Majority rule in the absence of a majority Part II: Reinforcement, uniqueness, and continuity

New Developments in Judgment Aggregation and Voting Theory Freudenstadt

Klaus Nehring and Marcus Pivato

Department of Economics, University of California Davis, California, USA kdnehring@ucdavis.edu and Department of Mathematics, Trent University Peterborough, Ontario, Canada marcuspivato@trentu.ca

September 8, 2011

- Let \mathcal{K} be a finite set of propositions (or 'issues', or 'properties').
- $\{\pm 1\}^{\mathcal{K}}$ is thus the set of all assignments of truth values to \mathcal{K} .
- A judgement space is a subset X ⊂ {±1}^K, representing the set of logically consistent (or 'feasible', or 'admissible') truth-valuations. An element x ∈ X is called a judgement (or view).
- A profile is a function $\mu : \mathcal{X} \longrightarrow [0, 1]$ such that $\sum_{x \in \mathcal{X}} \mu(x) = 1$.
- Let $\Delta(\mathcal{X})$ denote the set of all profiles.
- A judgement aggregation rule is a correspondence $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$.
- ► For any (odd) gain function $\phi : [-1, 1] \longrightarrow *\mathbb{R}$, define the additive support rule $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ by $F_{\phi}(\mu) := \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{argmax}} \sum_{k \in \mathcal{K}} x_k \cdot \phi(\widetilde{\mu}_k).$

(Here, $\widetilde{\mu}_k := \sum_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}) x_k \in [-1, 1]$, the 'support' for proposition k.)

$$\operatorname{Median}(\mu) := \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \sum_{k \in \mathcal{K}} x_k \widetilde{\mu}_k = \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \mathbf{x} \bullet \widetilde{\mu}.$$

- Let K be a finite set of propositions (or 'issues', or 'properties').
 {±1}^K is thus the set of all assignments of truth values to K.
- A judgement space is a subset X ⊂ {±1}^K, representing the set of logically consistent (or 'feasible', or 'admissible') truth-valuations. An element x ∈ X is called a judgement (or view).
- A profile is a function $\mu : \mathcal{X} \longrightarrow [0, 1]$ such that $\sum_{x \in \mathcal{X}} \mu(x) = 1$.
- Let $\Delta(\mathcal{X})$ denote the set of all profiles.
- A judgement aggregation rule is a correspondence $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$.
- ► For any (odd) gain function $\phi : [-1, 1] \longrightarrow *\mathbb{R}$, define the additive support rule $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ by $F_{\phi}(\mu) := \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{argmax}} \sum_{k \in \mathcal{K}} x_k \cdot \phi(\widetilde{\mu}_k).$

(Here, $\widetilde{\mu}_k := \sum_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}) x_k \in [-1, 1]$, the 'support' for proposition k.)

$$\operatorname{Median}(\mu) := \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \sum_{k \in \mathcal{K}} x_k \widetilde{\mu}_k = \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \mathbf{x} \bullet \widetilde{\mu}.$$

- Let *K* be a finite set of propositions (or 'issues', or 'properties').
 {±1}^K is thus the set of all assignments of truth values to *K*.
- A judgement space is a subset X ⊂ {±1}^K, representing the set of logically consistent (or 'feasible', or 'admissible') truth-valuations.
- A profile is a function $\mu : \mathcal{X} \longrightarrow [0,1]$ such that $\sum \mu(\mathbf{x}) = 1$
- Let $\Delta(\mathcal{X})$ denote the set of all profiles.
- A judgement aggregation rule is a correspondence $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$.
- ► For any (odd) gain function $\phi : [-1, 1] \longrightarrow *\mathbb{R}$, define the additive support rule $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ by $F_{\phi}(\mu) := \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{argmax}} \sum_{k \in \mathcal{K}} x_k \cdot \phi(\widetilde{\mu}_k).$

(Here, $\widetilde{\mu}_k := \sum_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}) x_k \in [-1, 1]$, the 'support' for proposition k.)

$$\operatorname{Median}(\mu) := \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \sum_{k \in \mathcal{K}} x_k \widetilde{\mu}_k = \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \mathbf{x} \bullet \widetilde{\mu}.$$

- (2/36)
- Let \mathcal{K} be a finite set of propositions (or 'issues', or 'properties').
- $\{\pm 1\}^{\mathcal{K}}$ is thus the set of all assignments of truth values to \mathcal{K} .
- A judgement space is a subset X ⊂ {±1}^K, representing the set of logically consistent (or 'feasible', or 'admissible') truth-valuations. An element x ∈ X is called a judgement (or view).
- A profile is a function $\mu : \mathcal{X} \longrightarrow [0,1]$ such that $\sum \mu(\mathbf{x}) = 1$.
- Let $\Delta(\mathcal{X})$ denote the set of all profiles.
- A judgement aggregation rule is a correspondence $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$.
- ► For any (odd) gain function $\phi : [-1, 1] \longrightarrow *\mathbb{R}$, define the additive support rule $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ by $F_{\phi}(\mu) := \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{argmax}} \sum_{k \in \mathcal{K}} x_k \cdot \phi(\widetilde{\mu}_k).$

(Here, $\widetilde{\mu}_k := \sum_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}) x_k \in [-1, 1]$, the 'support' for proposition k.)

$$\operatorname{Median}(\mu) := \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \sum_{k \in \mathcal{K}} x_k \widetilde{\mu}_k = \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \mathbf{x} \bullet \widetilde{\mu}.$$

- Let \mathcal{K} be a finite set of propositions (or 'issues', or 'properties').
- $\{\pm 1\}^{\mathcal{K}}$ is thus the set of all assignments of truth values to \mathcal{K} .
- A judgement space is a subset X ⊂ {±1}^K, representing the set of logically consistent (or 'feasible', or 'admissible') truth-valuations. An element x ∈ X is called a judgement (or view).
- A profile is a function $\mu : \mathcal{X} \longrightarrow [0,1]$ such that $\sum_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}) = 1$.
- Let $\Delta(\mathcal{X})$ denote the set of all profiles.
- A judgement aggregation rule is a correspondence $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$.
- ► For any (odd) gain function $\phi : [-1, 1] \longrightarrow *\mathbb{R}$, define the additive support rule $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ by $F_{\phi}(\mu) := \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{argmax}} \sum_{k \in \mathcal{K}} x_k \cdot \phi(\widetilde{\mu}_k).$

(Here, $\widetilde{\mu}_k := \sum_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}) x_k \in [-1, 1]$, the 'support' for proposition k.)

$$\operatorname{Median}(\mu) := \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \sum_{k \in \mathcal{K}} x_k \widetilde{\mu}_k = \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \mathbf{x} \bullet \widetilde{\mu}.$$

- (2/30)
- Let \mathcal{K} be a finite set of propositions (or 'issues', or 'properties').
- $\{\pm 1\}^{\mathcal{K}}$ is thus the set of all assignments of truth values to \mathcal{K} .
- A judgement space is a subset X ⊂ {±1}^K, representing the set of logically consistent (or 'feasible', or 'admissible') truth-valuations. An element x ∈ X is called a judgement (or view).
- A profile is a function $\mu : \mathcal{X} \longrightarrow [0, 1]$ such that $\sum_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}) = 1$.

For any $\mathbf{x} \in \mathcal{X}$, $\mu(\mathbf{x})$ = total weight of voters endorsing judgement \mathbf{x} . Let $\Delta(\mathcal{X})$ denote the set of all profiles.

A judgement aggregation rule is a correspondence F : Δ(X) ⇒ X.
 For any (odd) gain function φ : [-1,1] → *ℝ, define the additive support rule F_φ : Δ(X) ⇒ X by F_φ(μ) := argmax ∑_{k∈K} ×_k · φ(μ̃).

(Here,
$$\widetilde{\mu}_k := \sum_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}) x_k \in [-1, 1]$$
, the 'support' for proposition k .)

▶ In particular, if $\phi(r) := r$ for all $r \in [-1, 1]$, we get the **median rule**:

 $Median(\mu) := \arg\max_{\boldsymbol{\sigma},\boldsymbol{\gamma}} \sum x_k \widetilde{\mu}_k \quad \boldsymbol{\sigma} \quad$

- Let \mathcal{K} be a finite set of propositions (or 'issues', or 'properties').
- $\{\pm 1\}^{\mathcal{K}}$ is thus the set of all assignments of truth values to \mathcal{K} .
- A judgement space is a subset X ⊂ {±1}^K, representing the set of logically consistent (or 'feasible', or 'admissible') truth-valuations. An element x ∈ X is called a judgement (or view).
- A profile is a function $\mu : \mathcal{X} \longrightarrow [0, 1]$ such that $\sum_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}) = 1$.

For any $\mathbf{x} \in \mathcal{X}$, $\mu(\mathbf{x})$ = total weight of voters endorsing judgement \mathbf{x} . • Let $\Delta(\mathcal{X})$ denote the set of all profiles.

A judgement aggregation rule is a correspondence F : Δ(X) ⇒ X.
 For any (odd) gain function φ : [-1,1] → *ℝ, define the additive support rule F_φ : Δ(X) ⇒ X by F_φ(μ) := argmax ∑_{k∈K} ×_k · φ(μ̃).

(Here, $\widetilde{\mu}_k := \sum_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}) x_k \in [-1, 1]$, the 'support' for proposition k.)

▶ In particular, if $\phi(r) := r$ for all $r \in [-1, 1]$, we get the median rule:

 $\operatorname{Median}(\mu) := \operatorname{argmax}_{\leftarrow Y} \sum x_k \widetilde{\mu}_k \quad = \operatorname{argmax}_{\leftarrow Y} \quad \neq \quad P \widetilde{\mu}_{\Xi} \quad \mathfrak{see}$

- (2/36)
- Let \mathcal{K} be a finite set of propositions (or 'issues', or 'properties').
- $\{\pm 1\}^{\mathcal{K}}$ is thus the set of all assignments of truth values to \mathcal{K} .
- A judgement space is a subset X ⊂ {±1}^K, representing the set of logically consistent (or 'feasible', or 'admissible') truth-valuations. An element x ∈ X is called a judgement (or view).
- A profile is a function $\mu : \mathcal{X} \longrightarrow [0, 1]$ such that $\sum_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}) = 1$.

For any $\mathbf{x} \in \mathcal{X}$, $\mu(\mathbf{x})$ = total weight of voters endorsing judgement \mathbf{x} . Let $\Delta(\mathcal{X})$ denote the set of all profiles.

A judgement aggregation rule is a correspondence F : Δ(X) ⇒ X.
 For any (odd) gain function φ : [-1,1] → *ℝ, define the additive support rule F_φ : Δ(X) ⇒ X by F_φ(μ) := argmax ∑_{x∈X} ∑_{k∈K} x_k · φ(μ̃).

(Here, $\widetilde{\mu}_k := \sum_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}) x_k \in [-1, 1]$, the 'support' for proposition k.)

▶ In particular, if $\phi(r) := r$ for all $r \in [-1, 1]$, we get the median rule:

 $Median(\mu) := \arg\max_{k \in \mathcal{V}} \sum x_k \widetilde{\mu}_k \quad \text{argmax} \quad \text{argmax}$

- (2/36)
- Let \mathcal{K} be a finite set of propositions (or 'issues', or 'properties').
- $\{\pm 1\}^{\mathcal{K}}$ is thus the set of all assignments of truth values to \mathcal{K} .
- A judgement space is a subset X ⊂ {±1}^K, representing the set of logically consistent (or 'feasible', or 'admissible') truth-valuations. An element x ∈ X is called a judgement (or view).
- A profile is a function $\mu : \mathcal{X} \longrightarrow [0, 1]$ such that $\sum_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}) = 1$.

For any $\mathbf{x} \in \mathcal{X}$, $\mu(\mathbf{x})$ = total weight of voters endorsing judgement \mathbf{x} . • Let $\Delta(\mathcal{X})$ denote the set of all profiles.

- A judgement aggregation rule is a correspondence $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$.
- ► For any (odd) gain function $\phi : [-1, 1] \longrightarrow {}^*\mathbb{R}$, define the additive support rule $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ by $F_{\phi}(\mu) := \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{argmax}} \sum_{k \in \mathcal{K}} x_k \cdot \phi(\widetilde{\mu}_k).$

(Here,
$$\widetilde{\mu}_k := \sum_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}) x_k \in [-1, 1]$$
, the 'support' for proposition k .)

▶ In particular, if $\phi(r) := r$ for all $r \in [-1, 1]$, we get the **median rule**:

 $Median(\mu) := \arg\max_{k} \sum x_k \widetilde{\mu}_k \quad \text{angmax} \quad \text{ Median}(\mu)$

- Let \mathcal{K} be a finite set of propositions (or 'issues', or 'properties').
- $\{\pm 1\}^{\mathcal{K}}$ is thus the set of all assignments of truth values to \mathcal{K} .
- A judgement space is a subset X ⊂ {±1}^K, representing the set of logically consistent (or 'feasible', or 'admissible') truth-valuations. An element x ∈ X is called a judgement (or view).
- ► A profile is a function $\mu : \mathcal{X} \longrightarrow [0, 1]$ such that $\sum_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}) = 1$.
- Let $\Delta(\mathcal{X})$ denote the set of all profiles.
- A judgement aggregation rule is a correspondence $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$.
- ► For any (odd) gain function $\phi : [-1, 1] \longrightarrow {}^*\mathbb{R}$, define the additive support rule $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ by $F_{\phi}(\mu) := \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{argmax}} \sum_{k \in \mathcal{K}} x_k \cdot \phi(\widetilde{\mu}_k)$.

(Here,
$$\widetilde{\mu}_k := \sum_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}) x_k \in [-1, 1]$$
, the 'support' for proposition k .)

$$\operatorname{Median}(\mu) := \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \sum_{k \in \mathcal{K}} x_k \widetilde{\mu}_k = \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \mathbf{x} \bullet \widetilde{\mu}.$$

- Let \mathcal{K} be a finite set of propositions (or 'issues', or 'properties').
- $\{\pm 1\}^{\mathcal{K}}$ is thus the set of all assignments of truth values to \mathcal{K} .
- A judgement space is a subset X ⊂ {±1}^K, representing the set of logically consistent (or 'feasible', or 'admissible') truth-valuations. An element x ∈ X is called a judgement (or view).
- ► A profile is a function $\mu : \mathcal{X} \longrightarrow [0, 1]$ such that $\sum_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}) = 1$.
- Let $\Delta(\mathcal{X})$ denote the set of all profiles.
- A judgement aggregation rule is a correspondence $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$.
- ► For any (odd) gain function $\phi : [-1, 1] \longrightarrow {}^*\mathbb{R}$, define the additive support rule $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ by $F_{\phi}(\mu) := \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{argmax}} \sum_{k \in \mathcal{K}} x_k \cdot \phi(\widetilde{\mu}_k)$.

(Here,
$$\widetilde{\mu}_k := \sum_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x}) x_k \in [-1, 1]$$
, the 'support' for proposition k .)

$$\operatorname{Median}(\mu) := \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \sum_{k \in \mathcal{K}} x_k \widetilde{\mu}_k = \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \mathbf{x} \bullet \widetilde{\mu}.$$

- Let $\mathcal{A} := \{1, 2, 3, \dots, A\}$ be a finite set of 'social alternatives'.
- Let $\mathcal{K} := \{(a, b); a, b \in \mathcal{A} \text{ and } a < b\}.$
- Let $\mathcal{P}_{\mathcal{A}}$ be the set of all strict preference orders over \mathcal{A} .
- For any $(\succ) \in \mathcal{P}_{\mathcal{A}}$ define $\mathbf{x}^{\succ} \in \{\pm 1\}^{\mathcal{K}}$ as follows:

for all
$$a < b \in \mathcal{A}$$
, $x_{a,b}^{\succ} := \begin{cases} +1 & \text{if } a \succ b; \\ -1 & \text{if } a \prec b. \end{cases}$

- Let X^{pr}_A := {x[≻]; (≻) ∈ P_A}. This judgement space is called the **permutahedron**. Judgement aggregation over X^{pr}_A is equivalent to classic Arrovian preference aggregation.
- Propositionwise majority voting on X^{pr}_A is the 'Condorcet rule', and is vulnerable to the usual paradoxes.
- The median rule on X^{pr}_A corresponds to the Kemeny rule: choose the preference order in P_A which minimizes the "average Kendall distance" to the preference orders of the voters.

- Let A := {1,2,3,...,A} be a finite set of 'social alternatives'.
 Let K := {(a, b); a, b ∈ A and a < b}.
- Let $\mathcal{P}_{\mathcal{A}}$ be the set of all strict preference orders over \mathcal{A} .
- For any $(\succ) \in \mathcal{P}_{\mathcal{A}}$ define $\mathbf{x}^{\succ} \in \{\pm 1\}^{\mathcal{K}}$ as follows:

for all
$$a < b \in \mathcal{A}$$
, $x_{a,b}^{\succ} := \begin{cases} +1 & \text{if } a \succ b; \\ -1 & \text{if } a \prec b. \end{cases}$

- Let X^{pr}_A := {x[≻]; (≻) ∈ P_A}. This judgement space is called the permutahedron. Judgement aggregation over X^{pr}_A is equivalent to classic Arrovian preference aggregation.
- Propositionwise majority voting on X^{pr}_A is the 'Condorcet rule', and is vulnerable to the usual paradoxes.
- The median rule on X^{pr}_A corresponds to the Kemeny rule: choose the preference order in P_A which minimizes the "average Kendall distance" to the preference orders of the voters.

- Let $\mathcal{A} := \{1, 2, 3, \dots, A\}$ be a finite set of 'social alternatives'.
- Let $\mathcal{K} := \{(a, b); a, b \in \mathcal{A} \text{ and } a < b\}.$
- Let $\mathcal{P}_{\mathcal{A}}$ be the set of all strict preference orders over \mathcal{A} .
- For any $(\succ) \in \mathcal{P}_{\mathcal{A}}$ define $\mathbf{x}^{\succ} \in \{\pm 1\}^{\mathcal{K}}$ as follows:

for all
$$a < b \in \mathcal{A}$$
, $x_{a,b}^{\succ} := \begin{cases} +1 & \text{if } a \succ b; \\ -1 & \text{if } a \prec b. \end{cases}$

- Let X^{pr}_A := {x[≻]; (≻) ∈ P_A}. This judgement space is called the **permutahedron**. Judgement aggregation over X^{pr}_A is equivalent to classic Arrovian preference aggregation.
- Propositionwise majority voting on X^{pr}_A is the 'Condorcet rule', and is vulnerable to the usual paradoxes.
- The median rule on X^{pr}_A corresponds to the Kemeny rule: choose the preference order in P_A which minimizes the "average Kendall distance" to the preference orders of the voters.

- Let $\mathcal{A} := \{1, 2, 3, \dots, A\}$ be a finite set of 'social alternatives'.
- Let $\mathcal{K} := \{(a, b); a, b \in \mathcal{A} \text{ and } a < b\}.$
- Let $\mathcal{P}_{\mathcal{A}}$ be the set of all strict preference orders over \mathcal{A} .
- ▶ For any (\succ) $\in \mathcal{P}_{\mathcal{A}}$ define $\mathbf{x}^{\succ} \in \{\pm 1\}^{\mathcal{K}}$ as follows:

for all
$$a < b \in \mathcal{A}$$
, $\mathbf{x}_{a,b}^{\succ} := \begin{cases} +1 & \text{if } a \succ b; \\ -1 & \text{if } a \prec b. \end{cases}$

- Let X^{pr}_A := {x[≻]; (≻) ∈ P_A}. This judgement space is called the **permutahedron**. Judgement aggregation over X^{pr}_A is equivalent to classic Arrovian preference aggregation.
- Propositionwise majority voting on X^{pr}_A is the 'Condorcet rule', and is vulnerable to the usual paradoxes.
- The median rule on X^{pr}_A corresponds to the Kemeny rule: choose the preference order in P_A which minimizes the "average Kendall distance" to the preference orders of the voters.

- Let $\mathcal{A} := \{1, 2, 3, \dots, A\}$ be a finite set of 'social alternatives'.
- Let $\mathcal{K} := \{(a, b); a, b \in \mathcal{A} \text{ and } a < b\}.$
- Let $\mathcal{P}_{\mathcal{A}}$ be the set of all strict preference orders over \mathcal{A} .
- ▶ For any (\succ) $\in \mathcal{P}_{\mathcal{A}}$ define $\mathbf{x}^{\succ} \in \{\pm 1\}^{\mathcal{K}}$ as follows:

for all
$$a < b \in \mathcal{A}$$
, $x_{a,b}^{\succ} := \begin{cases} +1 & \text{if } a \succ b; \\ -1 & \text{if } a \prec b. \end{cases}$

- Let X^{pr}_A := {x[≻]; (≻) ∈ P_A}. This judgement space is called the permutahedron. Judgement aggregation over X^{pr}_A is equivalent to classic Arrovian preference aggregation.
- Propositionwise majority voting on X^{pr}_A is the 'Condorcet rule', and is vulnerable to the usual paradoxes.
- The median rule on X^{pr}_A corresponds to the Kemeny rule: choose the preference order in P_A which minimizes the "average Kendall distance" to the preference orders of the voters.

- Let $\mathcal{A} := \{1, 2, 3, \dots, A\}$ be a finite set of 'social alternatives'.
- Let $\mathcal{K} := \{(a, b); a, b \in \mathcal{A} \text{ and } a < b\}.$
- Let $\mathcal{P}_{\mathcal{A}}$ be the set of all strict preference orders over \mathcal{A} .
- ▶ For any (\succ) $\in \mathcal{P}_{\mathcal{A}}$ define $\mathbf{x}^{\succ} \in \{\pm 1\}^{\mathcal{K}}$ as follows:

for all
$$a < b \in \mathcal{A}$$
, $x_{a,b}^{\succ} := \begin{cases} +1 & \text{if } a \succ b; \\ -1 & \text{if } a \prec b. \end{cases}$

- Let X^{pr}_A := {x[≻]; (≻) ∈ P_A}. This judgement space is called the **permutahedron**. Judgement aggregation over X^{pr}_A is equivalent to classic Arrovian preference aggregation.
- Propositionwise majority voting on X^{pr}_A is the 'Condorcet rule', and is vulnerable to the usual paradoxes.
- The median rule on X^{pr}_A corresponds to the Kemeny rule: choose the preference order in P_A which minimizes the "average Kendall distance" to the preference orders of the voters.

- Let $\mathcal{A} := \{1, 2, 3, \dots, A\}$ be a finite set of 'social alternatives'.
- Let $\mathcal{K} := \{(a, b); a, b \in \mathcal{A} \text{ and } a < b\}.$
- Let $\mathcal{P}_{\mathcal{A}}$ be the set of all strict preference orders over \mathcal{A} .
- ▶ For any (\succ) $\in \mathcal{P}_{\mathcal{A}}$ define $\mathbf{x}^{\succ} \in \{\pm 1\}^{\mathcal{K}}$ as follows:

for all
$$a < b \in \mathcal{A}$$
, $x_{a,b}^{\succ} := \begin{cases} +1 & \text{if } a \succ b; \\ -1 & \text{if } a \prec b. \end{cases}$

- Let X^{pr}_A := {x[≻]; (≻) ∈ P_A}. This judgement space is called the **permutahedron**. Judgement aggregation over X^{pr}_A is equivalent to classic Arrovian preference aggregation.
- Propositionwise majority voting on X^{pr}_A is the 'Condorcet rule', and is vulnerable to the usual paradoxes.
- The median rule on X^{pr}_A corresponds to the Kemeny rule: choose the preference order in P_A which minimizes the "average Kendall distance" to the preference orders of the voters.

(4/36)

For any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$, and any $r \in [0, 1]$, the convex combination $r\mu_1 + (1 - r)\mu_0$ represents a mixture of a μ_0 -population and a μ_1 -population.

A judgement aggregation rule $F : \Delta(\mathcal{X}) \Longrightarrow \mathcal{X}$ satisfies *reinforcement* if: for any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$ with $F(\mu_0) \cap F(\mu_1) \neq \emptyset$, we have

$$F(r\mu_1 + (1-r)\mu_0) = F(\mu_0) \cap F(\mu_1), \text{ for all } r \in (0,1).$$

Idea. If two subpopulations both select judgement \mathbf{x} from \mathcal{X} , then the combined population should also select \mathbf{x} (and *only* \mathbf{x}). **Proposition.** The median rule satisfies reinforcement on every judgement space

(4/36)

For any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$, and any $r \in [0, 1]$, the convex combination $r\mu_1 + (1 - r)\mu_0$ represents a mixture of a μ_0 -population and a μ_1 -population.

A judgement aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies *reinforcement* if: for any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$ with $F(\mu_0) \cap F(\mu_1) \neq \emptyset$, we have

$F(r\mu_1 + (1-r)\mu_0) = F(\mu_0) \cap F(\mu_1), \text{ for all } r \in (0,1).$

Idea. If two subpopulations both select judgement x from \mathcal{X} , then the combined population should also select x (and only x). **Proposition.** The median rule satisfies reinforcement on every judgemen space.

(4/36)

For any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$, and any $r \in [0, 1]$, the convex combination $r\mu_1 + (1 - r)\mu_0$ represents a mixture of a μ_0 -population and a μ_1 -population.

A judgement aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies *reinforcement* if: for any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$ with $F(\mu_0) \cap F(\mu_1) \neq \emptyset$, we have

$$F(r\mu_1 + (1-r)\mu_0) = F(\mu_0) \cap F(\mu_1), \text{ for all } r \in (0,1).$$

Idea. If two subpopulations both select judgement \mathbf{x} from \mathcal{X} , then the combined population should also select \mathbf{x} (and *only* \mathbf{x}).

Proposition. The median rule satisfies reinforcement on every judgement space.

(4/36)

For any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$, and any $r \in [0, 1]$, the convex combination $r\mu_1 + (1 - r)\mu_0$ represents a mixture of a μ_0 -population and a μ_1 -population.

A judgement aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies *reinforcement* if: for any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$ with $F(\mu_0) \cap F(\mu_1) \neq \emptyset$, we have

$$F(r\mu_1 + (1-r)\mu_0) = F(\mu_0) \cap F(\mu_1), \text{ for all } r \in (0,1).$$

Idea. If two subpopulations both select judgement **x** from \mathcal{X} , then the combined population should also select **x** (and *only* **x**).

Proposition. The median rule satisfies reinforcement on every judgement space.

(4/36)

For any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$, and any $r \in [0, 1]$, the convex combination $r\mu_1 + (1 - r)\mu_0$ represents a mixture of a μ_0 -population and a μ_1 -population.

A judgement aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies *reinforcement* if: for any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$ with $F(\mu_0) \cap F(\mu_1) \neq \emptyset$, we have

$$F(r\mu_1 + (1-r)\mu_0) = F(\mu_0) \cap F(\mu_1), \text{ for all } r \in (0,1).$$

Idea. If two subpopulations both select judgement **x** from \mathcal{X} , then the combined population should also select **x** (and *only* **x**).

Proposition. The median rule satisfies reinforcement on every judgement space.

(4/36)

For any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$, and any $r \in [0, 1]$, the convex combination $r\mu_1 + (1 - r)\mu_0$ represents a mixture of a μ_0 -population and a μ_1 -population.

A judgement aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies *reinforcement* if: for any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$ with $F(\mu_0) \cap F(\mu_1) \neq \emptyset$, we have

$$F(r\mu_1 + (1-r)\mu_0) = F(\mu_0) \cap F(\mu_1), \text{ for all } r \in (0,1).$$

Idea. If two subpopulations both select judgement \mathbf{x} from \mathcal{X} , then the combined population should also select \mathbf{x} (and *only* \mathbf{x}).

Proposition. The median rule satisfies reinforcement on every judgement space.

Recall: A rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies *reinforcement* if: for any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$ with $F(\mu_0) \cap F(\mu_1) \neq \emptyset$, we have

 $F(r\mu_1 + (1-r)\mu_0) = F(\mu_0) \cap F(\mu_1), \text{ for all } r \in (0,1).$

Definition. A judgement aggregation rule F is *regular* if $F = F_{\phi}$ for some gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$ admitting some $r_2 > r_1 > r_0 > 0$ such that the ratio is finite.

Example: If st (ϕ) is finite and not constant in a neighbourhood of zero, then ϕ is regular. In particular, any real-valued ϕ is regular.

If $\mathcal{X} \subseteq \{\pm 1\}^{\mathcal{K}}$, then $\operatorname{conv}(\mathcal{X}) \subset \mathbb{R}^{\mathcal{K}}$. Say \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

The main result of Part II is the following:

Theorem 2A. Let \mathcal{X} be a thick judgement space and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be an additive support rule. Then: F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Most of the talk will be spent developing results which, while interesting in themselves, are also key steps in the proof of Theorem AA_{AB} , AB_{AB}

Recall: A rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies *reinforcement* if: for any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$ with $F(\mu_0) \cap F(\mu_1) \neq \emptyset$, we have

 $F(r\mu_1 + (1-r)\mu_0) = F(\mu_0) \cap F(\mu_1), \text{ for all } r \in (0,1).$

Definition. A judgement aggregation rule *F* is *regular* if $F = F_{\phi}$ for some gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$ admitting some $r_2 > r_1 > r_0 > 0$ such that the ratio $\frac{\phi(r_0)}{\phi(r_2) - \phi(r_1)}$ is finite.

Example: If st (ϕ) is finite and not constant in a neighbourhood of zero, then ϕ is regular. In particular, any real-valued ϕ is regular.

If $\mathcal{X}\subseteq \{\pm 1\}^\mathcal{K}$, then $\operatorname{conv}(\mathcal{X})\subset \mathbb{R}^\mathcal{K}$. Say \mathcal{X} is **thick** if $\mathsf{dim}[\operatorname{conv}(\mathcal{X})]=|\mathcal{K}|$.

The main result of Part II is the following:

Theorem 2A. Let \mathcal{X} be a thick judgement space and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be an additive support rule. Then: F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Most of the talk will be spent developing results which while interesting in \sim

Recall: A rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies *reinforcement* if: for any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$ with $F(\mu_0) \cap F(\mu_1) \neq \emptyset$, we have

 $F(r\mu_1 + (1-r)\mu_0) = F(\mu_0) \cap F(\mu_1), \text{ for all } r \in (0,1).$

Definition. A judgement aggregation rule *F* is *regular* if $F = F_{\phi}$ for some gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$ admitting some $r_2 > r_1 > r_0 > 0$ such that the ratio $\frac{\phi(r_0)}{\phi(r_2) - \phi(r_1)}$ is finite.

Example: If st (ϕ) is finite and not constant in a neighbourhood of zero, then ϕ is regular. In particular, any real-valued ϕ is regular.

If $\mathcal{X} \subseteq \{\pm 1\}^{\mathcal{K}}$, then $\operatorname{conv}(\mathcal{X}) \subset \mathbb{R}^{\mathcal{K}}$. Say \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

The main result of Part II is the following:

Theorem 2A. Let \mathcal{X} be a thick judgement space and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be an additive support rule. Then: F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Most of the talk will be spent developing results which while interesting in $_{\rm e}$

Recall: A rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies *reinforcement* if: for any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$ with $F(\mu_0) \cap F(\mu_1) \neq \emptyset$, we have

 $F(r\mu_1 + (1-r)\mu_0) = F(\mu_0) \cap F(\mu_1),$ for all $r \in (0,1).$

Definition. A judgement aggregation rule *F* is *regular* if $F = F_{\phi}$ for some gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$ admitting some $r_2 > r_1 > r_0 > 0$ such that the ratio $\frac{\phi(r_0)}{\phi(r_2) - \phi(r_1)}$ is finite.

Example: If st (ϕ) is finite and not constant in a neighbourhood of zero, then ϕ is regular. In particular, any real-valued ϕ is regular.

If $\mathcal{X} \subseteq \{\pm 1\}^{\mathcal{K}}$, then $\operatorname{conv}(\mathcal{X}) \subset \mathbb{R}^{\mathcal{K}}$. Say \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

The main result of Part II is the following:

Theorem 2A. Let \mathcal{X} be a thick judgement space and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be an additive support rule. Then: F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Most of the talk will be spent developing results which while interesting in $_{\rm e}$

Recall: A rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies *reinforcement* if: for any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$ with $F(\mu_0) \cap F(\mu_1) \neq \emptyset$, we have

 $F(r\mu_1 + (1-r)\mu_0) = F(\mu_0) \cap F(\mu_1),$ for all $r \in (0,1).$

Definition. A judgement aggregation rule *F* is *regular* if $F = F_{\phi}$ for some gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$ admitting some $r_2 > r_1 > r_0 > 0$ such that the ratio $\frac{\phi(r_0)}{\phi(r_2) - \phi(r_1)}$ is finite.

Example: If st (ϕ) is finite and not constant in a neighbourhood of zero, then ϕ is regular. In particular, any real-valued ϕ is regular.

If $\mathcal{X} \subseteq \{\pm 1\}^{\mathcal{K}}$, then $\operatorname{conv}(\mathcal{X}) \subset \mathbb{R}^{\mathcal{K}}$. Say \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

The main result of Part II is the following:

Theorem 2A. Let \mathcal{X} be a thick judgement space and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be an additive support rule. Then: F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Most of the talk will be spent developing results which while interesting in $_{\rm e}$

Recall: A rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies *reinforcement* if: for any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$ with $F(\mu_0) \cap F(\mu_1) \neq \emptyset$, we have

 $F(r\mu_1 + (1-r)\mu_0) = F(\mu_0) \cap F(\mu_1), \text{ for all } r \in (0,1).$

Definition. A judgement aggregation rule *F* is *regular* if $F = F_{\phi}$ for some gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$ admitting some $r_2 > r_1 > r_0 > 0$ such that the ratio $\frac{\phi(r_0)}{\phi(r_2) - \phi(r_1)}$ is finite.

Example: If st (ϕ) is finite and not constant in a neighbourhood of zero, then ϕ is regular. In particular, any real-valued ϕ is regular.

If $\mathcal{X} \subseteq \{\pm 1\}^{\mathcal{K}}$, then $\operatorname{conv}(\mathcal{X}) \subset \mathbb{R}^{\mathcal{K}}$. Say \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

The main result of Part II is the following:

Theorem 2A. Let \mathcal{X} be a thick judgement space and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be an additive support rule. Then: *F* is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if *F* is the median rule. Most of the talk will be spent developing results which while interesting in \mathcal{X}

Recall: A rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies *reinforcement* if: for any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$ with $F(\mu_0) \cap F(\mu_1) \neq \emptyset$, we have

 $F(r\mu_1 + (1-r)\mu_0) = F(\mu_0) \cap F(\mu_1), \text{ for all } r \in (0,1).$

Definition. A judgement aggregation rule *F* is *regular* if $F = F_{\phi}$ for some gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$ admitting some $r_2 > r_1 > r_0 > 0$ such that the ratio $\frac{\phi(r_0)}{\phi(r_2) - \phi(r_1)}$ is finite.

Example: If st (ϕ) is finite and not constant in a neighbourhood of zero, then ϕ is regular. In particular, any real-valued ϕ is regular.

If $\mathcal{X} \subseteq \{\pm 1\}^{\mathcal{K}}$, then $\operatorname{conv}(\mathcal{X}) \subset \mathbb{R}^{\mathcal{K}}$. Say \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

The main result of Part II is the following:

Theorem 2A. Let \mathcal{X} be a thick judgement space and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be an additive support rule. Then: F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Most of the talk will be spent developing results which while interesting in \sim

Recall: A rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies *reinforcement* if: for any profiles μ_0 and μ_1 in $\Delta(\mathcal{X})$ with $F(\mu_0) \cap F(\mu_1) \neq \emptyset$, we have

 $F(r\mu_1 + (1-r)\mu_0) = F(\mu_0) \cap F(\mu_1),$ for all $r \in (0,1).$

Definition. A judgement aggregation rule F is *regular* if $F = F_{\phi}$ for some gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$ admitting some $r_2 > r_1 > r_0 > 0$ such that the ratio $\phi(r_0)/(\phi(r_2) - \phi(r_1))$ is finite.

Example: If st (ϕ) is finite and not constant in a neighbourhood of zero, then ϕ is regular. In particular, any real-valued ϕ is regular.

If $\mathcal{X} \subseteq \{\pm 1\}^{\mathcal{K}}$, then $\operatorname{conv}(\mathcal{X}) \subset \mathbb{R}^{\mathcal{K}}$. Say \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

The main result of Part II is the following:

Theorem 2A. Let \mathcal{X} be a thick judgement space and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be an additive support rule. Then: F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Most of the talk will be spent developing results which, while interesting in themselves, are also key steps in the proof of Theorem 2A.

(6/36)

When combined with Theorem 1C from Part I, Theorem 2A becomes:

- **Theorem 2A*.** Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:
- The separable extension F^* is SME, upper hemicontinuous, regular, and satisfies reinforcement on $\Delta(\mathcal{X}^*)$ if and only if F is the median rule.
- Ideally, we would like to eliminate the condition of regularity
- **Conjecture.** Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:
- The separable extension F^* is SME, upper hemicontinuous and satisfies reinforcement on $\Delta(X^*)$ if and only if F is the median rule.
- Note that UHC cannot be eliminated from the characterization...
- **Example.** Let > be an arbitrary linear ordering on \mathcal{X} . Define $F_{M,>}: \Delta(\mathcal{X}) \longrightarrow \mathcal{X}$ by $F_{M,>}(\mu) := \max_{i=1}^{n} [\operatorname{Median}(\mathcal{X}, \mu)]$. (That is: first apply the median rule. Then break any ties using the ordering >.) The separable extension $F_{M,>}^*$ is SME and satisfies reinforcement, but it is not upper hemicontinuous. It is not the median $\operatorname{sule}_{\mathcal{B}}, \operatorname{sp}_{\mathcal{A}} \in \operatorname{sp}_{\mathcal{A}}$

(6/36)

When combined with Theorem 1C from Part I, Theorem 2A becomes:

Theorem 2A*. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

The separable extension F^* is SME, upper hemicontinuous, regular, and satisfies reinforcement on $\Delta(\mathcal{X}^*)$ if and only if F is the median rule.

Ideally, we would like to eliminate the condition of regularity....

- **Conjecture.** Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \Longrightarrow \mathcal{X}$ be a judgement aggregation rule. Then:
- The separable extension F^* is SME, upper hemicontinuous and satisfies reinforcement on $\Delta(X^*)$ if and only if F is the median rule.
- Note that UHC cannot be eliminated from the characterization...

Example. Let > be an arbitrary linear ordering on \mathcal{X} . Define $F_{M,>}: \Delta(\mathcal{X}) \longrightarrow \mathcal{X}$ by $F_{M,>}(\mu) := \max_{\geq} [\operatorname{Median}(\mathcal{X}, \mu)]$. (That is: first apply the median rule. Then break any ties using the ordering >.) The separable extension $F_{M,>}^*$ is SME and satisfies reinforcement, but it is not upper hemicontinuous. It is not the median $\operatorname{sule}_{\mathcal{B}}, \operatorname{sp}_{\mathcal{A}} \in \operatorname{sp}_{\mathcal{A}}$

(6/36)

When combined with Theorem 1C from Part I, Theorem 2A becomes:

Theorem 2A*. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

The separable extension F^* is SME, upper hemicontinuous, regular, and satisfies reinforcement on $\Delta(\mathcal{X}^*)$ if and only if F is the median rule.

Ideally, we would like to eliminate the condition of regularity....

- **Conjecture.** Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:
- The separable extension F^* is SME, upper hemicontinuous and satisfies reinforcement on $\Delta(X^*)$ if and only if F is the median rule.
- Note that UHC cannot be eliminated from the characterization...

Example. Let > be an arbitrary linear ordering on \mathcal{X} . Define $F_{M,>}: \Delta(\mathcal{X}) \longrightarrow \mathcal{X}$ by $F_{M,>}(\mu) := \max_{i=1}^{n} [\operatorname{Median}(\mathcal{X}, \mu)]$. (That is: first apply the median rule. Then break any ties using the ordering >.) The separable extension $F_{M,>}^*$ is SME and satisfies reinforcement, but it is not upper hemicontinuous. It is not the median $\operatorname{sule}_{\mathcal{B}}, \operatorname{sp}_{\mathcal{A}} \in \operatorname{sp}_{\mathcal{A}}$

(6/36)

When combined with Theorem 1C from Part I, Theorem 2A becomes:

Theorem 2A*. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

The separable extension F^* is SME, upper hemicontinuous, regular, and satisfies reinforcement on $\Delta(\mathcal{X}^*)$ if and only if F is the median rule.

Ideally, we would like to eliminate the condition of regularity....

Conjecture. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

The separable extension F^* is SME, upper hemicontinuous and satisfies reinforcement on $\Delta(X^*)$ if and only if F is the median rule.

Note that UHC cannot be eliminated from the characterization...

Example. Let > be an arbitrary linear ordering on \mathcal{X} . Define $F_{M,>}: \Delta(\mathcal{X}) \longrightarrow \mathcal{X}$ by $F_{M,>}(\mu) := \max_{\geq} [\operatorname{Median}(\mathcal{X}, \mu)]$. (That is: first apply the median rule. Then break any ties using the ordering >.) The separable extension $F_{M,>}^*$ is SME and satisfies reinforcement, but it is not upper hemicontinuous. It is not the median $\operatorname{sule}_{\mathcal{B}}, \operatorname{sp}_{\mathcal{A}} \in \operatorname{sp}_{\mathcal{A}}$

(6/36)

When combined with Theorem 1C from Part I, Theorem 2A becomes:

Theorem 2A*. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

The separable extension F^* is SME, upper hemicontinuous, regular, and satisfies reinforcement on $\Delta(\mathcal{X}^*)$ if and only if F is the median rule.

Ideally, we would like to eliminate the condition of regularity....

Conjecture. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

The separable extension F^* is SME, upper hemicontinuous and satisfies reinforcement on $\Delta(X^*)$ if and only if F is the median rule.

Note that UHC cannot be eliminated from the characterization...

Example. Let > be an arbitrary linear ordering on \mathcal{X} . Define $F_{M,>}: \Delta(\mathcal{X}) \longrightarrow \mathcal{X}$ by $F_{M,>}(\mu) := \max_{\geq} [\operatorname{Median}(\mathcal{X}, \mu)]$. (That is: first apply the median rule. Then break any ties using the ordering >.) The separable extension $F_{M,>}^*$ is SME and satisfies reinforcement, but it is not upper hemicontinuous. It is not the median $\operatorname{sule}_{\mathcal{B}}, \operatorname{sp}_{\mathcal{A}} \in \operatorname{sp}_{\mathcal{A}}$

(6/36)

When combined with Theorem 1C from Part I, Theorem 2A becomes:

Theorem 2A*. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

The separable extension F^* is SME, upper hemicontinuous, regular, and satisfies reinforcement on $\Delta(\mathcal{X}^*)$ if and only if F is the median rule.

Ideally, we would like to eliminate the condition of regularity....

Conjecture. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

The separable extension F^* is SME, upper hemicontinuous and satisfies reinforcement on $\Delta(X^*)$ if and only if F is the median rule.

Note that UHC cannot be eliminated from the characterization...

Example. Let > be an arbitrary linear ordering on \mathcal{X} . Define $F_{M,>}: \Delta(\mathcal{X}) \longrightarrow \mathcal{X}$ by $F_{M,>}(\mu) := \max_{\geq} [\operatorname{Median}(\mathcal{X}, \mu)]$. (That is: first apply the median rule. Then break any ties using the ordering >.) The separable extension $F_{M,>}^*$ is SME and satisfies reinforcement, but it is not upper hemicontinuous. It is not the median $\operatorname{sule}_{\mathcal{B}}, \operatorname{sp}_{\mathcal{A}} \in \operatorname{sp}_{\mathcal{A}}$

(6/36)

When combined with Theorem 1C from Part I, Theorem 2A becomes:

Theorem 2A*. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

The separable extension F^* is SME, upper hemicontinuous, regular, and satisfies reinforcement on $\Delta(\mathcal{X}^*)$ if and only if F is the median rule.

Ideally, we would like to eliminate the condition of regularity....

Conjecture. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

The separable extension F^* is SME, upper hemicontinuous and satisfies reinforcement on $\Delta(X^*)$ if and only if F is the median rule.

Note that UHC cannot be eliminated from the characterization...

Example. Let > be an arbitrary linear ordering on \mathcal{X} . Define $F_{M,>}: \Delta(\mathcal{X}) \longrightarrow \mathcal{X}$ by $F_{M,>}(\mu) := \max_{i=1}^{n} [\operatorname{Median}(\mathcal{X}, \mu)]$. (That is: first apply the median rule. Then break any ties using the ordering >.) The separable extension $F_{M,>}^*$ is SME and satisfies reinforcement, but it is not upper hemicontinuous. It is not the median $\operatorname{subs}(\mathfrak{G}, \mathfrak{G}, \mathfrak{G}) \to \mathfrak{G}$

(6/36)

When combined with Theorem 1C from Part I, Theorem 2A becomes:

Theorem 2A*. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

The separable extension F^* is SME, upper hemicontinuous, regular, and satisfies reinforcement on $\Delta(\mathcal{X}^*)$ if and only if F is the median rule.

Ideally, we would like to eliminate the condition of regularity....

Conjecture. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

The separable extension F^* is SME, upper hemicontinuous and satisfies reinforcement on $\Delta(X^*)$ if and only if F is the median rule.

Note that UHC cannot be eliminated from the characterization...

Example. Let > be an arbitrary linear ordering on \mathcal{X} . Define $F_{M,>}: \Delta(\mathcal{X}) \longrightarrow \mathcal{X}$ by $F_{M,>}(\mu) := \max_{\mathbb{Z}} [\operatorname{Median}(\mathcal{X}, \mu)]$. (That is: first apply the median rule. Then break any ties using the ordering >.) The separable extension $F_{M,>}^*$ is SME and satisfies reinforcement, but it is not upper hemicontinuous. It is not the median tule $\mathfrak{P} \times \mathfrak{F} \times \mathfrak{F} = \mathfrak{P} \mathfrak{P} \mathfrak{P}$

(6/36)

When combined with Theorem 1C from Part I, Theorem 2A becomes:

Theorem 2A*. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

The separable extension F^* is SME, upper hemicontinuous, regular, and satisfies reinforcement on $\Delta(\mathcal{X}^*)$ if and only if F is the median rule.

Ideally, we would like to eliminate the condition of regularity....

Conjecture. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

The separable extension F^* is SME, upper hemicontinuous and satisfies reinforcement on $\Delta(X^*)$ if and only if F is the median rule.

Note that UHC cannot be eliminated from the characterization...

Example. Let > be an arbitrary linear ordering on \mathcal{X} . Define $F_{M,>}: \Delta(\mathcal{X}) \longrightarrow \mathcal{X}$ by $F_{M,>}(\mu) := \max_{\mathbb{Z}} [\operatorname{Median}(\mathcal{X}, \mu)]$. (That is: first apply the median rule. Then break any ties using the ordering >.) The separable extension $F_{M,>}^*$ is SME and satisfies reinforcement, but it is not upper hemicontinuous. It is not the median tule $\mathfrak{P} \times \mathfrak{F} \times \mathfrak{F} = \mathfrak{P} \mathfrak{R}^*$

(6/36)

When combined with Theorem 1C from Part I, Theorem 2A becomes:

Theorem 2A*. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

The separable extension F^* is SME, upper hemicontinuous, regular, and satisfies reinforcement on $\Delta(\mathcal{X}^*)$ if and only if F is the median rule.

Ideally, we would like to eliminate the condition of regularity....

Conjecture. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

The separable extension F^* is SME, upper hemicontinuous and satisfies reinforcement on $\Delta(X^*)$ if and only if F is the median rule.

Note that UHC cannot be eliminated from the characterization...

Example. Let > be an arbitrary linear ordering on \mathcal{X} . Define $F_{M,>}: \Delta(\mathcal{X}) \longrightarrow \mathcal{X}$ by $F_{M,>}(\mu) := \max_{N>1} [\operatorname{Median}(\mathcal{X}, \mu)]$. (That is: first apply the median rule. Then break any ties using the ordering >.) The separable extension $F_{M,>}^*$ is SME and satisfies reinforcement, but it is not upper hemicontinuous. It is not the median rule.

- Let's compare this with the classic result of Young and Levenglick (1978). Let $\mathcal A$ be a finite set of alternatives.
- Let $\mathcal{P} := \{ all \text{ linear preference orders over } \mathcal{A} \}.$
- Let $\mathbb{N}^{\mathcal{P}}$ be the set of all anonymous profiles over \mathcal{P} (assigning a
- nonnegative integer number of voters to each preference order).
- A preference aggregation rule is a correspondence $F : \mathbb{N}^{\mathcal{P}} \rightrightarrows \mathcal{P}$.
- Any permutation $\sigma : \mathcal{A} \longrightarrow \mathcal{A}$ induces a bijection $\sigma^{\dagger} : \mathcal{P} \longrightarrow \mathcal{P}$, and from there, a bijection $\sigma^* : \mathbb{N}^{\mathcal{P}} \longrightarrow \mathbb{N}^{\mathcal{P}}$.
- The rule *F* is **neutral** if $F \circ \sigma^* = \sigma^{\dagger} \circ F$ for any permutation $\sigma : A \longrightarrow A$. The rule *F* is **Condorcet admissible** if all the nearest-neighbour orderings produced by *F* always agree with majority view.
- **Theorem.** (Y&L) A preference aggregation rule is neutral, Condorcet admissible, and satisfies reinforcement if and only if it is the Kemeny rule. (Note: for an abstract JA problem, 'neutrality' does not make sense.)

Theorem 2A*. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a JA rule. Then: F^* is SME, UHC, regular, and satisfies reinforcement on $\Delta(\mathcal{X}^*)$ if and only if F is the median rule.

Let's compare this with the classic result of Young and Levenglick (1978). Let \mathcal{A} be a finite set of alternatives.

Let $\mathcal{P} := \{ all \text{ linear preference orders over } \mathcal{A} \}.$

Let $\mathbb{N}^{\mathcal{P}}$ be the set of all anonymous profiles over \mathcal{P} (assigning a

nonnegative integer number of voters to each preference order).

A preference aggregation rule is a correspondence $F : \mathbb{N}^{\mathcal{P}} \rightrightarrows \mathcal{P}$.

Any permutation $\sigma : \mathcal{A} \longrightarrow \mathcal{A}$ induces a bijection $\sigma^{\dagger} : \mathcal{P} \longrightarrow \mathcal{P}$, and from there, a bijection $\sigma^* : \mathbb{N}^{\mathcal{P}} \longrightarrow \mathbb{N}^{\mathcal{P}}$.

The rule *F* is **neutral** if $F \circ \sigma^* = \sigma^{\dagger} \circ F$ for any permutation $\sigma : A \longrightarrow A$. The rule *F* is **Condorcet admissible** if all the nearest-neighbour orderings produced by *F* always agree with majority view.

Theorem. (Y&L) A preference aggregation rule is neutral, Condorcet admissible, and satisfies reinforcement if and only if it is the Kemeny rule. (Note: for an abstract JA problem, 'neutrality' does not make sense.)

- Let's compare this with the classic result of Young and Levenglick (1978). Let \mathcal{A} be a finite set of alternatives.
- Let $\mathcal{P} := \{ all \text{ linear preference orders over } \mathcal{A} \}.$
- Let $\mathbb{N}^{\mathcal{P}}$ be the set of all anonymous profiles over \mathcal{P} (assigning a nonnegative integer number of voters to each preference order). A **preference aggregation rule** is a correspondence $F : \mathbb{N}^{\mathcal{P}} \rightrightarrows \mathcal{P}$. Any permutation $\sigma : \mathcal{A} \longrightarrow \mathcal{A}$ induces a bijection $\sigma^{\dagger} : \mathcal{P} \longrightarrow \mathcal{P}$, and from there, a bijection $\sigma^{*} : \mathbb{N}^{\mathcal{P}} \longrightarrow \mathbb{N}^{\mathcal{P}}$.
- The rule *F* is **neutral** if $F \circ \sigma^* = \sigma^{\dagger} \circ F$ for any permutation $\sigma : A \longrightarrow A$. The rule *F* is **Condorcet admissible** if all the nearest-neighbour orderings produced by *F* always agree with majority view.
- **Theorem.** (Y&L) A preference aggregation rule is neutral, Condorcet admissible, and satisfies reinforcement if and only if it is the Kemeny rule. (Note: for an abstract JA problem, 'neutrality' does not make sense.)

- Let's compare this with the classic result of Young and Levenglick (1978). Let A be a finite set of alternatives.
- Let $\mathcal{P} := \{ all \text{ linear preference orders over } \mathcal{A} \}.$
- Let $\mathbb{N}^{\mathcal{P}}$ be the set of all anonymous profiles over \mathcal{P} (assigning a nonnegative integer number of voters to each preference order).
- A preference aggregation rule is a correspondence $F : \mathbb{N}^{\mathcal{P}} \rightrightarrows \mathcal{P}$. Any permutation $\sigma : \mathcal{A} \longrightarrow \mathcal{A}$ induces a bijection $\sigma^{\dagger} : \mathcal{P} \longrightarrow \mathcal{P}$, and from there, a bijection $\sigma^{*} : \mathbb{N}^{\mathcal{P}} \longrightarrow \mathbb{N}^{\mathcal{P}}$.
- The rule *F* is **neutral** if $F \circ \sigma^* = \sigma^{\dagger} \circ F$ for any permutation $\sigma : A \longrightarrow A$. The rule *F* is **Condorcet admissible** if all the nearest-neighbour orderings produced by *F* always agree with majority view.
- **Theorem.** (Y&L) A preference aggregation rule is neutral, Condorcet admissible, and satisfies reinforcement if and only if it is the Kemeny rule. (Note: for an abstract JA problem, 'neutrality' does not make sense.)

- Let's compare this with the classic result of Young and Levenglick (1978). Let A be a finite set of alternatives.
- Let $\mathcal{P} := \{ all \text{ linear preference orders over } \mathcal{A} \}.$
- Let $\mathbb{N}^{\mathcal{P}}$ be the set of all anonymous profiles over \mathcal{P} (assigning a nonnegative integer number of voters to each preference order).
- A preference aggregation rule is a correspondence $F : \mathbb{N}^{\mathcal{P}} \rightrightarrows \mathcal{P}$.
- Any permutation $\sigma : \mathcal{A} \longrightarrow \mathcal{A}$ induces a bijection $\sigma^{\dagger} : \mathcal{P} \longrightarrow \mathcal{P}$, and from there, a bijection $\sigma^* : \mathbb{N}^{\mathcal{P}} \longrightarrow \mathbb{N}^{\mathcal{P}}$.
- The rule *F* is **neutral** if $F \circ \sigma^* = \sigma^{\dagger} \circ F$ for any permutation $\sigma : \mathcal{A} \longrightarrow \mathcal{A}$. The rule *F* is **Condorcet admissible** if all the nearest-neighbour orderings produced by *F* always agree with majority view.
- **Theorem.** (Y&L) A preference aggregation rule is neutral, Condorcet admissible, and satisfies reinforcement if and only if it is the Kemeny rule. (Note: for an abstract JA problem, 'neutrality' does not make sense.)

- Let's compare this with the classic result of Young and Levenglick (1978). Let A be a finite set of alternatives.
- Let $\mathcal{P} := \{ all \text{ linear preference orders over } \mathcal{A} \}.$
- Let $\mathbb{N}^{\mathcal{P}}$ be the set of all anonymous profiles over \mathcal{P} (assigning a nonnegative integer number of voters to each preference order). A **preference aggregation rule** is a correspondence $F : \mathbb{N}^{\mathcal{P}} \rightrightarrows \mathcal{P}$. Any permutation $\sigma : \mathcal{A} \longrightarrow \mathcal{A}$ induces a bijection $\sigma^{\dagger} : \mathcal{P} \longrightarrow \mathcal{P}$, and from there, a bijection $\sigma^* : \mathbb{N}^{\mathcal{P}} \longrightarrow \mathbb{N}^{\mathcal{P}}$.
- The rule *F* is **neutral** if $F \circ \sigma^* = \sigma^{\dagger} \circ F$ for any permutation $\sigma : A \longrightarrow A$. The rule *F* is **Condorcet admissible** if all the nearest-neighbour orderings produced by *F* always agree with majority view.
- **Theorem.** (Y&L) A preference aggregation rule is neutral, Condorcet admissible, and satisfies reinforcement if and only if it is the Kemeny rule. (Note: for an abstract JA problem, 'neutrality' does not make sense.)

Theorem 2A*. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a JA rule. Then: F^* is SME, UHC, regular, and satisfies reinforcement on $\Delta(\mathcal{X}^*)$ if and only if F is the median rule.

- Let's compare this with the classic result of Young and Levenglick (1978). Let A be a finite set of alternatives.
- Let $\mathcal{P} := \{ all \text{ linear preference orders over } \mathcal{A} \}.$
- Let $\mathbb{N}^{\mathcal{P}}$ be the set of all anonymous profiles over \mathcal{P} (assigning a nonnegative integer number of voters to each preference order).
- A preference aggregation rule is a correspondence $F : \mathbb{N}^{\mathcal{P}} \rightrightarrows \mathcal{P}$. Any permutation $\sigma : \mathcal{A} \longrightarrow \mathcal{A}$ induces a bijection $\sigma^{\dagger} : \mathcal{P} \longrightarrow \mathcal{P}$, and from there, a bijection $\sigma^{\ast} : \mathbb{N}^{\mathcal{P}} \longrightarrow \mathbb{N}^{\mathcal{P}}$.

The rule *F* is **neutral** if $F \circ \sigma^* = \sigma^{\dagger} \circ F$ for any permutation $\sigma : \mathcal{A} \longrightarrow \mathcal{A}$.

- The rule *F* is **Condorcet admissible** if all the nearest-neighbour orderings produced by *F* always agree with majority view.
- **Theorem.** (Y&L) A preference aggregation rule is neutral, Condorcet admissible, and satisfies reinforcement if and only if it is the Kemeny rule. (Note: for an abstract JA problem, 'neutrality' does not make sense.)

- Let's compare this with the classic result of Young and Levenglick (1978). Let A be a finite set of alternatives.
- Let $\mathcal{P} := \{ all \text{ linear preference orders over } \mathcal{A} \}.$
- Let $\mathbb{N}^{\mathcal{P}}$ be the set of all anonymous profiles over \mathcal{P} (assigning a nonnegative integer number of voters to each preference order).
- A preference aggregation rule is a correspondence $F : \mathbb{N}^{\mathcal{P}} \rightrightarrows \mathcal{P}$.
- Any permutation $\sigma : \mathcal{A} \longrightarrow \mathcal{A}$ induces a bijection $\sigma^{\dagger} : \mathcal{P} \longrightarrow \mathcal{P}$, and from there, a bijection $\sigma^* : \mathbb{N}^{\mathcal{P}} \longrightarrow \mathbb{N}^{\mathcal{P}}$.
- The rule *F* is **neutral** if $F \circ \sigma^* = \sigma^{\dagger} \circ F$ for any permutation $\sigma : \mathcal{A} \longrightarrow \mathcal{A}$. The rule *F* is **Condorcet admissible** if all the nearest-neighbour orderings produced by *F* always agree with majority view.
- **Theorem.** (Y&L) A preference aggregation rule is neutral, Condorcet admissible, and satisfies reinforcement if and only if it is the Kemeny rule. (Note: for an abstract JA problem, 'neutrality' does not make sense.)

- Let's compare this with the classic result of Young and Levenglick (1978). Let A be a finite set of alternatives.
- Let $\mathcal{P} := \{ all \text{ linear preference orders over } \mathcal{A} \}.$
- Let $\mathbb{N}^{\mathcal{P}}$ be the set of all anonymous profiles over \mathcal{P} (assigning a nonnegative integer number of voters to each preference order).
- A preference aggregation rule is a correspondence $F : \mathbb{N}^{\mathcal{P}} \rightrightarrows \mathcal{P}$.
- Any permutation $\sigma : \mathcal{A} \longrightarrow \mathcal{A}$ induces a bijection $\sigma^{\dagger} : \mathcal{P} \longrightarrow \mathcal{P}$, and from there, a bijection $\sigma^* : \mathbb{N}^{\mathcal{P}} \longrightarrow \mathbb{N}^{\mathcal{P}}$.
- The rule *F* is **neutral** if $F \circ \sigma^* = \sigma^{\dagger} \circ F$ for any permutation $\sigma : \mathcal{A} \longrightarrow \mathcal{A}$. The rule *F* is **Condorcet admissible** if all the nearest-neighbour orderings produced by *F* always agree with majority view.
- **Theorem.** (Y&L) A preference aggregation rule is neutral, Condorcet admissible, and satisfies reinforcement if and only if it is the Kemeny rule. (*Note:* for an abstract JA problem, 'neutrality' does not make sense.)

