Linear Partial Differential Equations AND
 Fourier Theory

Marcus Pivato
Trent University

This is the unedited draft manuscript for a text which will be published by Cambridge University Press later in 2009. Cambridge UP has kindly allowed the author to make this manuscript freely available on his website. You are free to download and/or print this manuscript for personal use, but you are not allowed to duplicate it for resale or other commercial use. If you have any questions or comments, please contact the author at
marcuspivato@trentu.ca
Cambridge University Press retains the exclusive worldwide right to produce and publish this Work, and/or to license the production and publication of the work and any adaptation or abridgmeent of the Work in all forms and media and in all languages throughout the world.

To Joseph and Emma Pivato for their support, encouragement, and inspiring example.

Contents

Preface xii
What's good about this book? xv
Suggested Twelve-Week Syllabus xxi
Motivating examples and major applications 1
1 Heat and diffusion 3
LA Fourier's law 3
1A(i) ...in one dimension 3
1A(ii) ...in many dimensions 4
IB The heat equation 5
1B(i) ...in one dimension 5
1B(ii) ...in many dimensions 7
IC Laplace's equation 9
ID The Poisson equation 12
IE Properties of harmonic functions 16
IF * Transport and diftusion 18
TG * Reaction and diffusion 19
1 H Practice problems 20
2 Waves and signals 23
2A The Laplacian and spherical means 23
2B The wave equation 27
2B(i) ...in one dimension: the string 28
2B(ii) ...in two dimensions: the drum 32
2B(iii) ...in higher dimensions: 34
2C The telegraph equation 34
2D Practice problems 35
3 Quantum mechanics 37
BA Basic framework 37
3B The Schrödinger equation 41
3C Stationary Schrödinger equation 45
vi- DRAFT CONTENTS
3D Practice problems 54
II General theory 56
4 Linear partial differential equations 57
4 A Functions and vectors 57
$4 B \quad$ Linear operators 59
$4 \mathrm{~B}(\mathrm{i}) \quad$...on finite dimensional vector spaces 59
4B(ii) ...on \mathcal{C}^{∞} 61
4B(iii) Kernels 63
4 B (iv) Eigenvalues, eigenvectors, and eigenfunctions 63
4 C Homogeneous vs. nonhomogeneous 64
4 D Practice problems 66
5 Classitication of PDEs and problem types 69
5A Evolution vs. nonevolution equations 69
5B Initial value problems 70
5 C Boundary value problems 71
5C(i) Dirichlet boundary conditions 73
5 5(ii) Neumann boundary conditions 76
5C(iii) Mixed (or Robin) boundary conditions 81
5C(iv) Periodic boundary conditions 82
5D Uniqueness of solutions 84
5D(i) Uniqueness for the Laplace and Poisson equations 86
5 D (ii) Uniqueness for the heat equation 89
5D(iii) Uniqueness for the wave equation 92
5E * Classification of second order linear PDEs 95
$5 \mathrm{E}(\mathrm{i}) \quad .$. in two dimensions, with constant coefficients 95
5E(ii) ...in general 97
5F Practice problems 98
II Fourier series on bounded domains 102
6 Some functional analysis 103
6 A Inner products 103
6B L^{2} space 105
$6 \mathrm{C}^{*}$ More about L^{2} space 108
$6 \mathrm{C}(\mathrm{i})$ Complex L^{2} space 109
6C(ii) Riemann vs. Lebesgue integrals 110
6D Orthogonality 112
6 E Convergence concepts 116
$6 \mathrm{E}(\mathrm{i}) \quad L^{2}$ convergence 117
6E(ii) Pointwise convergence 120
6 E (iii) Uniform convergence 123
6 E (iv) Convergence of function series 129
6F Orthogonal and orthonormal Bases 131
6G Practice problems 133
7 Fourier sine series and cosine series 137
7 A Fourier (co)sine series on $0, \pi$ 137
$7 \mathrm{~A}(\mathrm{i})$ Sine series on $0, \pi \mid$ 137
$7 \mathrm{~A}(\mathrm{ii})$ Cosine series on $0, \pi]$ 141
7 B Fourier (co)sine series on $0, L\rceil$ 144
$7 \mathrm{~B}(\mathrm{i}) \quad$ Sine series on $0, L \square$ 144
7 B (ii) Cosine series on $0, L]$ 146
7C Computing Fourier (co)sine coefficients 147
7C(i) Integration by parts 147
7C(ii) Polynomials 148
7C(iii) Step functions 151
7C(iv) Piecewise linear functions 155
$7 \mathrm{C}(\mathrm{v})$ Differentiating Fourier (co)sine series 158
7D Practice problems 158
8 Real Fourier series and complex Fourier series 161
8A Real Fourier series on $-\pi, \pi \mid$ 161
8B Computing real Fourier coefficients 163
8B(i) Polynomials 163
8B(ii) Step functions 164
8B(iii) Piecewise linear functions 166
8B(iv) Differentiating real Fourier series 168
8C Relation between (co)sine series and real series 168
8D Complex Fourier series 172
9 Multidimensional Fourier series 179
9A ...in two dimensions 179
9B ...in many dimensions 186
9C Practice problems 193
10 Proofs of the Fourier convergence theorems 195
10A Bessel, Riemann and Lebesgue 195
10B Pointwise convergence 197
10 C Uniform convergence 204
10D L^{2} convergence 207
$10 \mathrm{D}(\mathrm{i})$ Integrable functions and step functions in $\mathbf{L}^{2}[-\pi, \pi]$ 208
10D(ii) Convolutions and mollifiers 214
10D(iii)Proof of Theorems 8A.1(a) and 10D.1. 221
IV BVP solutions via eigenfunction expansions 224
11 Boundary value problems on a line segment 225
11A The heat equation on a line segment 225
11B The wave equation on a line (the vibrating string) 229
11C The Poisson problem on a line segment 235
11D Practice problems 236
12 Boundary value problems on a square 239
12A The Dirichlet problem on a square 240
12B The heat equation on a square 246
12B(i) Homogeneous boundary conditions 246
12B(ii) Nonhomogeneous boundary conditions 251
12 C 'The Poisson problem on a square 255
$12 \mathrm{C}(\mathrm{i})$ Homogeneous boundary conditions 255
12C(ii) Nonhomogeneous boundary conditions 258
12D The wave equation on a square (the square drum) 259
12E Practice problems 262
13 Boundary value problems on a cube 265
13A The heat equation on a cube 266
13B The Dirichlet problem on a cube 269
13 C 'The Poisson problem on a cube 272
14 Boundary value problems in polar coordinates 273
14A Introduction 273
14B The Laplace equation in polar coordinates 274
14B(i) Polar harmonic functions 274
$14 \mathrm{~B}(\mathrm{ii})$ Boundary value problems on a disk 278
14B(iii)Boundary value problems on a codisk 283
14B(iv)Boundary value problems on an annulus 286
14B(v) Poisson's solution to Dirichlet problem on the disk 289
14C Bessel functions 291
14C(i) Bessel's equation; Eigenfunctions of \triangle in Polar Coordi- nates 291
14C(ii) Boundary conditions; the roots of the Bessel function 296
14C(iii)Initial conditions; Fourier-Bessel expansions 296
14D The Poisson equation in polar coordinates 298
14 E The heat equation in polar coordinates 300
14 F The wave equation in polar coordinates 302
14G The power series for a Bessel function 305
14 H Properties of Bessel functions 309
141 Practice problems 315
CONTENTS ix
15 Eigenfunction methods on arbitrary domains 317
15A General solution to Poisson, heat and wave equation BVPs 317
15B General solution to Laplace equation BVPs 324
15 C Eigenbases on Cartesian products 330
15D General method for solving I/BVPs 337
15E Eigenfunctions of self-adjoint operators 340
V Miscellaneous solution methods 351
16 Separation of variables 353
$16 \mathrm{~A} \ldots$ in Cartesian coordinates on \mathbb{R}^{2} 353
16 B .in Cartesian coordinates on \mathbb{R}^{D} 355
16 C ...in polar coordinates: Bessel's equation 357
16D ...in spherical coordinates: Legendre's equation 359
16 E Separated vs. quasiseparated 369
16 F The polynomial formalism 369
16G Constraints 372
16G(i) Boundedness 372
16G(ii) Boundary conditions 373
17 Impulse-response methods 375
[7A Introduction 375
17B Approximations of identity 379
17B(i) ...in one dimension 379
17B(ii) ...in many dimensions 383
17 C The Gaussian convolution solution (heat equation) 385
17C(i) ...in one dimension 385
17C(ii) ...in many dimensions 392
17D d'Alembert's solution (one-dimensional wave equation) 393
17D(i) Unbounded domain 393
17D(ii) Bounded domain 399
17E Poisson's solution (Dirichlet problem on half-plane) 403
17F Poisson's solution (Dirichlet problem on the disk) 406
$17 \mathrm{G}^{*}$ Properties of convolution 409
17 H Practice problems 411
18 Applications of complex analysis 415
18A Holomorphic functions 415
18B Contormal maps 422
18C Contour integrals and Cauchy's Theorem 434
18D Analyticity of holomorphic maps 449
18 E Fourier series as Laurent series 454
$18 \mathrm{~F}^{*}$ Abelmeans and Poisson kernels 461
x-DRAFT CONTENTS
18G Poles and the residue theorem 464
18 H Improper integrals and Fourier transforms 472
181^{*} Homological extension of Cauchy's theorem 481
VI Fourier transforms on unbounded domains 485
19 Fourier transforms 487
19A One-dimensional Fourier transforms 487
19B Properties of the (one-dimensional) Fourier transform 492
19C* Parseval and Plancherel 502
191) Two-dimensional Fourier transforms 504
19F Three-dimensional Fourier transforms 506
19F Fourier (co)sine Transforms on the half-line 510
19G* Momentum representation \& Heisenberg uncertainty 511
$19 H^{*}$ Laplace transforms 515
191 Practice problems 523
20 Fourier transform solutions to PDEs 527
20A The heat equation 527
20A(i) Fourier transform solution 527
20A(ii) The Gaussian convolution formula, revisited 530
20B The wave equation 531
20B(i) Fourier transform solution 531
20B(ii) Poisson's spherical mean solution; Huygen's principle 534
20C The Dirichlet problem on a halt-plane 537
20C(i) Fourier solution 538
20C(ii) Impulse-response solution 539
201) PDE's on the half-tine 540
20E General solution to PDEs using Fourier transforms 540
20F' Practice problems 542
0 Appendices 545
OA Sets and functions 545
DB Derivatives -notation 549
0C Complex numbers 551
OD Coordinate systems and domains 553
0D(i) Rectangular coordinates 554
0 D (ii) Polar coordinates on \mathbb{R}^{2} 554
0 D (iii) Cylindrical coordinates on \mathbb{R}^{3} 555
0D(iv) Spherical coordinates on \mathbb{R}^{3} 556
$0 \mathrm{D}(\mathrm{v})$ What is a 'domain'? 556
OE Vector calculus 557
0E(i) Gradient 557
0E(ii) Divergence 558
0E(iii) The Divergence Theorem. 561
OF Differentiation of function series 565
OG Differentiation of integrals 567
0 H Taylor polynomials 568
$0 \mathrm{H}(\mathrm{i})$...in one dimension 568
0H(ii) ...and Taylor series 569
0H(iii) ...to solve ordinary differential equations 571
0 H (iv) ...in two dimensions 575
0H(v) ...in many dimensions 576
Bibliography 577
Index 580
Notation 593

Preface

This is a textbook for an introductory course on linear partial differential equations (PDEs) and initial/boundary value problems (I/BVPs). It also provides a mathematically rigorous introduction to Fourier analysis (Chapters 7, 8, 9, 10, and (19), which is the main tool used to solve linear PDEs in Cartesian coordinates. Finally, it introduces basic functional analysis (Chapter (6) and complex analysis (Chapter 18). The first is necessary to rigorously characterize the convergence of Fourier series, and also to discuss eigenfunctions for linear differential operators. The second provides powerful techniques to transform domains and compute integrals, and also offers additional insight into Fourier series.

This book is not intended to be comprehensive or encyclopaedic. It is designed for a one-semester course (i.e. 36-40 hours of lectures), and it is therefore strictly limited in scope. First, it deals mainly with linear PDEs with constant coefficients. Thus, there is no discussion of characteristics, conservation laws, shocks, variational techniques, or perturbation methods, which would be germane to other types of PDEs. Second, the book focus mainly on concrete solution methods to specific PDEs (e.g. the Laplace, Poisson, Heat, Wave, and Schrödinger equations) on specific domains (e.g. line segments, boxes, disks, annuli, spheres), and spends rather little time on qualitative results about entire classes of PDEs (e.g elliptic, parabolic, hyperbolic) on general domains. Only after a thorough exposition of these special cases does the book sketch the general theory; experience shows that this is far more pedagogically effective then presenting the general theory first. Finally, the book does not deal at all with numerical solutions or Galerkin methods.

One slightly unusual feature of this book is that, from the very beginnning, it emphasizes the central role of eigenfunctions (of the Laplacian) in the solution methods for linear PDEs. Fourier series and Fourier-Bessel expansions are introduced as the orthogonal eigenfunction expansions which are most suitable in certain domains or coordinate systems. Separation of variables appears relatively late in the exposition (Chapter 16), as a convenient device to obtain such eigenfunctions. The only techniques in the book which are not either implicitly or explicitly based on eigenfunction expansions are impulse-response functions and Green's functions (Chapter 17) and complex-analytic methods (Chapter 18).

Prerequisites and intended audience. This book is written for third-year undergraduate students in mathematics, physics, engineering, and other mathematical sciences. The only prererequisites are (1) multivariate calculus (i.e. partial derivatives, multivariate integration, changes of coordinate system) and (2) linear algebra (i.e. linear operators and their eigenvectors).

It might also be helpful for students to be familiar with: (1) the basic theory of ordinary differential equations (specifically: Laplace transforms, Frobenius method); (2) some elementary vector calculus (specifically: divergence and
gradient operators); and (3) elementary physics (to understand the physical motivation behind many of the problems). However, none of these three things are really required.

In addition to this background knowledge, the book requires some ability at abstract mathematical reasoning. Unlike some 'applied math' texts, we do not suppress or handwave the mathematical theory behind the solution methods. At suitable moments, the exposition introduces concepts like 'orthogonal basis', 'uniform convergence' vs. ' \mathbf{L}_{2}-convergence', 'eigenfunction expansion', and 'selfadjoint operator'; thus, students must be intellectually capable of understanding abstract mathematical concepts of this nature. Likewise, the exposition is mainly organized in a 'definition \rightarrow theorem \rightarrow proof \rightarrow example' format, rather than a 'problem \rightarrow solution' format. Students must be able to understand abstract descriptions of general solution techniques, rather than simply learn by imitating worked solutions to special cases.

Acknowledgements. I would like to thank Xiaorang Li of Trent University, who read through an early draft of this book and made many helpful suggestions and corrections, and who also provided questions \#6 and \#7 on page 101, and also question \# 8 on page 135. I also thank Peter Nalitolela, who proofread a penultimate draft and spotted many mistakes. I would like to thank several anonymous reviewers who made many useful suggestions, and I would also like to thank Peter Thompson of Cambridge University Press for recruiting these referees. I also thank Diana Gillooly of Cambridge University Press, who was very supportive and helpful throughout the entire publication process, especially concerning my desire to provide a free online version of the book, and to release the figures and problem sets under a Creative Commons license. I also thank the many students who used the early versions of this book, especially those who found mistakes or made good suggestions. Finally, I thank George Peschke of the University of Alberta, for being an inspiring example of good mathematical pedagogy.

None of these people are responsible for any remaining errors, omissions, or other flaws in the book (of which there are no doubt many). If you find an error or some other deficiency in the book, please contact me at
marcuspivato@trentu.ca
This book would not have been possible without open source software. The book was prepared entirely on the Linux operating system (initially RedHat , and later Ubuntu ${ }^{2}$). All the text is written in Leslie Lamport's $\mathrm{AT}_{\mathrm{E}} \mathrm{X} 2 \mathrm{e}$ typesetting language ${ }^{[8]}$, and was authored using Richard Stallman's Emacs editor The illustrations were hand-drawn using William Chia-Wei Cheng's excellent TGIF

[^0]object-oriented drawing programp. Additional image manipulation and postprocessing was done with GNU Image Manipulation Program (GIMP) ${ }^{\text {b }}$. Many of the plots were created using GnuPlot $\sqrt{7}$ I would like to take this opportunity to thank the many people in the open source community who have developed this software.

Finally and most importantly, I would like to thank my beloved wife and partner, Reem Yassawi, and our wonderful children, Leila and Aziza, for their support and for their patience with my many long absences.

[^1]
What's good about this book?

This text has many advantages over most other introductions to partial differential equations.

Illustrations. PDEs are physically motivated and geometrical objects; they describe curves, surfaces and scalar fields with special geometric properties, and the way these entities evolve over time under endogenous dynamics. To understand PDEs and their solutions, it is necessary to visualize them. Algebraic formulae are just a language used to communicate such visual ideas in lieu of pictures, and they generally make a poor substitute. This book has over 300 high-quality illustrations, many of which are rendered in three dimensions. In the online version of the book, most of these illustrations appear in full colour. Also, the website contains many animations which do not appear in the printed book.

Most importantly, on the book website, all illustrations are freely available under a Creative Commons Attribution Noncommercial Share-Alike License 9. This means that you are free to download, modify, and utilize the illustrations to prepare your own course materials (e.g. printed lecture notes or beamer presentations), as long as you attribute the original author. Please visit

```
<http://xaravve.trentu.ca/pde>
```

Physical motivation. Connecting the math to physical reality is critical: it keeps students motivated, and helps them interpret the mathematical formalism in terms of their physical intuitions about diffusion, vibration, electrostatics, etc. Chapter $\mathbb{1}$ of this book discusses the physics behind the Heat, Laplace, and Poisson equations, and Chapter 2 discusses the wave equation. An unusual addition to this text is Chapter 3, which discusses quantum mechanics and the Schrödinger equation (one of the major applications of PDE theory in modern physics).

Detailed syllabus. Difficult choices must be made when turning a $600+$ page textbook into a feasible twelve-week lesson plan. It is easy to run out of time or inadvertently miss something important. To facilitate this task, this book provides a lecture-by-lecture breakdown of how the author covers the material (page Exil). Of course, each instructor can diverge from this syllabus to suit the interests/background of her students, a longer/shorter teaching semester, or her personal taste. But the prefabricated syllabus provides a base to work from, and will save most instructors a lot of time and aggravation.

[^2]Explicit prerequisites for each chapter and section. To save time, an instructor might want to skip a certain chapter or section, but she worries that it may end up being important later. We resolve this problem in two ways. First, page (iv) provides a Chapter Dependency Lattice, which summarises the large-scale structure of logical dependencies between the chapters of the book. Second, every section of every chapter begins with an explicit list of 'required' and 'recommended' prerequisite sections; this provides more detailed information about the small-scale structure of logical dependencies between sections. By tracing backward through this 'lattice of dependencies', you can figure out exactly what background material you must cover to reach a particular goal. This makes the book especially suitable for self-study.

Flat dependency lattice. There are many 'paths' through the twenty-chapter Dependency Lattice on page (iv), every one of which is only seven chapters or less in length. Thus, an instructor (or an autodidact) can design many possible syllabi, depending on her interests, and can quickly move to advanced material. The 'Recommended Syllabus' on page (xxi) describes a gentle progression through the material, covering most of the 'core' topics in a 12 week semester, emphasizing concrete examples and gradually escalating the abstraction level. The Chapter Dependency Lattice suggests some other possibilities for 'accelerated' syllabi focusing on different themes:

- Solving PDEs with impulse response functions. Chapters 1, 2, [5 and 17 only.
- Solving PDEs with Fourier transforms. Chapters (1, 2, 5, 19, and 20 only.
(Pedagogically speaking, Chapters 8 and 9 will help the student understand Chapter [19, and Chapters [17-[3] will help the student understand Chapter [20). Also, it is interesting to see how the 'impulse-response' methods of Chapter 17 yield the same solutions as the 'Fourier methods' of Chapter 20, using a totally different approach. However, strictly speaking, none of Chapters [8] or 17 is logically necessary.)
- Solving PDEs with separation of variables. Chapters [1, 2 and 16 only.
(However, without at least Chapters 12 and 14, the ideas of Chapter 16 will seem somewhat artificial and pointless.)
- Solving I/BVPs using eigenfunction expansions. Chapters 1, 2, 4, 5, 6, and [15.
(It would be pedagogically better to also cover Chapters 9 and 12, and probably Chapter 14. But strictly speaking, none of these is logically necessary.)
- Tools for quantum mechanics. Section [1B, then Chapters 3, 6, 6, 9, 13, 19, and 20 (skipping material on Laplace, Poisson, and wave equations in

Chapters 13 and 20, and adapting the solutions to the heat equation into solutions to the Schrödinger equation.)

- Fourier theory. Section 4A, then Chapters (6, 7, 8, 9, 10, and 19. Finally, Sections 18A, 18C, 18E and 18F provide a 'complex' perspective. (Section 18 H also contains some useful computational tools).
- Crash course in complex analysis. Chapter 18 is logically independent of the rest of the book, and rigorously develops the main ideas in complex analysis from first principles. (However, the emphasis is on applications to PDEs and Fourier theory, so some of the material may seem esoteric or unmotivated if read in isolation from other chapters.)

Highly structured exposition, with clear motivation up front. The exposition is broken into small, semi-independent logical units, each of which is clearly labelled, and which has a clear purpose or meaning which is made immediately apparent. This simplifies the instructor's task; she doesn't need to spend time restructuring and summarizing the text material, because it is already structured in a manner which self-summarizes. Instead, instructors can focus more on explanation, motivation, and clarification.

Many 'practice problems' (with complete solutions and source code available online). Frequent evaluation is critical to reinforce material taught in class. This book provides an extensive supply of (generally simple) computational 'Practice Problems' at the end of each chapter. Completely worked solutions to virtually all of these problems are available on the book website. Also on the book website, the $E A T_{E} X$ source code for all problems and solutions is freely available under a Creative Commons Attribution Noncommercial Share-Alike Licenseㄲ. Thus, an instructor can download and edit this source code, and easily create quizzes, assignments, and matching solutions for her students.

Challenging exercises without solutions. Complex theoretical concepts cannot really be tested in quizzes, and do not lend themselves to canned 'practice problems'. For a more theoretical course with more mathematically sophisticated students, the instructor will want to assign some proof-related exercises for homework. This book has more than 420 such exercises scattered throughout the exposition; these are flagged by an "®" symbol in the margin, as shown here. Many of these exercises ask the student to prove a major result from the text (or a component thereof). This is the best kind of exercise, because it reinforces the material taught in class, and gives students a sense of ownership of the mathematics. Also, students find it more fun and exciting to prove important theorems, rather than solving esoteric make-work problems.

[^3]Appropriate rigour. The solutions of PDEs unfortunately involve many technicalities (e.g. different forms of convergence; derivatives of infinite function series, etc.). It is tempting to handwave and gloss over these technicalities, to avoid confusing students. But this kind of pedagogical dishonesty actually makes students more confused; they know something is fishy, but they can't tell quite what. Smarter students know they are being misled, and may lose respect for the book, the instructor, or even the whole subject.

In contrast, this book provides a rigorous mathematical foundation for all its solution methods. For example, Chapter 6 contains a careful explanation of L^{2} spaces, the various forms of convergence for Fourier series, and the differences between them -including the 'pathologies' which can arise when one is careless about these issues. I adopt a 'triage' approach to proofs: The simplest proofs are left as exercises for the motivated student (often with a step-by-step breakdown of the best strategy). The most complex proofs I have omitted, but I provide multiple references to other recent texts. In between are those proofs which are challenging but still accessible; I provide detailed expositions of these proofs. Often, when the text contains several variants of the same theorem, I prove one variant in detail, and leave the other proofs as exercises.

Appropriate Abstraction. It is tempting to avoid abstractions (e.g. linear differential operators, eigenfunctions), and simply present ad hoc solutions to special cases. This cheats the student. The right abstractions provide simple yet powerful tools which help students understand a myriad of seemingly disparate special cases within a single unifying framework. This book provides students with the opportunity to learn an abstract perspective once they are ready for it. Some abstractions are introduced in the main exposition, others are in optional sections, or in the philosophical preambles which begin each major part of the book.

Gradual abstraction. Learning proceeds from the concrete to the abstract. Thus, the book begins each topic with a specific example or a low-dimensional formulation, and only later proceed to a more general/abstract idea. This introduces a lot of "redundancy" into the text, in the sense that later formulations subsume the earlier ones. So the exposition is not as "efficient" as it could be. This is a good thing. Efficiency makes for good reference books, but lousy texts.

