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“I see no means by which such [interpersonal] comparison can be

accomplished. The susceptibility of one mind may, for what we know, be a

thousand times greater than that of another.... Every mind is inscrutable to

every other mind, and no common denominator of feeling is possible.”
—William Stanley Jevons

“...il n’y a aucun rapport entre l’ophélimité du vin pour le vigneron et pour

le laboureur, ni entre l’ophélimité du ble pour le vigneron et pour le

laboureur. Il faut toujours se rapeller ce caractére subjectif de l’ophélimité.”
—Vilfredo Pareto

“Tragedy is when I cut my finger. Comedy is when you fall into an open

sewer and die.” —Mel Brooks
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Consider the following statements.

(A) “A bowl of rice will benefit a starving man more than a well-fed man.”

(B) “Take the last slice of apple cake. You will enjoy it more than I will.”

(C) “The marginal utility of one dollar for someone on minimum wage is
greater than the marginal utility of one dollar for a typical billionaire.”

(D) “If Alice and Bob are both healthy, the same age, each has no
dependents and a net worth of $100,000, then the marginal utility of
one dollar is slightly greater for Alice (salary: $50,000/year) than it is
for Bob (salary: $51,000/year).”

(E) “I am saving this money because I will need to consume it more next
year than I need to consume it right now.”

These statements all involve interpersonal comparisons, not of welfare
levels, but rather, of welfare gains.
Statements (A), (C) and (E) would command almost universal agreement.
But statements (B) and (D) are more dubious. They could be true, they
could be false, or they could just be meaningless.
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Upshot: Some interpersonal comparisons of welfare gains are obvious and
uncontroversial. But others are obscure; we lack sufficient information to
make them in practice, or they are impossible even in principle, because
they involve hidden intricacies of human psychology.
Idea: Represent approximate interpersonal comparisons with a difference

preorder: an incomplete preorder on the space of personal state transitions.

Now consider the following (grossly oversimplified) policy problems.

◮ “Suppose interest rates determines unemployment and inflation, and
have no other effects on society. Then we should raise the interest rate
if and only if the aggregate welfare loss due to increased unemployment
is outweighed by the aggregate welfare gain due to lower inflation.”

◮ “Suppose a system of taxes and subsidies results in a net transfer of
wealth from the rich to the poor (and has no other effects on society).
This is justifiable if and only if the aggregate welfare gain (to the poor)
outweighs the aggregate welfare loss (to the wealthy).”

To find best policy, must aggregate welfare gains/losses of different people.
Problem: Given the approximate interpersonal comparisons encoded in the
difference preorder, how can we compare the aggregate welfare gains or
losses for society of different policies?
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Framework: the space of personal states (5/46)

Let X be a space of ‘personal states’.
For example: an element of X could encode information about a

person’s psychology (personality, mood, knowledge, beliefs, memories,
values, desires, etc.) and also about her physical state (health, wealth,
personal property, physical location, consumption bundle, sense-data, etc.).

Any person, at any time, resides at some point in X . Assume this
entirely determines her level of wellbeing.

Perhaps ‘precise’ interpersonal comparisons of well-being are
impossible, or even meaningless. But we can sometimes make
approximate interpersonal comparisons of changes in well-being.
In short, we can (sometimes) make sense of the statement:

“The welfare gain in moving from state x1 to state x2 is

greater than the welfare gain in moving from state y1 to y2.”

We will show that even such approximate interpersonal comparisons
allow us to (partially) rank social state changes (i.e. policies).
Under plausible conditions, this yields a generalization of utilitarian ethics.
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Difference preorders



Difference preorders: definition (7/46)

Represent a personal state change “x1  x2” as an element of X × X .
Thus, a (partial) ordering of the welfare gains/losses induced by personal
state changes can be represented by a preorder (a reflexive, transitive,
possibly incomplete binary relation) “ �” on X × X . The statement

“The welfare gain in moving from state x1 to state x2 is

greater than the welfare gain in moving from state y1 to y2.”

is represented by the formula “(x1  x2)≻ (y1  y2)”.

We call (�) a difference preorder on X if it satisfies 4 axioms:

(DP0) For all x , y ∈ X , we have (x  x) ≈ (y  y).

(DP1) For all x1, x2, y1, y2 ∈ X , if (x1  x2) � (y1  y2), then
(x2  x1) � (y2  y1).

(DP2) For all x0, x1, x2 and y0, y1, y2 ∈ X , if (x0  x1) � (y0  y1)
and (x1  x2) � (y1  y2), then (x0  x2) � (y0  y2).

(DP3) For all x0, x1, x2 and y0, y1, y2 ∈ X , if (x0  x1) � (y1  y2)
and (x1  x2) � (y0  y1), then (x0  x2) � (y0  y2).
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Loags and utility functions (9/46)

A linearly ordered abelian group (loag) is a triple (R, +, >), where R is a
set, + is an abelian group operation, and > is a complete, antisymmetric,
transitive binary relation such that, for all r , s ∈ R, if r > 0, then r + s > s.
Idea: This is ‘minimum structure’ needed to define cardinal utility function.
Example. (a) The additive group R of real numbers is a loag.
(b) R

n is a loag under vector addition and the lexicographic order.

An R-valued weak utility function for (�) is a function u : X−→R such
that, for all x1, x2, y1, y2 ∈ X ,
(
(x1  x2) � (y1  y2)

)
=⇒

(
u(x2) − u(x1) ≥ u(y2) − u(y1)

)
.

Example. Let V and (�
V

) be as in Example 1 on previous slide. Then any

element of V is a weak utility function for (�
V

).

Two reasons to allow utility functions to range over arbitrary loags:
Technical reason: Extends the generality of results; simplifies many proofs.
Philosophical reason: Allows for ‘non-Archimidean’ or ‘lexicographical’
preferences (where some goals/values have infinite priority over others).
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Multiutility representations (10/46)

Let U(�) be the set of all weak utility functions for (�).
Definition: (�) has a multiutility representation if there is some subset
U ′ ⊆ U(�) such that, for all x1, x2, y1, y2 ∈ X ,

(
(x1  x2) � (y1  y2)

)
⇔
(
u(x2) − u(x1) ≥ u(y2) − u(y1), ∀ u ∈ U ′

)
.

Example. The preorder (�
V

) in Example 1 obviously admits a multiutility

representation (set U ′ := V).

Definition: A strong utility function for (�) is a function u : X−→R such
that, for all x1, x2, y1, y2 ∈ X , we have

(
(x1  x2) � (y1  y2)

)
=⇒

(
u(x2) − u(x1) ≥ u(y2) − u(y1)

)
,

and
(
(x1  x2) ≻ (y1  y2)

)
=⇒

(
u(x2) − u(x1) > u(y2) − u(y1)

)
.

Proposition. If a difference preorder has a multiutility representation, then

it has a strong utility function.
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Social difference preorders



Social difference preorders: motivation (12/46)

Let I be a finite set, indexing a population.
A social state is an element x ∈ X I , which assigns a personal state xi ∈ X
to each i ∈ I. Suppose the current social state is x0.
Any policy will change x0 to some other social state. To select the best
policy we must compare the social value of one social state change

(x0  x1) with another social state change (x0  x2).
Now suppose a country has two provinces Ex and Wy, with equal
populations (both indexed by I), which are initially in states x0 and y0

respectively.

◮ Policy A will change Ex to state x1 and leave Wy unchanged.

◮ Policy B will change Wy to state y1 and leave Ex alone.

Which policy is better? We must compare (x0  x1) to (y0  y1).
(Or: suppose there is only one province, but the initial state is unknown, so
the planner faces a risky decision. Now let Ex and Wy represent two equally
probable states of nature.)

Upshot: To select the best policy, we need a difference preorder on X I .
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Social difference preorders: definition (13/46)

Let Π be the group of all permutations (i.e. self-bijections) of I.

For any π ∈ Π and x ∈ X I , we define π(x) := [xπ(i)]i∈I ∈ X I .

A (�)-social difference preorder (SDP) is a preorder (D) on X I ×X I

satisfying six axioms:

(WPar) For any x1, x2, y1, y2 ∈ X I , if (x1
i  x2

i ) � (y1
i  y2

i ) for all
i ∈ I, then (x1  x2) D (y1  y2).

(Anon) For any x ∈ X I and π ∈ Π, (x x) ̂ (x π(x)).
(DP0D) For all x, y ∈ X I , we have (x x) ̂ (y y).
(DP1D) For all x1, x2, y1, y2 ∈ X I , if (x1  x2) D (y1  y2), then

(x2  x1) E (y2  y1).

(DP2D) For all x0, x1, x2 and y0, y1, y2 ∈ X I , if (x0  x1) D (y0  y1)

and (x1  x2) D (y1  y2) then (x0  x2) D (y0  y2).

(DP3D) For all x0, x1, x2 and y0, y1, y2 ∈ X I , if (x0  x1) D (y1  y2)

and (x1  x2) D (y0  y1) then (x0  x2) D (y0  y2).
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Social difference preorders: explanation of axioms (14/46)

(WPar) For any x1, x2, y1, y2 ∈ X I , if (x1
i  x2

i ) � (y1
i  y2

i ) for all
i ∈ I, then (x1  x2) D (y1  y2).

(Anon) For any x ∈ X I and π ∈ Π, (x x) ̂ (x π(x)).
(DP0D) For all x, y ∈ X I , we have (x x) ̂ (y y).
(DP1D) For all x1, x2, y1, y2 ∈ X I , if (x1  x2) D (y1  y2), then

(x2  x1) E (y2  y1).

(DP2D) For all x0, x1, x2 and y0, y1, y2 ∈ X I , if (x0  x1) D (y0  y1)

and (x1  x2) D (y1  y2) then (x0  x2) D (y0  y2).

(DP3D) For all x0, x1, x2 and y0, y1, y2 ∈ X I , if (x0  x1) D (y1  y2)

and (x1  x2) D (y0  y1) then (x0  x2) D (y0  y2).

Axiom (WPar) is a weak form of the Pareto axiom.
Axiom (Anon) is a weak form of ‘anonymity’ or ‘impartiality’. (The
elements of I are merely ‘placeholders’, with no psychological content.)
Axioms (DP0D)-(DP3D) are the analogs of (DP0)-(DP3).
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Axiom (WPar) is a weak form of the Pareto axiom.
Axiom (Anon) is a weak form of ‘anonymity’ or ‘impartiality’. (The
elements of I are merely ‘placeholders’, with no psychological content.)
Axioms (DP0D)-(DP3D) are the analogs of (DP0)-(DP3).
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Suppose X := P × R+, where P := set of ‘personality types’.
The state (p, r) ∈ P × R+ represents a p-type person holding r dollars.
Suppose we can only approximately compare the marginal benefit of money
for different people.
Let I := {1, 2} (‘Juan’ and ‘Sue’), and fix p := (p1, p2) (with p1, p2 ∈ P).
Suppose there exists a nondecreasing ‘benefit function’ β : R+−→R and a
constant C ≥ 1 such that, for any r1 < s1 and r2 < s2 ∈ R+,

(
β(s1) − β(r1)

β(s2) − β(r2)
> C

)
=⇒

(
((p1, r1) (p1, s1)) ≻ ((p2, r2) (p2, s2))

)
.

Take social state (p, r) ∈ PI ×R
I , where r1 < r2 (Juan is poorer than Sue).

A redistributive transfer is a change (p, r) (p, s), where
r1 ≤ s1 ≤ s2 ≤ r2, and where s1 + s2 ≤ r1 + r2.
(Here (r1 + r2) − (s1 + s2) = efficiency loss caused by the transfer, due to
disincentive effects, enforcement costs, corruption, waste, etc.)
The ‘status quo’ option is simply the ‘null’ transfer (p, r) (p, r).
Question. Is some redistribution socially superior to the status quo?
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Application: Redistributive transfers (2) (17/46)

(
β(s1) − β(r1)

β(s2) − β(r2)
> C

)
=⇒

(
((p1, r1) (p1, s1)) ≻ ((p2, r2) (p2, s2))

)
.