- Let's compare this with the classic result of Young and Levenglick (1978). Let A be a finite set of alternatives.
- Let $\mathcal{P} := \{ all \text{ linear preference orders over } \mathcal{A} \}.$
- Let $\mathbb{N}^{\mathcal{P}}$ be the set of all anonymous profiles over \mathcal{P} (assigning a nonnegative integer number of voters to each preference order).
- A preference aggregation rule is a correspondence $F : \mathbb{N}^{\mathcal{P}} \rightrightarrows \mathcal{P}$.
- Any permutation $\sigma : \mathcal{A} \longrightarrow \mathcal{A}$ induces a bijection $\sigma^{\dagger} : \mathcal{P} \longrightarrow \mathcal{P}$, and from there, a bijection $\sigma^* : \mathbb{N}^{\mathcal{P}} \longrightarrow \mathbb{N}^{\mathcal{P}}$.
- The rule *F* is **neutral** if $F \circ \sigma^* = \sigma^{\dagger} \circ F$ for any permutation $\sigma : \mathcal{A} \longrightarrow \mathcal{A}$. The rule *F* is **Condorcet admissible** if all the nearest-neighbour orderings produced by *F* always agree with majority view.
- **Theorem.** (Y&L) A preference aggregation rule is neutral, Condorcet admissible, and satisfies reinforcement if and only if it is the Kemeny rule. (*Note*: for an abstract JA problem, 'neutrality' does not make sense.)

Theorem 2A. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Proof strategy: "⇐─" is straightforward computation. " ⇒ "

1. (Additive representation & upper hemicontinuity)

 $\left({ extsf{F}} = { extsf{F}}_{\phi} extsf{ for some continuous gain function } \phi : [-1,1] { o } \mathbb{R}
ight)$

2. Reinforcement implies that ϕ is linear.

Plan of talk:

- 1. From upper hemicontinuity to continuity (Theorems 2C and 2F).
- 2. Uniqueness of gain function (Theorem 2B).
- 3. Homogeneous rules and neutral reinforcement (Theorem 2G).
- 4. Proof sketches for the aforementioned results and Theorem 2A.
- 5. (Time permitting) Proof of some results from Part I.

Theorem 2A. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Proof strategy: "← " is straightforward computation.

1. (Additive representation & upper hemicontinuity)

 $\left({{ extsf{F}} = {{ extsf{F}} _ \phi }} extsf{ for some continuous gain function } \phi : [-1,1] {\longrightarrow } \mathbb{R}
ight)$

2. Reinforcement implies that ϕ is linear.

Plan of talk:

- 1. From upper hemicontinuity to continuity (Theorems 2C and 2F).
- 2. Uniqueness of gain function (Theorem 2B).
- 3. Homogeneous rules and neutral reinforcement (Theorem 2G).
- 4. Proof sketches for the aforementioned results and Theorem 2A.
- 5. (Time permitting) Proof of some results from Part I.

Theorem 2A. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Proof strategy: " \Leftarrow " is straightforward computation.

1. (Additive representation & upper hemicontinuity)

 $\left({ extsf{F}} = { extsf{F}}_{\phi} extsf{ for some continuous gain function } \phi : [-1,1] { o } \mathbb{R}
ight)$

2. Reinforcement implies that ϕ is linear.

Plan of talk:

- 1. From upper hemicontinuity to continuity (Theorems 2C and 2F).
- 2. Uniqueness of gain function (Theorem 2B).
- 3. Homogeneous rules and neutral reinforcement (Theorem 2G).
- 4. Proof sketches for the aforementioned results and Theorem 2A.
- 5. (Time permitting) Proof of some results from Part I.

Theorem 2A. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Proof strategy: "\equiv " is straightforward computation.

1. (Additive representation & upper hemicontinuity) \implies $(F = F_{\phi} \text{ for some continuous gain function } \phi : [-1, 1] \longrightarrow \mathbb{R}).$

- 5. (Time permitting) Proof of some results from Part I.

Theorem 2A. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Proof strategy: "← " is straightforward computation.

- 1. (Additive representation & upper hemicontinuity) \implies
 - $(F = F_{\phi} \text{ for some continuous gain function } \phi : [-1, 1] \longrightarrow \mathbb{R}).$
- 2. Reinforcement implies that ϕ is linear.

Plan of talk:

- 1. From upper hemicontinuity to continuity (Theorems 2C and 2F).
- 2. Uniqueness of gain function (Theorem 2B).
- 3. Homogeneous rules and neutral reinforcement (Theorem 2G).
- 4. Proof sketches for the aforementioned results and Theorem 2A.
- 5. (Time permitting) Proof of some results from Part I.

Theorem 2A. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Proof strategy: "← " is straightforward computation.

(Additive representation & upper hemicontinuity & regularity) ⇒
 (F = F_φ for some continuous gain function φ : [-1, 1]→ℝ).
 Reinforcement implies that φ is linear.

Plan of talk:

- 1. From upper hemicontinuity to continuity (Theorems 2C and 2F).
- 2. Uniqueness of gain function (Theorem 2B).
- 3. Homogeneous rules and neutral reinforcement (Theorem 2G).
- 4. Proof sketches for the aforementioned results and Theorem 2A.
- 5. (Time permitting) Proof of some results from Part I.

Theorem 2A. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Proof strategy: "" is straightforward computation.

(Additive representation & upper hemicontinuity & regularity) ⇒
 (F = F_φ for some continuous gain function φ : [-1, 1]→ℝ).
 Reinforcement implies that φ is linear.

Plan of talk:

- 1. From upper hemicontinuity to continuity (Theorems 2C and 2F).
- 2. Uniqueness of gain function (Theorem 2B).
- 3. Homogeneous rules and neutral reinforcement (Theorem 2G).
- 4. Proof sketches for the aforementioned results and Theorem 2A.
- 5. (Time permitting) Proof of some results from Part I.

Theorem 2A. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Proof strategy: "" is straightforward computation.

(Additive representation & upper hemicontinuity & regularity) ⇒
 (F = F_φ for some continuous gain function φ : [-1, 1]→ℝ).
 Reinforcement implies that φ is linear.

Plan of talk:

- 1. From upper hemicontinuity to continuity (Theorems 2C and 2F).
- 2. Uniqueness of gain function (Theorem 2B).
- 3. Homogeneous rules and neutral reinforcement (Theorem 2G).
- 4. Proof sketches for the aforementioned results and Theorem 2A.
- 5. (Time permitting) Proof of some results from Part I.

Theorem 2A. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Proof strategy: "" is straightforward computation.

(Additive representation & upper hemicontinuity & regularity) ⇒
 (F = F_φ for some continuous gain function φ : [-1, 1]→ℝ).
 Reinforcement implies that φ is linear.

Plan of talk:

- 1. From upper hemicontinuity to continuity (Theorems 2C and 2F).
- 2. Uniqueness of gain function (Theorem 2B).
- 3. Homogeneous rules and neutral reinforcement (Theorem 2G).
- 4. Proof sketches for the aforementioned results and Theorem 2A.
- 5. (Time permitting) Proof of some results from Part I.

Theorem 2A. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Proof strategy: "" is straightforward computation.

(Additive representation & upper hemicontinuity & regularity) ⇒
 (F = F_φ for some continuous gain function φ : [-1, 1]→ℝ).
 Reinforcement implies that φ is linear.

Plan of talk:

- 1. From upper hemicontinuity to continuity (Theorems 2C and 2F).
- 2. Uniqueness of gain function (Theorem 2B).
- 3. Homogeneous rules and neutral reinforcement (Theorem 2G).
- 4. Proof sketches for the aforementioned results and Theorem 2A.
- 5. (Time permitting) Proof of some results from Part I.

Theorem 2A. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Proof strategy: "" is straightforward computation.

(Additive representation & upper hemicontinuity & regularity) ⇒
 (F = F_φ for some continuous gain function φ : [-1, 1]→ℝ).
 Reinforcement implies that φ is linear.

Plan of talk:

" ⇒ "

- 1. From upper hemicontinuity to continuity (Theorems 2C and 2F).
- 2. Uniqueness of gain function (Theorem 2B).
- 3. Homogeneous rules and neutral reinforcement (Theorem 2G).
- 4. Proof sketches for the aforementioned results and Theorem 2A.

5. (Time permitting) Proof of some results from Part I.

Theorem 2A. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F is the median rule.

Proof strategy: "" is straightforward computation.

(Additive representation & upper hemicontinuity & regularity) ⇒
 (F = F_φ for some continuous gain function φ : [-1, 1]→ℝ).
 Reinforcement implies that φ is linear.

Plan of talk:

- 1. From upper hemicontinuity to continuity (Theorems 2C and 2F).
- 2. Uniqueness of gain function (Theorem 2B).
- 3. Homogeneous rules and neutral reinforcement (Theorem 2G).
- 4. Proof sketches for the aforementioned results and Theorem 2A.
- 5. (Time permitting) Proof of some results from Part I.

Recall: Any separable, supermajoritarian efficient judgement aggregation rule F is contained in some additive support rule F_{ϕ} (for some hyperreal gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$). Also, if F is UHC, then $F = F_{\phi}$.

- Question 1. How unique is this representation? That is: given two gain functions ψ and ϕ , how 'similar' must they be if $F_{\phi} = F_{\psi}$?
- Question 2. When is the gain function φ real-valued and continuous? How is this related to the upper hemicontinuity of F_φ?

The answer to these questions depends upon the structure of $\mathcal{X}.$

For example, if \mathcal{X} is supermajoritarian determinate, then for any ϕ and ψ , we have $F_{\phi}(\mathcal{X},\mu) = F_{\psi}(\mathcal{X},\mu)$ for all $\mu \in \Delta(\mathcal{X})$.

In particular, Median (\mathcal{X}, μ) =LexiMin (\mathcal{X}, μ) for all $\mu \in \Delta(\mathcal{X})$.

Thus, the additive representation is far from unique, and the continuity of ϕ is not necessary for the upper hemicontinuity of F_{ϕ} .

Thus, ϕ is forced to be unique (and continuous) only to the extent that \mathcal{X} deviates from supermajoritarian determinacy.

Also, we shall see that the uniqueness and continuity of ϕ can only be established in a subset $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1, 1]$, the 'domain of robust tradeoffs' and so that the uniqueness of the set of the set

Recall: Any separable, supermajoritarian efficient judgement aggregation rule F is contained in some additive support rule F_{ϕ} (for some hyperreal gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$). Also, if F is UHC, then $F = F_{\phi}$.

- Question 1. How unique is this representation? That is: given two gain functions ψ and ϕ , how 'similar' must they be if $F_{\phi} = F_{\psi}$?
- Question 2. When is the gain function φ real-valued and continuous? How is this related to the upper hemicontinuity of F_φ?

The answer to these questions depends upon the structure of $\mathcal{X}.$

For example, if \mathcal{X} is supermajoritarian determinate, then for any ϕ and ψ , we have $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

In particular, Median (\mathcal{X}, μ) =LexiMin (\mathcal{X}, μ) for all $\mu \in \Delta(\mathcal{X})$.

Thus, the additive representation is far from unique, and the continuity of ϕ is not necessary for the upper hemicontinuity of F_{ϕ} .

Thus, ϕ is forced to be unique (and continuous) only to the extent that \mathcal{X} deviates from supermajoritarian determinacy.

Also, we shall see that the uniqueness and continuity of ϕ can only be established in a subset $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' ...

Recall: Any separable, supermajoritarian efficient judgement aggregation rule F is contained in some additive support rule F_{ϕ} (for some hyperreal gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$). Also, if F is UHC, then $F = F_{\phi}$.

Question 1. How unique is this representation? That is: given two gain functions ψ and φ, how 'similar' must they be if F_φ = F_ψ?
 Question 2. When is the gain function φ real-valued and continuous? How is this related to the upper hemicontinuity of F_φ?

The answer to these questions depends upon the structure of $\mathcal{X}.$

For example, if \mathcal{X} is supermajoritarian determinate, then for any ϕ and ψ , we have $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

In particular, Median (\mathcal{X}, μ) =LexiMin (\mathcal{X}, μ) for all $\mu \in \Delta(\mathcal{X})$.

Thus, the additive representation is far from unique, and the continuity of ϕ is not necessary for the upper hemicontinuity of F_{ϕ} .

Thus, ϕ is forced to be unique (and continuous) only to the extent that ${\mathcal X}$ deviates from supermajoritarian determinacy.

Also, we shall see that the uniqueness and continuity of ϕ can only be established in a subset $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1, 1]$, the 'domain of robust tradeoffs' and so that the uniqueness of the set of the set

Recall: Any separable, supermajoritarian efficient judgement aggregation rule F is contained in some additive support rule F_{ϕ} (for some hyperreal gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$). Also, if F is UHC, then $F = F_{\phi}$.

- Question 1. How unique is this representation? That is: given two gain functions ψ and ϕ , how 'similar' must they be if $F_{\phi} = F_{\psi}$?
- Question 2. When is the gain function \u03c6 real-valued and continuous? How is this related to the upper hemicontinuity of F\u03c6?

The answer to these questions depends upon the structure of $\mathcal{X}.$

For example, if \mathcal{X} is supermajoritarian determinate, then for any ϕ and ψ , we have $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

In particular, Median (\mathcal{X}, μ) =LexiMin (\mathcal{X}, μ) for all $\mu \in \Delta(\mathcal{X})$.

Thus, the additive representation is far from unique, and the continuity of ϕ is not necessary for the upper hemicontinuity of F_{ϕ} .

Thus, ϕ is forced to be unique (and continuous) only to the extent that \mathcal{X} deviates from supermajoritarian determinacy.

Also, we shall see that the uniqueness and continuity of ϕ can only be established in a subset $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and so that the uniqueness and continuity of ϕ can only be

Recall: Any separable, supermajoritarian efficient judgement aggregation rule F is contained in some additive support rule F_{ϕ} (for some hyperreal gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$). Also, if F is UHC, then $F = F_{\phi}$.

- Question 1. How unique is this representation? That is: given two gain functions ψ and ϕ , how 'similar' must they be if $F_{\phi} = F_{\psi}$?
- Question 2. When is the gain function \u03c6 real-valued and continuous? How is this related to the upper hemicontinuity of F_\u03c6?

The answer to these questions depends upon the structure of $\mathcal{X}.$

For example, if \mathcal{X} is supermajoritarian determinate, then for any ϕ and ψ , we have $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

In particular, Median (\mathcal{X}, μ) =LexiMin (\mathcal{X}, μ) for all $\mu \in \Delta(\mathcal{X})$.

Thus, the additive representation is far from unique, and the continuity of ϕ is not necessary for the upper hemicontinuity of F_{ϕ} .

Thus, ϕ is forced to be unique (and continuous) only to the extent that \mathcal{X} deviates from supermajoritarian determinacy.

Also, we shall see that the uniqueness and continuity of ϕ can only be established in a subset $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and so that the uniqueness of the second secon

Recall: Any separable, supermajoritarian efficient judgement aggregation rule F is contained in some additive support rule F_{ϕ} (for some hyperreal gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$). Also, if F is UHC, then $F = F_{\phi}$.

- Question 1. How unique is this representation? That is: given two gain functions ψ and ϕ , how 'similar' must they be if $F_{\phi} = F_{\psi}$?
- Question 2. When is the gain function φ real-valued and continuous? How is this related to the upper hemicontinuity of F_φ?

The answer to these questions depends upon the structure of $\mathcal{X}.$

For example, if \mathcal{X} is supermajoritarian determinate, then for any ϕ and ψ , we have $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

In particular, Median (\mathcal{X}, μ) =LexiMin (\mathcal{X}, μ) for all $\mu \in \Delta(\mathcal{X})$.

Thus, the additive representation is far from unique, and the continuity of ϕ is not necessary for the upper hemicontinuity of F_{ϕ} .

Thus, ϕ is forced to be unique (and continuous) only to the extent that ${\mathcal X}$ deviates from supermajoritarian determinacy.

Also, we shall see that the uniqueness and continuity of ϕ can only be established in a subset $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' ...

Recall: Any separable, supermajoritarian efficient judgement aggregation rule F is contained in some additive support rule F_{ϕ} (for some hyperreal gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$). Also, if F is UHC, then $F = F_{\phi}$.

- Question 1. How unique is this representation? That is: given two gain functions ψ and ϕ , how 'similar' must they be if $F_{\phi} = F_{\psi}$?
- Question 2. When is the gain function φ real-valued and continuous? How is this related to the upper hemicontinuity of F_φ?

The answer to these questions depends upon the structure of \mathcal{X} .

For example, if \mathcal{X} is supermajoritarian determinate, then for any ϕ and ψ , we have $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

In particular, Median (\mathcal{X}, μ) =LexiMin (\mathcal{X}, μ) for all $\mu \in \Delta(\mathcal{X})$.

Thus, the additive representation is far from unique, and the continuity of ϕ is not necessary for the upper hemicontinuity of F_{ϕ} .

Thus, ϕ is forced to be unique (and continuous) only to the extent that \mathcal{X} deviates from supermajoritarian determinacy.

Also, we shall see that the uniqueness and continuity of ϕ can only be established in a subset $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' ...

Recall: Any separable, supermajoritarian efficient judgement aggregation rule F is contained in some additive support rule F_{ϕ} (for some hyperreal gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$). Also, if F is UHC, then $F = F_{\phi}$.

- Question 1. How unique is this representation? That is: given two gain functions ψ and ϕ , how 'similar' must they be if $F_{\phi} = F_{\psi}$?
- Question 2. When is the gain function φ real-valued and continuous? How is this related to the upper hemicontinuity of F_φ?

The answer to these questions depends upon the structure of \mathcal{X} .

For example, if \mathcal{X} is supermajoritarian determinate, then for any ϕ and ψ , we have $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

In particular, Median (\mathcal{X}, μ) =LexiMin (\mathcal{X}, μ) for all $\mu \in \Delta(\mathcal{X})$.

Thus, the additive representation is far from unique, and the continuity of ϕ is not necessary for the upper hemicontinuity of F_{ϕ} .

Thus, ϕ is forced to be unique (and continuous) only to the extent that $\mathcal X$ deviates from supermajoritarian determinacy.

Also, we shall see that the uniqueness and continuity of ϕ can only be established in a subset $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' ...

Recall: Any separable, supermajoritarian efficient judgement aggregation rule F is contained in some additive support rule F_{ϕ} (for some hyperreal gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$). Also, if F is UHC, then $F = F_{\phi}$.

- Question 1. How unique is this representation? That is: given two gain functions ψ and ϕ , how 'similar' must they be if $F_{\phi} = F_{\psi}$?
- Question 2. When is the gain function φ real-valued and continuous? How is this related to the upper hemicontinuity of F_φ?

The answer to these questions depends upon the structure of \mathcal{X} .

For example, if \mathcal{X} is supermajoritarian determinate, then for any ϕ and ψ , we have $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

In particular, Median(\mathcal{X}, μ)=LexiMin(\mathcal{X}, μ) for all $\mu \in \Delta(\mathcal{X})$.

Thus, the additive representation is far from unique, and the continuity of ϕ is not necessary for the upper hemicontinuity of F_{ϕ} .

Thus, ϕ is forced to be unique (and continuous) only to the extent that \mathcal{X} deviates from supermajoritarian determinacy.

Also, we shall see that the uniqueness and continuity of ϕ can only be established in a subset $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' ...

Recall: Any separable, supermajoritarian efficient judgement aggregation rule F is contained in some additive support rule F_{ϕ} (for some hyperreal gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$). Also, if F is UHC, then $F = F_{\phi}$.

- Question 1. How unique is this representation? That is: given two gain functions ψ and ϕ , how 'similar' must they be if $F_{\phi} = F_{\psi}$?
- Question 2. When is the gain function φ real-valued and continuous? How is this related to the upper hemicontinuity of F_φ?
- The answer to these questions depends upon the structure of \mathcal{X} .

For example, if \mathcal{X} is supermajoritarian determinate, then for any ϕ and ψ , we have $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

In particular, Median (\mathcal{X}, μ) =LexiMin (\mathcal{X}, μ) for all $\mu \in \Delta(\mathcal{X})$.

Thus, the additive representation is far from unique, and the continuity of ϕ is not necessary for the upper hemicontinuity of F_{ϕ} .

Thus, ϕ is forced to be unique (and continuous) only to the extent that $\mathcal X$ deviates from supermajoritarian determinacy.

Also, we shall see that the uniqueness and continuity of ϕ can only be established in a subset $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' and $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of robust tradeoffs' an

Recall: Any separable, supermajoritarian efficient judgement aggregation rule F is contained in some additive support rule F_{ϕ} (for some hyperreal gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$). Also, if F is UHC, then $F = F_{\phi}$.

- Question 1. How unique is this representation? That is: given two gain functions ψ and ϕ , how 'similar' must they be if $F_{\phi} = F_{\psi}$?
- Question 2. When is the gain function φ real-valued and continuous? How is this related to the upper hemicontinuity of F_φ?
- The answer to these questions depends upon the structure of \mathcal{X} .

For example, if \mathcal{X} is supermajoritarian determinate, then for any ϕ and ψ , we have $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

In particular, Median (\mathcal{X}, μ) =LexiMin (\mathcal{X}, μ) for all $\mu \in \Delta(\mathcal{X})$.

Thus, the additive representation is far from unique, and the continuity of ϕ is not necessary for the upper hemicontinuity of F_{ϕ} .

Thus, ϕ is forced to be unique (and continuous) only to the extent that \mathcal{X} deviates from supermajoritarian determinacy.

Also, we shall see that the uniqueness and continuity of ϕ can only be established in a subset $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1,1]$, the 'domain of repust tradeoffs' = -200

Recall: Any separable, supermajoritarian efficient judgement aggregation rule F is contained in some additive support rule F_{ϕ} (for some hyperreal gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$). Also, if F is UHC, then $F = F_{\phi}$.

- Question 1. How unique is this representation? That is: given two gain functions ψ and ϕ , how 'similar' must they be if $F_{\phi} = F_{\psi}$?
- Question 2. When is the gain function φ real-valued and continuous? How is this related to the upper hemicontinuity of F_φ?

The answer to these questions depends upon the structure of \mathcal{X} .

For example, if \mathcal{X} is supermajoritarian determinate, then for any ϕ and ψ , we have $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

In particular, Median (\mathcal{X}, μ) =LexiMin (\mathcal{X}, μ) for all $\mu \in \Delta(\mathcal{X})$.

Thus, the additive representation is far from unique, and the continuity of ϕ is not necessary for the upper hemicontinuity of F_{ϕ} .

Thus, ϕ is forced to be unique (and continuous) only to the extent that \mathcal{X} deviates from supermajoritarian determinacy.

Also, we shall see that the uniqueness and continuity of ϕ can only be established in a subset $\mathcal{R}^{\phi}_{\mathcal{X}} \subseteq [-1, 1]$, the 'domain of robust tradeoffs' ...

For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, we define $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) := \{k \in \mathcal{K}; x_k \neq y_k\}$.

For example, suppose $\mathcal{K} = \{1, 2, 3, 4, \dots, K\}$. If $\mathbf{x} = (-1, -1, -1, u, v, w, \dots)$ and $\mathbf{y} = (1, 1, 1, u, v, w, \dots)$, then $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) = \{1, 2, 3\}$.

Let $C := \operatorname{conv}(\mathcal{X}) \subseteq \mathbb{R}^{\mathcal{K}}$. Then $\widetilde{\mu} \in C$ for all $\mu \in \Delta(\mathcal{X})$. Thus, for any odd gain function $\phi : [-1, 1] \longrightarrow {}^*\!\mathbb{R}$, the additive support rule F_{ϕ} can be reinterpreted as a function $F_{\phi} : C \rightrightarrows \mathcal{X}$, defined by $F_{\phi}(\mathbf{c}) := \operatorname*{argmax}_{\mathbf{x} \in \mathcal{X}} (\mathbf{x} \bullet \phi(\mathbf{c}))$, for all $\mathbf{c} \in C$.

For any $\mathbf{x} \in \mathcal{X}$, define $\mathcal{C}^{\phi}_{\mathbf{x}} := \{ \mathbf{c} \in \mathcal{C} \; ; \; \mathbf{x} \in F_{\phi}(\mathbf{c}) \}$ (the 'preimage' of \mathbf{x}).

Let \mathcal{A} be the affine subspace of $\mathbb{R}^{\mathcal{K}}$ spanned by \mathcal{C} , and let $int(\mathcal{C})$ be the relative interior of \mathcal{C} as a subset of \mathcal{A} . (If \mathcal{X} is thick, then this is just the interior of \mathcal{C} as a subset of $\mathbb{R}^{\mathcal{K}}$).

Finally, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, define $\mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi} := \{\mathbf{c} \in \operatorname{int}(\mathcal{C}) ; F_{\phi}(\mathbf{c}) = \{\mathbf{x}, \mathbf{y}\}\}.$ (This set may be empty.)

For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, we define $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) := \{k \in \mathcal{K}; x_k \neq y_k\}.$

For example, suppose $\mathcal{K} = \{1, 2, 3, 4, ..., K\}$.

If $\mathbf{x} = (-1, -1, -1, u, v, w, ...)$ and $\mathbf{y} = (1, 1, 1, u, v, w, ...)$, then $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) = \{1, 2, 3\}.$

Let $C := \operatorname{conv}(\mathcal{X}) \subseteq \mathbb{R}^{\mathcal{K}}$. Then $\widetilde{\mu} \in C$ for all $\mu \in \Delta(\mathcal{X})$. Thus, for any odd gain function $\phi : [-1, 1] \longrightarrow *\mathbb{R}$, the additive support rule F_{ϕ} can be reinterpreted as a function $F_{\phi} : C \rightrightarrows \mathcal{X}$, defined by $F_{\phi}(\mathbf{c}) := \operatorname*{argmax}_{\mathbf{x} \in \mathcal{X}} (\mathbf{x} \bullet \phi(\mathbf{c}))$, for all $\mathbf{c} \in C$.

For any $\mathbf{x} \in \mathcal{X}$, define $\mathcal{C}^{\phi}_{\mathbf{x}} := \{ \mathbf{c} \in \mathcal{C} \; ; \; \mathbf{x} \in F_{\phi}(\mathbf{c}) \}$ (the 'preimage' of \mathbf{x}).

Let \mathcal{A} be the affine subspace of $\mathbb{R}^{\mathcal{K}}$ spanned by \mathcal{C} , and let $int(\mathcal{C})$ be the relative interior of \mathcal{C} as a subset of \mathcal{A} . (If \mathcal{X} is thick, then this is just the interior of \mathcal{C} as a subset of $\mathbb{R}^{\mathcal{K}}$).

Finally, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, define $\mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi} := \{\mathbf{c} \in \operatorname{int}(\mathcal{C}) ; F_{\phi}(\mathbf{c}) = \{\mathbf{x}, \mathbf{y}\}\}.$ (This set may be empty.)

(10/36)

For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, we define $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) := \{k \in \mathcal{K}; x_k \neq y_k\}$. For example, suppose $\mathcal{K} = \{1, 2, 3, 4, ..., K\}$. If $\mathbf{x} = (-1, -1, -1, u, v, w, ...)$ and $\mathbf{y} = (1, 1, 1, u, v, w, ...)$, then $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) = \{1, 2, 3\}$.

Let $C := \operatorname{conv}(\mathcal{X}) \subseteq \mathbb{R}^{\mathcal{K}}$. Then $\widetilde{\mu} \in C$ for all $\mu \in \Delta(\mathcal{X})$. Thus, for any odd gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$, the additive support rule F_{ϕ} can be reinterpreted as a function $F_{\phi} : C \rightrightarrows \mathcal{X}$, defined by $F_{\phi}(\mathbf{c}) := \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{cmax}} (\mathbf{x} \bullet \phi(\mathbf{c}))$, for all $\mathbf{c} \in C$.

For any $\mathbf{x} \in \mathcal{X}$, define $\mathcal{C}^{\phi}_{\mathbf{x}} := \{ \mathbf{c} \in \mathcal{C} \; ; \; \mathbf{x} \in F_{\phi}(\mathbf{c}) \}$ (the 'preimage' of \mathbf{x}).

Let \mathcal{A} be the affine subspace of $\mathbb{R}^{\mathcal{K}}$ spanned by \mathcal{C} , and let $int(\mathcal{C})$ be the relative interior of \mathcal{C} as a subset of \mathcal{A} . (If \mathcal{X} is thick, then this is just the interior of \mathcal{C} as a subset of $\mathbb{R}^{\mathcal{K}}$).

Finally, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, define $\mathscr{B}_{\mathbf{x},\mathbf{y}}^{\phi} := \{\mathbf{c} \in \operatorname{int}(\mathcal{C}) ; F_{\phi}(\mathbf{c}) = \{\mathbf{x},\mathbf{y}\}\}.$ (This set may be empty.)

(10/36)

For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, we define $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) := \{k \in \mathcal{K}; x_k \neq y_k\}$. For example, suppose $\mathcal{K} = \{1, 2, 3, 4, ..., K\}$. If $\mathbf{x} = (-1, -1, -1, u, v, w, ...)$ and $\mathbf{y} = (1, 1, 1, u, v, w, ...)$, then $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) = \{1, 2, 3\}$.

Let $\mathcal{C} := \operatorname{conv}(\mathcal{X}) \subseteq \mathbb{R}^{\mathcal{K}}$. Then $\tilde{\mu} \in \mathcal{C}$ for all $\mu \in \Delta(\mathcal{X})$. Thus, for any odd gain function $\phi : [-1, 1] \longrightarrow {}^*\mathbb{R}$, the additive support rule F_{ϕ} can be reinterpreted as a function $F_{\phi} : \mathcal{C} \rightrightarrows \mathcal{X}$, defined by $F_{\phi}(\mathbf{c}) := \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{argmax}} (\mathbf{x} \bullet \phi(\mathbf{c}))$, for all $\mathbf{c} \in \mathcal{C}$.

For any $\mathbf{x} \in \mathcal{X}$, define $\mathcal{C}^{\phi}_{\mathbf{x}} := \{ \mathbf{c} \in \mathcal{C} \; ; \; \mathbf{x} \in F_{\phi}(\mathbf{c}) \}$ (the 'preimage' of \mathbf{x}).

Let \mathcal{A} be the affine subspace of $\mathbb{R}^{\mathcal{K}}$ spanned by \mathcal{C} , and let $int(\mathcal{C})$ be the relative interior of \mathcal{C} as a subset of \mathcal{A} . (If \mathcal{X} is thick, then this is just the interior of \mathcal{C} as a subset of $\mathbb{R}^{\mathcal{K}}$).

Finally, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, define $\mathscr{B}_{\mathbf{x},\mathbf{y}}^{\phi} := \{\mathbf{c} \in \operatorname{int}(\mathcal{C}) ; F_{\phi}(\mathbf{c}) = \{\mathbf{x},\mathbf{y}\}\}.$ (This set may be empty.)

(10/36)

For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, we define $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) := \{k \in \mathcal{K}; x_k \neq y_k\}$. For example, suppose $\mathcal{K} = \{1, 2, 3, 4, ..., K\}$. If $\mathbf{x} = (-1, -1, -1, u, v, w, ...)$ and $\mathbf{y} = (1, 1, 1, u, v, w, ...)$, then $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) = \{1, 2, 3\}$.

Let $C := \operatorname{conv}(\mathcal{X}) \subseteq \mathbb{R}^{\mathcal{K}}$. Then $\widetilde{\mu} \in C$ for all $\mu \in \Delta(\mathcal{X})$. Thus, for any odd gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$, the additive support rule F_{ϕ} can be reinterpreted as a function $F_{\phi} : C \rightrightarrows \mathcal{X}$, defined by $F_{\phi}(\mathbf{c}) := \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{max}} (\mathbf{x} \bullet \phi(\mathbf{c}))$, for all $\mathbf{c} \in C$.

For any $\mathbf{x} \in \mathcal{X}$, define $\mathcal{C}^{\phi}_{\mathbf{x}} := \{ \mathbf{c} \in \mathcal{C} \; ; \; \mathbf{x} \in F_{\phi}(\mathbf{c}) \}$ (the 'preimage' of \mathbf{x}).

Let \mathcal{A} be the affine subspace of $\mathbb{R}^{\mathcal{K}}$ spanned by \mathcal{C} , and let $int(\mathcal{C})$ be the relative interior of \mathcal{C} as a subset of \mathcal{A} . (If \mathcal{X} is thick, then this is just the interior of \mathcal{C} as a subset of $\mathbb{R}^{\mathcal{K}}$).

Finally, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, define $\mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi} := \{\mathbf{c} \in \operatorname{int}(\mathcal{C}) ; F_{\phi}(\mathbf{c}) = \{\mathbf{x},\mathbf{y}\}\}.$ (This set may be empty.)

(10/36)

For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, we define $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) := \{k \in \mathcal{K}; x_k \neq y_k\}$. For example, suppose $\mathcal{K} = \{1, 2, 3, 4, \dots, K\}$. If $\mathbf{x} = (-1, -1, -1, u, v, w, \dots)$ and $\mathbf{y} = (1, 1, 1, u, v, w, \dots)$, then $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) = \{1, 2, 3\}$. Let $\mathcal{C} := \operatorname{conv}(\mathcal{X}) \subseteq \mathbb{R}^{\mathcal{K}}$. Then $\widetilde{\mu} \in \mathcal{C}$ for all $\mu \in \Delta(\mathcal{X})$. Thus, for any odd gain function $\phi : [-1, 1] \longrightarrow \mathbb{R}$, the additive support rule F_{ϕ} can be reinterpreted as a function $F_{\phi} : \mathcal{C} \rightrightarrows \mathcal{X}$, defined by

 $F_{\phi}(\mathbf{c}) := \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{argmax}} (\mathbf{x} \bullet \phi(\mathbf{c})), \text{ for all } \mathbf{c} \in \mathcal{C}.$

For any ${f x}\in {\cal X}$, define ${\cal C}^\phi_{f x}~:=~\{{f c}\in {\cal C}~;~{f x}\in F_\phi({f c})\}~$ (the 'preimage' of ${f x}$).

Let \mathcal{A} be the affine subspace of $\mathbb{R}^{\mathcal{K}}$ spanned by \mathcal{C} , and let $int(\mathcal{C})$ be the relative interior of \mathcal{C} as a subset of \mathcal{A} . (If \mathcal{X} is thick, then this is just the interior of \mathcal{C} as a subset of $\mathbb{R}^{\mathcal{K}}$).

Finally, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, define $\mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi} := \{\mathbf{c} \in \operatorname{int}(\mathcal{C}) ; F_{\phi}(\mathbf{c}) = \{\mathbf{x},\mathbf{y}\}\}.$ (This set may be empty.)

(10/36)

For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, we define $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) := \{k \in \mathcal{K}; x_k \neq y_k\}$. For example, suppose $\mathcal{K} = \{1, 2, 3, 4, \dots, K\}$. If $\mathbf{x} = (-1, -1, -1, u, v, w, \dots)$ and $\mathbf{y} = (1, 1, 1, u, v, w, \dots)$, then $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) = \{1, 2, 3\}$. Let $\mathcal{C} := \operatorname{conv}(\mathcal{X}) \subseteq \mathbb{R}^{\mathcal{K}}$. Then $\widetilde{\mu} \in \mathcal{C}$ for all $\mu \in \Delta(\mathcal{X})$. Thus, for any odd gain function $\phi : [-1, 1] \longrightarrow *\mathbb{R}$, the additive support rule F_{ϕ} can be reinterpreted as a function $F_{\phi} : \mathcal{C} \rightrightarrows \mathcal{X}$, defined by

$$F_{\phi}(\mathbf{c}) := \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{argmax}} (\mathbf{x} \bullet \phi(\mathbf{c})), \text{ for all } \mathbf{c} \in \mathcal{C}.$$

For any $\mathbf{x} \in \mathcal{X}$, define $\mathcal{C}^{\phi}_{\mathbf{x}} := \{ \mathbf{c} \in \mathcal{C} ; \mathbf{x} \in F_{\phi}(\mathbf{c}) \}$ (the 'preimage' of \mathbf{x}).

Let \mathcal{A} be the affine subspace of $\mathbb{R}^{\mathcal{K}}$ spanned by \mathcal{C} , and let $int(\mathcal{C})$ be the relative interior of \mathcal{C} as a subset of \mathcal{A} . (If \mathcal{X} is thick, then this is just the interior of \mathcal{C} as a subset of $\mathbb{R}^{\mathcal{K}}$).

Finally, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, define $\mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi} := \{\mathbf{c} \in \operatorname{int}(\mathcal{C}) ; F_{\phi}(\mathbf{c}) = \{\mathbf{x},\mathbf{y}\}\}.$ (This set may be empty.)

The boundary set ${}^{\mathcal{O}}\mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi}$

For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, we define $\mathcal{K}_+(\mathbf{x}, \mathbf{y}) := \{k \in \mathcal{K}; x_k \neq y_k\}$. For example, suppose $\mathcal{K} = \{1, 2, 3, 4, ..., K\}$. If $\mathbf{x} = (-1, -1, -1, u, v, w, ...)$ and $\mathbf{y} = (1, 1, 1, u, v, w, ...)$, then $\mathcal{K}_{+}(\mathbf{x},\mathbf{y}) = \{1,2,3\}.$ Let $\mathcal{C} := \operatorname{conv}(\mathcal{X}) \subseteq \mathbb{R}^{\mathcal{K}}$. Then $\widetilde{\mu} \in \mathcal{C}$ for all $\mu \in \Delta(\mathcal{X})$. Thus, for any odd gain function $\phi: [-1,1] \longrightarrow {}^*\mathbb{R}$, the additive support rule F_{ϕ} can be reinterpreted as a function $F_{\phi}: \mathcal{C} \rightrightarrows \mathcal{X}$, defined by $F_{\phi}(\mathbf{c}) := \operatorname*{argmax}_{\mathbf{x} \in \mathcal{X}} (\mathbf{x} \bullet \phi(\mathbf{c})), \text{ for all } \mathbf{c} \in \mathcal{C}.$

For any $\mathbf{x} \in \mathcal{X}$, define $\mathcal{C}^{\phi}_{\mathbf{x}} := \{ \mathbf{c} \in \mathcal{C} ; \mathbf{x} \in F_{\phi}(\mathbf{c}) \}$ (the 'preimage' of \mathbf{x}).

Let \mathcal{A} be the affine subspace of $\mathbb{R}^{\mathcal{K}}$ spanned by \mathcal{C} , and let $int(\mathcal{C})$ be the relative interior of \mathcal{C} as a subset of \mathcal{A} . (If \mathcal{X} is thick, then this is just the

(10/36)

For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, we define $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) := \{k \in \mathcal{K}; x_k \neq y_k\}$. For example, suppose $\mathcal{K} = \{1, 2, 3, 4, \dots, K\}$. If $\mathbf{x} = (-1, -1, -1, u, v, w, \dots)$ and $\mathbf{y} = (1, 1, 1, u, v, w, \dots)$, then $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) = \{1, 2, 3\}$. Let $\mathcal{C} := \operatorname{conv}(\mathcal{X}) \subseteq \mathbb{R}^{\mathcal{K}}$. Then $\widetilde{\mu} \in \mathcal{C}$ for all $\mu \in \Delta(\mathcal{X})$. Thus, for any odd gain function $\phi : [-1, 1] \longrightarrow {}^*\mathbb{R}$, the additive support rule F_{ϕ} can be reinterpreted as a function $F_{\phi} : \mathcal{C} \rightrightarrows \mathcal{X}$, defined by

$$\mathcal{F}_{\phi}(\mathbf{c}) := rgmax_{\mathbf{x}\in\mathcal{X}} (\mathbf{x} ullet \phi(\mathbf{c})), ext{ for all } \mathbf{c} \in \mathcal{C}.$$

For any $\mathbf{x} \in \mathcal{X}$, define $\mathcal{C}^{\phi}_{\mathbf{x}} := \{ \mathbf{c} \in \mathcal{C} ; \mathbf{x} \in F_{\phi}(\mathbf{c}) \}$ (the 'preimage' of \mathbf{x}).

Let \mathcal{A} be the affine subspace of $\mathbb{R}^{\mathcal{K}}$ spanned by \mathcal{C} , and let $int(\mathcal{C})$ be the relative interior of \mathcal{C} as a subset of \mathcal{A} . (If \mathcal{X} is thick, then this is just the interior of \mathcal{C} as a subset of $\mathbb{R}^{\mathcal{K}}$).

Finally, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, define $\mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi} := \{\mathbf{c} \in \operatorname{int}(\mathcal{C}) ; F_{\phi}(\mathbf{c}) = \{\mathbf{x}, \mathbf{y}\}\}.$ (This set may be empty.)

(10/36)

For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, we define $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) := \{k \in \mathcal{K}; x_k \neq y_k\}$. For example, suppose $\mathcal{K} = \{1, 2, 3, 4, \dots, K\}$. If $\mathbf{x} = (-1, -1, -1, u, v, w, \dots)$ and $\mathbf{y} = (1, 1, 1, u, v, w, \dots)$, then $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) = \{1, 2, 3\}$. Let $\mathcal{C} := \operatorname{conv}(\mathcal{X}) \subseteq \mathbb{R}^{\mathcal{K}}$. Then $\widetilde{\mu} \in \mathcal{C}$ for all $\mu \in \Delta(\mathcal{X})$. Thus, for any odd gain function $\phi : [-1, 1] \longrightarrow *\mathbb{R}$, the additive support rule F_{ϕ} can be reinterpreted as a function $F_{\phi} : \mathcal{C} \rightrightarrows \mathcal{X}$, defined by

$$\mathsf{F}_{\phi}(\mathbf{c}) := rgmax_{\mathbf{x}\in\mathcal{X}} \ (\mathbf{x} ullet \phi(\mathbf{c})), ext{ for all } \mathbf{c} \in \mathcal{C}.$$

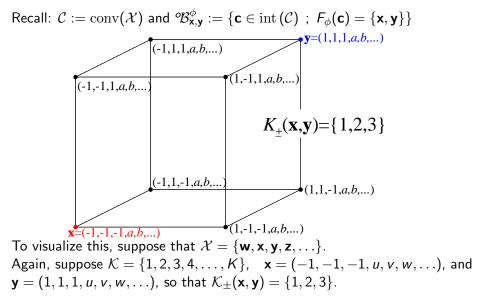
For any $\mathbf{x} \in \mathcal{X}$, define $\mathcal{C}^{\phi}_{\mathbf{x}} := \{ \mathbf{c} \in \mathcal{C} ; \mathbf{x} \in F_{\phi}(\mathbf{c}) \}$ (the 'preimage' of \mathbf{x}).

Let \mathcal{A} be the affine subspace of $\mathbb{R}^{\mathcal{K}}$ spanned by \mathcal{C} , and let $int(\mathcal{C})$ be the relative interior of \mathcal{C} as a subset of \mathcal{A} . (If \mathcal{X} is thick, then this is just the interior of \mathcal{C} as a subset of $\mathbb{R}^{\mathcal{K}}$).

Finally, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, define $\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} := \{\mathbf{c} \in \operatorname{int}(\mathcal{C}) ; F_{\phi}(\mathbf{c}) = \{\mathbf{x}, \mathbf{y}\}\}.$ (This set may be empty.)

$$\mathsf{Recall:} \ \frac{\mathcal{C}}{\mathcal{C}} := \operatorname{conv}(\mathcal{X}) \ \mathsf{and} \ \frac{\mathcal{B}^\phi_{\mathsf{x},\mathsf{y}}}{\mathcal{B}^\phi_{\mathsf{x},\mathsf{y}}} := \{\mathsf{c} \in \operatorname{int}(\mathcal{C}) \ ; \ \mathcal{F}_\phi(\mathsf{c}) = \{\mathsf{x},\mathsf{y}\}\}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶



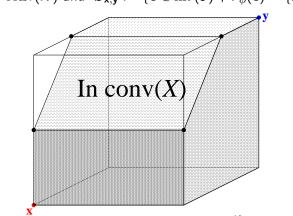
▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

Recall: $\mathcal{C} := \operatorname{conv}(\mathcal{X})$ and $^{\mathcal{B}}\mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi} := {\mathbf{c} \in \operatorname{int}(\mathcal{C}) ; F_{\phi}(\mathbf{c}) = {\mathbf{x}, \mathbf{y}}}$ • $\mathbf{v} = (1, 1, 1, a, b, ...)$ $(-1, 1, 1, a, b, \dots)$ (1,-1,1,*a*,*b*,...) (-1, -1, 1, a, b, ..., a, b, ..., b, $K_{+}(\mathbf{x},\mathbf{y}) = \{1,2,3\}$ (-1,1,-1,*a*,*b*,.. (1.1.-1.a.b...) $\bullet(1,-1,-1,a,b,...)$ $\mathbf{x} = (-1, -1, -1, a, b, ...)$ To visualize this, suppose that $\mathcal{X} = \{\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}, \ldots\}$. Again, suppose $\mathcal{K} = \{1, 2, 3, 4, \dots, K\}$, $\mathbf{x} = (-1, -1, -1, u, v, w, \dots)$, and $\mathbf{y} = (1, 1, 1, u, v, w, \ldots)$, so that $\mathcal{K}_+(\mathbf{x}, \mathbf{y}) = \{1, 2, 3\}$. Here we show a section through the cube $[-1,1]^{\mathcal{K}}$, where the coordinates $\{1, 2, 3\}$ are allowed to vary, while coordinates $\{4, 5, 6, \dots, K\}$ are held fixed at some values a, b, c, \ldots



Here we show a section through the cube $[-1,1]^{\mathcal{K}}$, where the coordinates $\{1,2,3\}$ are allowed to vary, while coordinates $\{4,5,6,\ldots,K\}$ are held fixed at some values a, b, c, \ldots .

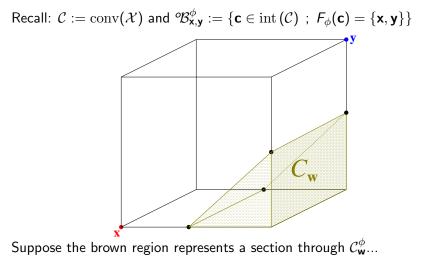
Suppose the orange region is the part of this section which is *not* in C.

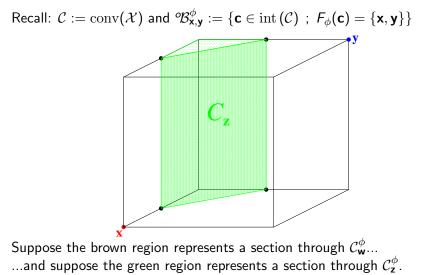


 $\mathsf{Recall:} \ \mathcal{C} := \mathrm{conv}(\mathcal{X}) \ \mathsf{and} \ {}^{\phi}\!\!\mathcal{B}^{\phi}_{\mathsf{x},\mathsf{y}} := \{\mathsf{c} \in \mathrm{int}\,(\mathcal{C}) \ ; \ \mathit{F}_{\phi}(\mathsf{c}) = \{\mathsf{x},\mathsf{y}\}\}$

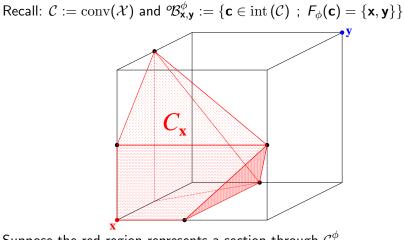
Here we show a section through the cube $[-1,1]^{\mathcal{K}}$, where the coordinates $\{1,2,3\}$ are allowed to vary, while coordinates $\{4,5,6,\ldots,K\}$ are held fixed at some values a, b, c, \ldots .

Suppose the orange region is the part of this section which is *not* in C. Thus, the grey region represents a section through C.



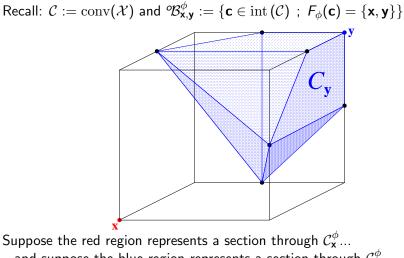


イロト 不得 トイヨト イヨト ヨ



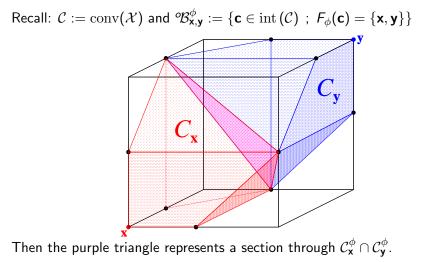
Suppose the red region represents a section through $\mathcal{C}^{\phi}_{\mathbf{x}}$...

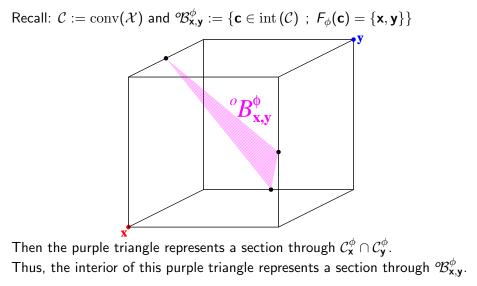
▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

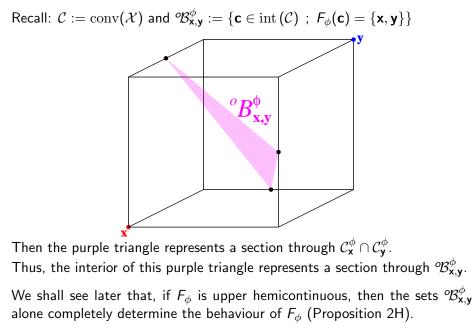


...and suppose the blue region represents a section through $\mathcal{C}^{\phi}_{\mathbf{y}}.$

(日) (四) (三) (三)





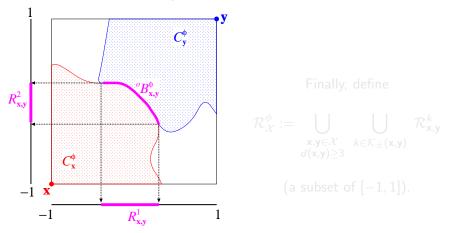


 $\begin{aligned} \mathcal{K}_{\pm}(\mathbf{x},\mathbf{y}) &= \{k \in \mathcal{K}; \, x_k \neq y_k\} \text{ and } \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi} = \{\mathbf{c} \in \operatorname{int}(\mathcal{C}); \, F_{\phi}(\mathbf{c}) = \{\mathbf{x},\mathbf{y}\}\}. \\ \text{For all } k \in \mathcal{K}_{\pm}(\mathbf{x},\mathbf{y}), \, \text{let } \mathcal{R}_{\mathbf{x},\mathbf{y}}^{k} := \text{projection of } \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi} \text{ onto the } k \text{ th coordinate.} \\ & \text{Finally, define} \end{aligned}$

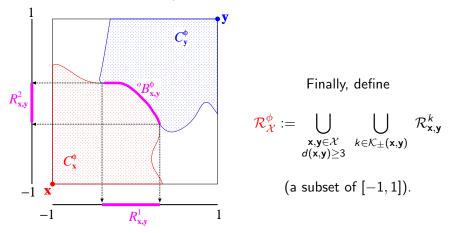
$$\mathcal{R}_{\mathcal{X}}^{\phi} := \bigcup_{\substack{\mathbf{x}, \mathbf{y} \in \mathcal{X} \\ d(\mathbf{x}, \mathbf{y}) \ge 3}} \bigcup_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} \mathcal{R}_{\mathbf{x}, \mathbf{y}}^{k}$$

Lemma. Let \mathcal{X} be any judgement space, and let $\phi : [-1,1] \longrightarrow {}^*\mathbb{R}$ be any gain function such that F_{ϕ} is upper hemicontinuous. If \mathcal{X} is not supermajoritarian determinate, then $\mathcal{R}^{\phi}_{\mathcal{X}}$ is a nonempty open set. (In particular, this holds if \mathcal{X} thick and non-proximal).

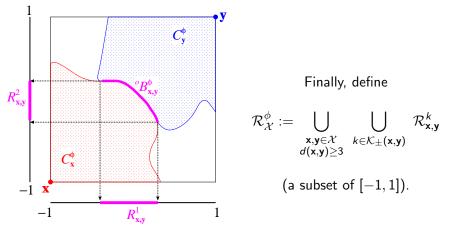
・ロット (雪) (日) (日) (日)



Lemma. Let \mathcal{X} be any judgement space, and let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be any gain function such that F_{ϕ} is upper hemicontinuous. If \mathcal{X} is not supermajoritarian determinate, then $\mathcal{R}^{\phi}_{\mathcal{X}}$ is a nonempty open set. (In particular, this holds if \mathcal{X} thick and non-proximal).



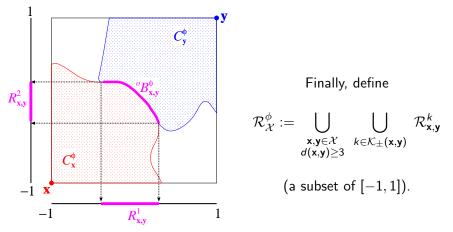
Lemma. Let \mathcal{X} be any judgement space, and let $\phi : [-1, 1] \longrightarrow \mathbb{R}$ be any gain function such that F_{ϕ} is upper hemicontinuous. If \mathcal{X} is not supermajoritarian determinate, then $\mathcal{R}^{\phi}_{\mathcal{X}}$ is a nonempty open set. (In particular, this holds if \mathcal{X} thick and non-proximal).



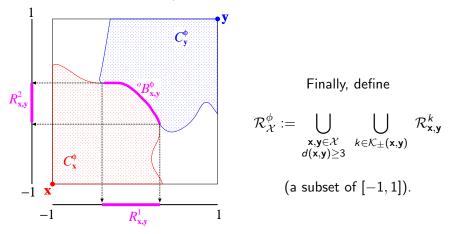
Lemma. Let \mathcal{X} be any judgement space, and let $\phi : [-1,1] \longrightarrow {}^{*}\mathbb{R}$ be any gain function such that F_{ϕ} is upper hemicontinuous. If \mathcal{X} is not

イロト 不得 トイヨト イヨト ニヨー

supermajoritarian determinate, then $\mathcal{R}^{\varphi}_{\mathcal{X}}$ is a nonempty open set. (In particular, this holds if \mathcal{X} thick and non-proximal).



Lemma. Let \mathcal{X} be any judgement space, and let $\phi : [-1, 1] \longrightarrow {}^{*}\mathbb{R}$ be any gain function such that F_{ϕ} is upper hemicontinuous. If \mathcal{X} is not supermajoritarian determinate, then $\mathcal{R}_{\mathcal{X}}^{\phi}$ is a nonempty open set. (In particular, this holds if \mathcal{X} thick and non-proximal).



Lemma. Let \mathcal{X} be any judgement space, and let $\phi : [-1,1] \longrightarrow {}^{*}\mathbb{R}$ be any gain function such that F_{ϕ} is upper hemicontinuous. If \mathcal{X} is not supermajoritarian determinate, then $\mathcal{R}^{\phi}_{\mathcal{X}}$ is a nonempty open set. (In particular, this holds if \mathcal{X} thick and non-proximal).

Uniqueness of the gain function

(13/36)

Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function, and \mathcal{X} a judgement space. Recall:

$$\frac{\mathcal{R}^{\phi}_{\mathcal{X}}}{d(\mathbf{x},\mathbf{y})\geq 3} := \bigcup_{\substack{\mathbf{x},\mathbf{y}\in\mathcal{X}\\d(\mathbf{x},\mathbf{y})\geq 3}} \bigcup_{k\in\mathcal{K}_{\pm}(\mathbf{x},\mathbf{y})} \mathcal{R}^{k}_{\mathbf{x},\mathbf{y}} \subseteq [-1,1].$$

Also, recall that \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

Theorem 2B. Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ and $\psi : [-1,1] \longrightarrow \mathbb{R}$ be odd, continuous, real-valued gain functions. Let \mathcal{X} be a thick judgement space, such that $\mathcal{R}^{\phi}_{\mathcal{X}} \cup \{0\}$ is connected. Then: $F_{\phi}(\mathcal{X},\mu) = F_{\psi}(\mathcal{X},\mu)$ for all $\mu \in \Delta(\mathcal{X})$ if and only if there is some scalar s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$.

Interpretation: The behaviour of F_{ϕ} on $\Delta(\mathcal{X})$ uniquely determines the gain function ϕ (up to positive scalar multiplication) inside the region $\mathcal{R}_{\mathcal{X}}^{\phi}$. However, outside of $\mathcal{R}_{\mathcal{X}}^{\phi}$, the gain function ϕ can be redefined arbitrarily, without changing the behaviour of F_{ϕ} .

(13/36)

Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function, and \mathcal{X} a judgement space. Recall:

$$\mathcal{R}^{\phi}_{\mathcal{X}} \hspace{0.1 in} := \hspace{0.1 in} igcup_{\mathbf{x},\mathbf{y}\in\mathcal{X}} igcup_{k\in\mathcal{K}_{\pm}(\mathbf{x},\mathbf{y})} igcup_{\mathbf{x},\mathbf{y}} igcup_{\mathbf{x},\mathbf{y}} igcup_{\mathbf{x},\mathbf{y}} \subseteq \hspace{0.1 in} [-1,1].$$

Also, recall that \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

Theorem 2B. Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ and $\psi : [-1,1] \longrightarrow \mathbb{R}$ be odd, continuous, real-valued gain functions. Let \mathcal{X} be a thick judgement space, such that $\mathcal{R}^{\phi}_{\mathcal{X}} \cup \{0\}$ is connected. Then: $F_{\phi}(\mathcal{X},\mu) = F_{\psi}(\mathcal{X},\mu)$ for all $\mu \in \Delta(\mathcal{X})$ if and only if there is some scalar s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$.

Interpretation: The behaviour of F_{ϕ} on $\Delta(\mathcal{X})$ uniquely determines the gain function ϕ (up to positive scalar multiplication) inside the region $\mathcal{R}_{\mathcal{X}}^{\phi}$. However, outside of $\mathcal{R}_{\mathcal{X}}^{\phi}$, the gain function ϕ can be redefined arbitrarily, without changing the behaviour of F_{ϕ} .

(13/36)

Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function, and \mathcal{X} a judgement space. Recall:

$$\mathcal{R}^{\phi}_{\mathcal{X}} := igcup_{\mathbf{x},\mathbf{y}\in\mathcal{X}} igcup_{k\in\mathcal{K}_{\pm}(\mathbf{x},\mathbf{y})} \mathcal{R}^{k}_{\mathbf{x},\mathbf{y}} \subseteq [-1,1].$$

Also, recall that \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

Theorem 2B. Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ and $\psi : [-1,1] \longrightarrow \mathbb{R}$ be odd, continuous, real-valued gain functions. Let \mathcal{X} be a thick judgement space, such that $\mathcal{R}^{\phi}_{\mathcal{X}} \cup \{0\}$ is connected. Then: $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$ if and only if there is some scalar s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$.

Interpretation: The behaviour of F_{ϕ} on $\Delta(\mathcal{X})$ uniquely determines the gain function ϕ (up to positive scalar multiplication) inside the region $\mathcal{R}^{\phi}_{\mathcal{X}}$. However, outside of $\mathcal{R}^{\phi}_{\mathcal{X}}$, the gain function ϕ can be redefined arbitrarily, without changing the behaviour of F_{ϕ} .

Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function, and \mathcal{X} a judgement space. Recall:

$$\mathcal{R}^{\phi}_{\mathcal{X}} := igcup_{\mathbf{x},\mathbf{y}\in\mathcal{X}} igcup_{k\in\mathcal{K}_{\pm}(\mathbf{x},\mathbf{y})} \mathcal{R}^{k}_{\mathbf{x},\mathbf{y}} \subseteq [-1,1].$$

Also, recall that \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

Theorem 2B. Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ and $\psi : [-1,1] \longrightarrow \mathbb{R}$ be odd, continuous, real-valued gain functions. Let \mathcal{X} be a thick judgement space, such that $\mathcal{R}^{\phi}_{\mathcal{X}} \cup \{0\}$ is connected. Then:

 $F_{\phi}(\mathcal{X},\mu) = F_{\psi}(\mathcal{X},\mu)$ for all $\mu \in \Delta(\mathcal{X})$ if and only if there is some scalar s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$.