For example, when introducing the heat equation, Laplace equation, and wave equation in Chapters [1 and 2, I first derive and explain the one-dimensional version of each equation, then the two-dimensional version, and finally, the general, D-dimensional version. Likewise, when developing the solution methods for BVPs in Cartesian coordinates (Chapters 11-13), I confine the exposition to the interval $[0, \pi]$, the square $[0, \pi]^{2}$ and the cube $[0, \pi]^{3}$, and assume all the coefficients in the differential equations are unity. Then the exercises ask the student to state and prove the appropriate generalization of each solution method for an
interval/rectangle/box of arbitrary dimensions, and for equations with arbitrary coefficients. The general method for solving I/BVPs using eigenfunction expansions only appears in Chapter 15, after many special cases of this method have been thoroughly exposited in Cartesian and polar coordinates (Chapters 11-14).

Likewise, the development of Fourier theory proceeds in gradually escalating levels of abstraction. First we encounter Fourier (co)sine series on the interval $[0, \pi](\S[7 \mathrm{~A})$; then on the interval $[0, L]$ for arbitrary $L>0$ ($\S[\mathrm{BB})$. Then Chapter 8 introduces 'real' Fourier series (i.e. with both sine and cosine terms) and then complex Fourier series (§8D). Then, in Chapter 9 introduce 2-dimensional (co)sine series, and finally, D-dimensional (co)sine series.

Expositional clarity. Computer scientists have long known that it is easy to write software that works, but it is much more difficult (and important) to write working software that other people can understand. Similarly, it is relatively easy to write formally correct mathematics; the real challenge is to make the mathematics easy to read. To achieve this, I use several techniques. I divide proofs into semi-independent modules ("claims"), each of which performs a simple, clearly-defined task. I integrate these modules together in an explicit hierarchical structure (with "subclaims" inside of "claims"), so that their functional interdependence is clear from visual inspection. I also explain formal steps with parenthetical heuristic remarks. For example, in a long string of (in)equalities, I often attach footnotes to each step, as follows:
" $A \underset{(*)}{ } B \underset{(\dagger)}{\leq} C \underset{(\ddagger)}{<} D$. Here, (*) is because $[\ldots] ;(\dagger)$ follows from $[\ldots]$, and (\ddagger) is because $[\ldots]$."
Finally, I use letters from the same 'lexicographical family' to denote objects which 'belong' together. For example: If \mathcal{S} and \mathcal{T} are sets, then elements of \mathcal{S} should be $s_{1}, s_{2}, s_{3}, \ldots$, while elements of \mathcal{T} are $t_{1}, t_{2}, t_{3}, \ldots$. If \mathbf{v} is a vector, then its entries should be v_{1}, \ldots, v_{N}. If \mathbf{A} is a matrix, then its entries should be $a_{11}, \ldots, a_{N M}$. I reserve upper-case letters (e.g. J, K, L, M, N, \ldots) for the bounds of intervals or indexing sets, and then use the corresponding lower-case letters (e.g. j, k, l, m, n, \ldots) as indexes. For example, $\forall n \in\{1,2, \ldots, N\}, A_{n}:=$ $\sum_{j=1}^{J} \sum_{k=1}^{K} a_{j k}^{n}$.

Clear and explicit statements of solution techniques. Many PDEs text contain very few theorems; instead they try to develop the theory through a long sequence of worked examples, hoping that students will 'learn by imitation', and somehow absorb the important ideas 'by osmosis'. However, less gifted students often just imitate these worked examples in a slavish and uncomprehending way. Meanwhile, the more gifted students do not want to learn 'by osmosis'; they want clear and precise statements of the main ideas.

The problem is that most solution methods in PDEs, if stated as theorems in full generality, are incomprehensible to many students (especially the nonmath majors). My solution is this: I provide explicit and precise statements of the solution-method for almost every possible combination of (1) several major

PDEs, (2) several kinds of boundary conditions, and (3) several different domains. I state these solutions as theorems, not as 'worked examples'. I follow each of these theorems with several completely worked examples. Some theorems I prove, but most of the proofs are left as exercises (often with step-by-step hints).

Of course, this approach is highly redundant, because I end up stating more than twenty theorems which are all really special cases of three or four general results (for example, the general method for solving the heat equation on a compact domain with Dirichlet boundary conditions, using an eigenfunction expansion). However, this sort of redundancy is good in an elementary exposition. Highly 'efficient' expositions are pleasing to our aesthetic sensibilities, but they are dreadful for pedagogical purposes.

However, one must not leave the students with the impression that the theory of PDEs is a disjointed collection of special cases. To link together all the 'homogeneous Dirichlet heat equation' theorems, for example, I explicitly point out that they all utilize the same underlying strategy. Also, when a proof of one variant is left as an exercise, I encourage students to imitate the (provided) proofs of previous variants. When the students understand the underlying similarity between the various special cases, then it is appropriate to state the general solution. The students will almost feel they have figured it out for themselves, which is the best way to learn something.

Suggested Twelve-Week Syllabus

Week 1: Heat and Diffusion-related PDEs

Lecture 1: $\S 0 \mathrm{~A}-\overline{\mathrm{DE}}$ Review of multivariate calculus; intro. to complex numbers
Lecture 2: $\S \bar{A} \S \mathbb{B}$ Fourier's Law; The heat equation
Lecture 3: §■- DD Laplace Equation; Poisson's Equation
Week 2: Wave-related PDEs; Quantum Mechanics
Lecture 1: \S IE; §2A Properties of harmonic functions; Spherical Means
Lecture 2: $\S 2 \mathrm{~B}-\$ 2 \mathrm{C}$ wave equation; telegraph equation
Lecture 3: Chap.3 The Schrödinger equation in quantum mechanics

Week 3: General Theory

Lecture 1: $\S 4 \mathrm{~A}-\S(\mathrm{CD}$ Linear PDEs: homogeneous vs. nonhomogeneous
Lecture 2: §5A; §5B, Evolution equations \& Initial Value Problems
Lecture 3: $\S 5 \square$ Boundary conditions and boundary value problems
Week 4: Background to Fourier Theory
Lecture 1: $\S 5 \mathrm{D}$ Uniqueness of solutions to $B V P s ; ~ § 6 \mathrm{~A}$ Inner products
Lecture 2: $\S 6 \mathrm{~B}-\delta \overline{\mathrm{D}} \quad L^{2}$ space; Orthogonality
Lecture 3: $\oint 6(\mathrm{a}, \mathrm{b}, \mathrm{c}) \quad L^{2}$ convergence; Pointwise convergence; Uniform Convergence

Week 5: One-dimensional Fourier Series

Lecture 1: $\S 6 \mathrm{E}(\mathrm{d})$ Infinite Series; $\S 6 \mathrm{~F}$ Orthogonal bases §7A Fourier (co/sine) Series: Definition and examples
Lecture 2: $\S 7 \mathrm{G}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e})$ Computing Fourier series of polynomials, piecewise linear and step functions
Lecture 3: $\S[1 A-\delta[1]$ Solution to heat equation 8 Poisson equation on line segment.

Week 6: Fourier Solutions for BVPs in One and Two dimensions
Lecture 1: §ПB- §[2A; wave equation on line segment \mathcal{E} Laplace equation on a square.
Lecture 2: $\S 9 \mathrm{~A}-89 \mathrm{~B}$ Multidimensional Fourier Series.
Lecture 3: $\S 12 \mathrm{~B}-\S 12 \mathrm{C}(\mathrm{i}]$ Solution to heat equation 8 Poisson equation on a square

Week 7: Fourier solutions for 2-dimensional BVPs in Cartesian 8 Polar Coordinates
Lecture 1: $\S 12 \mathrm{C}(\mathrm{ii}), ~ § 12 \mathrm{D}$ Solution to Poisson equation ξ^{6} wave equation on a square
Lecture 2: $\S 5 \mathrm{C}(\mathrm{iv}) ; ~ § 8 \mathrm{~A} \S 8 \mathrm{~B}$ Periodic Boundary Conditions; Real Fourier Series.

Lecture 3: $\S 14 \mathrm{~A} ; ~ \S 14 \mathrm{~B}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$ Laplacian in Polar coordinates; Laplace Equation on (co)Disk.

Week 8: BVP's in Polar Coordinates; Bessel functions
Lecture 1: $\S 14 \mathrm{C}$ Bessel Functions.
Lecture 2: $\S[4 \mathrm{D}-\S 4 \mathrm{H}$ Heat, Poisson, and wave equations in Polar coordinates.
Lecture 3: $\S 14 \mathrm{G}$ Solving Bessel's equation with the Method of Frobenius.
Week 9: Eigenbases; Separation of variables.
Lecture 1: $\S 15 \mathrm{~A}-\S 15 \mathrm{~B}$ Eigenfunction solutions to BVPs
Lecture 2: $\S 15 \mathrm{~B} ; \xi_{16 \mathrm{~A}} \S 16 \mathrm{~B}$ Harmonic bases. Separation of Variables in Cartesian coordinates.

Lecture 3: $\S 16 \mathrm{Cl}$ [16D Separation of variables in polar and spherical coordinates. Legendre Polynomials.

Week 10: Impulse Response Methods.
Lecture 1: $\S[17 \mathrm{~A}-\S \boxed{17}$ Impulse response functions; convolution. Approximations of identity. Gaussian Convolution Solution for heat equation.
Lecture 2: $\delta[17 \mathrm{C}-\delta[7 \mathrm{~F}]$, Gaussian convolutions continued. Poisson's Solutions to Dirichlet problem on a half-plane and a disk.

Lecture 3: $\S 14 \mathrm{~B}(\mathrm{v}) ; ~ \oint 17 \mathrm{D}$ Poisson solution on disk via polar coordinates; d'Alembert Solution to wave equation.

Week 11: Fourier Transforms.
Lecture 1: $\S 19 \mathrm{~A}$ One-dimensional Fourier Transforms.
Lecture 2: $\S 19 \mathrm{~B}$ Properties of one-dimensional Fourier transform.
Lecture 3: $\S 20 \mathrm{~A} ; ~ § 20 \mathrm{C}$ Fourier transform solution to heat equation; Dirchlet problem on Half-plane.

Week 12: Fourier Transform Solutions to PDEs.
Lecture 1: $\S 19 \mathrm{D}$, $\S 20 \mathrm{~B}(\mathrm{i}$ Multidimensional Fourier transforms; Solution to wave equation.

Lecture 2: $\oint 20 \mathrm{~B}(\mathrm{ii})$; 20 E Poisson's Spherical Mean Solution; Huygen's Principle. The General Method.
Lecture 3: (Time permitting) \S 19G or \S 19H (Heisenberg Uncertainty or Laplace transforms).

In a longer semester or a faster paced course, one could also cover parts of Chapter 10 (Proofs of Fourier Convergence) and/or Chapter 18 (Applications of Complex Analysis)

I Motivating examples and major applications

A dynamical system is a mathematical model of a system evolving in time. Most models in mathematical physics are dynamical systems. If the system has only a finite number of 'state variables', then its dynamics can be encoded in an ordinary differential equation (ODE), which expresses the time derivative of each state variable (i.e. its rate of change over time) as a function of the other state variables. For example, celestial mechanics concerns the evolution of a system of gravitationally interacting objects (e.g. stars and planets). In this case, the 'state variables' are vectors encoding the position and momentum of each object, and the ODE describe how the objects move and accelerate as they gravitationally interact.

However, if the system has a very large number of state variables, then it is no longer feasible to represent it with an ODE. For example, consider the flow of heat or the propagation of compression waves through a steel bar containing 10^{24} iron atoms. We could model this using a 10^{24}-dimensional ODE, where we explicitly track the vibrational motion of each iron atom. However, such a 'microscopic' model would be totally intractable. Furthermore, it isn't necessary. The iron atoms are (mostly) immobile, and interact only with their immediate neighbours. Furthermore, nearby atoms generally have roughly the same temperature, and move in synchrony. Thus, it suffices to consider the macroscopic temperature distribution of the steel bar, or study the fluctuation of a macroscopic density field. This temperature distribution or density field can be mathematically represented as a smooth, real-valued function over some three-dimensional domain. The flow of heat or the propagation of sound can then be described as the evolution of this function over time.

We now have a dynamical system where the 'state variable' is not a finite system of vectors (as in celestial mechanics), but is instead a multivariate function. The evolution of this function is determined by its spatial geometry -e.g. the local 'steepness' and variation of the temperature gradients between warmer and cooler regions in the bar. In other words, the time derivative of the function (its rate of change over time) is determined by its spatial derivatives (which describe its slope and curvature at each point in space). An equation which relates the different derivatives of a multivariate function in this way is a partial differential equation (PDE). In particular, a PDE which describes a dynamical system is called an evolution equation. For example, the evolution equation which describes the flow of heat through a solid is called the heat equation. The equation which describes compression waves is the wave equation.

An equilibrium of a dynamical system is a state which is unchanging over time; mathematically, this means that the time-derivative is equal to zero. An equlib-
rium of an N-dimensional evolution equation satisfies an $(N-1)$-dimensional PDE called an equilibrium equation. For example, the equilibrium equations corresponding to the heat equation are the Laplace equation and the Poisson equation (depending on whether or not the system is subjected to external heat input).

PDEs are thus of central importance in the thermodynamics and acoustics of continuous media (e.g. steel bars). The heat equation also describes chemical diffusion in fluids, and also the evolving probability distribution of a particle performing a random walk called Brownian motion. It thus finds applications everywhere from mathematical biology to mathematical finance. When diffusion or Brownian motion is combined with deterministic drift (e.g. due to prevailing wind or ocean currents) it becomes a PDE called the Fokker-Planck equation.

The Laplace and Poisson equations describe the equilibria of such diffusion processes. They also arise in electrostatics, where they describe the shape of an electric field in a vacuum. Finally, solutions of the two-dimensional Laplace equation are good approximations of surfaces trying to minimize their elastic potential energy - that is, soap films.

The wave equation describes the resonance of a musical instrument, the spread of ripples on a pond, seismic waves propagating through the earth's crust, and shockwaves in solar plasma. (The motion of fluids themselves is described by yet another PDE, the Navier-Stokes equation). A version of the wave equation arises as a special case of Maxwell's equations of electrodynamics; this led to Maxwell's prediction of electromagnetic waves, which include radio, microwaves, X-rays, and visible light. When combined with a 'diffusion' term reminiscent of the heat equation, the wave equation becomes the telegraph equation, which describes the propagation and degradation of electrical signals travelling through a wire.

Finally, an odd-looking 'complex' version of the heat equation induces wavelike evolution in the complex-valued probability fields which describe the position and momentum of subatomic particles. This Schrödinger equation is the starting point of quantum mechanics, one of the two most revolutionary developments in physics in the twentieth century. The other revolutionary development was relativity theory. General relativity represents spacetime as a four-dimensional manifold, whose curvature interacts with the spatiotemporal flow of mass/energy through yet another PDE: the Einstein equation.

Except for the Einstein and Navier-Stokes equations, all the equations we have mentioned are linear PDEs. This means that a sum of two or more solutions to the PDE will also be a solution. This allows us to solve linear PDEs through the method of superposition: we build complex solutions by adding together many simple solutions. A particularly convenient class of simple solutions are eigenfunctions. Thus, an enormously powerful and general method for linear PDEs is to represent the solutions using eigenfunction expansions. The most natural eigenfunction expansion (in Cartesian coordinates) is the Fourier series.

Chapter 1

Heat and diffusion

"The differential equations of the propagation of heat express the most general conditions, and reduce the physical questions to problems of pure analysis, and this is the proper object of theory."
-Jean Joseph Fourier

1A Fourier's law

Prerequisites: $\S 0 \mathrm{DA}$. Recommended: $\S \mathbb{D}$.

1A(i) ...in one dimension

Figure 1A. 1 depicts a material diffusing through a one-dimensional domain \mathbb{X} (for example, $\mathbb{X}=\mathbb{R}$ or $\mathbb{X}=[0, L]$). Let $u(x, t)$ be the density of the material at the point $x \in \mathbb{X}$ at time $t>0$. Intuitively, we expect the material to flow from regions of greater to lesser concentration. In other words, we expect the flow of the material at any point in space to be proportional to the slope of the curve $u(x, t)$ at that point. Thus, if $F(x, t)$ is the flow at the point x at time t, then

Figure 1A.1: Fourier's Law of Heat Flow in one dimension

Figure 1A.2: Fourier's Law of Heat Flow in two dimensions
we expect:

$$
F(x, t)=-\kappa \cdot \partial_{x} u(x, t)
$$

where $\kappa>0$ is a constant measuring the rate of diffusion. This is an example of Fourier's Law.

1A(ii) ...in many dimensions

Prerequisites: §0E.

Figure 1A. 2 depicts a material diffusing through a two-dimensional domain $\mathbb{X} \subset \mathbb{R}^{2}$ (e.g. heat spreading through a region, ink diffusing in a bucket of water, etc.). We could just as easily suppose that $\mathbb{X} \subset \mathbb{R}^{D}$ is a D-dimensional domain. If $\mathbf{x} \in \mathbb{X}$ is a point in space, and $t \geq 0$ is a moment in time, let $u(\mathbf{x}, t)$ denote the concentration at \mathbf{x} at time t. (This determines a function $u: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$, called a time-varying scalar field.)

Now let $\overrightarrow{\mathbf{F}}(\mathbf{x}, t)$ be a D-dimensional vector describing the flow of the material at the point $\mathbf{x} \in \mathbb{X}$. (This determines a time-varying vector field $\overrightarrow{\mathbf{F}}: \mathbb{R}^{D} \times \mathbb{R}_{\not} \longrightarrow$ \mathbb{R}^{D}.)

Again, we expect the material to flow from regions of high concentration to low concentration. In other words, material should flow down the concentration gradient. This is expressed by Fourier's Law of Heat Flow, which says:

$$
\overrightarrow{\mathbf{F}}=-\kappa \cdot \nabla u,
$$

where $\kappa>0$ is is a constant measuring the rate of diffusion.
One can imagine u as describing a distribution of highly antisocial people; each person is always fleeing everyone around them and moving in the direction with the fewest people. The constant κ measures the average walking speed of these misanthropes.

Figure 1B.1: The heat equation as "erosion".

1B The heat equation

Recommended: § \mathbb{A}.

1B(i) ...in one dimension

Prerequisites: $\delta(\mathrm{A}(\mathrm{i})$.
Consider a material diffusing through a one-dimensional domain \mathbb{X} (for example, $\mathbb{X}=\mathbb{R}$ or $\mathbb{X}=[0, L])$. Let $u(x, t)$ be the density of the material at the location $x \in \mathbb{X}$ at time $t \in \mathbb{R}_{+}$, and let $F(x, t)$ be the flux of the material at the location x and time t. Consider the derivative $\partial_{x} F(x, t)$. If $\partial_{x} F(x, t)>0$, this means that the flow is diverging at this point in space, so the material there is spreading farther apart. Hence, we expect the concentration at this point to decrease. Conversely, if $\partial_{x} F(x, t)<0$, then the flow is converging at this point in space, so the material there is crowding closer together, and we expect the concentration to increase. To be succinct: the concentration of material will increase in regions where F converges, and decrease in regions where F diverges. The equation describing this is:

$$
\partial_{t} u(x, t)=-\partial_{x} F(x, t) .
$$

If we combine this with Fourier's Law, however, we get:

$$
\partial_{t} u(x, t)=\kappa \cdot \partial_{x} \partial_{x} u(x, t),
$$

which yields the one-dimensional heat equation:

$$
\partial_{t} u(x, t)=\kappa \cdot \partial_{x}^{2} u(x, t)
$$

[^4]Heuristically speaking, if we imagine $u(x, t)$ as the height of some one-dimensional "landscape", then the heat equation causes this landscape to be "eroded", as if it were subjected to thousands of years of wind and rain (see Figure 1B.1).

Figure 1B.2: Under the heat equation, the exponential decay of a periodic function is proportional to the square of its frequency.

Example 1B.1. For simplicity we suppose $\kappa=1$.
(a) Let $u(x, t)=e^{-9 t} \cdot \sin (3 x)$. Thus, u describes a spatially sinusoidal function (with spatial frequency 3) whose magnitude decays exponentially over time.
(b) The dissipating wave: More generally, let $u(x, t)=e^{-\omega^{2} \cdot t} \cdot \sin (\omega \cdot x)$. Then u is a solution to the one-dimensional heat equation, and looks like a standing wave whose amplitude decays exponentially over time (see Figure 1B.2). Notice that the decay rate of the function u is proportional to the square of its frequency.
(c) The (one-dimensional) Gauss-Weierstrass Kernel: Let

$$
\mathcal{G}(x ; t) \quad:=\frac{1}{2 \sqrt{\pi t}} \exp \left(\frac{-x^{2}}{4 t}\right)
$$

Then \mathcal{G} is a solution to the one-dimensional heat equation, and looks like a "bell curve", which starts out tall and narrow, and over time becomes broader and flatter (Figure 1B.3).

Exercise 1B.1. Verify that the functions in Examples 1B.1(a,b,c) all satisfy the heat equation.

Figure 1B.3: The Gauss-Weierstrass kernel under the heat equation.
All three functions in Examples IB.1 starts out very tall, narrow, and pointy, and gradually become shorter, broader, and flatter. This is generally what the heat equation does; it tends to flatten things out. If u describes a physical landscape, then the heat equation describes "erosion".

1B(ii) ...in many dimensions

Prerequisites: \S 1A(ii).
More generally, if $u: \mathbb{R}^{D} \times \mathbb{R}_{\not} \longrightarrow \mathbb{R}$ is the time-varying density of some material, and $\overrightarrow{\mathbf{F}}: \mathbb{R}^{D} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ is the flux of this material, then we would expect the material to increase in regions where $\overrightarrow{\mathbf{F}}$ converges, and to decrease in regions where $\overrightarrow{\mathbf{F}}$ diverges. ${ }^{2}$ In other words, we have:

$$
\partial_{t} u=-\operatorname{div} \overrightarrow{\mathbf{F}} .
$$

If u is the density of some diffusing material (or heat), then $\overrightarrow{\mathbf{F}}$ is determined by Fourier's Law, so we get the heat equation

$$
\partial_{t} u=\kappa \cdot \operatorname{div} \nabla u=\kappa \Delta u
$$

Here, \triangle is the Laplacian operator ${ }^{3}$, defined:

$$
\Delta u=\partial_{1}^{2} u+\partial_{2}^{2} u+\ldots \partial_{D}^{2} u
$$

Exercise 1B.2. (a) If $D=1$, and $u: \mathbb{R} \longrightarrow \mathbb{R}$, verify that $\operatorname{div} \nabla u(x)=u^{\prime \prime}(x)=$ $\triangle u(x)$, for all $x \in \mathbb{R}$.

[^5](b) If $D=2$, and $u: \mathbb{R}^{2} \longrightarrow \mathbb{R}$, verify that $\operatorname{div} \nabla u(x, y)=\partial_{x}^{2} u(x, y)+\partial_{y}^{2} u(x, y)=$ $\triangle u(x, y)$, for all $(x, y) \in \mathbb{R}^{2}$.
(c) For any $D \geq 2$ and $u: \mathbb{R}^{D} \longrightarrow \mathbb{R}$, verify that $\operatorname{div} \nabla u(\mathbf{x})=\triangle u(\mathbf{x})$, for all $\mathbf{x} \in \mathbb{R}^{D}$.

By changing to the appropriate time units, we can assume $\kappa=1$, so the heat equation becomes:

$$
\partial_{t} u=\triangle u \text {. }
$$

For example,

- If $\mathbb{X} \subset \mathbb{R}$, and $x \in \mathbb{X}$, then $\triangle u(x ; t)=\partial_{x}^{2} u(x ; t)$.
- If $\mathbb{X} \subset \mathbb{R}^{2}$, and $(x, y) \in \mathbb{X}$, then $\triangle u(x, y ; t)=\partial_{x}^{2} u(x, y ; t)+\partial_{y}^{2} u(x, y ; t)$.

Thus, as we've already seen, the one-dimensional heat equation is

$$
\partial_{t} u=\partial_{x}^{2} u
$$

and the the two dimensional heat equation is:

$$
\partial_{t} u(x, y ; t)=\partial_{x}^{2} u(x, y ; t)+\partial_{y}^{2} u(x, y ; t)
$$

Example 1B.2.

