and $\mathbb{V} \subset \mathbb{Z}^2$ be two 'regular domains' in \mathbf{b} .

If $\mathbf{b}_{\mathbb{U}}$ and $\mathbf{b}_{\mathbb{V}}$ belong to disjoint subshifts **X** and **Y** then the boundary between them is called an *interface*.

Jac.

Interfaces

[Skip]

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{U} \subset \mathbb{Z}^2$ and $\mathbb{V} \subset \mathbb{Z}^2$ be two 'regular domains' in \mathbf{b} .

If $\mathbf{b}_{\mathbb{U}}$ and $\mathbf{b}_{\mathbb{V}}$ belong to disjoint subshifts **X** and **Y** then the boundary between them is called an *inter-face*.

Theorem: If Φ : $X \sqcup Y \longrightarrow X \sqcup Y$ is surjective, then any (X, Y)-interface will persist under iteration of Φ . \Box [MP, Fundamentae Informatica, 2007]

Jac.
Interfaces

[Skip]

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{U} \subset \mathbb{Z}^2$ and $\mathbb{V} \subset \mathbb{Z}^2$ be two 'regular domains' in \mathbf{b} .

If $b_{\mathbb U}$ and $b_{\mathbb V}$ belong to disjoint subshifts X and Y then the boundary between them is called an *interface*.

Theorem: If Φ : $X \sqcup Y \longrightarrow X \sqcup Y$ is surjective, then any (X, Y)-interface will persist under iteration of Φ . **Example:** (ECA #184) Let $\mathcal{A} = \{\Box, \blacksquare\}$. Let $X := \{...\blacksquare\blacksquare\blacksquare...\}$, $Y := \{....\Box\Box...\}$, and $Z := \{...\blacksquare\Box\Box\Box...\}$. If Φ is ECA 184, then $\Phi(X) = X$, $\Phi(Y) = Y$, and $\Phi(Z) = Z$.

DQ C

Interfaces

[Skip]

- U

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{U} \subset \mathbb{Z}^2$ and $\mathbb{V} \subset \mathbb{Z}^2$ be two 'regular domains' in \mathbf{b} .

If $b_{\mathbb U}$ and $b_{\mathbb V}$ belong to disjoint subshifts X and Y then the boundary between them is called an interface.

Theorem: If $\Phi : \mathbf{X} \sqcup \mathbf{Y} \longrightarrow \mathbf{X} \sqcup \mathbf{Y}$ is surjective, then any (\mathbf{X}, \mathbf{Y}) -interface will persist under iteration of Φ . **Example:** (ECA #184) Let $\mathcal{A} = \{\Box, \blacksquare\}$. Let $\mathbf{X} := \{...\blacksquare\blacksquare\blacksquare...\}$, $\mathbf{Y} := \{....\Box\Box\Box\ldots\}$, and $\mathbf{Z} := \{...\blacksquare\Box\blacksquare\Box\blacksquare\Box....\}$. If Φ is ECA 184, then $\Phi(\mathbf{X}) = \mathbf{X}, \ \Phi(\mathbf{Y}) = \mathbf{Y}, \ \text{and } \Phi(\mathbf{Z}) = \mathbf{Z}$. This yields the following interfaces (as seen in space-time diagram of Φ):

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{U} \subset \mathbb{Z}^2$ and $\mathbb{V} \subset \mathbb{Z}^2$ be two 'regular domains' in \mathbf{b} .

(日) (四) (三) (三)

∍

 $\mathfrak{I}_{\mathcal{A}}$

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{U} \subset \mathbb{Z}^2$ and $\mathbb{V} \subset \mathbb{Z}^2$ be two 'regular domains' in \mathbf{b} .

Suppose $\mathbf{b}_{\mathbb{U}}$ and $\mathbf{b}_{\mathbb{V}}$ belong to the *same* subshift **X**. Let $\mathbb{P} \subset \mathbb{Z}^2$ be a subgroup, and suppose **X** is **P**-periodic. (i.e. $\forall \mathbf{x} \in \mathbf{X}$ and $\mathbf{p} \in \mathbb{P}$, $\sigma^{\mathbf{p}}(\mathbf{x}) = \mathbf{x}$.)

Jac.

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{U} \subset \mathbb{Z}^2$ and $\mathbb{V} \subset \mathbb{Z}^2$ be two 'regular domains' in \mathbf{b} .

Suppose $\mathbf{b}_{\mathbb{U}}$ and $\mathbf{b}_{\mathbb{V}}$ belong to the *same* subshift \mathbf{X} . Let $\mathbb{P} \subset \mathbb{Z}^2$ be a subgroup, and suppose \mathbf{X} is \mathbb{P} -periodic. (i.e. $\forall \mathbf{x} \in \mathbf{X}$ and $\mathbf{p} \in \mathbb{P}$, $\sigma^{\mathbf{p}}(\mathbf{x}) = \mathbf{x}$.) If $\mathbf{b}_{\mathbb{U}}$ and $\mathbf{b}_{\mathbb{V}}$ are 'out of phase' relative to this \mathbb{P} -periodic structure, then the boundary between \mathbb{U} and \mathbb{V} is called a *dislocation*.

< ロ > < 同 > < 三 > < 三 >

Jac.

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{U} \subset \mathbb{Z}^2$ and $\mathbb{V} \subset \mathbb{Z}^2$ be two 'regular domains' in \mathbf{b} . Suppose $\mathbf{b}_{\mathbb{U}}$ and $\mathbf{b}_{\mathbb{V}}$ belong to the *same* subshift **X**. Let $\mathbb{P} \subset \mathbb{Z}^2$ be a subgroup, and suppose **X** is \mathbb{P} -periodic. (i.e. $\forall \mathbf{x} \in \mathbf{X}$ and $\mathbf{p} \in \mathbb{P}$, $\sigma^{\mathbf{p}}(\mathbf{x}) = \mathbf{x}$.) If $\mathbf{b}_{\mathbb{U}}$ and $\mathbf{b}_{\mathbb{V}}$ are 'out of phase' relative to this \mathbb{P} periodic structure, then the boundary between \mathbb{U} and \mathbb{V} is called a *dislocation*.

Jac.

Every dislocation can be labelled with a *displacement* in $\Delta := \mathbb{Z}^2/\mathbb{P}$.

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{U} \subset \mathbb{Z}^2$ and $\mathbb{V} \subset \mathbb{Z}^2$ be two 'regular domains' in \mathbf{b} . Suppose $\mathbf{b}_{\mathbb{U}}$ and $\mathbf{b}_{\mathbb{V}}$ belong to the *same* subshift **X**. Let $\mathbb{P} \subset \mathbb{Z}^2$ be a subgroup, and suppose **X** is \mathbb{P} -periodic. (i.e. $\forall \mathbf{x} \in \mathbf{X}$ and $\mathbf{p} \in \mathbb{P}$, $\sigma^{\mathbf{p}}(\mathbf{x}) = \mathbf{x}$.) If $\mathbf{b}_{\mathbb{U}}$ and $\mathbf{b}_{\mathbb{V}}$ are 'out of phase' relative to this \mathbb{P} periodic structure, then the boundary between \mathbb{U} and \mathbb{V} is called a *dislocation*.

< ロ > < 同 > < 三 > < 三 >

DQ C

Every dislocation can be labelled with a *displacement* in $\Delta := \mathbb{Z}^2/\mathbb{P}$. **Theorem:** If $\Phi : \mathbf{X} \longrightarrow \mathbf{X}$ is surjective, then any **X**-dislocation persists under iteration of Φ , and its displacement is unchanging. $\Box_{[Fundamentae Informatica, 2007]}$

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{U} \subset \mathbb{Z}^2$ and $\mathbb{V} \subset \mathbb{Z}^2$ be two 'regular domains' in \mathbf{b} . Suppose $\mathbf{b}_{\mathbb{U}}$ and $\mathbf{b}_{\mathbb{V}}$ belong to the *same* subshift **X**. Let $\mathbb{P} \subset \mathbb{Z}^2$ be a subgroup, and suppose **X** is \mathbb{P} -periodic. (i.e. $\forall \mathbf{x} \in \mathbf{X}$ and $\mathbf{p} \in \mathbb{P}$, $\sigma^{\mathbf{p}}(\mathbf{x}) = \mathbf{x}$.) If $\mathbf{b}_{\mathbb{U}}$ and $\mathbf{b}_{\mathbb{V}}$ are 'out of phase' relative to this \mathbb{P} periodic structure, then the boundary between \mathbb{U} and \mathbb{V} is called a *dislocation*.

Jac.

Every dislocation can be labelled with a *displacement* in $\Delta := \mathbb{Z}^2/\mathbb{P}$. **Theorem:** If $\Phi : \mathbf{X} \longrightarrow \mathbf{X}$ is surjective, then any **X**-dislocation persists under iteration of Φ , and its displacement is unchanging. **Example:** (ECA#62) Let **X** := [...**D D D D** ...]. If Φ is ECA #62, then $\Phi|_{\mathbf{X}} = \sigma$, so (**X**, Φ) is 3-periodic in both space and time, and $\Delta \cong \mathbb{Z}_{/3}$.

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{U} \subset \mathbb{Z}^2$ and $\mathbb{V} \subset \mathbb{Z}^2$ be two 'regular domains' in **b**. Suppose $\mathbf{b}_{\mathbb{U}}$ and $\mathbf{b}_{\mathbb{V}}$ belong to the same subshift **X**. Let $\mathbb{P} \subset \mathbb{Z}^2$ be a subgroup, and suppose **X** is **P**-periodic. (i.e. $\forall \mathbf{x} \in \mathbf{X}$ and $\mathbf{p} \in \mathbb{P}$, $\sigma^{\mathbf{p}}(\mathbf{x}) = \mathbf{x}$.) If $\mathbf{b}_{\mathbb{I}}$ and $\mathbf{b}_{\mathbb{V}}$ are 'out of phase' relative to this \mathbb{P} periodic structure, then the boundary between \mathbb{U} and \mathbb{V} is called a *dislocation*.

Disn

Every dislocation can be labelled with a *displacement* in $\Delta := \mathbb{Z}^2/\mathbb{P}$. **Theorem:** If $\Phi : \mathbf{X} \longrightarrow \mathbf{X}$ is surjective, then any **X**-dislocation persists under

iteration of Φ , and its displacement is unchanging. $\Box_{[Fundamentae Informatica, 2007]}$ (ECA#62) Let **X** Example: :=[...∎∎□ ∎∎□...]. If Φ is ECA #62, then $\Phi_{|_{\mathbf{X}}} = \sigma$, so (\mathbf{X}, Φ) is 3-periodic in both space and time, and $\Delta \cong \mathbb{Z}_{/3}$. Here are two dislocations in **X** and their displacements:

Some subshifts have *height functions*, which represent any admissible configuration as a smoothly varying 'landscape'.

<
<
<
<
<

500

Some subshifts have *height functions*, which represent any admissible configuration as a smoothly varying 'landscape'. An infinite domain boundary is a *gap* if the 'heights' on opposite sides asymptotically diverge.