Proposition. Suppose there exists r ′2 ≥ r2 with
β(s1) − β(r1)

β(r ′2) − β(s2)
> C.

(So, average slope of β is decreasing. Declining marginal benefits from wealth.)

If (D ) is any (�)-SDP on X I , then ((p, r) (p, s))D ((p, r) (p, r)).

If r ′2 > r2, and (D ) satisfies (SPar), then (p, r) (p, s) ⊲ (p, r) (p, r).

Example. Suppose β(r) = log2(r) for all r ∈ R+, and C := 2. Let
r1 := $128 and r2 := $2047.
Let s1 := $513 and s2 := $1024. Thus, the transfer ((p, r) (p, s)) taxes
$1023 from Sue, and gives $385 to Juan (the other $638 is lost due to
inefficiencies). Let r ′2 := $2048. Then r ′2 > r2, and

log2(s1) − log2(r1)

log2(r
′
2) − log2(s2)

=
log2(513) − log2(128)

log2(2048) − log2(1024)
>

9 − 7

11 − 10
= 2 = C .

Thus, any SDP will say this transfer is socially superior to the status quo.
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log2(s1) − log2(r1)

log2(r
′
2) − log2(s2)

=
log2(513) − log2(128)

log2(2048) − log2(1024)
>

9 − 7

11 − 10
= 2 = C .

Thus, any SDP will say this transfer is socially superior to the status quo.
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Quasiutilitarian SDPs (19/46)

Let V ⊆ U(�) be a nonempty set of weak utility functions for (�).

We define the V-quasiutilitarian SDP (D
V

) as follows. For any

x1, x2, y1, y2 ∈ X I , set (x1  x2) D
V

(y1  y2) if,

for all v ∈ V,
∑

i∈I

(
v(x2

i ) − v(x1
i )
)

≥
∑

i∈I

(
v(y2

i ) − v(y1
i )
)

.

Proposition 2. Let (�) be a difference preorder on X , and let V ⊆ U(�).
(a) (D

V
) is an (�)-SDP on X I .

(b) If V contains a strong utility function for (�), or V yields a multiutility

representation for (�), then (D
V

) satisfies the ‘strong Pareto’ axiom:

◮ (SPar) For any x1, x2, y1, y2 ∈ X I , if (x1
i  x2

i ) � (y1
i  y2

i ) for all

i ∈ I, and (x1
i  x2

i )≻ (y1
i  y2

i ) for some i ∈ I, then

(x1  x2) ⊲ (y1  y2).
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When is an SDP quasiutilitarian? (20/46)

Let (D ) be a (�)-SDP, and let (R, +, >) be a loag.

Definition: An R-valued social welfare function (SWF) for (D ) is a

function W : X I−→R such that, for any x1, x2, y1, y2 ∈ X I , we have
(
(x1  x2) D (y1  y2)

)
=⇒

(
W (x2) − W (x1) ≥ W (y2) − W (y1)

)
.

Definition: A collection W of SWFs yields a multiwelfare representation

for (D ) if, for any x1, x2, y1, y2 ∈ X I , we have

(x1
 x2)D (y1

 y2) ⇔
(
W (x2) − W (x1) ≥ W (y2) − W (y1), ∀ W ∈ W

)
.

Here is our first major result:

Theorem A. Let (D ) be a (�)-SDP on X I .

(
(D ) admits a multiwelfare representation

)
⇐⇒

(
(D ) is quasiutilitarian

)
.
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The minimal SDP



Extension and refinement (22/46)

Let (D
1

) and (D
2

) be two (�)-SDPs on X I .

We say (D
2

) extends (D
1

) if, for all x1, x2, y1, y2 ∈ X I , we have

(
(x1  x2)D

1
(y1  y2)

)
=⇒

(
(x1  x2)D

2
(y1  y2)

)
.

Let ( 1̂ ) be the symmetric part of (D
1

). Let ( ⊲
1
) be its antisymmetric part.

We say (D
2

) refines (D
1

) if, for all x1, x2, y1, y2 ∈ X I , we have

(
(x1  x2) ⊲

1
(y1  y2)

)
=⇒

(
(x1  x2) ⊲

2
(y1  y2)

)
;

and
(
(x1  x2) 1̂ (y1  y2)

)
=⇒

(
(x1  x2)D

2
(y1  y2)

or (x1  x2)E
2

(y1  y2)

)
.

Example. The approximate utilitarian SDP (D
u

) is the V-quasiutilitarian

SDP (D
V

) where V := U(� ) (all weak utility functions for (�)).

Fact: Every other quasiutilitarian SDP extends (D
u

).
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The minimal SDP (23/46)

Let SDP(�) be the set of all (�)-social difference preorders on X I .
Define the minimal SDP as follows: for any x1, x2, y1, y2 ∈ X I ,
(
(x1  x2)D

∗
(y1  y2)

)
⇔
(
(x1  x2)D (y1  y2), ∀ (D ) ∈ SDP(�)

)
.

Proposition. Let (D ) be any (�)-SDP.

(a) (D ) extends (D
∗

).

(b) (D ) satisfies (SPar) ⇐⇒ (D ) refines (D
∗

) and (D
∗

) satisfies (SPar).

Upshot: (D
∗

) is the ‘core’ of every (�)-SDP on X I .

Definition: A difference preorder (�) is empathic if, for any
x1, x2, y1 ∈ X , there exists y2 ∈ X such that (x1  x2)≈(y1  y2).

Idea: For any possible state transition facing a person in state x1, a person
in state y1 can imagine an exactly analogous transition for herself.

Theorem B. If (�) is empathic, and has multiutility representation given

by some subset V ⊆ U(�), then (D
∗

) = (D
u

) = (D
V

).
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Definition: A difference preorder (�) is empathic if, for any
x1, x2, y1 ∈ X , there exists y2 ∈ X such that (x1  x2)≈(y1  y2).

Idea: For any possible state transition facing a person in state x1, a person
in state y1 can imagine an exactly analogous transition for herself.

Theorem B. If (�) is empathic, and has multiutility representation given

by some subset V ⊆ U(�), then (D
∗

) = (D
u

) = (D
V

).



The minimal SDP (23/46)

Let SDP(�) be the set of all (�)-social difference preorders on X I .
Define the minimal SDP as follows: for any x1, x2, y1, y2 ∈ X I ,
(
(x1  x2)D

∗
(y1  y2)

)
⇔
(
(x1  x2)D (y1  y2), ∀ (D ) ∈ SDP(�)

)
.

Proposition. Let (D ) be any (�)-SDP.

(a) (D ) extends (D
∗

).

(b) (D ) satisfies (SPar) ⇐⇒ (D ) refines (D
∗

) and (D
∗

) satisfies (SPar).

Upshot: (D
∗

) is the ‘core’ of every (�)-SDP on X I .

Definition: A difference preorder (�) is empathic if, for any
x1, x2, y1 ∈ X , there exists y2 ∈ X such that (x1  x2)≈(y1  y2).

Idea: For any possible state transition facing a person in state x1, a person
in state y1 can imagine an exactly analogous transition for herself.

Theorem B. If (�) is empathic, and has multiutility representation given

by some subset V ⊆ U(�), then (D
∗

) = (D
u

) = (D
V

).



The minimal SDP (23/46)

Let SDP(�) be the set of all (�)-social difference preorders on X I .
Define the minimal SDP as follows: for any x1, x2, y1, y2 ∈ X I ,
(
(x1  x2)D

∗
(y1  y2)

)
⇔
(
(x1  x2)D (y1  y2), ∀ (D ) ∈ SDP(�)

)
.

Proposition. Let (D ) be any (�)-SDP.

(a) (D ) extends (D
∗

).

(b) (D ) satisfies (SPar) ⇐⇒ (D ) refines (D
∗

) and (D
∗

) satisfies (SPar).

Upshot: (D
∗

) is the ‘core’ of every (�)-SDP on X I .

Definition: A difference preorder (�) is empathic if, for any
x1, x2, y1 ∈ X , there exists y2 ∈ X such that (x1  x2)≈(y1  y2).

Idea: For any possible state transition facing a person in state x1, a person
in state y1 can imagine an exactly analogous transition for herself.

Theorem B. If (�) is empathic, and has multiutility representation given

by some subset V ⊆ U(�), then (D
∗

) = (D
u

) = (D
V

).



The minimal SDP (23/46)

Let SDP(�) be the set of all (�)-social difference preorders on X I .
Define the minimal SDP as follows: for any x1, x2, y1, y2 ∈ X I ,
(
(x1  x2)D

∗
(y1  y2)

)
⇔
(
(x1  x2)D (y1  y2), ∀ (D ) ∈ SDP(�)

)
.

Proposition. Let (D ) be any (�)-SDP.

(a) (D ) extends (D
∗

).

(b) (D ) satisfies (SPar) ⇐⇒ (D ) refines (D
∗

) and (D
∗

) satisfies (SPar).

Upshot: (D
∗

) is the ‘core’ of every (�)-SDP on X I .

Definition: A difference preorder (�) is empathic if, for any
x1, x2, y1 ∈ X , there exists y2 ∈ X such that (x1  x2)≈(y1  y2).

Idea: For any possible state transition facing a person in state x1, a person
in state y1 can imagine an exactly analogous transition for herself.

Theorem B. If (�) is empathic, and has multiutility representation given

by some subset V ⊆ U(�), then (D
∗

) = (D
u

) = (D
V

).



The minimal SDP (23/46)

Let SDP(�) be the set of all (�)-social difference preorders on X I .
Define the minimal SDP as follows: for any x1, x2, y1, y2 ∈ X I ,
(
(x1  x2)D

∗
(y1  y2)

)
⇔
(
(x1  x2)D (y1  y2), ∀ (D ) ∈ SDP(�)

)
.

Proposition. Let (D ) be any (�)-SDP.

(a) (D ) extends (D
∗

).

(b) (D ) satisfies (SPar) ⇐⇒ (D ) refines (D
∗

) and (D
∗

) satisfies (SPar).

Upshot: (D
∗

) is the ‘core’ of every (�)-SDP on X I .

Definition: A difference preorder (�) is empathic if, for any
x1, x2, y1 ∈ X , there exists y2 ∈ X such that (x1  x2)≈(y1  y2).

Idea: For any possible state transition facing a person in state x1, a person
in state y1 can imagine an exactly analogous transition for herself.

Theorem B. If (�) is empathic, and has multiutility representation given

by some subset V ⊆ U(�), then (D
∗

) = (D
u

) = (D
V

).



The minimal SDP (23/46)

Let SDP(�) be the set of all (�)-social difference preorders on X I .
Define the minimal SDP as follows: for any x1, x2, y1, y2 ∈ X I ,
(
(x1  x2)D

∗
(y1  y2)

)
⇔
(
(x1  x2)D (y1  y2), ∀ (D ) ∈ SDP(�)

)
.

Proposition. Let (D ) be any (�)-SDP.

(a) (D ) extends (D
∗

).

(b) (D ) satisfies (SPar) ⇐⇒ (D ) refines (D
∗

) and (D
∗

) satisfies (SPar).

Upshot: (D
∗

) is the ‘core’ of every (�)-SDP on X I .

Definition: A difference preorder (�) is empathic if, for any
x1, x2, y1 ∈ X , there exists y2 ∈ X such that (x1  x2)≈(y1  y2).

Idea: For any possible state transition facing a person in state x1, a person
in state y1 can imagine an exactly analogous transition for herself.

Theorem B. If (�) is empathic, and has multiutility representation given

by some subset V ⊆ U(�), then (D
∗

) = (D
u

) = (D
V

).



The minimal SDP (23/46)

Let SDP(�) be the set of all (�)-social difference preorders on X I .
Define the minimal SDP as follows: for any x1, x2, y1, y2 ∈ X I ,
(
(x1  x2)D

∗
(y1  y2)

)
⇔
(
(x1  x2)D (y1  y2), ∀ (D ) ∈ SDP(�)

)
.

