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◮ Many ethical/political dilemmas involve trade-offs between the
happiness or well-being of different individuals. How should we make
these trade-offs?

◮ One approach: Assume certain kinds of interpersonal comparisons of
well-being are possible, (e.g. ‘ordinal level comparisons’, ‘cardinal
difference comparisons’, etc.). Then certain normatively attractive
axioms (e.g. anonymity, separability, etc.) suggest particular social
welfare orders (e.g. leximin, Nash, utilitarian), which tell us how to
make the trade-offs. This approach originates with Sen (1970).

◮ Problem. It is not clear how (or even if) one can compare the
happiness/well-being of two individuals.

◮ One response is to reject interpersonal comparisons altogether, and
insist that only Pareto optimality is meaningful (Robbins, 1935).

◮ Another approach is to ‘operationalize’ interpersonal comparisons using
money —e.g. through financial ‘compensation’ (Kaldor-Hicks, 1939)
or ‘willingness to pay’ (Groves 1973; Clarke 1971). But utility varies
nonlinearly with wealth, and varies differently for different people.



Crude interpersonal comparisons are ubiquitous (3/33)

◮ Fact: We can sometimes make ‘crude’ interpersonal welfare
comparisons, if either the physical circumstances are sufficiently
different, or the individuals are sufficiently psychologically similar.



Crude interpersonal comparisons are ubiquitous (3/33)

◮ Fact: We can sometimes make ‘crude’ interpersonal welfare
comparisons, if either the physical circumstances are sufficiently
different, or the individuals are sufficiently psychologically similar.

◮ Example: Who is better off? Someone who (with his family and
friends) is dying of Ebola virus in a concentration camp, or someone
who (with his family and friends) is safe, healthy, and comfortable?



Crude interpersonal comparisons are ubiquitous (3/33)

◮ Fact: We can sometimes make ‘crude’ interpersonal welfare
comparisons, if either the physical circumstances are sufficiently
different, or the individuals are sufficiently psychologically similar.

◮ Example: Who is better off? Someone who (with his family and
friends) is dying of Ebola virus in a concentration camp, or someone
who (with his family and friends) is safe, healthy, and comfortable?

◮ Also, we often make intertemporal comparisons (e.g ‘I became happier
after I quit that job’);



Crude interpersonal comparisons are ubiquitous (3/33)

◮ Fact: We can sometimes make ‘crude’ interpersonal welfare
comparisons, if either the physical circumstances are sufficiently
different, or the individuals are sufficiently psychologically similar.

◮ Example: Who is better off? Someone who (with his family and
friends) is dying of Ebola virus in a concentration camp, or someone
who (with his family and friends) is safe, healthy, and comfortable?

◮ Also, we often make intertemporal comparisons (e.g ‘I became happier
after I quit that job’); but these require interpersonal comparisons
(because your past selves were different people).



Crude interpersonal comparisons are ubiquitous (3/33)

◮ Fact: We can sometimes make ‘crude’ interpersonal welfare
comparisons, if either the physical circumstances are sufficiently
different, or the individuals are sufficiently psychologically similar.

◮ Example: Who is better off? Someone who (with his family and
friends) is dying of Ebola virus in a concentration camp, or someone
who (with his family and friends) is safe, healthy, and comfortable?

◮ Also, we often make intertemporal comparisons (e.g ‘I became happier
after I quit that job’); but these require interpersonal comparisons
(because your past selves were different people).

◮ This is especially clear in intertemporal wealth transfer: we save
(borrow) money because we believe our future self will derive more
(less) utility from it than our present self.



Crude interpersonal comparisons are ubiquitous (3/33)

◮ Fact: We can sometimes make ‘crude’ interpersonal welfare
comparisons, if either the physical circumstances are sufficiently
different, or the individuals are sufficiently psychologically similar.

◮ Example: Who is better off? Someone who (with his family and
friends) is dying of Ebola virus in a concentration camp, or someone
who (with his family and friends) is safe, healthy, and comfortable?