Interpretation: The behaviour of F_{ϕ} on $\Delta(\mathcal{X})$ uniquely determines the gain function ϕ (up to positive scalar multiplication) inside the region $\mathcal{R}_{\mathcal{X}}^{\phi}$. However, outside of $\mathcal{R}_{\mathcal{X}}^{\phi}$, the gain function ϕ can be redefined arbitrarily, without changing the behaviour of F_{ϕ} .

Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function, and \mathcal{X} a judgement space. Recall:

$$\mathcal{R}^{\phi}_{\mathcal{X}} := igcup_{\mathbf{x},\mathbf{y}\in\mathcal{X}} igcup_{k\in\mathcal{K}_{\pm}(\mathbf{x},\mathbf{y})} \mathcal{R}^{k}_{\mathbf{x},\mathbf{y}} \subseteq [-1,1].$$

Also, recall that \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

Theorem 2B. Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ and $\psi : [-1,1] \longrightarrow \mathbb{R}$ be odd, continuous, real-valued gain functions. Let \mathcal{X} be a thick judgement space, such that $\mathcal{R}^{\phi}_{\mathcal{X}} \cup \{0\}$ is connected. Then: $F_{\phi}(\mathcal{X},\mu) = F_{\psi}(\mathcal{X},\mu)$ for all $\mu \in \Delta(\mathcal{X})$ if and only if there is some scalar s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$.

Interpretation: The behaviour of F_{ϕ} on $\Delta(\mathcal{X})$ uniquely determines the gain function ϕ (up to positive scalar multiplication) inside the region $\mathcal{R}_{\mathcal{X}}^{\phi}$. However, outside of $\mathcal{R}_{\mathcal{X}}^{\phi}$, the gain function ϕ can be redefined arbitrarily, without changing the behaviour of F_{ϕ} .

Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function, and \mathcal{X} a judgement space. Recall:

$$\mathcal{R}^{\phi}_{\mathcal{X}} \quad := \quad igcup_{\mathbf{x},\mathbf{y}\in\mathcal{X}} \quad igcup_{k\in\mathcal{K}_{\pm}(\mathbf{x},\mathbf{y})} \quad \mathcal{R}^{k}_{\mathbf{x},\mathbf{y}} \quad \subseteq \quad [-1,1].$$

Also, recall that \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

Theorem 2B. Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ and $\psi : [-1,1] \longrightarrow \mathbb{R}$ be odd, continuous, real-valued gain functions. Let \mathcal{X} be a thick judgement space, such that $\mathcal{R}^{\phi}_{\mathcal{X}} \cup \{0\}$ is connected. Then: $F_{\phi}(\mathcal{X},\mu) = F_{\psi}(\mathcal{X},\mu)$ for all $\mu \in \Delta(\mathcal{X})$ if and only if there is some scalar s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$.

Interpretation: The behaviour of F_{ϕ} on $\Delta(\mathcal{X})$ uniquely determines the gain function ϕ (up to positive scalar multiplication) inside the region $\mathcal{R}^{\phi}_{\mathcal{X}}$. However, outside of $\mathcal{R}^{\phi}_{\mathcal{X}}$, the gain function ϕ can be redefined arbitrarily, without changing the behaviour of F_{ϕ} .

Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function, and \mathcal{X} a judgement space. Recall:

$$\mathcal{R}^{\phi}_{\mathcal{X}} \quad := \quad igcup_{\mathbf{x},\mathbf{y}\in\mathcal{X}} igcup_{k\in\mathcal{K}_{\pm}(\mathbf{x},\mathbf{y})} \mathcal{R}^{k}_{\mathbf{x},\mathbf{y}} \subseteq \quad [-1,1].$$

Also, recall that \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

Theorem 2B. Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ and $\psi : [-1,1] \longrightarrow \mathbb{R}$ be odd, continuous, real-valued gain functions. Let \mathcal{X} be a thick judgement space, such that $\mathcal{R}^{\phi}_{\mathcal{X}} \cup \{0\}$ is connected. Then: $F_{\phi}(\mathcal{X},\mu) = F_{\psi}(\mathcal{X},\mu)$ for all $\mu \in \Delta(\mathcal{X})$ if and only if there is some scalar s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$.

Interpretation: The behaviour of F_{ϕ} on $\Delta(\mathcal{X})$ uniquely determines the gain function ϕ (up to positive scalar multiplication) inside the region $\mathcal{R}_{\mathcal{X}}^{\phi}$. However, outside of $\mathcal{R}_{\mathcal{X}}^{\phi}$, the gain function ϕ can be redefined arbitrarily, without changing the behaviour of F_{ϕ} .

Recall, a judgement aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is **upper hemicontinuous** (UHC) if, for any sequence $\mu_n \xrightarrow[n \to \infty]{} \mu \in \Delta(\mathcal{X})$, if $\mathbf{x} \in F(\mu_n)$ for all $n \in \mathbb{N}$, then $\mathbf{x} \in F(\mu)$.

Theorem 2C. If $\phi : [-1,1] \longrightarrow \mathbb{R}$ is continuous, then the additive support rule F_{ϕ} is upper hemicontinuous on $\Delta(\mathcal{X})$, for any judgement space \mathcal{X} .

Question. Is this theorem still true for $\phi : [-1, 1] \longrightarrow \mathbb{R}$? **Answer.** It depends on what you mean by "continuous".

If you mean "continuous" relative to the order topology on ^{*}ℝ, then no non-constant function φ : [-1,1]→ ^{*}ℝ can be continuous.

If you mean "continuous" relative to the subspace topology on the image φ[-1,1] ⊂ *R, then Theorem 2C is still true.
 However, in any such φ can be converted to a real-valued function through some rescaling. So this is not a useful extension of Theorem 2C.

Recall, a judgement aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is **upper hemicontinuous** (UHC) if, for any sequence $\mu_n \xrightarrow[n \to \infty]{} \mu \in \Delta(\mathcal{X})$, if $\mathbf{x} \in F(\mu_n)$ for all $n \in \mathbb{N}$, then $\mathbf{x} \in F(\mu)$.

Theorem 2C. If $\phi : [-1, 1] \longrightarrow \mathbb{R}$ is continuous, then the additive support rule F_{ϕ} is upper hemicontinuous on $\Delta(\mathcal{X})$, for any judgement space \mathcal{X} .

Question. Is this theorem still true for $\phi : [-1, 1] \longrightarrow \mathbb{R}$? **Answer.** It depends on what you mean by "continuous".

If you mean "continuous" relative to the order topology on ^{*}ℝ, then no non-constant function φ : [-1,1]→ ^{*}ℝ can be continuous.

If you mean "continuous" relative to the subspace topology on the image φ[-1,1] ⊂ *R, then Theorem 2C is still true.
 However, in any such φ can be converted to a real-valued function through some rescaling. So this is not a useful extension of Theorem 2C.

Recall, a judgement aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is **upper hemicontinuous** (UHC) if, for any sequence $\mu_n \xrightarrow[n \to \infty]{} \mu \in \Delta(\mathcal{X})$, if $\mathbf{x} \in F(\mu_n)$ for all $n \in \mathbb{N}$, then $\mathbf{x} \in F(\mu)$.

Theorem 2C. If $\phi : [-1,1] \longrightarrow \mathbb{R}$ is continuous, then the additive support rule F_{ϕ} is upper hemicontinuous on $\Delta(\mathcal{X})$, for any judgement space \mathcal{X} .

Question. Is this theorem still true for $\phi : [-1,1] \longrightarrow *\mathbb{R}$? Answer. It depends on what you mean by "continuous"

If you mean "continuous" relative to the order topology on ^{*}ℝ, then no non-constant function φ : [-1,1]→ ^{*}ℝ can be continuous.

If you mean "continuous" relative to the subspace topology on the image φ[-1,1] ⊂ *R, then Theorem 2C is still true.
 However, in any such φ can be converted to a real-valued function through some rescaling. So this is not a useful extension of Theorem 2C.

(14/36)

Recall, a judgement aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is **upper hemicontinuous** (UHC) if, for any sequence $\mu_n \xrightarrow[n \to \infty]{} \mu \in \Delta(\mathcal{X})$, if $\mathbf{x} \in F(\mu_n)$ for all $n \in \mathbb{N}$, then $\mathbf{x} \in F(\mu)$.

Theorem 2C. If $\phi : [-1, 1] \longrightarrow \mathbb{R}$ is continuous, then the additive support rule F_{ϕ} is upper hemicontinuous on $\Delta(\mathcal{X})$, for any judgement space \mathcal{X} .

Question. Is this theorem still true for $\phi : [-1,1] \longrightarrow \mathbb{R}$? **Answer.** It depends on what you mean by "continuous".

- If you mean "continuous" relative to the order topology on *ℝ, then no non-constant function φ : [−1, 1] → *ℝ can be continuous.
- If you mean "continuous" relative to the subspace topology on the image φ[-1,1] ⊂ *R, then Theorem 2C is still true.
 However, in any such φ can be converted to a real-valued function through some rescaling. So this is not a useful extension of Theorem 2C.

Recall, a judgement aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is **upper hemicontinuous** (UHC) if, for any sequence $\mu_n \xrightarrow[n \to \infty]{} \mu \in \Delta(\mathcal{X})$, if $\mathbf{x} \in F(\mu_n)$ for all $n \in \mathbb{N}$, then $\mathbf{x} \in F(\mu)$.

Theorem 2C. If $\phi : [-1, 1] \longrightarrow \mathbb{R}$ is continuous, then the additive support rule F_{ϕ} is upper hemicontinuous on $\Delta(\mathcal{X})$, for any judgement space \mathcal{X} .

Question. Is this theorem still true for $\phi : [-1,1] \longrightarrow \mathbb{R}$? **Answer.** It depends on what you mean by "continuous".

If you mean "continuous" relative to the order topology on ^{*}ℝ, then no non-constant function φ : [-1, 1] → ^{*}ℝ can be continuous.

If you mean "continuous" relative to the subspace topology on the image φ[−1, 1] ⊂ *ℝ, then Theorem 2C is still true.
 However, in any such φ can be converted to a real-valued function through some rescaling. So this is not a useful extension of Theorem 2C.

(14/36)

Recall, a judgement aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is **upper hemicontinuous** (UHC) if, for any sequence $\mu_n \xrightarrow[n \to \infty]{} \mu \in \Delta(\mathcal{X})$, if $\mathbf{x} \in F(\mu_n)$ for all $n \in \mathbb{N}$, then $\mathbf{x} \in F(\mu)$.

Theorem 2C. If $\phi : [-1, 1] \longrightarrow \mathbb{R}$ is continuous, then the additive support rule F_{ϕ} is upper hemicontinuous on $\Delta(\mathcal{X})$, for any judgement space \mathcal{X} .

Question. Is this theorem still true for $\phi : [-1, 1] \longrightarrow \mathbb{R}$? **Answer.** It depends on what you mean by "continuous".

- If you mean "continuous" relative to the order topology on ^{*}ℝ, then no non-constant function φ : [-1,1]→ ^{*}ℝ can be continuous.
- If you mean "continuous" relative to the subspace topology on the image φ[-1,1] ⊂ *ℝ, then Theorem 2C is still true.
 However, in any such φ can be converted to a real-valued function
 - through some rescaling. So this is not a useful extension of Theorem 2C.

(14/36)

Recall, a judgement aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is **upper hemicontinuous** (UHC) if, for any sequence $\mu_n \xrightarrow[n \to \infty]{} \mu \in \Delta(\mathcal{X})$, if $\mathbf{x} \in F(\mu_n)$ for all $n \in \mathbb{N}$, then $\mathbf{x} \in F(\mu)$.

Theorem 2C. If $\phi : [-1, 1] \longrightarrow \mathbb{R}$ is continuous, then the additive support rule F_{ϕ} is upper hemicontinuous on $\Delta(\mathcal{X})$, for any judgement space \mathcal{X} .

Question. Is this theorem still true for $\phi : [-1, 1] \longrightarrow \mathbb{R}$? **Answer.** It depends on what you mean by "continuous".

- If you mean "continuous" relative to the order topology on ^{*}ℝ, then no non-constant function φ : [-1, 1]→ ^{*}ℝ can be continuous.
- If you mean "continuous" relative to the subspace topology on the image φ[-1,1] ⊂ *R, then Theorem 2C is still true.
 However, in any such φ can be converted to a real-valued function through some rescaling. So this is not a useful extension of Theorem 2C.

Recall, a judgement aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is **upper hemicontinuous** (UHC) if, for any sequence $\mu_n \xrightarrow[n \to \infty]{} \mu \in \Delta(\mathcal{X})$, if $\mathbf{x} \in F(\mu_n)$ for all $n \in \mathbb{N}$, then $\mathbf{x} \in F(\mu)$.

Theorem 2C. If $\phi : [-1,1] \longrightarrow \mathbb{R}$ is continuous, then the additive support rule F_{ϕ} is upper hemicontinuous on $\Delta(\mathcal{X})$, for any judgement space \mathcal{X} .

Question. Is this theorem still true for $\phi : [-1, 1] \longrightarrow \mathbb{R}$? **Answer.** It depends on what you mean by "continuous".

- If you mean "continuous" relative to the order topology on ^{*}ℝ, then no non-constant function φ : [-1, 1]→ ^{*}ℝ can be continuous.
- If you mean "continuous" relative to the subspace topology on the image φ[-1,1] ⊂ *R, then Theorem 2C is still true.
 However, in any such φ can be converted to a real-valued function through some rescaling. So this is not a useful extension of Theorem 2C.
- Question. Is the converse of Theorem 2C true?

Answer. Not quite...

Recall, a judgement aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is **upper hemicontinuous** (UHC) if, for any sequence $\mu_n \xrightarrow[n \to \infty]{} \mu \in \Delta(\mathcal{X})$, if $\mathbf{x} \in F(\mu_n)$ for all $n \in \mathbb{N}$, then $\mathbf{x} \in F(\mu)$.

Theorem 2C. If $\phi : [-1,1] \longrightarrow \mathbb{R}$ is continuous, then the additive support rule F_{ϕ} is upper hemicontinuous on $\Delta(\mathcal{X})$, for any judgement space \mathcal{X} .

Question. Is this theorem still true for $\phi : [-1, 1] \longrightarrow \mathbb{R}$? **Answer.** It depends on what you mean by "continuous".

- If you mean "continuous" relative to the order topology on ^{*}ℝ, then no non-constant function φ : [-1, 1]→ ^{*}ℝ can be continuous.
- If you mean "continuous" relative to the subspace topology on the image φ[-1,1] ⊂ *R, then Theorem 2C is still true.
 However, in any such φ can be converted to a real-valued function through some rescaling. So this is not a useful extension of Theorem 2C.
- **Question.** Is the converse of Theorem 2C true? **Answer.** Not quite...

(15/36)

Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function, and \mathcal{X} a judgement space. Recall: $\mathcal{R}^{\phi}_{\mathcal{X}} := \bigcup_{\substack{\mathbf{x}, \mathbf{y} \in \mathcal{X} \\ d(\mathbf{x}, \mathbf{y}) \ge 3}} \bigcup_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} \mathcal{R}^{k}_{\mathbf{x}, \mathbf{y}} \subseteq [-1, 1].$

Also, recall that ${\mathcal X}$ is **thick** if dim $[\operatorname{conv}({\mathcal X})] = |{\mathcal K}|.$

Proposition 2D Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be any real-valued gain function. If \mathcal{X} is a thick judgement space, and $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is upper hemicontinuous, then ϕ must be continuous on $\mathcal{R}^{\phi}_{\mathcal{X}}$.

Does upper hemicontinuity imply that ϕ must be continuous and/or real-valued on all of [-1,1]? In general, no.

Proposition 2E. Let $M \in \mathbb{N}$, and let $\mathcal{X}_{M}^{\text{pr}}$ be the permutahedron on M alternatives. Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function such that ϕ is continuous, real-valued, and unbounded on $(-1 + \frac{2}{M}, 1 - \frac{2}{M})$, and ϕ is infinite on $[-1, -1 + \frac{2}{M}] \sqcup [1 - \frac{2}{M}, 1]$. Then F_{ϕ} is upper hemicontinuous on $\Delta(\mathcal{X}_{M}^{\text{pr}})$.

Thus, the strict converse of Theorem 2C is false. Instead, we have ... = oac

(15/36)

Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function, and \mathcal{X} a judgement space. Recall: $\mathcal{R}^{\phi}_{\mathcal{X}} := \bigcup_{\substack{\mathbf{x}, \mathbf{y} \in \mathcal{X} \\ d(\mathbf{x}, \mathbf{y}) \ge 3}} \bigcup_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} \mathcal{R}^{k}_{\mathbf{x}, \mathbf{y}} \subseteq [-1, 1].$

Also, recall that \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

Proposition 2D Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be any real-valued gain function. If \mathcal{X} is a thick judgement space, and $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is upper hemicontinuous, then ϕ must be continuous on $\mathcal{R}^{\phi}_{\mathcal{X}}$.

Does upper hemicontinuity imply that ϕ must be continuous and/or real-valued on all of [-1,1]? In general, no.

Proposition 2E. Let $M \in \mathbb{N}$, and let $\mathcal{X}_M^{\text{pr}}$ be the permutahedron on M alternatives. Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function such that ϕ is continuous, real-valued, and unbounded on $(-1 + \frac{2}{M}, 1 - \frac{2}{M})$, and ϕ is infinite on $[-1, -1 + \frac{2}{M}] \sqcup [1 - \frac{2}{M}, 1]$. Then F_{ϕ} is upper hemicontinuous on $\Delta(\mathcal{X}_M^{\text{pr}})$.

Thus, the strict converse of Theorem 2C is false. Instead, we have ... = oac

(15/36)

Let $\phi : [-1, 1] \longrightarrow \mathbb{R}$ be a gain function, and \mathcal{X} a judgement space. Recall: $\mathcal{R}^{\phi}_{\mathcal{X}} := \bigcup_{\substack{\mathbf{x}, \mathbf{y} \in \mathcal{X} \\ d(\mathbf{x}, \mathbf{y}) \ge 3}} \bigcup_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} \mathcal{R}^{k}_{\mathbf{x}, \mathbf{y}} \subseteq [-1, 1].$

Also, recall that \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

Proposition 2D Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be any real-valued gain function. If \mathcal{X} is a thick judgement space, and $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is upper hemicontinuous, then ϕ must be continuous on $\mathcal{R}^{\phi}_{\mathcal{X}}$.

Does upper hemicontinuity imply that ϕ must be continuous and/or real-valued on all of [-1,1]? In general, no.

Proposition 2E. Let $M \in \mathbb{N}$, and let $\mathcal{X}_M^{\text{pr}}$ be the permutahedron on M alternatives. Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function such that ϕ is continuous, real-valued, and unbounded on $(-1 + \frac{2}{M}, 1 - \frac{2}{M})$, and ϕ is infinite on $[-1, -1 + \frac{2}{M}] \sqcup [1 - \frac{2}{M}, 1]$. Then F_{ϕ} is upper hemicontinuous on $\Delta(\mathcal{X}_M^{\text{pr}})$.

Thus, the strict converse of Theorem 2C is false. Instead, we have:... = 2000

(15/36)

Let $\phi : [-1, 1] \longrightarrow \mathbb{R}$ be a gain function, and \mathcal{X} a judgement space. Recall: $\mathcal{R}^{\phi}_{\mathcal{X}} := \bigcup_{\substack{\mathbf{x}, \mathbf{y} \in \mathcal{X} \\ d(\mathbf{x}, \mathbf{y}) \ge 3}} \bigcup_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} \mathcal{R}^{k}_{\mathbf{x}, \mathbf{y}} \subseteq [-1, 1].$

Also, recall that \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

Proposition 2D Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be any real-valued gain function. If \mathcal{X} is a thick judgement space, and $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is upper hemicontinuous, then ϕ must be continuous on $\mathcal{R}^{\phi}_{\mathcal{X}}$.

Does upper hemicontinuity imply that ϕ must be continuous and/or real-valued on all of [-1,1]? In general, no.

Proposition 2E. Let $M \in \mathbb{N}$, and let $\mathcal{X}_M^{\text{pr}}$ be the permutahedron on M alternatives. Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function such that ϕ is continuous, real-valued, and unbounded on $(-1 + \frac{2}{M}, 1 - \frac{2}{M})$, and ϕ is infinite on $[-1, -1 + \frac{2}{M}] \sqcup [1 - \frac{2}{M}, 1]$. Then F_{ϕ} is upper hemicontinuous on $\Delta(\mathcal{X}_M^{\text{pr}})$.

Thus, the strict converse of Theorem 2C is false. Instead, we have:... = 2000

(15/36)

Let $\phi : [-1, 1] \longrightarrow \mathbb{R}$ be a gain function, and \mathcal{X} a judgement space. Recall: $\mathcal{R}^{\phi}_{\mathcal{X}} := \bigcup_{\substack{\mathbf{x}, \mathbf{y} \in \mathcal{X} \\ d(\mathbf{x}, \mathbf{y}) \ge 3}} \bigcup_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} \mathcal{R}^{k}_{\mathbf{x}, \mathbf{y}} \subseteq [-1, 1].$

Also, recall that \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

Proposition 2D Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be any real-valued gain function. If \mathcal{X} is a thick judgement space, and $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is upper hemicontinuous, then ϕ must be continuous on $\mathcal{R}^{\phi}_{\mathcal{X}}$.

Does upper hemicontinuity imply that ϕ must be continuous and/or real-valued on all of [-1,1]? In general, no.

Proposition 2E. Let $M \in \mathbb{N}$, and let $\mathcal{X}_M^{\text{pr}}$ be the permutahedron on M alternatives. Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function such that ϕ is continuous, real-valued, and unbounded on $(-1 + \frac{2}{M}, 1 - \frac{2}{M})$, and ϕ is infinite on $[-1, -1 + \frac{2}{M}] \sqcup [1 - \frac{2}{M}, 1]$. Then F_{ϕ} is upper hemicontinuous on $\Delta(\mathcal{X}_M^{\text{pr}})$.

Thus, the strict converse of Theorem 2C is false. Instead, we have ... = oac

(15/36)

Let $\phi : [-1, 1] \longrightarrow \mathbb{R}$ be a gain function, and \mathcal{X} a judgement space. Recall: $\mathcal{R}^{\phi}_{\mathcal{X}} := \bigcup_{\substack{\mathbf{x}, \mathbf{y} \in \mathcal{X} \\ d(\mathbf{x}, \mathbf{y}) \ge 3}} \bigcup_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} \mathcal{R}^{k}_{\mathbf{x}, \mathbf{y}} \subseteq [-1, 1].$

Also, recall that \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

Proposition 2D Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be any real-valued gain function. If \mathcal{X} is a thick judgement space, and $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is upper hemicontinuous, then ϕ must be continuous on $\mathcal{R}^{\phi}_{\mathcal{X}}$.

Does upper hemicontinuity imply that ϕ must be continuous and/or real-valued on all of [-1,1]? In general, no.

Proposition 2E. Let $M \in \mathbb{N}$, and let $\mathcal{X}_{M}^{\text{pr}}$ be the permutahedron on M alternatives. Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function such that ϕ is continuous, real-valued, and unbounded on $(-1 + \frac{2}{M}, 1 - \frac{2}{M})$, and ϕ is infinite on $[-1, -1 + \frac{2}{M}] \sqcup [1 - \frac{2}{M}, 1]$. Then F_{ϕ} is upper hemicontinuous on $\Delta(\mathcal{X}_{M}^{\text{pr}})$.

Thus, the strict converse of Theorem 2C is false. Instead, we have ... = oac

(15/36)

Let $\phi : [-1, 1] \longrightarrow \mathbb{R}$ be a gain function, and \mathcal{X} a judgement space. Recall: $\mathcal{R}^{\phi}_{\mathcal{X}} := \bigcup_{\substack{\mathbf{x}, \mathbf{y} \in \mathcal{X} \\ d(\mathbf{x}, \mathbf{y}) \ge 3}} \bigcup_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} \mathcal{R}^{k}_{\mathbf{x}, \mathbf{y}} \subseteq [-1, 1].$

Also, recall that \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

Proposition 2D Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be any real-valued gain function. If \mathcal{X} is a thick judgement space, and $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is upper hemicontinuous, then ϕ must be continuous on $\mathcal{R}^{\phi}_{\mathcal{X}}$.

Does upper hemicontinuity imply that ϕ must be continuous and/or real-valued on all of [-1, 1]? In general, no.

Proposition 2E. Let $M \in \mathbb{N}$, and let $\mathcal{X}_{M}^{\text{pr}}$ be the permutahedron on M alternatives. Let $\phi : [-1,1] \longrightarrow {}^{*}\mathbb{R}$ be a gain function such that ϕ is continuous, real-valued, and unbounded on $(-1 + \frac{2}{M}, 1 - \frac{2}{M})$, and ϕ is infinite on $[-1, -1 + \frac{2}{M}] \sqcup [1 - \frac{2}{M}, 1]$. Then F_{ϕ} is upper hemicontinuous on $\Delta(\mathcal{X}_{M}^{\text{pr}})$.

Thus, the strict converse of Theorem 2C is false. Instead, we have:... = 2000

(15/36)

Let $\phi : [-1, 1] \longrightarrow \mathbb{R}$ be a gain function, and \mathcal{X} a judgement space. Recall: $\mathcal{R}^{\phi}_{\mathcal{X}} := \bigcup_{\substack{\mathbf{x}, \mathbf{y} \in \mathcal{X} \\ d(\mathbf{x}, \mathbf{y}) \ge 3}} \bigcup_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} \mathcal{R}^{k}_{\mathbf{x}, \mathbf{y}} \subseteq [-1, 1].$

Also, recall that \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

Proposition 2D Let $\phi : [-1, 1] \longrightarrow \mathbb{R}$ be any real-valued gain function. If \mathcal{X} is a thick judgement space, and $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is upper hemicontinuous, then ϕ must be continuous on $\mathcal{R}^{\phi}_{\mathcal{X}}$.

Does upper hemicontinuity imply that ϕ must be continuous and/or real-valued on all of [-1, 1]? In general, no.

Proposition 2E. Let $M \in \mathbb{N}$, and let $\mathcal{X}_{M}^{\text{pr}}$ be the permutahedron on M alternatives. Let $\phi : [-1,1] \longrightarrow {}^{*}\mathbb{R}$ be a gain function such that ϕ is continuous, real-valued, and unbounded on $(-1 + \frac{2}{M}, 1 - \frac{2}{M})$, and ϕ is infinite on $[-1, -1 + \frac{2}{M}] \sqcup [1 - \frac{2}{M}, 1]$. Then F_{ϕ} is upper hemicontinuous on $\Delta(\mathcal{X}_{M}^{\text{pr}})$.

Thus, the strict converse of Theorem 2C is false. Instead, we have:... = 2000

(15/36)

Let $\phi : [-1, 1] \longrightarrow \mathbb{R}$ be a gain function, and \mathcal{X} a judgement space. Recall: $\mathcal{R}^{\phi}_{\mathcal{X}} := \bigcup_{\substack{\mathbf{x}, \mathbf{y} \in \mathcal{X} \\ d(\mathbf{x}, \mathbf{y}) \ge 3}} \bigcup_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} \mathcal{R}^{k}_{\mathbf{x}, \mathbf{y}} \subseteq [-1, 1].$

Also, recall that \mathcal{X} is **thick** if dim $[\operatorname{conv}(\mathcal{X})] = |\mathcal{K}|$.

Proposition 2D Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be any real-valued gain function. If \mathcal{X} is a thick judgement space, and $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is upper hemicontinuous, then ϕ must be continuous on $\mathcal{R}^{\phi}_{\mathcal{X}}$.

Does upper hemicontinuity imply that ϕ must be continuous and/or real-valued on all of [-1, 1]? In general, no.

Proposition 2E. Let $M \in \mathbb{N}$, and let $\mathcal{X}_{M}^{\text{pr}}$ be the permutahedron on M alternatives. Let $\phi : [-1,1] \longrightarrow {}^{*}\mathbb{R}$ be a gain function such that ϕ is continuous, real-valued, and unbounded on $(-1 + \frac{2}{M}, 1 - \frac{2}{M})$, and ϕ is infinite on $[-1, -1 + \frac{2}{M}] \sqcup [1 - \frac{2}{M}, 1]$. Then F_{ϕ} is upper hemicontinuous on $\Delta(\mathcal{X}_{M}^{\text{pr}})$.

Thus, the strict converse of Theorem 2C is false. Instead, we have = 2000

(16/36)

Theorem 2F. Let \mathcal{X} be a thick judgement space. Let $\phi : [-1,1] \longrightarrow {}^{*}\mathbb{R}$ be a gain function such that $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is upper hemicontinuous and $\mathcal{R}^{\phi}_{\mathcal{X}} \neq \emptyset$.

(a) Let $\mathcal{R} \subseteq \mathcal{R}_{\mathcal{X}}^{\phi}$ be a connected component of $\mathcal{R}_{\mathcal{X}}^{\phi}$, and fix $r_1, r_2 \in \mathcal{R}$ with $0 < r_1 < r_2$. Define $\overline{\phi} : \mathcal{R} \longrightarrow \mathbb{R}$ by

$$\overline{\phi}(r)$$
 := $\operatorname{st}\left(rac{\phi(r)-\phi(r_1)}{\phi(r_2)-\phi(r_1)}
ight)$

for all $r \in \mathcal{R}$. Then $\overline{\phi}$ is continuous, real-valued, and increasing on \mathcal{R} . (b) Suppose there exists some $s \in {}^*\mathbb{R}$ such that the function $\operatorname{st}(s \phi)$ is continuous and real-valued on $\operatorname{cl}(\mathcal{R}^{\phi}_{\mathcal{X}})$. Then there is a continuous, real-valued gain function $\psi : [-1, 1] \longrightarrow \mathbb{R}$ such that $F_{\phi} = F_{\psi}$.

(16/36)

Theorem 2F. Let \mathcal{X} be a thick judgement space. Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function such that $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is upper hemicontinuous and $\mathcal{R}^{\phi}_{\mathcal{X}} \neq \emptyset$.

(a) Let $\mathcal{R} \subseteq \mathcal{R}_{\mathcal{X}}^{\phi}$ be a connected component of $\mathcal{R}_{\mathcal{X}}^{\phi}$, and fix $r_1, r_2 \in \mathcal{R}$ with $0 < r_1 < r_2$. Define $\overline{\phi} : \mathcal{R} \longrightarrow \mathbb{R}$ by

$$\overline{\phi}(r)$$
 := st $\left(rac{\phi(r) - \phi(r_1)}{\phi(r_2) - \phi(r_1)}\right)$

for all $r \in \mathcal{R}$. Then $\overline{\phi}$ is continuous, real-valued, and increasing on \mathcal{R} . (b) Suppose there exists some $s \in \mathbb{R}$ such that the function $\operatorname{st}(s\phi)$ is continuous and real-valued on $\operatorname{cl}(\mathcal{R}^{\phi}_{\mathcal{X}})$. Then there is a continuous, real-valued gain function $\psi : [-1, 1] \longrightarrow \mathbb{R}$ such that $F_{\phi} = F_{\psi}$.

(16/36)

Theorem 2F. Let \mathcal{X} be a thick judgement space. Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function such that $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is upper hemicontinuous and $\mathcal{R}^{\phi}_{\mathcal{X}} \neq \emptyset$.

(a) Let $\mathcal{R} \subseteq \mathcal{R}_{\mathcal{X}}^{\phi}$ be a connected component of $\mathcal{R}_{\mathcal{X}}^{\phi}$, and fix $r_1, r_2 \in \mathcal{R}$ with $0 < r_1 < r_2$. Define $\overline{\phi} : \mathcal{R} \longrightarrow \mathbb{R}$ by

$$\overline{\phi}(r)$$
 := $\operatorname{st}\left(rac{\phi(r)-\phi(r_1)}{\phi(r_2)-\phi(r_1)}
ight),$

for all $r \in \mathcal{R}$. Then $\overline{\phi}$ is continuous, real-valued, and increasing on \mathcal{R} .

(b) Suppose there exists some $s \in {}^*\mathbb{R}$ such that the function $\operatorname{st}(s \phi)$ is continuous and real-valued on $\operatorname{cl}(\mathcal{R}^{\phi}_{\mathcal{X}})$. Then there is a continuous, real-valued gain function $\psi : [-1, 1] \longrightarrow \mathbb{R}$ such that $F_{\phi} = F_{\psi}$.

(16/36)

Theorem 2F. Let \mathcal{X} be a thick judgement space. Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function such that $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is upper hemicontinuous and $\mathcal{R}^{\phi}_{\mathcal{X}} \neq \emptyset$.

(a) Let $\mathcal{R} \subseteq \mathcal{R}_{\mathcal{X}}^{\phi}$ be a connected component of $\mathcal{R}_{\mathcal{X}}^{\phi}$, and fix $r_1, r_2 \in \mathcal{R}$ with $0 < r_1 < r_2$. Define $\overline{\phi} : \mathcal{R} \longrightarrow \mathbb{R}$ by

$$\overline{\phi}(r)$$
 := st $\left(rac{\phi(r)-\phi(r_1)}{\phi(r_2)-\phi(r_1)}
ight)$

for all $r \in \mathcal{R}$. Then $\overline{\phi}$ is continuous, real-valued, and increasing on \mathcal{R} . (b) Suppose there exists some $s \in \mathbb{R}$ such that the function st $(s \phi)$ is continuous and real-valued on cl $(\mathcal{R}^{\phi}_{\mathcal{X}})$. Then there is a continuous, real-valued gain function $\psi : [-1, 1] \longrightarrow \mathbb{R}$ such that $F_{\phi} = F_{\phi}$.

(16/36)

Theorem 2F. Let \mathcal{X} be a thick judgement space. Let $\phi : [-1,1] \longrightarrow \mathbb{R}$ be a gain function such that $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is upper hemicontinuous and $\mathcal{R}^{\phi}_{\mathcal{X}} \neq \emptyset$.

(a) Let $\mathcal{R} \subseteq \mathcal{R}_{\mathcal{X}}^{\phi}$ be a connected component of $\mathcal{R}_{\mathcal{X}}^{\phi}$, and fix $r_1, r_2 \in \mathcal{R}$ with $0 < r_1 < r_2$. Define $\overline{\phi} : \mathcal{R} \longrightarrow \mathbb{R}$ by

$$\overline{\phi}(r)$$
 := st $\left(rac{\phi(r) - \phi(r_1)}{\phi(r_2) - \phi(r_1)}
ight)$

for all $r \in \mathcal{R}$. Then $\overline{\phi}$ is continuous, real-valued, and increasing on \mathcal{R} . (b) Suppose there exists some $s \in {}^*\mathbb{R}$ such that the function st $(s \phi)$ is continuous and real-valued on cl $(\mathcal{R}^{\phi}_{\mathcal{X}})$. Then there is a continuous, real-valued gain function $\psi : [-1, 1] \longrightarrow \mathbb{R}$ such that $F_{\phi} = F_{\psi}$.

(16/36)

Theorem 2F. Let \mathcal{X} be a thick judgement space. Let $\phi : [-1,1] \longrightarrow *\mathbb{R}$ be a gain function such that $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ is upper hemicontinuous and $\mathcal{R}^{\phi}_{\mathcal{X}} \neq \emptyset$.

(a) Let $\mathcal{R} \subseteq \mathcal{R}_{\mathcal{X}}^{\phi}$ be a connected component of $\mathcal{R}_{\mathcal{X}}^{\phi}$, and fix $r_1, r_2 \in \mathcal{R}$ with $0 < r_1 < r_2$. Define $\overline{\phi} : \mathcal{R} \longrightarrow \mathbb{R}$ by

$$\overline{\phi}(r)$$
 := st $\left(rac{\phi(r)-\phi(r_1)}{\phi(r_2)-\phi(r_1)}
ight)$

for all $r \in \mathcal{R}$. Then $\overline{\phi}$ is continuous, real-valued, and increasing on \mathcal{R} . (b) Suppose there exists some $s \in {}^*\mathbb{R}$ such that the function st $(s \phi)$ is continuous and real-valued on cl $(\mathcal{R}^{\phi}_{\mathcal{X}})$. Then there is a continuous, real-valued gain function $\psi : [-1, 1] \longrightarrow \mathbb{R}$ such that $F_{\phi} = F_{\psi}$.

(17/36)

Fix some positive $d \in \mathbb{R}$. For all $r \in [-1, 1]$, define $\phi_d(r) := \operatorname{sign}(r) \cdot |r|^d = \begin{cases} r^d & \text{if } r \ge 0; \\ -|r|^d & \text{if } r \le 0. \end{cases}$

(Note: φ_d is well-defined in *R even if d is infinite or infinitesimal.) Then define H^d(X, μ) := F_{φ_d}(X, μ). (a 'homogeneous' rule)
Example: H¹(X, μ) = Median (X, μ).
Proposition: Let X be any judgement space, and let μ ∈ Δ(X).
(a) lim H^d(X, μ) = LexiMin (X, μ).
(b) If ∞ ∈ *R is any positive infinite hyperreal, then H[∞](X, μ) = LexiMin (X, μ).

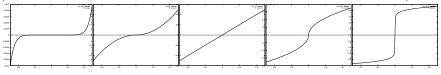
(c) $\lim_{d\to 0} H^d(\mathcal{X},\mu) \subseteq \text{Slater}(\mathcal{X},\mu).$ (Generally, strict inclusion.)

(17/36)

Fix some positive $d \in *\mathbb{R}$. For all $r \in [-1, 1]$, define

$$\phi_d(r)$$
 := $\operatorname{sign}(r) \cdot |r|^d$ = $\left\{ egin{array}{cc} r^d & ext{if } r \geq 0; \\ -|r|^d & ext{if } r \leq 0. \end{array} \right.$

(*Note:* ϕ_d is well-defined in \mathbb{R} even if *d* is infinite or infinitesimal.)



Proposition: Let $\mathcal X$ be any judgement space, and let $\mu\in\Delta(\mathcal X).$

(a) $\lim_{d \to \infty} H^d(\mathcal{X}, \mu) = \operatorname{LexiMin}(\mathcal{X}, \mu).$

(b) If $\infty \in {}^*\mathbb{R}$ is any positive infinite hyperreal, then $H^{\infty}(\mathcal{X},\mu) = \text{LexiMin}(\mathcal{X},\mu).$

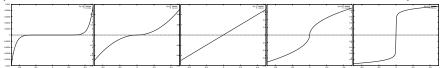
(c) $\lim_{d\to 0} H^d(\mathcal{X},\mu) \subseteq \text{Slater}(\mathcal{X},\mu). \quad (Generally, strict inclusion.)$

(17/36)

Fix some positive $d \in {}^*\!\mathbb{R}$. For all $r \in [-1,1]$, define

$$\phi_d(r)$$
 := $\operatorname{sign}(r) \cdot |r|^d$ = $\left\{ egin{array}{cc} r^d & ext{if } r \geq 0; \\ -|r|^d & ext{if } r \leq 0. \end{array}
ight.$

(*Note:* ϕ_d is well-defined in \mathbb{R} even if d is infinite or infinitesimal.)



 $\begin{array}{cccc} \phi_{10} & \phi_2 & \phi_1 & \phi_{1/2} & \phi_{1/10} \\ \text{Then define } H^d(\mathcal{X}, \mu) := \mathcal{F}_{\phi_d}(\mathcal{X}, \mu). & \text{(a 'homogeneous' rule)} \\ \text{Example: } H^1(\mathcal{X}, \mu) = \text{Median}(\mathcal{X}, \mu). \end{array}$

Proposition: Let \mathcal{X} be any judgement space, and let $\mu \in \Delta(\mathcal{X})$.

(a) $\lim_{d \to \infty} H^a(\mathcal{X}, \mu) = \operatorname{LexiMin}(\mathcal{X}, \mu).$

(b) If $\infty \in {}^{*}\mathbb{R}$ is any positive infinite hyperreal, then $H^{\infty}(\mathcal{X}, \mu) = \text{LexiMin}(\mathcal{X}, \mu).$

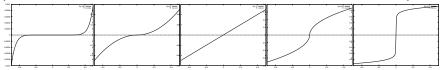
(c) $\lim_{d\to 0} H^{d}(\mathcal{X},\mu) \subseteq \text{Slater}(\mathcal{X},\mu). \quad (Generally, strict inclusion.)$

(17/36)

Fix some positive $d \in *\mathbb{R}$. For all $r \in [-1, 1]$, define

$$\phi_d(r)$$
 := $\operatorname{sign}(r) \cdot |r|^d$ = $\left\{ egin{array}{cc} r^d & ext{if } r \geq 0; \\ -|r|^d & ext{if } r \leq 0. \end{array}
ight.$

(*Note:* ϕ_d is well-defined in \mathbb{R} even if d is infinite or infinitesimal.)



 $\begin{array}{cccc} \phi_{10} & \phi_2 & \phi_1 & \phi_{1/2} & \phi_{1/10} \\ \text{Then define } H^d(\mathcal{X}, \mu) := F_{\phi_d}(\mathcal{X}, \mu). & \text{(a 'homogeneous' rule)} \\ \text{Example: } H^1(\mathcal{X}, \mu) = \text{Median} (\mathcal{X}, \mu). \end{array}$

Proposition: Let \mathcal{X} be any judgement space, and let $\mu \in \Delta(\mathcal{X})$. (a) $\lim_{d \to \infty} H^d(\mathcal{X}, \mu) = \operatorname{LexiMin}(\mathcal{X}, \mu)$.

(b) If $\infty \in {}^*\mathbb{R}$ is any positive infinite hyperreal, then $H^{\infty}(\mathcal{X}, \mu) = \text{LexiMin}(\mathcal{X}, \mu).$

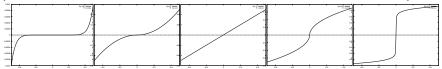
(c) $\lim_{d\to 0} H^d(\mathcal{X},\mu) \subseteq \text{Slater}(\mathcal{X},\mu).$ (Generally, strict inclusion.)

(17/36)

Fix some positive $d \in *\mathbb{R}$. For all $r \in [-1, 1]$, define

$$\phi_d(r)$$
 := $\operatorname{sign}(r) \cdot |r|^d$ = $\left\{ egin{array}{cc} r^d & ext{if } r \geq 0; \\ -|r|^d & ext{if } r \leq 0. \end{array}
ight.$

(*Note:* ϕ_d is well-defined in \mathbb{R} even if d is infinite or infinitesimal.)



 $\begin{array}{cccc} \phi_{10} & \phi_{2} & \phi_{1} & \phi_{1/2} & \phi_{1/10} \\ \text{Then define } H^{d}(\mathcal{X}, \mu) := \mathcal{F}_{\phi_{d}}(\mathcal{X}, \mu). & \text{(a 'homogeneous' rule)} \\ \text{Example: } H^{1}(\mathcal{X}, \mu) = \text{Median}(\mathcal{X}, \mu). \end{array}$

Proposition: Let \mathcal{X} be any judgement space, and let $\mu \in \Delta(\mathcal{X})$.

(a)
$$\lim_{d \to \infty} H^d(\mathcal{X}, \mu) = \operatorname{LexiMin}(\mathcal{X}, \mu).$$

(b) If $\infty \in {}^*\!\mathbb{R}$ is any positive infinite hyperreal, then

 $H^{\infty}(\mathcal{X},\mu) = \operatorname{LexiMin}(\mathcal{X},\mu).$

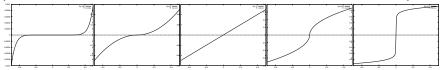
(c) $\lim_{d\to 0} H^d(\mathcal{X},\mu) \subseteq \text{Slater}(\mathcal{X},\mu). \quad (Generally, strict inclusion.)$

(17/36)

Fix some positive $d \in *\mathbb{R}$. For all $r \in [-1, 1]$, define

$$\phi_d(r)$$
 := $\operatorname{sign}(r) \cdot |r|^d$ = $\left\{ egin{array}{cc} r^d & ext{if } r \geq 0; \\ -|r|^d & ext{if } r \leq 0. \end{array} \right.$

(*Note:* ϕ_d is well-defined in \mathbb{R} even if d is infinite or infinitesimal.)



 $\begin{array}{cccc} \phi_{10} & \phi_2 & \phi_1 & \phi_{1/2} & \phi_{1/10} \\ \text{Then define } H^d(\mathcal{X}, \mu) := F_{\phi_d}(\mathcal{X}, \mu). & \text{(a 'homogeneous' rule)} \\ \text{Example: } H^1(\mathcal{X}, \mu) = \text{Median} (\mathcal{X}, \mu). \end{array}$

Proposition: Let \mathcal{X} be any judgement space, and let $\mu \in \Delta(\mathcal{X})$.

(a) $\lim_{d\to\infty} H^d(\mathcal{X},\mu) = \operatorname{LexiMin}(\mathcal{X},\mu).$

(b) If $\infty \in {}^*\!\mathbb{R}$ is any positive infinite hyperreal, then

 $H^{\infty}(\mathcal{X},\mu) = \operatorname{LexiMin}(\mathcal{X},\mu)$

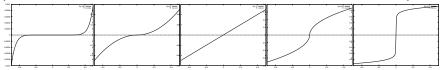
(c) $\lim_{d\to 0} H^d(\mathcal{X},\mu) \subseteq \text{Slater}(\mathcal{X},\mu). \quad (Generally, strict inclusion.)$

(17/36)

Fix some positive $d \in *\mathbb{R}$. For all $r \in [-1, 1]$, define

$$\phi_d(r)$$
 := $\operatorname{sign}(r) \cdot |r|^d$ = $\left\{ egin{array}{cc} r^d & ext{if } r \geq 0; \\ -|r|^d & ext{if } r \leq 0. \end{array}
ight.$

(*Note:* ϕ_d is well-defined in \mathbb{R} even if d is infinite or infinitesimal.)



 $\begin{array}{cccc} \phi_{10} & \phi_2 & \phi_1 & \phi_{1/2} & \phi_{1/10} \\ \text{Then define } H^d(\mathcal{X}, \mu) := F_{\phi_d}(\mathcal{X}, \mu). & \text{(a 'homogeneous' rule)} \\ \text{Example: } H^1(\mathcal{X}, \mu) = \text{Median} (\mathcal{X}, \mu). \end{array}$

Proposition: Let \mathcal{X} be any judgement space, and let $\mu \in \Delta(\mathcal{X})$.

(a)
$$\lim_{d \to \infty} H^d(\mathcal{X}, \mu) = \operatorname{LexiMin}(\mathcal{X}, \mu).$$

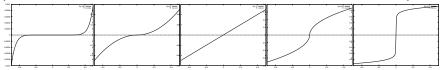
- (b) If ∞ ∈ *ℝ is any positive infinite hyperreal, then H[∞](X, μ) = LexiMin (X, μ).
- (c) $\lim_{d\to 0} H^d(\mathcal{X},\mu) \subseteq \text{Slater}(\mathcal{X},\mu).$ (Generally, strict inclusion.)

(17/36)

Fix some positive $d \in *\mathbb{R}$. For all $r \in [-1, 1]$, define

$$\phi_d(r)$$
 := $\operatorname{sign}(r) \cdot |r|^d$ = $\left\{ egin{array}{cc} r^d & ext{if } r \geq 0; \\ -|r|^d & ext{if } r \leq 0. \end{array} \right.$

(*Note:* ϕ_d is well-defined in \mathbb{R} even if d is infinite or infinitesimal.)



 $\begin{array}{cccc} \phi_{10} & \phi_2 & \phi_1 & \phi_{1/2} & \phi_{1/10} \\ \text{Then define } H^d(\mathcal{X}, \mu) := F_{\phi_d}(\mathcal{X}, \mu). & \text{(a 'homogeneous' rule)} \\ \text{Example: } H^1(\mathcal{X}, \mu) = \text{Median} (\mathcal{X}, \mu). \end{array}$

Proposition: Let \mathcal{X} be any judgement space, and let $\mu \in \Delta(\mathcal{X})$.

(a)
$$\lim_{d\to\infty} H^d(\mathcal{X},\mu) = \operatorname{LexiMin}(\mathcal{X},\mu).$$

(b) If $\infty \in {}^*\mathbb{R}$ is any positive infinite hyperreal, then $H^{\infty}(\mathcal{X}, \mu) = \text{LexiMin}(\mathcal{X}, \mu).$

(c) $\lim_{d\to 0} H^d(\mathcal{X},\mu) \subseteq \text{Slater}(\mathcal{X},\mu).$ (Generally, strict inclusion.)

(18/36)

For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, let $\delta_{\mathbf{x}, \mathbf{y}}$ be the profile such that $\delta_{\mathbf{x}, \mathbf{y}}(\mathbf{x}) := \frac{1}{2} =: \delta_{\mathbf{x}, \mathbf{y}}(\mathbf{y})$, whereas $\delta_{\mathbf{x}, \mathbf{y}}(\mathbf{z}) := 0$ for all $\mathbf{z} \in \mathcal{X} \setminus {\mathbf{x}, \mathbf{y}}$.

Idea: $\delta_{x,y}$ is a population evenly split between x and y.

An aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies **neutral reinforcement** on \mathcal{X} if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and $\mu \in \Delta(\mathcal{X})$, if $F(\mu) = {\mathbf{x}, \mathbf{y}}$, then $F(r\mu + (1 - r)\delta_{\mathbf{x},\mathbf{y}}) = {\mathbf{x}, \mathbf{y}}$ for all $r \in (0, 1]$.

Idea: If **x** and **y** are the only winning alternatives, and we mix the population with a new population which is evenly split between **x** and **y**, then **x** and **y** should *remain* the only winning alternatives.

Example: Slater, Leximin, Median, and H^d (for any d > 0) satisfy neutral reinforcement.

(18/36)

For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, let $\delta_{\mathbf{x},\mathbf{y}}$ be the profile such that $\delta_{\mathbf{x},\mathbf{y}}(\mathbf{x}) := \frac{1}{2} =: \delta_{\mathbf{x},\mathbf{y}}(\mathbf{y})$, whereas $\delta_{\mathbf{x},\mathbf{y}}(\mathbf{z}) := 0$ for all $\mathbf{z} \in \mathcal{X} \setminus {\mathbf{x}, \mathbf{y}}$. **Idea:** $\delta_{\mathbf{x},\mathbf{y}}$ is a population evenly split between \mathbf{x} and \mathbf{y} .

An aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies **neutral reinforcement** on \mathcal{X} if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and $\mu \in \Delta(\mathcal{X})$, if $F(\mu) = {\mathbf{x}, \mathbf{y}}$, then $F(r\mu + (1 - r)\delta_{\mathbf{x},\mathbf{y}}) = {\mathbf{x}, \mathbf{y}}$ for all $r \in (0, 1]$.

Idea: If **x** and **y** are the only winning alternatives, and we mix the population with a new population which is evenly split between **x** and **y**, then **x** and **y** should *remain* the only winning alternatives.

Example: Slater, Leximin, Median, and H^d (for any d > 0) satisfy neutral reinforcement.

(18/36

For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, let $\delta_{\mathbf{x},\mathbf{y}}$ be the profile such that $\delta_{\mathbf{x},\mathbf{y}}(\mathbf{x}) := \frac{1}{2} =: \delta_{\mathbf{x},\mathbf{y}}(\mathbf{y})$, whereas $\delta_{\mathbf{x},\mathbf{y}}(\mathbf{z}) := 0$ for all $\mathbf{z} \in \mathcal{X} \setminus \{\mathbf{x},\mathbf{y}\}$.

Idea: $\delta_{\mathbf{x},\mathbf{y}}$ is a population evenly split between \mathbf{x} and \mathbf{y} .

An aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies **neutral reinforcement** on \mathcal{X} if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and $\mu \in \Delta(\mathcal{X})$, if $F(\mu) = {\mathbf{x}, \mathbf{y}}$, then $F(r\mu + (1 - r)\delta_{\mathbf{x},\mathbf{y}}) = {\mathbf{x}, \mathbf{y}}$ for all $r \in (0, 1]$.

Idea: If **x** and **y** are the only winning alternatives, and we mix the population with a new population which is evenly split between **x** and **y**, then **x** and **y** should *remain* the only winning alternatives.

Example: Slater, Leximin, Median, and H^d (for any d > 0) satisfy neutral reinforcement.

(18/36)

For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, let $\delta_{\mathbf{x},\mathbf{y}}$ be the profile such that $\delta_{\mathbf{x},\mathbf{y}}(\mathbf{x}) := \frac{1}{2} =: \delta_{\mathbf{x},\mathbf{y}}(\mathbf{y})$, whereas $\delta_{\mathbf{x},\mathbf{y}}(\mathbf{z}) := 0$ for all $\mathbf{z} \in \mathcal{X} \setminus \{\mathbf{x},\mathbf{y}\}$.

Idea: $\delta_{\mathbf{x},\mathbf{y}}$ is a population evenly split between \mathbf{x} and \mathbf{y} .

An aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies **neutral reinforcement** on \mathcal{X} if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and $\mu \in \Delta(\mathcal{X})$, if $F(\mu) = {\mathbf{x}, \mathbf{y}}$, then $F(r\mu + (1 - r)\delta_{\mathbf{x},\mathbf{y}}) = {\mathbf{x}, \mathbf{y}}$ for all $r \in (0, 1]$.

Idea: If \mathbf{x} and \mathbf{y} are the only winning alternatives, and we mix the population with a new population which is evenly split between \mathbf{x} and \mathbf{y} , then \mathbf{x} and \mathbf{y} should *remain* the only winning alternatives.

Example: Slater, Leximin, Median, and H^d (for any d > 0) satisfy neutral reinforcement.

(18/36)

For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, let $\delta_{\mathbf{x}, \mathbf{y}}$ be the profile such that $\delta_{\mathbf{x}, \mathbf{y}}(\mathbf{x}) := \frac{1}{2} =: \delta_{\mathbf{x}, \mathbf{y}}(\mathbf{y})$, whereas $\delta_{\mathbf{x}, \mathbf{y}}(\mathbf{z}) := 0$ for all $\mathbf{z} \in \mathcal{X} \setminus {\mathbf{x}, \mathbf{y}}$.

Idea: $\delta_{\mathbf{x},\mathbf{y}}$ is a population evenly split between \mathbf{x} and \mathbf{y} .

An aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies **neutral reinforcement** on \mathcal{X} if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and $\mu \in \Delta(\mathcal{X})$, if $F(\mu) = {\mathbf{x}, \mathbf{y}}$, then $F(r\mu + (1 - r)\delta_{\mathbf{x},\mathbf{y}}) = {\mathbf{x}, \mathbf{y}}$ for all $r \in (0, 1]$.

Idea: If **x** and **y** are the only winning alternatives, and we mix the population with a new population which is evenly split between **x** and **y**, then **x** and **y** should *remain* the only winning alternatives.

Example: Slater, Leximin, Median, and H^d (for any d > 0) satisfy neutral reinforcement.

(18/36)

For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, let $\delta_{\mathbf{x},\mathbf{y}}$ be the profile such that $\delta_{\mathbf{x},\mathbf{y}}(\mathbf{x}) := \frac{1}{2} =: \delta_{\mathbf{x},\mathbf{y}}(\mathbf{y})$, whereas $\delta_{\mathbf{x},\mathbf{y}}(\mathbf{z}) := 0$ for all $\mathbf{z} \in \mathcal{X} \setminus {\mathbf{x}, \mathbf{y}}$.

Idea: $\delta_{\mathbf{x},\mathbf{y}}$ is a population evenly split between \mathbf{x} and \mathbf{y} .

An aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies **neutral reinforcement** on \mathcal{X} if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and $\mu \in \Delta(\mathcal{X})$, if $F(\mu) = {\mathbf{x}, \mathbf{y}}$, then $F(r\mu + (1 - r)\delta_{\mathbf{x},\mathbf{y}}) = {\mathbf{x}, \mathbf{y}}$ for all $r \in (0, 1]$.

Idea: If \mathbf{x} and \mathbf{y} are the only winning alternatives, and we mix the population with a new population which is evenly split between \mathbf{x} and \mathbf{y} , then \mathbf{x} and \mathbf{y} should *remain* the only winning alternatives.

Example: Slater, Leximin, Median, and H^d (for any d > 0) satisfy neutral reinforcement.

Note. (Reinforcement) \implies (neutral reinforcement), but not conversely.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X})$ if and only if $F = H^d$ for some $d \in (0, \infty)$.

(18/36)

For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, let $\delta_{\mathbf{x},\mathbf{y}}$ be the profile such that $\delta_{\mathbf{x},\mathbf{y}}(\mathbf{x}) := \frac{1}{2} =: \delta_{\mathbf{x},\mathbf{y}}(\mathbf{y})$, whereas $\delta_{\mathbf{x},\mathbf{y}}(\mathbf{z}) := 0$ for all $\mathbf{z} \in \mathcal{X} \setminus {\mathbf{x}, \mathbf{y}}$.

Idea: $\delta_{\mathbf{x},\mathbf{y}}$ is a population evenly split between \mathbf{x} and \mathbf{y} .

An aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies **neutral reinforcement** on \mathcal{X} if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and $\mu \in \Delta(\mathcal{X})$, if $F(\mu) = {\mathbf{x}, \mathbf{y}}$, then $F(r\mu + (1 - r)\delta_{\mathbf{x},\mathbf{y}}) = {\mathbf{x}, \mathbf{y}}$ for all $r \in (0, 1]$.

Idea: If \mathbf{x} and \mathbf{y} are the only winning alternatives, and we mix the population with a new population which is evenly split between \mathbf{x} and \mathbf{y} , then \mathbf{x} and \mathbf{y} should *remain* the only winning alternatives.

Example: Slater, Leximin, Median, and H^d (for any d > 0) satisfy neutral reinforcement.

(18/36)

For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, let $\delta_{\mathbf{x},\mathbf{y}}$ be the profile such that $\delta_{\mathbf{x},\mathbf{y}}(\mathbf{x}) := \frac{1}{2} =: \delta_{\mathbf{x},\mathbf{y}}(\mathbf{y})$, whereas $\delta_{\mathbf{x},\mathbf{y}}(\mathbf{z}) := 0$ for all $\mathbf{z} \in \mathcal{X} \setminus {\mathbf{x}, \mathbf{y}}$.

Idea: $\delta_{\mathbf{x},\mathbf{y}}$ is a population evenly split between \mathbf{x} and \mathbf{y} .

An aggregation rule $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ satisfies **neutral reinforcement** on \mathcal{X} if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and $\mu \in \Delta(\mathcal{X})$, if $F(\mu) = {\mathbf{x}, \mathbf{y}}$, then $F(r\mu + (1 - r)\delta_{\mathbf{x},\mathbf{y}}) = {\mathbf{x}, \mathbf{y}}$ for all $r \in (0, 1]$.

Idea: If \mathbf{x} and \mathbf{y} are the only winning alternatives, and we mix the population with a new population which is evenly split between \mathbf{x} and \mathbf{y} , then \mathbf{x} and \mathbf{y} should *remain* the only winning alternatives.

Example: Slater, Leximin, Median, and H^d (for any d > 0) satisfy neutral reinforcement.

Proof sketches

Let $\phi : [-1,1] \longrightarrow {}^{*}\!\mathbb{R}$ be any gain function. For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, recall that

$$\begin{array}{lll} \mathcal{C}^{\phi}_{\mathbf{x}} &:= & \{\mathbf{c} \in \mathcal{C} \text{ ; } \mathbf{x} \in F_{\phi}(\mathbf{c})\}, & \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} &:= & \mathcal{C}^{\phi}_{\mathbf{x}} \cap \mathcal{C}^{\phi}_{\mathbf{y}}, \\ \text{and} & \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} &:= & \{\mathbf{c} \in \operatorname{int}\left(\mathcal{C}\right) \text{ ; } F_{\phi}(\mathbf{c}) = \{\mathbf{x},\mathbf{y}\}\} &\subseteq & \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}. \end{array}$$

The proofs of Theorems 2A and 2E depend on the following result: **Proposition 2H.** Let $\phi, \psi : [-1,1] \longrightarrow {}^{*}\mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $\left(F_{\psi}(\mu) = F_{\phi}(\mu) \text{ for all } \mu \in \Delta(\mathcal{X})\right) \iff C$

 $({}^{\mathcal{B}}\!\!\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}}) \text{ for every } \mathbf{x}, \mathbf{y} \in \mathcal{X} \text{ with } d(\mathbf{x},\mathbf{y}) \geq 3$ **Proof sketch.** " \Longrightarrow " is obvious: if $F_{\psi} = F_{\phi}$, then ${}^{\mathcal{B}}\!\!\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} = {}^{\mathcal{B}}\!\!\mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}}$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, and hence, ${}^{\mathcal{B}}\!\!\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$.