Some subshifts have *height functions*, which represent any admissible configuration as a smoothly varying 'landscape'. An infinite domain boundary is a *gap* if the 'heights' on opposite sides asymptotically diverge. **Example:** (Square Ice) Let $\mathcal{I} := \{ \underbrace{ \textcircled{}}_{\mathcal{I}}, \underbrace{ \underbrace{ }}_{\mathcal{I}}, \underbrace{ \textcircled{}}_{\mathcal{I}}, \underbrace{ \underbrace{ }}_{$

Some subshifts have *height functions*, which represent any admissible configuration as a smoothly varying 'landscape'. An infinite domain boundary is a *gap* if the 'heights' on opposite sides asymptotically diverge. **Example:** (Square Ice) Let $\mathcal{I} := \left\{ \begin{array}{c} & & \\ & & \\ \end{array}, \begin{array}{c} & & \end{array}, \begin{array}{c} & & \\ \end{array}, \begin{array}{c} & & & \end{array}, \begin{array}{c} & & & \\ \end{array}, \begin{array}{c} & & & \end{array}, \begin{array}{c} & &$

Some subshifts have *height functions*, which represent any admissible configuration as a smoothly varying 'landscape'. An infinite domain boundary is a gap if the 'heights' on opposite sides asymptotically diverge. Example: (Square Ice) Let $\mathcal{I} := \left\{ \begin{array}{c} \begin{array}{c} \\ \end{array}, \end{array}, \begin{array}{c} \\ \end{array}, \end{array}, \begin{array}{c} \\ \end{array}, \begin{array}{c} \\ \end{array}, \end{array}, \begin{array}{c} \\ \end{array}, \end{array}, \begin{array}{c} \\ \end{array}, \begin{array}{c} \\ \end{array}, \end{array}, \end{array}, \begin{array}{c} \\ \end{array}, \end{array}, \end{array},$ Let $\mathfrak{I}_{\mathfrak{ce}} \subset \mathcal{I}^{\mathbb{Z}^2}$ be the subshift of all 'tooth-in-groove' tilings. $h_{1}(\underset{\sim}{\overset{*}{\underset{\sim}}{\underset{\sim}}{\overset{*}{\underset{\sim}}{\underset{\sim}}{\overset{*}{\underset{\sim}}{\underset{\sim}}{\overset{*}{\underset{\sim}}{\overset{*}{\underset{\sim}}{\underset{\sim}}{\overset{*}{\underset{\sim}}{\underset{\sim}}{\overset{*}{\underset{\sim}}{\underset{\sim}}{\overset{*}{\underset{\sim}}{\underset{\sim}}{\overset{*}{\underset{\sim}}{\underset{\sim}}{\overset{*}{\underset{\sim}}{\underset{\sim}}{\overset{*}{\underset{\sim}}{\underset{\sim}}{\overset{*}{\underset{\sim}}{\underset{\sim}}{\underset{\sim}}{\overset{*}{\underset{\sim}}{\underset{\sim}}{\underset{\sim}}{\overset{*}{\underset{\sim}}{\underset{\sim}}{\underset{\sim}}{\overset{*}{\underset{\sim}}{\underset{\sim}}{\overset{*}{\underset{\times}}{\underset{\sim}}{\overset{*}{\underset{\sim}}{\underset{\sim}}{\underset{\sim}}{\underset{\sim}}{\underset{\sim}}{\underset{\sim}}{\overset{*}{\underset{\sim}}{\underset{$ Define $h_1, h_2 : \mathcal{I} \longrightarrow \{\pm 1\}$ by $h_1(\left\{ \begin{array}{c} & * \\ & & \end{array} \right\}) := +1 =: h_2(\left\{ \begin{array}{c} & * \\ & & \end{array} \right\})$ and

Some subshifts have *height functions*, which represent any admissible configuration as a smoothly varying 'landscape'. An infinite domain boundary is a gap if the 'heights' on opposite sides asymptotically diverge. Let $\mathfrak{I}_{\mathfrak{ce}} \subset \mathcal{I}^{\mathbb{Z}^2}$ be the subshift of all 'tooth-in-groove' tilings. Define $h_1, h_2 : \mathcal{I} \longrightarrow \{\pm 1\}$ by $h_1(\left\{ \begin{array}{c} * \\ * \\ * \end{array} \right\}) := +1 =: h_2(\left\{ \begin{array}{c} * \\ * \\ * \end{array} \right\})$ and $h_1($ $\begin{bmatrix} * \\ * \\ * \end{bmatrix}$ $) := -1 =: h_2($ $\begin{bmatrix} * \\ * \\ * \end{bmatrix}$) ('*' means 'anything'). Define $H:\mathbb{Z}^2 imes\mathfrak{I}_{\mathfrak{ce}}{\longrightarrow}\mathbb{Z}$ so that, $\forall \ \mathbf{i}\in\mathfrak{I}_{\mathfrak{ce}}, \ \forall \ \mathbf{z}=(z_1,z_2)\in\mathbb{Z}^2$, $H(\mathbf{z},\mathbf{i}) := \sum_{i=1}^{\infty} h_1(i_{x,0}) + \sum_{i=1}^{\infty} h_2(i_{z_1,y}).$ Using this height function, the domain boundary to the left can be visualized as.... $\mathcal{O} \mathcal{O} \mathcal{O}$

Some subshifts have *height functions*, which represent any admissible configuration as a smoothly varying 'landscape'. An infinite domain boundary is a gap if the 'heights' on opposite sides asymptotically diverge. Let $\mathfrak{I}_{\mathfrak{ce}} \subset \mathcal{I}^{\mathbb{Z}^2}$ be the subshift of all 'tooth-in-groove' tilings. Define $h_1, h_2 : \mathcal{I} \longrightarrow \{\pm 1\}$ by $h_1(\left\{ \begin{array}{c} * \\ * \\ * \end{array} \right\}) := +1 =: h_2(\left\{ \begin{array}{c} * \\ * \\ * \end{array} \right\})$ and $h_1(\left[\begin{smallmatrix} * & -1 \\ * & -1 \end{smallmatrix}\right]) := -1 =: h_2(\left[\begin{smallmatrix} * & -1 \\ * & * \end{smallmatrix}\right])$ ('*' means 'anything'). Define $H: \mathbb{Z}^2 \times \mathfrak{I}_{\mathfrak{ce}} \longrightarrow \mathbb{Z}$ so that, $\forall \mathbf{i} \in \mathfrak{I}_{\mathfrak{ce}}, \forall \mathbf{z} = (z_1, z_2) \in \mathbb{Z}^2$,

Gaps and Cohomology

A height function on a subshift **X** is actually a \mathbb{Z} -valued *cocycle* on **X**.

< ロ > < 同

Gaps and Cohomology

A height function on a subshift **X** is actually a \mathbb{Z} -valued *cocycle* on **X**.

If Φ is a CA and $\Phi(\mathbf{X}) = \mathbf{X}$, then Φ induces a homomorphism Φ_* on the \mathbb{Z} -cohomology group of \mathbf{X} .

< □ >

SQC.

Gaps and Cohomology

A height function on a subshift X is actually a \mathbb{Z} -valued *cocycle* on X.

If Φ is a CA and $\Phi(\mathbf{X}) = \mathbf{X}$, then Φ induces a homomorphism Φ_* on the \mathbb{Z} -cohomology group of \mathbf{X} .

Theorem: If Φ_* is surjective, then all gaps persist under Φ . $\Box_{[ErThDySy,2007]}$

Jac.

< 🗆 > < 🗇 > < 🖃 >

Example: A gap in dominos

Using a suitable height function, the domain boundary to the left can be visualized as follows:

< 🗆 🕨

Jac.

Example: A gap in dominos

Example: Another gap in dominos

Using the same height function, the domain boundary to the right can be visualized as follows:

< A >

< 🗆 🕨

Jac.

Example: Another gap in dominos

Using the same height function, the domain boundary to the right can be visualized as follows:

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

 In one-dimensional CA, 'domain boundaries' and 'defect particles' are the same thing.

(ロ) (月) (三) (三) (三) (0) (0)

- In one-dimensional CA, 'domain boundaries' and 'defect particles' are the same thing.
- However, in two-dimensional CA, a 'domain boundary' is an object of codimension one (e.g. a curve), which disconnects the plane into two or more 'regular domains'.

- In one-dimensional CA, 'domain boundaries' and 'defect particles' are the same thing.
- However, in two-dimensional CA, a 'domain boundary' is an object of codimension one (e.g. a curve), which disconnects the plane into two or more 'regular domains'.
- A 'defect particle', on the other hand, is an object of codimension two
 —it does not disconnect the space.
 (Indeed, you can encircle the particle with a loop.)

< 口 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ = ○ < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○

- In one-dimensional CA, 'domain boundaries' and 'defect particles' are the same thing.
- However, in two-dimensional CA, a 'domain boundary' is an object of codimension one (e.g. a curve), which disconnects the plane into two or more 'regular domains'.
- A 'defect particle', on the other hand, is an object of codimension two —it does not disconnect the space. (Indeed, you can encircle the particle with a loop.)
- Codimension-two defects cannot be interfaces, dislocations, or gaps.

< 口 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ = ○ < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○

- In one-dimensional CA, 'domain boundaries' and 'defect particles' are the same thing.
- However, in two-dimensional CA, a 'domain boundary' is an object of codimension one (e.g. a curve), which disconnects the plane into two or more 'regular domains'.
- A 'defect particle', on the other hand, is an object of codimension two
 —it does not disconnect the space.
 (Indeed, you can encircle the particle with a loop.)
- Codimension-two defects cannot be interfaces, dislocations, or gaps.
- However, some codimension-two defects still have a nontrivial cohomological signature, which renders them 'indestructible' under CA dynamics.

Let $\mathbf{X} \subset \mathcal{A}^{\mathbb{Z}^2}$ be a subshift. A defining property of a height function on \mathbf{X} :

Let $\mathbf{X} \subset \mathcal{A}^{\mathbb{Z}^2}$ be a subshift. A defining property of a height function on \mathbf{X} : For any $\mathbf{x} \in \mathbf{X}$, and for any $z_0, z_1 \in \mathbb{Z}^2$, and any two paths γ, γ' from z_0 to z_1 , the 'altitude change' through \mathbf{x} along γ should equal the 'altitude change' through \mathbf{x} along γ' .

Let $\mathbf{X} \subset \mathcal{A}^{\mathbb{Z}^2}$ be a subshift. A defining property of a height function on \mathbf{X} :

For any $\mathbf{x} \in \mathbf{X}$, and for any $\mathbf{z}_0, \mathbf{z}_1 \in \mathbb{Z}^2$, and any two paths γ, γ' from \mathbf{z}_0 to \mathbf{z}_1 , the 'altitude change' through \mathbf{x} along γ should equal the 'altitude change' through \mathbf{x} along γ' .

Let $\mathbf{X} \subset \mathcal{A}^{\mathbb{Z}^2}$ be a subshift. A defining property of a height function on \mathbf{X} : For any $\mathbf{x} \in \mathbf{X}$, and for any $z_0, z_1 \in \mathbb{Z}^2$, and any two paths γ, γ' from z_0 to z_1 , the 'altitude change' through \mathbf{x} along γ should equal the 'altitude change' through \mathbf{x} along γ' .

Let $\mathbf{X} \subset \mathcal{A}^{\mathbb{Z}^2}$ be a subshift. A defining property of a height function on \mathbf{X} : For any $\mathbf{x} \in \mathbf{X}$, and for any $z_0, z_1 \in \mathbb{Z}^2$, and any two paths γ, γ' from z_0 to z_1 , the 'altitude change' through \mathbf{x} along γ should equal the 'altitude change' through \mathbf{x} along γ' .

Let $\mathbf{X} \subset \mathcal{A}^{\mathbb{Z}^2}$ be a subshift. A defining property of a height function on \mathbf{X} : For any $\mathbf{x} \in \mathbf{X}$, and for any $z_0, z_1 \in \mathbb{Z}^2$, and any two paths γ, γ' from z_0 to z_1 , the 'altitude change' through \mathbf{x} along γ should equal the 'altitude change' through \mathbf{x} along γ' .

Thus, if γ is a *loop*, then the 'altitude change' around γ should be *zero*.

(ロ) (同) (三) (三) (三) (0) (0)

Let $\bm{X}\subset \mathcal{A}^{\mathbb{Z}^2}$ be a subshift. A defining property of a height function on \bm{X} :

For any $\mathbf{x} \in \mathbf{X}$, and for any $z_0, z_1 \in \mathbb{Z}^2$, and any two paths γ, γ' from z_0 to z_1 , the 'altitude change' through \mathbf{x} along γ should equal the 'altitude change' through \mathbf{x} along γ' .

Thus, if γ is a *loop*, then the 'altitude change' around γ should be *zero*. A codimension-2 defect is a pole if there is a loop γ around the defect which violates this.

(ロ) (同) (三) (三) (三) (0) (0)

Let $\bm{X}\subset \mathcal{A}^{\mathbb{Z}^2}$ be a subshift. A defining property of a height function on \bm{X} :

For any $\mathbf{x} \in \mathbf{X}$, and for any $z_0, z_1 \in \mathbb{Z}^2$, and any two paths γ, γ' from z_0 to z_1 , the 'altitude change' through \mathbf{x} along γ should equal the 'altitude change' through \mathbf{x} along γ' .

Thus, if γ is a *loop*, then the 'altitude change' around γ should be *zero*. A codimension-2 defect is a pole if there is a loop γ around the defect which violates this.

