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Emergent Defect Dynamics

Many one-dimensional CA exhibit emergent defect dynamics (EDD).

Almost any random initial configuration rapidly converges to large domains
of some regular background pattern, separated by small defects (or domain

boundaries) where this pattern breaks down.

These defects move around like ‘particles’, governed by some emergent
‘defect kinematics’.

When ‘defect particles’ collide, they coalesce or annihilate according to
some emergent ‘defect chemistry’.
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conjecture (ii).

◮ S. Wolfram and Matthew Cook [2002, 2004]: ECA #110 is

computationally universal (used ‘defect physics’ to build universal
computer).

◮ Pivato [Thr.Comp.Sci, 2007] analyzed ‘defect particle kinematics’ for 1D CA;
identified 4 ‘kinematic regimes’ depending on background pattern...

◮ Ballistic regime: particles move deterministically.
◮ Diffusive regime: particles perform random walks.
◮ PDA regime: particle can be described using ‘pushdown automata’.



Theoretical Work: One-dimensional Defect Dynamics

◮ Concerning ECA#18, Lind [1984] conjectured: (i) Defects perform

random walks. (ii) Defect density decays to zero through

annihilations.

◮ Kari Eloranta [1993-1995] proved Lind’s conjecture (i); studied
quasirandom defect motion in ‘partially permutive’ CA.

◮ Petr Kůrka and Alejandro Maass [2000, 2002] studied CA convergence
to limit sets through ‘defect annihilation’. Kůrka [2003] proved Lind’s
conjecture (ii).

◮ S. Wolfram and Matthew Cook [2002, 2004]: ECA #110 is

computationally universal (used ‘defect physics’ to build universal
computer).

◮ Pivato [Thr.Comp.Sci, 2007] analyzed ‘defect particle kinematics’ for 1D CA;
identified 4 ‘kinematic regimes’ depending on background pattern...

◮ Ballistic regime: particles move deterministically.
◮ Diffusive regime: particles perform random walks.
◮ PDA regime: particle can be described using ‘pushdown automata’.
◮ Turing regime: particle acts like moving ‘head’ of Turing machine.
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Let Φ be a CA, let a ∈ AZD

, and suppose b := Φ100(a) exhibits ‘domains’
and ‘defects’.
Question: What is a ‘regular domain’, anyways?
Idea: Each ‘regular domain’ in b is a fragment from some subshift.
(A subshift is a closed, shift-invariant subset of AZ

D

; it is the set of all
configurations which can be ‘tiled’ with some set of ‘admissible blocks’).
Question: Why do the defects in b ‘persist’ under iteration of Φ? Why are
they not destroyed?
Idea: Some defects are manifestations of ‘global structural properties’ of b
(relative to the topological dynamics of the underlying subshifts).
If Φ ‘respects’ the underlying subshifts, then it must preserve these
structural properties; hence the defects can neither be created nor
destroyed, but only moved around and combined with other defects.
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Let Φ be a CA, let a ∈ AZ2
, and let b := Φ100(a).

Let U ⊂ Z
2 and V ⊂ Z

2 be two ‘regular domains’ in b.

If bU and bV belong to disjoint subshifts X and Y
then the boundary between them is called an inter-

face.

Theorem: If Φ : X⊔Y−→X⊔Y is surjective, then

any (X,Y)-interface will persist under iteration of

Φ. [MP, Fundamentae Informatica, 2007]

U
(X= all-black subshift)

V
(Y= all-white subshift)

Example: (ECA #184) Let A = {�, �}. Let X := {...���...},
Y := {....���....}, and Z := {...������....}. If Φ is ECA 184, then
Φ(X) = X, Φ(Y) = Y, and Φ(Z) = Z. This yields the following interfaces
(as seen in space-time diagram of Φ):
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Let Φ be a CA, let a ∈ AZ2
, and let b := Φ100(a).

Let U ⊂ Z
2 and V ⊂ Z

2 be two ‘regular domains’ in b.

Suppose bU and bV belong to the same subshift
X. Let P ⊂ Z

2 be a subgroup, and suppose X is
P-periodic. (i.e. ∀ x ∈ X and p ∈ P, σp(x) = x.)
If bU and bV are ‘out of phase’ relative to this P-
periodic structure, then the boundary between U

and V is called a dislocation.