Let \mathcal{X} be a judgement space, and let $\mathcal{C} := \operatorname{conv}(\mathcal{X})$. Let $\phi : [-1, 1] \longrightarrow \mathbb{R}$ be any gain function. For any $x, y \in \mathcal{X}$, recall that

$$\begin{array}{lll} \mathcal{C}_{\mathbf{x}}^{\phi} & := & \{\mathbf{c} \in \mathcal{C} \; ; \; \mathbf{x} \in F_{\phi}(\mathbf{c})\}, & \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi} & := & \mathcal{C}_{\mathbf{x}}^{\phi} \cap \mathcal{C}_{\mathbf{y}}^{\phi}, \\ \text{nd} & {}^{o}\!\mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi} & := & \{\mathbf{c} \in \operatorname{int}\left(\mathcal{C}\right) \; ; \; F_{\phi}(\mathbf{c}) = \{\mathbf{x},\mathbf{y}\}\} \; \subseteq \; \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi}. \end{array}$$

The proofs of Theorems 2A and 2E depend on the following result: **Proposition 2H.** Let $\phi, \psi : [-1,1] \longrightarrow {}^{*}\mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $\left(F_{\psi}(\mu) = F_{\phi}(\mu) \text{ for all } \mu \in \Delta(\mathcal{X})\right) \iff C$

 $\begin{pmatrix} \mathscr{B}_{\mathbf{x},\mathbf{y}}^{\phi} \subseteq \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\psi} \cup (\mathcal{C} \setminus \mathcal{C}_{\mathbf{x}}^{\psi}) \text{ for every } \mathbf{x}, \mathbf{y} \in \mathcal{X} \text{ with } d(\mathbf{x},\mathbf{y}) \geq 3 \end{pmatrix}$ **Proof sketch.** " \Longrightarrow " is obvious: if $F_{\psi} = F_{\phi}$, then $\mathscr{B}_{\mathbf{x},\mathbf{y}}^{\phi} = \mathscr{B}_{\mathbf{x},\mathbf{y}}^{\psi}$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, and hence, $\mathscr{B}_{\mathbf{x},\mathbf{y}}^{\phi} \subseteq \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\psi}$.

Let \mathcal{X} be a judgement space, and let $\mathcal{C} := \operatorname{conv}(\mathcal{X})$. Let $\phi : [-1, 1] \longrightarrow {}^*\mathbb{R}$ be any gain function. For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, recall that

$$\begin{array}{lll} \mathcal{C}^{\phi}_{\mathbf{x}} & := & \{\mathbf{c} \in \mathcal{C} \; ; \; \mathbf{x} \in F_{\phi}(\mathbf{c})\}, & \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} & := & \mathcal{C}^{\phi}_{\mathbf{x}} \cap \mathcal{C}^{\phi}_{\mathbf{y}}, \\ \text{and} & \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} & := & \{\mathbf{c} \in \operatorname{int}\left(\mathcal{C}\right) \; ; \; F_{\phi}(\mathbf{c}) = \{\mathbf{x},\mathbf{y}\}\} \; \subseteq \; \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}. \end{array}$$

The proofs of Theorems 2A and 2E depend on the following result: **Proposition 2H.** Let $\phi, \psi : [-1,1] \longrightarrow \mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $\left(F_{\psi}(\mu) = F_{\phi}(\mu) \text{ for all } \mu \in \Delta(\mathcal{X})\right) \iff$

 $\left(\overset{\mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi}}{\longrightarrow} \subseteq \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\psi} \cup (\mathcal{C} \setminus \mathcal{C}_{\mathbf{x}}^{\psi}) \text{ for every } \mathbf{x}, \mathbf{y} \in \mathcal{X} \text{ with } d(\mathbf{x},\mathbf{y}) \geq 3 \right)$ **Proof sketch.** " \Longrightarrow " is obvious: if $F_{\psi} = F_{\phi}$, then $\mathscr{B}_{\mathbf{x},\mathbf{y}}^{\phi} = \mathscr{B}_{\mathbf{x},\mathbf{y}}^{\psi}$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, and hence, $\mathscr{B}_{\mathbf{x},\mathbf{y}}^{\phi} \subseteq \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\psi}$.

Let $\phi : [-1,1] \longrightarrow {}^*\!\mathbb{R}$ be any gain function. For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, recall that

$$\begin{array}{lll} \mathcal{C}^{\phi}_{\mathbf{x}} & := & \{\mathbf{c} \in \mathcal{C} \text{ ; } \mathbf{x} \in F_{\phi}(\mathbf{c})\}, & \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} & := & \mathcal{C}^{\phi}_{\mathbf{x}} \cap \mathcal{C}^{\phi}_{\mathbf{y}}, \\ \text{and} & {}^{o}\!\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} & := & \{\mathbf{c} \in \operatorname{int}\left(\mathcal{C}\right) \text{ ; } F_{\phi}(\mathbf{c}) = \{\mathbf{x},\mathbf{y}\}\} & \subseteq & \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}. \end{array}$$

The proofs of Theorems 2A and 2E depend on the following result: **Proposition 2H.** Let $\phi, \psi : [-1, 1] \longrightarrow {}^{*}\mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $\left(F_{\psi}(\mu) = F_{\phi}(\mu) \text{ for all } \mu \in \Delta(\mathcal{X})\right) \iff$ $\left({}^{\mathcal{B}}\!\!\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}}) \text{ for every } \mathbf{x}, \mathbf{y} \in \mathcal{X} \text{ with } d(\mathbf{x}, \mathbf{y}) \ge 3\right).$ **Proof sketch.** " \Longrightarrow " is obvious: if $F_{\psi} = F_{\phi}$, then ${}^{\mathcal{B}}\!\!\mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} = {}^{\mathcal{B}}\!\!\mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}}$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, and hence, ${}^{\mathcal{B}}\!\!\mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \subseteq {}^{\mathcal{B}}\!\!\mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}}$.

Let $\phi : [-1,1] \longrightarrow {}^*\!\mathbb{R}$ be any gain function. For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, recall that

$$\begin{array}{rcl} \mathcal{C}^{\phi}_{\mathbf{x}} & := & \{\mathbf{c} \in \mathcal{C} \text{ ; } \mathbf{x} \in F_{\phi}(\mathbf{c})\}, & \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} & := & \mathcal{C}^{\phi}_{\mathbf{x}} \cap \mathcal{C}^{\phi}_{\mathbf{y}}, \\ \text{and} & {}^{\mathcal{O}}\!\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} & := & \{\mathbf{c} \in \operatorname{int}\left(\mathcal{C}\right) \text{ ; } F_{\phi}(\mathbf{c}) = \{\mathbf{x},\mathbf{y}\}\} & \subseteq & \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}. \end{array}$$

The proofs of Theorems 2A and 2E depend on the following result: **Proposition 2H.** Let $\phi, \psi : [-1, 1] \longrightarrow {}^{*}\mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $\left(F_{\psi}(\mu) = F_{\phi}(\mu) \text{ for all } \mu \in \Delta(\mathcal{X})\right) \iff \left({}^{\mathcal{O}}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}}) \text{ for every } \mathbf{x}, \mathbf{y} \in \mathcal{X} \text{ with } d(\mathbf{x},\mathbf{y}) \ge 3\right).$ **Proof sketch.** " \Longrightarrow " is obvious: if $F_{\psi} = F_{\phi}$, then ${}^{\mathcal{O}}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} = {}^{\mathcal{O}}\mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}}$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, and hence, ${}^{\mathcal{O}}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$.

Let $\phi : [-1,1] \longrightarrow {}^*\!\mathbb{R}$ be any gain function. For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, recall that

$$\begin{array}{rcl} \mathcal{C}^{\phi}_{\mathbf{x}} & := & \{\mathbf{c} \in \mathcal{C} \ ; \ \mathbf{x} \in F_{\phi}(\mathbf{c})\}, & \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} & := & \mathcal{C}^{\phi}_{\mathbf{x}} \cap \mathcal{C}^{\phi}_{\mathbf{y}}, \\ \text{and} & {}^{\mathcal{O}}\!\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} & := & \{\mathbf{c} \in \operatorname{int}\left(\mathcal{C}\right) \ ; \ F_{\phi}(\mathbf{c}) = \{\mathbf{x},\mathbf{y}\}\} & \subseteq & \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}. \end{array}$$

The proofs of Theorems 2A and 2E depend on the following result: **Proposition 2H.** Let $\phi, \psi : [-1, 1] \longrightarrow \mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $ig({\sf F}_\psi(\mu)={\sf F}_\phi(\mu) ext{ for all } \mu\in \Delta({\mathcal X})ig) \iff$ $\left({}^{o}\!\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}}) \text{ for every } \mathbf{x}, \mathbf{y} \in \mathcal{X} \text{ with } d(\mathbf{x},\mathbf{y}) \geq 3\right).$ **Proof sketch.** " \implies " is obvious: if $F_{\psi} = F_{\phi}$, then $\mathscr{B}^{\phi}_{\mathbf{x},\mathbf{y}} = \mathscr{B}^{\psi}_{\mathbf{x},\mathbf{y}}$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, and hence, ${}^{o}\!\mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi} \subseteq \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\psi}$. " \Leftarrow " First, why only require the RHS for $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) > 3$? then any SME rule must choose x over y if $\tilde{\mu}_j + \tilde{\mu}_k > Q_k$, $\tilde{\mu}_k > Q_k$

Let $\phi : [-1,1] \longrightarrow {}^*\!\mathbb{R}$ be any gain function. For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, recall that

$$\begin{array}{rcl} \mathcal{C}^{\phi}_{\mathbf{x}} & := & \{\mathbf{c} \in \mathcal{C} \ ; \ \mathbf{x} \in F_{\phi}(\mathbf{c})\}, & \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} & := & \mathcal{C}^{\phi}_{\mathbf{x}} \cap \mathcal{C}^{\phi}_{\mathbf{y}}, \\ \text{and} & {}^{\mathcal{O}}\!\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} & := & \{\mathbf{c} \in \operatorname{int}\left(\mathcal{C}\right) \ ; \ F_{\phi}(\mathbf{c}) = \{\mathbf{x},\mathbf{y}\}\} & \subseteq & \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}. \end{array}$$

The proofs of Theorems 2A and 2E depend on the following result: **Proposition 2H.** Let $\phi, \psi : [-1,1] \longrightarrow \mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $\left(F_{\psi}(\mu) = F_{\phi}(\mu) \text{ for all } \mu \in \Delta(\mathcal{X})\right) \iff$ $\left(^{\mathcal{B}}_{\mathbf{x},\mathbf{y}}^{\phi} \subseteq \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\psi} \cup (\mathcal{C} \setminus \mathcal{C}_{\mathbf{x}}^{\psi}) \text{ for every } \mathbf{x}, \mathbf{y} \in \mathcal{X} \text{ with } d(\mathbf{x},\mathbf{y}) \ge 3\right).$ **Proof sketch.** " \Longrightarrow " is obvious: if $F_{\psi} = F_{\phi}$, then $^{\mathcal{B}}_{\mathbf{x},\mathbf{y}}^{\phi} = ^{\mathcal{B}}_{\mathbf{x},\mathbf{y}}^{\psi}$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, and hence, $^{\mathcal{B}}_{\mathbf{x},\mathbf{y}}^{\phi} \subseteq \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\psi}$. " \Leftarrow " First, why only require the RHS for $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \ge 3$?

Reason: If $d(\mathbf{x}, \mathbf{y}) \leq 2$, then supermajoritarian efficiency alone dictates that F_{ϕ} and F_{ψ} must behave identically when choosing between \mathbf{x} and \mathbf{y} .

(If $d(\mathbf{x}, \mathbf{y}) = 1$ and $x_k = 1$ while $y_k = -1$, then any SME rule must choose **x** over **y** if $\tilde{\mu}_k > 0$. If $d(\mathbf{x}, \mathbf{y}) = 2$ and $x_j = x_k = 1$ while $y_j = y_k = -1$, then any SME rule must choose **x** over **y** if $\tilde{\mu}_j + \tilde{\mu}_k \ge 0$.)

Let $\phi : [-1,1] \longrightarrow {}^*\!\mathbb{R}$ be any gain function. For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, recall that

$$\begin{array}{rcl} \mathcal{C}^{\phi}_{\mathbf{x}} & := & \{\mathbf{c} \in \mathcal{C} \ ; \ \mathbf{x} \in F_{\phi}(\mathbf{c})\}, & \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} & := & \mathcal{C}^{\phi}_{\mathbf{x}} \cap \mathcal{C}^{\phi}_{\mathbf{y}}, \\ \text{and} & {}^{\mathcal{O}}\!\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} & := & \{\mathbf{c} \in \operatorname{int}\left(\mathcal{C}\right) \ ; \ F_{\phi}(\mathbf{c}) = \{\mathbf{x},\mathbf{y}\}\} & \subseteq & \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}. \end{array}$$

The proofs of Theorems 2A and 2E depend on the following result: **Proposition 2H.** Let $\phi, \psi : [-1, 1] \longrightarrow \mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $\left(F_{\psi}(\mu) = F_{\phi}(\mu) \text{ for all } \mu \in \Delta(\mathcal{X})
ight) \iff$ $\left({}^{o}\!\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}}) \text{ for every } \mathbf{x}, \mathbf{y} \in \mathcal{X} \text{ with } d(\mathbf{x},\mathbf{y}) \geq 3\right).$ **Proof sketch.** " \implies " is obvious: if $F_{\psi} = F_{\phi}$, then $\mathscr{B}^{\phi}_{\mathbf{x},\mathbf{v}} = \mathscr{B}^{\psi}_{\mathbf{x},\mathbf{v}}$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, and hence, ${}^{o}\!\mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi} \subseteq \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\psi}$. "\E " First, why only require the RHS for $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \geq 3$? *Reason:* If $d(\mathbf{x}, \mathbf{y}) \leq 2$, then supermajoritarian efficiency alone dictates that F_{ϕ} and F_{ψ} must behave identically when choosing between **x** and **y**.

(If $d(\mathbf{x}, \mathbf{y}) = 1$ and $x_k = 1$ while $y_k = -1$, then any SME rule must choose **x** over **y** if $\tilde{\mu}_k > 0$. If $d(\mathbf{x}, \mathbf{y}) = 2$ and $x_j = x_k = 1$ while $y_j = y_k = -1$, then any SME rule must choose **x** over **y** if $\tilde{\mu}_j + \tilde{\mu}_k > 0$.

Let $\phi : [-1,1] \longrightarrow {}^*\!\mathbb{R}$ be any gain function. For any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, recall that

$$\begin{array}{rcl} \mathcal{C}^{\phi}_{\mathbf{x}} & := & \{\mathbf{c} \in \mathcal{C} \ ; \ \mathbf{x} \in F_{\phi}(\mathbf{c})\}, & \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} & := & \mathcal{C}^{\phi}_{\mathbf{x}} \cap \mathcal{C}^{\phi}_{\mathbf{y}}, \\ \text{and} & {}^{\mathcal{O}}\!\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} & := & \{\mathbf{c} \in \operatorname{int}\left(\mathcal{C}\right) \ ; \ F_{\phi}(\mathbf{c}) = \{\mathbf{x},\mathbf{y}\}\} & \subseteq & \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}. \end{array}$$

The proofs of Theorems 2A and 2E depend on the following result: **Proposition 2H.** Let $\phi, \psi : [-1, 1] \longrightarrow \mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $\left(\mathsf{F}_{\psi}(\mu) = \mathsf{F}_{\phi}(\mu) \text{ for all } \mu \in \Delta(\mathcal{X}) \right) \iff$ $\left({}^{o}\!\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}}) \text{ for every } \mathbf{x}, \mathbf{y} \in \mathcal{X} \text{ with } d(\mathbf{x},\mathbf{y}) \geq 3\right).$ **Proof sketch.** " \implies " is obvious: if $F_{\psi} = F_{\phi}$, then $\mathscr{B}^{\phi}_{\mathbf{x},\mathbf{v}} = \mathscr{B}^{\psi}_{\mathbf{x},\mathbf{v}}$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, and hence, ${}^{o}\!\mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi} \subseteq \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\psi}$. "\E " First, why only require the RHS for $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \geq 3$? *Reason:* If $d(\mathbf{x}, \mathbf{y}) \leq 2$, then supermajoritarian efficiency alone dictates that

 F_{ϕ} and F_{ψ} must behave identically when choosing between **x** and **y**. (If $d(\mathbf{x}, \mathbf{y}) = 1$ and $x_k = 1$ while $y_k = -1$, then any SME rule must choose **x** over **y** if $\tilde{\mu}_k > 0$. If $d(\mathbf{x}, \mathbf{y}) = 2$ and $x_j = x_k = 1$ while $y_j = y_k = -1$, then any SME rule must choose **x** over **y** if $\tilde{\mu}_j + \tilde{\mu}_k > 0$. **Proposition 2H.** Let $\phi, \psi : [-1, 1] \longrightarrow \mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $ig(F_\psi(\mu)=F_\phi(\mu) ext{ for all } \mu\in\Delta(\mathcal{X})ig) \hspace{0.1in} \Longleftrightarrow$ $\left({}^{o}\!\mathcal{B}^{\phi}_{{\bm{x}},{\bm{y}}} \subseteq \mathcal{B}^{\psi}_{{\bm{x}},{\bm{y}}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{{\bm{x}}}) \text{ for every } {\bm{x}}, {\bm{y}} \in \mathcal{X} \text{ with } d({\bm{x}},{\bm{y}}) \geq 3 \right).$ **Proof sketch** " \Leftarrow " (continued). For any $x \in \mathcal{X}$ it can be shown that: ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで **Proposition 2H.** Let $\phi, \psi : [-1, 1] \longrightarrow \mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $ig(F_\psi(\mu)=F_\phi(\mu) ext{ for all } \mu\in\Delta(\mathcal{X})ig) \hspace{0.1in} \Longleftrightarrow$ $\left({}^{o}\!\mathcal{B}^{\phi}_{{\bm{x}},{\bm{y}}} \subseteq \mathcal{B}^{\psi}_{{\bm{x}},{\bm{y}}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{{\bm{x}}}) \text{ for every } {\bm{x}}, {\bm{y}} \in \mathcal{X} \text{ with } d({\bm{x}},{\bm{y}}) \geq 3 \right).$ **Proof sketch** " \Leftarrow " (continued). For any $\mathbf{x} \in \mathcal{X}$ it can be shown that: ▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 めんで **Proposition 2H.** Let $\phi, \psi : [-1, 1] \longrightarrow \mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $ig(F_\psi(\mu)=F_\phi(\mu) ext{ for all } \mu\in\Delta(\mathcal{X})ig) \hspace{0.1in} \Longleftrightarrow$ $\left({}^{o}\!\mathcal{B}^{\phi}_{{\bm{x}},{\bm{y}}} \subseteq \mathcal{B}^{\psi}_{{\bm{x}},{\bm{y}}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{{\bm{x}}}) \text{ for every } {\bm{x}}, {\bm{y}} \in \mathcal{X} \text{ with } d({\bm{x}},{\bm{y}}) \geq 3 \right).$ **Proof sketch** " \Leftarrow " (continued). For any $\mathbf{x} \in \mathcal{X}$ it can be shown that: (a) $\mathcal{C}^{\phi}_{\mathbf{x}}$ and $\mathcal{C}^{\psi}_{\mathbf{x}}$ are connected, and are the closures of their interiors. ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙ **Proposition 2H.** Let $\phi, \psi : [-1, 1] \longrightarrow \mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $ig(F_\psi(\mu)=F_\phi(\mu) ext{ for all } \mu\in\Delta(\mathcal{X})ig) \hspace{0.1in} \Longleftrightarrow$ $\left({}^{o}\!\mathcal{B}^{\phi}_{{\bm{x}},{\bm{y}}} \subseteq \mathcal{B}^{\psi}_{{\bm{x}},{\bm{y}}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{{\bm{x}}}) \text{ for every } {\bm{x}}, {\bm{y}} \in \mathcal{X} \text{ with } d({\bm{x}},{\bm{y}}) \geq 3 \right).$ **Proof sketch** " \Leftarrow " (continued). For any $\mathbf{x} \in \mathcal{X}$ it can be shown that: (a) $\mathcal{C}^{\phi}_{\mathbf{x}}$ and $\mathcal{C}^{\psi}_{\mathbf{x}}$ are connected, and are the closures of their interiors. (b) $\partial C^{\phi}_{\mathbf{x}} = \bigcup \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} = \bigcup \operatorname{cl} \left({}^{o}\!\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \right)$ (and likewise for $\mathcal{C}^{\psi}_{\mathbf{x}}$.) $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ **Proposition 2H.** Let $\phi, \psi : [-1, 1] \longrightarrow \mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $ig(F_\psi(\mu)=F_\phi(\mu) ext{ for all } \mu\in\Delta(\mathcal{X})ig) \hspace{0.1in} \Longleftrightarrow$ $\left({}^{o}\!\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}}) \text{ for every } \mathbf{x}, \mathbf{y} \in \mathcal{X} \text{ with } d(\mathbf{x},\mathbf{y}) \geq 3\right).$ **Proof sketch** " \Leftarrow " (continued). For any $\mathbf{x} \in \mathcal{X}$ it can be shown that: (a) $\mathcal{C}^{\phi}_{\mathbf{x}}$ and $\mathcal{C}^{\psi}_{\mathbf{x}}$ are connected, and are the closures of their interiors. (b) $\partial \mathcal{C}^{\phi}_{\mathbf{x}} = \bigcup \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} = \bigcup \operatorname{cl} \left({}^{o}\!\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \right)$ (and likewise for $\mathcal{C}^{\psi}_{\mathbf{x}}$.) $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ If the RHS is true, then Fact (b) can be used to show that $\partial \mathcal{C}^{\phi}_{\mathbf{x}} \subseteq \mathsf{cl}\left(\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}}\right)$ for all $\mathbf{x} \in \mathcal{X}$. Thus, either: ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Proposition 2H. Let $\phi, \psi : [-1, 1] \longrightarrow \mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $ig(F_\psi(\mu)=F_\phi(\mu) ext{ for all } \mu\in\Delta(\mathcal{X})ig) \hspace{0.1in} \Longleftrightarrow$ $\left({}^{o}\!\mathcal{B}^{\phi}_{{\bm{x}},{\bm{y}}} \subseteq \mathcal{B}^{\psi}_{{\bm{x}},{\bm{y}}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{{\bm{x}}}) \text{ for every } {\bm{x}}, {\bm{y}} \in \mathcal{X} \text{ with } d({\bm{x}},{\bm{y}}) \geq 3 \right).$ **Proof sketch** " \Leftarrow " (continued). For any $\mathbf{x} \in \mathcal{X}$ it can be shown that: (a) $\mathcal{C}^{\phi}_{\mathbf{x}}$ and $\mathcal{C}^{\psi}_{\mathbf{x}}$ are connected, and are the closures of their interiors. (b) $\partial C^{\phi}_{\mathbf{x}} = \bigcup \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} = \bigcup \operatorname{cl} \left({}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \right)$ (and likewise for $\mathcal{C}^{\psi}_{\mathbf{x}}$.) $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ If the RHS is true, then Fact (b) can be used to show that $\partial \mathcal{C}^\phi_{\mathbf{x}} \subseteq \mathsf{cl}\left(\mathcal{C} \setminus \mathcal{C}^\psi_{\mathbf{x}}\right) \text{ for all } \mathbf{x} \in \mathcal{X}. \quad \text{ Thus, either:}$ (1) $\operatorname{int}\left(\mathcal{C}^{\psi}_{\mathbf{x}}\right) \subseteq \operatorname{int}\left(\mathcal{C}^{\phi}_{\mathbf{x}}\right)$; or (2) $\operatorname{int}\left(\mathcal{C}^{\psi}_{\mathbf{x}}\right) \subseteq \mathcal{C} \setminus \mathcal{C}^{\phi}_{\mathbf{x}}$; or

Proposition 2H. Let $\phi, \psi : [-1, 1] \longrightarrow \mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $\left(\mathsf{F}_\psi(\mu) = \mathsf{F}_\phi(\mu) ext{ for all } \mu \in \Delta(\mathcal{X})
ight) \iff$ $\left({}^{o}\!\mathcal{B}^{\phi}_{{\bm{x}},{\bm{y}}} \subseteq \mathcal{B}^{\psi}_{{\bm{x}},{\bm{y}}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{{\bm{x}}}) \text{ for every } {\bm{x}}, {\bm{y}} \in \mathcal{X} \text{ with } d({\bm{x}},{\bm{y}}) \geq 3 \right).$ **Proof sketch** " \Leftarrow " (continued). For any $\mathbf{x} \in \mathcal{X}$ it can be shown that: (a) $\mathcal{C}^{\phi}_{\mathbf{x}}$ and $\mathcal{C}^{\psi}_{\mathbf{x}}$ are connected, and are the closures of their interiors. (b) $\partial C^{\phi}_{\mathbf{x}} = \bigcup \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} = \bigcup \operatorname{cl} \left({}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \right)$ (and likewise for $\mathcal{C}^{\psi}_{\mathbf{x}}$.) $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ If the RHS is true, then Fact (b) can be used to show that $\partial \mathcal{C}^\phi_{\mathbf{x}} \subseteq \mathsf{cl}\left(\mathcal{C} \setminus \mathcal{C}^\psi_{\mathbf{x}}\right) \text{ for all } \mathbf{x} \in \mathcal{X}. \quad \text{ Thus, either:}$ (1) int $(\mathcal{C}^{\psi}_{\mathbf{x}}) \subseteq \operatorname{int} (\mathcal{C}^{\phi}_{\mathbf{x}})$; or (2) int $(\mathcal{C}^{\psi}_{\mathbf{x}}) \subseteq \mathcal{C} \setminus \mathcal{C}^{\phi}_{\mathbf{x}}$; or

Proposition 2H. Let $\phi, \psi : [-1, 1] \longrightarrow \mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $ig(F_\psi(\mu)=F_\phi(\mu) ext{ for all } \mu\in\Delta(\mathcal{X})ig) \hspace{0.1in} \Longleftrightarrow$ $\left({}^{o}\!\mathcal{B}^{\phi}_{{\bm{x}},{\bm{y}}} \subseteq \mathcal{B}^{\psi}_{{\bm{x}},{\bm{y}}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{{\bm{x}}}) \text{ for every } {\bm{x}}, {\bm{y}} \in \mathcal{X} \text{ with } d({\bm{x}},{\bm{y}}) \geq 3 \right).$ **Proof sketch** " \Leftarrow " (continued). For any $\mathbf{x} \in \mathcal{X}$ it can be shown that: (a) $\mathcal{C}^{\phi}_{\mathbf{x}}$ and $\mathcal{C}^{\psi}_{\mathbf{x}}$ are connected, and are the closures of their interiors. (b) $\partial C^{\phi}_{\mathbf{x}} = \bigcup \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} = \bigcup \operatorname{cl} \left({}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \right)$ (and likewise for $\mathcal{C}^{\psi}_{\mathbf{x}}$.) $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ If the RHS is true, then Fact (b) can be used to show that $\partial \mathcal{C}^\phi_{\mathbf{x}} \subseteq \mathsf{cl}\left(\mathcal{C} \setminus \mathcal{C}^\psi_{\mathbf{x}}\right) \text{ for all } \mathbf{x} \in \mathcal{X}. \quad \text{ Thus, either:}$ (1) int $(\mathcal{C}^{\psi}_{\mathbf{x}}) \subseteq \operatorname{int} (\mathcal{C}^{\phi}_{\mathbf{x}})$; or (2) int $(\mathcal{C}^{\psi}_{\mathbf{x}}) \subseteq \mathcal{C} \setminus \mathcal{C}^{\phi}_{\mathbf{x}}$; or (3) $\mathcal{C}^{\psi}_{\mathbf{x}}$ is 'cut in half' by $\partial \mathcal{C}^{\phi}_{\mathbf{x}}$.

Option (3) is excluded by Fact (a). Option (2) is impossible because $F_{\phi}(\mathbf{x}) = F_{\psi}(\mathbf{x}) = \mathbf{x}$. This leaves only Option (1). Now Fact (a) implies that $C_{\mathbf{x}}^{\psi} \subseteq C_{\mathbf{x}}^{\phi}$. If this holds for all $\mathbf{x} \in \mathcal{X}$, it is easy to deduce that $F_{\psi} = F_{\phi}$.

Proposition 2H. Let $\phi, \psi : [-1, 1] \longrightarrow \mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $ig(F_\psi(\mu)=F_\phi(\mu) ext{ for all } \mu\in\Delta(\mathcal{X})ig) \hspace{0.1in} \Longleftrightarrow$ $\left({}^{o}\!\mathcal{B}^{\phi}_{{\bm{x}},{\bm{y}}} \subseteq \mathcal{B}^{\psi}_{{\bm{x}},{\bm{y}}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{{\bm{x}}}) \text{ for every } {\bm{x}}, {\bm{y}} \in \mathcal{X} \text{ with } d({\bm{x}},{\bm{y}}) \geq 3 \right).$ **Proof sketch** " \Leftarrow " (continued). For any $\mathbf{x} \in \mathcal{X}$ it can be shown that: (a) $\mathcal{C}^{\phi}_{\mathbf{x}}$ and $\mathcal{C}^{\psi}_{\mathbf{x}}$ are connected, and are the closures of their interiors. (b) $\partial C^{\phi}_{\mathbf{x}} = \bigcup \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} = \bigcup \operatorname{cl} \left({}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \right)$ (and likewise for $\mathcal{C}^{\psi}_{\mathbf{x}}$.) $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ If the RHS is true, then Fact (b) can be used to show that $\partial \mathcal{C}^\phi_{\mathbf{x}} \subseteq \mathsf{cl}\left(\mathcal{C} \setminus \mathcal{C}^\psi_{\mathbf{x}}\right) \text{ for all } \mathbf{x} \in \mathcal{X}. \quad \text{ Thus, either:}$ (1) int $(\mathcal{C}^{\psi}_{\mathbf{x}}) \subseteq \operatorname{int} (\mathcal{C}^{\phi}_{\mathbf{x}})$; or (2) int $(\mathcal{C}^{\psi}_{\mathbf{x}}) \subseteq \mathcal{C} \setminus \mathcal{C}^{\phi}_{\mathbf{x}}$; or (3) $\mathcal{C}^{\psi}_{\mathbf{x}}$ is 'cut in half' by $\partial \mathcal{C}^{\phi}_{\mathbf{x}}$. Option (3) is excluded by Fact (a). Option (2) is impossible because

Proposition 2H. Let $\phi, \psi : [-1, 1] \longrightarrow \mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $ig(F_\psi(\mu)=F_\phi(\mu) ext{ for all } \mu\in\Delta(\mathcal{X})ig) \hspace{0.1in} \Longleftrightarrow$ $\left({}^{o}\!\mathcal{B}^{\phi}_{{\bm{x}},{\bm{y}}} \subseteq \mathcal{B}^{\psi}_{{\bm{x}},{\bm{y}}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{{\bm{x}}}) \text{ for every } {\bm{x}}, {\bm{y}} \in \mathcal{X} \text{ with } d({\bm{x}},{\bm{y}}) \geq 3 \right).$ **Proof sketch** " \Leftarrow " (continued). For any $\mathbf{x} \in \mathcal{X}$ it can be shown that: (a) $\mathcal{C}^{\phi}_{\mathbf{x}}$ and $\mathcal{C}^{\psi}_{\mathbf{x}}$ are connected, and are the closures of their interiors. (b) $\partial \mathcal{C}^{\phi}_{\mathbf{x}} = \bigcup \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} = \bigcup \operatorname{cl} \left({}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \right)$ (and likewise for $\mathcal{C}^{\psi}_{\mathbf{x}}$.) $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ If the RHS is true, then Fact (b) can be used to show that $\partial \mathcal{C}^\phi_{\mathbf{x}} \subseteq \mathsf{cl}\left(\mathcal{C} \setminus \mathcal{C}^\psi_{\mathbf{x}}\right) \text{ for all } \mathbf{x} \in \mathcal{X}. \quad \text{ Thus, either:}$ (1) int $(\mathcal{C}^{\psi}_{\mathbf{x}}) \subseteq \operatorname{int} (\mathcal{C}^{\phi}_{\mathbf{x}})$; or (2) int $(\mathcal{C}^{\psi}_{\mathbf{x}}) \subseteq \mathcal{C} \setminus \mathcal{C}^{\phi}_{\mathbf{x}}$; or (3) $\mathcal{C}^{\psi}_{\mathbf{x}}$ is 'cut in half' by $\partial \mathcal{C}^{\phi}_{\mathbf{x}}$. Option (3) is excluded by Fact (a). Option (2) is impossible because

Proposition 2H. Let $\phi, \psi : [-1, 1] \longrightarrow \mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $ig(F_\psi(\mu)=F_\phi(\mu) ext{ for all } \mu\in\Delta(\mathcal{X})ig) \hspace{0.1in} \Longleftrightarrow$ $\left({}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}}) \text{ for every } \mathbf{x}, \mathbf{y} \in \mathcal{X} \text{ with } d(\mathbf{x},\mathbf{y}) \geq 3 \right).$ **Proof sketch** " \Leftarrow " (continued). For any $\mathbf{x} \in \mathcal{X}$ it can be shown that: (a) $\mathcal{C}^{\phi}_{\mathbf{x}}$ and $\mathcal{C}^{\psi}_{\mathbf{x}}$ are connected, and are the closures of their interiors. (b) $\partial \mathcal{C}^{\phi}_{\mathbf{x}} = \bigcup \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} = \bigcup \operatorname{cl} \left({}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \right)$ (and likewise for $\mathcal{C}^{\psi}_{\mathbf{x}}$.) $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ If the RHS is true, then Fact (b) can be used to show that $\partial \mathcal{C}^\phi_{\mathbf{x}} \subseteq \mathsf{cl}\left(\mathcal{C} \setminus \mathcal{C}^\psi_{\mathbf{x}}\right) \text{ for all } \mathbf{x} \in \mathcal{X}. \quad \text{ Thus, either:}$ (1) int $(\mathcal{C}^{\psi}_{\mathbf{x}}) \subseteq \operatorname{int} (\mathcal{C}^{\phi}_{\mathbf{x}})$; or (2) int $(\mathcal{C}^{\psi}_{\mathbf{x}}) \subseteq \mathcal{C} \setminus \mathcal{C}^{\phi}_{\mathbf{x}}$; or (3) $\mathcal{C}^{\psi}_{\mathbf{x}}$ is 'cut in half' by $\partial \mathcal{C}^{\phi}_{\mathbf{x}}$. Option (3) is excluded by Fact (a). Option (2) is impossible because

Proposition 2H. Let $\phi, \psi : [-1, 1] \longrightarrow \mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $ig(F_\psi(\mu)=F_\phi(\mu) ext{ for all } \mu\in\Delta(\mathcal{X})ig) \iff$ $\left({}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}}) \text{ for every } \mathbf{x}, \mathbf{y} \in \mathcal{X} \text{ with } d(\mathbf{x},\mathbf{y}) \geq 3 \right).$ **Proof sketch** " \Leftarrow " (continued). For any $\mathbf{x} \in \mathcal{X}$ it can be shown that: (a) $\mathcal{C}^{\phi}_{\mathbf{x}}$ and $\mathcal{C}^{\psi}_{\mathbf{x}}$ are connected, and are the closures of their interiors. (b) $\partial \mathcal{C}^{\phi}_{\mathbf{x}} = \bigcup \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} = \bigcup \operatorname{cl} \left({}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \right)$ (and likewise for $\mathcal{C}^{\psi}_{\mathbf{x}}$.) $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ If the RHS is true, then Fact (b) can be used to show that $\partial \mathcal{C}^\phi_{\mathbf{x}} \subseteq \mathsf{cl}\left(\mathcal{C} \setminus \mathcal{C}^\psi_{\mathbf{x}}\right) \text{ for all } \mathbf{x} \in \mathcal{X}. \quad \text{ Thus, either:}$ (1) int $(\mathcal{C}^{\psi}_{\mathbf{x}}) \subseteq \operatorname{int} (\mathcal{C}^{\phi}_{\mathbf{x}})$; or (2) int $(\mathcal{C}^{\psi}_{\mathbf{x}}) \subseteq \mathcal{C} \setminus \mathcal{C}^{\phi}_{\mathbf{x}}$; or (3) $\mathcal{C}^{\psi}_{\mathbf{x}}$ is 'cut in half' by $\partial \mathcal{C}^{\phi}_{\mathbf{x}}$. Option (3) is excluded by Fact (a). Option (2) is impossible because

Proposition 2H. Let $\phi, \psi : [-1, 1] \longrightarrow \mathbb{R}$ be gain functions. Suppose the rules $F_{\phi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ and $F_{\psi} : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ are UHC. Then $ig(F_\psi(\mu)=F_\phi(\mu) ext{ for all } \mu\in\Delta(\mathcal{X})ig) \hspace{0.1in} \Longleftrightarrow$ $\left({}^{o}\!\mathcal{B}^{\phi}_{{\bm{x}},{\bm{y}}} \subseteq \mathcal{B}^{\psi}_{{\bm{x}},{\bm{y}}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{{\bm{x}}}) \text{ for every } {\bm{x}}, {\bm{y}} \in \mathcal{X} \text{ with } d({\bm{x}},{\bm{y}}) \geq 3 \right).$ **Proof sketch** " \Leftarrow " (continued). For any $\mathbf{x} \in \mathcal{X}$ it can be shown that: (a) $\mathcal{C}^{\phi}_{\mathbf{x}}$ and $\mathcal{C}^{\psi}_{\mathbf{x}}$ are connected, and are the closures of their interiors. (b) $\partial C^{\phi}_{\mathbf{x}} = \bigcup \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} = \bigcup \operatorname{cl} \left({}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \right)$ (and likewise for $\mathcal{C}^{\psi}_{\mathbf{x}}$.) $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ $\mathbf{y} \in \mathcal{X} \setminus \{\mathbf{x}\}$ If the RHS is true, then Fact (b) can be used to show that $\partial \mathcal{C}^\phi_{\mathbf{x}} \subseteq \mathsf{cl}\left(\mathcal{C} \setminus \mathcal{C}^\psi_{\mathbf{x}}\right) \text{ for all } \mathbf{x} \in \mathcal{X}. \quad \text{ Thus, either:}$ (1) int $(\mathcal{C}^{\psi}_{\mathbf{x}}) \subseteq \operatorname{int} (\mathcal{C}^{\phi}_{\mathbf{x}})$; or (2) int $(\mathcal{C}^{\psi}_{\mathbf{x}}) \subseteq \mathcal{C} \setminus \mathcal{C}^{\phi}_{\mathbf{x}}$; or (3) $\mathcal{C}^{\psi}_{\mathbf{x}}$ is 'cut in half' by $\partial \mathcal{C}^{\phi}_{\mathbf{x}}$. Option (3) is excluded by Fact (a). Option (2) is impossible because

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$).

Here, (1) is because $\psi(r) = x \psi(r)$ for all $r \in \mathcal{R}_{p_1}^{d}$, while $b_k \in \mathcal{R}_{p_2}^{d}$ for all $k \in \mathcal{K}_{p_2}^{d}$, while $b_k \in \mathcal{R}_{p_2}^{d}$ for all $k \in \mathcal{K}_{p_2}^{d}$. Thus, $x \in \psi(b) = y \in \psi(b)$. Thus, $x \in \psi(b) = y \in \psi(b)$. Now, if $x \in \psi(b) \ge x \in \psi(b)$ for all $x \in \psi(b) \ge x \in \psi(b)$ for all $x \in \mathcal{K}_{p_2}^{d}$. Otherwise, if $x \in \psi(b) < x \in \psi(b)$ for some $x \in \mathcal{K}$, then $x \notin \mathcal{F}_{p_2}(b)$, so $b \in \mathcal{C} \setminus \mathcal{C}_{p_2}^{d}$. Thus, $\mathcal{B}_{p_2}^{d} \subseteq \mathcal{B}_{p_2}^{d} \cup (\mathcal{C} \setminus \mathcal{C}_{p_2}^{d})$ for all $x, y \in \mathcal{K}$ with $d(x, y) \ge 3$. Thus, Proposition 2H says that $\mathcal{F}_{p_2}(\mathcal{K}, \mu) := \mathcal{F}_{p_2}(\mathcal{K}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Leftarrow " Let $x, y \in \mathcal{X}$, with $d(x, y) \ge 3$. We claim that $\mathscr{B}^{\phi}_{x,y} \subseteq \mathscr{B}^{\psi}_{x,y} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{x})$. Let $\mathbf{b} \in \mathscr{B}^{\phi}_{x,y}$. Then

 $(\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}) = \sum_{k \in \mathcal{K} \cup \{\mathbf{x}, \mathbf{y}\}} (x_k - y_k) \psi(b_k) = \sum_{k \in \mathcal{K} \cup \{\mathbf{x}, \mathbf{y}\}} (x_k - y_k) s \phi(b_k)$

 $= s \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (\mathbf{x}_k - \mathbf{y}_k) \phi(b_k) = s (\mathbf{x} - \mathbf{y}) * \phi(\mathbf{b}) = 0. \quad (\diamond)$

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Leftarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. We claim that ${}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$. Let $\mathbf{b} \in {}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$. Then

 $\begin{aligned} (\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}) &= \sum_{k \in I \subseteq \mathbf{c}(\mathbf{x}, \mathbf{y})} (\mathbf{x}_k - \mathbf{y}_k) \psi(b_k) \underset{(k) \in I \subseteq \{\mathbf{x}, \mathbf{y}\}}{=} \sum_{k \in I \subseteq \mathbf{c}(\mathbf{x}, \mathbf{y})} (\mathbf{x}_k - \mathbf{y}_k) \phi(b_k) \quad = \quad s \left(\mathbf{x} - \mathbf{y}\right) \bullet \phi(\mathbf{b}) \quad \underset{(a)}{=} 0. \end{aligned}$

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Leftarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. We claim that ${}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$. Let $\mathbf{b} \in {}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$. Then

 $\begin{aligned} (\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}) &= \sum_{k \in \mathcal{K} \subseteq \mathbf{k}(\mathbf{x}, y)} (x_k - y_k) \psi(b_k) = \sum_{k \in \mathcal{K} \subseteq \mathbf{k}(\mathbf{x}, y)} (x_k - y_k) s \phi(b_k) \\ &= s \sum_{k \in \mathcal{K} \subseteq \mathbf{k}(\mathbf{x}, y)} (x_k - y_k) \phi(b_k) = s (\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) = 0. \end{aligned}$

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Leftarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. We claim that ${}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$. Let $\mathbf{b} \in {}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$. Then

$$(\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \psi(b_k) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) s \phi(b_k)$$

 $= s \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \phi(b_k) = s (\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) = 0. \quad (\diamond)$

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Leftarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. We claim that ${}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$. Let $\mathbf{b} \in {}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$. Then

$$(\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \psi(b_k) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) s \phi(b_k)$$

 $= s \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \phi(b_k) = s (\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) = 0. \quad (\diamond)$

Here, (†) is because $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$, while $b_k \in \mathcal{R}^{\phi}_{\mathcal{X}}$ for all $k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})$, because $d(\mathbf{x}, \mathbf{y}) \ge 3$. Next, (*) is because $\mathbf{b} \in \mathcal{B}^{\phi}_{\mathbf{x}, \mathbf{y}}$. Thus, $\mathbf{x} \bullet \psi(\mathbf{b}) = \mathbf{y} \bullet \psi(\mathbf{b})$. Now, if $\mathbf{x} \bullet \psi(\mathbf{b}) \ge \mathbf{z} \bullet \psi(\mathbf{b})$ for all $\mathbf{z} \in \mathcal{X}$, then statement (\diamond) implies that $F_{\psi}(\mathbf{b}) \supseteq \{\mathbf{x}, \mathbf{y}\}$, so $\mathbf{b} \in \mathcal{B}^{\psi}_{\mathbf{x}, \mathbf{y}}$. Otherwise, if $\mathbf{x} \bullet \psi(\mathbf{b}) < \mathbf{z} \bullet \psi(\mathbf{b})$ for some $\mathbf{z} \in \mathcal{X}$, then $\mathbf{x} \notin F_{\psi}(\mathbf{b})$, so $\mathbf{b} \in \mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}}$. Thus, $\mathcal{B}^{\phi}_{\mathbf{x}, \mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x}, \mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \ge 3$. Thus, Proposition 2H says that $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Leftarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. We claim that ${}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$. Let $\mathbf{b} \in {}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$. Then

$$\begin{aligned} (\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}) &= \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \psi(b_k) \underset{(\dagger)}{=} \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) s \phi(b_k) \\ &= s \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \phi(b_k) = s (\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) \underset{(\star)}{=} 0. \quad (\diamond) \end{aligned}$$

 $k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})$

Here, (†) is because $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$, while $b_k \in \mathcal{R}^{\phi}_{\mathcal{X}}$ for all

 $k\in\mathcal{K}_{\pm}(\mathbf{x},\mathbf{y})$, because $d(\mathbf{x},\mathbf{y})\geq 3$. Next, (*) is because $\mathbf{b}\in{}^{\mathcal{O}}\!\!\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$.

Thus, $\mathbf{x} \bullet \psi(\mathbf{b}) = \mathbf{y} \bullet \psi(\mathbf{b})$. Now, if $\mathbf{x} \bullet \psi(\mathbf{b}) \ge \mathbf{z} \bullet \psi(\mathbf{b})$ for all $\mathbf{z} \in \mathcal{X}$, then statement (\diamond) implies that $F_{\psi}(\mathbf{b}) \supseteq \{\mathbf{x}, \mathbf{y}\}$, so $\mathbf{b} \in \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\psi}$. Otherwise, if $\mathbf{x} \bullet \psi(\mathbf{b}) < \mathbf{z} \bullet \psi(\mathbf{b})$ for some $\mathbf{z} \in \mathcal{X}$, then $\mathbf{x} \notin F_{\psi}(\mathbf{b})$, so $\mathbf{b} \in \mathcal{C} \setminus \mathcal{C}_{\mathbf{x}}^{\psi}$. Thus, $\mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi} \subseteq \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\psi} \cup (\mathcal{C} \setminus \mathcal{C}_{\mathbf{x}}^{\psi})$, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \ge 3$. Thus, Proposition 2H says that $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Leftarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. We claim that ${}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$. Let $\mathbf{b} \in {}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$. Then

$$(\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \psi(b_k) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) s \phi(b_k)$$

$$= s \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \phi(b_k) = s(\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) = 0. \quad (\diamond)$$

Here, (†) is because $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$, while $b_k \in \mathcal{R}^{\phi}_{\mathcal{X}}$ for all $k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})$, because $d(\mathbf{x}, \mathbf{y}) \ge 3$. Next, (*) is because $\mathbf{b} \in \mathcal{B}^{\phi}_{\mathbf{x}, \mathbf{y}}$. Thus, $\mathbf{x} \bullet \psi(\mathbf{b}) = \mathbf{y} \bullet \psi(\mathbf{b})$. Now, if $\mathbf{x} \bullet \psi(\mathbf{b}) \ge \mathbf{z} \bullet \psi(\mathbf{b})$ for all $\mathbf{z} \in \mathcal{X}$, then statement (\diamond) implies that $F_{\psi}(\mathbf{b}) \supseteq \{\mathbf{x}, \mathbf{y}\}$, so $\mathbf{b} \in \mathcal{B}^{\psi}_{\mathbf{x}, \mathbf{y}}$. Otherwise, if $\mathbf{x} \bullet \psi(\mathbf{b}) < \mathbf{z} \bullet \psi(\mathbf{b})$ for some $\mathbf{z} \in \mathcal{X}$, then $\mathbf{x} \notin F_{\psi}(\mathbf{b})$, so

b $\in \mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}}$. Thus, $\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \geq 3$. Thus, Proposition 2H says that $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Leftarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. We claim that ${}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$. Let $\mathbf{b} \in {}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$. Then

$$\begin{aligned} (\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}) &= \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \psi(b_k) \underset{(\dagger)}{=} \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) s \phi(b_k) \\ &= s \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \phi(b_k) = s (\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) \underset{(\bullet)}{=} 0. \quad (\diamond) \end{aligned}$$

Here, (†) is because $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$, while $b_k \in \mathcal{R}^{\phi}_{\mathcal{X}}$ for all $k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})$, because $d(\mathbf{x}, \mathbf{y}) \ge 3$. Next, (*) is because $\mathbf{b} \in \mathcal{C}^{\phi}_{\mathbf{x}, \mathbf{y}}$. Thus, $\mathbf{x} \bullet \psi(\mathbf{b}) = \mathbf{y} \bullet \psi(\mathbf{b})$. Now, if $\mathbf{x} \bullet \psi(\mathbf{b}) \ge \mathbf{z} \bullet \psi(\mathbf{b})$ for all

Z $\in \mathcal{X}$, then statement (\diamond) implies that $F_{\psi}(\mathbf{b}) \supseteq \{\mathbf{x}, \mathbf{y}\}$, so $\mathbf{b} \in \mathcal{B}_{\mathbf{x}, \mathbf{y}}$. Otherwise, if $\mathbf{x} \bullet \psi(\mathbf{b}) < \mathbf{z} \bullet \psi(\mathbf{b})$ for some $\mathbf{z} \in \mathcal{X}$, then $\mathbf{x} \notin F_{\psi}(\mathbf{b})$, so $\mathbf{b} \in \mathcal{C} \setminus \mathcal{C}_{\mathbf{x}}^{\psi}$. Thus, $\mathcal{B}_{\mathbf{x}, \mathbf{y}}^{\phi} \subseteq \mathcal{B}_{\mathbf{x}, \mathbf{y}}^{\psi} \cup (\mathcal{C} \setminus \mathcal{C}_{\mathbf{x}}^{\psi})$, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \ge 3$. Thus, Proposition 2H says that $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Leftarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. We claim that ${}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$. Let $\mathbf{b} \in {}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$. Then

$$(\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \psi(b_k) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) s \phi(b_k)$$

$$= s \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \phi(b_k) = s (\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) = 0. \quad (\diamond)$$

Here, (†) is because $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$, while $b_k \in \mathcal{R}^{\phi}_{\mathcal{X}}$ for all $k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})$, because $d(\mathbf{x}, \mathbf{y}) \ge 3$. Next, (*) is because $\mathbf{b} \in {}^{\mathcal{O}}\!\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$. Thus, $\mathbf{x} \bullet \psi(\mathbf{b}) = \mathbf{y} \bullet \psi(\mathbf{b})$. Now, if $\mathbf{x} \bullet \psi(\mathbf{b}) \ge \mathbf{z} \bullet \psi(\mathbf{b})$ for all

 $z \in \mathcal{X}$, then statement (\diamond) implies that $F_{\psi}(\mathbf{b}) \supseteq \{\mathbf{x}, \mathbf{y}\}$, so $\mathbf{b} \in \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\psi}$. Otherwise, if $\mathbf{x} \bullet \psi(\mathbf{b}) < \mathbf{z} \bullet \psi(\mathbf{b})$ for some $\mathbf{z} \in \mathcal{X}$, then $\mathbf{x} \notin F_{\psi}(\mathbf{b})$, so $\mathbf{b} \in \mathcal{C} \setminus \mathcal{C}_{\mathbf{x}}^{\psi}$. Thus, $\mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi} \subseteq \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\psi} \cup (\mathcal{C} \setminus \mathcal{C}_{\mathbf{x}}^{\psi})$, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x},\mathbf{y}) \ge 3$. Thus, Proposition 2H says that $F_{\phi}(\mathcal{X},\mu) = F_{\psi}(\mathcal{X},\mu)$ for all $\mu \in \Delta(\mathcal{X})$.

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Leftarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. We claim that ${}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$. Let $\mathbf{b} \in {}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$. Then

$$(\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \psi(b_k) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) s \phi(b_k)$$

$$= s \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \phi(b_k) = s (\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) = 0. \quad (\diamond)$$

Here, (†) is because $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$, while $b_k \in \mathcal{R}^{\phi}_{\mathcal{X}}$ for all $k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})$, because $d(\mathbf{x}, \mathbf{y}) \ge 3$. Next, (*) is because $\mathbf{b} \in \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$. Thus, $\mathbf{x} \bullet \psi(\mathbf{b}) = \mathbf{y} \bullet \psi(\mathbf{b})$. Now, if $\mathbf{x} \bullet \psi(\mathbf{b}) \ge \mathbf{z} \bullet \psi(\mathbf{b})$ for all $\mathbf{z} \in \mathcal{X}$, then statement (\diamond) implies that $F_{\psi}(\mathbf{b}) \supseteq \{\mathbf{x}, \mathbf{y}\}$, so $\mathbf{b} \in \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}}$. Otherwise, if $\mathbf{x} \bullet \psi(\mathbf{b}) < \mathbf{z} \bullet \psi(\mathbf{b})$ for some $\mathbf{z} \in \mathcal{X}$, then $\mathbf{x} \notin F_{\psi}(\mathbf{b})$, so $\mathbf{b} \in \mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}}$. Thus, $\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \ge 3$. Thus, Proposition 2H says that $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Leftarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. We claim that ${}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$. Let $\mathbf{b} \in {}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$. Then

$$(\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \psi(b_k) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) s \phi(b_k)$$

$$= s \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \phi(b_k) = s (\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) = 0. \quad (\diamond)$$

Here, (†) is because $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$, while $b_k \in \mathcal{R}^{\phi}_{\mathcal{X}}$ for all $k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})$, because $d(\mathbf{x}, \mathbf{y}) \ge 3$. Next, (*) is because $\mathbf{b} \in \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$. Thus, $\mathbf{x} \bullet \psi(\mathbf{b}) = \mathbf{y} \bullet \psi(\mathbf{b})$. Now, if $\mathbf{x} \bullet \psi(\mathbf{b}) \ge \mathbf{z} \bullet \psi(\mathbf{b})$ for all $\mathbf{z} \in \mathcal{X}$, then statement (\diamond) implies that $F_{\psi}(\mathbf{b}) \supseteq \{\mathbf{x}, \mathbf{y}\}$, so $\mathbf{b} \in \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}}$. Otherwise, if $\mathbf{x} \bullet \psi(\mathbf{b}) < \mathbf{z} \bullet \psi(\mathbf{b})$ for some $\mathbf{z} \in \mathcal{X}$, then $\mathbf{x} \notin F_{\psi}(\mathbf{b})$, so $\mathbf{b} \in \mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}}$. Thus, $\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \ge 3$. Thus, Proposition 2H says that $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Leftarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. We claim that ${}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$. Let $\mathbf{b} \in {}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$. Then

$$(\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \psi(b_k) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) s \phi(b_k)$$

$$= s \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \phi(b_k) = s (\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) = 0. \quad (\diamond)$$

Here, (†) is because $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$, while $b_k \in \mathcal{R}^{\phi}_{\mathcal{X}}$ for all $k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})$, because $d(\mathbf{x}, \mathbf{y}) \ge 3$. Next, (*) is because $\mathbf{b} \in {}^{\mathcal{B}}_{\mathbf{x},\mathbf{y}}^{\phi}$. Thus, $\mathbf{x} \bullet \psi(\mathbf{b}) = \mathbf{y} \bullet \psi(\mathbf{b})$. Now, if $\mathbf{x} \bullet \psi(\mathbf{b}) \ge \mathbf{z} \bullet \psi(\mathbf{b})$ for all $\mathbf{z} \in \mathcal{X}$, then statement (\diamond) implies that $F_{\psi}(\mathbf{b}) \supseteq \{\mathbf{x}, \mathbf{y}\}$, so $\mathbf{b} \in \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}}$. Otherwise, if $\mathbf{x} \bullet \psi(\mathbf{b}) < \mathbf{z} \bullet \psi(\mathbf{b})$ for some $\mathbf{z} \in \mathcal{X}$, then $\mathbf{x} \notin F_{\psi}(\mathbf{b})$, so $\mathbf{b} \in \mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}}$. Thus, $\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \ge 3$. Thus, Proposition 2H says that $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Leftarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. We claim that ${}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$. Let $\mathbf{b} \in {}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$. Then

$$(\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \psi(b_k) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) s \phi(b_k)$$

$$= s \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \phi(b_k) = s (\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) = 0. \quad (\diamond)$$

Here, (†) is because $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$, while $b_k \in \mathcal{R}^{\phi}_{\mathcal{X}}$ for all $k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})$, because $d(\mathbf{x}, \mathbf{y}) \ge 3$. Next, (*) is because $\mathbf{b} \in \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$. Thus, $\mathbf{x} \bullet \psi(\mathbf{b}) = \mathbf{y} \bullet \psi(\mathbf{b})$. Now, if $\mathbf{x} \bullet \psi(\mathbf{b}) \ge \mathbf{z} \bullet \psi(\mathbf{b})$ for all $\mathbf{z} \in \mathcal{X}$, then statement (\diamond) implies that $F_{\psi}(\mathbf{b}) \supseteq \{\mathbf{x}, \mathbf{y}\}$, so $\mathbf{b} \in \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}}$. Otherwise, if $\mathbf{x} \bullet \psi(\mathbf{b}) < \mathbf{z} \bullet \psi(\mathbf{b})$ for some $\mathbf{z} \in \mathcal{X}$, then $\mathbf{x} \notin F_{\psi}(\mathbf{b})$, so $\mathbf{b} \in \mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}}$. Thus, $\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \ge 3$. Thus, Proposition 2H says that $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Leftarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. We claim that ${}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$. Let $\mathbf{b} \in {}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$. Then

$$(\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \psi(b_k) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) s \phi(b_k)$$

$$= s \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \phi(b_k) = s (\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) = 0. \quad (\diamond)$$

Here, (†) is because $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$, while $b_k \in \mathcal{R}^{\phi}_{\mathcal{X}}$ for all $k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})$, because $d(\mathbf{x}, \mathbf{y}) \ge 3$. Next, (*) is because $\mathbf{b} \in \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$. Thus, $\mathbf{x} \bullet \psi(\mathbf{b}) = \mathbf{y} \bullet \psi(\mathbf{b})$. Now, if $\mathbf{x} \bullet \psi(\mathbf{b}) \ge \mathbf{z} \bullet \psi(\mathbf{b})$ for all $\mathbf{z} \in \mathcal{X}$, then statement (\diamond) implies that $F_{\psi}(\mathbf{b}) \supseteq \{\mathbf{x}, \mathbf{y}\}$, so $\mathbf{b} \in \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}}$. Otherwise, if $\mathbf{x} \bullet \psi(\mathbf{b}) < \mathbf{z} \bullet \psi(\mathbf{b})$ for some $\mathbf{z} \in \mathcal{X}$, then $\mathbf{x} \notin F_{\psi}(\mathbf{b})$, so $\mathbf{b} \in \mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}}$. Thus, $\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} \subseteq \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}} \cup (\mathcal{C} \setminus \mathcal{C}^{\psi}_{\mathbf{x}})$, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \ge 3$. Thus, Proposition 2H says that $F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu)$ for all $\mu \in \Delta(\mathcal{X})$.