Example: Recall $H : \mathfrak{I}_{ce} \times \mathbb{Z}^2 \longrightarrow \mathbb{Z}$ $h_1(\begin{bmatrix} * & * \\ & & \\$

Persistence of Poles

(Poles can actually be defined for cocycles on **X** ranging over any group).

Persistence of Poles

(Poles can actually be defined for cocycles on **X** ranging over any group). Let $\Phi : \mathbf{X} \longrightarrow \mathbf{X}$ be a CA, and let Φ_* be the induced homomorphism on the relevant cohomology group.

SQC.

Persistence of Poles

(Poles can actually be defined for cocycles on **X** ranging over any group). Let $\Phi : \mathbf{X} \longrightarrow \mathbf{X}$ be a CA, and let Φ_* be the induced homomorphism on the relevant cohomology group.

Theorem: If Φ_* is surjective, then all poles persist under Φ . $\Box_{[ErThDySy,2007]}$

Problem: All known 'natural' examples of EDD are in one-dim. CA.

Problem: All known 'natural' examples of EDD are in one-dim. CA. (One can construct 2-dimensional examples, but 'artificial' examples do not tell us what behaviour is 'generic', or yield surprising new phenomena).

(日) < (日) > (1)

Problem: All known 'natural' examples of EDD are in one-dim. CA. (One can construct 2-dimensional examples, but 'artificial' examples do not tell us what behaviour is 'generic', or yield surprising new phenomena). The theory of multidimensional EDD needs more examples, to give content to the theoretical results, and to motivate further development.

Problem: All known 'natural' examples of EDD are in one-dim. CA. (One can construct 2-dimensional examples, but 'artificial' examples do not tell us what behaviour is 'generic', or yield surprising new phenomena). The theory of multidimensional EDD needs more examples, to give content to the theoretical results, and to motivate further development.

Goal: Automated search for EDD in 2-dimensional CA.

Problem: All known 'natural' examples of EDD are in one-dim. CA. (One can construct 2-dimensional examples, but 'artificial' examples do not tell us what behaviour is 'generic', or yield surprising new phenomena). The theory of multidimensional EDD needs more examples, to give content to the theoretical results, and to motivate further development.

Goal: Automated search for EDD in 2-dimensional CA. **Method:**

1. Generate random 2-dimensional CA Φ and a random initial configuration $\textbf{a} \in \mathcal{A}^{\mathbb{Z}^2}.$

Problem: All known 'natural' examples of EDD are in one-dim. CA. (One can construct 2-dimensional examples, but 'artificial' examples do not tell us what behaviour is 'generic', or yield surprising new phenomena). The theory of multidimensional EDD needs more examples, to give content to the theoretical results, and to motivate further development.

Goal: Automated search for EDD in 2-dimensional CA. **Method:**

- 1. Generate random 2-dimensional CA Φ and a random initial configuration $\bm{a}\in \mathcal{A}^{\mathbb{Z}^2}.$
- Compute b := Φ¹⁰⁰(a), and measure empirical probability distribution of k × k blocks in b.

Problem: All known 'natural' examples of EDD are in one-dim. CA. (One can construct 2-dimensional examples, but 'artificial' examples do not tell us what behaviour is 'generic', or yield surprising new phenomena). The theory of multidimensional EDD needs more examples, to give content to the theoretical results, and to motivate further development.

Goal: Automated search for EDD in 2-dimensional CA. **Method:**

- 1. Generate random 2-dimensional CA Φ and a random initial configuration $\bm{a}\in \mathcal{A}^{\mathbb{Z}^2}.$
- Compute b := Φ¹⁰⁰(a), and measure empirical probability distribution of k × k blocks in b.

< ロ > < 団 > < 言 > < 言 > く 言 > く 言 > シ へ ゆ

3. Look for 'statistical signature' of emergent defects; isolate likely candidates.

Problem: All known 'natural' examples of EDD are in one-dim. CA. (One can construct 2-dimensional examples, but 'artificial' examples do not tell us what behaviour is 'generic', or yield surprising new phenomena). The theory of multidimensional EDD needs more examples, to give content to the theoretical results, and to motivate further development.

Goal: Automated search for EDD in 2-dimensional CA. **Method:**

- 1. Generate random 2-dimensional CA Φ and a random initial configuration $\bm{a}\in \mathcal{A}^{\mathbb{Z}^2}.$
- Compute b := Φ¹⁰⁰(a), and measure empirical probability distribution of k × k blocks in b.
- 3. Look for 'statistical signature' of emergent defects; isolate likely candidates.
- 4. If Φ is likely candidate, then look for domain boundaries, interfaces, and dislocations in **b**.

- ロ > - 4 目 > - 4 目 > - 4 目 > - 9 9 9 9

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$.

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > の < で

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$.

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let

$$f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}.$$

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let $f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}$. Example: Uniform distribution. $p(\mathbf{a}) = 2^{-k^2}$ for all $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$.

・ロト 《母 》 《言 》 《目 》 《日 》

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let $f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}$. Example: Point Mass. $p(\mathbf{b}) = 1$ for some $\mathbf{b} \in \mathcal{A}^{\mathbb{K}}$, and $p(\mathbf{a}) = 0$ for all other $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$.

- ロ > - 4 目 > - 4 目 > - 4 目 > - 9 9 9 9

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let *M* be large. For all $m \in [1...M]$ let $f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}.$ **Example:** Point Mass. $p(\mathbf{b}) = 1$ for some $\mathbf{b} \in \mathcal{A}^{\mathbb{K}}$, and $p(\mathbf{a}) = 0$ for all other $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$. Thus, f(1) = 1, and f(x) = 0 for all x < 1.

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let $f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}$. Example: Checkerboard.

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let $f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}$. Example: Checkerboard.

There are 2 distinct \mathbb{K} -blocks, each with probability 1/2.

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let $f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \le p(\mathbf{a}) \le \frac{m}{M} \right\}.$ Example: Checkerboard. There are 2 distinct \mathbb{K} -blocks, each with probability 1/2. Thus, f(1/2) = 1, and f(x) = 0 for all $x \neq 1/2$. $\frac{1}{\left(\frac{1}{3},\frac{1}{$

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let $f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}$. Example: Checkerboard with defects.

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let $f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}$.

Example: Checkerboard with defects.

Should look like checkerboard, but with nonzero probability of inadmissible 'defective' blocks.

Jac.

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let

$$f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}$$

Example: Checkerboard with defects.

Should look like checkerboard, but with nonzero probability of inadmissible 'defective' blocks.

< 口 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ = ○ < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○

Thus, $f(1/2) \approx 1$, and f(x) = 0 for all x > 1/2.

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let

$$f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \le p(\mathbf{a}) \le \frac{m}{M} \right\}.$$

Example: Checkerboard with defects.

Should look like checkerboard, but with nonzero probability of inadmissible 'defective' blocks.

Thus, $f(1/2) \approx 1$, and f(x) = 0 for all x > 1/2. Also, $f(x) \approx 0$ for all x < 1/2, but may see f(x) > 0 for some x < 1/2, because of defects.

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let

500

$$f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}.$$

Example: \mathbb{P} -periodic subshift for some subgroup $\mathbb{P} \subset \mathbb{Z}^2$.

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let $f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}$.

Example: \mathbb{P} -periodic subshift for some subgroup $\mathbb{P} \subset \mathbb{Z}^2$. There will be exactly $q := |\mathbb{Z}^2/\mathbb{P}|$ distinct admissible \mathbb{K} -blocks, each with probability 1/q.

- ロ > - 4 目 > - 4 目 > - 4 目 > - 9 9 9 9

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let $f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}$.

Example: \mathbb{P} -periodic subshift for some subgroup $\mathbb{P} \subset \mathbb{Z}^2$. There will be exactly $q := |\mathbb{Z}^2/\mathbb{P}|$ distinct admissible \mathbb{K} -blocks, each with probability 1/q.

Thus, f(1/q) = 1, and f(x) = 0 for all $x \neq 1/q$.

Let
$$k \in \mathbb{N}$$
. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$.
Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$.
Let M be large. For all $m \in [1...M]$ let

$$f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}.$$

Example: Stationary measure with entropy $\eta \in [0, 1]$.

[Skip]

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let $f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}$.

Example: Stationary measure with entropy $\eta \in [0, 1]$. [Skip] (e.g. maximal-entropy measure on subshift with topological entropy η).

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let $f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}.$

Example: Stationary measure with entropy
$$\eta \in [0, 1]$$
. [Skip]
(e.g. maximal-entropy measure on subshift with topological entropy η).
If k is 'large' enough, then SMB Theorem says $p(\mathbf{b}) \approx 2^{-\eta k^2}$ for roughly $2^{\eta k^2}$ distinct $\mathbf{b} \in \mathcal{A}^{\mathbb{K}}$, and $p(\mathbf{a}) \approx 0$ for all other $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$.

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let $f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}$.

Example: Stationary measure with entropy $\eta \in [0, 1]$. [Skip] (e.g. maximal-entropy measure on subshift with topological entropy η). If k is 'large' enough, then SMB Theorem says $p(\mathbf{b}) \approx 2^{-\eta k^2}$ for roughly $2^{\eta k^2}$ distinct $\mathbf{b} \in \mathcal{A}^{\mathbb{K}}$, and $p(\mathbf{a}) \approx 0$ for all other $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$. $f(2^{-\eta k^2}) \approx 1$, $f(x) \approx 0$ for all $x < 2^{-\eta k^2}$, and $f(x) = 0_{\text{ff}}$ all $x \gg 2^{-\eta k^2}$.

Let
$$k \in \mathbb{N}$$
. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$.
Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$.
Let M be large. For all $m \in [1...M]$ let
 $f(m) := {m \# \left\{ 2 \in \mathcal{A}^{\mathbb{K}} : {m-1 \atop m \in [1, \dots, m]} \in \mathbf{a}(\mathbf{a}) \leq {m \atop m} \right\}}$

(日) (四) (三) (三)

€

 $\mathfrak{I}_{\mathcal{A}}$

$$f(m) := \overline{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{m}} ; \overline{M} \leq \rho(\mathbf{a}) \leq \overline{M} \right\}.$$

Example: Subshift with defects.

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let $f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}$.

Example: Subshift with defects.

Should look like stationary measure on subshift, but with nonzero probability of inadmissible 'defective' blocks.

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let $f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}$.

Example: Subshift with defects.

Should look like stationary measure on subshift, but with nonzero probability of inadmissible 'defective' blocks. Thus, $f(2^{-\eta k^2}) \approx 1$, and f(x) = 0 for all $x > 2^{-\eta k^2}$.

Let $k \in \mathbb{N}$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. If $|\mathcal{A}| = 2$, then $|\mathcal{A}^{\mathbb{K}}| = 2^{k^2}$. Each $\mathbf{a} \in \mathcal{A}^{\mathbb{K}}$ has probability $p(\mathbf{a}) \in [0, 1]$. Let M be large. For all $m \in [1...M]$ let $f(m) := \frac{m}{M} \# \left\{ \mathbf{a} \in \mathcal{A}^{\mathbb{K}} ; \frac{m-1}{M} \leq p(\mathbf{a}) \leq \frac{m}{M} \right\}$.

Example: Subshift with defects.

Should look like stationary measure on subshift, but with nonzero probability of inadmissible 'defective' blocks. Thus, $f(2^{-\eta k^2}) \approx 1$, and f(x) = 0 for all $x > 2^{-\eta k^2}$. Also, $f(x) \approx 0$ for all $x < 2^{-\eta k^2}$, but may see f(x) > 0 for some $x \in [0, 2^{-\eta k^2}]$ (because of defects). Admissible blocks Defect
Search should be conducted over the 'simplest' classes of 2-dimensional CA (analogous to ECA in one dimension). Thus, we set $\mathcal{A} = \{0, 1\}$.

Search should be conducted over the 'simplest' classes of 2-dimensional CA (analogous to ECA in one dimension). Thus, we set $\mathcal{A} = \{0, 1\}$. Four 'simple' neighbourhoods for local rule:

(ロ) (月) (三) (三) (三) (0)

Search should be conducted over the 'simplest' classes of 2-dimensional CA (analogous to ECA in one dimension). Thus, we set $\mathcal{A} = \{0, 1\}$. Four 'simple' neighbourhoods for local rule:

500

Search should be conducted over the 'simplest' classes of 2-dimensional CA (analogous to ECA in one dimension). Thus, we set $\mathcal{A} = \{0, 1\}$. Four 'simple' neighbourhoods for local rule:

• 3-Cell nhood $2^{2^3} = 2^8 = 256$ distinct local rules.