Proposition. Let (D ) be any (�)-SDP.

(a) (D ) extends (D
∗

).

(b) (D ) satisfies (SPar) ⇐⇒ (D ) refines (D
∗

) and (D
∗

) satisfies (SPar).

Upshot: (D
∗

) is the ‘core’ of every (�)-SDP on X I .

Definition: A difference preorder (�) is empathic if, for any
x1, x2, y1 ∈ X , there exists y2 ∈ X such that (x1  x2)≈(y1  y2).

Idea: For any possible state transition facing a person in state x1, a person
in state y1 can imagine an exactly analogous transition for herself.

Theorem B. If (�) is empathic, and has multiutility representation given

by some subset V ⊆ U(�), then (D
∗

) = (D
u

) = (D
V

).



Minimality of the approximate utilitarian SDP: example(24/46)

Theorem B. If (�) is empathic, and has multiutility representation given

by some subset V ⊆ U(�), then (D
∗

) = (D
u

) = (D
V

).

Example. Let X := R
N , where each coordinate is some quantitative

measure of well-being (e.g. a functioning, consumption level, health, etc.).
For any x1, x2, y1, y2 ∈ X , suppose (x1  x2) � (y1  y2) if and only if
(x2 − x1) ≥ (y2 − y1) (where “≥” means coordinatewise dominance).
Then (�) is empathic. Furthermore, the N coordinate projections on R

N

provide a multiutility representation for (�).
Thus, Theorem B says that every (�)-SDP on X I is built on a foundation
of utilitarian principles.
In particular, if N = 1 (i.e. X = R), then (�) is a complete order on
X × X , and U(�) = {all affine increasing functions from R to itself}.
In this case, (D

u

) is equivalent to the classic utilitarian SWO:
(
(x1  x2) D

u

(y1  y2)
)

⇐⇒

(∑

i∈I

(
x2
i − x1

i

)
≥
∑

i∈I

(
y2
i − y1

i

))
.

Then Theorem B implies that (D
u

) is the unique (�)-SDP on X I .



Minimality of the approximate utilitarian SDP: example(24/46)

Theorem B. If (�) is empathic, and has multiutility representation given

by some subset V ⊆ U(�), then (D
∗

) = (D
u

) = (D
V

).

Example. Let X := R
N , where each coordinate is some quantitative

measure of well-being (e.g. a functioning, consumption level, health, etc.).
For any x1, x2, y1, y2 ∈ X , suppose (x1  x2) � (y1  y2) if and only if
(x2 − x1) ≥ (y2 − y1) (where “≥” means coordinatewise dominance).
Then (�) is empathic. Furthermore, the N coordinate projections on R

N

provide a multiutility representation for (�).
Thus, Theorem B says that every (�)-SDP on X I is built on a foundation
of utilitarian principles.
In particular, if N = 1 (i.e. X = R), then (�) is a complete order on
X × X , and U(�) = {all affine increasing functions from R to itself}.
In this case, (D

u

) is equivalent to the classic utilitarian SWO:
(
(x1  x2) D

u

(y1  y2)
)

⇐⇒

(∑

i∈I

(
x2
i − x1

i

)
≥
∑

i∈I

(
y2
i − y1

i

))
.

Then Theorem B implies that (D
u

) is the unique (�)-SDP on X I .



Minimality of the approximate utilitarian SDP: example(24/46)

Theorem B. If (�) is empathic, and has multiutility representation given

by some subset V ⊆ U(�), then (D
∗

) = (D
u

) = (D
V

).

Example. Let X := R
N , where each coordinate is some quantitative

measure of well-being (e.g. a functioning, consumption level, health, etc.).
For any x1, x2, y1, y2 ∈ X , suppose (x1  x2) � (y1  y2) if and only if
(x2 − x1) ≥ (y2 − y1) (where “≥” means coordinatewise dominance).
Then (�) is empathic. Furthermore, the N coordinate projections on R

N

provide a multiutility representation for (�).
Thus, Theorem B says that every (�)-SDP on X I is built on a foundation
of utilitarian principles.
In particular, if N = 1 (i.e. X = R), then (�) is a complete order on
X × X , and U(�) = {all affine increasing functions from R to itself}.
In this case, (D

u

) is equivalent to the classic utilitarian SWO:
(
(x1  x2) D

u

(y1  y2)
)

⇐⇒

(∑

i∈I

(
x2
i − x1

i

)
≥
∑

i∈I

(
y2
i − y1

i

))
.

Then Theorem B implies that (D
u

) is the unique (�)-SDP on X I .



Minimality of the approximate utilitarian SDP: example(24/46)

Theorem B. If (�) is empathic, and has multiutility representation given

by some subset V ⊆ U(�), then (D
∗

) = (D
u

) = (D
V

).

Example. Let X := R
N , where each coordinate is some quantitative

measure of well-being (e.g. a functioning, consumption level, health, etc.).
For any x1, x2, y1, y2 ∈ X , suppose (x1  x2) � (y1  y2) if and only if
(x2 − x1) ≥ (y2 − y1) (where “≥” means coordinatewise dominance).
Then (�) is empathic. Furthermore, the N coordinate projections on R

N

provide a multiutility representation for (�).
Thus, Theorem B says that every (�)-SDP on X I is built on a foundation
of utilitarian principles.
In particular, if N = 1 (i.e. X = R), then (�) is a complete order on
X × X , and U(�) = {all affine increasing functions from R to itself}.
In this case, (D

u

) is equivalent to the classic utilitarian SWO:
(
(x1  x2) D

u

(y1  y2)
)

⇐⇒

(∑

i∈I

(
x2
i − x1

i

)
≥
∑

i∈I

(
y2
i − y1

i

))
.

Then Theorem B implies that (D
u

) is the unique (�)-SDP on X I .



Minimality of the approximate utilitarian SDP: example(24/46)

Theorem B. If (�) is empathic, and has multiutility representation given

by some subset V ⊆ U(�), then (D
∗

) = (D
u

) = (D
V

).

Example. Let X := R
N , where each coordinate is some quantitative

measure of well-being (e.g. a functioning, consumption level, health, etc.).
For any x1, x2, y1, y2 ∈ X , suppose (x1  x2) � (y1  y2) if and only if
(x2 − x1) ≥ (y2 − y1) (where “≥” means coordinatewise dominance).
Then (�) is empathic. Furthermore, the N coordinate projections on R

N

provide a multiutility representation for (�).
Thus, Theorem B says that every (�)-SDP on X I is built on a foundation
of utilitarian principles.
In particular, if N = 1 (i.e. X = R), then (�) is a complete order on
X × X , and U(�) = {all affine increasing functions from R to itself}.
In this case, (D

u

) is equivalent to the classic utilitarian SWO:
(
(x1  x2) D

u

(y1  y2)
)

⇐⇒

(∑

i∈I

(
x2
i − x1

i

)
≥
∑

i∈I

(
y2
i − y1

i

))
.

Then Theorem B implies that (D
u

) is the unique (�)-SDP on X I .



Minimality of the approximate utilitarian SDP: example(24/46)

Theorem B. If (�) is empathic, and has multiutility representation given

by some subset V ⊆ U(�), then (D
∗

) = (D
u

) = (D
V

).

Example. Let X := R
N , where each coordinate is some quantitative

measure of well-being (e.g. a functioning, consumption level, health, etc.).
For any x1, x2, y1, y2 ∈ X , suppose (x1  x2) � (y1  y2) if and only if
(x2 − x1) ≥ (y2 − y1) (where “≥” means coordinatewise dominance).
Then (�) is empathic. Furthermore, the N coordinate projections on R

N

provide a multiutility representation for (�).
Thus, Theorem B says that every (�)-SDP on X I is built on a foundation
of utilitarian principles.
In particular, if N = 1 (i.e. X = R), then (�) is a complete order on
X × X , and U(�) = {all affine increasing functions from R to itself}.
In this case, (D

u

) is equivalent to the classic utilitarian SWO:
(
(x1  x2) D

u

(y1  y2)
)

⇐⇒

(∑

i∈I

(
x2
i − x1

i

)
≥
∑

i∈I

(
y2
i − y1

i

))
.

Then Theorem B implies that (D
u

) is the unique (�)-SDP on X I .



Minimality of the approximate utilitarian SDP: example(24/46)

Theorem B. If (�) is empathic, and has multiutility representation given

by some subset V ⊆ U(�), then (D
∗

) = (D
u

) = (D
V

).

Example. Let X := R
N , where each coordinate is some quantitative

measure of well-being (e.g. a functioning, consumption level, health, etc.).
For any x1, x2, y1, y2 ∈ X , suppose (x1  x2) � (y1  y2) if and only if
(x2 − x1) ≥ (y2 − y1) (where “≥” means coordinatewise dominance).
Then (�) is empathic. Furthermore, the N coordinate projections on R

N

provide a multiutility representation for (�).
Thus, Theorem B says that every (�)-SDP on X I is built on a foundation
of utilitarian principles.
In particular, if N = 1 (i.e. X = R), then (�) is a complete order on
X × X , and U(�) = {all affine increasing functions from R to itself}.
In this case, (D

u

) is equivalent to the classic utilitarian SWO:
(
(x1  x2) D

u

(y1  y2)
)

⇐⇒

(∑

i∈I

(
x2
i − x1

i

)
≥
∑

i∈I

(
y2
i − y1

i

))
.

Then Theorem B implies that (D
u

) is the unique (�)-SDP on X I .



Minimality of the approximate utilitarian SDP: example(24/46)

Theorem B. If (�) is empathic, and has multiutility representation given

by some subset V ⊆ U(�), then (D
∗

) = (D
u

) = (D
V

).

Example. Let X := R
N , where each coordinate is some quantitative

measure of well-being (e.g. a functioning, consumption level, health, etc.).
For any x1, x2, y1, y2 ∈ X , suppose (x1  x2) � (y1  y2) if and only if
(x2 − x1) ≥ (y2 − y1) (where “≥” means coordinatewise dominance).
Then (�) is empathic. Furthermore, the N coordinate projections on R

N

provide a multiutility representation for (�).
Thus, Theorem B says that every (�)-SDP on X I is built on a foundation
of utilitarian principles.
In particular, if N = 1 (i.e. X = R), then (�) is a complete order on
X × X , and U(�) = {all affine increasing functions from R to itself}.
In this case, (D

u

) is equivalent to the classic utilitarian SWO:
(
(x1  x2) D

u

(y1  y2)
)

⇐⇒

(∑

i∈I

(
x2
i − x1

i

)
≥
∑

i∈I

(
y2
i − y1

i

))
.

Then Theorem B implies that (D
u

) is the unique (�)-SDP on X I .



No extra hidden interpersonal comparisons [Skip to end] (25/46)

For any x ∈ X , z ∈ X I , and j ∈ I, we define ( xj

z−j
) ∈ X I by setting

( xj

z−j
)j := x , while ( xj

z−j
)i := zi for all i ∈ I \ {j}.

Let (D ) be a (�)-SDP. We say that (D ) exhibits no extra hidden

interpersonal comparisons if the following holds:
(NEHIC) For all x , x ′, y , y ′ ∈ X and z ∈ X I ,(
(x  x ′) � (y  x ′)

)
⇐⇒

(((
xj

z−j

)
 

(
x ′
j

z−j

))
D

((
yj

z−j

)
 

(
y ′
j

z−j

)))
.

(Note: “ =⇒ ” follows immediately from axiom (WPar). The real content of

(NEHIC) lies in the “⇐=” direction.)

Idea: If (( xj

z−j
) ( x ′

j
z−j

))D (( yj

z−j
) ( y ′

j
z−j

)), then (D ) is implicitly judging

that (x  x ′) is a greater welfare gain than (y  y ′).
(NEHIC) says that (D ) can only make such interpersonal comparisons

when they are justified by the underlying difference preorder (�).
Theorem C. Suppose (�) is empathic. Let (D ) be an (�)-SDP.