U

V (1,-1)

(-
1,

1)

∆ = Z/2; Disp = 1.

Every dislocation can be labelled with a displacement in ∆ := Z
2/P.

Theorem: If Φ : X−→X is surjective, then any X-dislocation persists under

iteration of Φ, and its displacement is unchanging. [Fundamentae Informatica, 2007]

Example: (ECA#62) Let X :=
[. . . ��� ��� ��� . . .]. If Φ is ECA
#62, then Φ|X = σ, so (X,Φ) is 3-periodic

in both space and time, and ∆ ∼= Z/3.
Here are two dislocations in X and their
displacements: Disp=2 Disp=1
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Gaps and Cohomology

A height function on a subshift X is actually a Z-valued cocycle on X.

If Φ is a CA and Φ(X) = X, then Φ induces a homomorphism Φ∗ on the
Z-cohomology group of X.

Theorem: If Φ∗ is surjective, then all gaps persist under Φ. �[ErThDySy,2007]
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◮ In one-dimensional CA, ‘domain boundaries’ and ‘defect particles’ are
the same thing.

◮ However, in two-dimensional CA, a ‘domain boundary’ is an object of
codimension one (e.g. a curve), which disconnects the plane into two
or more ‘regular domains’.

◮ A ‘defect particle’, on the other hand, is an object of codimension two
—it does not disconnect the space.
(Indeed, you can encircle the particle with a loop.)

◮ Codimension-two defects cannot be interfaces, dislocations, or gaps.

◮ However, some codimension-two defects still have a nontrivial
cohomological signature, which renders them ‘indestructible’ under CA
dynamics.
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Codimension two defects: Poles

Let X ⊂ AZ
2

be a subshift. A defining property of a height function on X:

For any x ∈ X, and for any z0, z1 ∈ Z
2, and any two paths

γ, γ′ from z0 to z1, the ‘altitude change’ through x along γ should

equal the ‘altitude change’ through x along γ′.

Thus, if γ is a loop, then the ‘altitude change’ around γ should be zero.
A codimension-2 defect is a pole if there is a loop γ around the defect
which violates this.

Example: Recall H : Ice× Z
2−→Z

h1(
p ∗ q

∗ ∗
x y

) := +1 =: h2(
p ∗ q

∗
x
∗

y

);

h1(
p ∗ q

∗ ∗
x y

) := −1 =: h2(
p ∗ q

∗
x
∗

y

).

If γ is the clockwise trail around the
defect, then H(γ, x) = 8. Thus, x
has a pole. +1 +1 +1

+1

-1 +1

+1

-1

+1+1

+1

+1

+1

+1

-1

-1

12 x (+1) + 4 x (-1)  =  8
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+1 +1 +1

+1

-1 +1

+1

-1

+1+1

+1

+1

+1

+1

-1

-1

12 x (+1) + 4 x (-1)  =  8

(Poles can actually be defined for cocycles on X ranging over any group).
Let Φ : X−→X be a CA, and let Φ∗ be the induced homomorphism on the
relevant cohomology group.
Theorem: If Φ∗ is surjective, then all poles persist under Φ. �[ErThDySy,2007]
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Wanted: 2-dimensional emergent defect dynamics

Problem: All known ‘natural’ examples of EDD are in one-dim. CA.
(One can construct 2-dimensional examples, but ‘artificial’ examples do not
tell us what behaviour is ‘generic’, or yield surprising new phenomena).
The theory of multidimensional EDD needs more examples, to give content
to the theoretical results, and to motivate further development.

Goal: Automated search for EDD in 2-dimensional CA.
Method:

1. Generate random 2-dimensional CA Φ and a random initial
configuration a ∈ AZ2

.

2. Compute b := Φ100(a), and measure empirical probability distribution
of k × k blocks in b.

3. Look for ‘statistical signature’ of emergent defects; isolate likely
candidates.

4. If Φ is likely candidate, then look for domain boundaries, interfaces,
and dislocations in b.



Statistical Signature of Emergent Defects

Let k ∈ N. Let K := [0...k)2 ⊂ Z
2. If |A| = 2, then |AK| = 2k2

.