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \implies " Let $x, y \in \mathcal{X}$, with $d(x, y) \ge 3$. Let $\mathbf{b} \in \mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} = \mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}}$; then

$$(\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) = 0 = (\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}).$$
 (1)

Without loss of generality, suppose $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) = [1 \dots J]$ for some $J \ge 3$, while $\mathbf{x}_{[1\dots J]} = (1, -1, -1, \dots, -1) = -\mathbf{y}_{[1\dots J]}$. Then equation (1) becomes:

$$\phi(b_1) = \sum_{j=2}^{J} \phi(b_j)$$
 and $\psi(b_1) = \sum_{j=2}^{J} \psi(b_j).$ (2)

Finally, define $\mathbf{\hat{b}} := (\phi(b_j))_{j=1}^J \in \mathbb{R}^J$, and let $\widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}} := \{\mathbf{\hat{b}}; \mathbf{b} \in \mathscr{B}_{\mathbf{x},\mathbf{y}}^{\phi}\}$. Define $\tau := \psi \circ \phi^{-1}$. Then for all $\mathbf{\widetilde{b}} \in \widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$, equation (2) becomes:

$$\widetilde{b}_1 = \sum_{j=2}^{J} \widetilde{b}_j \text{ and } \tau(\widetilde{b}_1) = \sum_{\substack{j=2\\ I \square \flat \ I \blacksquare \bullet I \blacksquare \blacksquare \bullet I \blacksquare \blacksquare \bullet I \blacksquare \blacksquare \bullet I \blacksquare \blacksquare \bullet I \blacksquare \blacksquare \bullet I \blacksquare \blacksquare \bullet I \blacksquare \blacksquare \blacksquare \bullet I \blacksquare \bullet I \blacksquare \blacksquare \bullet I \blacksquare \blacksquare \bullet I \blacksquare$$

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Longrightarrow " Let $x, y \in \mathcal{X}$, with $d(x, y) \ge 3$. Let $\mathbf{b} \in \mathscr{B}^{\phi}_{x,y} = \mathscr{B}^{\psi}_{x,y}$; then

$$(\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) = 0 = (\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}).$$
 (1)

Without loss of generality, suppose $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) = [1 \dots J]$ for some $J \ge 3$, while $\mathbf{x}_{[1\dots J]} = (1, -1, -1, \dots, -1) = -\mathbf{y}_{[1\dots J]}$. Then equation (1) becomes:

$$\phi(b_1) = \sum_{j=2}^{J} \phi(b_j)$$
 and $\psi(b_1) = \sum_{j=2}^{J} \psi(b_j).$ (2)

Finally, define $\widetilde{\mathbf{b}} := (\phi(b_j))_{j=1}^J \in \mathbb{R}^J$, and let $\widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}} := \{\widetilde{\mathbf{b}}; \mathbf{b} \in \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi}\}$. Define $\tau := \psi \circ \phi^{-1}$. Then for all $\widetilde{\mathbf{b}} \in \widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$, equation (2) becomes:

Theorem 2B. Let $\phi, \psi : [-1, 1] \longrightarrow \mathbb{R}$ be odd, continuous gain functions. Let \mathcal{X} be a thick judgement space, such that $\mathcal{R}^{\phi}_{\mathcal{X}} \cup \{0\}$ is connected. Then: $(F_{\phi}(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu) \text{ for all } \mu \in \Delta(\mathcal{X})) \iff$ (There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$).

Proof sketch. " \Longrightarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. Let **b** $\in \mathscr{B}_{\mathbf{x},\mathbf{y}}^{\phi} = \mathscr{B}_{\mathbf{x},\mathbf{y}}^{\psi}$; then

$$(\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) = 0 = (\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}).$$
 (1)

Without loss of generality, suppose $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) = [1 \dots J]$ for some $J \ge 3$, while $\mathbf{x}_{[1\dots J]} = (1, -1, -1, \dots, -1) = -\mathbf{y}_{[1\dots J]}$. Then equation (1) becomes:

$$\phi(b_1) = \sum_{j=2}^{J} \phi(b_j)$$
 and $\psi(b_1) = \sum_{j=2}^{J} \psi(b_j).$ (2)

Finally, define $\widetilde{\mathbf{b}} := (\phi(b_j))_{j=1}^J \in \mathbb{R}^J$, and let $\widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}} := \{\widetilde{\mathbf{b}}; \ \mathbf{b} \in \mathscr{B}_{\mathbf{x},\mathbf{y}}^{\phi}\}$. Define $\tau := \psi \circ \phi^{-1}$. Then for all $\widetilde{\mathbf{b}} \in \widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$, equation (2) becomes:

Theorem 2B. Let $\phi, \psi : [-1,1] \longrightarrow \mathbb{R}$ be odd, continuous gain functions. Let \mathcal{X} be a thick judgement space, such that $\mathcal{R}^{\phi}_{\mathcal{X}} \cup \{0\}$ is connected. Then: $(F_{\phi}(\mathcal{X},\mu) = F_{\psi}(\mathcal{X},\mu) \text{ for all } \mu \in \Delta(\mathcal{X})) \iff (There exists c > 0 such that <math>\psi(r) = c \phi(r)$ for all $r \in \mathcal{P}^{\phi}$.

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Longrightarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. Let $\mathbf{b} \in {}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} = {}^{o}\mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}}$; then

$$(\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) = 0 = (\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}).$$
(1)

Without loss of generality, suppose $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) = [1 \dots J]$ for some $J \ge 3$, while $\mathbf{x}_{[1\dots J]} = (1, -1, -1, \dots, -1) = -\mathbf{y}_{[1\dots J]}$. Then equation (1) becomes:

$$\phi(b_1) = \sum_{j=2}^{J} \phi(b_j)$$
 and $\psi(b_1) = \sum_{j=2}^{J} \psi(b_j).$ (2)

Finally, define $\widetilde{\mathbf{b}} := (\phi(b_j))_{j=1}^J \in \mathbb{R}^J$, and let $\widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}} := \{\widetilde{\mathbf{b}}; \mathbf{b} \in \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi}\}$. Define $\tau := \psi \circ \phi^{-1}$. Then for all $\widetilde{\mathbf{b}} \in \widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$, equation (2) becomes:

Theorem 2B. Let $\phi, \psi : [-1,1] \longrightarrow \mathbb{R}$ be odd, continuous gain functions. Let \mathcal{X} be a thick judgement space, such that $\mathcal{R}^{\phi}_{\mathcal{X}} \cup \{0\}$ is connected. Then: $(F_{\phi}(\mathcal{X},\mu) = F_{\psi}(\mathcal{X},\mu) \text{ for all } \mu \in \Delta(\mathcal{X})) \iff (There exists c > 0 such that <math>\psi(r) = c \phi(r)$ for all $r \in \mathcal{P}^{\phi}$.

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Longrightarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. Let $\mathbf{b} \in {}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} = {}^{o}\mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}}$; then

$$(\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) = 0 = (\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}).$$
(1)

Without loss of generality, suppose $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) = [1 \dots J]$ for some $J \ge 3$, while $\mathbf{x}_{[1\dots J]} = (1, -1, -1, \dots, -1) = -\mathbf{y}_{[1\dots J]}$. Then equation (1) becomes:

$$\phi(b_1) = \sum_{j=2}^{J} \phi(b_j)$$
 and $\psi(b_1) = \sum_{j=2}^{J} \psi(b_j).$ (2)

Finally, define $\mathbf{\hat{b}} := (\phi(b_j))_{j=1}^J \in \mathbb{R}^J$, and let $\mathcal{B}_{\mathbf{x},\mathbf{y}} := {\mathbf{\hat{b}}; \mathbf{b} \in \mathcal{B}_{\mathbf{x},\mathbf{y}}^{\phi}}$. Define $\tau := \psi \circ \phi^{-1}$. Then for all $\mathbf{\widetilde{b}} \in \mathcal{B}_{\mathbf{x},\mathbf{y}}$, equation (2) becomes:

$$\widetilde{b}_1 = \sum_{j=2}^{J} \widetilde{b}_j$$
 and $\tau(\widetilde{b}_1) = \sum_{j=2}^{J} \tau(\widetilde{b}_j)$

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Longrightarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. Let $\mathbf{b} \in {}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} = {}^{o}\mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}}$; then

$$(\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) = 0 = (\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}).$$
(1)

Without loss of generality, suppose $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) = [1 \dots J]$ for some $J \ge 3$, while $\mathbf{x}_{[1\dots J]} = (1, -1, -1, \dots, -1) = -\mathbf{y}_{[1\dots J]}$. Then equation (1) becomes:

$$\phi(b_1) = \sum_{j=2}^{J} \phi(b_j)$$
 and $\psi(b_1) = \sum_{j=2}^{J} \psi(b_j).$ (2)

Finally, define $\widetilde{\mathbf{b}} := (\phi(b_j))_{j=1}^J \in \mathbb{R}^J$, and let $\widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}} := \{\widetilde{\mathbf{b}}; \mathbf{b} \in \mathscr{B}_{\mathbf{x},\mathbf{y}}^\phi\}$. Define $\tau := \psi \circ \phi^{-1}$. Then for all $\widetilde{\mathbf{b}} \in \widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$, equation (2) becomes:

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Longrightarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. Let $\mathbf{b} \in {}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} = {}^{o}\mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}}$; then

$$(\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) = 0 = (\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}).$$
(1)

Without loss of generality, suppose $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) = [1 \dots J]$ for some $J \ge 3$, while $\mathbf{x}_{[1\dots J]} = (1, -1, -1, \dots, -1) = -\mathbf{y}_{[1\dots J]}$. Then equation (1) becomes:

$$\phi(b_1) = \sum_{j=2}^{J} \phi(b_j)$$
 and $\psi(b_1) = \sum_{j=2}^{J} \psi(b_j).$ (2)

Finally, define $\widetilde{\mathbf{b}} := (\phi(b_j))_{j=1}^J \in \mathbb{R}^J$, and let $\widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}} := \{\widetilde{\mathbf{b}}; \mathbf{b} \in \mathscr{B}_{\mathbf{x},\mathbf{y}}^{\phi}\}$. Define $\tau := \psi \circ \phi^{-1}$. Then for all $\widetilde{\mathbf{b}} \in \widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$, equation (2) becomes:

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Longrightarrow " Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, with $d(\mathbf{x}, \mathbf{y}) \ge 3$. Let $\mathbf{b} \in {}^{o}\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}} = {}^{o}\mathcal{B}^{\psi}_{\mathbf{x},\mathbf{y}}$; then

$$(\mathbf{x} - \mathbf{y}) \bullet \phi(\mathbf{b}) = 0 = (\mathbf{x} - \mathbf{y}) \bullet \psi(\mathbf{b}).$$
(1)

Without loss of generality, suppose $\mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}) = [1 \dots J]$ for some $J \ge 3$, while $\mathbf{x}_{[1\dots J]} = (1, -1, -1, \dots, -1) = -\mathbf{y}_{[1\dots J]}$. Then equation (1) becomes:

$$\phi(b_1) = \sum_{j=2}^{J} \phi(b_j)$$
 and $\psi(b_1) = \sum_{j=2}^{J} \psi(b_j).$ (2)

Finally, define $\widetilde{\mathbf{b}} := (\phi(b_j))_{j=1}^J \in \mathbb{R}^J$, and let $\widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}} := \{\widetilde{\mathbf{b}}; \mathbf{b} \in \mathscr{B}_{\mathbf{x},\mathbf{y}}^{\phi}\}$. Define $\tau := \psi \circ \phi^{-1}$. Then for all $\widetilde{\mathbf{b}} \in \widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$, equation (2) becomes:

$$\widetilde{b}_1 = \sum_{j=2}^J \widetilde{b}_j$$
 and $\tau(\widetilde{b}_1) = \sum_{j=2}^J \tau(\widetilde{b}_j)$

Theorem 2B. Let $\phi, \psi : [-1,1] \longrightarrow \mathbb{R}$ be odd, continuous gain functions. Let \mathcal{X} be a thick judgement space, such that $\mathcal{R}^{\phi}_{\mathcal{X}} \cup \{0\}$ is connected. Then: $(F_{\phi}(\mathcal{X},\mu) = F_{\psi}(\mathcal{X},\mu) \text{ for all } \mu \in \Delta(\mathcal{X})) \iff$ (There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$).

Proof sketch. " \Longrightarrow " Recall: for all $\widetilde{\mathbf{b}} \in \widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$, we have

$$\widetilde{b}_1 = \sum_{j=2}^J \widetilde{b}_j$$
 and $\tau(\widetilde{b}_1) = \sum_{j=2}^J \tau(\widetilde{b}_j)$ (3)

Substituting the left equation in (3) into the right equation in (3) yields:

$$\tau\left(\sum_{j=2}^{J}\widetilde{b}_{j}\right) = \sum_{j=2}^{J}\tau(\widetilde{b}_{j}).$$
(4)

Let $\widetilde{\mathcal{B}}' :=$ projection of $\widetilde{\mathcal{B}}_{x,y}$ onto coordinates $[2 \dots J]$. (Recall $J \ge 3$.) Then $\widetilde{\mathcal{B}}'$ is open subset of \mathbb{R}^{J-1} , and eqn.(4) holds for all elements of $\widetilde{\mathcal{B}}'$. Now a variant of the classic solution to Cauchy functional equation yields $s_{x,y} > 0$ and $t_{x,y} \in \mathbb{R}$ such that $\tau(r) = s_{x,y}r + t_{x,y}$ for all r in the domain $\widetilde{\mathcal{R}}_{x,y}$ of coordinates projected from $\widetilde{\mathcal{B}}_{x,y}$. That is: $\psi(r) = s_{x,y}\phi(r) + t_{x,y}$ for all r in the domain $\mathcal{R}_{x,y}$ of coordinates projected from $\widetilde{\mathcal{B}}_{x,y} < \mathbb{R}$.

(*There exists* s > 0 *such that* $\psi(r) = s \phi(r)$ *for all* $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Longrightarrow " Recall: for all $\tilde{\mathbf{b}} \in \widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$, we have

$$\widetilde{b}_1 = \sum_{j=2}^J \widetilde{b}_j$$
 and $\tau(\widetilde{b}_1) = \sum_{j=2}^J \tau(\widetilde{b}_j)$ (3)

Substituting the left equation in (3) into the right equation in (3) yields:

$$\tau\left(\sum_{j=2}^{J}\widetilde{b}_{j}\right) = \sum_{j=2}^{J}\tau(\widetilde{b}_{j}).$$
(4)

Let $\widetilde{\mathcal{B}}' :=$ projection of $\widetilde{\mathcal{B}}_{x,y}$ onto coordinates $[2 \dots J]$. (Recall $J \ge 3$.) Then $\widetilde{\mathcal{B}}'$ is open subset of \mathbb{R}^{J-1} , and eqn.(4) holds for all elements of $\widetilde{\mathcal{B}}'$. Now a variant of the classic solution to Cauchy functional equation yields $s_{x,y} > 0$ and $t_{x,y} \in \mathbb{R}$ such that $\tau(r) = s_{x,y}r + t_{x,y}$ for all r in the domain $\widetilde{\mathcal{R}}_{x,y}$ of coordinates projected from $\widetilde{\mathcal{B}}_{x,y}$. That is: $\psi(r) = s_{x,y}\phi(r) + t_{x,y}$ for all r in the domain $\mathcal{R}_{x,y}$ of coordinates projected from $\widetilde{\mathcal{B}}_{x,y} < \mathbb{R}$.

(*There exists* s > 0 *such that* $\psi(r) = s \phi(r)$ *for all* $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Longrightarrow " Recall: for all $\tilde{\mathbf{b}} \in \widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$, we have

$$\widetilde{b}_1 = \sum_{j=2}^J \widetilde{b}_j \text{ and } \tau(\widetilde{b}_1) = \sum_{j=2}^J \tau(\widetilde{b}_j)$$
 (3)

Substituting the left equation in (3) into the right equation in (3) yields:

$$\tau\left(\sum_{j=2}^{J}\widetilde{b}_{j}\right) = \sum_{j=2}^{J}\tau(\widetilde{b}_{j}).$$
(4)

Let $\widetilde{\mathcal{B}}' :=$ projection of $\widetilde{\mathcal{B}}_{x,y}$ onto coordinates $[2 \dots J]$. (Recall $J \ge 3$.) Then $\widetilde{\mathcal{B}}'$ is open subset of \mathbb{R}^{J-1} , and eqn.(4) holds for all elements of $\widetilde{\mathcal{B}}'$. Now a variant of the classic solution to Cauchy functional equation yields $s_{x,y} > 0$ and $t_{x,y} \in \mathbb{R}$ such that $\tau(r) = s_{x,y}r + t_{x,y}$ for all r in the domain $\widetilde{\mathcal{R}}_{x,y}$ of coordinates projected from $\widetilde{\mathcal{B}}_{x,y}$. That is: $\psi(r) = s_{x,y}\phi(r) + t_{x,y}$ for all r in the domain $\mathcal{R}_{x,y}$ of coordinates projected from $\widetilde{\mathcal{B}}_{x,y} = 0$.

(*There exists* s > 0 *such that* $\psi(r) = s \phi(r)$ *for all* $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Longrightarrow " Recall: for all $\tilde{\mathbf{b}} \in \widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$, we have

$$\widetilde{b}_1 = \sum_{j=2}^J \widetilde{b}_j$$
 and $\tau(\widetilde{b}_1) = \sum_{j=2}^J \tau(\widetilde{b}_j)$ (3)

Substituting the left equation in (3) into the right equation in (3) yields:

$$\tau\left(\sum_{j=2}^{J}\widetilde{b}_{j}\right) = \sum_{j=2}^{J}\tau(\widetilde{b}_{j}).$$
(4)

Let $\widetilde{\mathcal{B}}' :=$ projection of $\widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$ onto coordinates $[2 \dots J]$. (Recall $J \ge 3$.) Then $\widetilde{\mathcal{B}}'$ is open subset of \mathbb{R}^{J-1} , and eqn.(4) holds for all elements of $\widetilde{\mathcal{B}}'$. Now a variant of the classic solution to Cauchy functional equation yields $s_{\mathbf{x},\mathbf{y}} > 0$ and $t_{\mathbf{x},\mathbf{y}} \in \mathbb{R}$ such that $\tau(r) = s_{\mathbf{x},\mathbf{y}}r + t_{\mathbf{x},\mathbf{y}}$ for all r in the domain $\widetilde{\mathcal{R}}_{\mathbf{x},\mathbf{y}}$ of coordinates projected from $\widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$. That is: $\psi(r) = s_{\mathbf{x},\mathbf{y}}\phi(r) + t_{\mathbf{x},\mathbf{y}}$ for all r in the domain $\mathcal{R}_{\mathbf{x},\mathbf{y}}$ of coordinates projected from $\widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}} < \mathbb{R}$

(*There exists* s > 0 *such that* $\psi(r) = s \phi(r)$ *for all* $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Longrightarrow " Recall: for all $\tilde{\mathbf{b}} \in \widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$, we have

$$\widetilde{b}_1 = \sum_{j=2}^J \widetilde{b}_j$$
 and $\tau(\widetilde{b}_1) = \sum_{j=2}^J \tau(\widetilde{b}_j)$ (3)

Substituting the left equation in (3) into the right equation in (3) yields:

$$\tau\left(\sum_{j=2}^{J}\widetilde{b}_{j}\right) = \sum_{j=2}^{J}\tau(\widetilde{b}_{j}).$$
(4)

Let $\widetilde{\mathcal{B}}' :=$ projection of $\widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$ onto coordinates $[2 \dots J]$. (Recall $J \ge 3$.) Then $\widetilde{\mathcal{B}}'$ is open subset of \mathbb{R}^{J-1} , and eqn.(4) holds for all elements of $\widetilde{\mathcal{B}}'$. Now a variant of the classic solution to Cauchy functional equation yields $s_{\mathbf{x},\mathbf{y}} > 0$ and $t_{\mathbf{x},\mathbf{y}} \in \mathbb{R}$ such that $\tau(r) = s_{\mathbf{x},\mathbf{y}}r + t_{\mathbf{x},\mathbf{y}}$ for all r in the domain $\widetilde{\mathcal{R}}_{\mathbf{x},\mathbf{y}}$ of coordinates projected from $\widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$. That is: $\psi(r) = s_{\mathbf{x},\mathbf{y}}\phi(r) + t_{\mathbf{x},\mathbf{y}}$ for all r in the domain $\mathcal{R}_{\mathbf{x},\mathbf{y}}$ of coordinates projected from $\widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}} = 0$.

(*There exists* s > 0 *such that* $\psi(r) = s \phi(r)$ *for all* $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Longrightarrow " Recall: for all $\tilde{\mathbf{b}} \in \widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$, we have

$$\widetilde{b}_1 = \sum_{j=2}^J \widetilde{b}_j$$
 and $\tau(\widetilde{b}_1) = \sum_{j=2}^J \tau(\widetilde{b}_j)$ (3)

Substituting the left equation in (3) into the right equation in (3) yields:

$$\tau\left(\sum_{j=2}^{J}\widetilde{b}_{j}\right) = \sum_{j=2}^{J}\tau(\widetilde{b}_{j}).$$
(4)

Let $\widetilde{\mathcal{B}}' :=$ projection of $\widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$ onto coordinates $[2 \dots J]$. (Recall $J \ge 3$.) Then $\widetilde{\mathcal{B}}'$ is open subset of \mathbb{R}^{J-1} , and eqn.(4) holds for all elements of $\widetilde{\mathcal{B}}'$. Now a variant of the classic solution to Cauchy functional equation yields $s_{\mathbf{x},\mathbf{y}} > 0$ and $t_{\mathbf{x},\mathbf{y}} \in \mathbb{R}$ such that $\tau(r) = s_{\mathbf{x},\mathbf{y}}r + t_{\mathbf{x},\mathbf{y}}$ for all r in the domain $\widetilde{\mathcal{R}}_{\mathbf{x},\mathbf{y}}$ of coordinates projected from $\widetilde{\mathcal{B}}_{\mathbf{x},\mathbf{y}}$. That is: $\psi(r) = s_{\mathbf{x},\mathbf{y}}\phi(r) + t_{\mathbf{x},\mathbf{y}}$ for all r in the domain $\mathcal{R}_{\mathbf{x},\mathbf{y}}$ of coordinates projected from $\mathscr{B}_{\mathbf{x},\mathbf{y}}^{\phi} \in \mathbb{R} = 0$

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Longrightarrow " Recall: For all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \ge 3$, there exist $s_{\mathbf{x},\mathbf{y}} > 0$ and $t_{\mathbf{x},\mathbf{y}} \in \mathbb{R}$ such that $\psi(r) = s_{\mathbf{x},\mathbf{y}}\phi(r) + t_{\mathbf{x},\mathbf{y}}$ for all r in the domain $\mathcal{R}_{\mathbf{x},\mathbf{y}}$ of coordinates projected from $\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$.

Using the fact that $\mathcal{R}^{\phi}_{\mathcal{X}} \cup \{0\}$ is connected, while ϕ and ψ are continuous, we can 'stitch together' these local affine transformations, to obtain a single s > 0 and $t \in \mathbb{R}$ such that $\psi(r) = s \phi(r) + t$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$. But $\psi(0) = 0 = \phi(0)$ (because ψ and ϕ are odd); thus, continuity forces

But $\psi(0) = 0 = \phi(0)$ (because ψ and ϕ are odd); thus, continuity forces t = 0.

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Longrightarrow " Recall: For all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \ge 3$, there exist $s_{\mathbf{x},\mathbf{y}} > 0$ and $t_{\mathbf{x},\mathbf{y}} \in \mathbb{R}$ such that $\psi(r) = s_{\mathbf{x},\mathbf{y}}\phi(r) + t_{\mathbf{x},\mathbf{y}}$ for all r in the domain $\mathcal{R}_{\mathbf{x},\mathbf{y}}$ of coordinates projected from $\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$.

Using the fact that $\mathcal{R}^{\phi}_{\mathcal{X}} \cup \{0\}$ is connected, while ϕ and ψ are continuous, we can 'stitch together' these local affine transformations, to obtain a single s > 0 and $t \in \mathbb{R}$ such that $\psi(r) = s \phi(r) + t$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$.

But $\psi(0) = 0 = \phi(0)$ (because ψ and ϕ are odd); thus, continuity forces t = 0.

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Longrightarrow " Recall: For all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \ge 3$, there exist $s_{\mathbf{x},\mathbf{y}} > 0$ and $t_{\mathbf{x},\mathbf{y}} \in \mathbb{R}$ such that $\psi(r) = s_{\mathbf{x},\mathbf{y}}\phi(r) + t_{\mathbf{x},\mathbf{y}}$ for all r in the domain $\mathcal{R}_{\mathbf{x},\mathbf{y}}$ of coordinates projected from $\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$.

Using the fact that $\mathcal{R}^{\phi}_{\mathcal{X}} \cup \{0\}$ is connected, while ϕ and ψ are continuous, we can 'stitch together' these local affine transformations, to obtain a single s > 0 and $t \in \mathbb{R}$ such that $\psi(r) = s \phi(r) + t$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$. But $\psi(0) = 0 = \phi(0)$ (because ψ and ϕ are odd); thus, continuity forces t = 0.

(There exists s > 0 such that $\psi(r) = s \phi(r)$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$). **Proof sketch.** " \Longrightarrow " Recall: For all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \ge 3$, there exist $s_{\mathbf{x},\mathbf{y}} > 0$ and $t_{\mathbf{x},\mathbf{y}} \in \mathbb{R}$ such that $\psi(r) = s_{\mathbf{x},\mathbf{y}}\phi(r) + t_{\mathbf{x},\mathbf{y}}$ for all r in the domain $\mathcal{R}_{\mathbf{x},\mathbf{y}}$ of coordinates projected from $\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$.

Using the fact that $\mathcal{R}^{\phi}_{\mathcal{X}} \cup \{0\}$ is connected, while ϕ and ψ are continuous, we can 'stitch together' these local affine transformations, to obtain a single s > 0 and $t \in \mathbb{R}$ such that $\psi(r) = s \phi(r) + t$ for all $r \in \mathcal{R}^{\phi}_{\mathcal{X}}$. But $\psi(0) = 0 = \phi(0)$ (because ψ and ϕ are odd); thus, continuity forces t = 0.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (*F* is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X})$) \iff ($F = H^d$ for some $d \in (0, \infty)$).

・ロト・日本・モート モー うへぐ

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (*F* is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X})$) \iff (*F* = H^d for some $d \in (0, \infty)$). **Proof sketch.**

・ロト・日本・モート モー うへぐ

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (*F* is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X})$) \iff ($F = H^d$ for some $d \in (0, \infty)$).

・ロト・日本・モート モー うへぐ

Proof sketch. "" straightforward computation.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (*F* is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X})$) \iff $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \Leftarrow " straightforward computation. " \Longrightarrow " Suppose $F = F_{\gamma}$ for some regular $\gamma : [-1, 1] \longrightarrow \mathbb{R}$. **Claim 1.** $\mathcal{R}_{\mathcal{X}}^F \cup \{0\}$ is connected.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (*F* is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X})$) \iff $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \Leftarrow " straightforward computation. " \implies " Suppose $F = F_{\gamma}$ for some regular $\gamma : [-1, 1] \longrightarrow \mathbb{R}$. **Claim 1.** $\mathcal{R}_{\mathcal{X}}^F \cup \{0\}$ is connected.

Proof sketch. Neutral reinforcement implies that every point in ${}^{\mathcal{B}}_{\mathbf{x},\mathbf{y}}^{F}$ is connected to $(\mathbf{x} + \mathbf{y})/2$ by an open line segment in ${}^{\mathcal{B}}_{\mathbf{x},\mathbf{y}}^{F}$.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (*F* is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X})$) \iff ($F = H^d$ for some $d \in (0, \infty)$). **Proof sketch.** " \Leftarrow " straightforward computation.

" \Longrightarrow " Suppose $F = F_{\gamma}$ for some regular $\gamma : [-1, 1] \longrightarrow \mathbb{R}$. Claim 1. $\mathcal{R}^{F}_{\mathcal{X}} \cup \{0\}$ is connected.

Proof sketch. Neutral reinforcement implies that every point in ${}^{\mathcal{B}}_{\mathbf{x},\mathbf{y}}^{\mathcal{F}}$ is connected to $(\mathbf{x} + \mathbf{y})/2$ by an open line segment in ${}^{\mathcal{B}}_{\mathbf{x},\mathbf{y}}^{\mathcal{F}}$. This implies that every point in $\mathcal{R}_{\mathcal{X}}^{\mathcal{F}}$ is connected to 0 by an open subinterval in $\mathcal{R}_{\mathcal{X}}^{\mathcal{F}}$. \diamondsuit

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** "\=" straightforward computation. " \Longrightarrow " Suppose $F = F_{\gamma}$ for some regular $\gamma : [-1, 1] \longrightarrow \mathbb{R}$. **Claim 1.** $\mathcal{R}_{\mathcal{V}}^{\mathsf{F}} \cup \{0\}$ is connected. **Proof sketch.** Neutral reinforcement implies that every point in $\mathscr{B}_{x,y}^{F}$ is connected to $(\mathbf{x} + \mathbf{y})/2$ by an open line segment in $\mathscr{B}_{\mathbf{x}\mathbf{y}}^{\mathsf{F}}$. This implies that every point in $\mathcal{R}_{\mathcal{X}}^{\mathcal{F}}$ is connected to 0 by an open subinterval in $\mathcal{R}_{\mathcal{X}}^{\mathcal{F}}$. \Diamond_{Claim1} **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ .

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** "\=" straightforward computation. " \Longrightarrow " Suppose $F = F_{\gamma}$ for some regular $\gamma : [-1, 1] \longrightarrow \mathbb{R}$. **Claim 1.** $\mathcal{R}_{\mathcal{V}}^{\mathsf{F}} \cup \{0\}$ is connected. **Proof sketch.** Neutral reinforcement implies that every point in $\mathscr{B}_{x,y}^{F}$ is connected to $(\mathbf{x} + \mathbf{y})/2$ by an open line segment in $\mathscr{B}_{\mathbf{x}\mathbf{y}}^{\mathsf{F}}$. This implies that every point in $\mathcal{R}_{\mathcal{X}}^{\mathcal{F}}$ is connected to 0 by an open subinterval in $\mathcal{R}_{\mathcal{X}}^{\mathcal{F}}$. \Diamond_{Claim1} **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ . **Proof sketch.** Use Theorem 2F(a) to deduce that $st(\gamma)$ (suitably rescaled) is real-valued and continuous in [-S, S], for some S > 0.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** "\=" straightforward computation. " \implies " Suppose $F = F_{\gamma}$ for some regular $\gamma : [-1, 1] \longrightarrow *\mathbb{R}$. **Claim 1.** $\mathcal{R}_{\mathcal{V}}^{\mathsf{F}} \cup \{0\}$ is connected. **Proof sketch.** Neutral reinforcement implies that every point in $\mathscr{B}_{x,y}^{L}$ is connected to $(\mathbf{x} + \mathbf{y})/2$ by an open line segment in $\mathcal{B}_{\mathbf{x}\mathbf{y}}^{\mathcal{F}}$. This implies that every point in $\mathcal{R}_{\mathcal{X}}^{\mathcal{F}}$ is connected to 0 by an open subinterval in $\mathcal{R}_{\mathcal{X}}^{\mathcal{F}}$. \Diamond_{Claim1} **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ . **Proof sketch.** Use Theorem 2F(a) to deduce that $st(\gamma)$ (suitably rescaled) is real-valued and continuous in [-S, S], for some S > 0. Now define $\phi(r) := \operatorname{st}(\gamma(Sr))$ for all $r \in [-1, 1]$.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** "=" straightforward computation. " \implies " Suppose $F = F_{\gamma}$ for some regular $\gamma : [-1, 1] \longrightarrow *\mathbb{R}$. **Claim 1.** $\mathcal{R}_{\mathcal{V}}^{\mathsf{F}} \cup \{0\}$ is connected. **Proof sketch.** Neutral reinforcement implies that every point in $\mathscr{B}_{x,y}^{L}$ is connected to $(\mathbf{x} + \mathbf{y})/2$ by an open line segment in $\mathcal{B}_{\mathbf{x}\mathbf{y}}^{\mathcal{F}}$. This implies that every point in $\mathcal{R}_{\mathcal{X}}^{\mathcal{F}}$ is connected to 0 by an open subinterval in $\mathcal{R}_{\mathcal{X}}^{\mathcal{F}}$. \Diamond_{Claim1} **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ . **Proof sketch.** Use Theorem 2F(a) to deduce that $st(\gamma)$ (suitably rescaled) is real-valued and continuous in [-S, S], for some S > 0. Now define $\phi(r) := \operatorname{st}(\gamma(Sr))$ for all $r \in [-1, 1]$. Neutral reinforcement and Proposition 2H imply $F_{\gamma} = F_{\phi}$. \Diamond Claim2

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " **Claim 1.** $\mathcal{R}_{\mathcal{X}}^{F} \cup \{0\}$ is connected. **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ . **Proof sketch.** Use Theorem 2F(a) to deduce that $st(\gamma)$ (suitably rescaled) is real-valued and continuous in [-S, S], for some S > 0. Now define $\phi(r) := \operatorname{st}(\gamma(Sr))$ for all $r \in [-1, 1]$. Neutral reinforcement and Proposition 2H imply $F_{\gamma} = F_{\phi}$. \Diamond Claim2 **Claim 3.** There exists a continuous, increasing function σ : $(0,1) \longrightarrow \mathbb{R}$ such that, for all $r \in \mathcal{R}_{\mathcal{X}}^{\mathsf{F}}$ and $s \in (0,1)$, we have $\phi(sr) = \sigma(s) \cdot \phi(r)$.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " **Claim 1.** $\mathcal{R}_{\mathcal{X}}^{F} \cup \{0\}$ is connected. **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ . **Proof sketch.** Use Theorem 2F(a) to deduce that $st(\gamma)$ (suitably rescaled) is real-valued and continuous in [-S, S], for some S > 0. Now define $\phi(r) := \operatorname{st}(\gamma(Sr))$ for all $r \in [-1, 1]$. Neutral reinforcement and Proposition 2H imply $F_{\gamma} = F_{\phi}$. \bigcirc Claim2 **Claim 3.** There exists a continuous, increasing function $\sigma: (0,1) \longrightarrow \mathbb{R}$ such that, for all $r \in \mathcal{R}_{\mathcal{X}}^{\mathcal{F}}$ and $s \in (0,1)$, we have $\phi(sr) = \sigma(s) \cdot \phi(r)$. **Proof sketch.** For any $s \in (0, 1)$, define $\psi_s(r) := \phi(sr)$.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " **Claim 1.** $\mathcal{R}_{\mathcal{X}}^{\mathsf{F}} \cup \{0\}$ is connected. **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ . **Proof sketch.** Use Theorem 2F(a) to deduce that $st(\gamma)$ (suitably rescaled) is real-valued and continuous in [-S, S], for some S > 0. Now define $\phi(r) := \operatorname{st}(\gamma(Sr))$ for all $r \in [-1, 1]$. Neutral reinforcement and Proposition 2H imply $F_{\gamma} = F_{\phi}$. \bigcirc Claim2 **Claim 3.** There exists a continuous, increasing function $\sigma: (0,1) \longrightarrow \mathbb{R}$ such that, for all $r \in \mathcal{R}_{\mathcal{X}}^{\mathcal{F}}$ and $s \in (0,1)$, we have $\phi(sr) = \sigma(s) \cdot \phi(r)$. **Proof sketch.** For any $s \in (0,1)$, define $\psi_s(r) := \phi(sr)$. Then neutral reinforcement and Proposition 2H imply that $F_{\phi} = F_{\psi_s}$.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " **Claim 1.** $\mathcal{R}_{\mathcal{X}}^{\mathsf{F}} \cup \{0\}$ is connected. **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ . **Proof sketch.** Use Theorem 2F(a) to deduce that $st(\gamma)$ (suitably rescaled) is real-valued and continuous in [-S, S], for some S > 0. Now define $\phi(r) := \operatorname{st}(\gamma(Sr))$ for all $r \in [-1, 1]$. Neutral reinforcement and Proposition 2H imply $F_{\gamma} = F_{\phi}$. \Diamond Claim2 **Claim 3.** There exists a continuous, increasing function $\sigma: (0,1) \longrightarrow \mathbb{R}$ such that, for all $r \in \mathcal{R}_{\mathcal{X}}^{\mathcal{F}}$ and $s \in (0,1)$, we have $\phi(sr) = \sigma(s) \cdot \phi(r)$. **Proof sketch.** For any $s \in (0,1)$, define $\psi_s(r) := \phi(sr)$. Then neutral reinforcement and Proposition 2H imply that $F_{\phi} = F_{\psi_s}$. Then Claim 1 and Theorem 2B ('uniqueness') yield some $\sigma(s) > 0$ such that $\psi_s(r) = \sigma(s) \cdot \phi(r)$ for all $r \in \mathcal{R}_{\mathcal{X}}^F$.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F: \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " **Claim 1.** $\mathcal{R}_{\mathcal{X}}^{F} \cup \{0\}$ is connected. **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ . **Proof sketch.** Use Theorem 2F(a) to deduce that $st(\gamma)$ (suitably rescaled) is real-valued and continuous in [-S, S], for some S > 0. Now define $\phi(r) := \operatorname{st}(\gamma(Sr))$ for all $r \in [-1, 1]$. Neutral reinforcement and Proposition 2H imply $F_{\gamma} = F_{\phi}$. \Diamond Claim2 **Claim 3.** There exists a continuous, increasing function $\sigma: (0,1) \longrightarrow \mathbb{R}$ such that, for all $r \in \mathcal{R}_{\mathcal{X}}^{\mathcal{F}}$ and $s \in (0,1)$, we have $\phi(sr) = \sigma(s) \cdot \phi(r)$. **Proof sketch.** For any $s \in (0,1)$, define $\psi_s(r) := \phi(sr)$. Then neutral reinforcement and Proposition 2H imply that $F_{\phi} = F_{\psi_e}$. Then Claim 1 and Theorem 2B ('uniqueness') yield some $\sigma(s) > 0$ such that $\psi_s(r) = \sigma(s) \cdot \phi(r)$ for all $r \in \mathcal{R}_{\mathcal{X}}^F$. Finally, σ continuous and increasing because ϕ continuous and increasing. \odot Claim3

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F: \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " **Claim 1.** $\mathcal{R}_{\mathcal{X}}^{F} \cup \{0\}$ is connected. **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ . **Claim 3.** There exists a continuous, increasing function $\sigma : (0,1) \longrightarrow \mathbb{R}$ such that, for all $r \in \mathcal{R}_{\mathcal{X}}^{\mathsf{F}}$ and $s \in (0,1)$, we have $\phi(sr) = \sigma(s) \cdot \phi(r)$. **Proof sketch.** For any $s \in (0,1)$, define $\psi_s(r) := \phi(sr)$. Then neutral reinforcement and Proposition 2H imply that $F_{\phi} = F_{\psi_{\epsilon}}$. Then Claim 1 and Theorem 2B ('uniqueness') yield some $\sigma(s) > 0$ such that $\psi_s(r) = \sigma(s) \cdot \phi(r)$ for all $r \in \mathcal{R}^F_{\mathcal{X}}$. Finally, σ continuous and increasing because ϕ continuous and increasing. \Diamond_{Claim3} **Claim 4.** For all $s, t \in (0, 1]$, we have $\sigma(s t) = \sigma(s) \cdot \sigma(t)$.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F: \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " **Claim 1.** $\mathcal{R}_{\mathcal{X}}^{F} \cup \{0\}$ is connected. **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ . **Claim 3.** There exists a continuous, increasing function $\sigma : (0,1) \longrightarrow \mathbb{R}$ such that, for all $r \in \mathcal{R}_{\mathcal{X}}^{\mathsf{F}}$ and $s \in (0,1)$, we have $\phi(sr) = \sigma(s) \cdot \phi(r)$. **Proof sketch.** For any $s \in (0,1)$, define $\psi_s(r) := \phi(sr)$. Then neutral reinforcement and Proposition 2H imply that $F_{\phi} = F_{\psi_{\epsilon}}$. Then Claim 1 and Theorem 2B ('uniqueness') yield some $\sigma(s) > 0$ such that $\psi_s(r) = \sigma(s) \cdot \phi(r)$ for all $r \in \mathcal{R}^F_{\mathcal{X}}$. Finally, σ continuous and increasing because ϕ continuous and increasing. \Diamond_{Claim3} **Claim 4.** For all $s, t \in (0, 1]$, we have $\sigma(s t) = \sigma(s) \cdot \sigma(t)$. **Proof sketch.** Fix nonzero $r \in \mathcal{R}_{\mathcal{X}}^{F}$.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " **Claim 1.** $\mathcal{R}_{\mathcal{X}}^{\mathsf{F}} \cup \{0\}$ is connected. **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ . **Claim 3.** There exists a continuous, increasing function $\sigma : (0,1) \longrightarrow \mathbb{R}$ such that, for all $r \in \mathcal{R}_{\mathcal{X}}^{\mathsf{F}}$ and $s \in (0,1)$, we have $\phi(sr) = \sigma(s) \cdot \phi(r)$. **Proof sketch.** For any $s \in (0,1)$, define $\psi_s(r) := \phi(sr)$. Then neutral reinforcement and Proposition 2H imply that $F_{\phi} = F_{\psi_{\epsilon}}$. Then Claim 1 and Theorem 2B ('uniqueness') yield some $\sigma(s) > 0$ such that $\psi_s(r) = \sigma(s) \cdot \phi(r)$ for all $r \in \mathcal{R}^F_{\mathcal{X}}$. Finally, σ continuous and increasing because ϕ continuous and increasing. \Diamond_{Claim3} **Claim 4.** For all $s, t \in (0, 1]$, we have $\sigma(s t) = \sigma(s) \cdot \sigma(t)$. **Proof sketch.** Fix nonzero $r \in \mathcal{R}_{\mathcal{X}}^{\mathcal{F}}$. Claim 1 says $t r \in \mathcal{R}_{\mathcal{X}}^{\mathcal{F}}$ for all $t \in (0, 1].$

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " **Claim 1.** $\mathcal{R}_{\mathcal{X}}^{\mathsf{F}} \cup \{0\}$ is connected. **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ . **Claim 3.** There exists a continuous, increasing function σ : $(0,1) \longrightarrow \mathbb{R}$ such that, for all $r \in \mathcal{R}_{\mathcal{X}}^{\mathsf{F}}$ and $s \in (0,1)$, we have $\phi(sr) = \sigma(s) \cdot \phi(r)$. **Proof sketch.** For any $s \in (0,1)$, define $\psi_s(r) := \phi(sr)$. Then neutral reinforcement and Proposition 2H imply that $F_{\phi} = F_{\psi_{\epsilon}}$. Then Claim 1 and Theorem 2B ('uniqueness') yield some $\sigma(s) > 0$ such that $\psi_s(r) = \sigma(s) \cdot \phi(r)$ for all $r \in \mathcal{R}^F_{\mathcal{X}}$. Finally, σ continuous and increasing because ϕ continuous and increasing. \Diamond_{Claim3} **Claim 4.** For all $s, t \in (0, 1]$, we have $\sigma(s t) = \sigma(s) \cdot \sigma(t)$. **Proof sketch.** Fix nonzero $r \in \mathcal{R}_{\mathcal{Y}}^{F}$. Claim 1 says $t r \in \mathcal{R}_{\mathcal{Y}}^{F}$ for all $t \in (0,1]$. Thus, $\sigma(st) \cdot \phi(r) = \phi(str) = \sigma(s) \cdot \phi(tr) = \sigma(s) \cdot \sigma(t) \cdot \phi(r)$, where every equality is by Claim 3.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " **Claim 1.** $\mathcal{R}_{\mathcal{X}}^{\mathsf{F}} \cup \{0\}$ is connected. **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ . **Claim 3.** There exists a continuous, increasing function $\sigma : (0,1) \longrightarrow \mathbb{R}$ such that, for all $r \in \mathcal{R}_{\mathcal{X}}^{\mathsf{F}}$ and $s \in (0,1)$, we have $\phi(sr) = \sigma(s) \cdot \phi(r)$. **Proof sketch.** For any $s \in (0,1)$, define $\psi_s(r) := \phi(sr)$. Then neutral reinforcement and Proposition 2H imply that $F_{\phi} = F_{\psi_{\epsilon}}$. Then Claim 1 and Theorem 2B ('uniqueness') yield some $\sigma(s) > 0$ such that $\psi_s(r) = \sigma(s) \cdot \phi(r)$ for all $r \in \mathcal{R}^F_{\mathcal{X}}$. Finally, σ continuous and increasing because ϕ continuous and increasing. \Diamond_{Claim3} **Claim 4.** For all $s, t \in (0, 1]$, we have $\sigma(s t) = \sigma(s) \cdot \sigma(t)$. **Proof sketch.** Fix nonzero $r \in \mathcal{R}_{\mathcal{Y}}^{F}$. Claim 1 says $t r \in \mathcal{R}_{\mathcal{Y}}^{F}$ for all $t \in (0,1]$. Thus, $\sigma(st) \cdot \phi(r) = \phi(str) = \sigma(s) \cdot \phi(tr) = \sigma(s) \cdot \sigma(t) \cdot \phi(r)$, where every equality is by Claim 3. Now divide both sides by $\phi(r)$. (Note that $\phi(r) \neq 0$ because $r \neq 0$ and ϕ is strictly increasing.) \Diamond Claim4

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F: \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " **Claim 1.** $\mathcal{R}_{\mathcal{X}}^{\mathsf{F}} \cup \{0\}$ is connected. **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ . **Claim 3.** There exists a continuous, increasing function $\sigma : (0,1) \longrightarrow \mathbb{R}$ such that, for all $r \in \mathcal{R}_{\mathcal{X}}^{\mathsf{F}}$ and $s \in (0,1)$, we have $\phi(sr) = \sigma(s) \cdot \phi(r)$. **Claim 4.** For all $s, t \in (0, 1]$, we have $\sigma(s t) = \sigma(s) \cdot \sigma(t)$. **Proof sketch.** Fix nonzero $r \in \mathcal{R}_{\mathcal{X}}^{F}$. Claim 1 says $t r \in \mathcal{R}_{\mathcal{X}}^{F}$ for all $t \in (0,1]$. Thus, $\sigma(st) \cdot \phi(r) = \phi(str) = \sigma(s) \cdot \phi(tr) = \sigma(s) \cdot \sigma(t) \cdot \phi(r)$, where every equality is by Claim 3. Now divide both sides by $\phi(r)$. (Note that $\phi(r) \neq 0$ because $r \neq 0$ and ϕ is strictly increasing.) \Diamond_{Claim4} **Claim 5.** There is some d > 0 such that $\sigma(s) = s^d$ for all $s \in [0, 1]$.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F: \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " **Claim 1.** $\mathcal{R}_{\mathcal{X}}^{F} \cup \{0\}$ is connected. **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ . **Claim 3.** There exists a continuous, increasing function $\sigma : (0,1) \longrightarrow \mathbb{R}$ such that, for all $r \in \mathcal{R}_{\mathcal{X}}^{\mathsf{F}}$ and $s \in (0,1)$, we have $\phi(sr) = \sigma(s) \cdot \phi(r)$. **Claim 4.** For all $s, t \in (0, 1]$, we have $\sigma(s t) = \sigma(s) \cdot \sigma(t)$. **Proof sketch.** Fix nonzero $r \in \mathcal{R}_{\mathcal{X}}^{F}$. Claim 1 says $t r \in \mathcal{R}_{\mathcal{X}}^{F}$ for all $t \in (0,1]$. Thus, $\sigma(st) \cdot \phi(r) = \phi(str) = \sigma(s) \cdot \phi(tr) = \sigma(s) \cdot \sigma(t) \cdot \phi(r)$, where every equality is by Claim 3. Now divide both sides by $\phi(r)$. (Note that $\phi(r) \neq 0$ because $r \neq 0$ and ϕ is strictly increasing.) \Diamond Claim4 **Claim 5.** There is some d > 0 such that $\sigma(s) = s^d$ for all $s \in [0, 1]$. **Proof sketch.** Define $\lambda(s) := \log(\sigma(e^s))$ for $s \in (-\infty, 0)$.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F: \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " **Claim 1.** $\mathcal{R}_{\mathcal{X}}^{\mathsf{F}} \cup \{0\}$ is connected. **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ . **Claim 3.** There exists a continuous, increasing function $\sigma : (0,1) \longrightarrow \mathbb{R}$ such that, for all $r \in \mathcal{R}_{\mathcal{X}}^{\mathsf{F}}$ and $s \in (0,1)$, we have $\phi(sr) = \sigma(s) \cdot \phi(r)$. **Claim 4.** For all $s, t \in (0, 1]$, we have $\sigma(s t) = \sigma(s) \cdot \sigma(t)$. **Proof sketch.** Fix nonzero $r \in \mathcal{R}_{\mathcal{X}}^{F}$. Claim 1 says $t r \in \mathcal{R}_{\mathcal{X}}^{F}$ for all $t \in (0,1]$. Thus, $\sigma(st) \cdot \phi(r) = \phi(str) = \sigma(s) \cdot \phi(tr) = \sigma(s) \cdot \sigma(t) \cdot \phi(r)$, where every equality is by Claim 3. Now divide both sides by $\phi(r)$. (Note that $\phi(r) \neq 0$ because $r \neq 0$ and ϕ is strictly increasing.) \Diamond_{Claim4} **Claim 5.** There is some d > 0 such that $\sigma(s) = s^d$ for all $s \in [0, 1]$. **Proof sketch.** Define $\lambda(s) := \log(\sigma(e^s))$ for $s \in (-\infty, 0)$. Then λ is continuous and increasing on $(-\infty, 0)$ because σ continuous and increasing on (0, 1).

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F: \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " **Claim 1.** $\mathcal{R}_{\mathcal{X}}^{\mathsf{F}} \cup \{0\}$ is connected. **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ . **Claim 3.** There exists a continuous, increasing function $\sigma : (0,1) \longrightarrow \mathbb{R}$ such that, for all $r \in \mathcal{R}_{\mathcal{X}}^{\mathsf{F}}$ and $s \in (0,1)$, we have $\phi(sr) = \sigma(s) \cdot \phi(r)$. **Claim 4.** For all $s, t \in (0, 1]$, we have $\sigma(s t) = \sigma(s) \cdot \sigma(t)$. **Proof sketch.** Fix nonzero $r \in \mathcal{R}_{\mathcal{X}}^{F}$. Claim 1 says $t r \in \mathcal{R}_{\mathcal{X}}^{F}$ for all $t \in (0,1]$. Thus, $\sigma(st) \cdot \phi(r) = \phi(str) = \sigma(s) \cdot \phi(tr) = \sigma(s) \cdot \sigma(t) \cdot \phi(r)$, where every equality is by Claim 3. Now divide both sides by $\phi(r)$. (Note that $\phi(r) \neq 0$ because $r \neq 0$ and ϕ is strictly increasing.) \Diamond_{Claim4} **Claim 5.** There is some d > 0 such that $\sigma(s) = s^d$ for all $s \in [0, 1]$. **Proof sketch.** Define $\lambda(s) := \log(\sigma(e^s))$ for $s \in (-\infty, 0)$. Then λ is continuous and increasing on $(-\infty, 0)$ because σ continuous and increasing on (0,1). Claim 4 says that λ satisfies the Cauchy functional equation: $\lambda(s+t) = \lambda(s) + \lambda(t)$ for all $s, t \in (-\infty, 0)$.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " **Claim 1.** $\mathcal{R}_{\mathcal{X}}^{\mathsf{F}} \cup \{0\}$ is connected. **Claim 2.** $F_{\gamma} = F_{\phi}$ for some real-valued, continuous gain function ϕ . **Claim 3.** There exists a continuous, increasing function $\sigma : (0,1) \longrightarrow \mathbb{R}$ such that, for all $r \in \mathcal{R}_{\mathcal{X}}^{\mathsf{F}}$ and $s \in (0,1)$, we have $\phi(sr) = \sigma(s) \cdot \phi(r)$. **Claim 4.** For all $s, t \in (0, 1]$, we have $\sigma(s t) = \sigma(s) \cdot \sigma(t)$. **Proof sketch.** Fix nonzero $r \in \mathcal{R}_{\mathcal{X}}^{F}$. Claim 1 says $t r \in \mathcal{R}_{\mathcal{X}}^{F}$ for all $t \in (0,1]$. Thus, $\sigma(st) \cdot \phi(r) = \phi(str) = \sigma(s) \cdot \phi(tr) = \sigma(s) \cdot \sigma(t) \cdot \phi(r)$, where every equality is by Claim 3. Now divide both sides by $\phi(r)$. (Note that $\phi(r) \neq 0$ because $r \neq 0$ and ϕ is strictly increasing.) \Diamond_{Claim4} **Claim 5.** There is some d > 0 such that $\sigma(s) = s^d$ for all $s \in [0, 1]$. **Proof sketch.** Define $\lambda(s) := \log(\sigma(e^s))$ for $s \in (-\infty, 0)$. Then λ is continuous and increasing on $(-\infty, 0)$ because σ continuous and increasing on (0,1). Claim 4 says that λ satisfies the Cauchy functional equation: $\lambda(s+t) = \lambda(s) + \lambda(t)$ for all $s, t \in (-\infty, 0)$. Thus, there exists d > 0 such that $\lambda(s) = ds$ for all $s \in (-\infty, 0)$. \Diamond_{Claim5}

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F: \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " Claim 3. \exists a continuous, increasing function $\sigma: (0,1) \longrightarrow \mathbb{R}$ such that: $\phi(s r) = \sigma(s) \cdot \phi(r) \quad \forall r \in \mathcal{R}_{\mathcal{V}}^{\mathcal{F}}$ and $s \in (0,1)$. **Claim 4.** For all $s, t \in (0, 1]$, we have $\sigma(st) = \sigma(s) \cdot \sigma(t)$. **Claim 5.** There is some d > 0 such that $\sigma(s) = s^d$ for all $s \in [0, 1]$. **Proof sketch.** Define $\lambda(s) := \log(\sigma(e^s))$ for $s \in (-\infty, 0)$. Then λ is continuous and increasing on $(-\infty, 0)$ because σ continuous and increasing on (0,1). Claim 4 says that λ satisfies the Cauchy functional equation: $\lambda(s+t) = \lambda(s) + \lambda(t)$ for all $s, t \in (-\infty, 0)$. Thus, there exists d > 0 such that $\lambda(s) = ds$ for all $s \in (-\infty, 0)$. \Diamond_{Claim5} Now fix $R \in \mathcal{R}_{\mathcal{X}}^{F}$, and define $C := \phi(R)/R^{d}$.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F: \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " Claim 3. \exists a continuous, increasing function $\sigma: (0,1) \longrightarrow \mathbb{R}$ such that: $\phi(sr) = \sigma(s) \cdot \phi(r) \quad \forall r \in \mathcal{R}_{\mathcal{V}}^{\mathcal{F}}$ and $s \in (0,1)$. **Claim 4.** For all $s, t \in (0, 1]$, we have $\sigma(st) = \sigma(s) \cdot \sigma(t)$. **Claim 5.** There is some d > 0 such that $\sigma(s) = s^d$ for all $s \in [0, 1]$. **Proof sketch.** Define $\lambda(s) := \log(\sigma(e^s))$ for $s \in (-\infty, 0)$. Then λ is continuous and increasing on $(-\infty, 0)$ because σ continuous and increasing on (0,1). Claim 4 says that λ satisfies the Cauchy functional equation: $\lambda(s+t) = \lambda(s) + \lambda(t)$ for all $s, t \in (-\infty, 0)$. Thus, there exists d > 0 such that $\lambda(s) = ds$ for all $s \in (-\infty, 0)$. \Diamond_{Claim5} Now fix $R \in \mathcal{R}_{\mathcal{X}}^{F}$, and define $C := \phi(R)/R^{d}$. For all $r \in [0, R]$, we have: $\phi(r) = \phi((r/R) \cdot R) \underset{(a)}{=} \sigma(r/R) \cdot \phi(R) \underset{(a)}{=} (r/R)^d \cdot \phi(R) = C \cdot r^d,$

where (\diamond) is by Claim 3 and where (*) is by Claim 5.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F: \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X})$ \iff $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " **Claim 3.** \exists a continuous, increasing function $\sigma: (0,1) \longrightarrow \mathbb{R}$ such that: $\phi(sr) = \sigma(s) \cdot \phi(r) \quad \forall r \in \mathcal{R}_{\mathcal{V}}^{\mathcal{F}}$ and $s \in (0,1)$. **Claim 4.** For all $s, t \in (0, 1]$, we have $\sigma(st) = \sigma(s) \cdot \sigma(t)$. **Claim 5.** There is some d > 0 such that $\sigma(s) = s^d$ for all $s \in [0, 1]$. **Proof sketch.** Define $\lambda(s) := \log(\sigma(e^s))$ for $s \in (-\infty, 0)$. Then λ is continuous and increasing on $(-\infty, 0)$ because σ continuous and increasing on (0,1). Claim 4 says that λ satisfies the Cauchy functional equation: $\lambda(s+t) = \lambda(s) + \lambda(t)$ for all $s, t \in (-\infty, 0)$. Thus, there exists d > 0 such that $\lambda(s) = ds$ for all $s \in (-\infty, 0)$. \Diamond_{Claim5}

Now fix $R \in \mathcal{R}_{\mathcal{X}}^{F}$, and define $C := \phi(R)/R^{d}$. For all $r \in [0, R]$, we have:

$$\phi(r) = \phi((r/R) \cdot R) \underset{\overline{(\circ)}}{=} \sigma(r/R) \cdot \phi(R) \underset{\overline{(\ast)}}{=} (r/R)^d \cdot \phi(R) = C \cdot r^d,$$

where (\diamond) is by Claim 3 and where (*) is by Claim 5. But *R* is arbitrary; thus, there exists C > 0 such that $\phi(r) = C \cdot r^d$ for all positive $r \in \mathcal{R}^F_{\mathcal{X}}$.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F: \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X})$ \iff $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " **Claim 3.** \exists a continuous, increasing function $\sigma: (0,1) \longrightarrow \mathbb{R}$ such that: $\phi(sr) = \sigma(s) \cdot \phi(r) \quad \forall r \in \mathcal{R}_{\mathcal{V}}^{\mathsf{F}}$ and $s \in (0,1)$. **Claim 4.** For all $s, t \in (0, 1]$, we have $\sigma(st) = \sigma(s) \cdot \sigma(t)$. **Claim 5.** There is some d > 0 such that $\sigma(s) = s^d$ for all $s \in [0, 1]$. **Proof sketch.** Define $\lambda(s) := \log(\sigma(e^s))$ for $s \in (-\infty, 0)$. Then λ is continuous and increasing on $(-\infty, 0)$ because σ continuous and increasing on (0,1). Claim 4 says that λ satisfies the Cauchy functional equation: $\lambda(s+t) = \lambda(s) + \lambda(t)$ for all $s, t \in (-\infty, 0)$.

Thus, there exists d > 0 such that $\lambda(s) = ds$ for all $s \in (-\infty, 0)$. \Diamond_{Claim5} Now fix $R \in \mathcal{R}^F_{\mathcal{X}}$, and define $C := \phi(R)/R^d$. For all $r \in [0, R]$, we have:

$$\phi(r) = \phi((r/R) \cdot R) \underset{\overline{(\circ)}}{=} \sigma(r/R) \cdot \phi(R) \underset{\overline{(*)}}{=} (r/R)^d \cdot \phi(R) = C \cdot r^d,$$

where (\diamond) is by Claim 3 and where (*) is by Claim 5. But *R* is arbitrary; thus, there exists C > 0 such that $\phi(r) = C \cdot r^d$ for all positive $r \in \mathcal{R}^F_{\mathcal{X}}$. Finally, ϕ is odd, so this means $\phi(r) = C \cdot \phi^d(r)$ for all $r \in \mathcal{R}^F_{\mathcal{X}}$.

Theorem 2G. Let \mathcal{X} be a thick judgement space, and let $F: \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: (F is regular, upper hemicontinuous and satisfies neutral reinforcement on $\Delta(\mathcal{X}) \iff$ $(F = H^d \text{ for some } d \in (0, \infty)).$ **Proof sketch.** " \implies " Claim 3. \exists a continuous, increasing function $\sigma: (0,1) \longrightarrow \mathbb{R}$ such that: $\phi(sr) = \sigma(s) \cdot \phi(r) \quad \forall r \in \mathcal{R}_{\mathcal{V}}^{\mathsf{F}}$ and $s \in (0,1)$. **Claim 5.** There is some d > 0 such that $\sigma(s) = s^d$ for all $s \in [0, 1]$. **Proof sketch.** Define $\lambda(s) := \log(\sigma(e^s))$ for $s \in (-\infty, 0)$. Then λ is continuous and increasing on $(-\infty, 0)$ because σ continuous and increasing on (0,1). Claim 4 says that λ satisfies the Cauchy functional equation: $\lambda(s+t) = \lambda(s) + \lambda(t)$ for all $s, t \in (-\infty, 0)$. Thus, there exists d > 0 such that $\lambda(s) = ds$ for all $s \in (-\infty, 0)$. \Diamond_{Claim5} Now fix $R \in \mathcal{R}_{\mathcal{X}}^{F}$, and define $C := \phi(R)/R^{d}$. For all $r \in [0, R]$, we have: $\phi(r) = \phi((r/R) \cdot R) \equiv \sigma(r/R) \cdot \phi(R) \equiv (r/R)^d \cdot \phi(R) = C \cdot r^d,$

where (\diamond) is by Claim 3 and where (*) is by Claim 5. But *R* is arbitrary; thus, there exists C > 0 such that $\phi(r) = C \cdot r^d$ for all positive $r \in \mathcal{R}_{\mathcal{X}}^F$. Finally, ϕ is odd, so this means $\phi(r) = C \cdot \phi^d(r)$ for all $r \in \mathcal{R}_{\mathcal{X}}^F$. But then Theorem 2B ('uniqueness') implies that $F_{\phi} = H^d$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem 2A. \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

・ロト・日本・モート モー うへぐ

・ロト・日本・モート モー うへぐ

・ロト・日本・モート モー うへぐ

" \implies " First note that (reinforcement) \implies (neutral reinforcement).