If (D ) has a multiwelfare representation and satisfies (NEHIC), then

(D ) = (D
u

) = (D
∗

).



No extra hidden interpersonal comparisons [Skip to end] (25/46)

For any x ∈ X , z ∈ X I , and j ∈ I, we define ( xj

z−j
) ∈ X I by setting

( xj

z−j
)j := x , while ( xj

z−j
)i := zi for all i ∈ I \ {j}.

Let (D ) be a (�)-SDP. We say that (D ) exhibits no extra hidden

interpersonal comparisons if the following holds:
(NEHIC) For all x , x ′, y , y ′ ∈ X and z ∈ X I ,(
(x  x ′) � (y  x ′)

)
⇐⇒

(((
xj

z−j

)
 

(
x ′
j

z−j

))
D

((
yj

z−j

)
 

(
y ′
j

z−j

)))
.

(Note: “ =⇒ ” follows immediately from axiom (WPar). The real content of

(NEHIC) lies in the “⇐=” direction.)

Idea: If (( xj

z−j
) ( x ′

j
z−j

))D (( yj

z−j
) ( y ′

j
z−j

)), then (D ) is implicitly judging

that (x  x ′) is a greater welfare gain than (y  y ′).
(NEHIC) says that (D ) can only make such interpersonal comparisons

when they are justified by the underlying difference preorder (�).
Theorem C. Suppose (�) is empathic. Let (D ) be an (�)-SDP.

If (D ) has a multiwelfare representation and satisfies (NEHIC), then

(D ) = (D
u

) = (D
∗

).



No extra hidden interpersonal comparisons [Skip to end] (25/46)

For any x ∈ X , z ∈ X I , and j ∈ I, we define ( xj

z−j
) ∈ X I by setting

( xj

z−j
)j := x , while ( xj

z−j
)i := zi for all i ∈ I \ {j}.

Let (D ) be a (�)-SDP. We say that (D ) exhibits no extra hidden

interpersonal comparisons if the following holds:
(NEHIC) For all x , x ′, y , y ′ ∈ X and z ∈ X I ,(
(x  x ′) � (y  x ′)

)
⇐⇒

(((
xj

z−j

)
 

(
x ′
j

z−j

))
D

((
yj

z−j

)
 

(
y ′
j

z−j

)))
.

(Note: “ =⇒ ” follows immediately from axiom (WPar). The real content of

(NEHIC) lies in the “⇐=” direction.)

Idea: If (( xj

z−j
) ( x ′

j
z−j

))D (( yj

z−j
) ( y ′

j
z−j

)), then (D ) is implicitly judging

that (x  x ′) is a greater welfare gain than (y  y ′).
(NEHIC) says that (D ) can only make such interpersonal comparisons

when they are justified by the underlying difference preorder (�).
Theorem C. Suppose (�) is empathic. Let (D ) be an (�)-SDP.

If (D ) has a multiwelfare representation and satisfies (NEHIC), then

(D ) = (D
u

) = (D
∗

).



No extra hidden interpersonal comparisons [Skip to end] (25/46)

For any x ∈ X , z ∈ X I , and j ∈ I, we define ( xj

z−j
) ∈ X I by setting

( xj

z−j
)j := x , while ( xj

z−j
)i := zi for all i ∈ I \ {j}.

Let (D ) be a (�)-SDP. We say that (D ) exhibits no extra hidden

interpersonal comparisons if the following holds:
(NEHIC) For all x , x ′, y , y ′ ∈ X and z ∈ X I ,(
(x  x ′) � (y  x ′)

)
⇐⇒

(((
xj

z−j

)
 

(
x ′
j

z−j

))
D

((
yj

z−j

)
 

(
y ′
j

z−j

)))
.

(Note: “ =⇒ ” follows immediately from axiom (WPar). The real content of

(NEHIC) lies in the “⇐=” direction.)

Idea: If (( xj

z−j
) ( x ′

j
z−j

))D (( yj

z−j
) ( y ′

j
z−j

)), then (D ) is implicitly judging

that (x  x ′) is a greater welfare gain than (y  y ′).
(NEHIC) says that (D ) can only make such interpersonal comparisons

when they are justified by the underlying difference preorder (�).
Theorem C. Suppose (�) is empathic. Let (D ) be an (�)-SDP.

If (D ) has a multiwelfare representation and satisfies (NEHIC), then

(D ) = (D
u

) = (D
∗

).



No extra hidden interpersonal comparisons [Skip to end] (25/46)

For any x ∈ X , z ∈ X I , and j ∈ I, we define ( xj

z−j
) ∈ X I by setting

( xj

z−j
)j := x , while ( xj

z−j
)i := zi for all i ∈ I \ {j}.

Let (D ) be a (�)-SDP. We say that (D ) exhibits no extra hidden
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Theorems A, B and C give three compelling characterizations of
quasiutilitarian SDPs.

Unfortunately, these results all depend on a multiwelfare or multiutility
representation.

Now we will dispense with this assumption.
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The (J ,K)-preorder: definition (28/46)

Let x1, x2, y1, y2 ∈ X I . Let J ,K ⊆ I with J := |J | and K := |K|.
Write “(x1  x2) D

J ,K
(y1  y2)” if there exist w0, w1, . . . ,wJ ∈ X and

z0, z1, . . . , zK ∈ X and bijections α : J−→[1 . . . J] and β : K−→[1 . . .K ]
such that:

(JK1) (x1
j  x2

j ) � (wα(j)−1  wα(j)) for all j ∈ J ;

(JK2) (zβ(k)−1  zβ(k)) � (y1
k  y2

k ), for all k ∈ K; and

(JK3) (w0  wJ) � (z0  zK ).

Idea. w0  wJ aggregates the net welfare gain of the chain
w0  w1  w2  · · · wJ .

Thus, (JK1) implies that net welfare gain for the J -population induced by
the change x1  x2 is at least as large as the net welfare gain of w0  wJ .
Meanwhile, (JK2) implies that the net welfare gain for the K-population
induced by y1  y2 is at most as large as z0  zK .
Thus, if (JK3) holds, then the J -population, in aggregate, gains more
welfare from x1  x2 than the K-population gains from y1  y2.
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Net Gain: definition (29/46)

A partition of I is a collection {Jℓ}ℓ∈L of disjoint subsets of I (where L :=

some indexing set), such that I =
⊔

ℓ∈L

Jℓ.

Define the net gain relation as follows: For any x1, x2, y1, y2 ∈ X I , say
(x1  x2) D

ng

(y1  y2) if there exist two partitions {Jℓ}ℓ∈L and {Kℓ}ℓ∈L

of I (with the same indexing set L), such that,

For all ℓ ∈ L, (x1
 x2) D

Jℓ,Kℓ

(y1
 y2).

Idea. We can split up I into disjoint subsets such that, for each ℓ ∈ L, the
‘net welfare gain’ induced by x1  x2 for Jℓ is larger than the ‘net welfare
gain’ induced by y1  y2 for Kℓ.
Thus, if we aggregate over all ℓ ∈ L, then the ‘net welfare gain’ over all of
I must be greater for x1  x2 than it is for y1  y2.
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Net Gain is the minimal SDP (30/46)

Recall: (x1  x2)D
ng

(y1  y2) if there exist two partitions {Jℓ}ℓ∈L and

{Kℓ}ℓ∈L of I (with the same indexing set L), such that,

for all ℓ ∈ L, (x1
 x2) D

Jℓ,Kℓ

(y1
 y2).

We now come to our fourth major result:

Theorem D. If (�) is empathic, then (D
ng

) = (D
∗

), and satisfies (SPar).

In general, if (�) is not empathic, then (D
ng

) might not be an SDP; however

it will still be the case that every SDP extends (D
ng

).

Proposition.

◮ The relation (D
ng

) is reflexive, and satisfies axioms (WPar), (Anon),

(DP0D), and (DP1D).

◮ If (D ) is any (�)-SDP on X I , then (D ) extends (D
ng

). Furthermore,

if (D ) also satisfies (SPar), then (D ) also refines (D
ng

).
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if (D ) also satisfies (SPar), then (D ) also refines (D
ng

).



From SDPs to social preorders, and back again



Social Preorders (32/46)

Let (≻�) be an (ordinary) preorder on X , encoding approximate

interpersonal comparisons of welfare levels.
Thus, the formula “x ≻� y” means “a person in state x has greater

well-being than a person in state y”.
A (≻�)-social preorder is a preorder (◮) on X I satisfying two axioms:

(WPar′) For any x, y ∈ X I , if xi ≻� yi for all i ∈ I, then x◮ y.

(Anon′) For any x ∈ X I and π ∈ Π, x
N

≡π(x).

Thus, a social preorder is the analog of a social welfare order (SWO) in the
context of the approximate interpersonal comparisons encoded by (≻�).

In particular, if X = R with the standard (complete linear) ordering (≻�),

then a SWO is just a complete social preorder on R
I .

Let R be a loag. A function W : X I−→R is a social welfare function

(SWF) for (◮) if, for all x, y ∈ X I , we have
(
x◮ y

)
⇒
(
W (x) ≥ W (y)

)
.
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From SDPs to social preorders, and back again (33/46)

Goal: Method to convert a social preorder on X I into a social difference
preorder, or vice versa.
Two applications.

1. Define and/or axiomatically characterize new SDPs, starting from
social preorders. (Thus, can leverage previous results on ‘approximate
interpersonal comparisons’, e.g. from Pivato (2011,2012).)

2. Define and/or axiomatically characterize a social preorder, starting
from an SDP (e.g. apply Theorems A-D to social preorders).

Motivation. Sometimes we only needs to choose an optimal social state

(rather than an optimal social state transition).
For this, we only needs a social preorder (◮), not an SDP.

But if we can make approximate interpersonal comparisons of individual
welfare changes (as encoded by some difference preorder (�)), then we may

want (◮) to be “rationalizable” by some (�)-SDP.

Thus, although (◮) is only comparing social states, and not social

transitions, it is ‘implicitly’ trading off between individual gains/losses.
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Separability (34/46)

Let x, y ∈ X I , and let J ,K ⊆ I be disjoint subsets such that J ⊔ K = I.
Define ( xJ

yK
) ∈ X I by setting ( xJ

yK
)j := xj for all j ∈ J , while (xJ

yK
)k := yk

for all k ∈ K.

A preorder (◮) on X I is separable if, for any x, y, z,w ∈ X I , and any

disjoint J ,K ⊂ I with J ⊔ K = I, we have

((
xJ
zK

)
◮

(
yJ
zK

))
⇐⇒

((
xJ
wK

)
◮

(
yJ
wK

))
.

(For example, if X = R, then the classic utilitarian SWO, the leximin SWO,
and the Nash SWO are all separable preorders on R

I .)

Idea. Since (xJ
zK

) and (yJ
zK

) have identical K coordinates, the ordering
between them ‘should’ be decided only by comparing xJ with yJ .
But by the same argument, the ordering of ( xJ

wK
) and ( yJ

wK
) should be

decided by comparing xJ with yJ ; hence it should agree with the ordering
of (xJ

zK
) and (yJ

zK
).
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Derivatives of difference preorders (35/46)

Now, let (�) be a difference preorder on X (or X I).

The derivative of (�) is the binary relation (≻�) on X defined as follows:

for any x , y ∈ X ,
(
x ≻� y

)
⇐⇒

(
(y  x)� (y  y)

)
.

Proposition. (a) If (�) is any difference preorder on X , then its derivative

(≻�) is a preorder on X .

(b) If (D) is an (�)-SDP on X I , then its derivative (◮) is a separable

(≻�)-social preorder on X I .

Example. Let V ⊆ U(�), and let (D
V
) be the V-quasiutilitarian SDP.

The derivative of (D
V
) is the V-quasiutilitarian social preorder (◮

V
). For any

x, y ∈ X I , we have x◮
V

y ⇐⇒
∑

i∈I

v(xi ) ≥
∑

i∈I

v(yi ), for all v ∈ V.