◮ Also, we often make intertemporal comparisons (e.g ‘I became happier
after I quit that job’); but these require interpersonal comparisons
(because your past selves were different people).

◮ This is especially clear in intertemporal wealth transfer: we save
(borrow) money because we believe our future self will derive more
(less) utility from it than our present self.

◮ In fact, we often choose between different future selves (e.g. ‘I will be
happier if I go to university and get an education.’).



Crude interpersonal comparisons are ubiquitous (3/33)

◮ Fact: We can sometimes make ‘crude’ interpersonal welfare
comparisons, if either the physical circumstances are sufficiently
different, or the individuals are sufficiently psychologically similar.

◮ Example: Who is better off? Someone who (with his family and
friends) is dying of Ebola virus in a concentration camp, or someone
who (with his family and friends) is safe, healthy, and comfortable?
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(because your past selves were different people).

◮ This is especially clear in intertemporal wealth transfer: we save
(borrow) money because we believe our future self will derive more
(less) utility from it than our present self.

◮ In fact, we often choose between different future selves (e.g. ‘I will be
happier if I go to university and get an education.’). How can we make
such choices without interpersonal comparisons?
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wish I wasn’t addicted to cigarettes’, ‘I wish I could enjoy
Shostakovich’). These can only be understood as ‘interpersonal’
preferences, or interpersonal welfare rankings.

◮ On the other hand, these preferences (or welfare rankings) may be
incomplete, because:

◮ Some interpersonal comparisons may be impossible (e.g. between
psychologically disparate individuals).

◮ Our definition of ‘welfare’ may yield an incomplete ranking, even for a
single individual (e.g. Sen’s (1985) ‘functionings and capabilities’).

◮ Goals: (1) Construct a mathematical model of ‘approximate’
interpersonal comparisons.

◮ (2) Use these approximate comparisons to construct ‘approximate’
social welfare orders.



Part I:
Approximate interpersonal comparisons



Model: The space of psychophysical states (6/33)

◮ Let Φ be a space of possible ‘personal physical states’.



Model: The space of psychophysical states (6/33)

◮ Let Φ be a space of possible ‘personal physical states’. An element
φ ∈ Φ encodes all information about a person’s health, wealth,
location, consumption bundle, sense-data, and other physical
circumstances.



Model: The space of psychophysical states (6/33)

◮ Let Φ be a space of possible ‘personal physical states’. An element
φ ∈ Φ encodes all information about a person’s health, wealth,
location, consumption bundle, sense-data, and other physical
circumstances.

◮ Let Ψ be a space of possible ‘psychological types’.



Model: The space of psychophysical states (6/33)

◮ Let Φ be a space of possible ‘personal physical states’. An element
φ ∈ Φ encodes all information about a person’s health, wealth,
location, consumption bundle, sense-data, and other physical
circumstances.

◮ Let Ψ be a space of possible ‘psychological types’. An element ψ ∈ Ψ
encodes all information about a person’s personality, preferences,
knowledge, beliefs, abilities, memories, mood, etc. (e.g. the complete
structure and state of her brain).



Model: The space of psychophysical states (6/33)

◮ Let Φ be a space of possible ‘personal physical states’. An element
φ ∈ Φ encodes all information about a person’s health, wealth,
location, consumption bundle, sense-data, and other physical
circumstances.

◮ Let Ψ be a space of possible ‘psychological types’. An element ψ ∈ Ψ
encodes all information about a person’s personality, preferences,
knowledge, beliefs, abilities, memories, mood, etc. (e.g. the complete
structure and state of her brain).

◮ Each person’s psychophysical state is thus an ordered pair (ψ, φ), an
element of the Cartesian product Ψ × Φ.



Model: The space of psychophysical states (6/33)

◮ Let Φ be a space of possible ‘personal physical states’. An element
φ ∈ Φ encodes all information about a person’s health, wealth,
location, consumption bundle, sense-data, and other physical
circumstances.