(a) Let $u(x, y ; t)=e^{-25 t} \cdot \sin (3 x) \sin (4 y)$. Then u is a solution to the twodimensional heat equation, and looks like a two-dimensional 'grid' of sinusoidal hills and valleys with horizontal spacing $1 / 3$ and vertical spacing 1/4. As shown in Figure 1B.4, these hills rapidly subside into a gently undulating meadow, and then gradually sink into a perfectly flat landscape.
(b) The (two-dimensional) Gauss-Weierstrass Kernel: Let

$$
\mathcal{G}(x, y ; t) \quad:=\frac{1}{4 \pi t} \exp \left(\frac{-x^{2}-y^{2}}{4 t}\right) .
$$

Then \mathcal{G} is a solution to the two-dimensional heat equation, and looks like a mountain, which begins steep and pointy, and gradually "erodes" into a broad, flat, hill.
(c) The D-dimensional Gauss-Weierstrass Kernel is the function \mathcal{G} : $\mathbb{R}^{D} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ defined

$$
\mathcal{G}(\mathbf{x} ; t)=\frac{1}{(4 \pi t)^{D / 2}} \exp \left(\frac{-\|\mathbf{x}\|^{2}}{4 t}\right)
$$

Technically speaking, $\mathcal{G}(\mathbf{x} ; t)$ is a D-dimensional symmetric normal probability distribution with variance $\sigma=2 t$.

Figure 1B.4: Five snapshots of the function $u(x, y ; t)=e^{-25 t} \cdot \sin (3 x) \sin (4 y)$ from Example 1B.2.
(®) Exercise 1B.3. Verify that the functions in Examples IB.2(a,b,c) all satisfy the heat equation.

Exercise 1B.4. Prove the Leibniz rule for Laplacians: if $f, g: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ are two (®) scalar fields, and $(f \cdot g): \mathbb{R}^{D} \longrightarrow \mathbb{R}$ is their product, then for all $\mathbf{x} \in \mathbb{R}^{D}$,

$$
\Delta(f \cdot g)(\mathbf{x})=g(\mathbf{x}) \cdot(\Delta f(\mathbf{x}))+2(\nabla f(\mathbf{x})) \cdot(\nabla g(\mathbf{x}))+f(\mathbf{x}) \cdot(\Delta g(\mathbf{x}))
$$

Hint: Combine the Leibniz rules for gradients and divergences (Propositions 0E.1(b) and 0E.2(b) on pages 558 and 560).

1C Laplace's equation

Prerequisites: §[B.
If the heat equation describes the erosion/diffusion of some system, then an equilibrium or steady-state of the heat equation is a scalar field $h: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ satisfying Laplace's Equation:

$$
\triangle h \equiv 0
$$

Figure 1C.1: Three harmonic functions: (A) $h(x, y)=\log \left(x^{2}+y^{2}\right)$. (B) $h(x, y)=x^{2}-y^{2}$. (C) $h(x, y)=\sin (x) \cdot \sinh (y)$. In all cases, note the telltale "saddle" shape.

A scalar field satisfying the Laplace equation is called a harmonic function.

Example 1C.1.

(a) If $D=1$, then $\Delta h(x)=\partial_{x}^{2} h(x)=h^{\prime \prime}(x)$; thus, the one-dimensional Laplace equation is just

$$
h^{\prime \prime}(x)=0
$$

Suppose $h(x)=3 x+4$. Then $h^{\prime}(x)=3$, and $h^{\prime \prime}(x)=0$, so h is harmonic. More generally: the one-dimensional harmonic functions are just the linear functions of the form: $h(x)=a x+b$ for some constants $a, b \in \mathbb{R}$.
(b) If $D=2$, then $\triangle h(x, y)=\partial_{x}^{2} h(x, y)+\partial_{y}^{2} h(x, y)$, so the two-dimensional Laplace equation reads:

$$
\partial_{x}^{2} h+\partial_{y}^{2} h=0
$$

or, equivalently, $\partial_{x}^{2} h=-\partial_{y}^{2} h$. For example:

- Figure 1C.1(B) shows the harmonic function $h(x, y)=x^{2}-y^{2}$.
- Figure 1C.1(C) shows the harmonic function $h(x, y)=\sin (x) \cdot \sinh (y)$.

Exercise 1C. 1 Verify that these two functions are harmonic.
The surfaces in Figure IC.1 have a "saddle" shape, and this is typical of harmonic functions; in a sense, a harmonic function is one which is "saddleshaped" at every point in space. In particular, notice that $h(x, y)$ has no maxima or minima anywhere; this is a universal property of harmonic functions (see Corollary 1E. 2 on page 17). The next example seems to contradict this assertion, but in fact it doesn't...

Example 1C.2. Figure 1C.1(A) shows the harmonic function $h(x, y)=\log \left(x^{2}+\right.$ $\left.y^{2}\right)$ for all $(x, y) \neq(0,0)$. This function is well-defined everywhere except at $(0,0)$; hence, contrary to appearances, $(0,0)$ is not an extremal point. [Verifying that h is harmonic is problem \# 3 on page [20].

When $D \geq 3$, harmonic functions no longer define nice saddle-shaped surfaces, but they still have similar mathematical properties.

Example 1C.3.

(a) If $D=3$, then $\Delta h(x, y, z)=\partial_{x}^{2} h(x, y, z)+\partial_{y}^{2} h(x, y, z)+\partial_{z}^{2} h(x, y, z)$.

Thus, the three-dimensional Laplace equation reads:

$$
\partial_{x}^{2} h+\partial_{y}^{2} h+\partial_{z}^{2} h=0,
$$

For example, let $h(x, y, z)=\frac{1}{\|(x, y, z)\|}=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ for all $(x, y, z) \neq(0,0,0)$. Then h is harmonic everywhere except at $(0,0,0)$.
[Verifying that h is harmonic is problem \# 团 on page 21.]
(b) For any $D \geq 3$, the D-dimensional Laplace equation reads:

$$
\partial_{1}^{2} h+\ldots+\partial_{D}^{2} h=0
$$

For example, let $h(\mathbf{x})=\frac{1}{\|\mathbf{x}\|^{D-2}}=\frac{1}{\left(x_{1}^{2}+\cdots+x_{D}^{2}\right)^{\frac{D-2}{2}}}$ for all $\mathbf{x} \neq \mathbf{0}$.
Then h is harmonic everywhere everywhere in $\mathbb{R}^{D} \backslash\{\mathbf{0}\}$ (Exercise 1C. 2
Verify that h is harmonic on $\mathbb{R}^{D} \backslash\{\mathbf{0}\}$.)
Harmonic functions have the convenient property that we can multiply together two lower-dimensional harmonic functions to get a higher dimensional one. For example:

- $h(x, y)=x \cdot y$ is a two-dimensional harmonic function (Exercise 1C.3 Verify this).
- $h(x, y, z)=x \cdot\left(y^{2}-z^{2}\right)$ is a three-dimensional harmonic function (Exercise 1C. 4 Verify this).

In general, we have the following:

Proposition 1C.4. Suppose $u: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is harmonic and $v: \mathbb{R}^{m} \longrightarrow \mathbb{R}$ is harmonic, and define $w: \mathbb{R}^{n+m} \longrightarrow \mathbb{R}$ by $w(\mathbf{x}, \mathbf{y})=u(\mathbf{x}) \cdot v(\mathbf{y})$ for $\mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{y} \in \mathbb{R}^{m}$. Then w is also harmonic

Proof. Exercise 1C. 5 Hint: First prove that w obeys a kind of Leibniz rule: $\Delta w(\mathbf{x}, \mathbf{y})=v(\mathbf{y}) \cdot \Delta u(\mathbf{x})+u(\mathbf{x}) \cdot \Delta v(\mathbf{y})$.

The function $w(\mathbf{x}, \mathbf{y})=u(\mathbf{x}) \cdot v(\mathbf{y})$ is called a separated solution, and this theorem illustrates a technique called separation of variables. The next exercise also explores separation of variables. A full exposition of this technique appears in Chapter 16 on page 353 .

Exercise 1C.6. (a) Let $\mu, \nu \in \mathbb{R}$ be constants, and let $f(x, y)=e^{\mu x} \cdot e^{\nu y}$. Suppose f is harmonic; what can you conclude about the relationship between μ and ν ? (Justify your assertion).
(b) Suppose $f(x, y)=X(x) \cdot Y(y)$, where $X: \mathbb{R} \longrightarrow \mathbb{R}$ and $Y: \mathbb{R} \longrightarrow \mathbb{R}$ are two smooth functions. Suppose $f(x, y)$ is harmonic
[i] Prove that $\frac{X^{\prime \prime}(x)}{X(x)}=\frac{-Y^{\prime \prime}(y)}{Y(y)}$ for all $x, y \in \mathbb{R}$.
[ii] Conclude that the function $\frac{X^{\prime \prime}(x)}{X(x)}$ must equal a constant c independent of x. Hence $X(x)$ satisfies the ordinary differential equation $X^{\prime \prime}(x)=c \cdot X(x)$.

Likewise, the function $\frac{Y^{\prime \prime}(y)}{Y(y)}$ must equal $-c$, independent of y. Hence $Y(y)$ satisfies the ordinary differential equation $Y^{\prime \prime}(y)=-c \cdot Y(y)$.
[iii] Using this information, deduce the general form for the functions $X(x)$ and $Y(y)$, and use this to obtain a general form for $f(x, y)$.

1D The Poisson equation

Prerequisites: §

Imagine $p(\mathbf{x})$ is the concentration of a chemical at the point \mathbf{x} in space. Suppose this chemical is being generated (or depleted) at different rates at different regions in space. Thus, in the absence of diffusion, we would have the generation equation

$$
\partial_{t} p(\mathbf{x}, t)=q(\mathbf{x})
$$

where $q(\mathbf{x})$ is the rate at which the chemical is being created/destroyed at \mathbf{x} (we assume that q is constant in time).

If we now included the effects of diffusion, we get the generation-diffusion equation:

$$
\partial_{t} p=\kappa \Delta p+q .
$$

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

$p^{\prime \prime}(x)=Q(x)=\left\{\begin{array}{ll}1 & \text { if } 0<x<1 ; \\ 0 & \text { otherwise. }\end{array} \quad p^{\prime \prime}(x)=Q(x)=1 / x^{2} ;\right.$
$p^{\prime}(x)=\left\{\begin{array}{ll}x & \text { if } 0<x<1 ; \\ 1 & \text { otherwise }\end{array} \quad p^{\prime}(x)=-1 / x+3 ;\right.$
$p(x)=\left\{\begin{array}{rl}x^{2} / 2 & \text { if } 0<x<1 ; \\ x-\frac{1}{2} & \text { otherwise. }\end{array} \quad p(x)=-\log |x|+3 x+5\right.$.
(A)
(B)

Figure 1D.1: Two one-dimensional potentials.
A steady state of this equation is a scalar field p satisfying Poisson's Equation:

$$
\Delta p=Q
$$

where $Q(\mathbf{x})=\frac{-q(\mathbf{x})}{\kappa}$.

Example 1D.1: One-Dimensional Poisson Equation

If $D=1$, then $\triangle p(x)=\partial_{x}^{2} p(x)=p^{\prime \prime}(x)$; thus, the one-dimensional Poisson equation is just

$$
p^{\prime \prime}(x)=Q(x) .
$$

We can solve this equation by twice-integrating the function $Q(x)$. If $p(x)=$ $\iint Q(x)$ is some double-antiderivative of G, then p clearly satisfies the Poisson equation. For example:
(a) Suppose $Q(x)=\left\{\begin{array}{ll}1 & \text { if } 0<x<1 ; \\ 0 & \text { otherwise. }\end{array}\right.$. Then define
$p(x)=\int_{0}^{x} \int_{0}^{y} q(z) d z d y=\left\{\begin{aligned} 0 & \text { if } x<0 ; \\ x^{2} / 2 & \text { if } 0<x<1 ; \\ x-\frac{1}{2} & \text { if } 1<x .\end{aligned} \quad\right.$ (Figure 1D.1AA)
(b) If $Q(x)=1 / x^{2}($ for $x \neq 0)$, then $p(x)=\iint Q(x)=-\log |x|+a x+b$ (for $x \neq 0$), where $a, b \in \mathbb{R}$ are arbitrary constants. (see Figure 1D.1B)

Figure 1D.2: The two-dimensional potential field generated by a concentration of charge at the origin.

Exercise 1D.1. Verify that the functions $p(x)$ in Examples (a) and (b) are both solutions to their respective Poisson equations.

Example 1D.2: Electrical/Gravitational Fields

Poisson's equation also arises in classical field theory团. Suppose, for any point $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ in three-dimensional space, that $q(\mathbf{x})$ is charge density at \mathbf{x}, and that $p(\mathbf{x})$ is the the electric potential field at \mathbf{x}. Then we have:

$$
\begin{equation*}
\triangle p(\mathbf{x})=\kappa q(\mathbf{x}) \quad(\kappa \text { some constant }) \tag{1D.1}
\end{equation*}
$$

If $q(\mathbf{x})$ were the mass density at \mathbf{x}, and $p(\mathbf{x})$ were the gravitational potential energy, then we would get the same equation. (See Figure 1 D. 2 for an example of such a potential in two dimensions).
In particular, in a region where there is no charge/mass (i.e. where $q \equiv 0$), equation (ID.1) reduces to the Laplace equation $\triangle p \equiv 0$. Because of this, solutions to the Poisson equation (and especially the Laplace equation) are sometimes called potentials.

Example 1D.3: The Coulomb Potential

Let $D=3$, and let $p(x, y, z)=\frac{1}{\|(x, y, z)\|}=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$. In Example 1C.3(a), we asserted that $p(x, y, z)$ was harmonic everywhere except at $(0,0,0)$, where it is not well-defined. For physical reasons, it is 'reasonable' to write the equation:

$$
\begin{equation*}
\triangle p(0,0,0)=\delta_{0}, \tag{1D.2}
\end{equation*}
$$

[^6]where δ_{0} is the 'Dirac delta function' (representing an infinite concentration of charge at zero $)$. Then $p(x, y, z)$ describes the electric potential generated by a point charge.

Exercise 1D.2. Check that $\nabla p(x, y, z)=\frac{-(x, y, z)}{\|(x, y, z)\|^{3}}$. This is the electric field generated by a point charge, as given by Coulomb's Law from classical electrostatics.

Exercise 1D.3. (a) Let $q: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ be a scalar field describing a charge density distribution. If $\overrightarrow{\mathbf{E}}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ is the electric field generated by q, then Gauss's law saws $\operatorname{div} \overrightarrow{\mathbf{E}}=\kappa q$, where κ is a constant. If $p: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ is the electric potential field associated with $\overrightarrow{\mathbf{E}}$, then by definition, $\overrightarrow{\mathbf{E}}=\nabla p$. Use these facts to derive equation (1D.1).
(b) Suppose q is independent of the x_{3} coordinate; that is, $q\left(x_{1}, x_{2}, x_{3}\right)=Q\left(x_{1}, x_{2}\right)$ for some function $Q: \mathbb{R}^{2} \longrightarrow \mathbb{R}$. Show that p is also is independent of the x_{3} coordinate; that is, $p\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{1}, x_{2}\right)$ for some function $P: \mathbb{R}^{2} \longrightarrow \mathbb{R}$. Show P and Q satisfy the two-dimensional version of the Poisson equation - that is that $\triangle P=\kappa Q$.
(This is significant because many physical problems have (approximate) translational symmetry along one dimension (e.g. an electric field generated by a long, uniformly charged wire or plate). Thus, we can reduce the problem to two dimensions, where powerful methods from complex analysis can be applied; see Section 18 B on page 422 .)

Notice that the electric/gravitational potential field is not uniquely defined by equation (1D.1). If $p(\mathbf{x})$ solves the Poisson equation (1D.1), then so does $\widetilde{p}(\mathbf{x})=p(\mathbf{x})+a$ for any constant $a \in \mathbb{R}$. Thus, we say that the potential field is well-defined up to addition of a constant; this is similar to the way in which the antiderivative $\int Q(x)$ of a function is only well-defined up to some constant. [] This is an example of a more general phenomenon:

Proposition 1D.4. Let $\mathbb{X} \subset \mathbb{R}^{D}$ be some domain, and let $p: \mathbb{X} \longrightarrow \mathbb{R}$ and $h: \mathbb{X} \longrightarrow \mathbb{R}$ be two functions on \mathbb{X}. Let $\widetilde{p}(\mathbf{x}):=p(\mathbf{x})+h(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{X}$. Suppose that h is harmonic -i.e. $\triangle h \equiv 0$. If p satisfies the Poisson Equation " $\triangle p \equiv q$ ", then \widetilde{p} also satisfies this Poisson equation.

Proof. Exercise 1D. 4 Hint: Notice that $\triangle \widetilde{p}(\mathbf{x})=\triangle p(\mathbf{x})+\triangle h(\mathbf{x})$.
For example, if $Q(x)=1 / x^{2}$, as in Example 1D.1(b), then $p(x)=-\log (x)$ is a solution to the Poisson equation " p " $(x)=1 / x^{2}$ ". If $h(x)$ is a one-dimensional

[^7]harmonic function, then $h(x)=a x+b$ for some constants a and b (see Example 1C.1(a) on page 10). Thus $\widetilde{p}(x)=-\log (x)+a x+b$, and we've already seen that these are also valid solutions to this Poisson equation.

1E Properties of harmonic functions

Prerequisites: $\S(1 \mathrm{C}, ~ \S(0 \mathrm{H}(\mathrm{ii)}$. Prerequisites (for proofs): $\S 2 \mathrm{~A}, ~ \S[7 \mathrm{G}, ~ \S(\mathrm{E}(\mathrm{iii})$.
Recall that a function $h: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ is harmonic if $\triangle h \equiv 0$. Harmonic functions have nice geometric properties, which can be loosely summarized as 'smooth and gently curving'.

Theorem 1E.1. Mean Value Theorem

Let $f: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ be a scalar field. Then f is harmonic if and only if f is integrable, and:

$$
\begin{equation*}
\text { For any } \mathbf{x} \in \mathbb{R}^{D} \text {, and any } R>0, \quad f(\mathbf{x})=\frac{1}{A(R)} \int_{\mathbb{S}(\mathbf{x} ; R)} f(\mathbf{s}) d \mathbf{s} \tag{1E.1}
\end{equation*}
$$

Here, $\mathbb{S}(\mathbf{x} ; R):=\left\{\mathbf{s} \in \mathbb{R}^{D} ;\|\mathbf{s}-\mathbf{x}\|=R\right\}$ is the $(D-1)$-dimensional sphere of radius R around \mathbf{x}, and $A(R)$ is the ($D-1$)-dimensional surface area of $\mathbb{S}(\mathbf{x} ; R)$.

Proof. Exercise 1E. 1 (a) Suppose f is integrable and statement (1E.1) is true. Use the Spherical Means formula for the Laplacian (Theorem 2A.1) to show that f is harmonic.
(b) Now, suppose f is harmonic. Define $\phi: \mathbb{R}_{\nmid} \longrightarrow \mathbb{R}$ by: $\phi(R):=\frac{1}{A(R)} \int_{\mathbb{S}(\mathbf{x} ; R)} f(\mathbf{s}) d \mathbf{s}$.

Show that $\phi^{\prime}(R)=\frac{K}{A(R)} \int_{\mathbb{S}(\mathbf{x} ; R)} \partial_{\perp} f(\mathbf{s}) d \mathbf{s}$, for some constant $K>0$.
Here, $\partial_{\perp} f(\mathbf{s})$ is the outward normal derivative of f at the point \mathbf{s} on the sphere (see page 564 for an abstract definition; see $\S 5$ (ii) on page 76 for more information).
(c) Let $\mathbb{B}(\mathbf{x} ; R):=\left\{\mathbf{b} \in \mathbb{R}^{D} ;\|\mathbf{b}-\mathbf{x}\| \leq R\right\}$ be the $\mathbf{b a l l}$ of radius R around \mathbf{x}. Apply Green's Formula (Theorem 0E.5(a) on page 564) to show that

$$
\phi^{\prime}(R)=\frac{K}{A(R)} \int_{\mathbb{B}(\mathbf{x} ; R)} \triangle f(\mathbf{b}) d \mathbf{b}
$$

(d) Deduce that, if f is harmonic, then ϕ must be constant.
(e) Use the fact that f is continuous to show that $\lim _{r \rightarrow 0} \phi(r)=f(\mathbf{x})$. Deduce that $\phi(r)=f(\mathbf{x})$ for all $r \geq 0$. Conclude that, if f is harmonic, then statement (1E.1) must be true.

Corollary 1E.2. Maximum Principle for harmonic functions

Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a domain, and let $u: \mathbb{X} \longrightarrow \mathbb{R}$ be a nonconstant harmonic function. Then u has no local maximal or minimal points anywhere in the interior of \mathbb{X}.

If \mathbb{X} is bounded (hence compact), then u does obtain a maximum and minimum, but only on the boundary of \mathbb{X}.

Proof. (by contradiction). Suppose \mathbf{x} was a local maximum of u somewhere in the interior of \mathbb{X}. Let $R>0$ be small enough that $\mathbb{S}(\mathbf{x} ; R) \subset \mathbb{X}$, and such that

$$
\begin{equation*}
u(\mathbf{x}) \geq u(\mathbf{s}) \quad \text { for all } \mathbf{s} \in \mathbb{S}(\mathbf{x} ; R) \tag{1E.2}
\end{equation*}
$$

where this inequality is strict for at least one $\mathbf{s}_{0} \in \mathbb{S}(\mathbf{x} ; R)$.
Claim 1: \quad There is a nonempty open subset $\mathbb{Y} \subset \mathbb{S}(\mathbf{x} ; R)$ such that $u(\mathbf{x})>$ $u(\mathbf{y})$ for all \mathbf{y} in \mathbb{Y}.

Proof. We know that $u(\mathbf{x})>u\left(\mathbf{s}_{0}\right)$. But u is continuous, so there must be some open neighbourhood \mathbb{Y} around \mathbf{s}_{0} such that $u(\mathbf{x})>u(\mathbf{y})$ for all \mathbf{y} in \mathbb{Y}.
$\diamond_{\text {Claim } 1}$
Equation (1E.2) and Claim 1 imply that

$$
f(\mathbf{x}) \quad>\frac{1}{A(R)} \int_{\mathbb{S}(\mathbf{x} ; R)} f(\mathbf{s}) d \mathbf{s} .
$$

But this contradicts the Mean Value Theorem. By contradiction, \mathbf{x} cannot be a local maximum. (The proof for local minima is analogous).

A function $F: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ is spherically symmetric if $F(\mathbf{x})$ depends only on the norm $\|\mathbf{x}\|$ (i.e. $F(\mathbf{x})=f(\|\mathbf{x}\|)$ for some function $f: \mathbb{R}_{+} \longrightarrow \mathbb{R}$). For example, the function $F(\mathbf{x}):=\exp \left(-\|\mathbf{x}\|^{2}\right)$ is spherically symmetric.

If $h, F: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ are two integrable functions, then their convolution is the function $h * F: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ defined by

$$
h * F(\mathbf{x}) \quad:=\int_{\mathbb{R}^{D}} h(\mathbf{y}) \cdot F(\mathbf{x}-\mathbf{y}) d \mathbf{y}, \quad \text { for all } \mathbf{x} \in \mathbb{R}^{D}
$$

(if this integral converges). We will encounter convolutions in § 10D(ii] on page 214 (where they will be used to prove the L^{2} convergence of a Fourier series) and again in Chapter 17 (where they will be used to construct 'impulse-response' solutions for PDEs). For now, we state the following simple consequence of the Mean Value Theorem:

Lemma 1E.3. If $h: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ is harmonic and $F: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ is integrable and spherically symmetric, then $h * F=K \cdot h$, where $K \in \mathbb{R}$ is some constant.

Proof. Exercise 1E. 2

Proposition 1E.4. Smoothness of harmonic functions
If $h: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ is a harmonic function, then h is infinitely differentiable.
Proof. Let $F: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ be some infinitely differentiable, spherically symmetric, integrable function. For example, we could take $F(\mathbf{x}):=\exp \left(-\|\mathbf{x}\|^{2}\right)$. Then Proposition 17G.2(f) on page 410 says that $h * F$ is infinitely differentiable. But Lemma 1E.3 implies that $h * F=K h$ for some constant $K \in \mathbb{R}$; thus, h is also infinitely differentiable.
(For another proof, see Theorem 6 on p. 28 of [Eva.9], §2.2].)

Actually, we can go even further than this. A function $h: \mathbb{X} \longrightarrow \mathbb{R}$ is analytic if, for every $\mathbf{x} \in \mathbb{X}$, there is a multivariate Taylor series expansion for h around \mathbf{x} with a nonzero radius of convergence. 7

Proposition 1E.5. Harmonic functions are analytic
Let $\mathbb{X} \subseteq \mathbb{R}^{D}$ be an open set. If $h: \mathbb{X} \longrightarrow \mathbb{R}$ is a harmonic function, then h is analytic on \mathbb{X}.

Proof. For the case $D=2$, see Corollary 18D.2 on page 451. For the general case $D \geq 2$, see Theorem 10 on p. 31 of [Eva.91, §2.2].

1F* Transport and diffusion

Prerequisites: § [B], § 6 .