Statistical Signature of Emergent Defects

Let k ∈ N. Let K := [0...k)2 ⊂ Z
2. If |A| = 2, then |AK| = 2k2

.
Each a ∈ AK has probability p(a) ∈ [0, 1].



Statistical Signature of Emergent Defects

Let k ∈ N. Let K := [0...k)2 ⊂ Z
2. If |A| = 2, then |AK| = 2k2

.
Each a ∈ AK has probability p(a) ∈ [0, 1].
Let M be large. For all m ∈ [1...M] let

f (m) :=
m

M
#

{

a ∈ AK ;
m − 1

M
≤ p(a) ≤

m

M

}

.



Statistical Signature of Emergent Defects

Let k ∈ N. Let K := [0...k)2 ⊂ Z
2. If |A| = 2, then |AK| = 2k2

.
Each a ∈ AK has probability p(a) ∈ [0, 1].
Let M be large. For all m ∈ [1...M] let

f (m) :=
m

M
#

{

a ∈ AK ;
m − 1

M
≤ p(a) ≤

m

M

}

.

Example: Uniform distribution.

p(a) = 2−k2
for all a ∈ AK.



Statistical Signature of Emergent Defects

Let k ∈ N. Let K := [0...k)2 ⊂ Z
2. If |A| = 2, then |AK| = 2k2

.
Each a ∈ AK has probability p(a) ∈ [0, 1].
Let M be large. For all m ∈ [1...M] let

f (m) :=
m

M
#

{

a ∈ AK ;
m − 1

M
≤ p(a) ≤

m

M

}

.

Example: Uniform distribution.

p(a) = 2−k2
for all a ∈ AK.

Thus, f
(

2−k2
)

= 1, and f (x) = 0 for all x 6= 2−k2
.

1

0.5

0
1

f(x)

x   2 -k 2
2 -3k 2

/4
2 -k 2

/2
2 -k 2

/4
2 -2k 2

2 -7k 2
/4

2 -3k 2
/2

2 -5k 2
/4



Statistical Signature of Emergent Defects

Let k ∈ N. Let K := [0...k)2 ⊂ Z
2. If |A| = 2, then |AK| = 2k2

.
Each a ∈ AK has probability p(a) ∈ [0, 1].
Let M be large. For all m ∈ [1...M] let

f (m) :=
m

M
#

{

a ∈ AK ;
m − 1

M
≤ p(a) ≤

m

M

}

.

Example: Point Mass.

p(b) = 1 for some b ∈ AK, and p(a) = 0 for all other a ∈ AK.



Statistical Signature of Emergent Defects

Let k ∈ N. Let K := [0...k)2 ⊂ Z
2. If |A| = 2, then |AK| = 2k2

.
Each a ∈ AK has probability p(a) ∈ [0, 1].
Let M be large. For all m ∈ [1...M] let

f (m) :=
m

M
#

{

a ∈ AK ;
m − 1

M
≤ p(a) ≤

m

M

}

.

Example: Point Mass.

p(b) = 1 for some b ∈ AK, and p(a) = 0 for all other a ∈ AK.
Thus, f (1) = 1, and f (x) = 0 for all x < 1.
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Let k ∈ N. Let K := [0...k)2 ⊂ Z
2. If |A| = 2, then |AK| = 2k2

.
Each a ∈ AK has probability p(a) ∈ [0, 1].
Let M be large. For all m ∈ [1...M] let

f (m) :=
m

M
#

{

a ∈ AK ;
m − 1

M
≤ p(a) ≤

m

M

}

.

Example: Checkerboard with defects.

Should look like checkerboard, but with nonzero probability of inadmissible
‘defective’ blocks.
Thus, f (1/2) ≈ 1, and f (x) = 0 for all x > 1/2. Also, f (x) ≈ 0 for all
x < 1/2, but may see f (x) > 0 for some x < 1/2, because of defects.
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Example: P-periodic subshift for some subgroup P ⊂ Z
2.
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Thus, f (1/q) = 1, and f (x) = 0 for all x 6= 1/q.
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.