" \implies " First note that (reinforcement) \implies (neutral reinforcement). Thus, Theorem 2G says $F = H^d$ for some $d \in (0, \infty)$.

" \implies " First note that (reinforcement) \implies (neutral reinforcement).

Thus, Theorem 2G says $F = H^d$ for some $d \in (0, \infty)$.

I claim: If a homogeneous rule H^d satisfies reinforcement, then d = 1.

" \implies " First note that (reinforcement) \implies (neutral reinforcement). Thus, Theorem 2G says $F = H^d$ for some $d \in (0, \infty)$.

I claim: If a homogeneous rule H^d satisfies reinforcement, then d = 1. Define $\phi^d(r) := \operatorname{sign}(r) \cdot |r|^d$ for all $r \in [-1, 1]$. (So $H^d = F_{\phi^d}$.)

" \Longrightarrow " First note that (reinforcement) \Longrightarrow (neutral reinforcement). Thus, Theorem 2G says $F = H^d$ for some $d \in (0, \infty)$. I claim: If a homogeneous rule H^d satisfies reinforcement, then d = 1. Define $\phi^d(r) := \operatorname{sign}(r) \cdot |r|^d$ for all $r \in [-1, 1]$. (So $H^d = F_{\phi^d}$.) Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \ge 3$. For any $\mathbf{b} \in \mathcal{B}_{\mathbf{x}, \mathbf{y}}$, we must have

$$0 = (\mathbf{x} - \mathbf{y}) \bullet \phi^d(\mathbf{b}) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \phi^d(b_k).$$
(1)

" \Longrightarrow " First note that (reinforcement) \Longrightarrow (neutral reinforcement). Thus, Theorem 2G says $F = H^d$ for some $d \in (0, \infty)$. I claim: If a homogeneous rule H^d satisfies reinforcement, then d = 1. Define $\phi^d(r) := \operatorname{sign}(r) \cdot |r|^d$ for all $r \in [-1, 1]$. (So $H^d = F_{\phi^d}$.) Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \ge 3$. For any $\mathbf{b} \in \mathcal{B}_{\mathbf{x}, \mathbf{y}}$, we must have

$$0 = (\mathbf{x} - \mathbf{y}) \bullet \phi^d(\mathbf{b}) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \phi^d(b_k).$$
(1)

Let $\mathcal{K}_+ := \{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}); \operatorname{sign}(x_k - y_k) = \operatorname{sign}(b_k)\}$ and let $\mathcal{K}_- := \{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}); \operatorname{sign}(x_k - y_k) = -\operatorname{sign}(b_k)\}.$

" \Longrightarrow " First note that (reinforcement) \Longrightarrow (neutral reinforcement). Thus, Theorem 2G says $F = H^d$ for some $d \in (0, \infty)$. I claim: If a homogeneous rule H^d satisfies reinforcement, then d = 1. Define $\phi^d(r) := \operatorname{sign}(r) \cdot |r|^d$ for all $r \in [-1, 1]$. (So $H^d = F_{\phi^d}$.) Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \ge 3$. For any $\mathbf{b} \in \mathcal{B}_{\mathbf{x}, \mathbf{y}}$, we must have

$$0 = (\mathbf{x} - \mathbf{y}) \bullet \phi^d(\mathbf{b}) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \phi^d(b_k).$$
(1)

Let $\mathcal{K}_+ := \{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}); \operatorname{sign}(x_k - y_k) = \operatorname{sign}(b_k)\}$ and let $\mathcal{K}_- := \{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}); \operatorname{sign}(x_k - y_k) = -\operatorname{sign}(b_k)\}.$ Then (1) becomes $\sum_{k \in \mathcal{K}_+} (b_k)^d = \sum_{k \in \mathcal{K}_-} (b_k)^d \qquad (2)$

" \Longrightarrow " First note that (reinforcement) \Longrightarrow (neutral reinforcement). Thus, Theorem 2G says $F = H^d$ for some $d \in (0, \infty)$. I claim: If a homogeneous rule H^d satisfies reinforcement, then d = 1. Define $\phi^d(r) := \operatorname{sign}(r) \cdot |r|^d$ for all $r \in [-1, 1]$. (So $H^d = F_{\phi^d}$.) Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \ge 3$. For any $\mathbf{b} \in \mathcal{B}_{\mathbf{x}, \mathbf{y}}$, we must have

$$0 = (\mathbf{x} - \mathbf{y}) \bullet \phi^d(\mathbf{b}) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \phi^d(b_k).$$
(1)

Let $\mathcal{K}_+ := \{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}); \operatorname{sign}(x_k - y_k) = \operatorname{sign}(b_k)\}$ and let $\mathcal{K}_- := \{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y}); \operatorname{sign}(x_k - y_k) = -\operatorname{sign}(b_k)\}.$ Then (1) becomes $\sum_{k \in \mathcal{K}_+} (b_k)^d = \sum_{k \in \mathcal{K}_-} (b_k)^d \qquad (2)$

For any $b_0, b_1 \in \mathcal{B}_{x,y}$, reinforcement implies that the line segment $[b_0, b_1]$ is contained in $\mathcal{B}_{x,y}$.

Theorem 2A. \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F_{ϕ} is the median rule. **Proof sketch.** " \Longrightarrow " First note that (reinforcement) \Longrightarrow (neutral reinforcement). Thus, Theorem 2G says $F = H^d$ for some $d \in (0, \infty)$. I claim: If a homogeneous rule H^d satisfies reinforcement, then d = 1. Define $\phi^d(r) := \operatorname{sign}(r) \cdot |r|^d$ for all $r \in [-1, 1]$. (So $H^d = F_{\phi^d}$.) Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \geq 3$. For any $\mathbf{b} \in \mathcal{B}_{\mathbf{x},\mathbf{y}}$, we must have

$$0 = (\mathbf{x} - \mathbf{y}) \bullet \phi^d(\mathbf{b}) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \phi^d(b_k).$$
(1)

Then (1) becomes

$$\sum_{k \in \mathcal{K}_+} (b_k)^d = \sum_{k \in \mathcal{K}_-} (b_k)^d$$
(2)

For any $\mathbf{b}_0, \mathbf{b}_1 \in \mathcal{B}_{\mathbf{x},\mathbf{y}}$, reinforcement implies that the line segment $[\mathbf{b}_0, \mathbf{b}_1]$ is contained in $\mathcal{B}_{\mathbf{x},\mathbf{y}}$. Thus, (1) holds for all $\mathbf{b} \in [\mathbf{b}_0, \mathbf{b}_1]$.

Theorem 2A. \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F_{ϕ} is the median rule. **Proof sketch.** " \Longrightarrow " First note that (reinforcement) \Longrightarrow (neutral reinforcement). Thus, Theorem 2G says $F = H^d$ for some $d \in (0, \infty)$. I claim: If a homogeneous rule H^d satisfies reinforcement, then d = 1. Define $\phi^d(r) := \operatorname{sign}(r) \cdot |r|^d$ for all $r \in [-1, 1]$. (So $H^d = F_{\phi^d}$.) Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \geq 3$. For any $\mathbf{b} \in \mathcal{B}_{\mathbf{x},\mathbf{y}}$, we must have

$$0 = (\mathbf{x} - \mathbf{y}) \bullet \phi^d(\mathbf{b}) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \phi^d(b_k).$$
(1)

Then (1) becomes

$$\sum_{k \in \mathcal{K}_+} (b_k)^d = \sum_{k \in \mathcal{K}_-} (b_k)^d$$
(2)

For any $\mathbf{b}_0, \mathbf{b}_1 \in \mathcal{B}_{\mathbf{x},\mathbf{y}}$, reinforcement implies that the line segment $[\mathbf{b}_0, \mathbf{b}_1]$ is contained in $\mathcal{B}_{\mathbf{x},\mathbf{y}}$. Thus, (1) holds for all $\mathbf{b} \in [\mathbf{b}_0, \mathbf{b}_1]$. Furthermore, iff \mathbf{b}_0 and \mathbf{b}_1 are close enough, then then (2) holds for all $\mathbf{b} \in [\mathbf{b}_0, \mathbf{b}_1]$ (for some choice of \mathcal{K}_+ and \mathcal{K}_-). **Theorem 2A.** \mathcal{X} be a thick judgement space, and let $F : \Delta(\mathcal{X}) \rightrightarrows \mathcal{X}$ be a judgement aggregation rule. Then: F is regular, upper hemicontinuous and satisfies reinforcement on $\Delta(\mathcal{X})$ if and only if F_{ϕ} is the median rule. **Proof sketch.** " \Longrightarrow " First note that (reinforcement) \Longrightarrow (neutral reinforcement). Thus, Theorem 2G says $F = H^d$ for some $d \in (0, \infty)$. I claim: If a homogeneous rule H^d satisfies reinforcement, then d = 1. Define $\phi^d(r) := \operatorname{sign}(r) \cdot |r|^d$ for all $r \in [-1, 1]$. (So $H^d = F_{\phi^d}$.) Let $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ with $d(\mathbf{x}, \mathbf{y}) \geq 3$. For any $\mathbf{b} \in \mathcal{B}_{\mathbf{x},\mathbf{y}}$, we must have

$$0 = (\mathbf{x} - \mathbf{y}) \bullet \phi^d(\mathbf{b}) = \sum_{k \in \mathcal{K}_{\pm}(\mathbf{x}, \mathbf{y})} (x_k - y_k) \phi^d(b_k).$$
(1)

Then (1) becomes

$$\sum_{k \in \mathcal{K}_+} (b_k)^d = \sum_{k \in \mathcal{K}_-} (b_k)^d$$
(2)

For any $\mathbf{b}_0, \mathbf{b}_1 \in \mathcal{B}_{\mathbf{x},\mathbf{y}}$, reinforcement implies that the line segment $[\mathbf{b}_0, \mathbf{b}_1]$ is contained in $\mathcal{B}_{\mathbf{x},\mathbf{y}}$. Thus, (1) holds for all $\mathbf{b} \in [\mathbf{b}_0, \mathbf{b}_1]$. Furthermore, iff \mathbf{b}_0 and \mathbf{b}_1 are close enough, then then (2) holds for all $\mathbf{b} \in [\mathbf{b}_0, \mathbf{b}_1]$ (for some choice of \mathcal{K}_+ and \mathcal{K}_-). For a suitable \mathbf{b}_0 and \mathbf{b}_1 , it can be shown that this forces d = 1. **Theorem 1A.** If \mathcal{X} is proximal, then \mathcal{X} is supermajoritarian determinate.

◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

 $\text{ For any } \mathbf{x} \sim \mathbf{y} \in \mathcal{X} \text{, write } \mathbf{x} \xrightarrow{\sim}_{\mu} \mathbf{y} \text{ if } \mathbf{x} \bullet \widetilde{\mu} < \mathbf{y} \bullet \widetilde{\mu}.$

For any $\mathbf{x} \sim \mathbf{y} \in \mathcal{X}$, write $\mathbf{x} \underset{\mu}{\rightsquigarrow} \mathbf{y}$ if $\mathbf{x} \bullet \widetilde{\mu} < \mathbf{y} \bullet \widetilde{\mu}$.

Let $\underset{\mu}{\prec}$ be the transitive closure of $\underset{\mu}{\rightsquigarrow}$; then $\underset{\mu}{\prec}$ is a partial order on \mathcal{X} .

・ロト・日本・モート モー うへぐ

Theorem 1A. If \mathcal{X} is proximal, then \mathcal{X} is supermajoritarian determinate. **Proof sketch.** The relation \sim defines a graph on \mathcal{X} . We define an acyclic orientation $\underset{\mu}{\rightarrow}$ on this graph as follows: For any $\mathbf{x} \sim \mathbf{y} \in \mathcal{X}$, write $\mathbf{x} \underset{\mu}{\rightarrow} \mathbf{y}$ if $\mathbf{x} \bullet \tilde{\mu} < \mathbf{y} \bullet \tilde{\mu}$.

Let $\stackrel{\prec}{\mu}$ be the transitive closure of $\stackrel{\rightsquigarrow}{\mu}$; then $\stackrel{\prec}{\mu}$ is a partial order on \mathcal{X} . Let $\mathcal{X}' := \max(\mathcal{X}, \stackrel{\prec}{\mu})$.

For any $\mathbf{x} \sim \mathbf{y} \in \mathcal{X}$, write $\mathbf{x} \underset{\mu}{\rightsquigarrow} \mathbf{y}$ if $\mathbf{x} \bullet \widetilde{\mu} < \mathbf{y} \bullet \widetilde{\mu}$.

Let $\underset{\mu}{\prec}$ be the transitive closure of $\underset{\mu}{\leadsto}$; then $\underset{\mu}{\prec}$ is a partial order on \mathcal{X} . Let $\mathcal{X}' := \max(\mathcal{X}, \underset{\mu}{\prec})$.

・ロト・日本・モート モー うへぐ

Claim 1. If $\phi : [-1, 1] \longrightarrow \mathbb{R}$ is odd & increasing, then $F_{\phi}(\mathcal{X}, \mu) \subseteq \mathcal{X}'$.

For any $\mathbf{x} \sim \mathbf{y} \in \mathcal{X}$, write $\mathbf{x} \underset{\mu}{\rightsquigarrow} \mathbf{y}$ if $\mathbf{x} \bullet \widetilde{\mu} < \mathbf{y} \bullet \widetilde{\mu}$.

Let $\underset{\mu}{\prec}$ be the transitive closure of $\underset{\mu}{\rightsquigarrow}$; then $\underset{\mu}{\prec}$ is a partial order on \mathcal{X} . Let $\mathcal{X}' := \max(\mathcal{X}, \underset{\mu}{\prec})$.

Claim 1. If $\phi : [-1,1] \longrightarrow \mathbb{R}$ is odd & increasing, then $F_{\phi}(\mathcal{X},\mu) \subseteq \mathcal{X}'$. (**Proof sketch:** For all $\mathbf{x} \sim \mathbf{y}$, we have $(\mathbf{x} - \mathbf{y}) \bullet \phi(\widetilde{\mu}) < 0$ iff $\mathbf{x} \rightsquigarrow \mathbf{y}$.)

・ロト・日本・モート モー うへぐ

Theorem 1A. If \mathcal{X} is proximal, then \mathcal{X} is supermajoritarian determinate. **Proof sketch.** The relation \sim defines a graph on \mathcal{X} . We define an acyclic orientation $\stackrel{\sim}{\mu}$ on this graph as follows: For any $\mathbf{x} \sim \mathbf{y} \in \mathcal{X}$, write $\mathbf{x} \stackrel{\sim}{\mu} \mathbf{y}$ if $\mathbf{x} \bullet \widetilde{\mu} < \mathbf{y} \bullet \widetilde{\mu}$. Let $\stackrel{\prec}{\mu}$ be the transitive closure of $\stackrel{\sim}{\mu}$; then $\stackrel{\prec}{\mu}$ is a partial order on \mathcal{X} . Let $\mathcal{X}' := \max(\mathcal{X}, \stackrel{\prec}{\mu})$. **Claim 1.** If $\phi : [-1, 1] \longrightarrow \mathbb{R}$ is odd & increasing, then $F_{\phi}(\mathcal{X}, \mu) \subseteq \mathcal{X}'$. (**Proof sketch:** For all $\mathbf{x} \sim \mathbf{y}$, we have $(\mathbf{x} - \mathbf{y}) \bullet \phi(\widetilde{\mu}) < 0$ iff $\mathbf{x} \rightsquigarrow \mathbf{y}$.) **Claim 2.** Median $(\mathcal{X}, \mu) = \mathcal{X}'$.

・ロト・日本・モート モー うへぐ

For any $\mathbf{x} \sim \mathbf{y} \in \mathcal{X}$, write $\mathbf{x} \underset{\mu}{\leadsto} \mathbf{y}$ if $\mathbf{x} \bullet \widetilde{\mu} < \mathbf{y} \bullet \widetilde{\mu}$.

Let $\underset{\mu}{\prec}$ be the transitive closure of $\underset{\mu}{\rightsquigarrow}$; then $\underset{\mu}{\prec}$ is a partial order on \mathcal{X} . Let $\mathcal{X}' := \max(\mathcal{X}, \underset{\mu}{\prec})$.

Claim 1. If $\phi : [-1, 1] \longrightarrow \mathbb{R}$ is odd & increasing, then $F_{\phi}(\mathcal{X}, \mu) \subseteq \mathcal{X}'$. (Proof sketch: For all $\mathbf{x} \sim \mathbf{y}$, we have $(\mathbf{x} - \mathbf{y}) \bullet \phi(\widetilde{\mu}) < 0$ iff $\mathbf{x} \rightsquigarrow \mathbf{y}$.) Claim 2. Median $(\mathcal{X}, \mu) = \mathcal{X}'$.

(**Proof sketch:** "⊆" is by Claim 1. For "⊇", prove contrapositive using Separating Hyperplane Theorem and Farkas' Lemma.)

For any $\mathbf{x} \sim \mathbf{y} \in \mathcal{X}$, write $\mathbf{x} \underset{\mu}{\leadsto} \mathbf{y}$ if $\mathbf{x} \bullet \widetilde{\mu} < \mathbf{y} \bullet \widetilde{\mu}$.

Let $\underset{\mu}{\prec}$ be the transitive closure of $\underset{\mu}{\rightsquigarrow}$; then $\underset{\mu}{\prec}$ is a partial order on \mathcal{X} . Let $\mathcal{X}' := \max(\mathcal{X}, \underset{\mu}{\prec})$.

Claim 1. If $\phi : [-1, 1] \longrightarrow \mathbb{R}$ is odd & increasing, then $F_{\phi}(\mathcal{X}, \mu) \subseteq \mathcal{X}'$. (Proof sketch: For all $\mathbf{x} \sim \mathbf{y}$, we have $(\mathbf{x} - \mathbf{y}) \bullet \phi(\widetilde{\mu}) < 0$ iff $\mathbf{x} \rightsquigarrow \mathbf{y}$.) Claim 2. Median $(\mathcal{X}, \mu) = \mathcal{X}'$.

(**Proof sketch:** " \subseteq " is by Claim 1. For " \supseteq ", prove contrapositive using Separating Hyperplane Theorem and Farkas' Lemma.)

Claim 3. If $\psi : [-1,1] \longrightarrow \mathbb{R}$ is odd, increasing and continuous, then $F_{\psi}(\mathcal{X},\mu) = \text{Median}(\mathcal{X},\mu)$ for all $\mu \in \Delta(\mathcal{X})$.

For any $\mathbf{x} \sim \mathbf{y} \in \mathcal{X}$, write $\mathbf{x} \underset{\mu}{\leadsto} \mathbf{y}$ if $\mathbf{x} \bullet \widetilde{\mu} < \mathbf{y} \bullet \widetilde{\mu}$.

Let $\underset{\mu}{\prec}$ be the transitive closure of $\underset{\mu}{\rightsquigarrow}$; then $\underset{\mu}{\prec}$ is a partial order on \mathcal{X} . Let $\mathcal{X}' := \max(\mathcal{X}, \underset{\mu}{\prec})$.

Claim 1. If $\phi : [-1, 1] \longrightarrow \mathbb{R}$ is odd & increasing, then $F_{\phi}(\mathcal{X}, \mu) \subseteq \mathcal{X}'$. (Proof sketch: For all $\mathbf{x} \sim \mathbf{y}$, we have $(\mathbf{x} - \mathbf{y}) \bullet \phi(\widetilde{\mu}) < 0$ iff $\mathbf{x} \rightsquigarrow \mathbf{y}$.) Claim 2. Median $(\mathcal{X}, \mu) = \mathcal{X}'$.

(**Proof sketch:** " \subseteq " is by Claim 1. For " \supseteq ", prove contrapositive using Separating Hyperplane Theorem and Farkas' Lemma.)

Claim 3. If $\psi : [-1,1] \longrightarrow \mathbb{R}$ is odd, increasing and continuous, then $F_{\psi}(\mathcal{X},\mu) = \text{Median}(\mathcal{X},\mu)$ for all $\mu \in \Delta(\mathcal{X})$.

(**Proof sketch:** Claims 1 and 2 imply that $F_{\psi}(\mathcal{X}, \mu) \subseteq \text{Median}(\mathcal{X}, \mu)$. Now use monotonicity of median rule and hemicontinuity of F_{ϕ} .)

For any $\mathbf{x} \sim \mathbf{y} \in \mathcal{X}$, write $\mathbf{x} \underset{\mu}{\leadsto} \mathbf{y}$ if $\mathbf{x} \bullet \widetilde{\mu} < \mathbf{y} \bullet \widetilde{\mu}$.

Let $\underset{\mu}{\prec}$ be the transitive closure of $\underset{\mu}{\rightsquigarrow}$; then $\underset{\mu}{\prec}$ is a partial order on \mathcal{X} . Let $\mathcal{X}' := \max(\mathcal{X}, \underset{\mu}{\prec})$.

Claim 1. If $\phi : [-1, 1] \longrightarrow \mathbb{R}$ is odd & increasing, then $F_{\phi}(\mathcal{X}, \mu) \subseteq \mathcal{X}'$. (Proof sketch: For all $\mathbf{x} \sim \mathbf{y}$, we have $(\mathbf{x} - \mathbf{y}) \bullet \phi(\widetilde{\mu}) < 0$ iff $\mathbf{x} \rightsquigarrow \mathbf{y}$.) Claim 2. Median $(\mathcal{X}, \mu) = \mathcal{X}'$.

(**Proof sketch:** " \subseteq " is by Claim 1. For " \supseteq ", prove contrapositive using Separating Hyperplane Theorem and Farkas' Lemma.)

Claim 3. If $\psi : [-1,1] \longrightarrow \mathbb{R}$ is odd, increasing and continuous, then $F_{\psi}(\mathcal{X},\mu) = \text{Median}(\mathcal{X},\mu)$ for all $\mu \in \Delta(\mathcal{X})$.

(**Proof sketch:** Claims 1 and 2 imply that $F_{\psi}(\mathcal{X}, \mu) \subseteq \text{Median}(\mathcal{X}, \mu)$. Now use monotonicity of median rule and hemicontinuity of F_{ϕ} .)

Let $\Phi_I := \{ \text{ odd continuous increasing } \phi : [-1, 1] \longrightarrow \mathbb{R} \}.$

Theorem 1A. If \mathcal{X} is proximal, then \mathcal{X} is supermajoritarian determinate. **Proof sketch.** For any $\mathbf{x} \sim \mathbf{y} \in \mathcal{X}$, write $\mathbf{x} \stackrel{\text{def}}{\to} \mathbf{y}$ if $\mathbf{x} \bullet \widetilde{\mu} < \mathbf{y} \bullet \widetilde{\mu}$. Let $\frac{1}{n}$ be the transitive closure of $\frac{1}{n}$; then $\frac{1}{n}$ is a partial order on \mathcal{X} . Let $\mathcal{X}' := \max(\mathcal{X}, \prec u)$. **Claim 1.** If $\phi : [-1, 1] \longrightarrow \mathbb{R}$ is odd & increasing, then $F_{\phi}(\mathcal{X}, \mu) \subseteq \mathcal{X}'$. Claim 2. Median $(\mathcal{X}, \mu) = \mathcal{X}'$. **Claim 3.** If $\psi : [-1,1] \longrightarrow \mathbb{R}$ is odd, increasing and continuous, then $F_{\psi}(\mathcal{X},\mu) = \text{Median}(\mathcal{X},\mu)$ for all $\mu \in \Delta(\mathcal{X})$. (**Proof sketch:** Claims 1 and 2 imply that $F_{\psi}(\mathcal{X}, \mu) \subseteq \text{Median}(\mathcal{X}, \mu)$. Now use monotonicity of median rule and hemicontinuity of F_{ϕ} .) Let $\Phi_I := \{ \text{ odd continuous increasing } \phi : [-1, 1] \longrightarrow \mathbb{R} \}$. It follows that $\operatorname{SME}(\mathcal{X},\mu) = \bigcup_{(\dagger)} F_{\phi}(\mathcal{X},\mu) \quad \underset{(\dagger)}{=} \quad \bigcup_{(\dagger)} \operatorname{Median}(\mathcal{X},\mu)$ $\phi \in \Phi$ $\phi \in \Phi_1$

$$= \operatorname{Median}(\mathcal{X}, \mu) = \frac{F_{\psi}(\mathcal{X}, \mu)}{F_{\psi}(\mathcal{X}, \mu)}. \quad (*)$$

where both (\dagger) are by Claim 3.

Theorem 1A. If \mathcal{X} is proximal, then \mathcal{X} is supermajoritarian determinate. **Proof sketch.** For any $\mathbf{x} \sim \mathbf{y} \in \mathcal{X}$, write $\mathbf{x} \stackrel{\text{def}}{\to} \mathbf{y}$ if $\mathbf{x} \bullet \widetilde{\mu} < \mathbf{y} \bullet \widetilde{\mu}$. Let $\underset{\mu}{\prec}$ be the transitive closure of $\underset{u}{\rightsquigarrow}$; then $\underset{u}{\prec}$ is a partial order on \mathcal{X} . Let $\mathcal{X}' := \max(\mathcal{X}, \prec u)$. **Claim 1.** If $\phi : [-1,1] \longrightarrow \mathbb{R}$ is odd & increasing, then $F_{\phi}(\mathcal{X},\mu) \subseteq \mathcal{X}'$. Claim 2. Median $(\mathcal{X}, \mu) = \mathcal{X}'$. **Claim 3.** If $\psi : [-1,1] \longrightarrow \mathbb{R}$ is odd, increasing and continuous, then $F_{\psi}(\mathcal{X},\mu) =$ Median (\mathcal{X},μ) for all $\mu \in \Delta(\mathcal{X})$. (**Proof sketch:** Claims 1 and 2 imply that $F_{\psi}(\mathcal{X}, \mu) \subseteq \text{Median}(\mathcal{X}, \mu)$. Now use monotonicity of median rule and hemicontinuity of F_{ϕ} .) Let $\Phi_I := \{ \text{ odd continuous increasing } \phi : [-1, 1] \longrightarrow \mathbb{R} \}$. It follows that $\operatorname{SME}(\mathcal{X},\mu) = \bigcup F_{\phi}(\mathcal{X},\mu) = \bigcup \operatorname{Median}(\mathcal{X},\mu)$ $\phi \in \Phi_I$ $\phi \in \Phi_I$ = Median $(\mathcal{X}, \mu) = F_{\psi}(\mathcal{X}, \mu).$ (*)

where both (\dagger) are by Claim 3.

Now, by contradiction, suppose $\exists \mathbf{x}, \mathbf{y} \in \text{SME}(\mathcal{X}, \mu)$ with $\gamma_{\mu, \mathbf{x}} \neq \gamma_{\mu, \mathbf{y}}$.

Theorem 1A. If \mathcal{X} is proximal, then \mathcal{X} is supermajoritarian determinate. **Proof sketch.** For any $\mathbf{x} \sim \mathbf{y} \in \mathcal{X}$, write $\mathbf{x} \stackrel{\text{def}}{\to} \mathbf{y}$ if $\mathbf{x} \bullet \widetilde{\mu} < \mathbf{y} \bullet \widetilde{\mu}$. Let $\underset{\mu}{\prec}$ be the transitive closure of $\underset{u}{\rightsquigarrow}$; then $\underset{u}{\prec}$ is a partial order on \mathcal{X} . Let $\mathcal{X}' := \max(\mathcal{X}, \prec).$ **Claim 1.** If $\phi : [-1,1] \longrightarrow \mathbb{R}$ is odd & increasing, then $F_{\phi}(\mathcal{X},\mu) \subseteq \mathcal{X}'$. Claim 2. Median $(\mathcal{X}, \mu) = \mathcal{X}'$. **Claim 3.** If $\psi : [-1,1] \longrightarrow \mathbb{R}$ is odd, increasing and continuous, then $F_{\psi}(\mathcal{X},\mu) =$ Median (\mathcal{X},μ) for all $\mu \in \Delta(\mathcal{X})$. (**Proof sketch:** Claims 1 and 2 imply that $F_{\psi}(\mathcal{X}, \mu) \subseteq \text{Median}(\mathcal{X}, \mu)$. Now use monotonicity of median rule and hemicontinuity of F_{ϕ} .) Let $\Phi_I := \{ \text{ odd continuous increasing } \phi : [-1, 1] \longrightarrow \mathbb{R} \}$. It follows that $\operatorname{SME}(\mathcal{X},\mu) = \bigcup F_{\phi}(\mathcal{X},\mu) = \bigcup \operatorname{Median}(\mathcal{X},\mu)$ $\phi \in \Phi_I$ $\phi \in \Phi_I$ = Median $(\mathcal{X}, \mu) \equiv F_{\psi}(\mathcal{X}, \mu).$ (*)

where both (\dagger) are by Claim 3.

Now, by contradiction, suppose $\exists \mathbf{x}, \mathbf{y} \in \text{SME}(\mathcal{X}, \mu)$ with $\gamma_{\mu, \mathbf{x}} \neq \gamma_{\mu, \mathbf{y}}$. Then \exists continuous, increasing $\psi : [-1, 1] \longrightarrow \mathbb{R}$ with $\mathbf{x} \bullet \phi(\widetilde{\mu}) \neq \mathbf{y} \bullet \phi(\widetilde{\mu})$. **Theorem 1A.** If \mathcal{X} is proximal, then \mathcal{X} is supermajoritarian determinate. **Proof sketch.** For any $\mathbf{x} \sim \mathbf{y} \in \mathcal{X}$, write $\mathbf{x} \stackrel{\text{def}}{\to} \mathbf{y}$ if $\mathbf{x} \bullet \widetilde{\mu} < \mathbf{y} \bullet \widetilde{\mu}$. Let $\frac{1}{n}$ be the transitive closure of $\frac{1}{n}$; then $\frac{1}{n}$ is a partial order on \mathcal{X} . Let $\mathcal{X}' := \max(\mathcal{X}, \prec).$ **Claim 1.** If $\phi : [-1,1] \longrightarrow \mathbb{R}$ is odd & increasing, then $F_{\phi}(\mathcal{X},\mu) \subseteq \mathcal{X}'$. Claim 2. Median $(\mathcal{X}, \mu) = \mathcal{X}'$. **Claim 3.** If $\psi : [-1,1] \longrightarrow \mathbb{R}$ is odd, increasing and continuous, then $F_{\psi}(\mathcal{X},\mu) =$ Median (\mathcal{X},μ) for all $\mu \in \Delta(\mathcal{X})$. (**Proof sketch:** Claims 1 and 2 imply that $F_{\psi}(\mathcal{X}, \mu) \subseteq \text{Median}(\mathcal{X}, \mu)$. Now use monotonicity of median rule and hemicontinuity of F_{ϕ} .) Let $\Phi_I := \{ \text{ odd continuous increasing } \phi : [-1, 1] \longrightarrow \mathbb{R} \}$. It follows that $\operatorname{SME}(\mathcal{X},\mu) = \bigcup F_{\phi}(\mathcal{X},\mu) = \bigcup \operatorname{Median}(\mathcal{X},\mu)$ $\phi \in \Phi_I$ $\phi \in \Phi_I$ = Median $(\mathcal{X}, \mu) \equiv F_{\psi}(\mathcal{X}, \mu).$ (*) where both (\dagger) are by Claim 3. Now, by contradiction, suppose $\exists \mathbf{x}, \mathbf{y} \in \text{SME}(\mathcal{X}, \mu)$ with $\gamma_{\mu, \mathbf{x}} \neq \gamma_{\mu, \mathbf{y}}$.

Then \exists continuous, increasing $\psi : [-1,1] \longrightarrow \mathbb{R}$ with $\mathbf{x} \bullet \phi(\widetilde{\mu}) \neq \mathbf{y} \bullet \phi(\widetilde{\mu})$. Thus, at most one of \mathbf{x}, \mathbf{y} is in $F_{\psi}(\mathcal{X}, \mu)$, contradicting (*).

For any
$$N \in \mathbb{N}$$
, let $\mathcal{I}_N := \{0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N-1}{N}, 1\}.$

Let $\Delta_N(\mathcal{X})$ be the set of all $\mu \in \Delta(\mathcal{X})$ such that $\mu(\mathbf{x}) \in \mathcal{I}_N$ for all $\mathbf{x} \in \mathcal{X}$. (All profiles generated by a population of N voters with uniform weights). Define $\mathcal{X}^* := \bigcup_{m=1}^{\infty} \mathcal{X}^m$ and $\Delta_N(\mathcal{X}^*) := \bigcup_{m=1}^{\infty} \Delta_N(\mathcal{X}^m)$. Given any $M \in \mathbb{N}$ and any $\mu \in \Delta_N(\mathcal{X}^M)$, let $\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(M)} \in \Delta_N(\mathcal{X})$ be the projections of μ onto the M coordinates. Given a rule $F : \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$, we define $F^M : \Delta_N(\mathcal{X}^M) \rightrightarrows \mathcal{X}^M$ by

$$F^M(\mu)$$
 := $F(\mu^{(1)}) \times F(\mu^{(2)}) \times \cdots \times F(\mu^{(M)})$, for all $\mu \in \Delta_N(\mathcal{X}^M)$.

This yields a function $F^* : \Delta_N(\mathcal{X}^*) \Rightarrow \mathcal{X}^*$, the **separable extension** of F. Let $\mathcal{Q}_N := \{1 - 2i; i \in \mathcal{I}_N\} = \{\widetilde{\mu}_k; \mu \in \Delta_N(\mathcal{X}) \text{ and } k \in \mathcal{K}\}.$

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F : \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^* : \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient if and only if there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^M(\mu) \subseteq F_{\phi_N}(\mathcal{X}^M, \mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_M(\mathcal{X}^M, \mu)$, $z \to \infty$

For any $N \in \mathbb{N}$, let $\mathcal{I}_N := \{0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N-1}{N}, 1\}$. Let $\Delta_N(\mathcal{X})$ be the set of all $\mu \in \Delta(\mathcal{X})$ such that $\mu(\mathbf{x}) \in \mathcal{I}_N$ for all $\mathbf{x} \in \mathcal{X}$. (All profiles generated by a population of N voters with uniform weights). Define $\mathcal{X}^* := \bigcup_{m=1}^{\infty} \mathcal{X}^m$ and $\Delta_N(\mathcal{X}^*) := \bigcup_{m=1}^{\infty} \Delta_N(\mathcal{X}^m)$. Given any $M \in \mathbb{N}$ and any $\mu \in \Delta_N(\mathcal{X}^M)$, let $\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(M)} \in \Delta_N(\mathcal{X})$ be the projections of μ onto the M coordinates. Given a rule $F : \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$, we define $F^M : \Delta_N(\mathcal{X}^M) \rightrightarrows \mathcal{X}^M$ by

 $F^{M}(\mu) := F(\mu^{(1)}) \times F(\mu^{(2)}) \times \cdots \times F(\mu^{(M)}), \text{ for all } \mu \in \Delta_{N}(\mathcal{X}^{M}).$

This yields a function $F^* : \Delta_N(\mathcal{X}^*) \Rightarrow \mathcal{X}^*$, the **separable extension** of F. Let $\mathcal{Q}_N := \{1 - 2i; i \in \mathcal{I}_N\} = \{\widetilde{\mu}_k; \mu \in \Delta_N(\mathcal{X}) \text{ and } k \in \mathcal{K}\}.$

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F : \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^* : \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient if and only if there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^M(\mu) \subseteq F_{\phi_N}(\mathcal{X}^M, \mu)$, for all $M \in \mathbb{N}$ and $\mu \subseteq \Delta_N(\mathcal{X}^M)$.

For any $N \in \mathbb{N}$, let $\mathcal{I}_N := \{0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N-1}{N}, 1\}$. Let $\Delta_N(\mathcal{X})$ be the set of all $\mu \in \Delta(\mathcal{X})$ such that $\mu(\mathbf{x}) \in \mathcal{I}_N$ for all $\mathbf{x} \in \mathcal{X}$. (All profiles generated by a population of N voters with uniform weights).

Define
$$\mathcal{X}^* := \bigcup_{m=1}^{m} \mathcal{X}^m$$
 and $\Delta_N(\mathcal{X}^*) := \bigcup_{m=1}^{m} \Delta_N(\mathcal{X}^m)$.
Given any $M \in \mathbb{N}$ and any $\mu \in \Delta_N(\mathcal{X}^M)$, let $\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(M)} \in \Delta_N(\mathcal{X})$
be the projections of μ onto the M coordinates.

Given a rule $F:\Delta_N(\mathcal{X})
ightarrow\mathcal{X}$, we define $F^M:\Delta_N(\mathcal{X}^M)
ightarrow\mathcal{X}^M$ by

 $F^M(\mu)$:= $F(\mu^{(1)}) \times F(\mu^{(2)}) \times \cdots \times F(\mu^{(M)})$, for all $\mu \in \Delta_N(\mathcal{X}^M)$.

This yields a function $F^* : \Delta_N(\mathcal{X}^*) \Rightarrow \mathcal{X}^*$, the **separable extension** of F. Let $\mathcal{Q}_N := \{1 - 2i; i \in \mathcal{I}_N\} = \{\widetilde{\mu}_k; \mu \in \Delta_N(\mathcal{X}) \text{ and } k \in \mathcal{K}\}.$

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F : \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^* : \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient if and only if there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^M(\mu) \subseteq F_{\phi_N}(\mathcal{X}^M, \mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_M(\mathcal{X}^M, \mu)$, $z \to \infty$

For any $N \in \mathbb{N}$, let $\mathcal{I}_N := \{0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N-1}{N}, 1\}$. Let $\Delta_N(\mathcal{X})$ be the set of all $\mu \in \Delta(\mathcal{X})$ such that $\mu(\mathbf{x}) \in \mathcal{I}_N$ for all $\mathbf{x} \in \mathcal{X}$. (All profiles generated by a population of N voters with uniform weights). Define $\mathcal{X}^* := \bigcup_{m=1}^{\infty} \mathcal{X}^m$ and $\Delta_N(\mathcal{X}^*) := \bigcup_{m=1}^{\infty} \Delta_N(\mathcal{X}^m)$. Given any $M \in \mathbb{N}$ and any $\mu \in \Delta_N(\mathcal{X}^M)$, let $\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(M)} \in \Delta_N(\mathcal{X})$ be the projections of μ onto the M coordinates. Given a rule $F : \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$, we define $F^M : \Delta_N(\mathcal{X}^M) \rightrightarrows \mathcal{X}^M$ by

This yields a function $F^* : \Delta_N(\mathcal{X}^*) \Rightarrow \mathcal{X}^*$, the **separable extension** of F. Let $\mathcal{Q}_N := \{1 - 2i; i \in \mathcal{I}_N\} = \{\widetilde{\mu}_k; \mu \in \Delta_N(\mathcal{X}) \text{ and } k \in \mathcal{K}\}.$

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F : \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^* : \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient if and only if there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^M(\mu) \subseteq F_{\phi_N}(\mathcal{X}^M, \mu)$, for all $M \in \mathbb{N}$ and $\mu \subseteq \Delta_N(\mathcal{X}^M)$.

For any $N \in \mathbb{N}$, let $\mathcal{I}_N := \{0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N-1}{N}, 1\}$. Let $\Delta_N(\mathcal{X})$ be the set of all $\mu \in \Delta(\mathcal{X})$ such that $\mu(\mathbf{x}) \in \mathcal{I}_N$ for all $\mathbf{x} \in \mathcal{X}$. (All profiles generated by a population of N voters with uniform weights). Define $\mathcal{X}^* := \bigcup \mathcal{X}^m$ and $\Delta_N(\mathcal{X}^*) := \bigcup \Delta_N(\mathcal{X}^m)$. Given any $M \in \mathbb{N}$ and any $\mu \in \Delta_N(\mathcal{X}^M)$, let $\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(M)} \in \Delta_N(\mathcal{X})$ be the projections of μ onto the *M* coordinates.

 $F : \Delta_N(\mathcal{X}) \Longrightarrow \mathcal{X}$. The extension $F^* : \Delta_N(\mathcal{X}^*) \Longrightarrow \mathcal{X}^*$ is supermajoritarian efficient if and only if there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^M(\mu) \subseteq F_{\phi_N}(\mathcal{X}^M, \mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_{\mathbb{H}}(\mathcal{X}^M)$, $\mu \in \mathcal{A}_{\mathbb{H}}(\mathcal{X}^M)$.

For any $N \in \mathbb{N}$, let $\mathcal{I}_N := \{0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N-1}{N}, 1\}$. Let $\Delta_N(\mathcal{X})$ be the set of all $\mu \in \Delta(\mathcal{X})$ such that $\mu(\mathbf{x}) \in \mathcal{I}_N$ for all $\mathbf{x} \in \mathcal{X}$. (All profiles generated by a population of N voters with uniform weights). Define $\mathcal{X}^* := \bigcup_{m=1}^{\infty} \mathcal{X}^m$ and $\Delta_N(\mathcal{X}^*) := \bigcup_{m=1}^{\infty} \Delta_N(\mathcal{X}^m)$. Given any $M \in \mathbb{N}$ and any $\mu \in \Delta_N(\mathcal{X}^M)$, let $\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(M)} \in \Delta_N(\mathcal{X})$ be the projections of μ onto the M coordinates. Given a rule $F : \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$, we define $F^M : \Delta_N(\mathcal{X}^M) \rightrightarrows \mathcal{X}^M$ by

$$F^{M}(\mu)$$
 := $F(\mu^{(1)}) \times F(\mu^{(2)}) \times \cdots \times F(\mu^{(M)})$, for all $\mu \in \Delta_{N}(\mathcal{X}^{M})$.

This yields a function $F^* : \Delta_N(\mathcal{X}^*) \Rightarrow \mathcal{X}^*$, the **separable extension** of F. Let $\mathcal{Q}_N := \{1 - 2i; i \in \mathcal{I}_N\} = \{\widetilde{\mu}_k; \mu \in \Delta_N(\mathcal{X}) \text{ and } k \in \mathcal{K}\}.$

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F : \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^* : \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient if and only if there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^M(\mu) \subseteq F_{\phi_N}(\mathcal{X}^M, \mu)$, for all $M \in \mathbb{N}$ and $\mu \subseteq \Delta_N(\mathcal{X}^M)$.

For any $N \in \mathbb{N}$, let $\mathcal{I}_N := \{0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N-1}{N}, 1\}$. Let $\Delta_N(\mathcal{X})$ be the set of all $\mu \in \Delta(\mathcal{X})$ such that $\mu(\mathbf{x}) \in \mathcal{I}_N$ for all $\mathbf{x} \in \mathcal{X}$. (All profiles generated by a population of N voters with uniform weights). Define $\mathcal{X}^* := \bigcup \mathcal{X}^m$ and $\Delta_N(\mathcal{X}^*) := \bigcup \Delta_N(\mathcal{X}^m)$. Given any $M \in \mathbb{N}$ and any $\mu \in \Delta_N(\mathcal{X}^M)$, let $\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(M)} \in \Delta_N(\mathcal{X})$ be the projections of μ onto the *M* coordinates. Given a rule $F : \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$, we define $F^M : \Delta_N(\mathcal{X}^M) \rightrightarrows \mathcal{X}^M$ by $F^{M}(\mu) := F(\mu^{(1)}) \times F(\mu^{(2)}) \times \cdots \times F(\mu^{(M)}), \text{ for all } \mu \in \Delta_{N}(\mathcal{X}^{M}).$ This yields a function F^* : $\Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$, the separable extension of F.

that $F^{M}(\mu) \subseteq F_{\phi_{N}}(\mathcal{X}^{M},\mu)$, for all $M \in \mathbb{N}$ and $\mu \in A_{\mathbb{H}}(\mathcal{X}^{M})$.

For any $N \in \mathbb{N}$, let $\mathcal{I}_N := \{0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N-1}{N}, 1\}$. Let $\Delta_N(\mathcal{X})$ be the set of all $\mu \in \Delta(\mathcal{X})$ such that $\mu(\mathbf{x}) \in \mathcal{I}_N$ for all $\mathbf{x} \in \mathcal{X}$. (All profiles generated by a population of N voters with uniform weights). Define $\mathcal{X}^* := \bigcup \mathcal{X}^m$ and $\Delta_N(\mathcal{X}^*) := \bigcup \Delta_N(\mathcal{X}^m)$. Given any $M \in \mathbb{N}$ and any $\mu \in \Delta_N(\mathcal{X}^M)$, let $\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(M)} \in \Delta_N(\mathcal{X})$ be the projections of μ onto the *M* coordinates. Given a rule $F : \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$, we define $F^M : \Delta_N(\mathcal{X}^M) \rightrightarrows \mathcal{X}^M$ by $F^{M}(\mu) := F(\mu^{(1)}) \times F(\mu^{(2)}) \times \cdots \times F(\mu^{(M)}), \text{ for all } \mu \in \Delta_{N}(\mathcal{X}^{M}).$

This yields a function $F^* : \Delta_N(\mathcal{X}^*) \Rightarrow \mathcal{X}^*$, the **separable extension** of F. Let $\mathcal{Q}_N := \{1 - 2i; i \in \mathcal{I}_N\} = \{\widetilde{\mu}_k; \mu \in \Delta_N(\mathcal{X}) \text{ and } k \in \mathcal{K}\}.$

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F : \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^* : \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient if and only if there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^M(\mu) \subseteq F_{\phi_N}(\mathcal{X}^M, \mu)$, for all $M \in \mathbb{N}$ and $\mu \subseteq \Delta_N(\mathcal{X}^M)$.

For any $N \in \mathbb{N}$, let $\mathcal{I}_N := \{0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N-1}{N}, 1\}$. Let $\Delta_N(\mathcal{X})$ be the set of all $\mu \in \Delta(\mathcal{X})$ such that $\mu(\mathbf{x}) \in \mathcal{I}_N$ for all $\mathbf{x} \in \mathcal{X}$. (All profiles generated by a population of N voters with uniform weights). Define $\mathcal{X}^* := \bigcup \mathcal{X}^m$ and $\Delta_N(\mathcal{X}^*) := \bigcup \Delta_N(\mathcal{X}^m)$. Given any $M \in \mathbb{N}$ and any $\mu \in \Delta_N(\mathcal{X}^M)$, let $\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(M)} \in \Delta_N(\mathcal{X})$ be the projections of μ onto the *M* coordinates. Given a rule $F : \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$, we define $F^M : \Delta_N(\mathcal{X}^M) \rightrightarrows \mathcal{X}^M$ by $F^{M}(\mu) := F(\mu^{(1)}) \times F(\mu^{(2)}) \times \cdots \times F(\mu^{(M)}), \text{ for all } \mu \in \Delta_{N}(\mathcal{X}^{M}).$ This yields a function $F^* : \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$, the **separable extension** of F. Let $\mathcal{Q}_N := \{1 - 2i; i \in \mathcal{I}_N\} = \{\widetilde{\mu}_k; \mu \in \Delta_N(\mathcal{X}) \text{ and } k \in \mathcal{K}\}.$ **Theorem 1B.** Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F: \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^*: \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian

efficient if and only if there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^M(\mu) \subseteq F_{\phi_N}(\mathcal{X}^M, \mu)$, for all $M \in \mathbb{N}$ and $\mu \in \mathcal{A}_N(\mathcal{X}^M)$.

For any $N \in \mathbb{N}$, let $\mathcal{I}_N := \{0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N-1}{N}, 1\}$. Let $\Delta_N(\mathcal{X})$ be the set of all $\mu \in \Delta(\mathcal{X})$ such that $\mu(\mathbf{x}) \in \mathcal{I}_N$ for all $\mathbf{x} \in \mathcal{X}$. (All profiles generated by a population of N voters with uniform weights). Define $\mathcal{X}^* := \bigcup \mathcal{X}^m$ and $\Delta_N(\mathcal{X}^*) := \bigcup \Delta_N(\mathcal{X}^m)$. Given any $M \in \mathbb{N}$ and any $\mu \in \Delta_N(\mathcal{X}^M)$, let $\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(M)} \in \Delta_N(\mathcal{X})$ be the projections of μ onto the *M* coordinates. Given a rule $F : \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$, we define $F^M : \Delta_N(\mathcal{X}^M) \rightrightarrows \mathcal{X}^M$ by $F^{M}(\mu) := F(\mu^{(1)}) \times F(\mu^{(2)}) \times \cdots \times F(\mu^{(M)}), \text{ for all } \mu \in \Delta_{M}(\mathcal{X}^{M}).$ This yields a function $F^*: \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$, the **separable extension** of F. Let $\mathcal{Q}_N := \{1 - 2i; i \in \mathcal{I}_N\} = \{\widetilde{\mu}_k; \mu \in \Delta_N(\mathcal{X}) \text{ and } k \in \mathcal{K}\}.$

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F : \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^* : \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient if and only if there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^M(\mu) \subseteq F_{\phi_N}(\mathcal{X}^M, \mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_N(\mathcal{X}^M)$.

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F : \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^* : \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient \iff there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^M(\mu) \subseteq F_{\phi_N}(\mathcal{X}^M, \mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_N(\mathcal{X}^M)$.

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F : \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^* : \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient \iff there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^M(\mu) \subseteq F_{\phi_N}(\mathcal{X}^M, \mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_N(\mathcal{X}^M)$. **Proof sketch.** " \Leftarrow " is a straightforward computation.

$$g_q^{\mathbf{x},\mu} \quad := \quad \frac{\gamma_{\mu,\mathbf{x}}(q)}{|\mathcal{K}|} \quad = \quad \frac{\#\{k \in \mathcal{K} \ ; \ x_k \ \widetilde{\mu}_k \ge q\}}{|\mathcal{K}|}, \qquad \text{for all } q \in \mathcal{Q}_N^+.$$

$$g_q^{\mathbf{x},\mu}$$
 := $rac{\gamma_{\mu,\mathbf{x}}(q)}{|\mathcal{K}|}$ = $rac{\#\{k\in\mathcal{K}: x_k\,\widetilde{\mu}_k\geq q\}}{|\mathcal{K}|}$, for all $q\in\mathcal{Q}_N^+$.

Now let \mathcal{P} be the closure of \mathcal{D} , where we define

$$\mathcal{D} := \left\{ \mathbf{g}^{\mathbf{y},\mu} - \mathbf{g}^{\mathbf{x},\mu} ; \ M \in \mathbb{N}, \ \mu \in \Delta_N(\mathcal{X}^M), \ \mathbf{x} \in F(\mathcal{X}^M,\mu), \ \text{and} \ \mathbf{y} \in \mathcal{X}^M \right\}.$$

$$g_q^{\mathbf{x},\mu}$$
 := $rac{\gamma_{\mu,\mathbf{x}}(q)}{|\mathcal{K}|}$ = $rac{\#\{k\in\mathcal{K}: x_k\,\widetilde{\mu}_k\geq q\}}{|\mathcal{K}|}$, for all $q\in\mathcal{Q}_N^+$.

Now let \mathcal{P} be the closure of \mathcal{D} , where we define

$$\mathcal{D} := \left\{ \mathbf{g}^{\mathbf{y},\mu} - \mathbf{g}^{\mathbf{x},\mu} ; \ M \in \mathbb{N}, \ \mu \in \Delta_N(\mathcal{X}^M), \ \mathbf{x} \in F(\mathcal{X}^M,\mu), \text{ and } \mathbf{y} \in \mathcal{X}^M \right\}.$$

Claim 1. \mathcal{P} is a compact, convex polyhedron in $\mathbb{R}^{\mathcal{Q}_{N}}$.

$$g_q^{\mathbf{x},\mu}$$
 := $rac{\gamma_{\mu,\mathbf{x}}(q)}{|\mathcal{K}|}$ = $rac{\#\{k\in\mathcal{K}\ ;\ x_k\,\widetilde{\mu}_k\geq q\}}{|\mathcal{K}|}$, for all $q\in\mathcal{Q}_N^+$.

Now let \mathcal{P} be the closure of \mathcal{D} , where we define

$$\mathcal{D} \ := \ \left\{ \mathbf{g}^{\mathbf{y},\mu} - \mathbf{g}^{\mathbf{x},\mu} \ ; \ M \in \mathbb{N}, \ \mu \in \Delta_N(\mathcal{X}^M), \ \mathbf{x} \in F(\mathcal{X}^M,\mu), \ \text{and} \ \mathbf{y} \in \mathcal{X}^M \right\}$$

Claim 1. \mathcal{P} is a compact, convex polyhedron in $\mathbb{R}^{\mathcal{Q}_N^+}$. **Proof idea.** Let $M_1, M_2 \in \mathbb{N}$, and let $M := M_1 + M_2$.

$$g_q^{\mathbf{x},\mu}$$
 := $rac{\gamma_{\mu,\mathbf{x}}(q)}{|\mathcal{K}|}$ = $rac{\#\{k\in\mathcal{K}: x_k\,\widetilde{\mu}_k\geq q\}}{|\mathcal{K}|}$, for all $q\in\mathcal{Q}_N^+$.

Now let \mathcal{P} be the closure of \mathcal{D} , where we define

$$\mathcal{D} := \left\{ \mathbf{g}^{\mathbf{y},\mu} - \mathbf{g}^{\mathbf{x},\mu} ; \ M \in \mathbb{N}, \ \mu \in \Delta_N(\mathcal{X}^M), \ \mathbf{x} \in F(\mathcal{X}^M,\mu), \text{ and } \mathbf{y} \in \mathcal{X}^M \right\}$$

Claim 1. \mathcal{P} is a compact, convex polyhedron in $\mathbb{R}^{\mathcal{Q}_N^+}$. **Proof idea.** Let $M_1, M_2 \in \mathbb{N}$, and let $M := M_1 + M_2$. For any $\mu_1 \in \Delta(\mathcal{X}^{M_1})$ and $\mu_2 \in \Delta(\mathcal{X}^{M_2})$, there exists a profile $\mu = \mu_1 \otimes \mu_2 \in \Delta(\mathcal{X}^M)$ such that $\mu^{(1...M_1)} = \mu_1$ and $\mu^{(M_1+1...M)} = \mu_2$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ∽ のへで

$$g_q^{\mathbf{x},\mu}$$
 := $rac{\gamma_{\mu,\mathbf{x}}(q)}{|\mathcal{K}|}$ = $rac{\#\{k\in\mathcal{K}: x_k\,\widetilde{\mu}_k\geq q\}}{|\mathcal{K}|}$, for all $q\in\mathcal{Q}_N^+$.

Now let \mathcal{P} be the closure of \mathcal{D} , where we define

$$\mathcal{D} \ := \ \left\{ \mathbf{g}^{\mathbf{y}, \mu} - \mathbf{g}^{\mathbf{x}, \mu} \ ; \ M \in \mathbb{N}, \ \mu \in \Delta_N(\mathcal{X}^M), \ \mathbf{x} \in F(\mathcal{X}^M, \mu), \ \text{and} \ \mathbf{y} \in \mathcal{X}^M \right\}$$

Claim 1. \mathcal{P} is a compact, convex polyhedron in $\mathbb{R}^{\mathcal{Q}_N^*}$. **Proof idea.** Let $M_1, M_2 \in \mathbb{N}$, and let $M := M_1 + M_2$. For any $\mu_1 \in \Delta(\mathcal{X}^{M_1})$ and $\mu_2 \in \Delta(\mathcal{X}^{M_2})$, there exists a profile $\mu = \mu_1 \otimes \mu_2 \in \Delta(\mathcal{X}^M)$ such that $\mu^{(1...M_1)} = \mu_1$ and $\mu^{(M_1+1...M)} = \mu_2$. Let $\mathbf{s}_1 := M_1/M$ and $\mathbf{s}_2 := M_2/M$. Then $\mathbf{s}_1 + \mathbf{s}_2 = 1$, and for any $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathcal{X}^{M+M'}$, we have $\mathbf{g}^{\mathbf{x}, \mu} = \mathbf{s}_1 \mathbf{g}^{\mathbf{x}_1, \mu_1} + \mathbf{s}_2 \mathbf{g}^{\mathbf{x}_2, \mu_2}$.

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F: \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^*: \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient \iff there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^{M}(\mu) \subseteq F_{\phi_{N}}(\mathcal{X}^{M},\mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_{N}(\mathcal{X}^{M})$. **Proof sketch.** " \implies " For any $M \in \mathbb{N}$, $\mu \in \Delta_N(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}$, we define the vector $\mathbf{g}^{\mathbf{x},\mu}$ in $\mathbb{R}^{\mathcal{Q}_N^+}$, by setting $g_{\mathbf{q}}^{\mathbf{x},\mu} := \gamma_{\mu,\mathbf{x}}(\mathbf{q})/|\mathcal{K}|$, for all $q \in \mathcal{Q}_{N}^{+}$. Now let \mathcal{P} be the closure of \mathcal{D} , where we define $\mathcal{D} := \{ \mathbf{g}^{\mathbf{y},\mu} - \mathbf{g}^{\mathbf{x},\mu} ; M \in \mathbb{N}, \ \mu \in \Delta_{N}(\mathcal{X}^{M}), \ \mathbf{x} \in F(\mathcal{X}^{M},\mu), \text{ and } \mathbf{y} \in \mathcal{X}^{M} \}.$ **Claim 1.** \mathcal{P} is a compact, convex polyhedron in $\mathbb{R}^{\mathcal{Q}_N^+}$. **Proof idea.** Let $M_1, M_2 \in \mathbb{N}$, and let $M := M_1 + M_2$. For any $\mu_1 \in \Delta(\mathcal{X}^{M_1})$ and $\mu_2 \in \Delta(\mathcal{X}^{M_2})$, there exists a profile $\mu = \mu_1 \otimes \mu_2 \in \Delta(\mathcal{X}^M)$ such that $\mu^{(1\dots M_1)} = \mu_1$ and $\mu^{(M_1+1\dots M)} = \mu_2$. Let $s_1 := M_1/M$ and $s_2 := M_2/M$. Then $s_1 + s_2 = 1$, and for any $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathcal{X}^{M+M'}$, we have $\mathbf{g}^{\mathbf{x},\mu} = s_1 \, \mathbf{g}^{\mathbf{x}_1,\mu_1} + s_2 \, \mathbf{g}^{\mathbf{x}_2,\mu_2}$. In this way, any rational convex combination of elements in $\mathcal D$ can be realized as an element of \mathcal{D} . Thus, $\mathcal{P} = cl(\mathcal{D})$ is closed and convex.