Search should be conducted over the 'simplest' classes of 2-dimensional CA (analogous to ECA in one dimension). Thus, we set $\mathcal{A} = \{0, 1\}$. Four 'simple' neighbourhoods for local rule:

• 3-Cell nhood $2^{2^3} = 2^8 = 256$ distinct local rules. Can exhaustively search entire space.

Search should be conducted over the 'simplest' classes of 2-dimensional CA (analogous to ECA in one dimension). Thus, we set $\mathcal{A} = \{0, 1\}$. Four 'simple' neighbourhoods for local rule:

• 3-Cell nhood $2^{2^3} = 2^8 = 256$ distinct local rules. Can exhaustively search entire space.

Search should be conducted over the 'simplest' classes of 2-dimensional CA (analogous to ECA in one dimension). Thus, we set $\mathcal{A} = \{0, 1\}$. Four 'simple' neighbourhoods for local rule:

- 3-Cell nhood $2^{2^3} = 2^8 = 256$ distinct local rules. Can exhaustively search entire space.
- ► Triangle $2^{2^4} = 2^{16} = 65536$ distinct local rules (32768 local rules modulo 0/1-inversion).

(- - > < 2 > < 2 > < 2 > - 2

Search should be conducted over the 'simplest' classes of 2-dimensional CA (analogous to ECA in one dimension). Thus, we set $\mathcal{A} = \{0, 1\}$. Four 'simple' neighbourhoods for local rule:

- 3-Cell nhood $2^{2^3} = 2^8 = 256$ distinct local rules. Can exhaustively search entire space.
- Triangle $2^{2^4} = 2^{16} = 65536$ distinct local rules (32768 local rules modulo 0/1-inversion). Can exhaustively search entire space.

< --> < ---> < ---> < ---> =

► von Neumann

Search should be conducted over the 'simplest' classes of 2-dimensional CA (analogous to ECA in one dimension). Thus, we set $\mathcal{A} = \{0, 1\}$. Four 'simple' neighbourhoods for local rule:

- ▶ 3-Cell nhood $2^{2^3} = 2^8 = 256$ distinct local rules. Can exhaustively search entire space.
- Triangle $2^{2^4} = 2^{16} = 65536$ distinct local rules (32768 local rules modulo 0/1-inversion). Can exhaustively search entire space.

< --> < ---> < ---> < ---> =

Search should be conducted over the 'simplest' classes of 2-dimensional CA (analogous to ECA in one dimension). Thus, we set $\mathcal{A} = \{0, 1\}$. Four 'simple' neighbourhoods for local rule:

▶ 3-Cell nhood $2^{2^3} = 2^8 = 256$ distinct local rules. Can exhaustively search entire space.

► Triangle $2^{2^4} = 2^{16} = 65536$ distinct local rules (32768 local rules modulo 0/1-inversion). Can exhaustively search entire space.

• von Neumann $2^{2^5} = 2^{32} = 4294967296$ distinct local rules.

< ロ > < 回 > < 言 > < 言 > < 言 > < ら く の へ の

Search should be conducted over the 'simplest' classes of 2-dimensional CA (analogous to ECA in one dimension). Thus, we set $\mathcal{A} = \{0, 1\}$. Four 'simple' neighbourhoods for local rule:

- ▶ 3-Cell nhood $2^{2^3} = 2^8 = 256$ distinct local rules. Can exhaustively search entire space.
- Triangle $2^{2^4} = 2^{16} = 65536$ distinct local rules (32768 local rules modulo 0/1-inversion). Can exhaustively search entire space.
- ▶ von Neumann $2^{2^5} = 2^{32} = 4294967296$ distinct local rules. Exhaustive search not feasible; instead we must randomly sample the rule space.

Search should be conducted over the 'simplest' classes of 2-dimensional CA (analogous to ECA in one dimension). Thus, we set $\mathcal{A} = \{0, 1\}$. Four 'simple' neighbourhoods for local rule:

▶ 3-Cell nhood $2^{2^3} = 2^8 = 256$ distinct local rules. Can exhaustively search entire space.

• Triangle $2^{2^4} = 2^{16} = 65536$ distinct local rules (32768 local rules modulo 0/1-inversion). Can exhaustively search entire space.

▶ von Neumann $2^{2^5} = 2^{32} = 4294967296$ distinct local rules. Exhaustive search not feasible; instead we must randomly sample the rule space.

• Moore
$$2^{2^9} = 2^{512} \approx 10^{154}$$
 distinct local rules.

Search should be conducted over the 'simplest' classes of 2-dimensional CA (analogous to ECA in one dimension). Thus, we set $\mathcal{A} = \{0, 1\}$. Four 'simple' neighbourhoods for local rule:

- ▶ 3-Cell nhood $2^{2^3} = 2^8 = 256$ distinct local rules. Can exhaustively search entire space.
- Triangle $2^{2^4} = 2^{16} = 65536$ distinct local rules (32768 local rules modulo 0/1-inversion). Can exhaustively search entire space.

▶ von Neumann $2^{2^5} = 2^{32} = 4294967296$ distinct local rules. Exhaustive search not feasible; instead we must randomly sample the rule space.

- ロ > - 4 目 > - 4 目 > - 4 目 > - 9 9 9 9

• Moore $2^{2^9} = 2^{512} \approx 10^{154}$ distinct local rules. Exhaustive search not feasible; must randomly sample the space.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

SQ C

Each x value represents a log probability between $2^0 = 1$ and 2^{-18} . Each y value represents one of the 256 distinct '3-cell nhood' CA.

Let $\mathbb{K} = \{0, 1, 2\}^2$, and let p_y be the empirical probability distribution on $\Phi_v^{100}(\mathbf{a})$, where $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ is random initial condition.

- Let $\mathbb{K} = \{0, 1, 2\}^2$, and let p_y be the empirical probability distribution on $\Phi_y^{100}(\mathbf{a})$, where $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ is random initial condition.
- The height at (x, y) is $2^x \cdot \# \{ \mathbf{c} \in \mathcal{A}^{\mathbb{K}} ; p_y(\mathbf{c}) \approx 2^x \}.$

Each y value represents one of the 256 distinct '3-cell nhood' CA. Let $\mathbb{K} = \{0, 1, 2\}^2$, and let p_y be the empirical probability distribution on $\Phi_y^{100}(\mathbf{a})$, where $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ is random initial condition. The height at (x, y) is $2^x \cdot \#\{\mathbf{c} \in \mathcal{A}^{\mathbb{K}} ; p_y(\mathbf{c}) \approx 2^x\}$. The ridge at the far end is caused by CA which preserve the uniform measure.

Let $\mathbb{K} = \{0, 1, 2\}^2$, and let p_y be the empirical probability distribution on $\Phi_v^{100}(\mathbf{a})$, where $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ is random initial condition.

The height at (x, y) is $2^x \cdot \# \{ \mathbf{c} \in \mathcal{A}^{\mathbb{K}} ; p_y(\mathbf{c}) \approx 2^x \}.$

The ridge at the far end is caused by CA which preserve the uniform measure. The red and purple ridges in the right-hand corner are caused by CA which converge to small, periodic background patterns with EDD.

SQ C

The ridge at the far end is caused by CA which preserve the uniform measure. The red and purple ridges in the right-hand corner are caused by CA which converge to small, periodic background patterns with EDD. The red spike in right corner is caused by 'nilpotent' CA (where all initial conditions converge to the all-zero or all-one configurations).

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

The red ridge (over $x = 2^{-9}$) is caused by CA which preserve the uniform measure.

There are about 40 of these.

In this 'mountain range' region, the CA do not converge quickly to any low-entropy subshift; there is no indication of EDD.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

5940

The low ridges are caused by CA which begin to show the statistical signature of EDD.

シック 叫 (山) (山) (山) (山) (山) (山)

The red 'wall' in the right corner is caused by *nilpotent* CA, which converge to a constant (all-zeros or all-ones) configuration. There are 46 of these.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

The red 'wall' in the right corner is caused by *nilpotent* CA, which converge to a constant (all-zeros or all-ones) configuration.

There are 46 of these.

The purple massif next to the red wall is caused by CA whose background pattern has 2 elements (e.g. checkerboard, stripes).

There are 14 with stripes and 8 with checkerboard.

There are 46 of these.

The purple massif next to the red wall is caused by CA whose background pattern has 2 elements (e.g. checkerboard, stripes).

There are 14 with stripes and 8 with checkerboard.

The red ridge is caused by CA which have regular background pattern(s) with 3-16 elements. There are at least 30 of these.

< A >

The purple massif next to the red wall is caused by CA whose background pattern has 2 elements (e.g. checkerboard, stripes).

There are 14 with stripes and 8 with checkerboard.

The red ridge is caused by CA which have regular background pattern(s) with 3-16 elements. There are at least 30 of these.

The low blue mounds further left are caused by the low-probability defects.

The probability landscape of Triangle CA

Now, each y value represents one of the 32768 distinct 'triangle' CA. The picture is very similar to the landscape for 3-cell CA.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Triangle CA landscape; Closeup 0-8191

SQ C

The red ridge is caused by CA which preserve the uniform measure. There are about 3000 of these.

Triangle CA landscape; Closeup 0-8191

The red ridge is caused by CA which preserve the uniform measure. There are about 3000 of these.

The red ridge gradually flattens out into CA which 'almost' (but not quite) preserve the uniform measure.

SQ C

Triangle CA landscape; Closeup 8192-16383

This 'mountain range' is caused by CA do not converge quickly to any low-entropy subshift; they exhibit no strong statistical signature of EDD.

Triangle CA landscape; Closeup 16384-24575

The mountain range continues into the third region.

Note: the picture suggests that 3×3 blocks occur with a wide range of frequencies, but this is probably an artifact of small sample size. Each CA was simulated on a 512×512 grid, so there are only $512^2 = 262\,144$ samples per CA, which is insufficient to accurately estimate a probability distribution on the $2^9 = 512$ distinct 3×3 blocks.

Triangle CA landscape; Closeup 24576-32768

SQ (P

The red 'wall' in the right-hand corner is caused by nilpotent CA. There are around 3700 of these.

Triangle CA landscape; Closeup 24576-32768

The red 'wall' in the right-hand corner is caused by nilpotent CA. There are around 3700 of these.

The red and purple 'teeth' near the red wall are caused by CA with EDD. The far right row of (red) teeth is caused by CA whose background pattern has cardinality 2. (1126 with stripes and 563 with checkerboard).
Triangle CA landscape; Closeup 24576-32768

The red and purple 'teeth' near the red wall are caused by CA with EDD. The far right row of (red) teeth is caused by CA whose background pattern has cardinality 2. (1126 with stripes and 563 with checkerboard). The next row of (purple) teeth are cause by CA whose background pattern has cardinality 3-8. (There are around 300 of these).

Triangle CA landscape; Closeup 24576-32768

The far right row of (red) teeth is caused by CA whose background pattern has cardinality 2. (1126 with stripes and 563 with checkerboard). The next row of (purple) teeth are cause by CA whose background pattern has cardinality 3-8. (There are around 300 of these). The low blue mounds further left are caused by the low-probability defects.

[Skip]

SQ (P

• •

There are 4 294 967 296 distinct VN CA local rules.

[Skip]

SQ C

There are 4 294 967 296 distinct VN CA local rules. This graph was obtained by randomly sampling 30000 of them.

[Skip]

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

There are 4 294 967 296 distinct VN CA local rules. This graph was obtained by randomly sampling 30000 of them. Now, each y value represents one of these 30000 random VN CA.

[Skip]

There are 4 294 967 296 distinct VN CA local rules. This graph was obtained by randomly sampling 30000 of them. Now, each *y* value represents one of these 30000 random VN CA. The picture is similar to the landscape for 3-cell and triangle CA, but the proportion of CA with EDD is much smaller.

von Neumann CA landscape; Closeup 0-7500

The red ridge is caused by VN CA which preserve uniform measure.