Remark. It is also possible to ‘antidifferentiate’ a preorder on X , to obtain
a difference preorder. But the antiderivative of a separable social preorder
is not necessarily an SDP (it could violate (WPar)).
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(≻�) is a preorder on X .

(b) If (D) is an (�)-SDP on X I , then its derivative (◮) is a separable

(≻�)-social preorder on X I .

Example. Let V ⊆ U(�), and let (D
V
) be the V-quasiutilitarian SDP.

The derivative of (D
V
) is the V-quasiutilitarian social preorder (◮

V
). For any

x, y ∈ X I , we have x◮
V

y ⇐⇒
∑

i∈I

v(xi ) ≥
∑

i∈I

v(yi ), for all v ∈ V.

Remark. It is also possible to ‘antidifferentiate’ a preorder on X , to obtain
a difference preorder. But the antiderivative of a separable social preorder
is not necessarily an SDP (it could violate (WPar)).



Derivatives of difference preorders (35/46)

Now, let (�) be a difference preorder on X (or X I).

The derivative of (�) is the binary relation (≻�) on X defined as follows:

for any x , y ∈ X ,
(
x ≻� y

)
⇐⇒

(
(y  x)� (y  y)

)
.

Proposition. (a) If (�) is any difference preorder on X , then its derivative

(≻�) is a preorder on X .

(b) If (D) is an (�)-SDP on X I , then its derivative (◮) is a separable

(≻�)-social preorder on X I .

Example. Let V ⊆ U(�), and let (D
V
) be the V-quasiutilitarian SDP.

The derivative of (D
V
) is the V-quasiutilitarian social preorder (◮

V
). For any

x, y ∈ X I , we have x◮
V

y ⇐⇒
∑

i∈I

v(xi ) ≥
∑

i∈I

v(yi ), for all v ∈ V.

Remark. It is also possible to ‘antidifferentiate’ a preorder on X , to obtain
a difference preorder. But the antiderivative of a separable social preorder
is not necessarily an SDP (it could violate (WPar)).



Derivatives of difference preorders (35/46)

Now, let (�) be a difference preorder on X (or X I).

The derivative of (�) is the binary relation (≻�) on X defined as follows:

for any x , y ∈ X ,
(
x ≻� y

)
⇐⇒

(
(y  x)� (y  y)

)
.

Proposition. (a) If (�) is any difference preorder on X , then its derivative

(≻�) is a preorder on X .

(b) If (D) is an (�)-SDP on X I , then its derivative (◮) is a separable

(≻�)-social preorder on X I .

Example. Let V ⊆ U(�), and let (D
V
) be the V-quasiutilitarian SDP.

The derivative of (D
V
) is the V-quasiutilitarian social preorder (◮

V
). For any

x, y ∈ X I , we have x◮
V

y ⇐⇒
∑

i∈I

v(xi ) ≥
∑

i∈I

v(yi ), for all v ∈ V.

Remark. It is also possible to ‘antidifferentiate’ a preorder on X , to obtain
a difference preorder. But the antiderivative of a separable social preorder
is not necessarily an SDP (it could violate (WPar)).



Derivatives of difference preorders (35/46)

Now, let (�) be a difference preorder on X (or X I).

The derivative of (�) is the binary relation (≻�) on X defined as follows:

for any x , y ∈ X ,
(
x ≻� y

)
⇐⇒

(
(y  x)� (y  y)

)
.

Proposition. (a) If (�) is any difference preorder on X , then its derivative

(≻�) is a preorder on X .

(b) If (D) is an (�)-SDP on X I , then its derivative (◮) is a separable

(≻�)-social preorder on X I .

Example. Let V ⊆ U(�), and let (D
V
) be the V-quasiutilitarian SDP.

The derivative of (D
V
) is the V-quasiutilitarian social preorder (◮

V
). For any

x, y ∈ X I , we have x◮
V

y ⇐⇒
∑

i∈I

v(xi ) ≥
∑

i∈I

v(yi ), for all v ∈ V.

Remark. It is also possible to ‘antidifferentiate’ a preorder on X , to obtain
a difference preorder. But the antiderivative of a separable social preorder
is not necessarily an SDP (it could violate (WPar)).



Derivatives of difference preorders (35/46)

Now, let (�) be a difference preorder on X (or X I).

The derivative of (�) is the binary relation (≻�) on X defined as follows:

for any x , y ∈ X ,
(
x ≻� y

)
⇐⇒

(
(y  x)� (y  y)

)
.

Proposition. (a) If (�) is any difference preorder on X , then its derivative

(≻�) is a preorder on X .

(b) If (D) is an (�)-SDP on X I , then its derivative (◮) is a separable

(≻�)-social preorder on X I .

Example. Let V ⊆ U(�), and let (D
V
) be the V-quasiutilitarian SDP.

The derivative of (D
V
) is the V-quasiutilitarian social preorder (◮

V
). For any

x, y ∈ X I , we have x◮
V

y ⇐⇒
∑

i∈I

v(xi ) ≥
∑

i∈I

v(yi ), for all v ∈ V.

Remark. It is also possible to ‘antidifferentiate’ a preorder on X , to obtain
a difference preorder. But the antiderivative of a separable social preorder
is not necessarily an SDP (it could violate (WPar)).



Derivatives of difference preorders (35/46)

Now, let (�) be a difference preorder on X (or X I).

The derivative of (�) is the binary relation (≻�) on X defined as follows:

for any x , y ∈ X ,
(
x ≻� y

)
⇐⇒

(
(y  x)� (y  y)

)
.

Proposition. (a) If (�) is any difference preorder on X , then its derivative

(≻�) is a preorder on X .

(b) If (D) is an (�)-SDP on X I , then its derivative (◮) is a separable

(≻�)-social preorder on X I .

Example. Let V ⊆ U(�), and let (D
V
) be the V-quasiutilitarian SDP.

The derivative of (D
V
) is the V-quasiutilitarian social preorder (◮

V
). For any

x, y ∈ X I , we have x◮
V

y ⇐⇒
∑

i∈I

v(xi ) ≥
∑

i∈I

v(yi ), for all v ∈ V.

Remark. It is also possible to ‘antidifferentiate’ a preorder on X , to obtain
a difference preorder. But the antiderivative of a separable social preorder
is not necessarily an SDP (it could violate (WPar)).



Derivatives of difference preorders (35/46)

Now, let (�) be a difference preorder on X (or X I).

The derivative of (�) is the binary relation (≻�) on X defined as follows:

for any x , y ∈ X ,
(
x ≻� y

)
⇐⇒

(
(y  x)� (y  y)

)
.

Proposition. (a) If (�) is any difference preorder on X , then its derivative

(≻�) is a preorder on X .

(b) If (D) is an (�)-SDP on X I , then its derivative (◮) is a separable

(≻�)-social preorder on X I .

Example. Let V ⊆ U(�), and let (D
V
) be the V-quasiutilitarian SDP.

The derivative of (D
V
) is the V-quasiutilitarian social preorder (◮

V
). For any

x, y ∈ X I , we have x◮
V

y ⇐⇒
∑

i∈I

v(xi ) ≥
∑

i∈I

v(yi ), for all v ∈ V.

Remark. It is also possible to ‘antidifferentiate’ a preorder on X , to obtain
a difference preorder. But the antiderivative of a separable social preorder
is not necessarily an SDP (it could violate (WPar)).



Factors of separable social preorders (36/46)

Let (≻�) be a preorder on X .

Let (◮) be a separable (≻�)-social preorder on X I .

For any J ⊆ I, define separable (≻�)-social preorder (◮
J

) on XJ as follows.

Let K := I \ J , and fix zK ∈ XK. Then for any xJ , yJ ∈ XJ , we define

(
xJ ◮

J
yJ
)

⇐⇒

((
xJ
zK

)
◮

(
yJ
zK

))
.

By separability, (◮
J

) is well-defined independent of the choice of zK ∈ XK.

Now let J be any set with |J | ≤ |I|.
Define (◮

J
) on XJ by bijectively identifying J with some subset J ′ ⊆ I.

Because (◮) satisfies (Anon′), the resulting preorder is well-defined

independent of the choice of J ′ and the choice of bijection.

We call (◮
J

) the J -factor of (◮).



Factors of separable social preorders (36/46)

Let (≻�) be a preorder on X .

Let (◮) be a separable (≻�)-social preorder on X I .

For any J ⊆ I, define separable (≻�)-social preorder (◮
J

) on XJ as follows.

Let K := I \ J , and fix zK ∈ XK. Then for any xJ , yJ ∈ XJ , we define

(
xJ ◮

J
yJ
)

⇐⇒

((
xJ
zK

)
◮

(
yJ
zK

))
.

By separability, (◮
J

) is well-defined independent of the choice of zK ∈ XK.

Now let J be any set with |J | ≤ |I|.
Define (◮

J
) on XJ by bijectively identifying J with some subset J ′ ⊆ I.

Because (◮) satisfies (Anon′), the resulting preorder is well-defined

independent of the choice of J ′ and the choice of bijection.

We call (◮
J

) the J -factor of (◮).



Factors of separable social preorders (36/46)

Let (≻�) be a preorder on X .

Let (◮) be a separable (≻�)-social preorder on X I .

For any J ⊆ I, define separable (≻�)-social preorder (◮
J

) on XJ as follows.

Let K := I \ J , and fix zK ∈ XK. Then for any xJ , yJ ∈ XJ , we define

(
xJ ◮

J
yJ
)

⇐⇒

((
xJ
zK

)
◮

(
yJ
zK

))
.

By separability, (◮
J

) is well-defined independent of the choice of zK ∈ XK.

Now let J be any set with |J | ≤ |I|.
Define (◮

J
) on XJ by bijectively identifying J with some subset J ′ ⊆ I.

Because (◮) satisfies (Anon′), the resulting preorder is well-defined

independent of the choice of J ′ and the choice of bijection.

We call (◮
J

) the J -factor of (◮).



Factors of separable social preorders (36/46)

Let (≻�) be a preorder on X .

Let (◮) be a separable (≻�)-social preorder on X I .

For any J ⊆ I, define separable (≻�)-social preorder (◮
J

) on XJ as follows.

Let K := I \ J , and fix zK ∈ XK. Then for any xJ , yJ ∈ XJ , we define

(
xJ ◮

J
yJ
)

⇐⇒

((
xJ
zK

)
◮

(
yJ
zK

))
.

By separability, (◮
J

) is well-defined independent of the choice of zK ∈ XK.

Now let J be any set with |J | ≤ |I|.
Define (◮

J
) on XJ by bijectively identifying J with some subset J ′ ⊆ I.

Because (◮) satisfies (Anon′), the resulting preorder is well-defined

independent of the choice of J ′ and the choice of bijection.

We call (◮
J

) the J -factor of (◮).



Factors of separable social preorders (36/46)

Let (≻�) be a preorder on X .

Let (◮) be a separable (≻�)-social preorder on X I .

For any J ⊆ I, define separable (≻�)-social preorder (◮
J

) on XJ as follows.

Let K := I \ J , and fix zK ∈ XK. Then for any xJ , yJ ∈ XJ , we define

(
xJ ◮

J
yJ
)

⇐⇒

((
xJ
zK

)
◮

(
yJ
zK

))
.

By separability, (◮
J

) is well-defined independent of the choice of zK ∈ XK.

Now let J be any set with |J | ≤ |I|.
Define (◮

J
) on XJ by bijectively identifying J with some subset J ′ ⊆ I.

Because (◮) satisfies (Anon′), the resulting preorder is well-defined

independent of the choice of J ′ and the choice of bijection.

We call (◮
J

) the J -factor of (◮).



Factors of separable social preorders (36/46)

Let (≻�) be a preorder on X .

Let (◮) be a separable (≻�)-social preorder on X I .

For any J ⊆ I, define separable (≻�)-social preorder (◮
J

) on XJ as follows.