◮ Let Ψ be a space of possible ‘psychological types’. An element ψ ∈ Ψ
encodes all information about a person’s personality, preferences,
knowledge, beliefs, abilities, memories, mood, etc. (e.g. the complete
structure and state of her brain).

◮ Each person’s psychophysical state is thus an ordered pair (ψ, φ), an
element of the Cartesian product Ψ × Φ.

◮ Each ψ ∈ Ψ defines a preorder (�
ψ
) over Ψ × Φ.



Model: The space of psychophysical states (6/33)

◮ Let Φ be a space of possible ‘personal physical states’. An element
φ ∈ Φ encodes all information about a person’s health, wealth,
location, consumption bundle, sense-data, and other physical
circumstances.

◮ Let Ψ be a space of possible ‘psychological types’. An element ψ ∈ Ψ
encodes all information about a person’s personality, preferences,
knowledge, beliefs, abilities, memories, mood, etc. (e.g. the complete
structure and state of her brain).

◮ Each person’s psychophysical state is thus an ordered pair (ψ, φ), an
element of the Cartesian product Ψ × Φ.

◮ Each ψ ∈ Ψ defines a preorder (�
ψ
) over Ψ × Φ.

(A preorder is a transitive, reflexive, (possibly incomplete) binary relation.)



Model: The space of psychophysical states (6/33)

◮ Let Φ be a space of possible ‘personal physical states’. An element
φ ∈ Φ encodes all information about a person’s health, wealth,
location, consumption bundle, sense-data, and other physical
circumstances.

◮ Let Ψ be a space of possible ‘psychological types’. An element ψ ∈ Ψ
encodes all information about a person’s personality, preferences,
knowledge, beliefs, abilities, memories, mood, etc. (e.g. the complete
structure and state of her brain).

◮ Each person’s psychophysical state is thus an ordered pair (ψ, φ), an
element of the Cartesian product Ψ × Φ.

◮ Each ψ ∈ Ψ defines a preorder (�
ψ
) over Ψ × Φ.

(A preorder is a transitive, reflexive, (possibly incomplete) binary relation.)

◮ (�
ψ
) restricted to {ψ} × Φ is a ψ-type individual’s preference/welfare

ordering over personal physical states (we assume it is ‘accurate’).



Model: The space of psychophysical states (6/33)

◮ Let Φ be a space of possible ‘personal physical states’. An element
φ ∈ Φ encodes all information about a person’s health, wealth,
location, consumption bundle, sense-data, and other physical
circumstances.

◮ Let Ψ be a space of possible ‘psychological types’. An element ψ ∈ Ψ
encodes all information about a person’s personality, preferences,
knowledge, beliefs, abilities, memories, mood, etc. (e.g. the complete
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◮ Each person’s psychophysical state is thus an ordered pair (ψ, φ), an
element of the Cartesian product Ψ × Φ.

◮ Each ψ ∈ Ψ defines a preorder (�
ψ
) over Ψ × Φ.

(A preorder is a transitive, reflexive, (possibly incomplete) binary relation.)

◮ (�
ψ
) restricted to {ψ} × Φ is a ψ-type individual’s preference/welfare

ordering over personal physical states (we assume it is ‘accurate’).
◮ (�

ψ
) on the rest of Ψ × Φ is a ψ-type individual’s (interpersonal)

ranking of psychophysical states (which may be inaccurate).
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φ1 ∈ Φ, there exists some φ2 ∈ Φ such that (ψ1, φ1) � (ψ2, φ2) or
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(These are both philosophically debatable. Actually, neither property is
required for any of the later results on social choice. However, it happens
that all of our examples satisfy these properties.)