Example: Stationary measure with entropy η ∈ [0, 1]. [Skip]

(e.g. maximal-entropy measure on subshift with topological entropy η).
If k is ‘large’ enough, then SMB Theorem says p(b) ≈ 2−ηk2

for roughly
2ηk2

distinct b ∈ AK, and p(a) ≈ 0 for all other a ∈ AK. Thus,
f (2−ηk2

) ≈ 1, f (x) ≈ 0 for all x < 2−ηk2
, and f (x) = 0 for all x ≫ 2−ηk2
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.
Each a ∈ AK has probability p(a) ∈ [0, 1].
Let M be large. For all m ∈ [1...M] let
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#

{
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.

Example: Subshift with defects.

Should look like stationary measure on subshift, but with nonzero probability
of inadmissible ‘defective’ blocks. Thus, f (2−ηk2

) ≈ 1, and f (x) = 0 for all
x > 2−ηk2

. Also, f (x) ≈ 0 for all x < 2−ηk2
, but may see f (x) > 0 for

some x ∈
[

0, 2−ηk2
]

(because of defects).

Admissible blocks

1

0.5

0
1

f(x)

x   
2 -k 22 -2k 2 2−η/k2

Defects
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CA Search Spaces

Search should be conducted over the ‘simplest’ classes of 2-dimensional CA
(analogous to ECA in one dimension). Thus, we set A = {0, 1}.
Four ‘simple’ neighbourhoods for local rule:

◮ 3-Cell nhood 223
= 28 = 256 distinct local rules. Can

exhaustively search entire space.

◮ Triangle 224
= 216 = 65536 distinct local rules (32768 local

rules modulo 0/1-inversion). Can exhaustively search entire space.

◮ von Neumann 225
= 232 = 4294 967 296 distinct local rules.

Exhaustive search not feasible; instead we must randomly sample the
rule space.

◮ Moore 229
= 2512 ≈ 10154 distinct local rules.

Exhaustive search not feasible; must randomly sample the space.
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Let K = {0, 1, 2}2 , and let py be the empirical probability distribution on

Φ100
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is random initial condition.

The height at (x , y) is 2x · #
{
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The ridge at the far end is caused by CA which preserve the uniform measure.
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is random initial condition.
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The ridge at the far end is caused by CA which preserve the uniform measure.
The red and purple ridges in the right-hand corner are caused by CA which
converge to small, periodic background patterns with EDD.



The probability landscape of 3-Cell CA
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The height at (x , y) is 2x · #
{

c ∈ AK ; py (c) ≈ 2x
}

.
The ridge at the far end is caused by CA which preserve the uniform measure.
The red and purple ridges in the right-hand corner are caused by CA which
converge to small, periodic background patterns with EDD.
The red spike in right corner is caused by ‘nilpotent’ CA (where all initial
conditions converge to the all-zero or all-one configurations).



3-Cell CA landscape; Closeup 0-63
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The red ridge (over x = 2−9) is caused by CA which preserve the uniform
measure.
There are about 40 of these.



3-Cell CA landscape; Closeup 64-127
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In this ‘mountain range’ region, the CA do not converge quickly to any
low-entropy subshift; there is no indication of EDD.



3-Cell CA landscape; Closeup 128-191
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The low ridges are caused by CA which begin to show the statistical
signature of EDD.



3-Cell CA landscape; Closeup 192-255
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3-Cell CA landscape; Closeup 192-255
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The red ‘wall’ in the right corner is caused by nilpotent CA, which converge
to a constant (all-zeros or all-ones) configuration.
There are 46 of these.



3-Cell CA landscape; Closeup 192-255
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The red ‘wall’ in the right corner is caused by nilpotent CA, which converge
to a constant (all-zeros or all-ones) configuration.
There are 46 of these.
The purple massif next to the red wall is caused by CA whose background
pattern has 2 elements (e.g. checkerboard, stripes).
There are 14 with stripes and 8 with checkerboard.