If $u: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ is a "mountain", then recall that $\nabla u(\mathbf{x})$ points in the direction of most rapid ascent at \mathbf{x}. If $\overrightarrow{\mathbf{v}} \in \mathbb{R}^{D}$ is a vector, then the dot product $\overrightarrow{\mathbf{v}} \bullet \nabla u(\mathbf{x})$ measures how rapidly you would be ascending if you walked in direction $\overrightarrow{\mathrm{v}}$.

Suppose $u: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ describes a pile of leafs, and there is a steady wind blowing in the direction $\overrightarrow{\mathbf{v}} \in \mathbb{R}^{D}$. We would expect the pile to slowly move in the direction $\overrightarrow{\mathbf{v}}$. Suppose you were an observer fixed at location \mathbf{x}. The pile is moving past you in direction $\overrightarrow{\mathbf{v}}$, which is the same as you walking along the pile in direction $-\overrightarrow{\mathbf{v}}$; thus, you would expect the height of the pile at your location to increase/decrease at rate $-\overrightarrow{\mathbf{v}} \bullet \nabla u(\mathbf{x})$. The pile thus satisfies the Transport Equation:

$$
\partial_{t} u=-\overrightarrow{\mathbf{v}} \bullet \nabla u
$$

Now, suppose that the wind does not blow in a constant direction, but instead has some complex spatial pattern. The wind velocity is therefore determined by a vector field $\overrightarrow{\mathbf{V}}: \mathbb{R}^{D} \longrightarrow \mathbb{R}^{D}$. As the wind picks up leafs and carries them around, the flux of leafs at a point $\mathbf{x} \in \mathbb{X}$ is then the vector $\overrightarrow{\mathbf{F}}(\mathbf{x})=u(\mathbf{x}) \cdot \overrightarrow{\mathbf{V}}(\mathbf{x})$.

[^8]But the rate at which leafs are piling up at each location is the divergence of the flux. This results in Liouville's Equation:

$$
\partial_{t} u=-\operatorname{div} \overrightarrow{\mathbf{F}}=-\operatorname{div}(u \cdot \overrightarrow{\mathbf{V}}) \overline{\overline{(*)}} \quad-\overrightarrow{\mathbf{V}} \bullet \nabla u-u \cdot \operatorname{div} \overrightarrow{\mathbf{V}}
$$

Here, $(*)$ is by the Leibniz rule for divergence (Proposition 0E.2(b) on page 560).
Liouville's equation describes the rate at which u-material accumulates when it is being pushed around by the $\overrightarrow{\mathbf{V}}$-vector field. Another example: $\overrightarrow{\mathbf{V}}(\mathbf{x})$ describes the flow of water at \mathbf{x}, and $u(\mathbf{x})$ is the buildup of some sediment at x .

Now suppose that, in addition to the deterministic force $\overrightarrow{\mathbf{V}}$ acting on the leafs, there is also a "random" component. In other words, while being blown around by the wind, the leafs are also subject to some random diffusion. To describe this, we combine Liouville's Equation with the heat equation, to obtain the Fokker-Plank equation:

$$
\partial_{t} u=\kappa \Delta u-\overrightarrow{\mathbf{V}} \bullet \nabla u-u \cdot \operatorname{div} \overrightarrow{\mathbf{V}} .
$$

1G* Reaction and diffusion

Prerequisites: §[B.
Suppose A, B and C are three chemicals, satisfying the chemical reaction:

$$
2 A+B \Longrightarrow C
$$

As this reaction proceeds, the A and B species are consumed, and C is produced. Thus, if a, b, c are the concentrations of the three chemicals, we have:

$$
\partial_{t} c=R(t)=-\partial_{t} b=-\frac{1}{2} \partial_{t} a
$$

where $R(t)$ is the rate of the reaction at time t. The rate $R(t)$ is determined by the concentrations of A and B, and by a rate constant ρ. Each chemical reaction requires 2 molecules of A and one of B; thus, the reaction rate is given by

$$
R(t)=\rho \cdot a(t)^{2} \cdot b(t)
$$

Hence, we get three ordinary differential equations, called the reaction kinetic equations of the system:

$$
\left.\begin{array}{rl}
\partial_{t} a(t) & =-2 \rho \cdot a(t)^{2} \cdot b(t) \tag{1G.1}\\
\partial_{t} b(t) & =-\rho \cdot a(t)^{2} \cdot b(t) \\
\partial_{t} c(t) & =\rho \cdot a(t)^{2} \cdot b(t)
\end{array}\right\}
$$

Now, suppose that the chemicals A, B and C are in solution, but are not uniformly mixed. At any location $\mathbf{x} \in \mathbb{X}$ and time $t>0$, let $a(\mathbf{x}, t)$ be the concentration of chemical A at location \mathbf{x} at time t; likewise, let $b(\mathbf{x}, t)$ be the
concentration of B and $c(\mathbf{x}, t)$ be the concentration of C. (This determines three time-varying scalar fields, $a, b, c: \mathbb{R}^{3} \times \mathbb{R} \longrightarrow \mathbb{R}$.) As the chemicals react, their concentrations at each point in space may change. Thus, the functions a, b, c will obey the equations $(1 \mathrm{G} .1)$ at each point in space. That is, for every $\mathbf{x} \in \mathbb{R}^{3}$ and $t \in \mathbb{R}$, we have

$$
\partial_{t} a(\mathbf{x} ; t) \approx-2 \rho \cdot a(\mathbf{x} ; t)^{2} \cdot b(\mathbf{x} ; t)
$$

etc. However, the dissolved chemicals are also subject to diffusion forces. In other words, each of the functions a, b and c will also be obeying the heat equation. Thus, we get the system:

$$
\begin{aligned}
\partial_{t} a & =\kappa_{a} \cdot \triangle a(\mathbf{x} ; t)-2 \rho \cdot a(\mathbf{x} ; t)^{2} \cdot b(\mathbf{x} ; t) \\
\partial_{t} b & =\kappa_{b} \cdot \triangle b(\mathbf{x} ; t)-\rho \cdot a(\mathbf{x} ; t)^{2} \cdot b(\mathbf{x} ; t) \\
\partial_{t} c & =\kappa_{c} \cdot \Delta c(\mathbf{x} ; t)+\rho \cdot a(\mathbf{x} ; t)^{2} \cdot b(\mathbf{x} ; t)
\end{aligned}
$$

where $\kappa_{a}, \kappa_{b}, \kappa_{c}>0$ are three different diffusivity constants.
This is an example of a reaction-diffusion system. In general, in a reaction-diffusion system involving N distinct chemicals, the concentrations of the different species is described by a concentration vector field $\mathbf{u}: \mathbb{R}^{3} \times \mathbb{R} \longrightarrow$ \mathbb{R}^{N}, and the chemical reaction is described by a rate function $F: \mathbb{R}^{N} \longrightarrow \mathbb{R}^{N}$. For example, in the previous example, $\mathbf{u}(\mathbf{x}, t)=(a(\mathbf{x}, t), b(\mathbf{x}, t), c(\mathbf{x}, t))$, and

$$
F(a, b, c)=\left[\begin{array}{lll}
-2 \rho a^{2} b, & -\rho a^{2} b, & \rho a^{2} b
\end{array}\right]
$$

The reaction-diffusion equations for the system then take the form

$$
\partial_{t} u_{n}=\kappa_{n} \triangle u_{n}+F_{n}(\mathbf{u})
$$

for $n=1, \ldots, N$

1H Practice problems

1. Let $f: \mathbb{R}^{4} \longrightarrow \mathbb{R}$ be a differentiable scalar field. Show that $\operatorname{div} \nabla f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ $\triangle f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$.
2. Let $f(x, y ; t)=\exp (-34 t) \cdot \sin (3 x+5 y)$. Show that $f(x, y ; t)$ satisfies the two-dimensional heat equation: $\partial_{t} f(x, y ; t)=\triangle f(x, y ; t)$.
3. Let $u(x, y)=\log \left(x^{2}+y^{2}\right)$. Show that $u(x, y)$ satisfies the (two-dimensional) Laplace Equation, everywhere except at $(x, y)=(0,0)$.
Remark: If $(x, y) \in \mathbb{R}^{2}$, recall that $\|(x, y)\|:=\sqrt{x^{2}+y^{2}}$. Thus, $\log \left(x^{2}+\right.$ $\left.y^{2}\right)=2 \log \|(x, y)\|$. This function is sometimes called the logarithmic potential.
4. If $(x, y, z) \in \mathbb{R}^{3}$, recall that $\|(x, y, z)\|:=\sqrt{x^{2}+y^{2}+z^{2}}$. Define

$$
u(x, y, z)=\frac{1}{\|(x, y, z)\|}=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

Show that u satisfies the (three-dimensional) Laplace equation, everywhere except at $(x, y, z)=(0,0,0)$.
Remark: Observe that $\nabla u(x, y, z)=\frac{-(x, y, z)}{\|(x, y, z)\|^{3}}$. What force field does this remind you of? Hint: $u(x, y, z)$ is sometimes called the Coulomb potential.
5. Let $u(x, y ; t)=\frac{1}{4 \pi t} \exp \left(\frac{-\|(x, y)\|^{2}}{4 t}\right)=\frac{1}{4 \pi t} \exp \left(\frac{-x^{2}-y^{2}}{4 t}\right)$ be the (two-dimensional) Gauss-Weierstrass Kernel. Show that u satisfies the (two-dimensional) heat equation, $\partial_{t} u=\triangle u$.
6. Let α and β be real numbers, and let $h(x, y)=\sinh (\alpha x) \cdot \sin (\beta y)$.
(a) Compute $\triangle h(x, y)$.
(b) Suppose h is harmonic. Write an equation describing the relationship between α and β.

Further reading

An analogy of the Laplacian can be defined on any Riemannian manifold, where it is sometimes called the Laplace-Beltrami operator. The study of harmonic functions on manifolds yields important geometric insights [War83, Cha.93].

The reaction diffusion systems from $\S[G]$ play an important role in modern mathematical biology [Mur93].

The heat equation also arises frequently in the theory of Brownian motion and other Gaussian stochastic processes on \mathbb{R}^{D} [Str93].

Chapter 2

Waves and signals

"There is geometry in the humming of the strings."
—Pythagoras

2A The Laplacian and spherical means

Prerequisites: $\S 0 \mathrm{~A}, \S(0 \mathrm{~B}, ~ \S(\mathrm{OH}(\mathrm{v})$ Recommended: $\S(\mathrm{B}$.
Let $u: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ be a function of D variables. Recall that the Laplacian of u is defined:

$$
\Delta u=\partial_{1}^{2} u+\partial_{2}^{2} u+\ldots \partial_{D}^{2} u
$$

In this section, we will show that $\triangle u(\mathbf{x})$ measures the discrepancy between $u(\mathbf{x})$ and the 'average' of u in a small neighbourhood around \mathbf{x}.

Let $\mathbb{S}(\epsilon)$ be the D-dimensional "sphere" of radius ϵ around 0 . For example:

- If $D=1$, then $\mathbb{S}(\epsilon)$ is just a set with two points: $\mathbb{S}(\epsilon)=\{-\epsilon,+\epsilon\}$.
- If $D=2$, then $\mathbb{S}(\epsilon)$ is the circle of radius $\epsilon: \mathbb{S}(\epsilon)=\left\{(x, y) \in \mathbb{R}^{2} ; x^{2}+y^{2}=\epsilon^{2}\right\}$
- If $D=3$, then $\mathbb{S}(\epsilon)$ is the 3 -dimensional spherical shell of radius ϵ :

$$
\mathbb{S}(\epsilon)=\left\{(x, y, z) \in \mathbb{R}^{3} ; x^{2}+y^{2}+z^{2}=\epsilon^{2}\right\}
$$

- More generally, for any dimension D,

$$
\mathbb{S}(\epsilon)=\left\{\left(x_{1}, x_{2}, \ldots, x_{D}\right) \in \mathbb{R}^{D} ; x_{1}^{2}+x_{2}^{2}+\ldots+x_{D}^{2}=\epsilon^{2}\right\}
$$

Let A_{ϵ} be the "surface area" of the sphere. For example:

- If $D=1$, then $\mathbb{S}(\epsilon)=\{-\epsilon,+\epsilon\}$ is a finite set, with two points, so we say $A_{\epsilon}=2$.
- If $D=2$, then $\mathbb{S}(\epsilon)$ is the circle of radius ϵ; the perimeter of this circle is $2 \pi \epsilon$, so we say $A_{\epsilon}=2 \pi \epsilon$.

Figure 2A.1: Local averages: $f(x)$ vs. $\mathbf{M}_{\epsilon} f(x):=\frac{f(x-\epsilon)+f(x+\epsilon)}{2}$.

- If $D=3$, then $\mathbb{S}(\epsilon)$ is the sphere of radius ϵ, which has surface area $4 \pi \epsilon^{2}$.

Let $\mathbf{M}_{\epsilon} f(0):=\frac{1}{A_{\epsilon}} \int_{\mathbb{S}(\epsilon)} f(\mathbf{s}) d \mathbf{s}$; then $\mathbf{M}_{\epsilon} f(0)$ is the average value of $f(\mathbf{s})$ over all \mathbf{s} on the surface of the ϵ-radius sphere around 0 , which is called the spherical mean of f at 0 . The interpretation of the integral sign " \int " depends on the dimension D of the space. For example, " \int " represents a surface integral if $D=3$, a line integral if $D=2$, and simple two-point sum if $D=1$. Thus:

- If $D=1$, then $\mathbb{S}(\epsilon)=\{-\epsilon,+\epsilon\}$, so that $\int_{\mathbb{S}(\epsilon)} f(\mathbf{s}) d \mathbf{s}=f(\epsilon)+f(-\epsilon)$; thus,

$$
\mathbf{M}_{\epsilon} f=\frac{f(\epsilon)+f(-\epsilon)}{2}
$$

- If $D=2$, then any point on the circle has the form $(\epsilon \cos (\theta), \epsilon \sin (\theta))$ for some angle $\theta \in[0,2 \pi)$. Thus, $\int_{\mathbb{S}(\epsilon)} f(\mathbf{s}) d \mathbf{s}=\int_{0}^{2 \pi} f(\epsilon \cos (\theta), \epsilon \sin (\theta)) \epsilon d \theta$, so that

$$
\mathbf{M}_{\epsilon} f=\frac{1}{2 \pi \epsilon} \int_{0}^{2 \pi} f(\epsilon \cos (\theta), \epsilon \sin (\theta)) \epsilon d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\epsilon \cos (\theta), \epsilon \sin (\theta)) d \theta
$$

Likewise, for any $\mathbf{x} \in \mathbb{R}^{D}$, we define $\mathbf{M}_{\epsilon} f(\mathbf{x}):=\frac{1}{A_{\epsilon}} \int_{\mathbb{S}(\epsilon)} f(\mathbf{x}+\mathbf{s}) d \mathbf{s}$ to be the average value of f over an ϵ-radius sphere around \mathbf{x}. Suppose $f: \mathbb{R}^{D} \longrightarrow \mathbb{R}$
is a smooth scalar field, and $\mathbf{x} \in \mathbb{R}^{D}$. One interpretation of the Laplacian is this: $\triangle f(\mathbf{x})$ measures the disparity between $f(\mathbf{x})$ and the average value of f in the immediate vicinity of \mathbf{x}. This is the meaning of the next theorem:

Theorem 2A.1.

(a) If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a smooth scalar field, then (as shown in Figure 2A.1), for any $x \in \mathbb{R}$,

$$
\Delta f(x)=\lim _{\epsilon \rightarrow 0} \frac{2}{\epsilon^{2}}\left[\mathbf{M}_{\epsilon} f(\mathbf{x})-f(\mathbf{x})\right]=\lim _{\epsilon \rightarrow 0} \frac{2}{\epsilon^{2}}\left[\frac{f(x-\epsilon)+f(x+\epsilon)}{2}-f(x)\right] .
$$

(b) $\mathbb{H} f: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ is a smooth scalar field, then for any $\mathbf{x} \in \mathbb{R}^{D}$,

$$
\triangle f(\mathbf{x})=\lim _{\epsilon \rightarrow 0} \frac{C}{\epsilon^{2}}\left[\mathbf{M}_{\epsilon} f(\mathbf{x})-f(\mathbf{x})\right]=\lim _{\epsilon \rightarrow 0} \frac{C}{\epsilon^{2}}\left[\frac{1}{A_{\epsilon}} \int_{\mathbb{S}(\epsilon)} f(\mathbf{x}+\mathbf{s}) d \mathbf{s}-f(\mathbf{x})\right]
$$

(Here C is a constant determined by the dimension D).
Proof. (a) Using Taylor's theorem (see § 0H(i) on page 568), we have:

$$
\begin{aligned}
f(x+\epsilon) & =f(x)+\epsilon f^{\prime}(x)+\frac{\epsilon^{2}}{2} f^{\prime \prime}(x)+\mathcal{O}\left(\epsilon^{3}\right) \\
\text { and } f(x-\epsilon) & =f(x)-\epsilon f^{\prime}(x)+\frac{\epsilon^{2}}{2} f^{\prime \prime}(x)+\mathcal{O}\left(\epsilon^{3}\right) .
\end{aligned}
$$

Here, $f^{\prime}(x)=\partial_{x} f(x)$ and $f^{\prime \prime}(x)=\partial_{x}^{2} f(x)$. The expression " $\mathcal{O}(\epsilon)$ " means "some function (we don't care which one) such that $\lim _{\epsilon \rightarrow 0} \mathcal{O}(\epsilon)=0$ ". ${ }^{2}$ Likewise, " $\mathcal{O}\left(\epsilon^{3}\right)$ " means "some function (we don't care which one) such that $\lim _{\epsilon \rightarrow 0} \frac{\mathcal{O}\left(\epsilon^{3}\right)}{\epsilon^{2}}=0$." Summing these two equations, we get

$$
f(x+\epsilon)+f(x-\epsilon)=2 f(x)+\epsilon^{2} \cdot f^{\prime \prime}(x)+\mathcal{O}\left(\epsilon^{3}\right) .
$$

Thus,

$$
\frac{f(x-\epsilon)-2 f(x)+f(x+\epsilon)}{\epsilon^{2}}=f^{\prime \prime}(x)+\mathcal{O}(\epsilon) .
$$

[because $\mathcal{O}\left(\epsilon^{3}\right) / \epsilon^{2}=\mathcal{O}(\epsilon)$.] Now take the limit as $\epsilon \rightarrow 0$, to get

$$
\lim _{\epsilon \rightarrow 0} \frac{f(x-\epsilon)-2 f(x)+f(x+\epsilon)}{\epsilon^{2}}=\lim _{\epsilon \rightarrow 0} f^{\prime \prime}(x)+\mathcal{O}(\epsilon)=f^{\prime \prime}(x)=\triangle f(x),
$$

[^9]as desired.
(b) Define the Hessian derivative matrix of f at \mathbf{x} :
\[

\mathrm{D}^{2} f(\mathbf{x})=\left[$$
\begin{array}{cccc}
\partial_{1}^{2} f & \partial_{1} \partial_{2} f & \ldots & \partial_{1} \partial_{D} f \\
\partial_{2} \partial_{1} f & \partial_{2}^{2} f & \ldots & \partial_{2} \partial_{D} f \\
\vdots & \vdots & \ddots & \vdots \\
\partial_{D} \partial_{1} f & \partial_{D} \partial_{2} f & \ldots & \partial_{D}^{2} f
\end{array}
$$\right]
\]

Then, for any $\mathbf{s} \in \mathbb{S}(\epsilon)$, the Multivariate Taylor's theorem (see $\S 0 \mathrm{H}(\mathrm{v})$ on page 576) says:

$$
f(\mathbf{x}+\mathbf{s})=f(\mathbf{x})+\mathbf{s} \bullet \nabla f(\mathbf{x})+\frac{1}{2} \mathrm{~s} \bullet \mathrm{D}^{2} f(\mathbf{x}) \cdot \mathbf{s}+\mathcal{O}\left(\epsilon^{3}\right) .
$$

Now, if $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{D}\right)$, then $\mathbf{s} \bullet \mathrm{D}^{2} f(\mathbf{x}) \cdot \mathbf{s}=\sum_{c, d=1}^{D} s_{c} \cdot s_{d} \cdot \partial_{c} \partial_{d} f(\mathbf{x})$. Thus, for any $\epsilon>0$, we have

$$
\begin{aligned}
& A_{\epsilon} \cdot \mathbf{M}_{\epsilon} f(\mathbf{x})=\int_{\mathbb{S}(\epsilon)} f(\mathbf{x}+\mathbf{s}) d \mathbf{s} \\
& =\int_{\mathbb{S}(\epsilon)} f(\mathbf{x}) d \mathbf{s}+\int_{\mathbb{S}(\epsilon)} \mathbf{s} \bullet \nabla f(\mathbf{x}) d \mathbf{s} \\
& +\frac{1}{2} \int_{\mathbb{S}(\epsilon)} \mathbf{s} \bullet \mathrm{D}^{2} f(\mathbf{x}) \cdot \mathbf{s}+\int_{\mathbb{S}(\epsilon)} \mathcal{O}\left(\epsilon^{3}\right) d \mathbf{s} \\
& =A_{\epsilon} f(\mathbf{x})+\nabla f(\mathbf{x}) \cdot \int_{\mathbb{S}(\epsilon)} \mathbf{s} d \mathbf{s} \\
& +\frac{1}{2} \int_{\mathbb{S}(\epsilon)}\left(\sum_{c, d=1}^{D} s_{c} s_{d} \cdot \partial_{c} \partial_{d} f(\mathbf{x})\right) d \mathbf{s}+\mathcal{O}\left(\epsilon^{D+2}\right) \\
& =A_{\epsilon} f(\mathbf{x})+\underbrace{\nabla f(\mathbf{x}) \bullet \mathbf{0}}_{(*)} \\
& +\frac{1}{2} \sum_{c, d=1}^{D}\left(\partial_{c} \partial_{d} f(\mathbf{x}) \cdot\left(\int_{\mathbb{S}(\epsilon)} s_{c} s_{d} d \mathbf{s}\right)\right)+\mathcal{O}\left(\epsilon^{D+2}\right) \\
& =A_{\epsilon} f(\mathbf{x})+\frac{1}{2} \underbrace{\sum_{d=1}^{D}\left(\partial_{d}^{2} f(\mathbf{x}) \cdot\left(\int_{\mathbb{S}(\epsilon)} s_{d}^{2} d \mathbf{s}\right)\right)}_{(\dagger)}+\mathcal{O}\left(\epsilon^{D+2}\right) \\
& =A_{\epsilon} f(\mathbf{x})+\frac{1}{2} \triangle f(\mathbf{x}) \cdot \epsilon^{D+1} K \quad+\mathcal{O}\left(\epsilon^{D+2}\right),
\end{aligned}
$$

where $K:=\int_{\mathbb{S}(1)} s_{1}^{2} d \mathbf{s}$. Here, $(*)$ is because $\int_{\mathbb{S}(\epsilon)} \mathbf{s} d \mathbf{s}=\mathbf{0}$, because the centre-of-mass of a sphere is at its centre, namely $\mathbf{0}$. (\dagger) is because, if $c, d \in[1 \ldots D]$,

Figure 2B.1: A bead on a string
and $c \neq d$, then $\int_{\mathbb{S}(\epsilon)} s_{c} s_{d} d \mathbf{s}=0(\underline{\text { Exercise 2A.1 }}$ Hint: Use symmetry $)$. Thus,

$$
\begin{aligned}
A_{\epsilon} \cdot \mathbf{M}_{\epsilon} f(\mathbf{x})-A_{\epsilon} f(\mathbf{x}) & =\frac{\epsilon^{D+1} K}{2} \Delta f(\mathbf{x})+\mathcal{O}\left(\epsilon^{D+2}\right), \\
\text { so } \mathbf{M}_{\epsilon} f(\mathbf{x})-f(\mathbf{x}) & =\frac{\epsilon^{D+1} K}{2 A_{\epsilon}} \triangle f(\mathbf{x})+\frac{1}{A_{\epsilon}} \mathcal{O}\left(\epsilon^{D+2}\right) \\
& \overline{(*)} \frac{\epsilon^{D+1} K}{2 A_{1} \cdot \epsilon^{D-1}} \triangle f(\mathbf{x})+\mathcal{O}\left(\frac{\epsilon^{D+2}}{\epsilon^{D-1}}\right) \\
& =\frac{\epsilon^{2} K}{2 A_{1}} \triangle f(\mathbf{x})+\mathcal{O}\left(\epsilon^{3}\right),
\end{aligned}
$$

where $(*)$ is because $A_{\epsilon}=A_{1} \cdot \epsilon^{D-1}$. Thus,

$$
\frac{2 A_{1}}{K \epsilon^{2}}\left(\mathbf{M}_{\epsilon} f(\mathbf{x})-f(\mathbf{x})\right)=\triangle f(\mathbf{x})+\mathcal{O}(\epsilon)
$$

Now take the limit as $\epsilon \rightarrow 0$, and set $C:=\frac{2 A_{1}}{K}$, to prove part (b).