ロ > < 目 > < 三 > < 三 > < 三 > く 回 > < 回 > く 回 > < 回 > く 回 > < 回 > く の へ の

von Neumann CA landscape; Closeup 7500-15000

The red ridge (caused by CA which almost preserve uniform measure) continues into this frame.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

von Neumann CA landscape; Closeup 15000-22500

This 'mountain range' is caused by CA which don't rapidly converge to any low-entropy subshift; they exhibit no strong statistical signature of EDD.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

von Neumann CA landscape; Closeup 22500-30000

The red spike in the right-hand corner is caused by nilpotent CA. The purple teeth next to the red spike are caused by CA exhibiting EDD.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

The probability landscape of Moore CA

Of the more than 25000 Moore CA we tested, *none* exhibited a strong statistical signature of EDD.

Indeed, it appears that the vast majority 'almost-preserve' the uniform measure.

Percentage of CA presenting EDD signature

One puzzling phenomenon is that the proportion of CA exhibiting EDD declines very sharply as the neighbourhood size increases.

< n

SQ C

Percentage of CA presenting EDD signature

One puzzling phenomenon is that the proportion of CA exhibiting EDD declines very sharply as the neighbourhood size increases.

Almost 50% of CA with the 3-cell neighbourhood CA exhibit EDD, as do a comparable proportion of CA with the Triangle (4 cell) neighbourhood.

Percentage of CA presenting EDD signature

One puzzling phenomenon is that the proportion of CA exhibiting EDD declines very sharply as the neighbourhood size increases.

Almost 50% of CA with the 3-cell neighbourhood CA exhibit EDD, as do a comparable proportion of CA with the Triangle (4 cell) neighbourhood. However, only 30% of CA with von Neumann (5 cell) neighbourhood show a statistical signature for EDD.

Percentage of CA presenting EDD signature

Almost 50% of CA with the 3-cell neighbourhood CA exhibit EDD, as do a comparable proportion of CA with the Triangle (4 cell) neighbourhood. However, only 30% of CA with von Neumann (5 cell) neighbourhood show a statistical signature for EDD.

CA with larger neighbourhoods have even less. The proportion of EDD in CA with the Moore neighbourhood (9 cells) is virtually zero.

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$.

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let p be the empirical probability distribution on $\mathcal{A}^{\mathbb{K}}$ obtained from \mathbf{b} .

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let p be the empirical probability distribution on $\mathcal{A}^{\mathbb{K}}$ obtained from \mathbf{b} . For all $z \in \mathbb{Z}^2$, let $g_z := p(\mathbf{b}_{z+\mathbb{K}})$. This yields a configuration $\mathbf{g} \in [0, 1]^{\mathbb{Z}^2}$.

(□) < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let p be the empirical probability distribution on $\mathcal{A}^{\mathbb{K}}$ obtained from \mathbf{b} . For all $z \in \mathbb{Z}^2$, let $g_z := p(\mathbf{b}_{z+\mathbb{K}})$. This yields a configuration $\mathbf{g} \in [0,1]^{\mathbb{Z}^2}$. Visualize \mathbf{g} as a 'greyscale' pixel-map image.

(□) < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let p be the empirical probability distribution on $\mathcal{A}^{\mathbb{K}}$ obtained from \mathbf{b} . For all $z \in \mathbb{Z}^2$, let $g_z := p(\mathbf{b}_{z+\mathbb{K}})$. This yields a configuration $\mathbf{g} \in [0,1]^{\mathbb{Z}^2}$. Visualize \mathbf{g} as a 'greyscale' pixel-map image.

▶ Regular domains will appear as *light grey* (high probability) areas.

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let p be the empirical probability distribution on $\mathcal{A}^{\mathbb{K}}$ obtained from \mathbf{b} . For all $z \in \mathbb{Z}^2$, let $g_z := p(\mathbf{b}_{z+\mathbb{K}})$. This yields a configuration $\mathbf{g} \in [0,1]^{\mathbb{Z}^2}$. Visualize \mathbf{g} as a 'greyscale' pixel-map image.

▶ Regular domains will appear as *light grey* (high probability) areas.

(D) (D) (2) (

500

► Defects will appear as *dark grey* (low probability) regions.

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let p be the empirical probability distribution on $\mathcal{A}^{\mathbb{K}}$ obtained from \mathbf{b} . For all $z \in \mathbb{Z}^2$, let $g_z := p(\mathbf{b}_{z+\mathbb{K}})$. This yields a configuration $\mathbf{g} \in [0,1]^{\mathbb{Z}^2}$. Visualize \mathbf{g} as a 'greyscale' pixel-map image.

- ▶ Regular domains will appear as *light grey* (high probability) areas.
- Defects will appear as *dark grey* (low probability) regions.
- > Thus, domain boundaries will be dark contours around light regions.

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let p be the empirical probability distribution on $\mathcal{A}^{\mathbb{K}}$ obtained from \mathbf{b} . For all $z \in \mathbb{Z}^2$, let $g_z := p(\mathbf{b}_{z+\mathbb{K}})$. This yields a configuration $\mathbf{g} \in [0,1]^{\mathbb{Z}^2}$. Visualize \mathbf{g} as a 'greyscale' pixel-map image.

- ▶ Regular domains will appear as *light grey* (high probability) areas.
- ► Defects will appear as *dark grey* (low probability) regions.
- > Thus, domain boundaries will be dark contours around light regions.

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let p be the empirical probability distribution on $\mathcal{A}^{\mathbb{K}}$ obtained from \mathbf{b} . For all $z \in \mathbb{Z}^2$, let $g_z := p(\mathbf{b}_{z+\mathbb{K}})$. This yields a configuration $\mathbf{g} \in [0, 1]^{\mathbb{Z}^2}$. Visualize \mathbf{g} as a 'greyscale' pixel-map image.

- ▶ Regular domains will appear as *light grey* (high probability) areas.
- Defects will appear as *dark grey* (low probability) regions.
- > Thus, domain boundaries will be dark contours around light regions.

Filtered image (g)

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let p be the empirical probability distribution on $\mathcal{A}^{\mathbb{K}}$ obtained from \mathbf{b} . For all $z \in \mathbb{Z}^2$, let $g_z := p(\mathbf{b}_{z+\mathbb{K}})$. This yields a configuration $\mathbf{g} \in [0,1]^{\mathbb{Z}^2}$. Visualize \mathbf{g} as a 'greyscale' pixel-map image.

- ▶ Regular domains will appear as *light grey* (high probability) areas.
- ► Defects will appear as *dark grey* (low probability) regions.
- > Thus, domain boundaries will be dark contours around light regions.

Let Φ be a CA, let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let p be the empirical probability distribution on $\mathcal{A}^{\mathbb{K}}$ obtained from \mathbf{b} . For all $z \in \mathbb{Z}^2$, let $g_z := p(\mathbf{b}_{z+\mathbb{K}})$. This yields a configuration $\mathbf{g} \in [0,1]^{\mathbb{Z}^2}$. Visualize \mathbf{g} as a 'greyscale' pixel-map image.

- ▶ Regular domains will appear as *light grey* (high probability) areas.
- Defects will appear as *dark grey* (low probability) regions.
- > Thus, domain boundaries will be dark contours around light regions.

Let Φ be a CA. Let $a\in \mathcal{A}^{\mathbb{Z}^2}$ be an initial configuration, and let $b:=\Phi^{100}(a).$

< ロ > < 回 > < 言 > < 言 > 三 の < で

Let Φ be a CA. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ be an initial configuration, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{U} \subset \mathbb{Z}^2$ be a connected regular domain in \mathbf{b} (e.g. as seen using probabilistically filtered image).

Jac.

Let Φ be a CA. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ be an initial configuration, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{U} \subset \mathbb{Z}^2$ be a connected regular domain in \mathbf{b} (e.g. as seen using probabilistically filtered image). Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$.

SQ C

Let Φ be a CA. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ be an initial configuration, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{U} \subset \mathbb{Z}^2$ be a connected regular domain in \mathbf{b} (e.g. as seen using probabilistically filtered image).

Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let $\mathbb{U}' := \mathbb{U} \setminus (\mathbb{U}^{\complement} - \mathbb{K})$ be the ' \mathbb{K} -interior' of \mathbb{U} .

Let Φ be a CA. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ be an initial configuration, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{U} \subset \mathbb{Z}^2$ be a connected regular domain in \mathbf{b} (e.g. as seen using probabilistically filtered image).

Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let $\mathbb{U}' := \mathbb{U} \setminus (\mathbb{U}^{\complement} - \mathbb{K})$ be the ' \mathbb{K} -interior' of \mathbb{U} . Let $\mathbf{S} := \{u - v ; u, v \in \mathbb{U}', \mathbf{b}_{u+\mathbb{K}} = \mathbf{b}_{v+\mathbb{K}}\}.$

Let Φ be a CA. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ be an initial configuration, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{U} \subset \mathbb{Z}^2$ be a connected regular domain in \mathbf{b} (e.g. as seen using probabilistically filtered image).

Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let $\mathbb{U}' := \mathbb{U} \setminus (\mathbb{U}^{\complement} - \mathbb{K})$ be the ' \mathbb{K} -interior' of \mathbb{U} . Let $\mathbb{S} := \{u - v \ ; \ u, v \in \mathbb{U}', \ \mathbf{b}_{u + \mathbb{K}} = \mathbf{b}_{v + \mathbb{K}}\}$. If $\mathbb{P} \subset \mathbb{Z}^2$ is subgroup, then

$$\left(\mathbb{U} \text{ has } \mathbb{P} \text{-periodic pattern}\right) \iff \left(\mathbb{S} = \left(\mathbb{U}' - \mathbb{U}'\right) \cap \mathbb{P}\right).$$

Let Φ be a CA. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ be an initial configuration, and let $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{U} \subset \mathbb{Z}^2$ be a connected regular domain in \mathbf{b} (e.g. as seen using probabilistically filtered image).

Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let $\mathbb{U}' := \mathbb{U} \setminus (\mathbb{U}^{\complement} - \mathbb{K})$ be the ' \mathbb{K} -interior' of \mathbb{U} . Let $\mathbb{S} := \{u - v \ ; \ u, v \in \mathbb{U}', \ \mathbf{b}_{u + \mathbb{K}} = \mathbf{b}_{v + \mathbb{K}}\}$. If $\mathbb{P} \subset \mathbb{Z}^2$ is subgroup, then

$$\left(\mathbb{U} \text{ has } \mathbb{P}\text{-periodic pattern}\right) \iff \left(\mathbb{S} = \left(\mathbb{U}' - \mathbb{U}'\right) \cap \mathbb{P}\right).$$

(The search for this *periodicity group* \mathbb{P} can be automated.)

The distribution of periodic structures: 3-Cell CA

500

The empirical frequency of periodic patterns in 3-cell CA.

The distribution of periodic structures: 3-Cell CA

The empirical frequency of periodic patterns in 3-cell CA. The height of box (i,j) is the number of 3-cell CA whose EDD has an (i,j)-periodic regular domain.

The distribution of periodic structures: Triangle CA

5940

The empirical frequency of periodic patterns in triangle CA.
The distribution of periodic structures: Triangle CA

The empirical frequency of periodic patterns in triangle CA. The height of box (i, j) is the logarithm of the number of \triangle CA whose EDD has an (i, j)-periodic regular domain.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

The distribution of periodic structures: Triangle CA

The empirical frequency of periodic patterns in triangle CA. The height of box (i, j) is the logarithm of the number of \triangle CA whose EDD has an (i, j)-periodic regular domain.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Note: graph is not symmetric; e.g. $height(0,3) \neq height(3,0)$.

The distribution of periodic structures: Triangle CA

The empirical frequency of periodic patterns in triangle CA. The height of box (i,j) is the logarithm of the number of \triangle CA whose EDD has an (i,j)-periodic regular domain.

Note: graph is not symmetric; e.g. height $(0,3) \neq$ height(3,0). This is because the triangle neighbourhood is not rotationally symmetric.

 $\mathcal{O} \mathcal{O} \mathcal{O}$

The distribution of periodic structures: von Neumann CA

The empirical frequency of periodic patterns in von Neumann CA.

The distribution of periodic structures: von Neumann CA

The empirical frequency of periodic patterns in von Neumann CA. The height of box (i, j) is the log of the number of vN CA whose EDD has an (i, j)-periodic regular domain.

Let Φ be a CA. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ and $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$.