3-Cell CA landscape; Closeup 192-255
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There are 46 of these.
The purple massif next to the red wall is caused by CA whose background
pattern has 2 elements (e.g. checkerboard, stripes).
There are 14 with stripes and 8 with checkerboard.
The red ridge is caused by CA which have regular background pattern(s)
with 3-16 elements. There are at least 30 of these.



3-Cell CA landscape; Closeup 192-255
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The purple massif next to the red wall is caused by CA whose background
pattern has 2 elements (e.g. checkerboard, stripes).
There are 14 with stripes and 8 with checkerboard.
The red ridge is caused by CA which have regular background pattern(s)
with 3-16 elements. There are at least 30 of these.
The low blue mounds further left are caused by the low-probability defects.



The probability landscape of Triangle CA
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Now, each y value represents one of the 32768 distinct ‘triangle’ CA.
The picture is very similar to the landscape for 3-cell CA.



Triangle CA landscape; Closeup 0-8191
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The red ridge is caused by CA which preserve the uniform measure.
There are about 3000 of these.



Triangle CA landscape; Closeup 0-8191
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The red ridge is caused by CA which preserve the uniform measure.
There are about 3000 of these.
The red ridge gradually flattens out into CA which ‘almost’ (but not quite)
preserve the uniform measure.



Triangle CA landscape; Closeup 8192-16383
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This ‘mountain range’ is caused by CA do not converge quickly to any
low-entropy subshift; they exhibit no strong statistical signature of EDD.



Triangle CA landscape; Closeup 16384-24575
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The mountain range continues into the third region.
Note: the picture suggests that 3 × 3 blocks occur with a wide range of frequencies, but this is

probably an artifact of small sample size. Each CA was simulated on a 512 × 512 grid, so there

are only 5122 = 262 144 samples per CA, which is insufficient to accurately estimate a probability

distribution on the 29 = 512 distinct 3 × 3 blocks.



Triangle CA landscape; Closeup 24576-32768
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The red ‘wall’ in the right-hand corner is caused by nilpotent CA.
There are around 3700 of these.



Triangle CA landscape; Closeup 24576-32768
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The red ‘wall’ in the right-hand corner is caused by nilpotent CA.
There are around 3700 of these.
The red and purple ‘teeth’ near the red wall are caused by CA with EDD.
The far right row of (red) teeth is caused by CA whose background pattern
has cardinality 2. (1126 with stripes and 563 with checkerboard).



Triangle CA landscape; Closeup 24576-32768
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The red and purple ‘teeth’ near the red wall are caused by CA with EDD.
The far right row of (red) teeth is caused by CA whose background pattern
has cardinality 2. (1126 with stripes and 563 with checkerboard).
The next row of (purple) teeth are cause by CA whose background pattern
has cardinality 3-8. (There are around 300 of these).



Triangle CA landscape; Closeup 24576-32768
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The far right row of (red) teeth is caused by CA whose background pattern
has cardinality 2. (1126 with stripes and 563 with checkerboard).
The next row of (purple) teeth are cause by CA whose background pattern
has cardinality 3-8. (There are around 300 of these).
The low blue mounds further left are caused by the low-probability defects.



The probability landscape of von Neumann CA [Skip]
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There are 4 294 967 296 distinct VN CA local rules.



The probability landscape of von Neumann CA [Skip]
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There are 4 294 967 296 distinct VN CA local rules.
This graph was obtained by randomly sampling 30000 of them.
Now, each y value represents one of these 30000 random VN CA.
The picture is similar to the landscape for 3-cell and triangle CA, but the
proportion of CA with EDD is much smaller.
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The red ridge (caused by CA which almost preserve uniform measure)
continues into this frame.
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This ‘mountain range’ is caused by CA which don’t rapidly converge to any
low-entropy subshift; they exhibit no strong statistical signature of EDD.
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Of the more than 25000 Moore CA we tested, none exhibited a strong
statistical signature of EDD.
Indeed, it appears that the vast majority ‘almost-preserve’ the uniform
measure.
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Almost 50% of CA with the 3-cell neighbourhood CA exhibit EDD, as do a
comparable proportion of CA with the Triangle (4 cell) neighbourhood.
However, only 30% of CA with von Neumann (5 cell) neighbourhood show
a statistical signature for EDD.
CA with larger neighbourhoods have even less. The proportion of EDD in
CA with the Moore neighbourhood (9 cells) is virtually zero.
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U
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U’