Exercise 2A.2. Let $f: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ be a smooth scalar field, such that $\mathbf{M}_{\epsilon} f(\mathbf{x})=$ $f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{D}$. Show that f is harmonic.

2B The wave equation

Prerequisites: §2A.

2B(i) ...in one dimension: the string

We want to mathematically describe vibrations propagating through a stretched elastic cord. We will represent the cord with a one-dimensional domain \mathbb{X}; either $\mathbb{X}=[0, L]$ or $\mathbb{X}=\mathbb{R}$. We will make several simplifying assumptions:
(W1) The cord has uniform thickness and density. Thus, there is a constant linear density $\rho>0$, so that a cord-segment of length ℓ has mass $\rho \ell$.
(W2) The cord is perfectly elastic; meaning that it is infinitely flexible and does not resist bending in any way. Likewise, there is no air friction to resist the motion of the cord.
(W3) The only force acting on the cord is tension, which is force of magnitude T pulling the cord to the right, balanced by an equal but opposite force of magnitude $-T$ pulling the cord to the left. These two forces are in balance, so the cord exhibits no horizontal motion. The tension T must be constant along the whole length of the cord. Thus, the equilibrium state for the cord is to be perfectly straight. Vibrations are deviations from this straight position. ${ }^{5}$
(W4) The vibrational motion of the cord is entirely vertical; there is no horizontal component to the vibration. Thus, we can describe the motion using a scalar-valued function $u(x, t)$, where $u(x, t)$ is the vertical displacement of the cord (from its flat equilibrium) at point x at time t. We assume that $u(x, t)$ is relatively small relative to the length of the cord, so that the cord is not significantly stretched by the vibrations?

For simplicity, let's first imagine a single bead of mass m suspended at the midpoint of a (massless) elastic cord of length 2ϵ, stretched between two endpoints. Suppose we displace the bead by a distance y from its equilibrium, as shown in Figure 2B.1. The tension force T now pulls the bead diagonally towards each endpoint with force T. The horizontal components of the two tension forces are equal and opposite, so they cancel, so the bead experiences no net horizontal force. Suppose the cord makes an angle θ with the horizontal; then the vertical component of each tension force is $T \sin (\theta)$, so the total vertical force acting on the bead is $2 T \sin (\theta)$. But $\theta=\arctan (\epsilon / y)$ by the geometry of the triangles in

[^10]Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

Figure 2B.2: Each bead feels a negative force proportional to its deviation from the local average.

Figure 2B.1, so $\sin (\theta)=\frac{y}{\sqrt{y^{2}+\epsilon^{2}}}$. Thus, the vertical force acting on the bead is

$$
\begin{equation*}
F=2 T \sin (\theta)=\frac{2 T y}{\sqrt{y^{2}+\epsilon^{2}}} \tag{2B.1}
\end{equation*}
$$

Now we return to our original problem of the vibrating string. Imagine that we replace the string with a 'necklace' made up of small beads of mass m separated by massless elastic strings of length ϵ. Each of these beads, in isolation, behaves like the 'bead on a string' in Figure 2B.1. However, now, the vertical displacement of each bead is not computed relative to the horizontal, but instead relative to the average height of the two neighbouring beads. Thus, in eqn.(2B.1), we set $y:=u(x)-\mathbf{M}_{\epsilon} u(x)$, where $u(x)$ is the height of bead x, and where $\mathbf{M}_{\epsilon} u:=\frac{1}{2}[u(x-\epsilon)+u(x+\epsilon)]$ is the average of its neighbours. Substituting this into eqn.(2B.1), we get

$$
\begin{equation*}
F_{\epsilon}(x)=\frac{2 T\left[u(x)-\mathbf{M}_{\epsilon} u(x)\right]}{\sqrt{\left[u(x)-\mathbf{M}_{\epsilon} u(x)\right]^{2}+\epsilon^{2}}} \tag{2B.2}
\end{equation*}
$$

(Here, the " ϵ " subscript in " F_{ϵ} " is to remind us that this is just an ϵ-bead approximation of the real string). Each bead represents a length- ϵ segment of the original string, so if the string has linear density ρ, then each bead must have mass $m_{\epsilon}:=\rho \epsilon$. Thus, by Newton's law, the vertical acceleration of bead x must be

$$
\begin{align*}
a_{\epsilon}(x) & =\frac{F_{\epsilon}(x)}{m_{\epsilon}}=\frac{2 T\left[u(x)-\mathbf{M}_{\epsilon} u(x)\right]}{\rho \epsilon \sqrt{\left[u(x)-\mathbf{M}_{\epsilon} u(x)\right]^{2}+\epsilon^{2}}} \\
& =\frac{2 T\left[u(x)-\mathbf{M}_{\epsilon} u(x)\right]}{\rho \epsilon^{2} \sqrt{\left[u(x)-\mathbf{M}_{\epsilon} u(x)\right]^{2} / \epsilon^{2}+1}} \tag{2B.3}
\end{align*}
$$

Now, we take the limit as $\epsilon \rightarrow 0$, to get the vertical acceleration of the string at x :

$$
\begin{align*}
a(x) & =\lim _{\epsilon \rightarrow 0} a_{\epsilon}(x)=\frac{T}{\rho} \lim _{\epsilon \rightarrow 0} \frac{2}{\epsilon^{2}}\left[u(x)-\mathbf{M}_{\epsilon} u(x)\right] \cdot \lim _{\epsilon \rightarrow 0} \frac{1}{\sqrt{\left[u(x)-\mathbf{M}_{\epsilon} u(x)\right]^{2} / \epsilon^{2}+1}} \\
& \overline{\overline{(*)}} \frac{T}{\rho} \partial_{x}^{2} u(x) \frac{1}{\lim _{\epsilon \rightarrow 0} \sqrt{\epsilon^{2} \cdot \partial_{x}^{2} u(x)^{2}+1}} \overline{(\dagger)} \frac{T}{\rho} \partial_{x}^{2} u(x) . \tag{2B.4}
\end{align*}
$$

Here, $(*)$ is because Theorem 2A.1 (a) on page 25 says that $\lim _{\epsilon \rightarrow 0} \frac{2}{\epsilon^{2}}\left[u(x)-\mathbf{M}_{\epsilon} u(x)\right]=$ $\partial_{x}^{2} u(x)$. Finally, (\dagger) is because, for any value of $u^{\prime \prime} \in \mathbb{R}$, we have $\lim _{\epsilon \rightarrow 0} \sqrt{\epsilon^{2} u^{\prime \prime}+1}=$ 1. We conclude that

$$
a(x)=\frac{T}{\rho} \partial_{x}^{2} u(x)=\lambda^{2} \partial_{x}^{2} u(x),
$$

where $\lambda:=\sqrt{T / \rho}$. Now, the position (and hence, velocity and acceleration) of the cord is changing in time. Thus, a and u are functions of t as well as x. And of course, the acceleration $a(x, t)$ is nothing more than the second derivative of u with respect to t. Hence we have the one-dimensional Wave Equation:

$$
\partial_{t}^{2} u(x, t)=\lambda^{2} \cdot \partial_{x}^{2} u(x, t)
$$

This equation describes the propagation of a transverse wave along an idealized string, or electrical pulses propagating in a wire.

Figure 2B.3: A one-dimensional standing wave.

Example 2B.1. Standing Waves

(a) Suppose $\lambda^{2}=4$, and let $u(x ; t)=\sin (3 x) \cdot \cos (6 t)$. Then u satisfies the Wave Equation and describes a standing wave with a temporal frequency of 6 and a wave number (or spatial frequency) of 3 . (See Figure 2B.3)
(b) More generally, fix $\omega>0$; if $u(x ; t)=\sin (\omega \cdot x) \cdot \cos (\lambda \cdot \omega \cdot t)$, Then u satisfies the wave equation and describes a standing wave of temporal frequency $\lambda \cdot \omega$ and wave number ω.

Exercise 2B.1. Verify examples (a) and (b) above.

Figure 2B.4: (A) A one-dimensional sinusoidal travelling wave. (B) A general one-dimensional travelling wave.

Example 2B.2. Travelling Waves

(a) Suppose $\lambda^{2}=4$, and let $u(x ; t)=\sin (3 x-6 t)$. Then u satisfies the Wave Equation and describes a sinusoidal travelling wave with temporal frequency 6 and wave number 3. The wave crests move rightwards along the cord with velocity 2. (Figure 2B.4A).
(b) More generally, fix $\omega \in \mathbb{R}$ and let $u(x ; t)=\sin (\omega \cdot x-\lambda \cdot \omega \cdot t)$. Then u satisfies the wave equation and describes a sinusoidal travelling wave of wave number ω. The wave crests move rightwards along the cord with velocity λ.
(c) More generally, suppose that f is any function of one variable, and define $u(x ; t)=f(x-\lambda \cdot t)$. Then u satisfies the wave equation and describes a travelling wave, whose shape is given by f, and which moves rightwards along the cord with velocity λ (see Figure 2B.4B).

Exercise 2B.2. Verify examples 2B.2(a,b,c) above.

Exercise 2B.3. According to Example 2B.2(c), you can turn any function into a travelling wave. Can you turn any function into a standing wave? Why or why not?

2B(ii) ...in two dimensions: the drum

Now, suppose $D=2$, and imagine a two-dimensional "rubber sheet". Suppose $u(x, y ; t)$ is the the vertical displacement of the rubber sheet at the point $(x, y) \in$ \mathbb{R}^{2} at time t. To derive the two-dimensional wave equation, we approximate this rubber sheet as a two-dimensional 'mesh' of tiny beads connected by massless, tense elastic strings of length ϵ. Each bead (x, y) feels a net vertical force $F=$ $F_{x}+F_{y}$, where F_{x} is the vertical force arising from the tension in the x direction, and F_{y} is the vertical force from the tension in the y direction. Both of these are expressed by a formula similar to eqn.(2B.2). Thus, if bead (x, y) has mass m_{ϵ}, then it experiences acceleration $a=F / m_{\epsilon}=F_{x} / m_{\epsilon}+F_{y} / m_{\epsilon}=a_{x}+a_{y}$, where $a_{x}:=F_{x} / m_{\epsilon}$ and $a_{y}:=F_{y} / m_{\epsilon}$, and each of these is expressed by a formula similar to eqn.(2B.3). Taking the limit as $\epsilon \rightarrow 0$ as in eqn.(2B.4), we deduce that
$a(x, y)=\lim _{\epsilon \rightarrow 0} a_{x, \epsilon}(x, y)+\lim _{\epsilon \rightarrow 0} a_{y, \epsilon}(x, y)=\lambda^{2} \partial_{x}^{2} u(x, y)+\lambda^{2} \partial_{y}^{2} u(x, y)$,
where λ is a constant determined by the density and tension of the rubber membrane. Again, we recall that u and a are also functions of time, and that $a(x, y ; t)=\partial_{t}^{2} u(x, y ; t)$. Thus, we have the two-dimensional Wave Equation:

$$
\begin{equation*}
\partial_{t}^{2} u(x, y ; t)=\lambda^{2} \cdot \partial_{x}^{2} u(x, y ; t)+\lambda^{2} \cdot \partial_{y}^{2} u(x, y ; t) \tag{2B.5}
\end{equation*}
$$

or, more abstractly:

$$
\partial_{t}^{2} u=\lambda^{2} \cdot \Delta u
$$

This equation describes the propagation of wave energy through any medium with a linear restoring force. For example:

- Transverse waves on an idealized rubber sheet.
- Ripples on the surface of a pool of water.
- Acoustic vibrations on a drumskin.

Example 2B.3. Two-dimensional Standing Waves

(a) Suppose $\lambda^{2}=9$, and let $u(x, y ; t)=\sin (3 x) \cdot \sin (4 y) \cdot \cos (15 t)$. This describes a two-dimensional standing wave with temporal frequency 15.
(b) More generally, fix $\boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}\right) \in \mathbb{R}^{2}$ and let $\Omega=\|\boldsymbol{\omega}\|_{2}=\sqrt{\omega_{1}^{2}+\omega_{2}^{2}}$. Then the function

$$
u(\mathbf{x} ; t):=\sin \left(\omega_{1} x\right) \cdot \sin \left(\omega_{2} y\right) \cdot \cos (\lambda \cdot \Omega t)
$$

satisfies the 2-dimensional wave equation and describes a standing wave with temporal frequency $\lambda \cdot \Omega$.

Figure 2B.5: A two-dimensional travelling wave.
(c) Even more generally, fix $\boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}\right) \in \mathbb{R}^{2}$ and let $\Omega=\|\boldsymbol{\omega}\|_{2}=\sqrt{\omega_{1}^{2}+\omega_{2}^{2}}$, as before.

$$
\begin{aligned}
\text { Let } S C_{1}(x) & =\text { either } \sin (x) \text { or } \cos (x) ; \\
\text { let } S C_{2}(y) & =\text { either } \sin (y) \text { or } \cos (y) ; \\
\text { and let } S C_{t}(t) & =\text { either } \sin (t) \text { or } \cos (t)
\end{aligned}
$$

Then

$$
u(\mathbf{x} ; t)=S C_{1}\left(\omega_{1} x\right) \cdot S C_{2}\left(\omega_{2} y\right) \cdot S C_{t}(\lambda \cdot \Omega t)
$$

satisfies the 2-dimensional wave equation and describes a standing wave with temporal frequency $\lambda \cdot \Omega$.

Exercise 2B.4. Check examples (a), (b) and (c) above.

Example 2B.4. Two-dimensional Travelling Waves

(a) Suppose $\lambda^{2}=9$, and let $u(x, y ; t)=\sin (3 x+4 y+15 t)$. Then u satisfies the two-dimensional wave equation, and describes a sinusoidal travelling wave with wave vector $\boldsymbol{\omega}=(3,4)$ and temporal frequency 15. (see Figure 2B.5).
(b) More generally, fix $\boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}\right) \in \mathbb{R}^{2}$ and let $\Omega=\|\omega\|_{2}=\sqrt{\omega_{1}^{2}+\omega_{2}^{2}}$. Then

$$
u(\mathbf{x} ; t)=\sin \left(\omega_{1} x+\omega_{2} y+\lambda \cdot \Omega t\right) \quad \text { and } \quad v(\mathbf{x} ; t)=\cos \left(\omega_{1} x+\omega_{2} y+\lambda \cdot \Omega t\right)
$$

both satisfy the two-dimensional wave equation, and describe sinusoidal travelling waves with wave vector ω and temporal frequency $\lambda \cdot \Omega$. \diamond

Exercise 2B.5. Check examples (a) and (b) above.

2B(iii) ...in higher dimensions:

The same reasoning applies for $D \geq 3$. For example, the 3 -dimensional wave equation describes the propagation of (small amplitude5) sound-waves in air or water. In general, the wave equation takes the form

$$
\partial_{t}^{2} u=\lambda^{2} \triangle u,
$$

where λ is some constant (determined by the density, elasticity, pressure, etc. of the medium) which describes the speed-of-propagation of the waves.

By a suitable choice of time units, we can always assume that $\lambda=1$. Hence, from now on, we will consider the simplest form of the wave equation:

$$
\partial_{t}^{2} u=\Delta u
$$

For example, fix $\boldsymbol{\omega}=\left(\omega_{1}, \ldots, \omega_{D}\right) \in \mathbb{R}^{D}$ and let $\Omega=\|\boldsymbol{\omega}\|_{2}=\sqrt{\omega_{1}^{2}+\ldots+\omega_{D}^{2}}$. Then

$$
u(\mathbf{x} ; t)=\sin \left(\omega_{1} x_{1}+\omega_{2} x_{2}+\ldots+\omega_{D} x_{D}+\Omega t\right)=\sin (\boldsymbol{\omega} \bullet \mathbf{x}+\lambda \cdot \Omega \cdot t)
$$

satisfies the D-dimensional wave equation and describes a transverse wave of with wave vector ω propagating across D-dimensional space. (Exercise 2B. 6 Check this.)

2C The telegraph equation

Recommended: §2B(i), § $1 \mathrm{~B}(\mathrm{i})$.
Imagine a signal propagating through a medium with a linear restoring force (e.g. an electrical pulse in a wire, a vibration on a string). In an ideal universe, the signal obeys the Wave Equation. However, in the real universe, damping effects interfere. First, energy might "leak" out of the system. For example, if a wire is imperfectly insulated, then current can leak out into surrounding space. Also, the signal may get blurred by noise or frictional effects. For example, an electric wire will pick up radio waves ("crosstalk") from other nearby wires, while losing energy to electrical resistance. A guitar string will pick up vibrations from the air, while losing energy to friction.

Thus, intuitively, we expect the signal to propagate like a wave, but to be gradually smeared out and attenuated by noise and leakage (Figure 2C.6). The model for such a system is the telegraph equation:

$$
\kappa_{2} \partial_{t}^{2} u+\kappa_{1} \partial_{t} u+\kappa_{0} u=\lambda \Delta u
$$

[^11]

Figure 2C.6: A solution to the telegraph equation propagates like a wave, but it also diffuses over time due to noise, and decays exponentially in magnitude due to 'leakage'.
(where $\kappa_{2}, \kappa_{1}, \kappa_{0}, \lambda>0$ are constants).
Heuristically speaking, this equation is a "sum" of two equations. The first,

$$
\kappa_{2} \partial_{t}^{2} u=\lambda_{1} \triangle u
$$

is a version of the wave equation, and describes the "ideal" signal, while the second,

$$
\kappa_{1} \partial_{t} u=-\kappa_{0} u+\lambda_{2} \triangle u
$$

describes energy lost due to leakage and frictional forces.

2D Practice problems

1. By explicitly computing derivatives, show that the following functions satisfy the (one-dimensional) wave equation $\partial_{t}^{2} u=\partial_{x}^{2} u$.
(a) $u(x, t)=\sin (7 x) \cos (7 t)$.
(b) $u(x, t)=\sin (3 x) \cos (3 t)$.
(c) $u(x, t)=\frac{1}{(x-t)^{2}}($ for $x \neq t)$.
(d) $u(x, t)=(x-t)^{2}-3(x-t)+2$.
(e) $v(x, t)=(x-t)^{2}$.
2. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be any twice-differentiable function. Define $u: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ by $u(x, t):=f(x-t)$, for all $(x, t) \in \mathbb{R} \times \mathbb{R}$.
Does u satisfies the (one-dimensional) wave equation $\partial_{t}^{2} u=\triangle u$? Justify your answer.
3. Let $u(x, t)$ be as in $1(\mathrm{a})$ and let $v(x, t)$ be as in $1(\mathrm{e})$, and suppose $w(x, t)=$ $3 u(x, t)-2 v(x, t)$. Conclude that w also satisfies the wave equation, without explicitly computing any derivatives of w.
4. Suppose $u(x, t)$ and $v(x, t)$ are both solutions to the wave equation, and $w(x, t)=5 u(x, t)+2 v(x, t)$. Conclude that w also satisfies the wave equation.
5. Let $u(x, t)=\int_{x-t}^{x+t} \cos (y) d y=\sin (x+t)-\sin (x-t)$. Show that u satisfies the (one-dimensional) wave equation $\partial_{t}^{2} u=\triangle u$.
6. By explicitly computing derivatives, show that the following functions satisfy the (two-dimensional) wave equation $\partial_{t}^{2} u=\triangle u$.
(a) $u(x, y ; t)=\sinh (3 x) \cdot \cos (5 y) \cdot \cos (4 t)$.
(b) $u(x, y ; t)=\sin (x) \cos (2 y) \sin (\sqrt{5} t)$.
(c) $u(x, y ; t)=\sin (3 x-4 y) \cos (5 t)$.

Chapter 3

Quantum mechanics

"[M]odern physics has definitely decided in favor of Plato. In fact the smallest units of matter are not physical objects in the ordinary sense; they are forms, ideas which can be expressed unambiguously only in mathematical language." -Werner Heisenberg

3A Basic framework

Prerequisites: §0], §1B(ii).
Near the beginning of the twentieth century, physicists realized that electromagnetic waves sometimes exhibited particle-like properties, as if light was composed of discrete 'photons'. In 1923, Louis de Broglie proposed that, conversely, particles of matter might have wave-like properties. This was confirmed in 1927 by C.J. Davisson and L.H. Germer, and independently, by G.P. Thompson, who showed that an electron beam exhibited an unmistakable diffraction pattern when scattered off a metal plate, as if the beam was composed of 'electron waves'. Systems with many interacting particles exhibit even more curious phenomena. Quantum mechanics is a theory which explains these phenomena.

We will not attempt here to provide a physical justification for quantum mechanics. Historically, quantum theory developed through a combination of vaguely implausible physical analogies and wild guesses motivated by inexplicable empirical phenomena. By now, these analogies and guesses have been overwhelmingly vindicated by experimental evidence. The best justification for quantum mechanics is that it 'works', by which we mean that its theoretical predictions match all available empirical data with astonishing accuracy.

Unlike the heat equation in $\S[B$ and the Wave Equation in $\S[2 \mathrm{~B}$, , we cannot derive quantum theory from 'first principles', because the postulates of quantum mechanics are the first principles. Instead, we will simply state the main assumptions of the theory, which are far from self-evident, but which we hope you will accept because of the weight of empirical evidence in their favour. Quantum theory describes any physical system via a probability distribution on a certain statespace. This probability distribution evolves over time; the evolution
is driven by a potential energy function, as described by a partial differential equation called the Schrödinger equation. We will now examine each of these concepts in turn.

Statespace: A system of N interacting particles moving in 3 dimensional space can be completely described using the $3 N$-dimensional state space $\mathbb{X}:=\mathbb{R}^{3 N}$. An element of \mathbb{X} consists of list of N ordered triples:

$$
\mathbf{x}=\left(x_{11}, x_{12}, x_{13} ; x_{21}, x_{22}, x_{23} ; \ldots x_{N 1}, x_{N 2}, x_{N 3}\right) \in \mathbb{R}^{3 N}
$$

where $\left(x_{11}, x_{12}, x_{13}\right)$ is the spatial position of particle $\# 1,\left(x_{21}, x_{22}, x_{23}\right)$ is the spatial position of particle $\# 2$, and so on.

Example 3A.1. (a) Single electron A single electron is a one-particle system, so it would be represented using a 3 -dimensional statespace $\mathbb{X}=\mathbb{R}^{3}$. If the electron was confined to a two-dimensional space (e.g. a conducting plate), we would use $\mathbb{X}=\mathbb{R}^{2}$. If the electron was confined to a one-dimensional space (e.g. a conducting wire), we would use $\mathbb{X}=\mathbb{R}$.
(b) Hydrogen Atom: The common isotope of hydrogen contains a single proton and a single electron, so it is a two-particle system, and would be represented using a 6 -dimensional state space $\mathbb{X}=\mathbb{R}^{6}$. An element of \mathbb{X} has the form $\mathbf{x}=\left(x_{1}^{p}, x_{2}^{p}, x_{3}^{p} ; x_{1}^{e}, x_{2}^{e}, x_{3}^{e}\right)$, where $\left(x_{1}^{p}, x_{2}^{p}, x_{3}^{p}\right)$ are the coordinates of the proton, and $\left(x_{1}^{e}, x_{2}^{e}, x_{3}^{e}\right)$ are those of the electron.

Readers familiar with classical mechanics may be wondering how momentum is represented in this statespace. Why isn't the statespace $6 N$-dimensional, with 3 'position' and 3 momentum coordinates for each particle? The answer, as we will see later, is that the momentum of a quantum system is implicitly encoded in the wavefunction which describes its position (see $\S 19 \mathrm{G}$ on page 511).

Potential Energy: We define a potential energy (or voltage) function V : $\mathbb{X} \longrightarrow \mathbb{R}$, which describes which states are 'prefered' by the quantum system. Loosely speaking, the system will 'avoid' states of high potential energy, and 'seek' states of low energy. The voltage function is usually defined using reasoning familiar from 'classical' physics.