Example: Approximate interpersonal comparisons of utility (8/33)

R

Ψ

(ψ2,r2)

(ψ1,r1)

{(ψ,r)    Ψ x R  ;  (ψ,r) > (ψ1,r1)}

∋ {(ψ,r)     Ψ x R ;  (ψ,r) > (ψ2,r2)}

∋

{(ψ,r)    Ψ x R ;  (ψ,r) < (ψ1,r1)}

∋ {(ψ,r)     Ψ x R ;  (ψ,r) < (ψ2,r2)}

∋

R

Ψ

(ψ1,r1)

(ψ2,r2)

C

A B

D

A A
B B

D
D

C

C

γ = 
1
/2 γ = 1

Suppose Φ = R, and (�
ψ
) is the standard order on R, for each ψ ∈ Ψ.



Example: Approximate interpersonal comparisons of utility (8/33)

R

Ψ

(ψ2,r2)

(ψ1,r1)

{(ψ,r)    Ψ x R  ;  (ψ,r) > (ψ1,r1)}

∋ {(ψ,r)     Ψ x R ;  (ψ,r) > (ψ2,r2)}

∋

{(ψ,r)    Ψ x R ;  (ψ,r) < (ψ1,r1)}

∋ {(ψ,r)     Ψ x R ;  (ψ,r) < (ψ2,r2)}

∋

R

Ψ

(ψ1,r1)

(ψ2,r2)

C

A B

D

A A
B B

D
D

C

C

γ = 
1
/2 γ = 1

Suppose Φ = R, and (�
ψ
) is the standard order on R, for each ψ ∈ Ψ.

(Thus, your physical state is entirely described by a single real number
measuring ‘well-being’ or ‘utility’. More utility is better.)



Example: Approximate interpersonal comparisons of utility (8/33)

R

Ψ

(ψ2,r2)

(ψ1,r1)

{(ψ,r)    Ψ x R  ;  (ψ,r) > (ψ1,r1)}

∋ {(ψ,r)     Ψ x R ;  (ψ,r) > (ψ2,r2)}

∋

{(ψ,r)    Ψ x R ;  (ψ,r) < (ψ1,r1)}

∋ {(ψ,r)     Ψ x R ;  (ψ,r) < (ψ2,r2)}

∋

R

Ψ

(ψ1,r1)

(ψ2,r2)

C

A B

D

A A
B B

D
D

C

C

γ = 
1
/2 γ = 1

Suppose Φ = R, and (�
ψ
) is the standard order on R, for each ψ ∈ Ψ.

(Thus, your physical state is entirely described by a single real number
measuring ‘well-being’ or ‘utility’. More utility is better.)
A psychophysical state is thus an ordered pair (ψ, r) ∈ Ψ × R.



Example: Approximate interpersonal comparisons of utility (8/33)

R

Ψ

(ψ2,r2)

(ψ1,r1)

{(ψ,r)    Ψ x R  ;  (ψ,r) > (ψ1,r1)}

∋ {(ψ,r)     Ψ x R ;  (ψ,r) > (ψ2,r2)}

∋

{(ψ,r)    Ψ x R ;  (ψ,r) < (ψ1,r1)}

∋ {(ψ,r)     Ψ x R ;  (ψ,r) < (ψ2,r2)}

∋

R

Ψ

(ψ1,r1)

(ψ2,r2)

C

A B

D

A A
B B

D
D

C

C

γ = 
1
/2 γ = 1

Suppose Φ = R, and (�
ψ
) is the standard order on R, for each ψ ∈ Ψ.

(Thus, your physical state is entirely described by a single real number
measuring ‘well-being’ or ‘utility’. More utility is better.)
A psychophysical state is thus an ordered pair (ψ, r) ∈ Ψ × R.
Different people have different ‘utility scales’. If ψ1 6= ψ2, then it may be
impossible to compare (ψ1, r1) with (ψ2, r2).