Let Φ be a CA. Let a ∈ AZ
2

be an initial configuration, and let
b := Φ100(a). Let U ⊂ Z

2 be a connected regular domain in b (e.g. as seen
using probabilistically filtered image).
Let K := [0...k)2 ⊂ Z

2. Let U
′ := U \ (U∁ − K) be the ‘K-interior’ of U.

Let S := {u − v ; u, v ∈ U
′, bu+K = bv+K}. If P ⊂ Z

2 is subgroup, then

(

U has P-periodic pattern
)

⇐⇒
(

S = (U′ − U
′) ∩ P

)

.

(The search for this periodicity group P can be automated.)
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The empirical frequency of periodic patterns in 3-cell CA. The height of box
(i , j) is the number of 3-cell CA whose EDD has an (i , j)-periodic regular
domain.
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′
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We can visualize this by colouring each domain according to its phase.
By thus colourizing an entire spacetime animation, we can see domain
growth and defect motion over time.



The frequency of interfaces: 3-Cell CA
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For each n ∈ N, this graph shows the number of the 256 distinct 3-Cell CA
whose emergent defect dynamics exhibits at least n distinct periodic
subshifts (and hence, n(n − 1)/2 possible interface types).
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For each n ∈ N, this graph shows the log-number of the 32768 distinct
Triangle CA whose emergent defect dynamics exhibits at least n distinct
periodic subshifts (and hence, n(n − 1)/2 possible interface types).
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For each n ∈ N, this graph shows the log-number out of a random sample
of 3276 vN CA whose emergent defect dynamics exhibits at least n distinct
periodic subshifts (and hence, n(n − 1)/2 possible interface types).
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Φ3
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Suppose the regular domain patterns are spatially periodic.
Then the pattern evolution in each domain is Φ-periodic.
By passing to a ‘higher block presentation’, and replacing Φ with Φm for
some m, we can treat each domain as being constant in space and time.

In this case, the function Φn : Bℓn
n −→B

ℓ′n
n itself is governed by a local rule,

except near the vertices.
Thus, action of Φ on each boundary segment can be modelled with one-
dimensional CA.
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Problem: Thickness of boundary segment Ln may fluctuate over time.
Solution: Choose Kn to be the minimal tile which works for all Φ iterations
where Ln-segment exists.
[If the boundary thickness is bounded, then Kn exists (but not unique)].
Questions:

◮ What if the ambient regular domains are not periodic?

◮ What if the polygonal representation is not stable under Φ?

◮ What if a boundary segment shrinks until it disappears?

◮ What if a new boundary segment appears?

◮ What happens near a vertex between two line segments?

Answer: The one-dimensional CA model of boundary dynamics is not
well-defined under these conditions.
Wanted: 1. Algorithm to automatically construct 1D CA model of
boundary dynamics (whenever it is well-defined).
2. Mathematical description of vertex motion.
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Conclusion

Emergent defect dynamics seems to be ubiquitous in two-dimensional CA.
Even in the simplest classes of two-dimensional CA, our automated search
uncovered a menagerie of examples.
Many of these examples exhibit complex emergent behaviour (e.g.
boundary dynamics) and invite further study.
Open Questions:

◮ We have surveyed only 2-dimensional boolean CA (i.e. A = {0, 1}).
What is the distribution of EDD in CA with larger alphabets? What
about higher dimensions?

◮ Why is EDD frequent in CA with smaller neighbourhoods (e.g.
triangle), yet very rare in CA with larger neighbhourhoods (e.g.
Moore)?

◮ Automated search uncovered many CA with ‘interfaces’ and
‘dislocations’.
However, we have no algorithm to automatically detect ‘gaps’ or
‘poles’ (this requires the automatic detection of a height function).
Thus we have no idea of their frequency.
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Please go to http:euclid.trentu.ca/Defect to obtain:

◮ The complete slides for this talk.

◮ The raw data on EDD in two-dimensional CA.

◮ The source code for the software we used to obtain this data.
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