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F: \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^*: \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient \iff there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^{M}(\mu) \subseteq F_{\phi_{N}}(\mathcal{X}^{M},\mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_{N}(\mathcal{X}^{M})$. **Proof sketch.** " \implies " For any $M \in \mathbb{N}$, $\mu \in \Delta_N(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}$, we define the vector $\mathbf{g}^{\mathbf{x},\mu}$ in $\mathbb{R}^{\mathcal{Q}_N^+}$, by setting $g_{\mathbf{q}}^{\mathbf{x},\mu} := \gamma_{\mu,\mathbf{x}}(\mathbf{q})/|\mathcal{K}|$, for all $q \in \mathcal{Q}_{N}^{+}$. Now let \mathcal{P} be the closure of \mathcal{D} , where we define $\mathcal{D} := \{ \mathbf{g}^{\mathbf{y}, \mu} - \mathbf{g}^{\mathbf{x}, \mu} ; M \in \mathbb{N}, \ \mu \in \Delta_N(\mathcal{X}^M), \ \mathbf{x} \in F(\mathcal{X}^M, \mu), \text{ and } \mathbf{y} \in \mathcal{X}^M \}.$ **Claim 1.** \mathcal{P} is a compact, convex polyhedron in $\mathbb{R}^{\mathcal{Q}_{N}^{+}}$. **Proof idea.** Let $M_1, M_2 \in \mathbb{N}$, and let $M := M_1 + M_2$. For any $\mu_1 \in \Delta(\mathcal{X}^{M_1})$ and $\mu_2 \in \Delta(\mathcal{X}^{M_2})$, there exists a profile $\mu = \mu_1 \otimes \mu_2 \in \Delta(\mathcal{X}^M)$ such that $\mu^{(1\dots M_1)} = \mu_1$ and $\mu^{(M_1+1\dots M)} = \mu_2$. Let $s_1 := M_1/M$ and $s_2 := M_2/M$. Then $s_1 + s_2 = 1$, and for any $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathcal{X}^{M+M'}$, we have $\mathbf{g}^{\mathbf{x},\mu} = s_1 \, \mathbf{g}^{\mathbf{x}_1,\mu_1} + s_2 \, \mathbf{g}^{\mathbf{x}_2,\mu_2}$. In this way, any rational convex combination of elements in \mathcal{D} can be realized as an element of \mathcal{D} . Thus, $\mathcal{P} = cl(\mathcal{D})$ is closed and convex. In fact, any element of \mathcal{D} is a rational convex combination of elements from the finite set $\mathcal{D}_1 := \{ \mathbf{g}^{\mathbf{y}, \mu} - \mathbf{g}^{\mathbf{x}, \mu}; \ \mu \in \Delta_N(\mathcal{X}), \ \mathbf{x} \in F(\mathcal{X}, \mu), \text{ and } \mathbf{y} \in \mathcal{X} \}.$ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F: \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^*: \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient \iff there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^{M}(\mu) \subseteq F_{\phi_{N}}(\mathcal{X}^{M},\mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_{N}(\mathcal{X}^{M})$. **Proof sketch.** " \implies " For any $M \in \mathbb{N}$, $\mu \in \Delta_N(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}$, we define the vector $\mathbf{g}^{\mathbf{x},\mu}$ in $\mathbb{R}^{\mathcal{Q}_N^+}$, by setting $g_{\mathbf{q}}^{\mathbf{x},\mu} := \gamma_{\mu,\mathbf{x}}(\mathbf{q})/|\mathcal{K}|$, for all $q \in \mathcal{Q}_{N}^{+}$. Now let \mathcal{P} be the closure of \mathcal{D} , where we define $\mathcal{D} := \{ \mathbf{g}^{\mathbf{y},\mu} - \mathbf{g}^{\mathbf{x},\mu} ; M \in \mathbb{N}, \ \mu \in \Delta_N(\mathcal{X}^M), \ \mathbf{x} \in F(\mathcal{X}^M,\mu), \text{ and } \mathbf{y} \in \mathcal{X}^M \}.$ **Claim 1.** \mathcal{P} is a compact, convex polyhedron in $\mathbb{R}^{\mathcal{Q}_N^+}$. **Proof idea.** Let $M_1, M_2 \in \mathbb{N}$, and let $M := M_1 + M_2$. For any $\mu_1 \in \Delta(\mathcal{X}^{M_1})$ and $\mu_2 \in \Delta(\mathcal{X}^{M_2})$, there exists a profile $\mu = \mu_1 \otimes \mu_2 \in \Delta(\mathcal{X}^M)$ such that $\mu^{(1\dots M_1)} = \mu_1$ and $\mu^{(M_1+1\dots M)} = \mu_2$. Let $s_1 := M_1/M$ and $s_2 := M_2/M$. Then $s_1 + s_2 = 1$, and for any $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathcal{X}^{M+M'}$, we have $\mathbf{g}^{\mathbf{x},\mu} = s_1 \, \mathbf{g}^{\mathbf{x}_1,\mu_1} + s_2 \, \mathbf{g}^{\mathbf{x}_2,\mu_2}$. In this way, any rational convex combination of elements in \mathcal{D} can be realized as an element of \mathcal{D} . Thus, $\mathcal{P} = cl(\mathcal{D})$ is closed and convex. In fact, any element of \mathcal{D} is a rational convex combination of elements from the finite set $\mathcal{D}_1 := \{ \mathbf{g}^{\mathbf{y}, \mu} - \mathbf{g}^{\mathbf{x}, \mu}; \ \mu \in \Delta_N(\mathcal{X}), \ \mathbf{x} \in F(\mathcal{X}, \mu), \text{ and } \mathbf{y} \in \mathcal{X} \}.$ Thus, \mathcal{P} is a compact, convex polyhedron.

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F: \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^*: \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient \iff there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^{M}(\mu) \subseteq F_{\phi_{N}}(\mathcal{X}^{M},\mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_{N}(\mathcal{X}^{M})$. **Proof sketch.** " \implies " For any $M \in \mathbb{N}$, $\mu \in \Delta_N(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}$, we define the vector $\mathbf{g}^{\mathbf{x},\mu}$ in $\mathbb{R}^{\mathcal{Q}_N^+}$, by setting $g_{\mathbf{q}}^{\mathbf{x},\mu} := \gamma_{\mu,\mathbf{x}}(\mathbf{q})/|\mathcal{K}|$, for all $q \in \mathcal{Q}_{N}^{+}$. Now let \mathcal{P} be the closure of \mathcal{D} , where we define $\mathcal{D} := \{ \mathbf{g}^{\mathbf{y},\mu} - \mathbf{g}^{\mathbf{x},\mu} ; M \in \mathbb{N}, \ \mu \in \Delta_{N}(\mathcal{X}^{M}), \ \mathbf{x} \in F(\mathcal{X}^{M},\mu), \text{ and } \mathbf{y} \in \mathcal{X}^{M} \}.$ **Claim 1.** \mathcal{P} is a compact, convex polyhedron in $\mathbb{R}^{\mathcal{Q}_N^+}$. **Claim 2.** If *F* is SME, then $\mathcal{D} \cap \mathbb{R}^{\mathcal{Q}^+_N}_{\perp} = \{\mathbf{0}\}.$

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F: \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^*: \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient \iff there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^{M}(\mu) \subseteq F_{\phi_{N}}(\mathcal{X}^{M},\mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_{N}(\mathcal{X}^{M})$. **Proof sketch.** " \implies " For any $M \in \mathbb{N}$, $\mu \in \Delta_N(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}$, we define the vector $\mathbf{g}^{\mathbf{x},\mu}$ in $\mathbb{R}^{\mathcal{Q}_N^+}$, by setting $g_{\mathbf{q}}^{\mathbf{x},\mu} := \gamma_{\mu,\mathbf{x}}(\mathbf{q})/|\mathcal{K}|$, for all $q \in \mathcal{Q}_{N}^{+}$. Now let \mathcal{P} be the closure of \mathcal{D} , where we define $\mathcal{D} := \{ \mathbf{g}^{\mathbf{y},\mu} - \mathbf{g}^{\mathbf{x},\mu} ; M \in \mathbb{N}, \ \mu \in \Delta_{N}(\mathcal{X}^{M}), \ \mathbf{x} \in F(\mathcal{X}^{M},\mu), \text{ and } \mathbf{y} \in \mathcal{X}^{M} \}.$ **Claim 1.** \mathcal{P} is a compact, convex polyhedron in $\mathbb{R}^{\mathcal{Q}_N^+}$. **Claim 2.** If *F* is SME, then $\mathcal{D} \cap \mathbb{R}^{\mathcal{Q}^+_N}_{\perp} = \{\mathbf{0}\}.$ **Proof idea:** $\forall M \in \mathbb{N}, \mu \in \Delta(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}^M$, $(\mathbf{x} \in \text{SME}(\mathcal{X}, \mu))$

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F: \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^*: \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient \iff there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^{M}(\mu) \subseteq F_{\phi_{N}}(\mathcal{X}^{M},\mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_{N}(\mathcal{X}^{M})$. **Proof sketch.** " \implies " For any $M \in \mathbb{N}$, $\mu \in \Delta_N(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}$, we define the vector $\mathbf{g}^{\mathbf{x},\mu}$ in $\mathbb{R}^{\mathcal{Q}_N^+}$, by setting $g_{\mathbf{q}}^{\mathbf{x},\mu} := \gamma_{\mu,\mathbf{x}}(\mathbf{q})/|\mathcal{K}|$, for all $q \in \mathcal{Q}_{N}^{+}$. Now let \mathcal{P} be the closure of \mathcal{D} , where we define $\mathcal{D} := \{ \mathbf{g}^{\mathbf{y}, \mu} - \mathbf{g}^{\mathbf{x}, \mu} ; M \in \mathbb{N}, \ \mu \in \Delta_N(\mathcal{X}^M), \ \mathbf{x} \in F(\mathcal{X}^M, \mu), \text{ and } \mathbf{y} \in \mathcal{X}^M \}.$ **Claim 1.** \mathcal{P} is a compact, convex polyhedron in $\mathbb{R}^{\mathcal{Q}_N^+}$. **Claim 2.** If *F* is SME, then $\mathcal{D} \cap \mathbb{R}^{\mathcal{Q}^+_N}_{\perp} = \{\mathbf{0}\}.$ **Proof idea:** $\forall M \in \mathbb{N}, \mu \in \Delta(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}^M$, $(\mathbf{x} \in \text{SME}(\mathcal{X}, \mu)) \Leftrightarrow$ $\left(\ \mathcal{A} \ \mathbf{y} \in \mathcal{X}^M \ \text{with} \ g_q(\mathbf{y}, \mu) \geq g_q(\mathbf{x}, \mu) \ \text{for all} \ q \in \mathcal{Q}, \ \text{and} \ \mathbf{g}(\mathbf{y}, \mu) \neq \mathbf{g}(\mathbf{x}, \mu) \right)$

・ロト・日本・モート モー うへぐ

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F: \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^*: \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient \iff there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^{M}(\mu) \subseteq F_{\phi_{N}}(\mathcal{X}^{M},\mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_{N}(\mathcal{X}^{M})$. **Proof sketch.** " \implies " For any $M \in \mathbb{N}$, $\mu \in \Delta_N(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}$, we define the vector $\mathbf{g}^{\mathbf{x},\mu}$ in $\mathbb{R}^{\mathcal{Q}_N^+}$, by setting $g_{\mathbf{q}}^{\mathbf{x},\mu} := \gamma_{\mu,\mathbf{x}}(\mathbf{q})/|\mathcal{K}|$, for all $q \in \mathcal{Q}_{N}^{+}$. Now let \mathcal{P} be the closure of \mathcal{D} , where we define $\mathcal{D} := \{ \mathbf{g}^{\mathbf{y}, \mu} - \mathbf{g}^{\mathbf{x}, \mu} ; M \in \mathbb{N}, \ \mu \in \Delta_N(\mathcal{X}^M), \ \mathbf{x} \in F(\mathcal{X}^M, \mu), \text{ and } \mathbf{y} \in \mathcal{X}^M \}.$ **Claim 1.** \mathcal{P} is a compact, convex polyhedron in $\mathbb{R}^{\mathcal{Q}_N^+}$. **Claim 2.** If *F* is SME, then $\mathcal{D} \cap \mathbb{R}^{\mathcal{Q}^+_N}_{\perp} = \{\mathbf{0}\}.$ **Proof idea:** $\forall M \in \mathbb{N}, \mu \in \Delta(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}^M$, $(\mathbf{x} \in \text{SME}(\mathcal{X}, \mu)) \Leftrightarrow$ $\left(\ \mathcal{A} \ \mathbf{y} \in \mathcal{X}^M \ \text{with} \ g_q(\mathbf{y}, \mu) \geq g_q(\mathbf{x}, \mu) \ \text{for all} \ q \in \mathcal{Q}, \ \text{and} \ \mathbf{g}(\mathbf{y}, \mu) \neq \mathbf{g}(\mathbf{x}, \mu) \right)$ $\iff \left(\left(\mathbf{g}(\mathbf{y}, \mu) - \mathbf{g}(\mathbf{x}, \mu) \right) \notin \mathbb{R}^{\mathcal{Q}}_+ \setminus \{ \mathbf{0} \} \text{ for all } \mathbf{y} \in \mathcal{X}^M \right)$

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F: \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^*: \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient \iff there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^{M}(\mu) \subseteq F_{\phi_{N}}(\mathcal{X}^{M},\mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_{N}(\mathcal{X}^{M})$. **Proof sketch.** " \implies " For any $M \in \mathbb{N}$, $\mu \in \Delta_N(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}$, we define the vector $\mathbf{g}^{\mathbf{x},\mu}$ in $\mathbb{R}^{\mathcal{Q}_N^+}$, by setting $g_{\mathbf{q}}^{\mathbf{x},\mu} := \gamma_{\mu,\mathbf{x}}(\mathbf{q})/|\mathcal{K}|$, for all $q \in \mathcal{Q}_{N}^{+}$. Now let \mathcal{P} be the closure of \mathcal{D} , where we define $\mathcal{D} := \{ \mathbf{g}^{\mathbf{y}, \mu} - \mathbf{g}^{\mathbf{x}, \mu} ; M \in \mathbb{N}, \ \mu \in \Delta_N(\mathcal{X}^M), \ \mathbf{x} \in F(\mathcal{X}^M, \mu), \text{ and } \mathbf{y} \in \mathcal{X}^M \}.$ **Claim 1.** \mathcal{P} is a compact, convex polyhedron in $\mathbb{R}^{\mathcal{Q}_N^+}$. **Claim 2.** If *F* is SME, then $\mathcal{D} \cap \mathbb{R}^{\mathcal{Q}_{h}^{T}}_{+} = \{\mathbf{0}\}.$ **Proof idea:** $\forall M \in \mathbb{N}, \mu \in \Delta(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}^M$, $(\mathbf{x} \in \text{SME}(\mathcal{X}, \mu)) \Leftrightarrow$ $\left(
ot egin{array}{ll} \mathcal{A} \ \mathbf{y} \in \mathcal{X}^M \ \text{with} \ g_q(\mathbf{y},\mu) \geq g_q(\mathbf{x},\mu) \ \text{for all} \ q \in \mathcal{Q}, \ \text{and} \ \mathbf{g}(\mathbf{y},\mu)
eq \mathbf{g}(\mathbf{x},\mu)
ight)$ $\iff \left(\left(\mathbf{g}(\mathbf{y}, \mu) - \mathbf{g}(\mathbf{x}, \mu) \right) \notin \mathbb{R}^{\mathcal{Q}}_+ \setminus \{ \mathbf{0} \} \text{ for all } \mathbf{y} \in \mathcal{X}^M \right)$ $\iff \left(\mathcal{D}_{M,\mu,\textbf{x}} \cap \mathbb{R}^{\mathcal{Q}}_{+} = \{\textbf{0}\}\right), \text{ where } \mathcal{D}_{M,\mu,\textbf{x}} := \{\textbf{g}^{\textbf{y},\mu} - \textbf{g}^{\textbf{x},\mu} \ ; \ \textbf{y} \in \mathcal{X}^{M}\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F: \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^*: \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient \iff there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^{M}(\mu) \subseteq F_{\phi_{M}}(\mathcal{X}^{M},\mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_{N}(\mathcal{X}^{M})$. **Proof sketch.** " \implies " For any $M \in \mathbb{N}$, $\mu \in \Delta_N(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}$, we define the vector $\mathbf{g}^{\mathbf{x},\mu}$ in $\mathbb{R}^{\mathcal{Q}_N^+}$, by setting $g_{\mathbf{q}}^{\mathbf{x},\mu} := \gamma_{\mu,\mathbf{x}}(\mathbf{q})/|\mathcal{K}|$, for all $q \in \mathcal{Q}_{N}^{+}$. Now let \mathcal{P} be the closure of \mathcal{D} , where we define $\mathcal{D} := \{ \mathbf{g}^{\mathbf{y},\mu} - \mathbf{g}^{\mathbf{x},\mu} ; M \in \mathbb{N}, \ \mu \in \Delta_N(\mathcal{X}^M), \ \mathbf{x} \in F(\mathcal{X}^M,\mu), \text{ and } \mathbf{y} \in \mathcal{X}^M \}.$ **Claim 1.** \mathcal{P} is a compact, convex polyhedron in $\mathbb{R}^{\mathcal{Q}_{N}^{+}}$. **Claim 2.** If *F* is SME, then $\mathcal{D} \cap \mathbb{R}^{\mathcal{Q}_{h}^{T}}_{+} = \{\mathbf{0}\}.$ **Proof idea:** $\forall \ M \in \mathbb{N}, \ \mu \in \Delta(\mathcal{X}^M), \ \text{and} \ \mathbf{x} \in \mathcal{X}^M, \ \left(\mathbf{x} \in \text{SME}(\mathcal{X}, \mu)\right) \Leftrightarrow$ $\left(
ot egin{array}{ll} \mathcal{A} \ \mathbf{y} \in \mathcal{X}^M \ \text{with} \ g_q(\mathbf{y},\mu) \geq g_q(\mathbf{x},\mu) \ \text{for all} \ q \in \mathcal{Q}, \ \text{and} \ \mathbf{g}(\mathbf{y},\mu)
eq \mathbf{g}(\mathbf{x},\mu)
ight)$ $\iff \left((\mathbf{g}(\mathbf{y}, \mu) - \mathbf{g}(\mathbf{x}, \mu)) \notin \mathbb{R}^{\mathcal{Q}}_+ \setminus \{\mathbf{0}\} \text{ for all } \mathbf{y} \in \mathcal{X}^M \right)$ $\iff \left(\mathcal{D}_{M,\mu,\mathbf{x}} \cap \mathbb{R}^{\mathcal{Q}}_{+} = \{\mathbf{0}\}\right), \text{ where } \mathcal{D}_{M,\mu,\mathbf{x}} := \{\mathbf{g}^{\mathbf{y},\mu} - \mathbf{g}^{\mathbf{x},\mu} \ ; \ \mathbf{y} \in \mathcal{X}^{M}\}.$ Thus, (*F* is SME on $\Delta_N(\mathcal{X}^M)$) \iff $\left(\mathcal{D}_{M,\mu,\mathbf{x}} \cap \mathbb{R}^{\mathcal{Q}}_{+} = \{\mathbf{0}\}, \text{ for all } \mathbf{x} \in F(\mathcal{X}^{M},\mu) \text{ and } \mu \in \mathcal{A}_{N}(\mathcal{X}^{M}_{+})\right), \text{ for all } \mathbf{x} \in F(\mathcal{X}^{M},\mu) \text{ and } \mu \in \mathcal{A}_{N}(\mathcal{X}^{M}_{+})$

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F: \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^*: \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient \iff there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^{M}(\mu) \subseteq F_{\phi_{M}}(\mathcal{X}^{M},\mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_{N}(\mathcal{X}^{M})$. **Proof sketch.** " \implies " For any $M \in \mathbb{N}$, $\mu \in \Delta_N(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}$, we define the vector $\mathbf{g}^{\mathbf{x},\mu}$ in $\mathbb{R}^{\mathcal{Q}_N^+}$, by setting $g_{\mathbf{q}}^{\mathbf{x},\mu} := \gamma_{\mu,\mathbf{x}}(\mathbf{q})/|\mathcal{K}|$, for all $q \in \mathcal{Q}_N^+$. Now let \mathcal{P} be the closure of \mathcal{D} , where we define $\mathcal{D} := \{ \mathbf{g}^{\mathbf{y},\mu} - \mathbf{g}^{\mathbf{x},\mu} ; M \in \mathbb{N}, \ \mu \in \Delta_N(\mathcal{X}^M), \ \mathbf{x} \in F(\mathcal{X}^M,\mu), \text{ and } \mathbf{y} \in \mathcal{X}^M \}.$ **Claim 1.** \mathcal{P} is a compact, convex polyhedron in $\mathbb{R}^{\mathcal{Q}_{N}^{+}}$. **Claim 2.** If *F* is SME, then $\mathcal{D} \cap \mathbb{R}^{\mathcal{Q}_{h}^{T}}_{+} = \{\mathbf{0}\}.$ **Proof idea:** $\forall M \in \mathbb{N}, \mu \in \Delta(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}^M$, $(\mathbf{x} \in \text{SME}(\mathcal{X}, \mu))$ $\iff \left(\left(\mathbf{g}(\mathbf{y}, \mu) - \mathbf{g}(\mathbf{x}, \mu) \right) \notin \mathbb{R}^{\mathcal{Q}}_+ \setminus \{ \mathbf{0} \} \text{ for all } \mathbf{y} \in \mathcal{X}^M \right)$ $\iff \left(\mathcal{D}_{M,\mu,\mathbf{x}} \cap \mathbb{R}^{\mathcal{Q}}_{+} = \{\mathbf{0}\}\right), \text{ where } \mathcal{D}_{M,\mu,\mathbf{x}} := \{\mathbf{g}^{\mathbf{y},\mu} - \mathbf{g}^{\mathbf{x},\mu} \ ; \ \mathbf{y} \in \mathcal{X}^{M}\}.$ Thus, (*F* is SME on $\Delta_N(\mathcal{X}^M)$) \iff $\left(\mathcal{D}_{M,\mu,\mathbf{x}} \cap \mathbb{R}^{\mathcal{Q}}_{+} = \{\mathbf{0}\}, \text{ for all } \mathbf{x} \in F(\mathcal{X}^{M},\mu) \text{ and } \mu \in \Delta_{N}(\mathcal{X}^{M})\right).$ Now take the union over all $M \in \mathbb{N}$, $\mu \in \Delta(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}^M$.

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F: \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^*: \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient \iff there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^{M}(\mu) \subseteq F_{\phi_{N}}(\mathcal{X}^{M},\mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_{N}(\mathcal{X}^{M})$. **Proof sketch.** " \implies " For any $M \in \mathbb{N}$, $\mu \in \Delta_N(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}$, we define the vector $\mathbf{g}^{\mathbf{x},\mu}$ in $\mathbb{R}^{\mathcal{Q}_N^+}$, by setting $g_{\mathbf{q}}^{\mathbf{x},\mu} := \gamma_{\mu,\mathbf{x}}(\mathbf{q})/|\mathcal{K}|$, for all $q \in \mathcal{Q}_{N}^{+}$. Now let \mathcal{P} be the closure of \mathcal{D} , where we define $\mathcal{D} := \{ \mathbf{g}^{\mathbf{y},\mu} - \mathbf{g}^{\mathbf{x},\mu} ; M \in \mathbb{N}, \ \mu \in \Delta_{N}(\mathcal{X}^{M}), \ \mathbf{x} \in F(\mathcal{X}^{M},\mu), \text{ and } \mathbf{y} \in \mathcal{X}^{M} \}.$ **Claim 1.** \mathcal{P} is a compact, convex polyhedron in $\mathbb{R}^{\mathcal{Q}_N^+}$. **Claim 2.** If *F* is SME, then $\mathcal{D} \cap \mathbb{R}^{\mathcal{Q}^+_N}_{\perp} = \{\mathbf{0}\}.$ Given a slight strengthening of the Separating Hyperplane Theorem, Claims 1 and 2 yield a strictly positive vector $\mathbf{v} \in \mathbb{R}^N_+$ which separates \mathcal{P} from \mathbb{R}^N_+ .

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F: \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^*: \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient \iff there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^{M}(\mu) \subseteq F_{\phi_{N}}(\mathcal{X}^{M},\mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_{N}(\mathcal{X}^{M})$. **Proof sketch.** " \implies " For any $M \in \mathbb{N}$, $\mu \in \Delta_N(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}$, we define the vector $\mathbf{g}^{\mathbf{x},\mu}$ in $\mathbb{R}^{\mathcal{Q}_N^+}$, by setting $g_{\mathbf{q}}^{\mathbf{x},\mu} := \gamma_{\mu,\mathbf{x}}(\mathbf{q})/|\mathcal{K}|$, for all $q \in \mathcal{Q}_{N}^{+}$. Now let \mathcal{P} be the closure of \mathcal{D} , where we define $\mathcal{D} := \{ \mathbf{g}^{\mathbf{y},\mu} - \mathbf{g}^{\mathbf{x},\mu} ; M \in \mathbb{N}, \ \mu \in \Delta_{N}(\mathcal{X}^{M}), \ \mathbf{x} \in F(\mathcal{X}^{M},\mu), \text{ and } \mathbf{y} \in \mathcal{X}^{M} \}.$ **Claim 1.** \mathcal{P} is a compact, convex polyhedron in $\mathbb{R}^{\mathcal{Q}_N^+}$. **Claim 2.** If *F* is SME, then $\mathcal{D} \cap \mathbb{R}^{\mathcal{Q}^+_N}_{\perp} = \{\mathbf{0}\}.$ Given a slight strengthening of the Separating Hyperplane Theorem, Claims 1 and 2 yield a strictly positive vector $\mathbf{v} \in \mathbb{R}^N_+$ which separates \mathcal{P} from \mathbb{R}^N_+ . Now define $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ as follows: for all $r \in \mathcal{Q}_N$,

$$\phi(r)$$
 := $\sum_{\substack{q \in \mathcal{Q}_N \ q \leq r}} v_q$ if $r \ge 0$, and $\phi(r)$:= $-\phi(-r)$ if $r \le 0$.

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F: \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^*: \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient \iff there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^{M}(\mu) \subseteq F_{\phi_{N}}(\mathcal{X}^{M},\mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_{N}(\mathcal{X}^{M})$. **Proof sketch.** " \implies " For any $M \in \mathbb{N}$, $\mu \in \Delta_N(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}$, we define the vector $\mathbf{g}^{\mathbf{x},\mu}$ in $\mathbb{R}^{\mathcal{Q}_N^+}$, by setting $g_{\mathbf{q}}^{\mathbf{x},\mu} := \gamma_{\mu,\mathbf{x}}(\mathbf{q})/|\mathcal{K}|$, for all $q \in \mathcal{Q}_{N}^{+}$. Now let \mathcal{P} be the closure of \mathcal{D} , where we define $\mathcal{D} := \{ \mathbf{g}^{\mathbf{y},\mu} - \mathbf{g}^{\mathbf{x},\mu} ; M \in \mathbb{N}, \ \mu \in \Delta_{N}(\mathcal{X}^{M}), \ \mathbf{x} \in F(\mathcal{X}^{M},\mu), \text{ and } \mathbf{y} \in \mathcal{X}^{M} \}.$ **Claim 1.** \mathcal{P} is a compact, convex polyhedron in $\mathbb{R}^{\mathcal{Q}_N^+}$. **Claim 2.** If *F* is SME, then $\mathcal{D} \cap \mathbb{R}^{\mathcal{Q}^+_N}_{\perp} = \{\mathbf{0}\}.$ Given a slight strengthening of the Separating Hyperplane Theorem, Claims 1 and 2 yield a strictly positive vector $\mathbf{v} \in \mathbb{R}^N_+$ which separates \mathcal{P} from \mathbb{R}^N_+ . Now define $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ as follows: for all $r \in \mathcal{Q}_N$,

$$\phi(r) := \sum_{\substack{q \in \mathcal{Q}_N \\ q \leq r}} v_q \text{ if } r \geq 0, \text{ and } \phi(r) := -\phi(-r) \text{ if } r \leq 0.$$

Thus, ϕ is odd by construction, and ϕ is strictly increasing on Q_N , because $v_q > 0$ for all $q \in Q_N$.

Theorem 1B. Let $N \in \mathbb{N}$, let \mathcal{X} be a judgement space, and let $F: \Delta_N(\mathcal{X}) \rightrightarrows \mathcal{X}$. The extension $F^*: \Delta_N(\mathcal{X}^*) \rightrightarrows \mathcal{X}^*$ is supermajoritarian efficient \iff there is odd, increasing function $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ such that $F^{M}(\mu) \subseteq F_{\phi_{N}}(\mathcal{X}^{M},\mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_{N}(\mathcal{X}^{M})$. **Proof sketch.** " \implies " For any $M \in \mathbb{N}$, $\mu \in \Delta_N(\mathcal{X}^M)$, and $\mathbf{x} \in \mathcal{X}$, we define the vector $\mathbf{g}^{\mathbf{x},\mu}$ in $\mathbb{R}^{\mathcal{Q}_N^+}$, by setting $g_{\mathbf{q}}^{\mathbf{x},\mu} := \gamma_{\mu,\mathbf{x}}(\mathbf{q})/|\mathcal{K}|$, for all $q \in \mathcal{Q}_{N}^{+}$. Now let \mathcal{P} be the closure of \mathcal{D} , where we define $\mathcal{D} := \{ \mathbf{g}^{\mathbf{y}, \mu} - \mathbf{g}^{\mathbf{x}, \mu} ; M \in \mathbb{N}, \ \mu \in \Delta_N(\mathcal{X}^M), \ \mathbf{x} \in F(\mathcal{X}^M, \mu), \text{ and } \mathbf{y} \in \mathcal{X}^M \}.$ **Claim 1.** \mathcal{P} is a compact, convex polyhedron in $\mathbb{R}^{\mathcal{Q}_N^+}$. **Claim 2.** If *F* is SME, then $\mathcal{D} \cap \mathbb{R}^{\mathcal{Q}^+_N}_{\perp} = \{\mathbf{0}\}.$ Given a slight strengthening of the Separating Hyperplane Theorem, Claims 1 and 2 yield a strictly positive vector $\mathbf{v} \in \mathbb{R}^N_+$ which separates \mathcal{P} from \mathbb{R}^N_+ . Now define $\phi_N : \mathcal{Q}_N \longrightarrow \mathbb{R}$ as follows: for all $r \in \mathcal{Q}_N$,

$$\phi(r)$$
 := $\sum_{q\in\mathcal{Q}_{\mathcal{N}}\,;\,q\leq r} v_q$ if $r\geq 0$, and $\phi(r)$:= $-\phi(-r)$ if $r\leq 0$.

Thus, ϕ is odd by construction, and ϕ is strictly increasing on Q_N , because $v_q > 0$ for all $q \in Q_N$. It is a straightforward computation to check that $F(\mathcal{X}^M, \mu) \subseteq F_{\phi_N}(\mathcal{X}^M, \mu)$, for all $M \in \mathbb{N}$ and $\mu \in \Delta_N(\mathcal{X}^M)$.

(31/36)

Let ${\mathcal I}$ be an infinite set.

Let $\mathfrak{P} :=$ the power set of \mathcal{I} .

A *free filter* is a subset $\mathfrak{U} \subset \mathfrak{P}$ (i.e. a collections of subsets of \mathcal{I}) with the following properties:

- ▶ (F0) No finite subset of \mathcal{I} is an element of \mathfrak{U} . (Hence, $\emptyset \notin \mathfrak{U}$.)
- ▶ (F1) If $U, V \in \mathfrak{U}$, then $U \cap V \in \mathfrak{U}$.
- ▶ (F2) For any $U \in \mathfrak{U}$ and $\mathcal{P} \in \mathfrak{P}$, if $U \subseteq \mathfrak{P}$, then $\mathcal{P} \in \mathfrak{U}$.

Example: The set of all co-finite subsets of \mathcal{I} is a free filter. A free filter \mathfrak{U} is a *free ultrafilter* if it also satisfies:

• (UF) For any $\mathcal{P} \in \mathfrak{P}$, either $\mathcal{P} \in \mathfrak{U}$ or $\mathcal{P}^{\complement} \in \mathfrak{U}$ (but not both).

Idea: Elements of \mathfrak{U} are 'large' subsets of \mathcal{I} ; if $\mathcal{U} \in \mathfrak{U}$ and a certain statement holds for all $i \in \mathcal{U}$, then this statement holds for 'almost all' $i \in \mathcal{I}$. (In particular, axioms (F0) and (UF) imply that $\mathcal{I} \in \mathfrak{U}$.)

(31/36)

- Let ${\mathcal I}$ be an infinite set.
- Let $\mathfrak{P} :=$ the power set of \mathcal{I} .

A *free filter* is a subset $\mathfrak{U} \subset \mathfrak{P}$ (i.e. a collections of subsets of \mathcal{I}) with the following properties:

- ▶ (F0) No finite subset of \mathcal{I} is an element of \mathfrak{U} . (Hence, $\emptyset \notin \mathfrak{U}$.)
- ▶ (F1) If $U, V \in \mathfrak{U}$, then $U \cap V \in \mathfrak{U}$.
- ▶ (F2) For any $U \in \mathfrak{U}$ and $\mathcal{P} \in \mathfrak{P}$, if $U \subseteq \mathfrak{P}$, then $\mathcal{P} \in \mathfrak{U}$.

Example: The set of all co-finite subsets of \mathcal{I} is a free filter. A free filter \mathfrak{U} is a *free ultrafilter* if it also satisfies:

▶ **(UF)** For any $\mathcal{P} \in \mathfrak{P}$, either $\mathcal{P} \in \mathfrak{U}$ or $\mathcal{P}^{\complement} \in \mathfrak{U}$ (but not both).

Idea: Elements of \mathfrak{U} are 'large' subsets of \mathcal{I} ; if $\mathcal{U} \in \mathfrak{U}$ and a certain statement holds for all $i \in \mathcal{U}$, then this statement holds for 'almost all' $i \in \mathcal{I}$. (In particular, axioms (F0) and (UF) imply that $\mathcal{I} \in \mathfrak{U}$.)

(31/36)

- Let ${\mathcal I}$ be an infinite set.
- Let $\mathfrak{P} :=$ the power set of \mathcal{I} .

A *free filter* is a subset $\mathfrak{U} \subset \mathfrak{P}$ (i.e. a collections of subsets of \mathcal{I}) with the following properties:

- (F0) No finite subset of I is an element of 𝔄. (Hence, Ø ∉ 𝔄.)
 (F1) If U, V ∈ 𝔄, then U ∩ V ∈ 𝔄.
- ▶ (F2) For any $U \in \mathfrak{U}$ and $\mathcal{P} \in \mathfrak{P}$, if $U \subseteq \mathfrak{P}$, then $\mathcal{P} \in \mathfrak{U}$.

Example: The set of all co-finite subsets of \mathcal{I} is a free filter. A free filter \mathfrak{U} is a *free ultrafilter* if it also satisfies:

▶ **(UF)** For any $\mathcal{P} \in \mathfrak{P}$, either $\mathcal{P} \in \mathfrak{U}$ or $\mathcal{P}^{\complement} \in \mathfrak{U}$ (but not both).

Idea: Elements of \mathfrak{U} are 'large' subsets of \mathcal{I} ; if $\mathcal{U} \in \mathfrak{U}$ and a certain statement holds for all $i \in \mathcal{U}$, then this statement holds for 'almost all' $i \in \mathcal{I}$. (In particular, axioms (F0) and (UF) imply that $\mathcal{I} \in \mathfrak{U}$.)

Let ${\mathcal I}$ be an infinite set.

Let $\mathfrak{P} :=$ the power set of \mathcal{I} .

A *free filter* is a subset $\mathfrak{U} \subset \mathfrak{P}$ (i.e. a collections of subsets of \mathcal{I}) with the following properties:

(F0) No finite subset of I is an element of 𝔄. (Hence, Ø ∉ 𝔄.)
(F1) If U, V ∈ 𝔄, then U ∩ V ∈ 𝔄.

▶ (F2) For any $U \in \mathfrak{U}$ and $\mathcal{P} \in \mathfrak{P}$, if $U \subseteq \mathfrak{P}$, then $\mathcal{P} \in \mathfrak{U}$.

Example: The set of all co-finite subsets of \mathcal{I} is a free filter. A free filter \mathfrak{U} is a *free ultrafilter* if it also satisfies:

▶ (UF) For any $\mathcal{P} \in \mathfrak{P}$, either $\mathcal{P} \in \mathfrak{U}$ or $\mathcal{P}^{\complement} \in \mathfrak{U}$ (but not both).

Idea: Elements of \mathfrak{U} are 'large' subsets of \mathcal{I} ; if $\mathcal{U} \in \mathfrak{U}$ and a certain statement holds for all $i \in \mathcal{U}$, then this statement holds for 'almost all' $i \in \mathcal{I}$. (In particular, axioms (F0) and (UF) imply that $\mathcal{I} \in \mathfrak{U}$.)

Let ${\mathcal I}$ be an infinite set.

Let $\mathfrak{P} :=$ the power set of \mathcal{I} .

A *free filter* is a subset $\mathfrak{U} \subset \mathfrak{P}$ (i.e. a collections of subsets of \mathcal{I}) with the following properties:

(F0) No finite subset of I is an element of 𝔄. (Hence, ∅ ∉ 𝔄.)
(F1) If U, V ∈ 𝔄, then U ∩ V ∈ 𝔄.

▶ (F2) For any $U \in \mathfrak{U}$ and $\mathcal{P} \in \mathfrak{P}$, if $U \subseteq \mathfrak{P}$, then $\mathcal{P} \in \mathfrak{U}$.

Example: The set of all co-finite subsets of \mathcal{I} is a free filter. A free filter \mathfrak{U} is a *free ultrafilter* if it also satisfies:

▶ **(UF)** For any $\mathcal{P} \in \mathfrak{P}$, either $\mathcal{P} \in \mathfrak{U}$ or $\mathcal{P}^{\complement} \in \mathfrak{U}$ (but not both).

Idea: Elements of \mathfrak{U} are 'large' subsets of \mathcal{I} ; if $\mathcal{U} \in \mathfrak{U}$ and a certain statement holds for all $i \in \mathcal{U}$, then this statement holds for 'almost all' $i \in \mathcal{I}$. (In particular, axioms (F0) and (UF) imply that $\mathcal{I} \in \mathfrak{U}$.)

Let ${\mathcal I}$ be an infinite set.

Let $\mathfrak{P} :=$ the power set of \mathcal{I} .

A *free filter* is a subset $\mathfrak{U} \subset \mathfrak{P}$ (i.e. a collections of subsets of \mathcal{I}) with the following properties:

- ▶ (F0) No finite subset of \mathcal{I} is an element of \mathfrak{U} . (Hence, $\emptyset \notin \mathfrak{U}$.)
- ▶ (F1) If $U, V \in \mathfrak{U}$, then $U \cap V \in \mathfrak{U}$.
- ▶ (F2) For any $U \in \mathfrak{U}$ and $\mathcal{P} \in \mathfrak{P}$, if $U \subseteq \mathfrak{P}$, then $\mathcal{P} \in \mathfrak{U}$.

Example: The set of all co-finite subsets of \mathcal{I} is a free filter. A free filter \mathfrak{U} is a *free ultrafilter* if it also satisfies:

▶ (UF) For any $\mathcal{P} \in \mathfrak{P}$, either $\mathcal{P} \in \mathfrak{U}$ or $\mathcal{P}^{\complement} \in \mathfrak{U}$ (but not both).

Idea: Elements of \mathfrak{U} are 'large' subsets of \mathcal{I} ; if $\mathcal{U} \in \mathfrak{U}$ and a certain statement holds for all $i \in \mathcal{U}$, then this statement holds for 'almost all' $i \in \mathcal{I}$. (In particular, axioms (F0) and (UF) imply that $\mathcal{I} \in \mathfrak{U}$.)

(31/36)

Let ${\mathcal I}$ be an infinite set.

Let $\mathfrak{P} :=$ the power set of \mathcal{I} .

A *free filter* is a subset $\mathfrak{U} \subset \mathfrak{P}$ (i.e. a collections of subsets of \mathcal{I}) with the following properties:

- ▶ (F0) No finite subset of \mathcal{I} is an element of \mathfrak{U} . (Hence, $\emptyset \notin \mathfrak{U}$.)
- ▶ (F1) If $U, V \in \mathfrak{U}$, then $U \cap V \in \mathfrak{U}$.
- ▶ (F2) For any $U \in \mathfrak{U}$ and $\mathcal{P} \in \mathfrak{P}$, if $U \subseteq \mathfrak{P}$, then $\mathcal{P} \in \mathfrak{U}$.

Example: The set of all co-finite subsets of $\mathcal I$ is a free filter.

A free filter $\mathfrak U$ is a *free ultrafilter* if it also satisfies:

▶ (UF) For any $\mathcal{P} \in \mathfrak{P}$, either $\mathcal{P} \in \mathfrak{U}$ or $\mathcal{P}^{\complement} \in \mathfrak{U}$ (but not both).

Idea: Elements of \mathfrak{U} are 'large' subsets of \mathcal{I} ; if $\mathcal{U} \in \mathfrak{U}$ and a certain statement holds for all $i \in \mathcal{U}$, then this statement holds for 'almost all' $i \in \mathcal{I}$. (In particular, axioms (F0) and (UF) imply that $\mathcal{I} \in \mathfrak{U}$.)

(31/36)

Let ${\mathcal I}$ be an infinite set.

Let $\mathfrak{P} :=$ the power set of \mathcal{I} .

A *free filter* is a subset $\mathfrak{U} \subset \mathfrak{P}$ (i.e. a collections of subsets of \mathcal{I}) with the following properties:

- ▶ (F0) No finite subset of \mathcal{I} is an element of \mathfrak{U} . (Hence, $\emptyset \notin \mathfrak{U}$.)
- ▶ (F1) If $U, V \in \mathfrak{U}$, then $U \cap V \in \mathfrak{U}$.
- ▶ (F2) For any $U \in \mathfrak{U}$ and $\mathcal{P} \in \mathfrak{P}$, if $U \subseteq \mathfrak{P}$, then $\mathcal{P} \in \mathfrak{U}$.

Example: The set of all co-finite subsets of \mathcal{I} is a free filter. A free filter \mathfrak{U} is a *free ultrafilter* if it also satisfies:

• (UF) For any $\mathcal{P} \in \mathfrak{P}$, either $\mathcal{P} \in \mathfrak{U}$ or $\mathcal{P}^{\complement} \in \mathfrak{U}$ (but not both).

Idea: Elements of \mathfrak{U} are 'large' subsets of \mathcal{I} ; if $\mathcal{U} \in \mathfrak{U}$ and a certain statement holds for all $i \in \mathcal{U}$, then this statement holds for 'almost all' $i \in \mathcal{I}$. (In particular, axioms (F0) and (UF) imply that $\mathcal{I} \in \mathfrak{U}$.)

Let ${\mathcal I}$ be an infinite set.

Let $\mathfrak{P} :=$ the power set of \mathcal{I} .

A *free filter* is a subset $\mathfrak{U} \subset \mathfrak{P}$ (i.e. a collections of subsets of \mathcal{I}) with the following properties:

- ▶ (F0) No finite subset of \mathcal{I} is an element of \mathfrak{U} . (Hence, $\emptyset \notin \mathfrak{U}$.)
- (F1) If $\mathcal{U}, \mathcal{V} \in \mathfrak{U}$, then $\mathcal{U} \cap \mathcal{V} \in \mathfrak{U}$.
- ▶ (F2) For any $U \in \mathfrak{U}$ and $\mathcal{P} \in \mathfrak{P}$, if $U \subseteq \mathfrak{P}$, then $\mathcal{P} \in \mathfrak{U}$.

Example: The set of all co-finite subsets of \mathcal{I} is a free filter. A free filter \mathfrak{U} is a *free ultrafilter* if it also satisfies:

▶ (UF) For any $\mathcal{P} \in \mathfrak{P}$, either $\mathcal{P} \in \mathfrak{U}$ or $\mathcal{P}^{\complement} \in \mathfrak{U}$ (but not both).

Idea: Elements of \mathfrak{U} are 'large' subsets of \mathcal{I} ; if $\mathcal{U} \in \mathfrak{U}$ and a certain statement holds for all $i \in \mathcal{U}$, then this statement holds for 'almost all' $i \in \mathcal{I}$. (In particular, axioms (F0) and (UF) imply that $\mathcal{I} \in \mathfrak{U}$.)

(31/36)

Let ${\mathcal I}$ be an infinite set.

Let $\mathfrak{P} :=$ the power set of \mathcal{I} .

A *free filter* is a subset $\mathfrak{U} \subset \mathfrak{P}$ (i.e. a collections of subsets of \mathcal{I}) with the following properties:

- ▶ (F0) No finite subset of \mathcal{I} is an element of \mathfrak{U} . (Hence, $\emptyset \notin \mathfrak{U}$.)
- ▶ (F1) If $U, V \in \mathfrak{U}$, then $U \cap V \in \mathfrak{U}$.
- ▶ (F2) For any $U \in \mathfrak{U}$ and $\mathcal{P} \in \mathfrak{P}$, if $U \subseteq \mathfrak{P}$, then $\mathcal{P} \in \mathfrak{U}$.

Example: The set of all co-finite subsets of \mathcal{I} is a free filter. A free filter \mathfrak{U} is a *free ultrafilter* if it also satisfies:

▶ **(UF)** For any $\mathcal{P} \in \mathfrak{P}$, either $\mathcal{P} \in \mathfrak{U}$ or $\mathcal{P}^{\complement} \in \mathfrak{U}$ (but not both).

Idea: Elements of \mathfrak{U} are 'large' subsets of \mathcal{I} ; if $\mathcal{U} \in \mathfrak{U}$ and a certain statement holds for all $i \in \mathcal{U}$, then this statement holds for 'almost all' $i \in \mathcal{I}$. (In particular, axioms (F0) and (UF) imply that $\mathcal{I} \in \mathfrak{U}$.)

(31/36)

Let ${\mathcal I}$ be an infinite set.

Let $\mathfrak{P} :=$ the power set of \mathcal{I} .

A *free filter* is a subset $\mathfrak{U} \subset \mathfrak{P}$ (i.e. a collections of subsets of \mathcal{I}) with the following properties:

- ▶ (F0) No finite subset of \mathcal{I} is an element of \mathfrak{U} . (Hence, $\emptyset \notin \mathfrak{U}$.)
- ▶ (F1) If $U, V \in \mathfrak{U}$, then $U \cap V \in \mathfrak{U}$.
- ▶ (F2) For any $U \in \mathfrak{U}$ and $\mathcal{P} \in \mathfrak{P}$, if $U \subseteq \mathfrak{P}$, then $\mathcal{P} \in \mathfrak{U}$.

Example: The set of all co-finite subsets of \mathcal{I} is a free filter. A free filter \mathfrak{U} is a *free ultrafilter* if it also satisfies:

▶ **(UF)** For any $\mathcal{P} \in \mathfrak{P}$, either $\mathcal{P} \in \mathfrak{U}$ or $\mathcal{P}^{\complement} \in \mathfrak{U}$ (but not both).

Idea: Elements of \mathfrak{U} are 'large' subsets of \mathcal{I} ; if $\mathcal{U} \in \mathfrak{U}$ and a certain statement holds for all $i \in \mathcal{U}$, then this statement holds for 'almost all' $i \in \mathcal{I}$. (In particular, axioms (F0) and (UF) imply that $\mathcal{I} \in \mathfrak{U}$.)

Formal definition of $\ensuremath{\mathbb{T}}\xspace$ as an ultraproduct

For any $r, s \in \mathbb{R}^{\mathcal{I}}$, define $r \succeq_{\mathfrak{U}} s$ if and only if $\{i \in \mathcal{I}; r_i \ge s_i\} \in \mathfrak{U}$. This yields a complete preorder $(\succeq_{\mathfrak{U}})$ on $\mathbb{R}^{\mathcal{I}}$.

Let $\binom{\approx}{\mathfrak{u}}$ be the symmetric part of $\binom{\succeq}{\mathfrak{u}}$ (an equivalence relation on $\mathbb{R}^{\mathcal{I}}$). Thus, $r \approx s$ if they agree 'almost everywhere'. Define $*\mathbb{R} := \mathbb{R}^{\mathcal{I}}/(\approx)$. For any $r \in \mathbb{R}^{\mathcal{I}}$, let *r denote the equivalence class of r in $*\mathbb{R}$.

Define linear order (>) on \mathbb{R} , by $(*r > *s) \Leftrightarrow (r \succeq s)$, for all $*r, *s \in \mathbb{R}$.

For any $r, s \in \mathbb{R}^{\mathcal{I}}$, we define r + s, $r \cdot s$, r/s, and r^s in $\mathbb{R}^{\mathcal{I}}$ by: $(r + s)_i$ $:= r_i + s_i$, $(r \cdot s)_i := r_i \cdot s_i$, $(r/s)_i := r_i/s_i$, and $(r^s)_i := r_i^{s_i}$, $\forall i \in \mathcal{I}$. Then, for any $*r, *s \in *\mathbb{R}$, we define *r + *s := *(r + s), $*r \cdot *s := *(r \cdot s)$, *r/*s := *(r/s), and $*r^{*s} := *(r^s)$.

Then $(*\mathbb{R}, +, \cdot, >)$ is a linearly ordered field. Exponentiation works normally. Furthermore, \mathbb{R} can be embedded as an ordered subfield of $*\mathbb{R}$ by mapping any $r \in \mathbb{R}$ to the element $*\overline{r}$ in $*\mathbb{R}$, where $\overline{r} := (r, r, r, ...) \in \mathbb{R}^{\mathcal{I}}$. A positive element $*r \in *\mathbb{R}$ is **infinitesimal** if, for any real $\epsilon > 0$, we have $0 < *r < *\overline{\epsilon}$ (that is: $\{i \in \mathcal{I}; 0 < r_i < \epsilon\} \in \mathfrak{U}$.). Likewise, *r is **infinite** if, for any $M \in \mathbb{N}$, we have $*r > *\overline{M}$ (that is: $\{i \in \mathcal{I}; \mathbf{n} \in \mathcal{M}\} \in \mathfrak{U}$, $\mathbf{n} \in \mathcal{M}$).

Formal definition of $\ensuremath{\mathbb{T}}\xspace$ as an ultraproduct

For any $r, s \in \mathbb{R}^{\mathcal{I}}$, define $r \succeq_{\mathfrak{U}} s$ if and only if $\{i \in \mathcal{I}; r_i \ge s_i\} \in \mathfrak{U}$. This yields a complete preorder $(\succeq_{\mathfrak{U}})$ on $\mathbb{R}^{\mathcal{I}}$.

Let $\left(\begin{array}{c} \cong \\ \mathfrak{u} \end{array}\right)$ be the symmetric part of $\left(\begin{array}{c} \succeq \\ \mathfrak{u} \end{array}\right)$ (an equivalence relation on $\mathbb{R}^{\mathcal{I}}$). Thus, $r \cong s$ if they agree 'almost everywhere'. Define $*\mathbb{R} := \mathbb{R}^{\mathcal{I}}/(\cong \mathfrak{u})$. For any $r \in \mathbb{R}^{\mathcal{I}}$, let *r denote the equivalence class of r in $*\mathbb{R}$.

Define linear order (>) on \mathbb{R} , by $(*r > *s) \Leftrightarrow (r \succeq s)$, for all $*r, *s \in \mathbb{R}$.

For any $r, s \in \mathbb{R}^{\mathcal{I}}$, we define r + s, $r \cdot s$, r/s, and r^s in $\mathbb{R}^{\mathcal{I}}$ by: $(r + s)_i$ $:= r_i + s_i$, $(r \cdot s)_i := r_i \cdot s_i$, $(r/s)_i := r_i/s_i$, and $(r^s)_i := r_i^{s_i}$, $\forall i \in \mathcal{I}$. Then, for any $*r, *s \in *\mathbb{R}$, we define *r + *s := *(r + s), $*r \cdot *s := *(r \cdot s)$, *r/*s := *(r/s), and $*r^{*s} := *(r^s)$.

Then $(*\mathbb{R}, +, \cdot, >)$ is a linearly ordered field. Exponentiation works normally. Furthermore, \mathbb{R} can be embedded as an ordered subfield of $*\mathbb{R}$ by mapping any $r \in \mathbb{R}$ to the element $*\overline{r}$ in $*\mathbb{R}$, where $\overline{r} := (r, r, r, ...) \in \mathbb{R}^{\mathcal{I}}$. A positive element $*r \in *\mathbb{R}$ is **infinitesimal** if, for any real $\epsilon > 0$, we have $0 < *r < *\overline{\epsilon}$ (that is: $\{i \in \mathcal{I}; 0 < r_i < \epsilon\} \in \mathfrak{U}$.). Likewise, *r is **infinite** if, for any $M \in \mathbb{N}$, we have $*r > *\overline{M}$ (that is: $\{i \in \mathcal{I}; r_i \geq M\} \in \mathfrak{U}$, $r \geq r_i < r_i$

(32/36)

For any $r, s \in \mathbb{R}^{\mathcal{I}}$, define $r \succeq_{\mathfrak{U}} s$ if and only if $\{i \in \mathcal{I}; r_i \geq s_i\} \in \mathfrak{U}$. This yields a complete preorder $(\succeq_{\mathfrak{U}})$ on $\mathbb{R}^{\mathcal{I}}$.

Let $\left(\begin{array}{c} \widetilde{a} \\ \mathfrak{u} \end{array}\right)$ be the symmetric part of $\left(\begin{array}{c} \succeq \\ \mathfrak{u} \end{array}\right)$ (an equivalence relation on $\mathbb{R}^{\mathcal{I}}$). Thus, $r \underset{\mathfrak{u}}{\approx} s$ if they agree 'almost everywhere'. Define " $\mathbb{R} := \mathbb{R}^{\mathcal{I}}/(\underset{\mathfrak{u}}{\approx})$. For any $r \in \mathbb{R}^{\mathcal{I}}$, let "r denote the equivalence class of r in " \mathbb{R} . Define linear order (>) on " \mathbb{R} , by (*r > *s) \Leftrightarrow ($r \underset{\mathfrak{u}}{\approx}$), for all *r, * $s \in$ " \mathbb{R} . For any $r, s \in \mathbb{R}^{\mathcal{I}}$, we define r + s, $r \cdot s$, r/s, and r^s in $\mathbb{R}^{\mathcal{I}}$ by: $(r + s)_i$ $:= r_i + s_i$, $(r \cdot s)_i := r_i \cdot s_i$, $(r/s)_i := r_i/s_i$, and $(r^s)_i := r_i^{s_i}$, $\forall i \in \mathcal{I}$. Then, for any *r, * $s \in$ * \mathbb{R} , we define *r + *s := *(r + s), * $r \cdot$ *s := * $(r \cdot s)$, *r/*s := *(r/s), and * $r^{*s} :=$ * (r^s) .

Then $(*\mathbb{R}, +, \cdot, >)$ is a linearly ordered field. Exponentiation works normally. Furthermore, \mathbb{R} can be embedded as an ordered subfield of $*\mathbb{R}$ by mapping any $r \in \mathbb{R}$ to the element $*\overline{r}$ in $*\mathbb{R}$, where $\overline{r} := (r, r, r, \dots) \in \mathbb{R}^{\mathcal{I}}$. A positive element $*r \in *\mathbb{R}$ is **infinitesimal** if, for any real $\epsilon > 0$, we have $0 < *r < *\overline{\epsilon}$ (that is: $\{i \in \mathcal{I}; 0 < r_i < \epsilon\} \in \mathfrak{U}$.). Likewise, *r is **infinite** if, for any $M \in \mathbb{N}$, we have $*r > *\overline{M}$ (that is: $\{i \in \mathcal{I}; \mathbf{n} \in \mathcal{M}\} \in \mathfrak{U}$, $\mathbf{n} \in \mathcal{I}$, \mathbf{n}

(32/36)

For any $r, s \in \mathbb{R}^{\mathcal{I}}$, define $r \succeq_{\mathfrak{U}} s$ if and only if $\{i \in \mathcal{I}; r_i \geq s_i\} \in \mathfrak{U}$. This yields a complete preorder $(\succeq_{\mathfrak{U}})$ on $\mathbb{R}^{\mathcal{I}}$.

Let $\begin{pmatrix} \approx \\ \mathfrak{u} \end{pmatrix}$ be the symmetric part of $\begin{pmatrix} \succeq \\ \mathfrak{u} \end{pmatrix}$ (an equivalence relation on $\mathbb{R}^{\mathcal{I}}$). Thus, $r \approx s$ if they agree 'almost everywhere'. Define ${}^{*}\mathbb{R} := \mathbb{R}^{\mathcal{I}}/(\approx)$. For any $r \in \mathbb{R}^{\mathcal{I}}$, let *r denote the equivalence class of r in * \mathbb{R} . Define linear order (>) on * \mathbb{R} , by (*r > *s) \Leftrightarrow ($r \succeq s$), for all * $r, *s \in *\mathbb{R}$. For any $r, s \in \mathbb{R}^{\mathcal{I}}$, we define $r + s, r \cdot s, r/s$, and r^s in $\mathbb{R}^{\mathcal{I}}$ by: $(r + s)_i$ $:= r_i + s_i, (r \cdot s)_i := r_i \cdot s_i, (r/s)_i := r_i/s_i$, and $(r^s)_i := r_i^{s_i}, \forall i \in \mathcal{I}$. Then, for any * $r, *s \in *\mathbb{R}$, we define $*r + *s := *(r + s), *r \cdot *s := *(r \cdot s), *r/*s := *(r/s)$, and $*r^{*s} := *(r^s)$.

Then $(*\mathbb{R}, +, \cdot, >)$ is a linearly ordered field. Exponentiation works normally. Furthermore, \mathbb{R} can be embedded as an ordered subfield of $*\mathbb{R}$ by mapping any $r \in \mathbb{R}$ to the element $*\overline{r}$ in $*\mathbb{R}$, where $\overline{r} := (r, r, r, ...) \in \mathbb{R}^{\mathcal{I}}$. A positive element $*r \in *\mathbb{R}$ is **infinitesimal** if, for any real $\epsilon > 0$, we have $0 < *r < *\overline{\epsilon}$ (that is: $\{i \in \mathcal{I}; 0 < r_i < \epsilon\} \in \mathfrak{U}$.). Likewise, *r is **infinite** if, for any $M \in \mathbb{N}$, we have $*r > *\overline{M}$ (that is: $\{i \in \mathcal{I}; \mathbf{n} \in \mathcal{M}\} \in \mathfrak{U}$, $\mathbf{n} \in \mathcal{M}$).

(32/36)

For any $r, s \in \mathbb{R}^{\mathcal{I}}$, define $r \succeq_{\mathfrak{U}} s$ if and only if $\{i \in \mathcal{I}; r_i \geq s_i\} \in \mathfrak{U}$. This yields a complete preorder $(\succeq_{\mathfrak{U}})$ on $\mathbb{R}^{\mathcal{I}}$.

Let $\begin{pmatrix} \approx \\ \mathfrak{u} \end{pmatrix}$ be the symmetric part of $\begin{pmatrix} \succeq \\ \mathfrak{u} \end{pmatrix}$ (an equivalence relation on $\mathbb{R}^{\mathcal{I}}$). Thus, $r \approx s$ if they agree 'almost everywhere'. Define $*\mathbb{R} := \mathbb{R}^{\mathcal{I}} / (\approx \mathfrak{u})$. For any $r \in \mathbb{R}^{\mathcal{I}}$, let *r denote the equivalence class of r in * \mathbb{R} .

For any $r, s \in \mathbb{R}^{\mathcal{I}}$, we define r + s, $r \cdot s$, r/s, and r^{s} in $\mathbb{R}^{\mathcal{I}}$ by: $(r + s)_{i}$ $:= r_{i} + s_{i}$, $(r \cdot s)_{i} := r_{i} \cdot s_{i}$, $(r/s)_{i} := r_{i}/s_{i}$, and $(r^{s})_{i} := r_{i}^{s_{i}}$, $\forall i \in \mathcal{I}$. Then, for any $*r, *s \in *\mathbb{R}$, we define *r + *s := *(r + s), $*r \cdot *s := *(r \cdot s)$, *r/*s := *(r/s), and $*r^{*s} := *(r^{s})$.

Then $(*\mathbb{R}, +, \cdot, >)$ is a linearly ordered field. Exponentiation works normally. Furthermore, \mathbb{R} can be embedded as an ordered subfield of $*\mathbb{R}$ by mapping any $r \in \mathbb{R}$ to the element $*\overline{r}$ in $*\mathbb{R}$, where $\overline{r} := (r, r, r, ...) \in \mathbb{R}^{\mathcal{I}}$. A positive element $*r \in *\mathbb{R}$ is **infinitesimal** if, for any real $\epsilon > 0$, we have $0 < *r < *\overline{\epsilon}$ (that is: $\{i \in \mathcal{I}; 0 < r_i < \epsilon\} \in \mathfrak{U}$.). Likewise, *r is **infinite** if, for any $M \in \mathbb{N}$, we have $*r > *\overline{M}$ (that is: $\{i \in \mathcal{I}; \mathbf{n} \in \mathcal{M}\} \in \mathfrak{U}$, $\mathbf{n} \in \mathcal{M}$).