Example: Approximate interpersonal comparisons of utility (8/33)

R

Ψ

(ψ2,r2)

(ψ1,r1)

{(ψ,r)    Ψ x R  ;  (ψ,r) > (ψ1,r1)}

∋ {(ψ,r)     Ψ x R ;  (ψ,r) > (ψ2,r2)}

∋

{(ψ,r)    Ψ x R ;  (ψ,r) < (ψ1,r1)}

∋ {(ψ,r)     Ψ x R ;  (ψ,r) < (ψ2,r2)}

∋

R

Ψ

(ψ1,r1)

(ψ2,r2)

C

A B

D

A A
B B

D
D

C

C

γ = 
1
/2 γ = 1

(Thus, your physical state is entirely described by a single real number
measuring ‘well-being’ or ‘utility’. More utility is better.)
A psychophysical state is thus an ordered pair (ψ, r) ∈ Ψ × R.
Different people have different ‘utility scales’. If ψ1 6= ψ2, then it may be
impossible to compare (ψ1, r1) with (ψ2, r2).
An interpersonal preorder on Ψ × R is thus an approximate interpersonal
comparison of utility.



Example: Approximate interpersonal comparisons of utility (8/33)

R

Ψ

(ψ2,r2)

(ψ1,r1)

{(ψ,r)    Ψ x R  ;  (ψ,r) > (ψ1,r1)}

∋ {(ψ,r)     Ψ x R ;  (ψ,r) > (ψ2,r2)}

∋

{(ψ,r)    Ψ x R ;  (ψ,r) < (ψ1,r1)}

∋ {(ψ,r)     Ψ x R ;  (ψ,r) < (ψ2,r2)}

∋

R

Ψ

(ψ1,r1)

(ψ2,r2)

C

A B

D

A A
B B

D
D

C

C

γ = 
1
/2 γ = 1

A psychophysical state is thus an ordered pair (ψ, r) ∈ Ψ × R.
Different people have different ‘utility scales’. If ψ1 6= ψ2, then it may be
impossible to compare (ψ1, r1) with (ψ2, r2).
An interpersonal preorder on Ψ × R is thus an approximate interpersonal
comparison of utility.
For example: let d be a metric on Ψ (measuring ‘psychological distance’).



Example: Approximate interpersonal comparisons of utility (8/33)

R

Ψ

(ψ2,r2)

(ψ1,r1)

{(ψ,r)    Ψ x R  ;  (ψ,r) > (ψ1,r1)}

∋ {(ψ,r)     Ψ x R ;  (ψ,r) > (ψ2,r2)}

∋

{(ψ,r)    Ψ x R ;  (ψ,r) < (ψ1,r1)}

∋ {(ψ,r)     Ψ x R ;  (ψ,r) < (ψ2,r2)}

∋

R

Ψ

(ψ1,r1)

(ψ2,r2)

C

A B

D

A A
B B

D
D

C

C

γ = 
1
/2 γ = 1

Different people have different ‘utility scales’. If ψ1 6= ψ2, then it may be
impossible to compare (ψ1, r1) with (ψ2, r2).
An interpersonal preorder on Ψ × R is thus an approximate interpersonal
comparison of utility.
For example: let d be a metric on Ψ (measuring ‘psychological distance’).
Suppose everyone has cardinal utility functions with the same ‘scale’, but
different ‘zero points’.



Example: Approximate interpersonal comparisons of utility (8/33)

R

Ψ

(ψ2,r2)

(ψ1,r1)

{(ψ,r)    Ψ x R  ;  (ψ,r) > (ψ1,r1)}

∋ {(ψ,r)     Ψ x R ;  (ψ,r) > (ψ2,r2)}

∋

{(ψ,r)    Ψ x R ;  (ψ,r) < (ψ1,r1)}

∋ {(ψ,r)     Ψ x R ;  (ψ,r) < (ψ2,r2)}

∋

R

Ψ

(ψ1,r1)

(ψ2,r2)

C

A B

D

A A
B B

D
D

C

C

γ = 
1
/2 γ = 1

An interpersonal preorder on Ψ × R is thus an approximate interpersonal
comparison of utility.
For example: let d be a metric on Ψ (measuring ‘psychological distance’).
Suppose everyone has cardinal utility functions with the same ‘scale’, but
different ‘zero points’. Let γ ∈ (0, 1] be a constant.