Example 3A.2: Electron in ambient field

Imagine a single electron moving through an ambient electric field $\overrightarrow{\mathbf{E}}$. The statespace for this system is $\mathbb{X}=\mathbb{R}^{3}$, as in Example 3A.1(a). The potential function V is just the voltage of the electric field; in other words, V is any scalar function such that $-q_{e} \cdot \overrightarrow{\mathbf{E}}=\nabla V$, where q_{e} is the charge of the electron. For example:
(a) Null field: If $\overrightarrow{\mathbf{E}} \equiv 0$, then V will be a constant, which we can assume is zero: $V \equiv 0$.
(b) Constant field: If $\overrightarrow{\mathbf{E}} \equiv(E, 0,0)$, for some constant $E \in \mathbb{R}$, then $V(x, y, z)=$ $-q_{e} E x+c$, where c is an arbitrary constant, which we normally set to zero.
(c) Coulomb field: Suppose the electric field $\overrightarrow{\mathbf{E}}$ is generated by a (stationary) point charge Q at the origin. Let ϵ_{0} be the 'permittivity of free space'. Then Coulomb's law says that the electric voltage is given by

$$
V(\mathbf{x}) \quad:=\frac{q_{e} \cdot Q}{4 \pi \epsilon_{0} \cdot|\mathbf{x}|}, \quad \text { for all } \mathbf{x} \in \mathbb{R}^{3} .
$$

In SI units, $q_{e} \approx 1.60 \times 10^{-19} \mathrm{C}$, and $\epsilon_{0} \approx 8.85 \times 10^{-12} \mathrm{C} / \mathrm{Nm}^{2}$. However, for simplicity, we will normally adopt 'atomic units' of charge and field strength, where $q_{e}=1$ and $4 \pi \epsilon_{0}=1$. Then the above expression becomes $V(\mathbf{x})=$ $Q /|\mathbf{x}|$.
(d) Potential well: Sometimes we confine the electron to some bounded region $\mathbb{B} \subset \mathbb{R}^{3}$, by setting the voltage equal to 'positive infinity' outside \mathbb{B}. For example, a low-energy electron in a cube made of conducting metal can move freely about the cube, but cannot leave $]$ the cube. If the subset \mathbb{B} represents the cube, then we define $V: \mathbb{X} \longrightarrow[0, \infty]$ by

$$
V(\mathbf{x})=\left\{\begin{array}{rll}
0 & \text { if } & \mathrm{x} \in \mathbb{B} ; \\
+\infty & \text { if } & \mathrm{x} \notin \mathbb{B} .
\end{array}\right.
$$

(if ' $+\infty$ ' makes you uncomfortable, then replace it with some 'really big' number).

Example 3A.3: Hydrogen atom:

The system is an electron and a proton; the statespace of this system is $\mathbb{X}=\mathbb{R}^{6}$ as in Example 3A.1(b). Assuming there is no external electric field, the voltage function is defined

$$
V\left(\mathbf{x}^{p}, \mathbf{x}^{e}\right) \quad:=\frac{q_{e}^{2}}{4 \pi \epsilon_{0} \cdot\left|\mathbf{x}^{p}-\mathbf{x}^{e}\right|}, \quad \text { for all }\left(\mathbf{x}^{p}, \mathbf{x}^{e}\right) \in \mathbb{R}^{6} .
$$

where \mathbf{x}^{p} is the position of the proton, \mathbf{x}^{e} is the position of the electron, and q_{e} is the charge of the electron (which is also the charge of the proton, with reversed sign). If we adopt 'atomic' units where $q_{e}:=1$ and $4 \pi \epsilon_{0}=1$, then this expression simplifies to

$$
V\left(\mathbf{x}^{p}, \mathbf{x}^{e}\right) \quad:=\frac{1}{\left|\mathbf{x}^{p}-\mathbf{x}^{e}\right|}, \quad \text { for all } \quad\left(\mathbf{x}^{p}, \mathbf{x}^{e}\right) \in \mathbb{R}^{6}
$$

[^12]Probability and Wavefunctions. Our knowledge of the classical properties of a quantum system is inherently incomplete. All we have is a time-varying probability distribution $\rho: \mathbb{X} \times \mathbb{R} \longrightarrow \mathbb{R}_{+}$which describes where the particles are likely or unlikely to be at a given moment in time.

As time passes, the probability distribution ρ evolves. However, ρ itself cannot exhibit the 'wavelike' properties of a quantum system (e.g. destructive interference), because ρ is a nonnegative function (and we need to add negative to positive values to get destructive interference). So, we introduce a complexvalued wavefunction $\omega: \mathbb{X} \times \mathbb{R} \longrightarrow \mathbb{C}$. The wavefunction ω determines ρ via the equation:

$$
\rho_{t}(\mathbf{x}):=\left|\omega_{t}(\mathbf{x})\right|^{2}, \quad \text { for all } \mathbf{x} \in \mathbb{X} \text { and } t \in \mathbb{R} .
$$

(Here, as always in this book, we define $\rho_{t}(\mathbf{x}):=\rho(\mathbf{x} ; t)$ and $\omega_{t}(\mathbf{x}):=\omega(\mathbf{x} ; t)$; subscripts do not indicate derivatives). Now, ρ_{t} is supposed to be a probability density function, so ω_{t} must satisfy the condition

$$
\begin{equation*}
\int_{\mathbb{X}}\left|\omega_{t}(\mathbf{x})\right|^{2} d \mathbf{x} \quad=\quad 1, \quad \text { for all } t \in \mathbb{R} \tag{3A.1}
\end{equation*}
$$

It is acceptable (and convenient) to relax condition (3A.1), and instead simply require

$$
\begin{equation*}
\int_{\mathbb{X}}\left|\omega_{t}(\mathbf{x})\right|^{2} d \mathbf{x} \quad=\quad W<\infty, \quad \text { for all } t \in \mathbb{R} \tag{3A.2}
\end{equation*}
$$

where W is some finite constant, independent of t. In this case, we define $\rho_{t}(\mathbf{x}):=$ $\frac{1}{W}\left|\omega_{t}(\mathbf{x})\right|^{2}$ for all $\mathbf{x} \in \mathbb{X}$. It follows that any physically meaningful solution to the Schrödinger equation must satisfy condition (3A.2). This excludes, for example, solutions where the magnitude of the wavefunction grows exponentially in the \mathbf{x} or t variables.

For any fixed $t \in \mathbb{R}$, condition (3A.2) is usually expressed by saying that ω_{t} is square-integrable. Let $\mathbf{L}^{2}(\mathbb{X})$ denote the set of all square-integrable functions on \mathbb{X}. If $\omega_{t} \in \mathbf{L}^{2}(\mathbb{X})$, then the L^{2}-norm of ω is defined

$$
\left\|\omega_{t}\right\|_{2}:=\sqrt{\int_{\mathbb{X}}\left|\omega_{t}(\mathbf{x})\right|^{2} d \mathbf{x}}
$$

Thus, a fundamental postulate of quantum theory is:
Let $\omega: \mathbb{X} \times \mathbb{R} \longrightarrow \mathbb{C}$ be a wavefunction. To be physically meaningful, we must have $\omega_{t} \in \mathbf{L}^{2}(\mathbb{X})$ for all $t \in \mathbb{R}$. Furthermore, $\left\|\omega_{t}\right\|_{2}$ must be constant in time.

We refer the reader to $\S 6 \mathrm{~B}$ on page 105 for more information on L^{2}-norms and L^{2}-spaces.

3B The Schrödinger equation

Prerequisites: §3A. Recommended: § $4 B$.

The wavefunction ω evolves over time in response to the potential field V. Let \hbar be the 'rationalized' Planck constant

$$
\hbar:=\frac{h}{2 \pi} \approx \frac{1}{2 \pi} \times 6.6256 \times 10^{-34} \mathrm{~J} \mathrm{~s} \approx 1.0545 \times 10^{-34} \mathrm{~J} \mathrm{s.}
$$

Then the wavefunction's evolution is described by the Schrödinger Equation:

$$
\begin{equation*}
\mathbf{i} \hbar \partial_{t} \omega=\mathrm{H} \omega, \tag{3B.1}
\end{equation*}
$$

where H is a linear differential operator called the Hamiltonian operator, defined by:

$$
\begin{equation*}
\mathbf{H} \omega_{t}(\mathbf{x}) \quad:=\frac{-\hbar^{2}}{2} \boldsymbol{\Delta} \omega_{t}(\mathbf{x})+V(\mathbf{x}) \cdot \omega_{t}(\mathbf{x}), \quad \text { for all } \mathbf{x} \in \mathbb{X} \text { and } t \in \mathbb{R} \tag{3B.2}
\end{equation*}
$$

Here, $\mathbf{\Delta} \omega_{t}$ is like the Laplacian of ω_{t}, except that the components for each particle are divided by the rest mass of that particle. The potential function V : $\mathbb{X} \longrightarrow \mathbb{R}$ encodes all the exogenous aspects of the system we are modelling (e.g. the presence of ambient electric fields). Substituting eqn.(3B.2) into eqn.(3B.1), we get

$$
\begin{equation*}
\mathbf{i} \hbar \partial_{t} \omega=\frac{-\hbar^{2}}{2} \boldsymbol{\Delta} \omega+V \cdot \omega \tag{3B.3}
\end{equation*}
$$

In 'atomic units', $\hbar=1$, so the Schrödinger equation (3B.3) becomes

$$
\mathbf{i} \partial_{t} \omega_{t}(\mathbf{x})=\frac{-1}{2} \Delta \omega_{t}(\mathbf{x})+V(\mathbf{x}) \cdot \omega_{t}(\mathbf{x}), \quad \text { for all } \mathbf{x} \in \mathbb{X} \text { and } t \in \mathbb{R}
$$

Example 3B.1. (a) Free Electron: Let $m_{e} \approx 9.11 \times 10^{-31} \mathrm{~kg}$ be the rest mass of an electron. A solitary electron in a null electric field (as in Example 3A.2(a)) satisfies the free Schrödinger equation:

$$
\begin{equation*}
\mathbf{i} \hbar \partial_{t} \omega_{t}(\mathbf{x})=\frac{-\hbar^{2}}{2 m_{e}} \Delta \omega_{t}(\mathbf{x}) \tag{3B.4}
\end{equation*}
$$

(In this case $\boldsymbol{\Delta}=\frac{1}{m_{e}} \triangle$, and $V \equiv 0$ because the ambient field is null). In atomic units, we set $m_{e}:=1$ and $\hbar:=1$, so eqn.(3B.4) becomes

$$
\begin{equation*}
\mathbf{i} \partial_{t} \omega=\frac{-1}{2} \Delta \omega=\frac{-1}{2}\left(\partial_{1}^{2} \omega+\partial_{2}^{2} \omega+\partial_{3}^{2} \omega\right) . \tag{3B.5}
\end{equation*}
$$

(b) Electron vs. point charge: Consider the Coulomb electric field, generated by a (stationary) point charge Q at the origin, as in Example 3A.2(c). A solitary electron in this electric field satisfies the Schrödinger equation

$$
\mathbf{i} \hbar \partial_{t} \omega_{t}(\mathbf{x})=\frac{-\hbar^{2}}{2 m_{e}} \Delta \omega_{t}(\mathbf{x})+\frac{q_{e} \cdot Q}{4 \pi \epsilon_{0} \cdot|\mathbf{x}|} \omega_{t}(\mathbf{x}) .
$$

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

In atomic units, we have $m_{e}:=1, q_{e}:=1$, etc. Let $\widetilde{Q}=Q / q_{e}$ be the charge Q converted in units of electron charge. Then the previous expression simplifies to

$$
\mathbf{i} \partial_{t} \omega_{t}(\mathbf{x})=\frac{-1}{2} \triangle \omega_{t}(\mathbf{x})+\frac{\widetilde{Q}}{|\mathbf{x}|} \omega_{t}(\mathbf{x})
$$

(c) Hydrogen atom: (see Example 3A.3) An interacting proton-electron pair (in the absence of an ambient field) satisfies the two-particle Schrödinger equation
$\mathbf{i} \hbar \partial_{t} \omega_{t}\left(\mathbf{x}^{p}, \mathbf{x}^{e}\right)=\frac{-\hbar^{2}}{2 m_{p}} \triangle_{p} \omega_{t}\left(\mathbf{x}^{p}, \mathbf{x}^{e}\right)+\frac{-\hbar^{2}}{2 m_{e}} \triangle_{e} \omega_{t}\left(\mathbf{x}^{p}, \mathbf{x}^{e}\right)+\frac{q_{e}^{2} \cdot \omega_{t}\left(\mathbf{x}^{p}, \mathbf{x}^{e}\right)}{4 \pi \epsilon_{0} \cdot\left|\mathbf{x}^{p}-\mathbf{x}^{e}\right|}$,
where $\triangle_{p} \omega:=\partial_{x_{1}^{p}}^{2} \omega+\partial_{x_{2}^{p}}^{2} \omega+\partial_{x_{3}^{p}}^{2} \omega$ is the Laplacian in the 'proton' position coordinates, and $m_{p} \approx 1.6727 \times 10^{-27} \mathrm{~kg}$ is the rest mass of a proton. Likewise, $\triangle_{e} \omega:=\partial_{x_{1}^{e}}^{2} \omega+\partial_{x_{2}^{e}}^{2} \omega+\partial_{x_{3}^{e}}^{2} \omega$ is the Laplacian in the 'electron' position coordinates, and m_{e} is the rest mass of the electron. In atomic units, we have $4 \pi \epsilon_{0}=1, q_{e}=1$, and $m_{e}=1$. If $\widetilde{m}_{p} \approx 1864$ is the ratio of proton mass to electron mass, then $2 \widetilde{m}_{p} \approx 3728$, and eqn.(3B.6) becomes

$$
\begin{aligned}
& \mathbf{i} \partial_{t} \omega_{t}\left(\mathbf{x}^{p}, \mathbf{x}^{e}\right)=\frac{-1}{3728} \triangle_{p} \omega_{t}\left(\mathbf{x}^{p}, \mathbf{x}^{e}\right)+\frac{-1}{2} \triangle_{e} \omega_{t}\left(\mathbf{x}^{p}, \mathbf{x}^{e}\right)+\frac{\omega_{t}\left(\mathbf{x}^{p}, \mathbf{x}^{e}\right)}{\left|\mathbf{x}^{p}-\mathbf{x}^{e}\right|} . \\
& \diamond
\end{aligned}
$$

The major mathematical problems of quantum mechanics come down to finding solutions to the Schrödinger equations for various physical systems. In general it is very difficult to solve the Schrödinger equation for most 'realistic' potential functions. We will confine ourselves to a few 'toy models' to illustrate the essential ideas.

Example 3B.2: Free Electron with Known Velocity (Null Field)

Consider a single electron in a null electromagnetic field. Suppose an experiment has precisely measured the 'classical' velocity of the electron, and determined it to be $\mathbf{v}=\left(v_{1}, 0,0\right)$. Then the wavefunction of the electron is given ${ }^{2}$

$$
\begin{equation*}
\omega_{t}(\mathbf{x})=\exp \left(\frac{-\mathbf{i}}{\hbar} \frac{m_{e} v_{1}^{2}}{2} t\right) \cdot \exp \left(\frac{\mathbf{i}}{\hbar} m_{e} v_{1} \cdot x_{1}\right) . \quad \text { (see Figure 3B.1) } \tag{3B.7}
\end{equation*}
$$

This ω satisfies the free Schrödinger equation (3B.4). [See practice problem \# 11 on page 54 of $\S 3 \mathrm{D}$.]

Time:

Figure 3B.1: Four successive 'snapshots' of the wavefunction of a single electron in a zero potential, with a precisely known velocity. Only one spatial dimension is shown. The angle of the spiral indicates complex phase.

Exercise 3B.1. (a) Check that the spatial wavelength λ of the function ω is given $\lambda=\frac{2 \pi \hbar}{p_{1}}=\frac{h}{m_{e} v}$. This is the so-called de Broglie wavelength of an electron with velocity v.
(b) Check that the temporal period of ω is $T:=\frac{2 h}{m_{e} v^{2}}$.
(c) Conclude the phase velocity of ω (i.e. the speed at which the wavefronts propagate through space) is equal to v.

More generally, suppose the electron has a precisely known velocity $\mathbf{v}=$ $\left(v_{1}, v_{2}, v_{3}\right)$, with corresponding momentum vector $\mathbf{p}:=m_{e} \mathbf{v}$. Then the wavefunction of the electron is given

$$
\begin{equation*}
\omega_{t}(\mathbf{x})=\exp \left(\frac{-\mathbf{i}}{\hbar} E_{k} t\right) \cdot \exp \left(\frac{\mathbf{i}}{\hbar} \mathbf{p} \bullet \mathbf{x}\right) \tag{3B.8}
\end{equation*}
$$

where $E_{k}:=\frac{1}{2} m_{e}|\mathbf{v}|^{2}$ is kinetic energy, and $\mathbf{p} \bullet \mathbf{x}:=p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}$. If we convert to atomic units, then $E_{k}=\frac{1}{2}|\mathbf{v}|^{2}$ and $\mathbf{p}=\mathbf{v}$, and this function takes the simpler form

$$
\omega_{t}(\mathbf{x})=\exp \left(\frac{-\mathbf{i}|\mathbf{v}|^{2} t}{2}\right) \cdot \exp (\mathbf{i} \mathbf{v} \bullet \mathbf{x})
$$

[^13]This ω satisfies the free Schrödinger equation (3B.5). [See practice problem \# 2 on page 54 of $\S 3 \mathrm{D}$.]
The wavefunction (3B.8) represent a state of maximal uncertainty about the position of the electron. This is an extreme manifestation of the infamous Heisenberg Uncertainty Principle; by assuming that the electron's velocity was 'precisely determined', we have forced it's position to be entirely undetermined (see $\S 19 \mathrm{G}$ for more information).
Indeed, the wavefunction (3B.8) violates our 'fundamental postulate' - the function ω_{t} is not square-integrable, because $\left|\omega_{t}(\mathbf{x})\right|=1$ for all $\mathbf{x} \in \mathbb{R}$, so $\int_{\mathbb{R}^{3}}\left|\omega_{t}(\mathbf{x})\right|^{2} d \mathbf{x}=\infty$. Thus, wavefunction ($\overline{3 \mathrm{~B} .8}$) cannot be translated into a probability distribution, so it is not physically meaningful. This isn't too surprising, because wavefunction (3B.8) seems to suggest that the electron is equally likely to be anywhere in the (infinite) 'universe' \mathbb{R}^{3} ! It is well known that the location of a quantum particle can be 'dispersed' over some region of space, but this seems a bit extreme. There are two solutions to this problem.

- Let $\mathbb{B}(R) \subset \mathbb{R}^{3}$ be a ball of radius R, where R is much larger than the physical system or laboratory apparatus we are modelling (e.g. $R=1$ lightyear). Define the wavefunction $\omega_{t}^{(R)}(\mathbf{x})$ by (3B.8) for all $\mathbf{x} \in \mathbb{B}(R)$, and set $\omega_{t}^{(R)}(\mathbf{x})=0$ for all $\mathbf{x} \notin \mathbb{B}(R)$. This means that the position of the electron is still extremely dispersed (indeed, 'infinitely' dispersed for the purposes of any laboratory experiment), but the function $\omega_{t}^{(R)}$ is still square-integrable. Note that the function $\omega_{t}^{(R)}$ violates the Schrodinger equation at the boundary of $\mathbb{B}(R)$, but this boundary occurs very far from the physical system we are studying, so it doesn't matter. In a sense, the solution (3B.8) can be seen as the 'limit' of $\omega^{(R)}$ as $R \rightarrow \infty$.
- Reject the wavefunction (3B.8) as 'physically meaningless'. Our starting assumption -an electron with a precisely known velocity -has led to a contradiction. Our conclusion: a free quantum particle can never have a precisely known classical velocity. Any physically meaningful wavefunction in a vacuum must contain a 'mixture' of several velocities.

Remark. (The meaning of phase) At any point \mathbf{x} in space and moment t in time, the wavefunction $\omega_{t}(\mathbf{x})$ can be described by its amplitude $A_{t}(\mathbf{x}):=\left|\omega_{t}(\mathbf{x})\right|$ and its phase $\phi_{t}(\mathbf{x}):=\omega_{t}(\mathbf{x}) / A_{t}(\mathbf{x})$. We have already discussed the physical meaning of the amplitude: $\left|A_{t}(\mathbf{x})\right|^{2}$ is the probability that a classical measurement will produce the outcome \mathbf{x} at time t. What is the meaning of phase?

The phase $\phi_{t}(\mathbf{x})$ is a complex number of modulus one - an element of the unit circle in the complex plane (hence $\phi_{t}(\mathbf{x})$ is sometimes called the phase angle). The 'oscillation' of the wavefunction ω over time can be imagined in terms of
the 'rotation' of $\phi_{t}(\mathbf{x})$ around the circle. The 'wavelike' properties of quantum systems (e.g. interference patterns) occur because wavefunctions with different phases will partially cancel one another when they are superposed. In other words, it is because of phase that the Schrodinger Equation yields 'wave-like' phenomena, instead of yielding 'diffusive' phenomena like the heat equation.

However, like potential energy, phase is not directly physically observable. We can observe the phase difference between wavefunction α and wavefunction β (by observing cancelation between α and β), just as we can observe the potential energy difference between point A and point B (by measuring the energy released by a particle moving from point A to point B). However, it is not physically meaningful to speak of the 'absolute phase' of wavefunction α, just as it is not physically meaningful to speak of the 'absolute potential energy' of point A.

Indeed, inspection of the Schrödinger equation (3B.3) on page 41 will reveal that the speed of phase rotation of a wavefunction ω at point \mathbf{x} is determined by the magnitude of the potential function V at \mathbf{x}. But we can arbitrarily increase V by a constant, without changing its physical meaning. Thus, we can arbitrarily 'accelerate' the phase rotation of the wavefunction without changing the physical meaning of the solution.

3C Stationary Schrödinger equation

Prerequisites: $\S 3 B$. Recommended: $\S[B(\mathrm{iv})$.
A 'stationary' state of a quantum system is one where the probability density does not change with time. This represents a physical system which is in some kind of long-term equilibrium. Note that a stationary quantum state does not mean that the particles are 'not moving' (whatever 'moving' means for quanta). It instead means that they are moving in some kind of regular, confined pattern (i.e. an 'orbit') which remains qualitatively the same over time. For example, the orbital of an electron in a hydrogen atom should be a stationary state, because (unless the electron absorbs or emits energy) the orbital should stay the same over time.

Mathematically speaking, a stationary wavefunction ω yields a time-invariant probability density function $\rho: \mathbb{X} \longrightarrow \mathbb{R}$ such that, for any $t \in \mathbb{R}$,

$$
\left|\omega_{t}(\mathbf{x})\right|^{2}=\rho(\mathbf{x}), \quad \text { for all } \mathbf{x} \in \mathbb{X}
$$

The simplest way to achieve this is to assume that ω has the separated form

$$
\begin{equation*}
\omega_{t}(\mathbf{x})=\phi(t) \cdot \omega_{0}(\mathbf{x}) \tag{3C.1}
\end{equation*}
$$

where $\omega_{0}: \mathbb{X} \longrightarrow \mathbb{C}$ and $\phi: \mathbb{R} \longrightarrow \mathbb{C}$ satisfy the conditions

$$
\begin{equation*}
|\phi(t)|=1, \text { for all } t \in \mathbb{R}, \text { and }\left|\omega_{0}(\mathbf{x})\right|=\sqrt{\rho(\mathbf{x})}, \text { for all } x \in \mathbb{X} \tag{3C.2}
\end{equation*}
$$

Lemma 3C.1. Suppose $\omega_{t}(\mathbf{x})=\phi(t) \cdot \omega_{0}(\mathbf{x})$ is a separated solution to the Schrödinger equation, as in eqn.(3C.1) and eqn.(3C.2). Then there is some constant $E \in \mathbb{R}$ so that

- $\phi(t)=\exp (-\mathbf{i} E t / \hbar)$, for all $t \in \mathbb{R}$.
- $\mathrm{H} \omega_{0}=E \cdot \omega_{0}$; in other words ω_{0} is an eigenfunction of the Hamiltonian operator H , with eigenvalue E.
- Thus, $\omega_{t}(\mathbf{x})=e^{-\mathbf{i} E t / \hbar} \cdot \omega_{0}(\mathbf{x})$, for all $\mathbf{x} \in \mathbb{X}$ and $t \in \mathbb{R}$.

Proof. Exercise 3C. 1 Hint: use separation of variables. ${ }^{\text {P }}$

Physically speaking, E corresponds to the total energy (potential + kinetic) of the quantum system. Thus, Lemma 3C. 1 yields one of the key concepts of quantum theory:

Eigenfunctions of the Hamiltonian correspond to stationary quantum states. The eigenvalues of these eigenfunctions correspond to the energy level of these states.

Thus, to get stationary states, we must solve the stationary Schrödinger equation:

$$
\mathrm{H} \omega_{0}=E \cdot \omega_{0}
$$

where $E \in \mathbb{R}$ is an unknown constant (the energy eigenvalue), and $\omega_{0}: \mathbb{X} \longrightarrow \mathbb{C}$ is an unknown wavefunction.

Example 3C.2: The Free Electron

Recall 'free electron' of Example 3B.2. If the electron has velocity v, then the function ω in eqn.(3B.7) yields a solution to the stationary Schrödinger equation, with eigenvalue $E=\frac{1}{2} m_{e} v^{2}$. [See practice problem \#3 on page 54 of §3D]. Observe that E corresponds to the classical kinetic energy of an electron with velocity v.