Let Φ be a CA. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ and $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let $\mathbb{U} \subset \mathbb{Z}^2$ be a connected domain in \mathbf{b} , with periodicity group $\mathbb{P} \subset \mathbb{Z}^2$.

Let Φ be a CA. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ and $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let $\mathbb{U} \subset \mathbb{Z}^2$ be a connected domain in \mathbf{b} , with periodicity group $\mathbb{P} \subset \mathbb{Z}^2$. Let $\mathbb{D} \subset \mathbb{Z}^2$ be a *fundamental domain* for \mathbb{P} .

500

(i.e. \mathbb{D} has exactly one representative of every coset in \mathbb{Z}^2/\mathbb{P}).

Let Φ be a CA. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ and $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let $\mathbb{U} \subset \mathbb{Z}^2$ be a connected domain in \mathbf{b} , with periodicity group $\mathbb{P} \subset \mathbb{Z}^2$. Let $\mathbb{D} \subset \mathbb{Z}^2$ be a *fundamental domain* for \mathbb{P} . (i.e. \mathbb{D} has exactly one representative of every coset in \mathbb{Z}^2/\mathbb{P}).

500

If $|\mathbb{D}| = P$, then $\mathbf{b}_{\mathbb{U}}$ has P distinct \mathbb{D} -blocks; say $\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_P\}$.

Let Φ be a CA. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ and $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let $\mathbb{U} \subset \mathbb{Z}^2$ be a connected domain in \mathbf{b} , with periodicity group $\mathbb{P} \subset \mathbb{Z}^2$. Let $\mathbb{D} \subset \mathbb{Z}^2$ be a *fundamental domain* for \mathbb{P} . (i.e. \mathbb{D} has exactly one representative of every coset in \mathbb{Z}^2/\mathbb{P}). If $|\mathbb{D}| = P$, then $\mathbf{b}_{\mathbb{U}}$ has P distinct \mathbb{D} -blocks; say $\{\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_P\}$. These are the admissible \mathbb{D} -blocks of the subshift which tiles \mathbb{U} .

Let Φ be a CA. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ and $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let $\mathbb{U} \subset \mathbb{Z}^2$ be a connected domain in \mathbf{b} , with periodicity group $\mathbb{P} \subset \mathbb{Z}^2$. Let $\mathbb{D} \subset \mathbb{Z}^2$ be a *fundamental domain* for \mathbb{P} . (i.e. \mathbb{D} has exactly one representative of every coset in \mathbb{Z}^2/\mathbb{P}). If $|\mathbb{D}| = P$, then $\mathbf{b}_{\mathbb{U}}$ has P distinct \mathbb{D} -blocks; say $\{\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_P\}$. These are the admissible \mathbb{D} -blocks of the subshift which tiles \mathbb{U} . Suppose $\mathbb{U}' \subset \mathbb{Z}^2$ is another connected domain in \mathbf{b} with periodicity group \mathbb{P}' and tiling set $\{\mathbf{c}'_1, \mathbf{c}'_2, \ldots, \mathbf{c}'_{P'}\}$.

- ロ > - 4 目 > - 4 目 > - 4 目 > - 9 9 9 9

Let Φ be a CA. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ and $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let $\mathbb{U} \subset \mathbb{Z}^2$ be a connected domain in \mathbf{b} , with periodicity group $\mathbb{P} \subset \mathbb{Z}^2$. Let $\mathbb{D} \subset \mathbb{Z}^2$ be a *fundamental domain* for \mathbb{P} . (i.e. \mathbb{D} has exactly one representative of every coset in \mathbb{Z}^2/\mathbb{P}). If $|\mathbb{D}| = P$, then $\mathbf{b}_{\mathbb{U}}$ has P distinct \mathbb{D} -blocks; say $\{\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_P\}$. These are the admissible \mathbb{D} -blocks of the subshift which tiles \mathbb{U} . Suppose $\mathbb{U}' \subset \mathbb{Z}^2$ is another connected domain in \mathbf{b} with periodicity group \mathbb{P}' and tiling set $\{\mathbf{c}'_1, \mathbf{c}'_2, \ldots, \mathbf{c}'_{P'}\}$. If $\mathbb{P} \neq \mathbb{P}'$, or if $\{\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_P\} \neq$ $\{\mathbf{c}'_1, \mathbf{c}'_2, \ldots, \mathbf{c}'_{P'}\}$, then domain boundary between \mathbb{U} and \mathbb{U}' is an *interface*.

< ロ > < 団 > < 言 > < 言 > う < で

Let Φ be a CA. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ and $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let $\mathbb{U} \subset \mathbb{Z}^2$ be a connected domain in **b**, with periodicity group $\mathbb{P} \subset \mathbb{Z}^2$. Let $\mathbb{D} \subset \mathbb{Z}^2$ be a *fundamental domain* for \mathbb{P} . (i.e. \mathbb{D} has exactly one representative of every coset in \mathbb{Z}^2/\mathbb{P}). If $|\mathbb{D}| = P$, then $\mathbf{b}_{\mathbb{U}}$ has P distinct \mathbb{D} -blocks; say $\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_P\}$. These are the admissible \mathbb{D} -blocks of the subshift which tiles \mathbb{U} . Suppose $\mathbb{U}' \subset \mathbb{Z}^2$ is another connected domain in **b** with periodicity group \mathbb{P}' and tiling set $\{\mathbf{c}'_1, \mathbf{c}'_2, \dots, \mathbf{c}'_{P'}\}$. If $\mathbb{P} \neq \mathbb{P}'$, or if $\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_P\} \neq \mathbb{P}'$ $\{\mathbf{c}'_1, \mathbf{c}'_2, \dots, \mathbf{c}'_{P'}\}$, then domain boundary between \mathbb{U} and \mathbb{U}' is an *interface*. We can visualize this by colouring each domain according to its tiling set.

Let Φ be a CA. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ and $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let $\mathbb{U} \subset \mathbb{Z}^2$ be a connected domain in **b**, with periodicity group $\mathbb{P} \subset \mathbb{Z}^2$. Let $\mathbb{D} \subset \mathbb{Z}^2$ be a *fundamental domain* for \mathbb{P} . (i.e. \mathbb{D} has exactly one representative of every coset in \mathbb{Z}^2/\mathbb{P}). If $|\mathbb{D}| = P$, then **b**_U has P distinct \mathbb{D} -blocks; say {**c**₁, **c**₂,..., **c**_P}. These are the admissible \mathbb{D} -blocks of the subshift which tiles \mathbb{U} . Suppose $\mathbb{U}' \subset \mathbb{Z}^2$ is another connected domain in **b** with periodicity group \mathbb{P}' and tiling set $\{\mathbf{c}'_1, \mathbf{c}'_2, \dots, \mathbf{c}'_{P'}\}$. If $\mathbb{P} \neq \mathbb{P}'$, or if $\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_P\} \neq \mathbb{P}'$ $\{\mathbf{c}'_1, \mathbf{c}'_2, \dots, \mathbf{c}'_{P'}\}$, then domain boundary between \mathbb{U} and \mathbb{U}' is an *interface*. We can visualize this by colouring each domain according to its tiling set. Suppose $\mathbb{P} = \mathbb{P}'$ and $\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_P\} = \{\mathbf{c}'_1, \mathbf{c}'_2, \dots, \mathbf{c}'_{P'}\}.$

< ロ > < 団 > < 言 > < 言 > く 言 > く 言 > シ へ ゆ

Let Φ be a CA. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ and $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let $\mathbb{U} \subset \mathbb{Z}^2$ be a connected domain in **b**, with periodicity group $\mathbb{P} \subset \mathbb{Z}^2$. Let $\mathbb{D} \subset \mathbb{Z}^2$ be a *fundamental domain* for \mathbb{P} . (i.e. \mathbb{D} has exactly one representative of every coset in \mathbb{Z}^2/\mathbb{P}). If $|\mathbb{D}| = P$, then **b**_U has P distinct \mathbb{D} -blocks; say {**c**₁, **c**₂,..., **c**_P}. These are the admissible \mathbb{D} -blocks of the subshift which tiles \mathbb{U} . Suppose $\mathbb{U}' \subset \mathbb{Z}^2$ is another connected domain in **b** with periodicity group \mathbb{P}' and tiling set $\{\mathbf{c}'_1, \mathbf{c}'_2, \dots, \mathbf{c}'_{P'}\}$. If $\mathbb{P} \neq \mathbb{P}'$, or if $\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_P\} \neq \mathbb{P}'$ $\{\mathbf{c}'_1, \mathbf{c}'_2, \dots, \mathbf{c}'_{P'}\}$, then domain boundary between \mathbb{U} and \mathbb{U}' is an *interface*. We can visualize this by colouring each domain according to its tiling set. Suppose $\mathbb{P} = \mathbb{P}'$ and $\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_P\} = \{\mathbf{c}'_1, \mathbf{c}'_2, \dots, \mathbf{c}'_{P'}\}.$ The domain boundary between \mathbb{U} and \mathbb{U}' is a *dislocation* if the positions of \mathbf{c}_1 in \mathbb{U} are 'out of phase' with the positions of \mathbf{c}_1 in \mathbb{U}' :

$$\left\{ \mathsf{u}-\mathsf{u}' \text{ ; } \mathsf{u} \in \mathbb{U}, \ \mathsf{u}' \in \mathbb{U}', \ \boldsymbol{b}_{\mathsf{u}+\mathbb{D}} = \boldsymbol{c}_1 = \boldsymbol{b}_{\mathsf{v}+\mathbb{D}} \right\} \quad \not\subset \quad \mathbb{P}.$$

< ロ > < 団 > < 言 > < 言 > く 言 > く 言 > シ へ ゆ

Let Φ be a CA. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ and $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let $\mathbb{U} \subset \mathbb{Z}^2$ be a connected domain in **b**, with periodicity group $\mathbb{P} \subset \mathbb{Z}^2$. Let $\mathbb{D} \subset \mathbb{Z}^2$ be a *fundamental domain* for \mathbb{P} . (i.e. \mathbb{D} has exactly one representative of every coset in \mathbb{Z}^2/\mathbb{P}). If $|\mathbb{D}| = P$, then **b**_U has P distinct \mathbb{D} -blocks; say {**c**₁, **c**₂,..., **c**_P}. These are the admissible \mathbb{D} -blocks of the subshift which tiles \mathbb{U} . Suppose $\mathbb{U}' \subset \mathbb{Z}^2$ is another connected domain in **b** with periodicity group \mathbb{P}' and tiling set $\{\mathbf{c}'_1, \mathbf{c}'_2, \dots, \mathbf{c}'_{P'}\}$. If $\mathbb{P} \neq \mathbb{P}'$, or if $\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_P\} \neq \mathbb{P}'$ $\{\mathbf{c}'_1, \mathbf{c}'_2, \dots, \mathbf{c}'_{P'}\}$, then domain boundary between \mathbb{U} and \mathbb{U}' is an *interface*. We can visualize this by colouring each domain according to its tiling set. Suppose $\mathbb{P} = \mathbb{P}'$ and $\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_P\} = \{\mathbf{c}'_1, \mathbf{c}'_2, \dots, \mathbf{c}'_{P'}\}.$ The domain boundary between \mathbb{U} and \mathbb{U}' is a *dislocation* if the positions of \mathbf{c}_1 in \mathbb{U} are 'out of phase' with the positions of \mathbf{c}_1 in \mathbb{U}' :

$$\left\{u-u' \text{ ; } u \in \mathbb{U}, \ u' \in \mathbb{U}', \ \boldsymbol{b}_{u+\mathbb{D}} = \boldsymbol{c}_1 = \boldsymbol{b}_{v+\mathbb{D}} \right\} \quad \not\subset \quad \mathbb{P}.$$

We can visualize this by colouring each domain according to its phase.