Example: Approximate interpersonal comparisons of utility (8/33)

R

Ψ

(ψ2,r2)

(ψ1,r1)

{(ψ,r)    Ψ x R  ;  (ψ,r) > (ψ1,r1)}

∋ {(ψ,r)     Ψ x R ;  (ψ,r) > (ψ2,r2)}

∋

{(ψ,r)    Ψ x R ;  (ψ,r) < (ψ1,r1)}

∋ {(ψ,r)     Ψ x R ;  (ψ,r) < (ψ2,r2)}

∋

R

Ψ

(ψ1,r1)

(ψ2,r2)

C

A B

D

A A
B B

D
D

C

C

γ = 
1
/2 γ = 1
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◮ Each u ∈ U measures blood concentrations of a mood-related neurochemical
or hormone (e.g. serotonin, dopamine, endorphin, oxytocin, cortisone).

◮ Each u ∈ U represents the interpersonal welfare ranking of some competent,
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◮ Each u ∈ U measures some ‘functioning’ (Sen, 1985).
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.

(Anonymity) For all x ∈ X I , if σ : I−→I is any permutation, then
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x ′

i := x
σ(i) i ∈ I.).



Example: the Suppes-Sen social preorder (13/33)

For any x, y ∈ X I , define x E
s

y if and only if there is a permutation

σ : I−→I such that, for all i ∈ I, we have xi � yσ(i).



Example: the Suppes-Sen social preorder (13/33)

For any x, y ∈ X I , define x E
s

y if and only if there is a permutation

σ : I−→I such that, for all i ∈ I, we have xi � yσ(i).
Theorem 2: (D

s
) is a subrelation of every other social preorder.



Example: the Suppes-Sen social preorder (13/33)

For any x, y ∈ X I , define x E
s

y if and only if there is a permutation

σ : I−→I such that, for all i ∈ I, we have xi � yσ(i).
Theorem 2: (D

s
) is a subrelation of every other social preorder.

Example: (Cost-benefit analysis)



Example: the Suppes-Sen social preorder (13/33)

For any x, y ∈ X I , define x E
s

y if and only if there is a permutation

σ : I−→I such that, for all i ∈ I, we have xi � yσ(i).
Theorem 2: (D

s
) is a subrelation of every other social preorder.

Example: (Cost-benefit analysis) Let x, y ∈ X I . Define:

I↓ := {i ∈ I ; xi ≻ yi} = ‘losers’ in the transition from x to y;

I↑ := {i ∈ I ; xi ≺ yi} = ‘winners’ in this transition; and

I0 := I \ (I↓ ⊔ I↑) = everyone else.



Example: the Suppes-Sen social preorder (13/33)

For any x, y ∈ X I , define x E
s

y if and only if there is a permutation

σ : I−→I such that, for all i ∈ I, we have xi � yσ(i).
Theorem 2: (D

s
) is a subrelation of every other social preorder.

Example: (Cost-benefit analysis) Let x, y ∈ X I . Define:

I↓ := {i ∈ I ; xi ≻ yi} = ‘losers’ in the transition from x to y;

I↑ := {i ∈ I ; xi ≺ yi} = ‘winners’ in this transition; and

I0 := I \ (I↓ ⊔ I↑) = everyone else.

Suppose that:



Example: the Suppes-Sen social preorder (13/33)

For any x, y ∈ X I , define x E
s

y if and only if there is a permutation

σ : I−→I such that, for all i ∈ I, we have xi � yσ(i).
Theorem 2: (D

s
) is a subrelation of every other social preorder.