Let K := I \ J , and fix zK ∈ XK. Then for any xJ , yJ ∈ XJ , we define

(
xJ ◮

J
yJ
)

⇐⇒

((
xJ
zK

)
◮

(
yJ
zK

))
.

By separability, (◮
J

) is well-defined independent of the choice of zK ∈ XK.

Now let J be any set with |J | ≤ |I|.
Define (◮

J
) on XJ by bijectively identifying J with some subset J ′ ⊆ I.

Because (◮) satisfies (Anon′), the resulting preorder is well-defined

independent of the choice of J ′ and the choice of bijection.

We call (◮
J

) the J -factor of (◮).



Factors of separable social preorders (36/46)

Let (≻�) be a preorder on X .

Let (◮) be a separable (≻�)-social preorder on X I .

For any J ⊆ I, define separable (≻�)-social preorder (◮
J

) on XJ as follows.

Let K := I \ J , and fix zK ∈ XK. Then for any xJ , yJ ∈ XJ , we define

(
xJ ◮

J
yJ
)

⇐⇒

((
xJ
zK

)
◮

(
yJ
zK

))
.

By separability, (◮
J

) is well-defined independent of the choice of zK ∈ XK.

Now let J be any set with |J | ≤ |I|.
Define (◮

J
) on XJ by bijectively identifying J with some subset J ′ ⊆ I.

Because (◮) satisfies (Anon′), the resulting preorder is well-defined

independent of the choice of J ′ and the choice of bijection.

We call (◮
J

) the J -factor of (◮).



Factors of separable social preorders (36/46)

Let (≻�) be a preorder on X .

Let (◮) be a separable (≻�)-social preorder on X I .

For any J ⊆ I, define separable (≻�)-social preorder (◮
J

) on XJ as follows.

Let K := I \ J , and fix zK ∈ XK. Then for any xJ , yJ ∈ XJ , we define

(
xJ ◮

J
yJ
)

⇐⇒

((
xJ
zK

)
◮

(
yJ
zK

))
.

By separability, (◮
J

) is well-defined independent of the choice of zK ∈ XK.

Now let J be any set with |J | ≤ |I|.
Define (◮

J
) on XJ by bijectively identifying J with some subset J ′ ⊆ I.

Because (◮) satisfies (Anon′), the resulting preorder is well-defined

independent of the choice of J ′ and the choice of bijection.

We call (◮
J

) the J -factor of (◮).



From social preorders to social difference preorders (37/46)

Let (≻�) be preorder on X . Let (◮) be separable (≻�)-social preorder on X I .

Let J be any set with |J | ≤ |I|/3.
We define a difference preorder (D

J
) on XJ as follows.

Let J1,J2 ⊆ I be two disjoint subsets, with |J1| = |J2| = |J |.
Let β1 : J1−→J and β2 : J2−→J be bijections.
Let K := I \ (J1 ⊔ J2), and fix zK ∈ XK.
For any xJ , yJ ∈ XJ , let (xJ , yJ , zK) ∈ X I be the unique w ∈ X I with
wj := xβ1(j), ∀ j ∈ J1, wj := yβ2(j), ∀ j ∈ J2, and wk := zk , ∀ k ∈ K.

Now, for any xJ , x′J , yJ , y′J ∈ XJ , we define

(
(xJ  x′J ) D

J
(yJ  y′J )

)
⇐⇒

(
(xJ , y′J , zK)◭ (x′J , yJ , zK)

)
.

This is independent of choice of zK ∈ XK by separability, and independent
of choice of J1, J2, β1, and β2, by (Anon′).
Intuition: The social gain in moving from xJ to x′J outweighs the social
loss of moving from y′J to yJ .



From social preorders to social difference preorders (37/46)

Let (≻�) be preorder on X . Let (◮) be separable (≻�)-social preorder on X I .

Let J be any set with |J | ≤ |I|/3.
We define a difference preorder (D

J
) on XJ as follows.

Let J1,J2 ⊆ I be two disjoint subsets, with |J1| = |J2| = |J |.
Let β1 : J1−→J and β2 : J2−→J be bijections.
Let K := I \ (J1 ⊔ J2), and fix zK ∈ XK.
For any xJ , yJ ∈ XJ , let (xJ , yJ , zK) ∈ X I be the unique w ∈ X I with
wj := xβ1(j), ∀ j ∈ J1, wj := yβ2(j), ∀ j ∈ J2, and wk := zk , ∀ k ∈ K.

Now, for any xJ , x′J , yJ , y′J ∈ XJ , we define

(
(xJ  x′J ) D

J
(yJ  y′J )

)
⇐⇒

(
(xJ , y′J , zK)◭ (x′J , yJ , zK)

)
.

This is independent of choice of zK ∈ XK by separability, and independent
of choice of J1, J2, β1, and β2, by (Anon′).
Intuition: The social gain in moving from xJ to x′J outweighs the social
loss of moving from y′J to yJ .



From social preorders to social difference preorders (37/46)

Let (≻�) be preorder on X . Let (◮) be separable (≻�)-social preorder on X I .

Let J be any set with |J | ≤ |I|/3.
We define a difference preorder (D

J
) on XJ as follows.

Let J1,J2 ⊆ I be two disjoint subsets, with |J1| = |J2| = |J |.
Let β1 : J1−→J and β2 : J2−→J be bijections.
Let K := I \ (J1 ⊔ J2), and fix zK ∈ XK.
For any xJ , yJ ∈ XJ , let (xJ , yJ , zK) ∈ X I be the unique w ∈ X I with
wj := xβ1(j), ∀ j ∈ J1, wj := yβ2(j), ∀ j ∈ J2, and wk := zk , ∀ k ∈ K.

Now, for any xJ , x′J , yJ , y′J ∈ XJ , we define

(
(xJ  x′J ) D

J
(yJ  y′J )

)
⇐⇒

(
(xJ , y′J , zK)◭ (x′J , yJ , zK)

)
.

This is independent of choice of zK ∈ XK by separability, and independent
of choice of J1, J2, β1, and β2, by (Anon′).
Intuition: The social gain in moving from xJ to x′J outweighs the social
loss of moving from y′J to yJ .



From social preorders to social difference preorders (37/46)

Let (≻�) be preorder on X . Let (◮) be separable (≻�)-social preorder on X I .

Let J be any set with |J | ≤ |I|/3.
We define a difference preorder (D

J
) on XJ as follows.

Let J1,J2 ⊆ I be two disjoint subsets, with |J1| = |J2| = |J |.
Let β1 : J1−→J and β2 : J2−→J be bijections.
Let K := I \ (J1 ⊔ J2), and fix zK ∈ XK.
For any xJ , yJ ∈ XJ , let (xJ , yJ , zK) ∈ X I be the unique w ∈ X I with
wj := xβ1(j), ∀ j ∈ J1, wj := yβ2(j), ∀ j ∈ J2, and wk := zk , ∀ k ∈ K.

Now, for any xJ , x′J , yJ , y′J ∈ XJ , we define

(
(xJ  x′J ) D

J
(yJ  y′J )

)
⇐⇒

(
(xJ , y′J , zK)◭ (x′J , yJ , zK)

)
.

This is independent of choice of zK ∈ XK by separability, and independent
of choice of J1, J2, β1, and β2, by (Anon′).
Intuition: The social gain in moving from xJ to x′J outweighs the social
loss of moving from y′J to yJ .



From social preorders to social difference preorders (37/46)

Let (≻�) be preorder on X . Let (◮) be separable (≻�)-social preorder on X I .

Let J be any set with |J | ≤ |I|/3.
We define a difference preorder (D

J
) on XJ as follows.

Let J1,J2 ⊆ I be two disjoint subsets, with |J1| = |J2| = |J |.
Let β1 : J1−→J and β2 : J2−→J be bijections.
Let K := I \ (J1 ⊔ J2), and fix zK ∈ XK.
For any xJ , yJ ∈ XJ , let (xJ , yJ , zK) ∈ X I be the unique w ∈ X I with
wj := xβ1(j), ∀ j ∈ J1, wj := yβ2(j), ∀ j ∈ J2, and wk := zk , ∀ k ∈ K.

Now, for any xJ , x′J , yJ , y′J ∈ XJ , we define

(
(xJ  x′J ) D

J
(yJ  y′J )

)
⇐⇒

(
(xJ , y′J , zK)◭ (x′J , yJ , zK)

)
.

This is independent of choice of zK ∈ XK by separability, and independent
of choice of J1, J2, β1, and β2, by (Anon′).
Intuition: The social gain in moving from xJ to x′J outweighs the social
loss of moving from y′J to yJ .



From social preorders to social difference preorders (37/46)

Let (≻�) be preorder on X . Let (◮) be separable (≻�)-social preorder on X I .

Let J be any set with |J | ≤ |I|/3.
We define a difference preorder (D

J
) on XJ as follows.

Let J1,J2 ⊆ I be two disjoint subsets, with |J1| = |J2| = |J |.
Let β1 : J1−→J and β2 : J2−→J be bijections.
Let K := I \ (J1 ⊔ J2), and fix zK ∈ XK.
For any xJ , yJ ∈ XJ , let (xJ , yJ , zK) ∈ X I be the unique w ∈ X I with
wj := xβ1(j), ∀ j ∈ J1, wj := yβ2(j), ∀ j ∈ J2, and wk := zk , ∀ k ∈ K.

Now, for any xJ , x′J , yJ , y′J ∈ XJ , we define

(
(xJ  x′J ) D

J
(yJ  y′J )

)
⇐⇒

(
(xJ , y′J , zK)◭ (x′J , yJ , zK)

)
.

This is independent of choice of zK ∈ XK by separability, and independent
of choice of J1, J2, β1, and β2, by (Anon′).
Intuition: The social gain in moving from xJ to x′J outweighs the social
loss of moving from y′J to yJ .



From social preorders to social difference preorders (37/46)

Let (≻�) be preorder on X . Let (◮) be separable (≻�)-social preorder on X I .

Let J be any set with |J | ≤ |I|/3.
We define a difference preorder (D

J
) on XJ as follows.

Let J1,J2 ⊆ I be two disjoint subsets, with |J1| = |J2| = |J |.
Let β1 : J1−→J and β2 : J2−→J be bijections.
Let K := I \ (J1 ⊔ J2), and fix zK ∈ XK.
For any xJ , yJ ∈ XJ , let (xJ , yJ , zK) ∈ X I be the unique w ∈ X I with
wj := xβ1(j), ∀ j ∈ J1, wj := yβ2(j), ∀ j ∈ J2, and wk := zk , ∀ k ∈ K.

Now, for any xJ , x′J , yJ , y′J ∈ XJ , we define

(
(xJ  x′J ) D

J
(yJ  y′J )

)
⇐⇒

(
(xJ , y′J , zK)◭ (x′J , yJ , zK)

)
.

This is independent of choice of zK ∈ XK by separability, and independent
of choice of J1, J2, β1, and β2, by (Anon′).
Intuition: The social gain in moving from xJ to x′J outweighs the social
loss of moving from y′J to yJ .



From social preorders to social difference preorders (37/46)

Let (≻�) be preorder on X . Let (◮) be separable (≻�)-social preorder on X I .

Let J be any set with |J | ≤ |I|/3.
We define a difference preorder (D

J
) on XJ as follows.

Let J1,J2 ⊆ I be two disjoint subsets, with |J1| = |J2| = |J |.
Let β1 : J1−→J and β2 : J2−→J be bijections.
Let K := I \ (J1 ⊔ J2), and fix zK ∈ XK.
For any xJ , yJ ∈ XJ , let (xJ , yJ , zK) ∈ X I be the unique w ∈ X I with
wj := xβ1(j), ∀ j ∈ J1, wj := yβ2(j), ∀ j ∈ J2, and wk := zk , ∀ k ∈ K.

Now, for any xJ , x′J , yJ , y′J ∈ XJ , we define

(
(xJ  x′J ) D

J
(yJ  y′J )

)
⇐⇒

(
(xJ , y′J , zK)◭ (x′J , yJ , zK)

)
.