Let Φ be a CA. Let $\mathbf{a} \in \mathcal{A}^{\mathbb{Z}^2}$ and $\mathbf{b} := \Phi^{100}(\mathbf{a})$. Let $\mathbb{K} := [0...k)^2 \subset \mathbb{Z}^2$. Let $\mathbb{U} \subset \mathbb{Z}^2$ be a connected domain in **b**, with periodicity group $\mathbb{P} \subset \mathbb{Z}^2$. Let $\mathbb{D} \subset \mathbb{Z}^2$ be a *fundamental domain* for \mathbb{P} . (i.e. \mathbb{D} has exactly one representative of every coset in \mathbb{Z}^2/\mathbb{P}). If $|\mathbb{D}| = P$, then **b**_U has P distinct \mathbb{D} -blocks; say {**c**₁, **c**₂,..., **c**_P}. These are the admissible \mathbb{D} -blocks of the subshift which tiles \mathbb{U} . Suppose $\mathbb{U}' \subset \mathbb{Z}^2$ is another connected domain in **b** with periodicity group \mathbb{P}' and tiling set $\{\mathbf{c}'_1, \mathbf{c}'_2, \dots, \mathbf{c}'_{P'}\}$. If $\mathbb{P} \neq \mathbb{P}'$, or if $\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_P\} \neq \mathbb{P}'$ $\{\mathbf{c}'_1, \mathbf{c}'_2, \dots, \mathbf{c}'_{P'}\}$, then domain boundary between \mathbb{U} and \mathbb{U}' is an *interface*. We can visualize this by colouring each domain according to its tiling set. Suppose $\mathbb{P} = \mathbb{P}'$ and $\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_P\} = \{\mathbf{c}'_1, \mathbf{c}'_2, \dots, \mathbf{c}'_{P'}\}.$ The domain boundary between \mathbb{U} and \mathbb{U}' is a *dislocation* if the positions of \mathbf{c}_1 in \mathbb{U} are 'out of phase' with the positions of \mathbf{c}_1 in \mathbb{U}' :

$$\left\{u-u' \text{ ; } u\in \mathbb{U}, \ u'\in \mathbb{U}', \ \boldsymbol{b}_{u+\mathbb{D}}=\boldsymbol{c}_1=\boldsymbol{b}_{v+\mathbb{D}}\right\} \quad \not\subset \quad \mathbb{P}.$$

We can visualize this by colouring each domain according to its phase. By thus colourizing an entire spacetime animation, we can see domain growth and defect motion over time.

The frequency of interfaces: 3-Cell CA

For each $n \in \mathbb{N}$, this graph shows the number of the 256 distinct 3-Cell CA whose emergent defect dynamics exhibits at least n distinct periodic subshifts (and hence, n(n-1)/2 possible interface types).

SQ C

The frequency of interfaces: Triangle CA

For each $n \in \mathbb{N}$, this graph shows the log-number of the 32768 distinct Triangle CA whose emergent defect dynamics exhibits at least *n* distinct periodic subshifts (and hence, n(n-1)/2 possible interface types).

The frequency of interfaces: vN CA

For each $n \in \mathbb{N}$, this graph shows the log-number out of a random sample of 3276 vN CA whose emergent defect dynamics exhibits at least *n* distinct periodic subshifts (and hence, n(n-1)/2 possible interface types).

Consider a boundary between two regular domains.

How can we mathematically model the motion of this boundary?

[Skip]

< ロ > < 同 > < 三 > < 三

990

Jac.

 $\mathbf{r}_{1} = -1/2.$ $\mathbf{r}_{2} = -1/4.$ $\mathbf{r}_{3} = 0.$

Consider a boundary between two regular domains.

How can we mathematically model the motion of this boundary?

1. Construct polygon along boundary, using line segments L_1, L_2, \ldots, L_N with rational slopes r_1, \ldots, r_N .

nac

Consider a boundary between two regular domains. How can we mathematically model the motion of this boundary? 1. Construct polygon along boundary, using line segments L_1, L_2, \ldots, L_N with rational slopes r_1, \ldots, r_N . (This polygon might not be unique)

 $\mathbf{K}_1 = \{\}$

Consider a boundary between two regular domains. How can we mathematically model the motion of this boundary? 1. Construct polygon along boundary, using line segments $\mathbf{L}_1, \mathbf{L}_2, \ldots, \mathbf{L}_N$ with rational slopes r_1, \ldots, r_N . (This polygon might not be unique) 2. For all n, let $\mathbb{K}_n \subset \mathbb{Z}^2$ be a minimal subset such that the defect along \mathbf{L}_n can be tiled with ℓ_n disjoint translates of \mathbb{K}_n along \mathbf{L}_n .

(ㅁ) (큔) (흔) (흔)

nac

[Skip]

Consider a boundary between two regular domains. How can we mathematically model the motion of this boundary? 1. Construct polygon along boundary, using line segments $\mathbf{L}_1, \mathbf{L}_2, \ldots, \mathbf{L}_N$ with rational slopes r_1, \ldots, r_N . (This polygon might not be unique) 2. For all n, let $\mathbb{K}_n \subset \mathbb{Z}^2$ be a minimal subset such that the defect along \mathbf{L}_n can be tiled with ℓ_n disjoint translates of \mathbb{K}_n along \mathbf{L}_n . (\mathbb{K}_n may not be unique. Also, if \mathbb{L}_n -boundary has '0 width', then $\mathbb{K}_n = \emptyset$.)

[Skip]

Consider a boundary between two regular domains.

How can we mathematically model the motion of this boundary? 1. Construct polygon along boundary, using line segments $\mathbf{L}_1, \mathbf{L}_2, \ldots, \mathbf{L}_N$ with rational slopes r_1, \ldots, r_N . (This polygon might not be unique) 2. For all n, let $\mathbb{K}_n \subset \mathbb{Z}^2$ be a minimal subset such that the defect along \mathbf{L}_n can be tiled with ℓ_n disjoint translates of \mathbb{K}_n along \mathbf{L}_n . (\mathbb{K}_n may not be unique. Also, if \mathbb{L}_n -boundary has '0 width', then $\mathbb{K}_n = \emptyset$.) 3. For all n, let $\mathcal{B}_n := \mathcal{A}^{\mathbb{K}_n}$. Represent defect along \mathbf{L}_n with element of $\mathcal{B}_n^{\ell_n}$.

[Skip]

Consider a boundary between two regular domains.

How can we mathematically model the motion of this boundary? 1. Construct polygon along boundary, using line segments $\mathbf{L}_1, \mathbf{L}_2, \ldots, \mathbf{L}_N$ with rational slopes r_1, \ldots, r_N . (This polygon might not be unique) 2. For all n, let $\mathbb{K}_n \subset \mathbb{Z}^2$ be a minimal subset such that the defect along \mathbf{L}_n can be tiled with ℓ_n disjoint translates of \mathbb{K}_n along \mathbf{L}_n . (\mathbb{W} may not be unique. Also, if \mathbb{R} , boundary has '0 width', then \mathbb{W} .

(\mathbb{K}_n may not be unique. Also, if \mathbb{L}_n -boundary has '0 width', then $\mathbb{K}_n = \emptyset$.) 3. For all *n*, let $\mathcal{B}_n := \mathcal{A}^{\mathbb{K}_n}$. Represent defect along \mathbf{L}_n with element of $\mathcal{B}_n^{\ell_n}$. 4. Let Φ be a CA which preserves regular domains and moves boundary.

[Skip]

1. Construct polygon along boundary, using line segments L_1, L_2, \ldots, L_N with rational slopes r_1, \ldots, r_N . (This polygon might not be unique) 2. For all n, let $\mathbb{K}_n \subset \mathbb{Z}^2$ be a minimal subset such that the defect along L_n can be tiled with ℓ_n disjoint translates of \mathbb{K}_n along L_n . (\mathbb{K}_n may not be unique. Also, if \mathbb{L}_n -boundary has '0 width', then $\mathbb{K}_n = \emptyset$.) 3. For all n, let $\mathcal{B}_n := \mathcal{A}^{\mathbb{K}_n}$. Represent defect along L_n with element of $\mathcal{B}_n^{\ell_n}$. 4. Let Φ be a CA which preserves regular domains and moves boundary. Suppose polygonal representation of the boundary is 'stable' under Φ .

with rational slopes r_1, \ldots, r_N . (This polygon might not be unique) 2. For all n, let $\mathbb{K}_n \subset \mathbb{Z}^2$ be a minimal subset such that the defect along \mathbf{L}_n can be tiled with ℓ_n disjoint translates of \mathbb{K}_n along \mathbf{L}_n . (\mathbb{K}_n may not be unique. Also, if \mathbb{L}_n -boundary has '0 width', then $\mathbb{K}_n = \emptyset$.) 3. For all n, let $\mathcal{B}_n := \mathcal{A}^{\mathbb{K}_n}$. Represent defect along \mathbf{L}_n with element of $\mathcal{B}_n^{\ell_n}$. 4. Let Φ be a CA which preserves regular domains and moves boundary. Suppose polygonal representation of the boundary is 'stable' under Φ . Some line segments may get shorter/longer, or might shift in a

[Skip]

2. For all *n*, let $\mathbb{K}_n \subset \mathbb{Z}^2$ be a minimal subset such that the defect along \mathbf{L}_n can be tiled with ℓ_n disjoint translates of \mathbb{K}_n along \mathbf{L}_n .

[Skip]

(\mathbb{K}_n may not be unique. Also, if \mathbb{L}_n -boundary has '0 width', then $\mathbb{K}_n = \emptyset$.) 3. For all *n*, let $\mathcal{B}_n := \mathcal{A}^{\mathbb{K}_n}$. Represent defect along \mathbf{L}_n with element of $\mathcal{B}_n^{\ell_n}$. 4. Let Φ be a CA which preserves regular domains and moves boundary. Suppose polygonal representation of the boundary is 'stable' under Φ . Some line segments may get shorter/longer, or might shift in a transversal direction, but the image defect *also* admits a polygonal decomposition with

(\mathbb{K}_n may not be unique. Also, if \mathbb{L}_n -boundary has '0 width', then $\mathbb{K}_n = \emptyset$.) 3. For all n, let $\mathcal{B}_n := \mathcal{A}^{\mathbb{K}_n}$. Represent defect along \mathbf{L}_n with element of $\mathcal{B}_n^{\ell_n}$. 4. Let Φ be a CA which preserves regular domains and moves boundary. Suppose polygonal representation of the boundary is 'stable' under Φ . Some line segments may get shorter/longer, or might shift in a transversal direction, but the image defect *also* admits a polygonal decomposition with slopes r_1, \ldots, r_N and blocks $\mathbb{K}_1, \ldots, \mathbb{K}_N$.

[Skip]

3. For all *n*, let $\mathcal{B}_n := \mathcal{A}^{\mathbb{K}_n}$. Represent defect along \mathbf{L}_n with element of $\mathcal{B}_n^{\ell_n}$. 4. Let Φ be a CA which preserves regular domains and moves boundary. Suppose polygonal representation of the boundary is 'stable' under Φ . Some line segments may get shorter/longer, or might shift in a transversal direction, but the image defect *also* admits a polygonal decomposition with slopes r_1, \ldots, r_N and blocks $\mathbb{K}_1, \ldots, \mathbb{K}_N$.

[Skip]

Then segment *n* of image defect can be represented with element of $\mathcal{B}_n^{\ell'_n}$.

[Skip]

4. Let Φ be a CA which preserves regular domains and moves boundary. Suppose polygonal representation of the boundary is 'stable' under Φ . Some line segments may get shorter/longer, or might shift in a transversal direction, but the image defect *also* admits a polygonal decomposition with slopes r_1, \ldots, r_N and blocks $\mathbb{K}_1, \ldots, \mathbb{K}_N$.

Then segment *n* of image defect can be represented with element of $\mathcal{B}_n^{\ell_n}$. (Note: maybe $\ell'_n \neq \ell_n$). Thus, Φ induces a function $\Phi_n : \mathcal{B}_n^{\ell_n} \longrightarrow \mathcal{B}_n^{\ell'_n}$.

[Skip]

Suppose polygonal representation of the boundary is 'stable' under Φ . Some line segments may get shorter/longer, or might shift in a transversal direction, but the image defect *also* admits a polygonal decomposition with slopes r_1, \ldots, r_N and blocks $\mathbb{K}_1, \ldots, \mathbb{K}_N$.

Then segment *n* of image defect can be represented with element of $\mathcal{B}_{n}^{\ell'_{n}}$. (Note: maybe $\ell'_{n} \neq \ell_{n}$). Thus, Φ induces a function $\Phi_{n} : \mathcal{B}_{n}^{\ell_{n}} \longrightarrow \mathcal{B}_{n}^{\ell'_{n}}$. Suppose the regular domain patterns are spatially periodic.