Example: (Cost-benefit analysis) Let x, y ∈ X I . Define:

I↓ := {i ∈ I ; xi ≻ yi} = ‘losers’ in the transition from x to y;

I↑ := {i ∈ I ; xi ≺ yi} = ‘winners’ in this transition; and

I0 := I \ (I↓ ⊔ I↑) = everyone else.

Suppose that:

◮ ∃ bijection β : I0−→I0 such that xi≈yβ(i) for all i ∈ I0; and



Example: the Suppes-Sen social preorder (13/33)

For any x, y ∈ X I , define x E
s

y if and only if there is a permutation

σ : I−→I such that, for all i ∈ I, we have xi � yσ(i).
Theorem 2: (D

s
) is a subrelation of every other social preorder.

Example: (Cost-benefit analysis) Let x, y ∈ X I . Define:

I↓ := {i ∈ I ; xi ≻ yi} = ‘losers’ in the transition from x to y;

I↑ := {i ∈ I ; xi ≺ yi} = ‘winners’ in this transition; and

I0 := I \ (I↓ ⊔ I↑) = everyone else.

Suppose that:

◮ ∃ bijection β : I0−→I0 such that xi≈yβ(i) for all i ∈ I0; and

◮ ∃ injection α : I↓−→I↑ such that, for every i ∈ I↓,

xα(i) � yi ≺ xi � yα(i).

(i.e. we can match every ‘loser’ i ∈ I↓ with some ‘winner’ α(i) ∈ I↑ such
that the gains for α(i) outweigh the losses for i).



Example: the Suppes-Sen social preorder (13/33)

For any x, y ∈ X I , define x E
s

y if and only if there is a permutation

σ : I−→I such that, for all i ∈ I, we have xi � yσ(i).
Theorem 2: (D

s
) is a subrelation of every other social preorder.

Example: (Cost-benefit analysis) Let x, y ∈ X I . Define:

I↓ := {i ∈ I ; xi ≻ yi} = ‘losers’ in the transition from x to y;

I↑ := {i ∈ I ; xi ≺ yi} = ‘winners’ in this transition; and

I0 := I \ (I↓ ⊔ I↑) = everyone else.

Suppose that:

◮ ∃ bijection β : I0−→I0 such that xi≈yβ(i) for all i ∈ I0; and
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Recall U(�) = all utility functions for (�).

Theorem 3. Suppose U(�) 6= ∅.
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Now suppose X := Ψ × R,
and fix some ψ = (ψ1, ψ2).
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(If δ = 0, so that there is perfect comparability, then this is simply the
maximin bargaining solution.)
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representation (Dubra, Maccheroni and Ok, 2004 or Evren, 2008).
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◮ We say that u is a von Neumann-Morgenstern utility function for (�)

if, for all ρ, ρ′ ∈ P,

(
ρ � ρ′

)
=⇒

(
u∗(ρ) ≥ u∗(ρ′)

)
.

◮ Example: if U is a set of functions providing a multiutility
representation for (�), then every positive linear combination of

elements of U is a vNM utility function for (�).

◮ Let U(�) be the set of all vNM utility functions for (�).
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Let ( �) be a vNMIP on P. A (�)-von Neumann-Morgenstern social
preorder (vNMSP) is a preorder (D) on P⊗I with three properties:

◮ (Pareto) For all ρ,ρ′ ∈ P⊗I , if ρi � ρ′i for all i ∈ I, then ρ D ρ′.

Furthermore, if ρi ≻ ρ′i for all i ∈ I, then ρ ⊲ ρ′.

◮ (Anonymity) If σ : I−→I is any permutation, then for all ρ ∈ P⊗I ,
ρ ̂ σ(ρ).

◮ (Linearity) For all ρ1,ρ2,ρ
′
1,ρ

′
2 ∈ P⊗I , and s, s ′ ∈ [0, 1] with

s + s ′ = 1, if ρ1Eρ2 and ρ′1Eρ
′
2, then (sρ1 + s ′ρ′1)E (sρ2 + s ′ρ′2).
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(
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ρ ⊲
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(
ρ ⊲ ρ′

)
.