This is independent of choice of zK ∈ XK by separability, and independent
of choice of J1, J2, β1, and β2, by (Anon′).
Intuition: The social gain in moving from xJ to x′J outweighs the social
loss of moving from y′J to yJ .



From social preorders to social difference preorders (37/46)

Let (≻�) be preorder on X . Let (◮) be separable (≻�)-social preorder on X I .

Let J be any set with |J | ≤ |I|/3.
We define a difference preorder (D

J
) on XJ as follows.

Let J1,J2 ⊆ I be two disjoint subsets, with |J1| = |J2| = |J |.
Let β1 : J1−→J and β2 : J2−→J be bijections.
Let K := I \ (J1 ⊔ J2), and fix zK ∈ XK.
For any xJ , yJ ∈ XJ , let (xJ , yJ , zK) ∈ X I be the unique w ∈ X I with
wj := xβ1(j), ∀ j ∈ J1, wj := yβ2(j), ∀ j ∈ J2, and wk := zk , ∀ k ∈ K.

Now, for any xJ , x′J , yJ , y′J ∈ XJ , we define

(
(xJ  x′J ) D

J
(yJ  y′J )

)
⇐⇒

(
(xJ , y′J , zK)◭ (x′J , yJ , zK)

)
.

This is independent of choice of zK ∈ XK by separability, and independent
of choice of J1, J2, β1, and β2, by (Anon′).
Intuition: The social gain in moving from xJ to x′J outweighs the social
loss of moving from y′J to yJ .



From social preorders to social difference preorders (38/46)

Recall.
(
(xJ  x′J )D

J
(yJ  y′J )

)
⇐⇒

(
(xJ , y′J , zK)◭ (x′J , yJ , zK)

)
.

Example Let V ⊆ U(≻�), and let (◮) be the V-quasiutilitarian social

preorder on X I . This preorder is separable. For any finite J ⊆ I, the
relation (D

J
) is the V-quasiutilitarian SDP on XJ .

Special case: If |J | = 1 (so XJ = X ), then we obtain a difference
preorder (�) on X , as follows.

Fix i , j ∈ I and z ∈ X I\{i ,j}. For all x , x ′, y , y ′ ∈ X , define(
(x  x ′) � (y  y ′)

)
⇐⇒

(
(x , y ′, z)◭ (x ′, y , z)

)
.

Again, separability and (Anon′) make this independent of i , j , and z.
We call this the difference preorder on X induced by (◮).

Proposition.

(a) (D
J

) is a (�)-social difference preorder on XJ .

(b) The derivative of (D
J

) is the J -factor (◮
J

) preorder on XJ .



From social preorders to social difference preorders (38/46)

Recall.
(
(xJ  x′J )D

J
(yJ  y′J )

)
⇐⇒

(
(xJ , y′J , zK)◭ (x′J , yJ , zK)

)
.

Example Let V ⊆ U(≻�), and let (◮) be the V-quasiutilitarian social

preorder on X I . This preorder is separable. For any finite J ⊆ I, the
relation (D

J
) is the V-quasiutilitarian SDP on XJ .

Special case: If |J | = 1 (so XJ = X ), then we obtain a difference
preorder (�) on X , as follows.

Fix i , j ∈ I and z ∈ X I\{i ,j}. For all x , x ′, y , y ′ ∈ X , define(
(x  x ′) � (y  y ′)

)
⇐⇒

(
(x , y ′, z)◭ (x ′, y , z)

)
.

Again, separability and (Anon′) make this independent of i , j , and z.
We call this the difference preorder on X induced by (◮).

Proposition.

(a) (D
J

) is a (�)-social difference preorder on XJ .

(b) The derivative of (D
J

) is the J -factor (◮
J

) preorder on XJ .



From social preorders to social difference preorders (38/46)

Recall.
(
(xJ  x′J )D

J
(yJ  y′J )

)
⇐⇒

(
(xJ , y′J , zK)◭ (x′J , yJ , zK)

)
.

Example Let V ⊆ U(≻�), and let (◮) be the V-quasiutilitarian social

preorder on X I . This preorder is separable. For any finite J ⊆ I, the
relation (D

J
) is the V-quasiutilitarian SDP on XJ .

Special case: If |J | = 1 (so XJ = X ), then we obtain a difference
preorder (�) on X , as follows.

Fix i , j ∈ I and z ∈ X I\{i ,j}. For all x , x ′, y , y ′ ∈ X , define(
(x  x ′) � (y  y ′)

)
⇐⇒

(
(x , y ′, z)◭ (x ′, y , z)

)
.

Again, separability and (Anon′) make this independent of i , j , and z.
We call this the difference preorder on X induced by (◮).

Proposition.

(a) (D
J

) is a (�)-social difference preorder on XJ .

(b) The derivative of (D
J

) is the J -factor (◮
J

) preorder on XJ .



From social preorders to social difference preorders (38/46)

Recall.
(
(xJ  x′J )D

J
(yJ  y′J )

)
⇐⇒

(
(xJ , y′J , zK)◭ (x′J , yJ , zK)

)
.

Example Let V ⊆ U(≻�), and let (◮) be the V-quasiutilitarian social

preorder on X I . This preorder is separable. For any finite J ⊆ I, the
relation (D

J
) is the V-quasiutilitarian SDP on XJ .

Special case: If |J | = 1 (so XJ = X ), then we obtain a difference
preorder (�) on X , as follows.

Fix i , j ∈ I and z ∈ X I\{i ,j}. For all x , x ′, y , y ′ ∈ X , define(
(x  x ′) � (y  y ′)

)
⇐⇒

(
(x , y ′, z)◭ (x ′, y , z)

)
.

Again, separability and (Anon′) make this independent of i , j , and z.
We call this the difference preorder on X induced by (◮).

Proposition.

(a) (D
J

) is a (�)-social difference preorder on XJ .

(b) The derivative of (D
J

) is the J -factor (◮
J

) preorder on XJ .



From social preorders to social difference preorders (38/46)

Recall.
(
(xJ  x′J )D

J
(yJ  y′J )

)
⇐⇒

(
(xJ , y′J , zK)◭ (x′J , yJ , zK)

)
.

Example Let V ⊆ U(≻�), and let (◮) be the V-quasiutilitarian social

preorder on X I . This preorder is separable. For any finite J ⊆ I, the
relation (D

J
) is the V-quasiutilitarian SDP on XJ .

Special case: If |J | = 1 (so XJ = X ), then we obtain a difference
preorder (�) on X , as follows.

Fix i , j ∈ I and z ∈ X I\{i ,j}. For all x , x ′, y , y ′ ∈ X , define(
(x  x ′) � (y  y ′)

)
⇐⇒

(
(x , y ′, z)◭ (x ′, y , z)

)
.

Again, separability and (Anon′) make this independent of i , j , and z.
We call this the difference preorder on X induced by (◮).

Proposition.

(a) (D
J

) is a (�)-social difference preorder on XJ .

(b) The derivative of (D
J

) is the J -factor (◮
J

) preorder on XJ .



From social preorders to social difference preorders (38/46)

Recall.
(
(xJ  x′J )D

J
(yJ  y′J )

)
⇐⇒

(
(xJ , y′J , zK)◭ (x′J , yJ , zK)

)
.

Example Let V ⊆ U(≻�), and let (◮) be the V-quasiutilitarian social

preorder on X I . This preorder is separable. For any finite J ⊆ I, the
relation (D

J
) is the V-quasiutilitarian SDP on XJ .

Special case: If |J | = 1 (so XJ = X ), then we obtain a difference
preorder (�) on X , as follows.

Fix i , j ∈ I and z ∈ X I\{i ,j}. For all x , x ′, y , y ′ ∈ X , define(
(x  x ′) � (y  y ′)

)
⇐⇒

(
(x , y ′, z)◭ (x ′, y , z)

)
.

Again, separability and (Anon′) make this independent of i , j , and z.
We call this the difference preorder on X induced by (◮).

Proposition.

(a) (D
J

) is a (�)-social difference preorder on XJ .

(b) The derivative of (D
J

) is the J -factor (◮
J

) preorder on XJ .



From social preorders to social difference preorders (38/46)

Recall.
(
(xJ  x′J )D

J
(yJ  y′J )

)
⇐⇒

(
(xJ , y′J , zK)◭ (x′J , yJ , zK)

)
.

Example Let V ⊆ U(≻�), and let (◮) be the V-quasiutilitarian social

preorder on X I . This preorder is separable. For any finite J ⊆ I, the
relation (D

J
) is the V-quasiutilitarian SDP on XJ .

Special case: If |J | = 1 (so XJ = X ), then we obtain a difference
preorder (�) on X , as follows.

Fix i , j ∈ I and z ∈ X I\{i ,j}. For all x , x ′, y , y ′ ∈ X , define(
(x  x ′) � (y  y ′)

)
⇐⇒

(
(x , y ′, z)◭ (x ′, y , z)

)
.

Again, separability and (Anon′) make this independent of i , j , and z.
We call this the difference preorder on X induced by (◮).

Proposition.

(a) (D
J

) is a (�)-social difference preorder on XJ .

(b) The derivative of (D
J

) is the J -factor (◮
J

) preorder on XJ .



From social preorders to social difference preorders (38/46)

Recall.
(
(xJ  x′J )D

J
(yJ  y′J )

)
⇐⇒

(
(xJ , y′J , zK)◭ (x′J , yJ , zK)

)
.

Example Let V ⊆ U(≻�), and let (◮) be the V-quasiutilitarian social

preorder on X I . This preorder is separable. For any finite J ⊆ I, the
relation (D

J
) is the V-quasiutilitarian SDP on XJ .

Special case: If |J | = 1 (so XJ = X ), then we obtain a difference
preorder (�) on X , as follows.

Fix i , j ∈ I and z ∈ X I\{i ,j}. For all x , x ′, y , y ′ ∈ X , define(
(x  x ′) � (y  y ′)

)
⇐⇒

(
(x , y ′, z)◭ (x ′, y , z)

)
.

Again, separability and (Anon′) make this independent of i , j , and z.
We call this the difference preorder on X induced by (◮).

Proposition.

(a) (D
J

) is a (�)-social difference preorder on XJ .

(b) The derivative of (D
J

) is the J -factor (◮
J

) preorder on XJ .



From social preorders to social difference preorders (38/46)

Recall.
(
(xJ  x′J )D

J
(yJ  y′J )

)
⇐⇒

(
(xJ , y′J , zK)◭ (x′J , yJ , zK)

)
.

Example Let V ⊆ U(≻�), and let (◮) be the V-quasiutilitarian social

preorder on X I . This preorder is separable. For any finite J ⊆ I, the
relation (D

J
) is the V-quasiutilitarian SDP on XJ .

Special case: If |J | = 1 (so XJ = X ), then we obtain a difference
preorder (�) on X , as follows.

Fix i , j ∈ I and z ∈ X I\{i ,j}. For all x , x ′, y , y ′ ∈ X , define(
(x  x ′) � (y  y ′)

)
⇐⇒

(
(x , y ′, z)◭ (x ′, y , z)

)
.

Again, separability and (Anon′) make this independent of i , j , and z.
We call this the difference preorder on X induced by (◮).

Proposition.

(a) (D
J

) is a (�)-social difference preorder on XJ .

(b) The derivative of (D
J

) is the J -factor (◮
J

) preorder on XJ .



From social difference preorders to social preorders (39/46)

We can reverse this construction, to derive a social preorder from an SDP.
Let J be a finite set, and let (D

J
) be an (�)-SDP on XJ .

Let I be another set. Suppose I = J1 ⊔ J2, where |J1| = |J2| = |J |.
Let β1 : J−→J1 and β2 : J−→J2 be bijections. Use these to identify XJ1

and XJ2 with XJ . For any x ∈ X I , let xJ1 and xJ2 be the projections of
x onto XJ1 and XJ2 , identified with elements of XJ via β1 and β2.