[Skip]

Some line segments may get shorter/longer, or might shift in a transversal direction, but the image defect *also* admits a polygonal decomposition with slopes r_1, \ldots, r_N and blocks $\mathbb{K}_1, \ldots, \mathbb{K}_N$.

Then segment *n* of image defect can be represented with element of $\mathcal{B}_n^{\ell'_n}$. (Note: maybe $\ell'_n \neq \ell_n$). Thus, Φ induces a function $\Phi_n : \mathcal{B}_n^{\ell_n} \longrightarrow \mathcal{B}_n^{\ell'_n}$. Suppose the regular domain patterns are spatially periodic. Then the pattern evolution in each domain is Φ -periodic.

[Skip]

slopes r_1, \ldots, r_N and blocks $\mathbb{K}_1, \ldots, \mathbb{K}_N$.

Then segment *n* of image defect can be represented with element of $\mathcal{B}_{n}^{\ell'_{n}}$. (Note: maybe $\ell'_{n} \neq \ell_{n}$). Thus, Φ induces a function $\Phi_{n} : \mathcal{B}_{n}^{\ell_{n}} \longrightarrow \mathcal{B}_{n}^{\ell'_{n}}$. Suppose the regular domain patterns are spatially periodic. Then the pattern evolution in each domain is Φ -periodic. By passing to a 'higher block presentation', and replacing Φ with Φ^{m} for some *m*, we can treat each domain as being *constant* in space and time.
Boundary dynamics

[Skip]

(Note: maybe $\ell'_n \neq \ell_n$). Thus, Φ induces a function $\Phi_n : \mathcal{B}_n^{\ell_n} \longrightarrow \mathcal{B}_n^{\ell'_n}$. Suppose the regular domain patterns are spatially periodic. Then the pattern evolution in each domain is Φ -periodic. By passing to a 'higher block presentation', and replacing Φ with Φ^m for some m, we can treat each domain as being *constant* in space and time. In this case, the function $\Phi_n : \mathcal{B}_n^{\ell_n} \longrightarrow \mathcal{B}_n^{\ell'_n}$ itself is governed by a local rule, except near the vertices.

Boundary dynamics

[Skip]

Suppose the regular domain patterns are spatially periodic.

Then the pattern evolution in each domain is Φ -periodic.

By passing to a 'higher block presentation', and replacing Φ with Φ^m for some *m*, we can treat each domain as being *constant* in space and time. In this case, the function $\Phi_n : \mathcal{B}_n^{\ell_n} \longrightarrow \mathcal{B}_n^{\ell'_n}$ itself is governed by a local rule, except near the vertices.

Thus, action of Φ on each boundary segment can be modelled with onedimensional CA.

Problem: Thickness of boundary segment L_n may fluctuate over time.

Problem: Thickness of boundary segment L_n may fluctuate over time. **Solution:** Choose \mathbb{K}_n to be the minimal tile which works for all Φ iterations where L_n -segment exists.

500

Problem: Thickness of boundary segment L_n may fluctuate over time. **Solution:** Choose \mathbb{K}_n to be the minimal tile which works for all Φ iterations where L_n -segment exists.

(ロ) (同) (三) (三) (三) (0) (0)

[If the boundary thickness is bounded, then \mathbb{K}_n exists (but not unique)]. Questions:

What if the ambient regular domains are not periodic?

Problem: Thickness of boundary segment L_n may fluctuate over time. **Solution:** Choose \mathbb{K}_n to be the minimal tile which works for all Φ iterations where L_n -segment exists.

(ロ) (同) (三) (三) (三) (0) (0)

- What if the ambient regular domains are not periodic?
- What if the polygonal representation is *not* stable under Φ?

Problem: Thickness of boundary segment L_n may fluctuate over time. **Solution:** Choose \mathbb{K}_n to be the minimal tile which works for all Φ iterations where L_n -segment exists.

(ロ) (同) (三) (三) (三) (0) (0)

- What if the ambient regular domains are not periodic?
- What if the polygonal representation is *not* stable under Φ?
- What if a boundary segment shrinks until it disappears?

Problem: Thickness of boundary segment L_n may fluctuate over time. **Solution:** Choose \mathbb{K}_n to be the minimal tile which works for all Φ iterations where L_n -segment exists.

(ロ) (同) (三) (三) (三) (0) (0)

- What if the ambient regular domains are not periodic?
- What if the polygonal representation is *not* stable under Φ?
- What if a boundary segment shrinks until it disappears?
- What if a new boundary segment appears?

Problem: Thickness of boundary segment L_n may fluctuate over time. **Solution:** Choose \mathbb{K}_n to be the minimal tile which works for all Φ iterations where L_n -segment exists.

(ロ) (同) (三) (三) (三) (0) (0)

- What if the ambient regular domains are not periodic?
- What if the polygonal representation is *not* stable under Φ?
- What if a boundary segment shrinks until it disappears?
- What if a new boundary segment appears?
- What happens near a vertex between two line segments?

Problem: Thickness of boundary segment L_n may fluctuate over time. **Solution:** Choose \mathbb{K}_n to be the minimal tile which works for all Φ iterations where L_n -segment exists.

[If the boundary thickness is bounded, then \mathbb{K}_n exists (but not unique)]. **Questions:**

- What if the ambient regular domains are not periodic?
- What if the polygonal representation is *not* stable under Φ?
- What if a boundary segment shrinks until it disappears?
- What if a new boundary segment appears?
- What happens near a vertex between two line segments?

Answer: The one-dimensional CA model of boundary dynamics is not well-defined under these conditions.

(ロ) (同) (三) (三) (三) (0) (0)

Problem: Thickness of boundary segment L_n may fluctuate over time. **Solution:** Choose \mathbb{K}_n to be the minimal tile which works for all Φ iterations where L_n -segment exists.

[If the boundary thickness is bounded, then \mathbb{K}_n exists (but not unique)]. **Questions:**

- What if the ambient regular domains are not periodic?
- What if the polygonal representation is *not* stable under Φ?
- What if a boundary segment shrinks until it disappears?
- What if a new boundary segment appears?
- What happens near a vertex between two line segments?

Answer: The one-dimensional CA model of boundary dynamics is not well-defined under these conditions.

Wanted: 1. Algorithm to automatically construct 1D CA model of boundary dynamics (whenever it is well-defined).

Problem: Thickness of boundary segment L_n may fluctuate over time. **Solution:** Choose \mathbb{K}_n to be the minimal tile which works for all Φ iterations where L_n -segment exists.

[If the boundary thickness is bounded, then \mathbb{K}_n exists (but not unique)]. **Questions:**

- What if the ambient regular domains are not periodic?
- What if the polygonal representation is *not* stable under Φ?
- What if a boundary segment shrinks until it disappears?
- What if a new boundary segment appears?
- What happens near a vertex between two line segments?

Answer: The one-dimensional CA model of boundary dynamics is not well-defined under these conditions.

- ロ > - 4 目 > - 4 目 > - 4 目 > - 9 9 9 9

Wanted: 1. Algorithm to automatically construct 1D CA model of boundary dynamics (whenever it is well-defined).

2. Mathematical description of vertex motion.

Emergent defect dynamics seems to be ubiquitous in two-dimensional CA.

Emergent defect dynamics seems to be ubiquitous in two-dimensional CA. Even in the simplest classes of two-dimensional CA, our automated search uncovered a menagerie of examples.

500

Emergent defect dynamics seems to be ubiquitous in two-dimensional CA. Even in the simplest classes of two-dimensional CA, our automated search uncovered a menagerie of examples.

500

Many of these examples exhibit complex emergent behaviour (e.g. boundary dynamics) and invite further study.

Emergent defect dynamics seems to be ubiquitous in two-dimensional CA. Even in the simplest classes of two-dimensional CA, our automated search uncovered a menagerie of examples.

Many of these examples exhibit complex emergent behaviour (e.g. boundary dynamics) and invite further study.

Open Questions:

We have surveyed only 2-dimensional boolean CA (i.e. A = {0,1}). What is the distribution of EDD in CA with larger alphabets?

(ロ) (同) (三) (三) (三) (0) (0)

Emergent defect dynamics seems to be ubiquitous in two-dimensional CA. Even in the simplest classes of two-dimensional CA, our automated search uncovered a menagerie of examples.

Many of these examples exhibit complex emergent behaviour (e.g. boundary dynamics) and invite further study.

Open Questions:

► We have surveyed only 2-dimensional boolean CA (i.e. A = {0,1}). What is the distribution of EDD in CA with larger alphabets? What about higher dimensions?

(ロ) (同) (三) (三) (三) (0) (0)

Emergent defect dynamics seems to be ubiquitous in two-dimensional CA. Even in the simplest classes of two-dimensional CA, our automated search uncovered a menagerie of examples.

Many of these examples exhibit complex emergent behaviour (e.g. boundary dynamics) and invite further study.

Open Questions:

► We have surveyed only 2-dimensional boolean CA (i.e. A = {0,1}). What is the distribution of EDD in CA with larger alphabets? What about higher dimensions?

Why is EDD frequent in CA with smaller neighbourhoods (e.g. triangle), yet very rare in CA with larger neighbhourhoods (e.g. Moore)?

Emergent defect dynamics seems to be ubiquitous in two-dimensional CA. Even in the simplest classes of two-dimensional CA, our automated search uncovered a menagerie of examples.

Many of these examples exhibit complex emergent behaviour (e.g. boundary dynamics) and invite further study.

Open Questions:

► We have surveyed only 2-dimensional boolean CA (i.e. A = {0,1}). What is the distribution of EDD in CA with larger alphabets? What about higher dimensions?

- ロ > - 4 目 > - 4 目 > - 4 目 > - 9 9 9 9

- Why is EDD frequent in CA with smaller neighbourhoods (e.g. triangle), yet very rare in CA with larger neighbhourhoods (e.g. Moore)?
- Automated search uncovered many CA with 'interfaces' and 'dislocations'.

Emergent defect dynamics seems to be ubiquitous in two-dimensional CA. Even in the simplest classes of two-dimensional CA, our automated search uncovered a menagerie of examples.

Many of these examples exhibit complex emergent behaviour (e.g. boundary dynamics) and invite further study.

Open Questions:

- ► We have surveyed only 2-dimensional boolean CA (i.e. A = {0,1}). What is the distribution of EDD in CA with larger alphabets? What about higher dimensions?
- Why is EDD frequent in CA with smaller neighbourhoods (e.g. triangle), yet very rare in CA with larger neighbhourhoods (e.g. Moore)?
- Automated search uncovered many CA with 'interfaces' and 'dislocations'.

However, we have no algorithm to automatically detect 'gaps' or 'poles' (this requires the automatic detection of a height function). Thus we have no idea of their frequency.

- Defect Particle Kinematics in One-Dimensional Cellular Automata, M. Pivato, Theoretical Computer Science, 377, (#1-3), May 2007, pp.205-228. http://arxiv.org/abs/math.DS/0506417
- Algebraic Invariants for Crystallographic Defects in Cellular Automata, M. Pivato, Ergodic Theory & Dynamical Systems, 27 (#1), February 2007, pp. 199-240. http://arxiv.org/abs/math.DS/0507167
- Spectral Domain Boundaries in Cellular Automata, Fundamenta Informaticae, 78 (#3), 2007, pp.417-447.
 http://arxiv.org/abs/math.DS/0507091

Please go to http:euclid.trentu.ca/Defect to obtain:

- The complete slides for this talk.
- The raw data on EDD in two-dimensional CA.
- The source code for the software we used to obtain this data.

< 口 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ = ○ < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○

Introduction

ECA #62, 184, 110, 18, etc. Past empirical/theoretical work

〈ロ〉 〈問〉 〈注〉 〈注〉 ― 注

 $\mathfrak{I}_{\mathcal{A}}$

Algebraic invariants

Interfaces Dislocations Gaps Poles Methodology

Statistical Signature of EDD CA search spaces Landscape: 3-cell CA Landscape: Triangle CA Landscape: von Neumann CA Landscape: Moore CA EDD vs. Nhood size Filtering images to see domain boundaries Identifying periodic structures The statistics of periodic structures Detecting interfaces & dislocations Statistics of Interfaces

Boundary dynamics

1D CA representation of boundary Caveats

(ロ) (月) (三) (三) (三) (0)

Conclusion