(32/36)

For any $r, s \in \mathbb{R}^{\mathcal{I}}$, define $r \succeq_{\mathfrak{U}} s$ if and only if $\{i \in \mathcal{I}; r_i \geq s_i\} \in \mathfrak{U}$. This yields a complete preorder $(\succeq_{\mathfrak{U}})$ on $\mathbb{R}^{\mathcal{I}}$.

Let $\begin{pmatrix} \approx \\ \mathfrak{u} \end{pmatrix}$ be the symmetric part of $\begin{pmatrix} \succeq \\ \mathfrak{u} \end{pmatrix}$ (an equivalence relation on $\mathbb{R}^{\mathcal{I}}$). Thus, $r \approx s$ if they agree 'almost everywhere'. Define $*\mathbb{R} := \mathbb{R}^{\mathcal{I}} / (\approx \mathfrak{u})$. For any $r \in \mathbb{R}^{\mathcal{I}}$, let *r denote the equivalence class of r in $*\mathbb{R}$.

Define linear order (>) on $*\mathbb{R}$, by $(*r > *s) \Leftrightarrow (r \succeq s)$, for all $*r, *s \in *\mathbb{R}$.

For any $r, s \in \mathbb{R}^{\mathcal{I}}$, we define r + s, $r \cdot s$, r/s, and r^s in $\mathbb{R}^{\mathcal{I}}$ by: $(r + s)_i$ $:= r_i + s_i$, $(r \cdot s)_i := r_i \cdot s_i$, $(r/s)_i := r_i/s_i$, and $(r^s)_i := r_i^{s_i}$, $\forall i \in \mathcal{I}$. Then, for any $*r, *s \in *\mathbb{R}$, we define *r + *s := *(r + s), $*r \cdot *s := *(r \cdot s)$, *r/*s := *(r/s), and $*r^{*s} := *(r^s)$.

Then $(*\mathbb{R}, +, \cdot, >)$ is a linearly ordered field. Exponentiation works normally. Furthermore, \mathbb{R} can be embedded as an ordered subfield of $*\mathbb{R}$ by mapping any $r \in \mathbb{R}$ to the element $*\overline{r}$ in $*\mathbb{R}$, where $\overline{r} := (r, r, r, ...) \in \mathbb{R}^{\mathcal{I}}$. A positive element $*r \in *\mathbb{R}$ is **infinitesimal** if, for any real $\epsilon > 0$, we have $0 < *r < *\overline{\epsilon}$ (that is: $\{i \in \mathcal{I}; 0 < r_i < \epsilon\} \in \mathfrak{U}$.). Likewise, *r is **infinite** if, for any $M \in \mathbb{N}$, we have $*r > *\overline{M}$ (that is: $\{i \in \mathcal{I}; r_i \geq M\} \in \mathfrak{U}$, $r \geq r_i < r_i$

(32/36)

For any $r, s \in \mathbb{R}^{\mathcal{I}}$, define $r \succeq_{\mathfrak{U}} s$ if and only if $\{i \in \mathcal{I}; r_i \ge s_i\} \in \mathfrak{U}$. This yields a complete preorder $(\succeq_{\mathfrak{U}})$ on $\mathbb{R}^{\mathcal{I}}$.

Let $\begin{pmatrix} \approx \\ \mathfrak{u} \end{pmatrix}$ be the symmetric part of $\begin{pmatrix} \succeq \\ \mathfrak{u} \end{pmatrix}$ (an equivalence relation on $\mathbb{R}^{\mathcal{I}}$). Thus, $r \approx s$ if they agree 'almost everywhere'. Define $*\mathbb{R} := \mathbb{R}^{\mathcal{I}}/(\approx)$. For any $r \in \mathbb{R}^{\mathcal{I}}$, let *r denote the equivalence class of r in $*\mathbb{R}$. Define linear order (>) on $*\mathbb{R}$, by $(*r > *s) \Leftrightarrow (r \succeq \mathfrak{u} s)$, for all $*r, *s \in *\mathbb{R}$. For any $r, s \in \mathbb{R}^{\mathcal{I}}$, we define r + s, $r \cdot s$, r/s, and r^s in $\mathbb{R}^{\mathcal{I}}$ by: $(r + s)_i$ $:= r_i + s_i, (r \cdot s)_i := r_i \cdot s_i, (r/s)_i := r_i/s_i, \text{ and } (r^s)_i := r_i^{s_i}, \forall i \in \mathcal{I}$. Then, for any $*r, *s \in *\mathbb{R}$, we define $*r + *s := *(r + s), *r \cdot *s := *(r \cdot s), *r/*s := *(r \cdot s), *r/*s := *(r/s), \text{ and } *r^{*s} := *(r^s)$.

Then $(*\mathbb{R}, +, \cdot, >)$ is a linearly ordered field. Exponentiation works normally. Furthermore, \mathbb{R} can be embedded as an ordered subfield of $*\mathbb{R}$ by mapping any $r \in \mathbb{R}$ to the element $*\overline{r}$ in $*\mathbb{R}$, where $\overline{r} := (r, r, r, ...) \in \mathbb{R}^{\mathcal{I}}$. A positive element $*r \in *\mathbb{R}$ is **infinitesimal** if, for any real $\epsilon > 0$, we have $0 < *r < *\overline{\epsilon}$ (that is: $\{i \in \mathcal{I}; 0 < r_i < \epsilon\} \in \mathfrak{U}$.). Likewise, *r is **infinite** if, for any $M \in \mathbb{N}$, we have $*r > *\overline{M}$ (that is: $\{i \in \mathcal{I}; \mathbf{n} \in \mathcal{M}\} \in \mathfrak{U}$, $\mathbf{n} \in \mathcal{M}$).

(32/36)

For any $r, s \in \mathbb{R}^{\mathcal{I}}$, define $r \succeq_{\mathfrak{U}} s$ if and only if $\{i \in \mathcal{I}; r_i \ge s_i\} \in \mathfrak{U}$. This yields a complete preorder $(\succeq_{\mathfrak{U}})$ on $\mathbb{R}^{\mathcal{I}}$.

Let $(\underset{\mathfrak{u}}{\approx})$ be the symmetric part of $(\underset{\mathfrak{u}}{\succ})$ (an equivalence relation on $\mathbb{R}^{\mathcal{I}}$). Thus, $r\underset{\mathfrak{u}}{\approx}s$ if they agree 'almost everywhere'. Define $*\mathbb{R} := \mathbb{R}^{\mathcal{I}}/(\underset{\mathfrak{u}}{\approx})$. For any $r \in \mathbb{R}^{\mathcal{I}}$, let *r denote the equivalence class of r in * \mathbb{R} .

Define linear order (>) on \mathbb{R} , by $(*r > *s) \Leftrightarrow (r \succeq s)$, for all $*r, *s \in \mathbb{R}$. For any $r, s \in \mathbb{R}^{\mathcal{I}}$, we define r + s, $r \cdot s$, r/s, and r^s in $\mathbb{R}^{\mathcal{I}}$ by: $(r + s)_i$ $:= r_i + s_i$, $(r \cdot s)_i := r_i \cdot s_i$, $(r/s)_i := r_i/s_i$, and $(r^s)_i := r_i^{s_i}$, $\forall i \in \mathcal{I}$. Then, for any $*r, *s \in \mathbb{R}$, we define *r + *s := *(r + s), $*r \cdot *s := *(r \cdot s)$, *r/*s := *(r/s), and $*r^{*s} := *(r^s)$.

Then $(*\mathbb{R}, +, \cdot, >)$ is a linearly ordered field. Exponentiation works normally. Furthermore, \mathbb{R} can be embedded as an ordered subfield of $*\mathbb{R}$ by mapping any $r \in \mathbb{R}$ to the element $*\overline{r}$ in $*\mathbb{R}$, where $\overline{r} := (r, r, r, ...) \in \mathbb{R}^{\mathcal{I}}$. A positive element $*r \in *\mathbb{R}$ is **infinitesimal** if, for any real $\epsilon > 0$, we have $0 < *r < *\overline{\epsilon}$ (that is: $\{i \in \mathcal{I}; 0 < r_i < \epsilon\} \in \mathfrak{U}$.). Likewise, *r is **infinite** if, for any $M \in \mathbb{N}$, we have $*r > *\overline{M}$ (that is: $\{i \in \mathcal{I}; r_i \geq M\} \in \mathfrak{U}$, $r \geq r_i < r_i$

(32/36)

For any $r, s \in \mathbb{R}^{\mathcal{I}}$, define $r \succeq_{\mathfrak{U}} s$ if and only if $\{i \in \mathcal{I}; r_i \ge s_i\} \in \mathfrak{U}$. This yields a complete preorder $(\succeq_{\mathfrak{U}})$ on $\mathbb{R}^{\mathcal{I}}$.

Let $\begin{pmatrix} \approx \\ \mathfrak{u} \end{pmatrix}$ be the symmetric part of $\begin{pmatrix} \succeq \\ \mathfrak{u} \end{pmatrix}$ (an equivalence relation on $\mathbb{R}^{\mathcal{I}}$). Thus, $r \underset{\mathfrak{u}}{\approx} s$ if they agree 'almost everywhere'. Define ${}^{*}\mathbb{R} := \mathbb{R}^{\mathcal{I}}/(\underset{\mathfrak{u}}{\approx})$. For any $r \in \mathbb{R}^{\mathcal{I}}$, let ${}^{*}r$ denote the equivalence class of r in ${}^{*}\mathbb{R}$. Define linear order (>) on ${}^{*}\mathbb{R}$, by $({}^{*}r > {}^{*}s) \Leftrightarrow (r \underset{\mathfrak{u}}{\succeq} s)$, for all ${}^{*}r, {}^{*}s \in {}^{*}\mathbb{R}$. For any $r, s \in \mathbb{R}^{\mathcal{I}}$, we define r + s, $r \cdot s$, r/s, and r^{s} in $\mathbb{R}^{\mathcal{I}}$ by: $(r + s)_{i}$ $:= r_{i} + s_{i}, (r \cdot s)_{i} := r_{i} \cdot s_{i}, (r/s)_{i} := r_{i}/s_{i}, \text{ and } (r^{s})_{i} := r_{i}^{s_{i}}, \forall i \in \mathcal{I}$. Then, for any ${}^{*}r, {}^{*}s \in {}^{*}\mathbb{R}$, we define ${}^{*}r + {}^{*}s := {}^{*}(r + s), {}^{*}r \cdot {}^{*}s := {}^{*}(r \cdot s),$ ${}^{*}r/{}^{*}s := {}^{*}(r/s)$, and ${}^{*}r^{*s} := {}^{*}(r^{s})$.

Then (* $\mathbb{R}, +, \cdot, >$) is a linearly ordered field. Exponentiation works normally. Furthermore, \mathbb{R} can be embedded as an ordered subfield of * \mathbb{R} by mapping any $r \in \mathbb{R}$ to the element * \overline{r} in * \mathbb{R} , where $\overline{r} := (r, r, r, ...) \in \mathbb{R}^{\mathcal{I}}$. A positive element * $r \in *\mathbb{R}$ is **infinitesimal** if, for any real $\epsilon > 0$, we have $0 < *r < *\overline{\epsilon}$ (that is: $\{i \in \mathcal{I}; 0 < r_i < \epsilon\} \in \mathfrak{U}$.). Likewise, *r is **infinite** if, for any $M \in \mathbb{N}$, we have * $r > *\overline{M}$ (that is: $\{i \in \mathcal{I}; c_i \geq M\} \in \mathfrak{U}$, $\overline{\epsilon} > 230$

(32/36)

For any $r, s \in \mathbb{R}^{\mathcal{I}}$, define $r \succeq_{\mathfrak{U}} s$ if and only if $\{i \in \mathcal{I}; r_i \ge s_i\} \in \mathfrak{U}$. This yields a complete preorder $(\succeq_{\mathfrak{U}})$ on $\mathbb{R}^{\mathcal{I}}$.

Let $(\underset{\mathfrak{u}}{\approx})$ be the symmetric part of $(\underset{\mathfrak{u}}{\succeq})$ (an equivalence relation on $\mathbb{R}^{\mathcal{I}}$). Thus, $r \underset{\mathfrak{u}}{\approx} s$ if they agree 'almost everywhere'. Define $*\mathbb{R} := \mathbb{R}^{\mathcal{I}}/(\underset{\mathfrak{u}}{\approx})$. For any $r \in \mathbb{R}^{\mathcal{I}}$, let *r denote the equivalence class of r in $*\mathbb{R}$.

Define linear order (>) on \mathbb{R} , by $(*r > *s) \Leftrightarrow (r \succeq s)$, for all $*r, *s \in \mathbb{R}$. For any $r, s \in \mathbb{R}^{\mathcal{I}}$, we define r + s, $r \cdot s$, r/s, and r^s in $\mathbb{R}^{\mathcal{I}}$ by: $(r + s)_i$ $:= r_i + s_i$, $(r \cdot s)_i := r_i \cdot s_i$, $(r/s)_i := r_i/s_i$, and $(r^s)_i := r_i^{s_i}$, $\forall i \in \mathcal{I}$. Then, for any $*r, *s \in \mathbb{R}$, we define *r + *s := *(r + s), $*r \cdot *s := *(r \cdot s)$, *r/*s := *(r/s), and $*r^{*s} := *(r^s)$.

Then $(*\mathbb{R}, +, \cdot, >)$ is a linearly ordered field. Exponentiation works normally. Furthermore, \mathbb{R} can be embedded as an ordered subfield of $*\mathbb{R}$ by mapping any $r \in \mathbb{R}$ to the element $*\overline{r}$ in $*\mathbb{R}$, where $\overline{r} := (r, r, r, ...) \in \mathbb{R}^{\mathcal{I}}$.

A positive element $*r \in *\mathbb{R}$ is **infinitesimal** if, for any real $\epsilon > 0$, we have $0 < *r < *\overline{\epsilon}$ (that is: $\{i \in \mathcal{I}; 0 < r_i < \epsilon\} \in \mathfrak{U}$.). Likewise, *r is **infinite** if, for any $M \in \mathbb{N}$, we have $*r > *\overline{M}$ (that is: $\{i \in \mathcal{I}; \mathfrak{g} \in \mathcal{M}\} \in \mathfrak{U}$, $\mathfrak{g} \in \mathfrak{H}$, $\mathfrak{g} \in \mathfrak$

(32/36)

For any $r, s \in \mathbb{R}^{\mathcal{I}}$, define $r \succeq_{\mathfrak{U}} s$ if and only if $\{i \in \mathcal{I}; r_i \ge s_i\} \in \mathfrak{U}$. This yields a complete preorder $(\succeq_{\mathfrak{U}})$ on $\mathbb{R}^{\mathcal{I}}$.

Let $(\underset{\mathfrak{u}}{\approx})$ be the symmetric part of $(\underset{\mathfrak{u}}{\succeq})$ (an equivalence relation on $\mathbb{R}^{\mathcal{I}}$). Thus, $r\underset{\mathfrak{u}}{\approx} s$ if they agree 'almost everywhere'. Define $*\mathbb{R} := \mathbb{R}^{\mathcal{I}}/(\underset{\mathfrak{u}}{\approx})$. For any $r \in \mathbb{R}^{\mathcal{I}}$, let *r denote the equivalence class of r in $*\mathbb{R}$.

Define linear order (>) on \mathbb{R} , by $(*r > *s) \Leftrightarrow (r \succeq s)$, for all $*r, *s \in \mathbb{R}$. For any $r, s \in \mathbb{R}^{\mathcal{I}}$, we define r + s, $r \cdot s$, r/s, and r^s in $\mathbb{R}^{\mathcal{I}}$ by: $(r + s)_i$ $:= r_i + s_i$, $(r \cdot s)_i := r_i \cdot s_i$, $(r/s)_i := r_i/s_i$, and $(r^s)_i := r_i^{s_i}$, $\forall i \in \mathcal{I}$. Then, for any $*r, *s \in \mathbb{R}$, we define *r + *s := *(r + s), $*r \cdot *s := *(r \cdot s)$, *r/*s := *(r/s), and $*r^{*s} := *(r^s)$.

Then $(*\mathbb{R}, +, \cdot, >)$ is a linearly ordered field. Exponentiation works normally. Furthermore, \mathbb{R} can be embedded as an ordered subfield of $*\mathbb{R}$ by mapping any $r \in \mathbb{R}$ to the element $*\overline{r}$ in $*\mathbb{R}$, where $\overline{r} := (r, r, r, ...) \in \mathbb{R}^{\mathcal{I}}$.

A positive element $*r \in \mathbb{R}$ is infinitesimal if, for any real $\epsilon > 0$, we have $0 < *r < \overline{\epsilon}$ (that is: $\{i \in \mathcal{I}; 0 < r_i < \epsilon\} \in \mathfrak{U}$.). Likewise, *r is infinite if, for any $M \in \mathbb{N}$, we have $*r > \overline{M}$ (that is: $\{i \in \mathcal{I}_i : r_i \geq M\} \in \mathfrak{U}$, $\mathfrak{p} > \mathfrak{p} \in \mathfrak{U}$.)

(32/36)

For any $r, s \in \mathbb{R}^{\mathcal{I}}$, define $r \succeq_{\mathfrak{U}} s$ if and only if $\{i \in \mathcal{I}; r_i \geq s_i\} \in \mathfrak{U}$. This yields a complete preorder $(\succeq_{\mathfrak{U}})$ on $\mathbb{R}^{\mathcal{I}}$.

Let $(\underset{\mathfrak{u}}{\approx})$ be the symmetric part of $(\underset{\mathfrak{u}}{\succeq})$ (an equivalence relation on $\mathbb{R}^{\mathcal{I}}$). Thus, $r \underset{\mathfrak{u}}{\approx} s$ if they agree 'almost everywhere'. Define $*\mathbb{R} := \mathbb{R}^{\mathcal{I}}/(\underset{\mathfrak{u}}{\approx})$. For any $r \in \mathbb{R}^{\mathcal{I}}$, let *r denote the equivalence class of r in $*\mathbb{R}$.

Define linear order (>) on \mathbb{R} , by $(*r > *s) \Leftrightarrow (r \succeq s)$, for all $*r, *s \in \mathbb{R}$. For any $r, s \in \mathbb{R}^{\mathcal{I}}$, we define r + s, $r \cdot s$, r/s, and r^s in $\mathbb{R}^{\mathcal{I}}$ by: $(r + s)_i$ $:= r_i + s_i$, $(r \cdot s)_i := r_i \cdot s_i$, $(r/s)_i := r_i/s_i$, and $(r^s)_i := r_i^{s_i}$, $\forall i \in \mathcal{I}$. Then, for any $*r, *s \in \mathbb{R}$, we define *r + *s := *(r + s), $*r \cdot *s := *(r \cdot s)$, *r/*s := *(r/s), and $*r^{*s} := *(r^s)$.

Then $(*\mathbb{R}, +, \cdot, >)$ is a linearly ordered field. Exponentiation works normally. Furthermore, \mathbb{R} can be embedded as an ordered subfield of $*\mathbb{R}$ by mapping any $r \in \mathbb{R}$ to the element $*\overline{r}$ in $*\mathbb{R}$, where $\overline{r} := (r, r, r, ...) \in \mathbb{R}^{\mathcal{I}}$. A positive element $*r \in *\mathbb{R}$ is **infinitesimal** if, for any real $\epsilon > 0$, we have $0 < *r < *\overline{\epsilon}$ (that is: $\{i \in \mathcal{I}; 0 < r_i < \epsilon\} \in \mathfrak{U}$.). Likewise, *r is **infinite** if, for any $M \in \mathbb{N}$, we have $*r > *\overline{M}$ (that is: $\{i \in \mathcal{I}; r_i > M\} \in \mathfrak{U}$). **Theorem 1C.** Let \mathfrak{X} be any judgement monoid, and let F be a separable judgement aggregation rule on \mathfrak{X} .

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

(a) The rule F is SME on $\Delta(\mathfrak{X})$ if and only if there is a hyperreal field \mathbb{R} and an odd, increasing function $\phi : [-1,1] \longrightarrow \mathbb{R}$ such that $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu)$ for all $\mathcal{X} \in \mathfrak{X}$ and $\mu \in \Delta(\mathcal{X})$.

(a) The rule F is SME on $\Delta(\mathfrak{X})$ if and only if there is a hyperreal field \mathbb{R} and an odd, increasing function $\phi : [-1,1] \longrightarrow \mathbb{R}$ such that $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu)$ for all $\mathcal{X} \in \mathfrak{X}$ and $\mu \in \Delta(\mathcal{X})$.

(b) In this case, for all $\mathcal{X} \in \mathfrak{X}$, there is a dense open subset $\mathcal{O} \subseteq \Delta(\mathcal{X})$ such that $F(\mathcal{X}, \mu) = F_{\phi}(\mathcal{X}, \mu)$ and is single-valued for all $\mu \in \mathcal{O}$.

(a) The rule F is SME on Δ(𝔅) if and only if there is a hyperreal field *ℝ and an odd, increasing function φ : [−1, 1] → *ℝ such that F(𝔅, μ) ⊆ F_φ(𝔅, μ) for all 𝔅 ∈ 𝔅 and μ ∈ Δ(𝔅).
(b) In this case, for all 𝔅 ∈ 𝔅, there is a dense open subset 𝔅 ⊆ Δ(𝔅) such that F(𝔅, μ) = F_φ(𝔅, μ) and is single-valued for all μ ∈ 𝔅.
(c) Let F and φ be as in part (a). Fix 𝔅 ∈ 𝔅, and suppose F is upper hemicontinuous on Δ(𝔅). Then F(𝔅, μ) = F_φ(𝔅, μ) for all μ ∈ Δ(𝔅).

(a) The rule F is SME on Δ(𝔅) if and only if there is a hyperreal field *R and an odd, increasing function φ : [-1,1]→ *R such that F(𝔅,μ) ⊆ F_φ(𝔅,μ) for all 𝔅 ∈ 𝔅 and μ ∈ Δ(𝔅).
(b) In this case, for all 𝔅 ∈ 𝔅, there is a dense open subset 𝔅 ⊆ Δ(𝔅) such that F(𝔅,μ) = F_φ(𝔅,μ) and is single-valued for all μ ∈ 𝔅.
(c) Let F and φ be as in part (a). Fix 𝔅 ∈ 𝔅, and suppose F is upper hemicontinuous on Δ(𝔅). Then F(𝔅,μ) = F_φ(𝔅,μ) for all μ ∈ Δ(𝔅).
Proof sketch.

(a) The rule F is SME on $\Delta(\mathfrak{X})$ if and only if there is a hyperreal field \mathbb{R} and an odd, increasing function $\phi : [-1,1] \longrightarrow \mathbb{R}$ such that $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu)$ for all $\mathcal{X} \in \mathfrak{X}$ and $\mu \in \Delta(\mathcal{X})$. **Proof sketch.** (a) Fix $M \in \mathbb{N}$.

(a) The rule F is SME on $\Delta(\mathfrak{X})$ if and only if there is a hyperreal field \mathbb{R} and an odd, increasing function $\phi : [-1,1] \longrightarrow \mathbb{R}$ such that $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu)$ for all $\mathcal{X} \in \mathfrak{X}$ and $\mu \in \Delta(\mathcal{X})$. **Proof sketch.** (a) Fix $M \in \mathbb{N}$. A weight function is a function $\omega : [1 \dots M] \longrightarrow [0,1]$ such that $\sum_{i=1}^{M} \omega(m) = 1$. This represents an

assignment of 'weights' to M voters.

(a) The rule F is SME on $\Delta(\mathfrak{X})$ if and only if there is a hyperreal field \mathbb{R} and an odd, increasing function $\phi : [-1,1] \longrightarrow \mathbb{R}$ such that $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu)$ for all $\mathcal{X} \in \mathfrak{X}$ and $\mu \in \Delta(\mathcal{X})$. **Proof sketch.** (a) Fix $M \in \mathbb{N}$. A weight function is a function $\omega : [1 \dots M] \longrightarrow [0,1]$ such that $\sum_{m=1}^{M} \omega(m) = 1$. This represents an

assignment of 'weights' to M voters.

Let Ω be the set of all weight functions (for any M).

(a) The rule F is SME on Δ(𝔅) if and only if there is a hyperreal field *R and an odd, increasing function φ : [-1,1] → *R such that F(𝔅,μ) ⊆ F_φ(𝔅,μ) for all 𝔅 ∈ 𝔅 and μ ∈ Δ(𝔅).
Proof sketch. (a) Fix M ∈ N. A weight function is a function ω : [1...M]→[0,1] such that ∑^M_{m=1} ω(m) = 1. This represents an assignment of 'weights' to M voters. Let Ω be the set of all weight functions (for any M). For any ω ∈ Ω, let Δ_ω(𝔅) = {all profiles in Δ(𝔅) generated using ω}.

(a) The rule F is SME on $\Delta(\mathfrak{X})$ if and only if there is a hyperreal field \mathbb{R} and an odd, increasing function $\phi : [-1, 1] \longrightarrow \mathbb{R}$ such that $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu)$ for all $\mathcal{X} \in \mathfrak{X}$ and $\mu \in \Delta(\mathcal{X})$. **Proof sketch.** (a) Fix $M \in \mathbb{N}$. A weight function is a function $\omega: [1 \dots M] \longrightarrow [0, 1]$ such that $\sum \omega(m) = 1$. This represents an assignment of 'weights' to M voters. Let Ω be the set of all weight functions (for any M). For any $\omega \in \Omega$, let $\Delta_{\omega}(\mathfrak{X}) = \{ \text{all profiles in } \Delta(\mathfrak{X}) \text{ generated using } \omega \}.$ Let $\mathcal{Q}_{\omega} := \{ \widetilde{\mu}_k; \ \mu \in \Delta_{\omega}(\mathfrak{X}) \text{ and } k \in \mathcal{K} \}.$ (Example: if $\omega(m) = 1$ for all $m \in [1 \dots M]$, and $\mathfrak{X} = \{\mathcal{X}^n\}_{n=1}^{\infty}$ for some space \mathcal{X} , then $\Delta_{\omega}(\mathfrak{X}) = \Delta_{M}(\mathcal{X}^{*})$ and $\mathcal{Q}_{\omega} = \mathcal{Q}_{M}$, as in Theorem 1B.)

(a) The rule F is SME on $\Delta(\mathfrak{X})$ if and only if there is a hyperreal field \mathbb{R} and an odd, increasing function $\phi : [-1, 1] \longrightarrow \mathbb{R}$ such that $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu)$ for all $\mathcal{X} \in \mathfrak{X}$ and $\mu \in \Delta(\mathcal{X})$. **Proof sketch.** (a) Fix $M \in \mathbb{N}$. A weight function is a function $\omega: [1 \dots M] {\longrightarrow} [0,1]$ such that $\sum \omega(m) = 1$. This represents an assignment of 'weights' to M voters. Let Ω be the set of all weight functions (for any M). For any $\omega \in \Omega$, let $\Delta_{\omega}(\mathfrak{X}) = \{ \text{all profiles in } \Delta(\mathfrak{X}) \text{ generated using } \omega \}.$ Let $\mathcal{Q}_{\omega} := \{ \widetilde{\mu}_k; \mu \in \Delta_{\omega}(\mathfrak{X}) \text{ and } k \in \mathcal{K} \}.$ (Example: if $\omega(m) = 1$ for all $m \in [1 \dots M]$, and $\mathfrak{X} = \{\mathcal{X}^n\}_{n=1}^{\infty}$ for some space \mathcal{X} , then $\Delta_{\omega}(\mathfrak{X}) = \Delta_{\mathcal{M}}(\mathcal{X}^*)$ and $\mathcal{Q}_{\omega} = \mathcal{Q}_{\mathcal{M}}$, as in Theorem 1B.) Let η be the set of all finitely generated sub-monoids of \mathfrak{X} .

・ロト・西ト・ヨト・ヨト・ ヨー うらぐ

(a) The rule F is SME on $\Delta(\mathfrak{X})$ if and only if there is a hyperreal field \mathbb{R} and an odd, increasing function $\phi : [-1,1] \longrightarrow \mathbb{R}$ such that $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu)$ for all $\mathcal{X} \in \mathfrak{X}$ and $\mu \in \Delta(\mathcal{X})$. **Proof sketch.** (a) Fix $M \in \mathbb{N}$. A weight function is a function $\omega: [1 \dots M] \longrightarrow [0, 1]$ such that $\sum \omega(m) = 1$. This represents an assignment of 'weights' to M voters. Let Ω be the set of all weight functions (for any M). For any $\omega \in \Omega$, let $\Delta_{\omega}(\mathfrak{X}) = \{ \text{all profiles in } \Delta(\mathfrak{X}) \text{ generated using } \omega \}.$ Let $\mathcal{Q}_{\omega} := \{ \widetilde{\mu}_k; \mu \in \Delta_{\omega}(\mathfrak{X}) \text{ and } k \in \mathcal{K} \}.$ (Example: if $\omega(m) = 1$ for all $m \in [1 \dots M]$, and $\mathfrak{X} = \{\mathcal{X}^n\}_{n=1}^{\infty}$ for some space \mathcal{X} , then $\Delta_{\omega}(\mathfrak{X}) = \Delta_{\mathcal{M}}(\mathcal{X}^*)$ and $\mathcal{Q}_{\omega} = \mathcal{Q}_{\mathcal{M}}$, as in Theorem 1B.) Let \mathfrak{y} be the set of all finitely generated sub-monoids of \mathfrak{X} . Let $\mathcal{I} := \Omega \times \mathfrak{y}$.

(a) The rule F is SME on $\Delta(\mathfrak{X})$ if and only if there is a hyperreal field \mathbb{R} and an odd, increasing function $\phi : [-1, 1] \longrightarrow \mathbb{R}$ such that $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu)$ for all $\mathcal{X} \in \mathfrak{X}$ and $\mu \in \Delta(\mathcal{X})$. **Proof sketch.** (a) Fix $M \in \mathbb{N}$. A weight function is a function $\omega: [1 \dots M] \longrightarrow [0, 1]$ such that $\sum \omega(m) = 1$. This represents an assignment of 'weights' to M voters. Let Ω be the set of all weight functions (for any M). For any $\omega \in \Omega$, let $\Delta_{\omega}(\mathfrak{X}) = \{ \text{all profiles in } \Delta(\mathfrak{X}) \text{ generated using } \omega \}.$ Let $\mathcal{Q}_{\omega} := \{ \widetilde{\mu}_k; \mu \in \Delta_{\omega}(\mathfrak{X}) \text{ and } k \in \mathcal{K} \}.$ (Example: if $\omega(m) = 1$ for all $m \in [1 \dots M]$, and $\mathfrak{X} = \{\mathcal{X}^n\}_{n=1}^{\infty}$ for some space \mathcal{X} , then $\Delta_{\omega}(\mathfrak{X}) = \Delta_{\mathcal{M}}(\mathcal{X}^*)$ and $\mathcal{Q}_{\omega} = \mathcal{Q}_{\mathcal{M}}$, as in Theorem 1B.) Let \mathfrak{y} be the set of all finitely generated sub-monoids of \mathfrak{X} . Let $\mathcal{I} := \Omega \times \mathfrak{y}$. **Claim 1.** For any $(\omega, \mathfrak{Y}) \in \mathcal{I}$, \exists increasing function $\phi_{\omega, \mathfrak{Y}} : \mathcal{Q}_{\omega} \longrightarrow \mathbb{R}$ such that $F(\mathcal{Y},\mu) \subseteq F_{\phi_{\omega,\mathfrak{N}}}(\mathcal{Y},\mu)$ for all $\mathcal{Y} \in \mathfrak{Y}$ and $\mu \in \Delta_{\omega}(\mathcal{Y})$.

(a) The rule F is SME on $\Delta(\mathfrak{X})$ if and only if there is a hyperreal field \mathbb{R} and an odd, increasing function $\phi : [-1, 1] \longrightarrow \mathbb{R}$ such that $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu)$ for all $\mathcal{X} \in \mathfrak{X}$ and $\mu \in \Delta(\mathcal{X})$. **Proof sketch.** (a) Fix $M \in \mathbb{N}$. A weight function is a function $\omega: [1 \dots M] {\longrightarrow} [0,1]$ such that $\sum \omega(m) = 1$. This represents an assignment of 'weights' to M voters. Let Ω be the set of all weight functions (for any M). For any $\omega \in \Omega$, let $\Delta_{\omega}(\mathfrak{X}) = \{ \text{all profiles in } \Delta(\mathfrak{X}) \text{ generated using } \omega \}.$ Let $\mathcal{Q}_{\omega} := \{ \widetilde{\mu}_k; \mu \in \Delta_{\omega}(\mathfrak{X}) \text{ and } k \in \mathcal{K} \}.$ (Example: if $\omega(m) = 1$ for all $m \in [1 \dots M]$, and $\mathfrak{X} = \{\mathcal{X}^n\}_{n=1}^{\infty}$ for some space \mathcal{X} , then $\Delta_{\omega}(\mathfrak{X}) = \Delta_{\mathcal{M}}(\mathcal{X}^*)$ and $\mathcal{Q}_{\omega} = \mathcal{Q}_{\mathcal{M}}$, as in Theorem 1B.) Let \mathfrak{y} be the set of all finitely generated sub-monoids of \mathfrak{X} . Let $\mathcal{I} := \Omega \times \mathfrak{y}$. **Claim 1.** For any $(\omega, \mathfrak{Y}) \in \mathcal{I}$, \exists increasing function $\phi_{\omega, \mathfrak{Y}} : \mathcal{Q}_{\omega} \longrightarrow \mathbb{R}$ such that $F(\mathcal{Y},\mu) \subseteq F_{\phi_{\omega,\mathfrak{N}}}(\mathcal{Y},\mu)$ for all $\mathcal{Y} \in \mathfrak{Y}$ and $\mu \in \Delta_{\omega}(\mathcal{Y})$. **Proof.** Adapt the proof of Theorem 1B. Claim1

(a) The rule F is SME on Δ(𝔅) if and only if there is a hyperreal field *R and an odd, increasing function φ : [-1,1]→ *R such that F(𝔅,μ) ⊆ F_φ(𝔅,μ) for all 𝔅 ∈ 𝔅 and μ ∈ Δ(𝔅).
Proof sketch. (a) Let Ω be the set of all weight functions.
Let 𝔅 be the set of all finitely generated sub-monoids of 𝔅. Let 𝔅 := Ω × 𝔅.
Claim 1. For any (ω,𝔅) ∈ 𝔅, ∃ increasing function φ_{ω,𝔅} : 𝔅_𝔅→ℝ such that F(𝔅,μ) ⊆ F<sub>φ_{ω,𝔅}(𝔅,μ) for all 𝔅 ∈ 𝔅 and μ ∈ Δ_ω(𝔅).
Let 𝔅 c Δ(𝔅) be any finite subset.
</sub>

(a) The rule F is SME on Δ(𝔅) if and only if there is a hyperreal field *R and an odd, increasing function φ : [-1,1]→ *R such that F(𝔅,μ) ⊆ F_φ(𝔅,μ) for all 𝔅 ∈ 𝔅 and μ ∈ Δ(𝔅).
Proof sketch. (a) Let Ω be the set of all weight functions. Let 𝔅 be the set of all finitely generated sub-monoids of 𝔅. Let 𝔅 := Ω × 𝔅.
Claim 1. For any (ω,𝔅) ∈ 𝔅, ∃ increasing function φ_{ω,𝔅} : 𝔅_𝔅→ℝ such that F(𝔅,μ) ⊆ F<sub>φ_{ω,𝔅}(𝔅,μ) for all 𝔅 ∈ 𝔅 and μ ∈ Δ_𝔅(𝔅).
Let 𝔅 ⊂ Δ(𝔅) be any finite subset. That is, 𝔅 := {(𝔅_𝔅,μ₁), ..., (𝔅_𝔅,μ_N)}, where 𝔅_𝔅,..., 𝔅_𝔅 ∈ 𝔅, and μ_𝔅 ∈ Δ(𝔅), for all 𝔅 ∈ 𝔅.
</sub>

(a) The rule F is SME on Δ(𝔅) if and only if there is a hyperreal field *R and an odd, increasing function φ : [-1,1] → *R such that F(𝔅,μ) ⊆ F_φ(𝔅,μ) for all 𝔅 ∈ 𝔅 and μ ∈ Δ(𝔅).
Proof sketch. (a) Let Ω be the set of all weight functions. Let 𝔅 be the set of all finitely generated sub-monoids of 𝔅. Let 𝔅 := Ω × 𝔅.
Claim 1. For any (ω,𝔅) ∈ 𝔅, ∃ increasing function φ_{ω,𝔅} : 𝔅_𝔅→ℝ such that F(𝔅,μ) ⊆ F<sub>φ_{ω,𝔅}(𝔅,μ) for all 𝔅 ∈ 𝔅 and μ ∈ Δ_ω(𝔅).
Let 𝔅 ⊂ Δ(𝔅) be any finite subset. That is, 𝔅 := {(𝔅_𝔅,μ_𝔅), ..., (𝔅_𝔅,μ_𝔅), where 𝔅_𝔅, ..., 𝔅_𝔅 ∈ 𝔅, and μ_𝔅 ∈ Δ_𝔅(𝔅,𝔅) for all 𝔅 ∈ 𝔅.
Define 𝔅 = {(𝔅,𝔅)) ∈ 𝔅; 𝔅 ∈ 𝔅, and μ_𝔅 ∈ Δ_𝔅(𝔅), for all 𝔅 ∈ [1...,𝔅]}.
</sub>

(a) The rule F is SME on $\Delta(\mathfrak{X})$ if and only if there is a hyperreal field \mathbb{R} and an odd, increasing function $\phi : [-1,1] \longrightarrow \mathbb{R}$ such that $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu)$ for all $\mathcal{X} \in \mathfrak{X}$ and $\mu \in \Delta(\mathcal{X})$. **Proof sketch.** (a) Let Ω be the set of all weight functions. Let \mathfrak{y} be the set of all finitely generated sub-monoids of \mathfrak{X} . Let $\mathcal{I} := \Omega \times \mathfrak{y}$. **Claim 1.** For any $(\omega, \mathfrak{Y}) \in \mathcal{I}$, \exists increasing function $\phi_{\omega,\mathfrak{Y}} : \mathcal{Q}_{\omega} \longrightarrow \mathbb{R}$ such that $F(\mathcal{Y},\mu) \subseteq F_{\phi_{\omega},\mathfrak{N}}(\mathcal{Y},\mu)$ for all $\mathcal{Y} \in \mathfrak{Y}$ and $\mu \in \Delta_{\omega}(\mathcal{Y})$. Let $\mathcal{T} \subset \Delta(\mathfrak{X})$ be any finite subset. That is, $\mathcal{T} := \{(\mathcal{X}_1, \mu_1), \ldots, \}$ (\mathcal{X}_N, μ_N) , where $\mathcal{X}_1, \ldots, \mathcal{X}_N \in \mathfrak{X}$, and $\mu_n \in \Delta(\mathcal{X}_n)$ for all $n \in [1 \ldots N]$. Define $\mathcal{I}_{\mathcal{I}} := \{(\omega, \mathfrak{Y}) \in \mathcal{I}; \ \mathcal{X}_n \in \mathfrak{Y} \text{ and } \mu_n \in \Delta_{\omega}(\mathcal{X}_n) \text{ for all } n \in [1 \dots N] \}.$ Then define $\mathfrak{F} := \{ \mathcal{J} \subseteq \mathcal{I}; \ \mathcal{I}_{\mathcal{T}} \subseteq \mathcal{J} \text{ for some finite } \mathcal{T} \subset \Delta(\mathfrak{X}) \}.$

(a) The rule F is SME on $\Delta(\mathfrak{X})$ if and only if there is a hyperreal field \mathbb{R} and an odd, increasing function $\phi : [-1,1] \longrightarrow \mathbb{R}$ such that $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu)$ for all $\mathcal{X} \in \mathfrak{X}$ and $\mu \in \Delta(\mathcal{X})$. **Proof sketch.** (a) Let Ω be the set of all weight functions. Let \mathfrak{y} be the set of all finitely generated sub-monoids of \mathfrak{X} . Let $\mathcal{I} := \Omega \times \mathfrak{y}$. **Claim 1.** For any $(\omega, \mathfrak{Y}) \in \mathcal{I}$, \exists increasing function $\phi_{\omega,\mathfrak{Y}} : \mathcal{Q}_{\omega} \longrightarrow \mathbb{R}$ such that $F(\mathcal{Y},\mu) \subseteq F_{\phi_{\omega},\mathfrak{N}}(\mathcal{Y},\mu)$ for all $\mathcal{Y} \in \mathfrak{Y}$ and $\mu \in \Delta_{\omega}(\mathcal{Y})$. Let $\mathcal{T} \subset \Delta(\mathfrak{X})$ be any finite subset. That is, $\mathcal{T} := \{(\mathcal{X}_1, \mu_1), \ldots, \}$ (\mathcal{X}_N, μ_N) , where $\mathcal{X}_1, \ldots, \mathcal{X}_N \in \mathfrak{X}$, and $\mu_n \in \Delta(\mathcal{X}_n)$ for all $n \in [1 \ldots N]$. Define $\mathcal{I}_{\mathcal{I}} := \{(\omega, \mathfrak{Y}) \in \mathcal{I}; \ \mathcal{X}_n \in \mathfrak{Y} \text{ and } \mu_n \in \Delta_{\omega}(\mathcal{X}_n) \text{ for all } n \in [1 \dots N] \}.$ Then define $\mathfrak{F} := \{ \mathcal{J} \subseteq \mathcal{I}; \ \mathcal{I}_{\mathcal{T}} \subseteq \mathcal{J} \text{ for some finite } \mathcal{T} \subset \Delta(\mathfrak{X}) \}.$ **Claim 2.** \mathfrak{F} is a free filter. (Proof is straightforward.)

(a) The rule F is SME on $\Delta(\mathfrak{X})$ if and only if there is a hyperreal field \mathbb{R} and an odd, increasing function $\phi : [-1,1] \longrightarrow \mathbb{R}$ such that $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu)$ for all $\mathcal{X} \in \mathfrak{X}$ and $\mu \in \Delta(\mathcal{X})$. **Proof sketch.** (a) Let Ω be the set of all weight functions. Let \mathfrak{y} be the set of all finitely generated sub-monoids of \mathfrak{X} . Let $\mathcal{I} := \Omega \times \mathfrak{y}$. **Claim 1.** For any $(\omega, \mathfrak{Y}) \in \mathcal{I}$, \exists increasing function $\phi_{\omega,\mathfrak{Y}} : \mathcal{Q}_{\omega} \longrightarrow \mathbb{R}$ such that $F(\mathcal{Y},\mu) \subseteq F_{\phi_{\omega},\mathfrak{N}}(\mathcal{Y},\mu)$ for all $\mathcal{Y} \in \mathfrak{Y}$ and $\mu \in \Delta_{\omega}(\mathcal{Y})$. Let $\mathcal{T} \subset \Delta(\mathfrak{X})$ be any finite subset. That is, $\mathcal{T} := \{(\mathcal{X}_1, \mu_1), \ldots, \}$ (\mathcal{X}_N, μ_N) , where $\mathcal{X}_1, \ldots, \mathcal{X}_N \in \mathfrak{X}$, and $\mu_n \in \Delta(\mathcal{X}_n)$ for all $n \in [1 \ldots N]$. Define $\mathcal{I}_{\mathcal{I}} := \{(\omega, \mathfrak{Y}) \in \mathcal{I}; \ \mathcal{X}_n \in \mathfrak{Y} \text{ and } \mu_n \in \Delta_{\omega}(\mathcal{X}_n) \text{ for all } n \in [1 \dots N] \}.$ Then define $\mathfrak{F} := \{ \mathcal{J} \subseteq \mathcal{I}; \ \mathcal{I}_{\mathcal{T}} \subseteq \mathcal{J} \text{ for some finite } \mathcal{T} \subset \Delta(\mathfrak{X}) \}.$ **Claim 2.** \mathfrak{F} is a free filter. (Proof is straightforward.) Let \mathfrak{U} be a free ultrafilter containing \mathfrak{F} .

(a) The rule F is SME on $\Delta(\mathfrak{X})$ if and only if there is a hyperreal field \mathbb{R} and an odd, increasing function $\phi : [-1,1] \longrightarrow \mathbb{R}$ such that $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu)$ for all $\mathcal{X} \in \mathfrak{X}$ and $\mu \in \Delta(\mathcal{X})$. **Proof sketch.** (a) Let Ω be the set of all weight functions. Let \mathfrak{y} be the set of all finitely generated sub-monoids of \mathfrak{X} . Let $\mathcal{I} := \Omega \times \mathfrak{y}$. **Claim 1.** For any $(\omega, \mathfrak{Y}) \in \mathcal{I}$, \exists increasing function $\phi_{\omega,\mathfrak{Y}} : \mathcal{Q}_{\omega} \longrightarrow \mathbb{R}$ such that $F(\mathcal{Y},\mu) \subseteq F_{\phi_{\omega},\mathfrak{N}}(\mathcal{Y},\mu)$ for all $\mathcal{Y} \in \mathfrak{Y}$ and $\mu \in \Delta_{\omega}(\mathcal{Y})$. Let $\mathcal{T} \subset \Delta(\mathfrak{X})$ be any finite subset. That is, $\mathcal{T} := \{(\mathcal{X}_1, \mu_1), \ldots, \}$ (\mathcal{X}_N, μ_N) , where $\mathcal{X}_1, \ldots, \mathcal{X}_N \in \mathfrak{X}$, and $\mu_n \in \Delta(\mathcal{X}_n)$ for all $n \in [1 \ldots N]$. Define $\mathcal{I}_{\mathcal{I}} := \{(\omega, \mathfrak{Y}) \in \mathcal{I}; \ \mathcal{X}_n \in \mathfrak{Y} \text{ and } \mu_n \in \Delta_{\omega}(\mathcal{X}_n) \text{ for all } n \in [1 \dots N] \}.$ Then define $\mathfrak{F} := \{ \mathcal{J} \subseteq \mathcal{I}; \ \mathcal{I}_{\mathcal{T}} \subseteq \mathcal{J} \text{ for some finite } \mathcal{T} \subset \Delta(\mathfrak{X}) \}.$ **Claim 2.** \mathfrak{F} is a free filter. (Proof is straightforward.) Let \mathfrak{U} be a free ultrafilter containing \mathfrak{F} . For any $(\mathcal{X}, \mu) \in \Delta(\mathfrak{X})$, Claim 1 says $F(\mathcal{X},\mu) \subseteq F_{\phi_{\omega,\mathfrak{M}}}(\mathcal{X},\mu)$, for all $(\omega,\mathfrak{Y}) \in \mathcal{I}_{\{(\mathcal{X},\mu)\}}$.

(a) The rule F is SME on $\Delta(\mathfrak{X})$ if and only if there is a hyperreal field \mathbb{R} and an odd, increasing function $\phi : [-1,1] \longrightarrow \mathbb{R}$ such that $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu)$ for all $\mathcal{X} \in \mathfrak{X}$ and $\mu \in \Delta(\mathcal{X})$. **Proof sketch.** (a) Let Ω be the set of all weight functions. Let \mathfrak{y} be the set of all finitely generated sub-monoids of \mathfrak{X} . Let $\mathcal{I} := \Omega \times \mathfrak{y}$. **Claim 1.** For any $(\omega, \mathfrak{Y}) \in \mathcal{I}$, \exists increasing function $\phi_{\omega,\mathfrak{Y}} : \mathcal{Q}_{\omega} \longrightarrow \mathbb{R}$ such that $F(\mathcal{Y},\mu) \subseteq F_{\phi_{\omega},\mathfrak{N}}(\mathcal{Y},\mu)$ for all $\mathcal{Y} \in \mathfrak{Y}$ and $\mu \in \Delta_{\omega}(\mathcal{Y})$. Let $\mathcal{T} \subset \Delta(\mathfrak{X})$ be any finite subset. That is, $\mathcal{T} := \{(\mathcal{X}_1, \mu_1), \ldots, \}$ (\mathcal{X}_N, μ_N) , where $\mathcal{X}_1, \ldots, \mathcal{X}_N \in \mathfrak{X}$, and $\mu_n \in \Delta(\mathcal{X}_n)$ for all $n \in [1 \ldots N]$. Define $\mathcal{I}_{\mathcal{I}} := \{(\omega, \mathfrak{Y}) \in \mathcal{I}; \ \mathcal{X}_n \in \mathfrak{Y} \text{ and } \mu_n \in \Delta_{\omega}(\mathcal{X}_n) \text{ for all } n \in [1 \dots N] \}.$ Then define $\mathfrak{F} := \{ \mathcal{J} \subseteq \mathcal{I}; \ \mathcal{I}_{\mathcal{T}} \subseteq \mathcal{J} \text{ for some finite } \mathcal{T} \subset \Delta(\mathfrak{X}) \}.$ **Claim 2.** \mathfrak{F} *is a free filter.* (Proof is straightforward.) Let \mathfrak{U} be a free ultrafilter containing \mathfrak{F} . For any $(\mathcal{X}, \mu) \in \Delta(\mathfrak{X})$, Claim 1 says $F(\mathcal{X},\mu) \subseteq F_{\phi_{\omega,\mathfrak{M}}}(\mathcal{X},\mu)$, for all $(\omega,\mathfrak{Y}) \in \mathcal{I}_{\{(\mathcal{X},\mu)\}}$. But $\mathcal{I}_{\{(\mathcal{X},\mu)\}} \in \mathfrak{U}$; thus, $F(\mathcal{X},\mu) \subseteq F_{\phi_{\omega,\mathfrak{M}}}(\mathcal{X},\mu)$, for 'almost all' $(\omega,\mathfrak{Y}) \in \mathcal{I}$.

(a) The rule F is SME on $\Delta(\mathfrak{X})$ if and only if there is a hyperreal field \mathbb{R} and an odd, increasing function $\phi : [-1,1] \longrightarrow \mathbb{R}$ such that $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu)$ for all $\mathcal{X} \in \mathfrak{X}$ and $\mu \in \Delta(\mathcal{X})$. **Proof sketch.** (a) Let Ω be the set of all weight functions. Let \mathfrak{y} be the set of all finitely generated sub-monoids of \mathfrak{X} . Let $\mathcal{I} := \Omega \times \mathfrak{y}$. **Claim 1.** For any $(\omega, \mathfrak{Y}) \in \mathcal{I}$, \exists increasing function $\phi_{\omega,\mathfrak{Y}} : \mathcal{Q}_{\omega} \longrightarrow \mathbb{R}$ such that $F(\mathcal{Y},\mu) \subseteq F_{\phi_{\omega},\mathfrak{N}}(\mathcal{Y},\mu)$ for all $\mathcal{Y} \in \mathfrak{Y}$ and $\mu \in \Delta_{\omega}(\mathcal{Y})$. Let $\mathcal{T} \subset \Delta(\mathfrak{X})$ be any finite subset. That is, $\mathcal{T} := \{(\mathcal{X}_1, \mu_1), \ldots, \}$ (\mathcal{X}_N, μ_N) , where $\mathcal{X}_1, \ldots, \mathcal{X}_N \in \mathfrak{X}$, and $\mu_n \in \Delta(\mathcal{X}_n)$ for all $n \in [1 \ldots N]$. Define $\mathcal{I}_{\mathcal{I}} := \{(\omega, \mathfrak{Y}) \in \mathcal{I}; \ \mathcal{X}_n \in \mathfrak{Y} \text{ and } \mu_n \in \Delta_{\omega}(\mathcal{X}_n) \text{ for all } n \in [1 \dots N] \}.$ Then define $\mathfrak{F} := \{ \mathcal{J} \subseteq \mathcal{I}; \ \mathcal{I}_{\mathcal{T}} \subseteq \mathcal{J} \text{ for some finite } \mathcal{T} \subset \Delta(\mathfrak{X}) \}.$ **Claim 2.** \mathfrak{F} *is a free filter.* (Proof is straightforward.) Let \mathfrak{U} be a free ultrafilter containing \mathfrak{F} . For any $(\mathcal{X}, \mu) \in \Delta(\mathfrak{X})$, Claim 1 says $F(\mathcal{X},\mu) \subseteq F_{\phi_{\omega,\mathfrak{M}}}(\mathcal{X},\mu)$, for all $(\omega,\mathfrak{Y}) \in \mathcal{I}_{\{(\mathcal{X},\mu)\}}$. But $\mathcal{I}_{\{(\mathcal{X},\mu)\}} \in \mathfrak{U}$; thus, $F(\mathcal{X},\mu) \subseteq F_{\phi_{\omega,\mathfrak{M}}}(\mathcal{X},\mu)$, for 'almost all' $(\omega,\mathfrak{Y}) \in \mathcal{I}$. Let $\mathbb{R} := \mathbb{R}^{\mathcal{I}} / \mathfrak{U}$.

(a) The rule F is SME on $\Delta(\mathfrak{X})$ if and only if there is a hyperreal field \mathbb{R} and an odd, increasing function $\phi : [-1,1] \longrightarrow \mathbb{R}$ such that $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu)$ for all $\mathcal{X} \in \mathfrak{X}$ and $\mu \in \Delta(\mathcal{X})$. **Proof sketch.** (a) Let Ω be the set of all weight functions. Let \mathfrak{y} be the set of all finitely generated sub-monoids of \mathfrak{X} . Let $\mathcal{I} := \Omega \times \mathfrak{y}$. **Claim 1.** For any $(\omega, \mathfrak{Y}) \in \mathcal{I}$, \exists increasing function $\phi_{\omega,\mathfrak{Y}} : \mathcal{Q}_{\omega} \longrightarrow \mathbb{R}$ such that $F(\mathcal{Y},\mu) \subseteq F_{\phi_{\omega},\mathfrak{N}}(\mathcal{Y},\mu)$ for all $\mathcal{Y} \in \mathfrak{Y}$ and $\mu \in \Delta_{\omega}(\mathcal{Y})$. Let $\mathcal{T} \subset \Delta(\mathfrak{X})$ be any finite subset. That is, $\mathcal{T} := \{(\mathcal{X}_1, \mu_1), \ldots, \}$ (\mathcal{X}_N, μ_N) , where $\mathcal{X}_1, \ldots, \mathcal{X}_N \in \mathfrak{X}$, and $\mu_n \in \Delta(\mathcal{X}_n)$ for all $n \in [1 \ldots N]$. Define $\mathcal{I}_{\mathcal{I}} := \{(\omega, \mathfrak{Y}) \in \mathcal{I}; \ \mathcal{X}_n \in \mathfrak{Y} \text{ and } \mu_n \in \Delta_{\omega}(\mathcal{X}_n) \text{ for all } n \in [1 \dots N] \}.$ Then define $\mathfrak{F} := \{ \mathcal{J} \subseteq \mathcal{I}; \ \mathcal{I}_{\mathcal{T}} \subseteq \mathcal{J} \text{ for some finite } \mathcal{T} \subset \Delta(\mathfrak{X}) \}.$ **Claim 2.** \mathfrak{F} is a free filter. (Proof is straightforward.) Let \mathfrak{U} be a free ultrafilter containing \mathfrak{F} . For any $(\mathcal{X}, \mu) \in \Delta(\mathfrak{X})$, Claim 1 says $F(\mathcal{X},\mu) \subseteq F_{\phi_{\omega,\mathfrak{M}}}(\mathcal{X},\mu)$, for all $(\omega,\mathfrak{Y}) \in \mathcal{I}_{\{(\mathcal{X},\mu)\}}$. But $\mathcal{I}_{\{(\mathcal{X},\mu)\}} \in \mathfrak{U}$; thus, $F(\mathcal{X},\mu) \subseteq F_{\phi_{\omega,\mathfrak{Y}}}(\mathcal{X},\mu)$, for 'almost all' $(\omega,\mathfrak{Y}) \in \mathcal{I}$. Let ${}^*\!\mathbb{R} := \mathbb{R}^{\mathcal{I}}/\mathfrak{U}$. The system $\{\phi_{\omega,\mathfrak{N}}\}_{(\omega,\mathfrak{N})\in\mathcal{I}}$ defines an odd, increasing function $\phi : [-1,1] \longrightarrow {}^*\mathbb{R}$, such that $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu), \forall (\mathcal{X},\mu) \in \Delta(\mathfrak{X}).$

(a) The rule F is SME on $\Delta(\mathfrak{X})$ if and only if there is a hyperreal field \mathbb{R} and an odd, increasing function $\phi : [-1,1] \longrightarrow \mathbb{R}$ such that

 $F(\mathcal{X},\mu) \subseteq F_{\phi}(\mathcal{X},\mu)$ for all $\mathcal{X} \in \mathfrak{X}$ and $\mu \in \Delta(\mathcal{X})$.

(b) In this case, for all $\mathcal{X} \in \mathfrak{X}$, there is a dense open subset $\mathcal{O} \subseteq \Delta(\mathcal{X})$ such that $F(\mathcal{X}, \mu) = F_{\phi}(\mathcal{X}, \mu)$ and is single-valued for all $\mu \in \mathcal{O}$.

(c) Let F and ϕ be as in part (a). Fix $\mathcal{X} \in \mathfrak{X}$, and suppose F is upper hemicontinuous on $\Delta(\mathcal{X})$. Then $F(\mathcal{X},\mu) = F_{\phi}(\mathcal{X},\mu)$ for all $\mu \in \Delta(\mathcal{X})$.

Proof sketch.

(b) follows from (a) because ϕ is strictly increasing, so F_{ϕ} is monotone: for any $\mu \in \Delta(\mathcal{X})$ and any $\mathbf{x} \in F_{\phi}(\mu)$, the slightest increase in the support for \mathbf{x} breaks the tie and makes \mathbf{x} the unique winner.

(a) The rule F is SME on Δ(𝔅) if and only if there is a hyperreal field *R and an odd, increasing function φ : [-1,1]→*R such that F(𝔅,μ) ⊆ F_φ(𝔅,μ) for all 𝔅 ∈ 𝔅 and μ ∈ Δ(𝔅).
(b) In this case, for all 𝔅 ∈ 𝔅, there is a dense open subset 𝔅 ⊆ Δ(𝔅) such that F(𝔅,μ) = F_φ(𝔅,μ) and is single-valued for all μ ∈ 𝔅.
(c) Let F and φ be as in part (a). Fix 𝔅 ∈ 𝔅, and suppose F is upper hemicontinuous on Δ(𝔅). Then F(𝔅,μ) = F_φ(𝔅,μ) for all μ ∈ Δ(𝔅).
Proof sketch.

(b) follows from (a) because ϕ is strictly increasing, so F_{ϕ} is monotone: for any $\mu \in \Delta(\mathcal{X})$ and any $\mathbf{x} \in F_{\phi}(\mu)$, the slightest increase in the support for \mathbf{x} breaks the tie and makes \mathbf{x} the unique winner.

(c) follows from (b) through a continuity argument.

Thank you.

These presentation slides are available at

<http://euclid.trentu.ca/pivato/Research/SMEslides.pdf>

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Introduction

Review and terminology Example: the permutahedron

Main results

Reinforcement and the median rule Reinforcement. Definition Main result: Theorem 2A A different version. Theorem 2A* Theorem 2A* vs. the Young-Levenglick theorem Proof strategy and talk outline Uniqueness and continuity The boundary set $\mathcal{B}^{\phi}_{\mathbf{x},\mathbf{y}}$ Definition Pictures The domain $\mathcal{R}_{\mathcal{X}}^{F}$; definition Theorem 2B: Uniqueness of the gain function Theorem 2C: Continuity implies upper hemicontinuity Propositions 2D & 2E: UHC \implies continuity on $\mathcal{R}_{\mathcal{V}}^{F}$, but no further Theorem 2F: More on continuity vs. upper hemicontinuity

Theorem 2G: Neutral Reinforcement & homogeneous rules

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof sketches

Proposition 2H: when does $F_{\phi} = F_{\psi}$? Proof of " \implies " Proof of " \Leftarrow " Proof of Theorem 2B "⇐" " ⇒ " Proof of Theorem 2G. Proof of Theorem 2A. Proof that Proximal \implies Supermajoritarian determinacy Proof: Separability + SME \implies additive: Theorem 1B: Finite populations Proof of Theorem 1B Formal definition of *R: ultrafilters Formal definition of $*\mathbb{R}$ as an ultraproduct

Proof of Theorem 1C

Thanks