For any x, y ∈ X I , define
(
x ◭ y

)
⇐⇒

(
(xJ1  yJ1)D

J
(yJ2  xJ2)

)
.

If W : XJ−→R is a SWF for (D
J

), then define W̃ : X I−→R by setting

W̃ (x) := W (xJ1) + W (xJ2) for all x ∈ X I .
Proposition.

(a) (◮) is a (≻�)-social preorder on X I , and it does not depend on the

specific choice of J1, J2, β1 and β2.

(b) If W : XJ−→R is a SWF for (D
J

), then W̃ is a SWF for (◮).

Example. Let V ⊆ U(�). If (D) is the V-quasiutilitarian SDP on XJ , then

(◮) is the V-quasiutilitarian social preorder on X I .



From social difference preorders to social preorders (39/46)

We can reverse this construction, to derive a social preorder from an SDP.
Let J be a finite set, and let (D

J
) be an (�)-SDP on XJ .

Let I be another set. Suppose I = J1 ⊔ J2, where |J1| = |J2| = |J |.
Let β1 : J−→J1 and β2 : J−→J2 be bijections. Use these to identify XJ1

and XJ2 with XJ . For any x ∈ X I , let xJ1 and xJ2 be the projections of
x onto XJ1 and XJ2 , identified with elements of XJ via β1 and β2.

For any x, y ∈ X I , define
(
x ◭ y

)
⇐⇒

(
(xJ1  yJ1)D

J
(yJ2  xJ2)

)
.

If W : XJ−→R is a SWF for (D
J

), then define W̃ : X I−→R by setting

W̃ (x) := W (xJ1) + W (xJ2) for all x ∈ X I .
Proposition.

(a) (◮) is a (≻�)-social preorder on X I , and it does not depend on the

specific choice of J1, J2, β1 and β2.

(b) If W : XJ−→R is a SWF for (D
J

), then W̃ is a SWF for (◮).

Example. Let V ⊆ U(�). If (D) is the V-quasiutilitarian SDP on XJ , then

(◮) is the V-quasiutilitarian social preorder on X I .



From social difference preorders to social preorders (39/46)

We can reverse this construction, to derive a social preorder from an SDP.
Let J be a finite set, and let (D

J
) be an (�)-SDP on XJ .

Let I be another set. Suppose I = J1 ⊔ J2, where |J1| = |J2| = |J |.
Let β1 : J−→J1 and β2 : J−→J2 be bijections. Use these to identify XJ1

and XJ2 with XJ . For any x ∈ X I , let xJ1 and xJ2 be the projections of
x onto XJ1 and XJ2 , identified with elements of XJ via β1 and β2.

For any x, y ∈ X I , define
(
x ◭ y

)
⇐⇒

(
(xJ1  yJ1)D

J
(yJ2  xJ2)

)
.

If W : XJ−→R is a SWF for (D
J

), then define W̃ : X I−→R by setting

W̃ (x) := W (xJ1) + W (xJ2) for all x ∈ X I .
Proposition.

(a) (◮) is a (≻�)-social preorder on X I , and it does not depend on the

specific choice of J1, J2, β1 and β2.

(b) If W : XJ−→R is a SWF for (D
J

), then W̃ is a SWF for (◮).

Example. Let V ⊆ U(�). If (D) is the V-quasiutilitarian SDP on XJ , then

(◮) is the V-quasiutilitarian social preorder on X I .



From social difference preorders to social preorders (39/46)

We can reverse this construction, to derive a social preorder from an SDP.
Let J be a finite set, and let (D

J
) be an (�)-SDP on XJ .

Let I be another set. Suppose I = J1 ⊔ J2, where |J1| = |J2| = |J |.
Let β1 : J−→J1 and β2 : J−→J2 be bijections. Use these to identify XJ1

and XJ2 with XJ . For any x ∈ X I , let xJ1 and xJ2 be the projections of
x onto XJ1 and XJ2 , identified with elements of XJ via β1 and β2.

For any x, y ∈ X I , define
(
x ◭ y

)
⇐⇒

(
(xJ1  yJ1)D

J
(yJ2  xJ2)

)
.

If W : XJ−→R is a SWF for (D
J

), then define W̃ : X I−→R by setting

W̃ (x) := W (xJ1) + W (xJ2) for all x ∈ X I .
Proposition.

(a) (◮) is a (≻�)-social preorder on X I , and it does not depend on the

specific choice of J1, J2, β1 and β2.

(b) If W : XJ−→R is a SWF for (D
J

), then W̃ is a SWF for (◮).

Example. Let V ⊆ U(�). If (D) is the V-quasiutilitarian SDP on XJ , then

(◮) is the V-quasiutilitarian social preorder on X I .



From social difference preorders to social preorders (39/46)

We can reverse this construction, to derive a social preorder from an SDP.
Let J be a finite set, and let (D

J
) be an (�)-SDP on XJ .

Let I be another set. Suppose I = J1 ⊔ J2, where |J1| = |J2| = |J |.
Let β1 : J−→J1 and β2 : J−→J2 be bijections. Use these to identify XJ1

and XJ2 with XJ . For any x ∈ X I , let xJ1 and xJ2 be the projections of
x onto XJ1 and XJ2 , identified with elements of XJ via β1 and β2.

For any x, y ∈ X I , define
(
x ◭ y

)
⇐⇒

(
(xJ1  yJ1)D

J
(yJ2  xJ2)

)
.

If W : XJ−→R is a SWF for (D
J

), then define W̃ : X I−→R by setting

W̃ (x) := W (xJ1) + W (xJ2) for all x ∈ X I .
Proposition.

(a) (◮) is a (≻�)-social preorder on X I , and it does not depend on the

specific choice of J1, J2, β1 and β2.

(b) If W : XJ−→R is a SWF for (D
J

), then W̃ is a SWF for (◮).

Example. Let V ⊆ U(�). If (D) is the V-quasiutilitarian SDP on XJ , then

(◮) is the V-quasiutilitarian social preorder on X I .



From social difference preorders to social preorders (39/46)

We can reverse this construction, to derive a social preorder from an SDP.
Let J be a finite set, and let (D

J
) be an (�)-SDP on XJ .

Let I be another set. Suppose I = J1 ⊔ J2, where |J1| = |J2| = |J |.
Let β1 : J−→J1 and β2 : J−→J2 be bijections. Use these to identify XJ1

and XJ2 with XJ . For any x ∈ X I , let xJ1 and xJ2 be the projections of
x onto XJ1 and XJ2 , identified with elements of XJ via β1 and β2.

For any x, y ∈ X I , define
(
x ◭ y

)
⇐⇒

(
(xJ1  yJ1)D

J
(yJ2  xJ2)

)
.

If W : XJ−→R is a SWF for (D
J

), then define W̃ : X I−→R by setting

W̃ (x) := W (xJ1) + W (xJ2) for all x ∈ X I .
Proposition.

(a) (◮) is a (≻�)-social preorder on X I , and it does not depend on the

specific choice of J1, J2, β1 and β2.

(b) If W : XJ−→R is a SWF for (D
J

), then W̃ is a SWF for (◮).

Example. Let V ⊆ U(�). If (D) is the V-quasiutilitarian SDP on XJ , then

(◮) is the V-quasiutilitarian social preorder on X I .



From social difference preorders to social preorders (39/46)

We can reverse this construction, to derive a social preorder from an SDP.
Let J be a finite set, and let (D

J
) be an (�)-SDP on XJ .

Let I be another set. Suppose I = J1 ⊔ J2, where |J1| = |J2| = |J |.
Let β1 : J−→J1 and β2 : J−→J2 be bijections. Use these to identify XJ1

and XJ2 with XJ . For any x ∈ X I , let xJ1 and xJ2 be the projections of
x onto XJ1 and XJ2 , identified with elements of XJ via β1 and β2.

For any x, y ∈ X I , define
(
x ◭ y

)
⇐⇒

(
(xJ1  yJ1)D

J
(yJ2  xJ2)

)
.

If W : XJ−→R is a SWF for (D
J

), then define W̃ : X I−→R by setting

W̃ (x) := W (xJ1) + W (xJ2) for all x ∈ X I .
Proposition.

(a) (◮) is a (≻�)-social preorder on X I , and it does not depend on the

specific choice of J1, J2, β1 and β2.

(b) If W : XJ−→R is a SWF for (D
J

), then W̃ is a SWF for (◮).

Example. Let V ⊆ U(�). If (D) is the V-quasiutilitarian SDP on XJ , then

(◮) is the V-quasiutilitarian social preorder on X I .



From social difference preorders to social preorders (39/46)

We can reverse this construction, to derive a social preorder from an SDP.
Let J be a finite set, and let (D

J
) be an (�)-SDP on XJ .

Let I be another set. Suppose I = J1 ⊔ J2, where |J1| = |J2| = |J |.
Let β1 : J−→J1 and β2 : J−→J2 be bijections. Use these to identify XJ1

and XJ2 with XJ . For any x ∈ X I , let xJ1 and xJ2 be the projections of
x onto XJ1 and XJ2 , identified with elements of XJ via β1 and β2.

For any x, y ∈ X I , define
(
x ◭ y

)
⇐⇒

(
(xJ1  yJ1)D

J
(yJ2  xJ2)

)
.

If W : XJ−→R is a SWF for (D
J

), then define W̃ : X I−→R by setting

W̃ (x) := W (xJ1) + W (xJ2) for all x ∈ X I .
Proposition.

(a) (◮) is a (≻�)-social preorder on X I , and it does not depend on the

specific choice of J1, J2, β1 and β2.

(b) If W : XJ−→R is a SWF for (D
J

), then W̃ is a SWF for (◮).

Example. Let V ⊆ U(�). If (D) is the V-quasiutilitarian SDP on XJ , then

(◮) is the V-quasiutilitarian social preorder on X I .
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We can reverse this construction, to derive a social preorder from an SDP.
Let J be a finite set, and let (D

J
) be an (�)-SDP on XJ .

Let I be another set. Suppose I = J1 ⊔ J2, where |J1| = |J2| = |J |.
Let β1 : J−→J1 and β2 : J−→J2 be bijections. Use these to identify XJ1

and XJ2 with XJ . For any x ∈ X I , let xJ1 and xJ2 be the projections of
x onto XJ1 and XJ2 , identified with elements of XJ via β1 and β2.

For any x, y ∈ X I , define
(
x ◭ y

)
⇐⇒
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(xJ1  yJ1)D

J
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Other results and open problems (40/46)

Other results.

◮ Many results extend to infinite populations (this is more technically
complicated). This is useful e.g. for infinite-horizon intergenerational
social choice, or social choice under uncertainty.

◮ Necessary and sufficient conditions for a difference preorder to satisfy
‘empathy’ condition. (Somewhat technical.)

◮ Noncommutative generalization of model (eliminate axiom (DP3)).

Open Problems.

◮ Can we remove/weaken ‘empathy’ hypothesis in Theorems B, C & D?

◮ Are there any other interesting and natural SDPs admitting axiomatic
characterizations?
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Conclusion (41/46)

◮ Perhaps “precise” interpersonal comparisons of well-being are
impossible, or even meaningless.

◮ However some approximate/partial interpersonal comparisons of
welfare gains and losses are certainly both meaningful and possible.
(In fact, we make such comparisons every day.)

◮ Even with such a minimal system of interpersonal comparisons, we
have developed a rich theory of social welfare evaluations, which is
much more decisive than the Pareto criterion.

◮ For example: assuming declining marginal benefits from wealth, and
approximate interpersonal comparisons, we have shown that wealth
transfers can sometimes improve social welfare, even if some wealth is
destroyed during the transfer.

◮ Also, under certain hypotheses, we have characterized a generalization
of the classic utilitarian SWO.
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Merci & Thank you.

These presentation slides are available at

<http://euclid.trentu.ca/pivato/Research/approx4.pdf>

The paper is available at

< http://mpra.ub.uni-muenchen.de/32252>
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