(b) Also, if ρ D
u
ρ′, then

∑

i∈I

u∗(ρi ) ≥
∑

i∈I

u∗(ρ′i ), for all u ∈ U(�).

(c) Suppose U(�) provides a multiutility representation for (�). Then

∀ ρ,ρ′ ∈ P⊗I ,
(
ρ D

u
ρ′
)

⇐⇒

(∑

i∈I

u∗(ρi ) ≥
∑

i∈I

u∗(ρ′i ), for all u ∈ U
)
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Suppose (�) has a multiutility representation, so that
(
ρ D
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ρ′
)

⇐⇒

(∑

i∈I

u∗(ρi ) ≥
∑

i∈I

u∗(ρ′i ), for all u ∈ U(�)
)
.

As before, suppose I := {1, 2} and X = Ψ×Φ, and fix ψ = (ψ1, ψ2) ∈ ΨI .
For any u ∈ U(�), we define uψ := u(ψ, •) : Φ2−→R
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ψ, for all other u ∈ U(�).
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As before, suppose I := {1, 2} and X = Ψ×Φ, and fix ψ = (ψ1, ψ2) ∈ ΨI .
For any u ∈ U(�), we define uψ := u(ψ, •) : Φ2−→R

2.

Fix u0 ∈ U(�). Then uψ is affine transform of u0
ψ, for all other u ∈ U(�).

If we project (D
u
) through u0

ψ, we get a preorder ( ◮

u,ψ
) on R

2 shown above.

(Here, A and A are the minimum and maximum ‘u0-utility conversion ratios’

between ψ1 and ψ2 which are induced by the vNMIP (�).)
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Let B ⊂ R
2 be a bargaining problem. The approximate utilitarian

bargaining solution wkUnd
(
B, ◮

u,ψ

)
is shown above. It is the set of all

points on P whose tangent slope is between −A and −A.
(Again, A and A are the minimum and maximum ‘u0-utility conversion ratios’

between ψ1 and ψ2 which are induced by (�).)

Remark. If (�) is any vNMIP, and (D) is any (�)-vNMSP, and B is a
bargaining problem, then Theorem 5(a) implies that

wkUnd
(
B,D

)
⊆ wkUnd

(
B,D

u

)
.
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Other topics.

◮ A profile-independent version of Harsanyi’s Social Aggregation
Theorem. (Idea: represent approximate interpersonal comparisons by
treating the hedometer as a random variable.)

◮ ‘Approximate leximin’ social preorder (lexicographical refinement of
‘approximate maximin’, with ‘strong Pareto’ property).

◮ Partial characterization: when is a preorder metric?

◮ Extension of most results to infinite (or variable finite) populations.

◮ ‘Functorial’ interpretation of Arrow’s ‘Independence of Irrelevant
Alternatives’ in social preorder framework.

◮ ‘Welfarist’ account of the importance of personal liberty.

◮ Characterization of ‘approximate utilitarian’ social preorder in riskless
setting, assuming approximate interpersonal comparisions of welfare
gains/losses.

◮ More ‘psychologically realistic’ constructions of interpersonal preorders.



Thank you.

These presentation slides are available at

<http://euclid.trentu.ca/pivato/Research/approx.pdf>

Preprints:

◮ Approximate interpersonal comparisons of well-being.
<http://mpra.ub.uni-muenchen.de/25224>

◮ Aggregation of incomplete ordinal preferences with approximate
interpersonal comparisons.
<http://mpra.ub.uni-muenchen.de/25271>

◮ Risky social choice with approximate interpersonal comparisons of
well-being. <http://mpra.ub.uni-muenchen.de/25222>

◮ Social choice with approximate interpersonal comparisons of welfare
gains. (preprint available upon request)
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