[^14][^15]

Figure 3C.1: The (stationary) wavefunction of an electron in a one-dimensional 'square' potential well, with finite voltage gaps.

Example 3C.3: One-dimensional square potential well; finite voltage
Consider an electron confined to a one-dimensional environment (e.g. a long conducting wire). Thus, $\mathbb{X}:=\mathbb{R}$, and the wavefunction $\omega_{0}: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{C}$ obeys the one-dimensional Schrödinger equation

$$
\mathbf{i} \partial_{t} \omega_{0}=\frac{-1}{2} \partial_{x}^{2} \omega_{0}+V \cdot \omega_{0}
$$

where $V: \mathbb{R} \longrightarrow \mathbb{R}$ is the potential energy function, and we have adopted atomic units. Let $V_{0}>0$ be some constant, and suppose that

$$
V(x)=\left\{\begin{array}{rll}
0 & \text { if } & 0 \leq x \leq L \\
V_{0} & \text { if } & x<0 \text { or } L<x .
\end{array}\right.
$$

Physically, this means that V defines a 'potential energy well', which tries to confine the electron in the interval $[0, L]$, between two 'walls', which are voltage gaps of height V_{0} (see Figure 3C.1). The corresponding stationary Schrödinger equation is:

$$
\begin{equation*}
\frac{-1}{2} \partial_{x}^{2} \omega_{0}+V \cdot \omega_{0}=E \cdot \omega_{0} \tag{3C.3}
\end{equation*}
$$

where $E>0$ is an (unknown) eigenvalue which corresponds to the energy of the electron. The function V only takes two values, so we can split eqn.(3C.3) into two equations, one inside the interval $[0, L]$, and one outside it:

$$
\begin{array}{ll}
\frac{-1}{2} \partial_{x}^{2} \omega_{0}(x)=\omega_{0}(x), & \\
\frac{\text { for }}{2} x \in[0, L] ; \tag{3C.4}\\
\frac{-1}{2} \partial_{x}^{2} \omega_{0}(x)=\left(E-V_{0}\right) \cdot \omega_{0}(x), & \text { for } x \notin[0, L] .
\end{array}
$$

Assume that $E<V_{0}$. This means that the electron's energy is less than the voltage gap, so the electron has insufficient energy to 'escape' the interval (at least in classical theory). The (physically meaningful) solutions to eqn.(3C.4) have the form

$$
\omega_{0}(x)=\left\{\begin{align*}
C \exp \left(\epsilon^{\prime} x\right), & \text { if } x \in(-\infty, 0] \tag{3C.5}\\
A \sin (\epsilon x)+B \cos (\epsilon x), & \text { if } x \in[0, L] \\
D \exp \left(-\epsilon^{\prime} x\right), & \text { if } L \in[L, \infty)
\end{align*}\right.
$$

(See Figure 3C.1.) Here, $\epsilon:=\sqrt{2 E}$ and $\epsilon^{\prime}:=\sqrt{2 E-2 V_{0}}$, and $A, B, C, D \in \mathbb{C}$ are constants. The corresponding solution to the full Schrödinger equation is:
$\omega_{t}(x)=\left\{\begin{aligned} C e^{-\mathbf{i}\left(E-V_{0}\right) t} \cdot \exp \left(\epsilon^{\prime} x\right), & \text { if } x \in(-\infty, 0] ; \\ e^{-\mathbf{i} E t} \cdot(A \sin (\epsilon x)+B \cos (\epsilon x)), & \text { if } x \in[0, L] ; \\ D e^{-\mathbf{i}\left(E-V_{0}\right) t} \cdot \exp \left(-\epsilon^{\prime} x\right), & \text { if } L \in[L, \infty) .\end{aligned} \quad\right.$ for all $t \in \mathbb{R}$.
This has two consequences:
(a) With nonzero probability, the electron might be found outside the interval $[0, L]$. In other words, it is quantumly possible for the electron to 'escape' from the potential well, something which is classically impossible ${ }^{\text {D. }}$. This phenomenon called quantum tunnelling (because the electron can 'tunnel' through the wall of the well).
(b) The system has a physically meaningful solution only for certain values of E. In other words, the electron is only 'allowed' to reside at certain discrete energy levels; this phenomenon is called quantization of energy.

To see (a), recall that the electron has probability distribution

$$
\rho(x):=\frac{1}{W}\left|\omega_{0}(x)\right|^{2}, \quad \text { where } W:=\int_{-\infty}^{\infty}\left|\omega_{0}(x)\right|^{2} d x .
$$

Thus, if $C \neq 0$, then $\rho(x) \neq 0$ for $x<0$, while if $D \neq 0$, then $\rho(x) \neq 0$ for $x>L$. Either way, the electron has nonzero probability of 'tunnelling' out of the well.
To see (b), note that we must choose A, B, C, D so that ω_{0} is continuously differentiable at the boundary points $x=0$ and $x=L$. This means we must have

$$
\begin{align*}
& B=A \sin (0)+B \cos (0)=\omega_{0}(0)=C \exp (0)=C \\
& \epsilon A=A \epsilon \cos (0)-B \epsilon \sin (0)=\omega_{0}^{\prime}(0)=\epsilon^{\prime} C \exp (0)=\epsilon^{\prime} C \tag{3C.6}\\
& A \sin (\epsilon L)+B \cos (\epsilon L)=\omega_{0}(L)=D \exp \left(-\epsilon^{\prime} L\right) \\
& A \epsilon \cos (\epsilon L)-B \epsilon \sin (\epsilon L)=\omega_{0}^{\prime}(L)=-\epsilon^{\prime} D \exp \left(-\epsilon^{\prime} L\right)
\end{align*}
$$

[^16]Clearly, we can satisfy the first two equations in (3C.6) by setting $B:=C:=$ $\frac{\epsilon}{\epsilon^{\prime}} A$. The third and fourth equations in (3C.6) then become

$$
\begin{equation*}
e^{\epsilon^{\prime} L} \cdot\left(\sin (\epsilon L)+\frac{\epsilon}{\epsilon^{\prime}} \cos (\epsilon L)\right) \cdot A=D=\frac{-\epsilon}{\epsilon^{\prime}} e^{\epsilon^{\prime} L} \cdot\left(\cos (\epsilon L)-\frac{\epsilon}{\epsilon^{\prime}} \sin (\epsilon L)\right) A, \tag{3C.7}
\end{equation*}
$$

Cancelling the factors $e^{\epsilon^{\prime} L}$ and A from both sides and substituting $\epsilon:=\sqrt{2 E}$ and $\epsilon^{\prime}:=\sqrt{2 E-2 V_{0}}$, we see that eqn.(3C.7) is satisfiable if and only if

$$
\begin{equation*}
\sin (\sqrt{2 E} \cdot L)+\frac{\sqrt{E} \cdot \cos (\sqrt{2 E} \cdot L)}{\sqrt{E-V_{0}}}=\frac{-\sqrt{E} \cdot \cos (\sqrt{2 E} \cdot L)}{\sqrt{E-V_{0}}}+\frac{E \cdot \sin (\sqrt{2 E} \cdot L)}{E-V_{0}} . \tag{3C.8}
\end{equation*}
$$

Hence, eqn.(3C.4) has a physically meaningful solution only for those values of E which satisfy the transcendental equation (3C.8). The set of solutions to eqn.(3C.8) is an infinite discrete subset of \mathbb{R}; each solution for eqn.(3C.8) corresponds to an allowed 'energy level' for the physical system.

Figure 3C.2: The (stationary) wavefunction of an electron in an infinite potential well.

Example 3C.4: One-dimensional square potential well; infinite voltage
We can further simplify the model of Example 3C.3 by setting $V_{0}:=+\infty$, which physically represents a 'huge' voltage gap that totally confines the electron within the interval $[0, L]$ (see Figure 3C.2). In this case, $\epsilon^{\prime}=\infty$, so $\exp \left(\epsilon^{\prime} x\right)=0$ for all $x<0$ and $\exp \left(-\epsilon^{\prime} x\right)=0$ for all $x>L$. Hence, if ω_{0} is as in eqn.(3C.5), then $\omega_{0}(x) \equiv 0$ for all $x \notin[0, L]$, and the constants C and D are no longer physically meaningful; we set $C=0=D$ for simplicity. Also,

[^17]we must have $\omega_{0}(0)=0=\omega_{0}(L)$ to get a continuous solution; thus, we must set $B:=0$ in eqn.(3C.5). Thus, the stationary solution in eqn.(3C.5) becomes
\[

\omega_{0}(x)=\left\{$$
\begin{aligned}
0 & \text { if } x \notin[0, L] ; \\
A \cdot \sin (\sqrt{2 E} x) & \text { if } x \in[0, L]
\end{aligned}
$$\right.
\]

where A is a constant, and E satisfies the equation

$$
\begin{equation*}
\sin (\sqrt{2 E} L)=0 . \quad \text { (Figure } 3 \mathrm{Cl} .2) \tag{3C.9}
\end{equation*}
$$

Assume for simplicity that $L:=\pi$. Then eqn.(3C.9) is true if and only if $\sqrt{2 E}$ is an integer, which means $2 E \in\{0,1,4,9,16,25, \ldots\}$, which means $E \in\left\{0, \frac{1}{2}, 2, \frac{9}{2}, 8, \frac{25}{2}, \ldots\right\}$. Here we see the phenomenon of quantization of energy in its simplest form.

The set of eigenvalues of a linear operator is called the spectrum of that operator. For example, in Example 3C.4, the spectrum of the Hamiltonian operator H is the set $\left\{0, \frac{1}{2}, 2, \frac{9}{2}, 8, \frac{25}{2}, \ldots\right\}$. In quantum theory, the spectrum of the Hamiltonian is the set of allowed energy levels of the system.

Example 3C.5: Three-dimensional square potential well; infinite voltage
We can easily generalize Example 3C.4 to three dimensions. Let $\mathbb{X}:=\mathbb{R}^{3}$, and let $\mathbb{B}:=[0, \pi]^{3}$ be a cube with one corner at the origin, having sidelength $L=\pi$. We use the potential function $V: \mathbb{X} \longrightarrow \mathbb{R}$ defined

$$
V(\mathbf{x})=\left\{\begin{array}{rll}
0 & \text { if } & \mathrm{x} \in \mathbb{B} ; \\
+\infty & \text { if } & \mathrm{x} \notin \mathbb{B} .
\end{array}\right.
$$

Physically, this represents an electron confined within a cube of perfectly conducting material with perfectly insulating boundaries $[$. Suppose the electron has energy E. The corresponding stationary Schrödinger equation is

$$
\begin{array}{ll}
\frac{-1}{2} \Delta \omega_{0}(\mathbf{x})=E \cdot \omega_{0}(\mathbf{x}) & \text { for } \mathbf{x} \in \mathbb{B} ; \tag{3C.10}\\
\frac{-1}{2} \Delta \omega_{0}(\mathbf{x})=-\infty \cdot \omega_{0}(\mathbf{x}) & \text { for } \mathbf{x} \notin \mathbb{B} ;
\end{array}
$$

(in atomic units). By reasoning similar Example 3C.4, we find that the physically meaningul solutions to eqn.(3C.10) have the form
$\omega_{0}(\mathbf{x})=\left\{\begin{aligned} \frac{\sqrt{2}}{\pi^{3 / 2}} \sin \left(n_{1} x_{1}\right) \cdot \sin \left(n_{2} x_{2}\right) \cdot \sin \left(n_{3} x_{3}\right) & \text { if } \mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{B} ; \\ 0 & \text { if } \mathbf{x} \notin \mathbb{B} .\end{aligned}\right.$
where n_{1}, n_{2}, and n_{3} are arbitrary integers (called the quantum numbers of the solution), and $E=\frac{1}{2}\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right)$ is the associated energy eigenvalue.

[^18]The corresponding solution to the full Schrödinger equation for all $t \in \mathbb{R}$ is $\omega_{t}(\mathbf{x})=\left\{\begin{aligned} \frac{\sqrt{2}}{\pi^{3 / 2}} e^{-\mathbf{i}\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right) t / 2} \cdot \sin \left(n_{1} x_{1}\right) \sin \left(n_{2} x_{2}\right) \sin \left(n_{3} x_{3}\right) & \text { if } \mathbf{x} \in \mathbb{B} ; \\ 0 & \text { if } \mathbf{x} \notin \mathbb{B} .\end{aligned}\right.$ \diamond

Exercise 3C.2. (a) Check that eqn.(3C.11) is a solution for eqn.(3C.10).
(b) Check that $\rho:=|\omega|^{2}$ is a probability density, by confirming that
$\int_{\mathbb{X}}\left|\omega_{0}(\mathbf{x})\right|^{2} d \mathbf{x}=\frac{2}{\pi^{3}} \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi} \sin \left(n_{1} x_{1}\right)^{2} \cdot \sin \left(n_{2} x_{2}\right)^{2} \cdot \sin \left(n_{3} x_{3}\right)^{2} d x_{1} d x_{2} d x_{3}=1$,
(this is the reason for using the constant $\frac{\sqrt{2}}{\pi^{3 / 2}}$).

(A)

(B)

Figure 3C.3: The groundstate wavefunction for a hydrogen atom. (A) Probability density as a function of distance from the nucleus. (B) Probability density visualized in three dimensions.

Example 3C.6: Hydrogen Atom

In Example 3A.3 on page 39, we described the hydrogen atom as a twoparticle system, with a six-dimensional state space. However, the corresponding Schrödinger equation (Example 3B.1(c)) is already too complicated for us to solve it here, so we will work with a simplified model.

Because the proton is 1864 times as massive as the electron, we can treat the proton as remaining effectively immobile while the electron moves around it. Thus, we can model the hydrogen atom as a one-particle system: a single
electron moving in a Coulomb potential well, as described in Example 3B.1(b). The electron then satisfies the Schrödinger equation

$$
\begin{equation*}
\mathbf{i} \hbar \partial_{t} \omega_{t}(\mathbf{x})=\frac{-\hbar^{2}}{2 m_{e}} \triangle \omega_{t}(\mathbf{x})+\frac{q_{e}^{2}}{4 \pi \epsilon_{0} \cdot|\mathbf{x}|} \cdot \omega_{t}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^{3} \tag{3C.12}
\end{equation*}
$$

(Recall that m_{e} is the mass of the electron, q_{e} is the charge of both electron and proton, ϵ_{0} is the 'permittivity of free space', and \hbar is the rationalized Plank constant.) Assuming the electron is in a stable orbital, we can replace eqn.(3C.12) with the stationary Schrödinger equation

$$
\begin{equation*}
\frac{-\hbar^{2}}{2 m_{e}} \Delta \omega_{0}(\mathbf{x})+\frac{q_{e}^{2}}{4 \pi \epsilon_{0} \cdot|\mathbf{x}|} \cdot \omega_{0}(\mathbf{x})=E \cdot \omega_{0}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^{3} \tag{3C.13}
\end{equation*}
$$

where E is the 'energy level' of the electron. One solution to this equation is

$$
\begin{equation*}
\omega(\mathbf{x})=\frac{b^{3 / 2}}{\sqrt{\pi}} \exp (-b|\mathbf{x}|), \quad \text { where } b:=\frac{m q_{e}^{2}}{4 \pi \epsilon_{0} \hbar^{2}} \tag{3C.14}
\end{equation*}
$$

with corresponding energy eigenvalue

$$
\begin{equation*}
E=\frac{-\hbar^{2}}{2 m} \cdot b^{2}=\frac{-m q_{e}^{4}}{32 \pi^{2} \epsilon_{0}^{2} \hbar^{2}} \tag{3C.15}
\end{equation*}
$$

Exercise 3C.3. (a) Verify that the function ω_{0} in eqn.(3C.14) is a solution to eqn.(3C.13), with E given by eqn.(3C.15).
(b) Verify that the function ω_{0} defines a probability density, by checking that $\int_{\mathbb{X}}|\omega|^{2}=$ 1.

There are many other, more complicated solutions to eqn.(3C.13). However, eqn.(3C.14) is the simplest solution, and has the lowest energy eigenvalue E of any solution. In other words, the solution (3C.13) describes an electron in the ground state: the orbital of lowest potential energy, where the electron is 'closest' to the nucleus.
This solution immediately yields two experimentally testable predictions:
(a) The ionization potential for the hydrogen atom, which is the energy required to 'ionize' the atom, by stripping off the electron and removing it to an infinite distance from the nucleus.
(b) The Bohr radius of the hydrogen atom - that is, the 'most probable' distance of the electron from the nucleus.

To see (a), recall that E is the sum of potential and kinetic energy for the electron. We assert (without proof) that there exist solutions to the stationary Schrödinger equation (3C.13) with energy eigenvalues arbitrarily close to zero (note that E is negative). These zero-energy solutions represent orbitals where the electron has been removed to some very large distance from the nucleus, and the atom is essentially ionized. Thus, the energy difference between these 'ionized' states and ω_{0} is $E-0=E$, and this is the energy necessary to 'ionize' the atom when the electron is in the orbital described by ω_{0}.
By substituting in numerical values $q_{e} \approx 1.60 \times 10^{-19} \mathrm{C}, \epsilon_{0} \approx 8.85 \times 10^{-12} \mathrm{C} / \mathrm{Nm}^{2}$, $m_{e} \approx 9.11 \times 10^{-31} \mathrm{~kg}$, and $\hbar \approx 1.0545 \times 10^{-34} \mathrm{~J} \mathrm{~s}$, the reader can verify that, in fact, $E \approx-2.1796 \times 10^{-18} \mathrm{~J} \approx-13.605 \mathrm{eV}$, which is very close to -13.595 eV , the experimentally determined ionization potential for a hydrogen atom. 『
To see (b), observe that the probability density function for the distance r of the electron from the nucleus is given by

$$
\begin{equation*}
P(r)=4 \pi r^{2}|\omega(r)|^{2}=4 b^{3} r^{2} \exp (-2 b|\mathbf{x}|) \tag{E}
\end{equation*}
$$

(Exercise 3C.4). The mode of the radial probability distribution is the maximal point of $P(r)$; if we solve the equation $P^{\prime}(r)=0$, we find that the mode occurs at

$$
r:=\frac{1}{b}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m_{e} q_{e}^{2}} \approx 5.29172 \times 10^{-11} \mathrm{~m} .
$$

The Balmer Lines. Recall that the spectrum of the Hamiltonian operator H is the set of all eigenvalues of H . Let $\mathcal{E}=\left\{E_{0}<E_{1}<E_{2}<\ldots\right\}$ be the spectrum of the Hamiltonian of the hydrogen atom from Example 3C.6, with the elements listed in increasing order. Thus, the smallest eigenvalue is $E_{0} \approx-13.605$, the energy eigenvalue of the aforementioned ground state ω_{0}. The other, larger eigenvalues correspond to electron orbitals with higher potential energy.

When the electron 'falls' from a high energy orbital (with eigenvalue E_{n}, for some $n \in \mathbb{N}$) to a low energy orbital (with eigenvalue E_{m}, where $m<n$), it releases the energy difference, and emits a photon with energy $\left(E_{n}-E_{m}\right)$. Conversely, to 'jump' from a low E_{m}-energy orbital to a higher E_{n}-energy orbital, the electron must absorb a photon, and this photon must have exactly energy $\left(E_{n}-E_{m}\right)$.

Thus, the hydrogen atom can only emit or absorb photons of energy $\mid E_{n}-$ $E_{m} \mid$, for some $n, m \in \mathbb{N}$. Let $\mathcal{E}^{\prime}:=\left\{\left|E_{n}-E_{m}\right| ; n, m \in \mathbb{N}\right\}$. We call \mathcal{E}^{\prime} the energy spectrum of the hydrogen atom.

Planck's law says that a photon with energy E has frequency $f=E / h$, where $h \approx 6.626 \times 10^{-34} \mathrm{~J}$ s is Planck's constant. Thus, if $\mathcal{F}=\left\{E / h ; E \in \mathcal{E}^{\prime}\right\}$, then a hydrogen atom can only emit/absorb a photon whose frequency is in \mathcal{F}; we say \mathcal{F} is the frequency spectrum of the hydrogen atom.

[^19]Here lies the explanation for the empirical observations of 19th century physicists such as Balmer, Lyman, Rydberg, and Paschen, who found that an energized hydrogen gas has a distinct emission spectrum of frequencies at which it emits light, and an identical absorption spectrum of frequencies which the gas can absorb. Indeed, every chemical element has its own distinct spectrum; astronomers use these 'spectral signatures' to measure the concentrations of chemical elements in the stars of distant galaxies. Now we see that

The (frequency) spectrum of an atom is determined by the (eigenvalue) spectrum of the corresponding Hamiltonian.

Further reading

Unfortunately, most other texts on partial differential equations do not discuss the Schrödinger equation; one of the few exceptions is the excellent text [Asm0.5]. For an lucid, fast, yet precise introduction to quantum mechanics in general, see [MCW72]. For a more comprehensive textbook on quantum theory, see [Boh79]. A completely different approach to quantum theory uses Feynman's path integrals; for a good introduction to this approach, see [Ste95], which also contains excellent introductions to classical mechanics, electromagnetism, statistical physics, and special relativity. For a rigorous mathematical approach to quantum theory, an excellent introduction is [Pru81]; another source is [BEH94].

3D Practice problems

1. Let $v_{1} \in \mathbb{R}$ be a constant. Consider the function $\omega: \mathbb{R}^{3} \times \mathbb{R} \longrightarrow \mathbb{C}$ defined:

$$
\omega_{t}\left(x_{1}, x_{2}, x_{3}\right)=\exp \left(\frac{-\mathbf{i}}{\hbar} \frac{m_{e} v_{1}^{2}}{2} t\right) \cdot \exp \left(\frac{\mathbf{i}}{\hbar} m_{e} v_{1} \cdot x_{1}\right)
$$

Show that ω satisfies the (free) Schrödinger equation: $\mathbf{i} \hbar \partial_{t} \omega_{t}(\mathbf{x})=\frac{-\hbar^{2}}{2 m_{e}} \triangle$ $\omega_{t}(\mathbf{x})$.
2. Let $\mathbf{v}:=\left(v_{1}, v_{2}, v_{3}\right)$ be a three-dimensional velocity vector, and let $|\mathbf{v}|^{2}=$ $v_{1}^{2}+v_{2}^{2}+v_{3}^{2}$. Consider the function $\omega: \mathbb{R}^{3} \times \mathbb{R} \longrightarrow \mathbb{C}$ defined:

$$
\omega_{t}\left(x_{1}, x_{2}, x_{3}\right)=\exp \left(-\mathbf{i}|\mathbf{v}|^{2} t / 2\right) \cdot \exp (\mathbf{i} \mathbf{v} \bullet \mathbf{x})
$$

Show that ω satisfies the (free) Schrödinger equation: $\mathbf{i} \partial_{t} \omega=\frac{-1}{2} \Delta \omega$.
3. Consider the stationary Schrödinger equation for a null potential:

$$
\underset{\text { Equations and Fourier Theory }}{\mathrm{H} \omega_{0}=E \cdot \omega_{0}, \quad \text { where } \quad \mathrm{H}=\frac{-\hbar^{2}}{2 m_{e}} \triangle .} \begin{gathered}
\text { Marcus Pivato } \\
\text { DRAFT }
\end{gathered} .
$$

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

Let $v \in \mathbb{R}$ be a constant. Consider the function $\omega_{0}: \mathbb{R}^{3} \longrightarrow \mathbb{C}$ defined:

$$
\omega_{0}\left(x_{1}, x_{2}, x_{3}\right)=\exp \left(\frac{\mathbf{i}}{\hbar} m_{e} v_{1} \cdot x_{1}\right) .
$$

Show that ω_{0} is a solution to the above stationary Schrödinger equation, with eigenvalue $E=\frac{1}{2} m_{e} v^{2}$.
4. Exercise 3C.2(a) (page 51).
5. Exercise 3C.3(a) (page 52).

II General theory

Chapter 4

Linear partial differential equations

"The Universe is a grand book which cannot be read until one first learns the language in which it is composed. It is written in the language of mathematics." -Galileo Galilei

4A Functions and vectors

Prerequisites: §0A.

Vectors: If $\mathbf{v}=\left[\begin{array}{c}2 \\ 7 \\ -3\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}-1.5 \\ 3 \\ 1\end{array}\right]$, then we can add these two vectors componentwise:

$$
\mathbf{v}+\mathbf{w}=\left[\begin{array}{c}
2-1.5 \\
7+3 \\
-3+1
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
10 \\
-2
\end{array}\right]
$$

(4, 2, 1, 0, -1,-3, 2)

(4, 2, 2.9, 1.2, 3.81, 3.25, 1.1, 0.7,

$$
0,-1.8,-3.1,-3.8,-0.68,1.1,3.0)
$$

Figure 4A.1: We can think of a function as an "infinite-dimensional vector"

Figure 4A.2: (A) We add vectors componentwise: If $\mathbf{u}=(4,2,1,0,1,3,2)$ and $\mathbf{v}=(1,4,3,1,2,3,1)$, then the equation " $\mathbf{w}=\mathbf{v}+\mathbf{w}$ " means that $\mathbf{w}=(5,6,4,1,3,6,3)$. (B) We add two functions pointwise: If $f(x)=x$, and $g(x)=x^{2}-3 x+2$, then the equation " $h=f+g$ " means that $h(x)=f(x)+g(x)=$ $x^{2}-2 x+2$ for every x.

In general, if $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$, then $\mathbf{u}=\mathbf{v}+\mathbf{w}$ is defined by:

$$
\begin{equation*}
u_{n}=v_{n}+w_{n}, \quad \text { for } n=1,2,3 \tag{4A.1}
\end{equation*}
$$

(see Figure 4A.2A) Think of \mathbf{v} as a function $v:\{1,2,3\} \longrightarrow \mathbb{R}$, where $v(1)=2$, $v(2)=7$, and $v(3)=-3$. If we likewise represent \mathbf{w} with $w:\{1,2,3\} \longrightarrow \mathbb{R}$ and \mathbf{u} with $u:\{1,2,3\} \longrightarrow \mathbb{R}$, then we can rewrite eqn.(4A.1) as " $u(n)=$ $v(n)+w(n)$ for $n=1,2,3$ ". In a similar fashion, any N-dimensional vector $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{N}\right)$ can be thought of as a function $u:[1 \ldots N] \longrightarrow \mathbb{R}$.

Functions as Vectors: Letting N go to infinity, we can imagine any function $f: \mathbb{R} \longrightarrow \mathbb{R}$ as a sort of "infinite-dimensional vector" (see Figure 4A.1). Indeed, if f and g are two functions, we can add them pointwise, to get a new function $h=f+g$, where

$$
\begin{equation*}
h(x)=f(x)+g(x), \text { for all } x \in \mathbb{R} \tag{4A.2}
\end{equation*}
$$

(see Figure 4A.2B) Notice the similarity between formulae (4A.2) and (4A.1), and the similarity between Figures 4 A .2 A and 4 A .2 B .

One of the most important ideas in the theory of PDEs is that functions are infinite-dimensional vectors. Just as with finite vectors, we can add them together, act on them with linear operators, or represent them in different coordinate systems on infinite-dimensional space. Also, the vector space \mathbb{R}^{D} has
a natural geometric structure; we can identify a similar geometry in infinite dimensions.

Let $\mathbb{X} \subseteq \mathbb{R}^{D}$ be some domain. The vector space of all continuous functions from \mathbb{X} into \mathbb{R}^{m} is denoted $\mathcal{C}\left(\mathbb{X} ; \mathbb{R}^{m}\right)$. That is:

$$
\mathcal{C}\left(\mathbb{X} ; \mathbb{R}^{m}\right) \quad:=\left\{f: \mathbb{X} \longrightarrow \mathbb{R}^{m} ; f \text { is continuous }\right\}
$$

When \mathbb{X} and \mathbb{R}^{m} are obvious from context, we may just write " \mathcal{C} ".

Exercise 4A.1. Show that $\mathcal{C}\left(\mathbb{X} ; \mathbb{R}^{m}\right)$ is a vector space.
A scalar field $f: \mathbb{X} \longrightarrow \mathbb{R}$ is infinitely differentiable (or smooth) if, for every $N>0$ and every $i_{1}, i_{2}, \ldots, i_{N} \in[1 \ldots D]$, the N th derivative $\partial_{i_{1}} \partial_{i_{2}} \cdots \partial_{i_{N}} f(\mathbf{x})$ exists at each $\mathbf{x} \in \mathbb{X}$. A vector field $f: \mathbb{X} \longrightarrow \mathbb{R}^{m}$ is infinitely differentiable (or smooth) if $f(\mathbf{x}):=\left(f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right)$, where each of the scalar fields $f_{1}, \ldots, f_{m}: \mathbf{X} \longrightarrow \mathbb{R}$ is infinitely differentiable. The vector space of all smooth functions from \mathbb{X} into \mathbb{R}^{m} is denoted $\mathcal{C}^{\infty}\left(\mathbb{X} ; \mathbb{R}^{m}\right)$. That is:

$$
\mathcal{C}^{\infty}\left(\mathbb{X} ; \mathbb{R}^{m}\right) \quad:=\quad\left\{f: \mathbb{X} \longrightarrow \mathbb{R}^{m} ; f \text { is infinitely differentiable }\right\}
$$

When \mathbb{X} and \mathbb{R}^{m} are obvious from context, we may just write "C ${ }^{\infty}$ ".

Example 4A.1.

(a) $\mathcal{C}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$ is the space of all smooth scalar fields on the plane (i.e. all functions $u: \mathbb{R}^{2} \longrightarrow \mathbb{R}$).
(b) $\mathcal{C}^{\infty}\left(\mathbb{R} ; \mathbb{R}^{3}\right)$ is the space of all smooth curves in three-dimensional space.

Exercise 4A.2. Show that $\mathcal{C}^{\infty}\left(\mathbb{X} ; \mathbb{R}^{m}\right)$ is a vector space, and thus, a linear subspace of $\mathcal{C}\left(\mathbb{X} ; \mathbb{R}^{m}\right)$.

4B Linear operators

Prerequisites: §4A.

4B(i) ...on finite dimensional vector spaces

Let $\mathbf{v}:=\left[\begin{array}{l}2 \\ 7\end{array}\right]$ and $\mathbf{w}:=\left[\begin{array}{c}-1.5 \\ 3\end{array}\right]$, and let $\mathbf{u}:=\mathbf{v}+\mathbf{w}=\left[\begin{array}{c}0.5 \\ 10\end{array}\right]$. If $\mathbf{A}:=\left[\begin{array}{cc}1 & -1 \\ 4 & 0\end{array}\right]$, then $\mathbf{A} \cdot \mathbf{u}=\mathbf{A} \cdot \mathbf{v}+\mathbf{A} \cdot \mathbf{w}$. That is:

$$
\left[\begin{array}{cc}
1 & -1 \\
4 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
0.5 \\
10
\end{array}\right]=\left[\begin{array}{c}
-9.5 \\
2
\end{array}\right]=\left[\begin{array}{c}
-5 \\
8
\end{array}\right]+\left[\begin{array}{c}
-4.5 \\
-6
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
4 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
2 \\
7
\end{array}\right]+\left[\begin{array}{cc}
1 & -1 \\
4 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
-1.5 \\
3
\end{array}\right]
$$

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

Also, if $\mathbf{x}=3 \mathbf{v}=\left[\begin{array}{c}6 \\ 21\end{array}\right]$, then $\mathbf{A} \mathbf{x}=3 \mathbf{A} \mathbf{v}$. That is:

$$
\left[\begin{array}{cc}
1 & -1 \\
4 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
6 \\
21
\end{array}\right]=\left[\begin{array}{c}
-15 \\
24
\end{array}\right]=3\left[\begin{array}{c}
-5 \\
8
\end{array}\right]=3\left[\begin{array}{cc}
1 & -1 \\
4 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
7
\end{array}\right]
$$

In other words, multiplication by the matrix \mathbf{A} is a linear operator on the vector space \mathbb{R}^{2}. In general, a function $L: \mathbb{R}^{N} \longrightarrow \mathbb{R}^{M}$ is linear if:

- For all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{N}$, we have $L(\mathbf{v}+\mathbf{w})=L(\mathbf{v})+L(\mathbf{w})$
- For all $\mathbf{v} \in \mathbb{R}^{N}$ and $r \in \mathbb{R}$, we have $L(r \cdot \mathbf{v})=r \cdot L(\mathbf{v})$.

Every linear function from \mathbb{R}^{N} to \mathbb{R}^{M} corresponds to multiplication by some $N \times M$ matrix.

Example 4B.1.

(a) Difference Operator: Suppose $D: \mathbb{R}^{5} \longrightarrow \mathbb{R}^{4}$ is the function:

$$
D\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-x_{0} \\
x_{2}-x_{1} \\
x_{3}-x_{2} \\
x_{4}-x_{3}
\end{array}\right]
$$

Then D corresponds to multiplication by the matrix $\left[\begin{array}{cccccc}-1 & 1 & & & \\ & -1 & 1 & & \\ & & -1 & 1 & \\ & & & -1 & 1\end{array}\right]$.
(b) Summation operator: Suppose $S: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{5}$ is the function:

$$
S\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
x_{1} \\
x_{1}+x_{2} \\
x_{1}+x_{2}+x_{3} \\
x_{1}+x_{2}+x_{3}+x_{4}
\end{array}\right]
$$

Then S corresponds to multiplication by the matrix $\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right]$.
(c) Multiplication operator: Suppose $M: \mathbb{R}^{5} \longrightarrow \mathbb{R}^{5}$ is the function

$$
M\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
3 \cdot x_{1} \\
2 \cdot x_{2} \\
-5 \cdot x_{3} \\
\frac{3}{4} \cdot x_{4} \\
\sqrt[4]{2} \cdot x_{5}
\end{array}\right]
$$

Remark Notice that the transformation D is a left-inverse to the transformation S. That is, $D \circ S=\mathbf{I d}$. (However, D is not a right-inverse to S, because if $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{4}\right)$, then $S \circ D(\mathbf{x})=\mathbf{x}-\left(x_{0}, x_{0}, \ldots, x_{0}\right)$.

4B(ii) ...on \mathcal{C}^{∞}

Recommended: $\S[B, \S(\mathbb{Q}, \S[B$.
A transformation $\mathrm{L}: \mathcal{C}^{\infty} \longrightarrow \mathcal{C}^{\infty}$ is called a linear operator if, for any two differentiable functions $f, g \in \mathcal{C}^{\infty}$, we have $\mathrm{L}(f+g)=\mathrm{L}(f)+\mathrm{L}(g)$, and, for any real number $r \in \mathbb{R}$, we have $\mathrm{L}(r \cdot f)=r \cdot \mathrm{~L}(f)$.

Example 4B.2.

(a) Differentiation: If $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ are differentiable functions, and $h=$ $f+g$, then we know that, for any $x \in \mathbb{R}$,

$$
h^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x) .
$$

Also, if $h=r \cdot f$, then $h^{\prime}(x)=r \cdot f^{\prime}(x)$. Thus, if we define the operation $\mathrm{D}: \mathcal{C}^{\infty}(\mathbb{R} ; \mathbb{R}) \longrightarrow \mathcal{C}^{\infty}(\mathbb{R} ; \mathbb{R})$ by $\mathrm{D}[f]=f^{\prime}$, then D is a linear transformation of $\mathcal{C}^{\infty}(\mathbb{R} ; \mathbb{R})$. For example, sin and cos are elements of $\mathcal{C}^{\infty}(\mathbb{R} ; \mathbb{R})$, and we have

$$
\mathrm{D}[\sin]=\cos , \quad \text { and } \quad \mathrm{D}[\cos]=-\sin .
$$

More generally, if $f, g: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ and $h=f+g$, then for any $i \in[1 . . D]$,

$$
\partial_{j} h=\partial_{j} f+\partial_{j} g
$$

Also, if $h=r \cdot f$, then $\partial_{j} h=r \cdot \partial_{j} f$. In other words, the transformation $\partial_{j}: \mathcal{C}^{\infty}\left(\mathbb{R}^{D} ; \mathbb{R}\right) \longrightarrow \mathcal{C}^{\infty}\left(\mathbb{R}^{D} ; \mathbb{R}\right)$ is a linear operator.
(b) Integration: If $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ are integrable functions, and $h=f+g$, then we know that, for any $x \in \mathbb{R}$,

$$
\int_{0}^{x} h(y) d y=\int_{0}^{x} f(y) d y+\int_{0}^{x} g(y) d y .
$$

Also, if $h=r \cdot f$, then $\int_{0}^{x} h(y) d y=r \cdot \int_{0}^{x} f(y) d y$.
Thus, if we define the operation $S: \mathcal{C}^{\infty}(\mathbb{R} ; \mathbb{R}) \longrightarrow \mathcal{C}^{\infty}(\mathbb{R} ; \mathbb{R})$ by

$$
\mathrm{S}[f](x)=\int_{0}^{x} f(y) d y, \quad \text { for all } x \in \mathbb{R}
$$

then S is a linear transformation. For example, \sin and cos are elements of $\mathcal{C}^{\infty}(\mathbb{R} ; \mathbb{R})$, and we have

$$
\mathrm{S}[\sin]=1-\cos , \quad \text { and } \quad \mathrm{S}[\cos]=\sin .
$$

(c) Multiplication: If $\gamma: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ is a scalar field, then define the operator $\Gamma: \mathcal{C}^{\infty} \longrightarrow \mathcal{C}^{\infty}$ by: $\Gamma[f]=\gamma \cdot f$. In other words, for all $\mathbf{x} \in \mathbb{R}^{D}, \Gamma[f](\mathbf{x})=$ $\gamma(\mathbf{x}) \cdot f(\mathbf{x})$. Then Γ is a linear function, because, for any $f, g \in \mathcal{C}^{\infty}$, $\Gamma[f+g]=\gamma \cdot[f+g]=\gamma \cdot f+\gamma \cdot g=\Gamma[f]+\Gamma[g]$.

Remark. Notice that the transformation D is a left-inverse for the transformation S, because the Fundamental Theorem of Calculus says that $\mathbf{D} \circ \mathbf{S}(f)=f$ for any $f \in \mathcal{C}^{\infty}(\mathbb{R})$. However, D is not a right-inverse for S , because in general $\mathrm{S} \circ \mathrm{D}(f)=f-c$, where $c=f(0)$ is a constant.

Exercise 4B.1. Compare the three linear transformations in Example 4B. 2 with those from Example 4B.1. Do you notice any similarities?

Remark. Unlike linear transformations on \mathbb{R}^{N}, there is in general no way to express a linear transformation on \mathcal{C}^{∞} in terms of multiplication by some matrix. To convince yourself of this, try to express the three transformations from example 4B.2 in terms of "matrix multiplication".

Any combination of linear operations is also a linear operation. In particular, any combination of differentiation and multiplication operations is linear. Thus, for example, the second-derivative operator $\mathbf{D}^{2}[f]=\partial_{x}^{2} f$ is linear, and the Laplacian operator

$$
\triangle f=\partial_{1}^{2} f+\ldots+\partial_{D}^{2} f
$$

is also linear; in other words, $\triangle[f+g]=\triangle f+\triangle g$.
A linear transformation that is formed by adding and/or composing multiplications and differentiations is called a linear differential operator . For example, the Laplacian \triangle is a linear differential operator.

4B(iii) Kernels

If L is a linear function, then the kernel of L is the set of all vectors \mathbf{v} such that $L(\mathbf{v})=0$.

Example 4B.3.

(a) Consider the differentiation operator ∂_{x} on the space $\mathcal{C}^{\infty}(\mathbb{R} ; \mathbb{R})$. The kernel of ∂_{x} is the set of all functions $u: \mathbb{R} \longrightarrow \mathbb{R}$ such that $\partial_{x} u \equiv 0$-in other words, the set of all constant functions.
(b) The kernel of ∂_{x}^{2} is the set of all functions $u: \mathbb{R} \longrightarrow \mathbb{R}$ such that $\partial_{x}^{2} u \equiv 0$ -in other words the set of all flat functions of the form $u(x)=a x+b$. \diamond

Many partial differential equations are really equations for the kernel of some differential operator.

Example 4B.4.

(a) Laplace's equation " $\triangle u \equiv 0$ " really just says: " u is in the kernel of \triangle."
(b) The heat equation " $\partial_{t} u=\triangle u$ " really just says: " u is in the kernel of the operator $\mathrm{L}=\partial_{t}-\triangle$."

4B(iv) Eigenvalues, eigenvectors, and eigenfunctions

If L is a linear operator on some vector space, then an eigenvector of L is a vector \mathbf{v} such that

$$
\mathbf{L}(\mathbf{v})=\lambda \cdot \mathbf{v}
$$

for some constant $\lambda \in \mathbb{C}$, called the associated eigenvalue.
Example 4B.5. If $L: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is defined by the matrix $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, then $L(\mathbf{v})=\left[\begin{array}{c}1 \\ -1\end{array}\right]=-\mathbf{v}$, so \mathbf{v} is an eigenvector for L, with eigenvalue $\lambda=-1$.

If L is a linear operator on \mathcal{C}^{∞}, then an eigenvector of L is sometimes called an eigenfunction.

Example 4B.6. Let $n, m \in \mathbb{N}$. Define $u(x, y)=\sin (n \cdot x) \cdot \sin (m \cdot y)$. Then

$$
\Delta u(x, y)=-\left(n^{2}+m^{2}\right) \cdot \sin (n \cdot x) \cdot \sin (m \cdot y)=\lambda \cdot u(x, y)
$$

where $\lambda=-\left(n^{2}+m^{2}\right)$. Thus, u is an eigenfunction of the linear operator \triangle, with eigenvalue λ. (Exercise 4B. 2 Verify the these claims.)

Eigenfunctions of linear differential operators (particularly, eigenfunctions of \triangle) play a central role in the solution of linear PDEs. This is implicit in Chapters $11-14$ and 20, and is made explicit in Chapter (15.

4C Homogeneous vs. nonhomogeneous

Prerequisites: $£ \mathbb{B}$.

If $L: \mathcal{C}^{\infty} \longrightarrow \mathcal{C}^{\infty}$ is a linear differential operator, then the equation " $L u \equiv 0$ " is called a homogeneous linear partial differential equation.

Example 4C.1. The following are linear homogeneous PDEs. Here $\mathbb{X} \subset \mathbb{R}^{D}$ is some domain.
(a) Laplace's Equation \boldsymbol{F} : Here, $\mathcal{C}^{\infty}=\mathcal{C}^{\infty}(\mathbb{X} ; \mathbb{R})$, and $L=\triangle$.
(b) heat equation: $\mathcal{C}^{\infty}=\mathcal{C}^{\infty}(\mathbb{X} \times \mathbb{R} ; \mathbb{R})$, and $\mathrm{L}=\partial_{t}-\triangle$.
(c) wave equations: $\mathcal{C}^{\infty}=\mathcal{C}^{\infty}(\mathbb{X} \times \mathbb{R} ; \mathbb{R})$, and $\mathrm{L}=\partial_{t}^{2}-\triangle$.
(d) Schrödinger Equation : $\mathcal{C}^{\infty}=\mathcal{C}^{\infty}\left(\mathbb{R}^{3 N} \times \mathbb{R} ; \mathbb{C}\right)$, and, for any $\omega \in \mathcal{C}^{\infty}$ and $(\mathbf{x} ; t) \in \mathbb{R}^{3 N} \times \mathbb{R}, \quad \mathrm{L} \omega(\mathbf{x} ; t):=\frac{-\hbar^{2}}{2} \mathbf{\Delta} \omega(\mathbf{x} ; t)+V(\mathbf{x}) \cdot \omega(\mathbf{x} ; t)-$ $\mathbf{i} \hbar \partial_{t} \omega(\mathbf{x} ; t)$. (Here, $V: \mathbb{R}^{3 N} \longrightarrow \mathbb{R}$ is some potential function, and $\boldsymbol{\Delta}$ is like a Laplacian operator, except that the components for each particle are divided by the rest mass of that particle.)
(e) Fokker-Plank $: \mathcal{C}^{\infty}=\mathcal{C}^{\infty}(\mathbb{X} \times \mathbb{R} ; \mathbb{R})$, and, for any $u \in \mathcal{C}^{\infty}$, $\mathrm{L}(u)=\partial_{t} u-\Delta u+\overrightarrow{\mathbf{V}} \bullet \nabla u+u \cdot \operatorname{div} \overrightarrow{\mathbf{V}}$.

Linear homogeneous PDEs are nice because we can combine two solutions together to obtain a third solution.

Example 4C.2.

(a) Let $u(x ; t)=7 \sin [2 t+2 x]$ and $v(x ; t)=3 \sin [17 t+17 x]$ be two travelling wave solutions to the wave equation. Then $w(x ; t)=u(x ; t)+v(x ; t)=$ $7 \sin (2 t+2 x)+3 \sin (17 t+17 x)$ is also a solution (see Figure 4C.1). To use a musical analogy: if we think of u and v as two "pure tones", then we can think of w as a "chord".

[^20]

Figure 4C.1: Example 4C.2(a).
(b) Let $f(x ; t)=\frac{1}{2 \sqrt{\pi t}} \exp \left[\frac{-x^{2}}{4 t}\right], \quad g(x ; t)=\frac{1}{2 \sqrt{\pi t}} \exp \left[\frac{-(x-3)^{2}}{4 t}\right]$, and $h(x ; t)=\frac{1}{2 \sqrt{\pi t}} \exp \left[\frac{-(x-5)^{2}}{4 t}\right]$ be one-dimensional Gauss-Weierstrass kernels, centered at 0,3 , and 5 , respectively. Thus, f, g, and h are all solutions to the heat equation. Then, $F(x)=f(x)+7 \cdot g(x)+h(x)$ is also a solution to the heat equation. If a Gauss-Weierstrass kernel models the erosion of a single "mountain", then the function F models the erosion of a little "mountain range", with peaks at 0,3 , and 5 , and where the middle peak is seven times higher than the other two.

These examples illustrate a general principle:

Theorem 4C.3. Superposition Principle for homogeneous Linear PDEs

Suppose L is a linear differential operator, and $u_{1}, u_{2} \in \mathcal{C}^{\infty}$ are solutions to the homogeneous linear PDE' $\mathrm{L} u=0$." Then, for any $c_{1}, c_{2} \in \mathbb{R}, \quad u=c_{1} \cdot u_{1}+c_{2} \cdot u_{2}$ is also a solution.

Proof. Exercise 4C. 1

If $q \in \mathcal{C}^{\infty}$ is some fixed nonzero function, then the equation " $L p \equiv q$ " is called a nonhomogeneous linear partial differential equation.

Example 4C.4. The following are linear nonhomogeneous PDEs
(a) The antidifferentiation equation $p^{\prime}=q$ is familiar from first year calculus. The Fundamental Theorem of Calculus says that one solution to this equation is the integral function $p(x)=\int_{0}^{x} q(y) d y$.
(b) The Poisson Equation『, " $\Delta p=q$ ", is a nonhomogeneous linear PDE. \diamond

Recall Examples ID.1 and ID. 2 on page 14, where we obtained new solutions to a nonhomogeneous equation by taking a single solution, and adding solutions of the homogeneous equation to this solution. These examples illustrates a general principle:

Theorem 4C.5. Subtraction Principle for nonhomogeneous linear PDEs

Suppose L is a linear differential operator, and $q \in \mathcal{C}^{\infty}$. Let $p_{1} \in \mathcal{C}^{\infty}$ be a solution to the nonhomogeneous linear $P D E$ " $p_{1}=q$." If $h \in \mathcal{C}^{\infty}$ is any solution to the homogeneous equation (i.e. $\mathrm{L} h=0$), then $p_{2}=p_{1}+h$ is another solution to the nonhomogeneous equation. In summary:

$$
\left(\mathrm{L} p_{1}=q ; \quad \mathrm{L} h=0 ; \quad \text { and } p_{2}=p_{1}+h .\right) \Longrightarrow\left(\mathrm{L} p_{2}=q\right)
$$

Proof. Exercise 4C. 2

If $\mathrm{P}: \mathcal{C}^{\infty} \longrightarrow \mathcal{C}^{\infty}$ is not a linear operator, then a PDE of the form " $\mathrm{P} u \equiv 0$ " or " $\mathrm{P} u \equiv g$ " is called a nonlinear PDE. For example, if $F: \mathbb{R}^{D} \longrightarrow \mathbb{R}^{D}$ is some nonlinear 'rate function' describing chemical reactions, then the reactiondiffusion equation】

$$
\partial_{t} \mathbf{u}=\triangle \mathbf{u}+F(\mathbf{u})
$$

is a nonlinear PDE , corresponding to the nonlinear differential operator $\mathrm{P}(\mathbf{u}):=$ $\partial_{t} \mathbf{u}-\triangle \mathbf{u}-F(\mathbf{u})$.

The theory of linear partial differential equations is relatively simple, because solutions to linear PDEs interact in very nice ways, as shown by Theorems 4C. 3 and IC.5. The theory of nonlinear PDEs is much more complicated; furthermore, many of the methods which do exist for solving nonlinear PDEs involve somehow 'approximating' them with linear ones. In this book we shall concern ourselves only with linear PDEs.

4D Practice problems

1. For each of the following equations: u is an unknown function; q is always some fixed, predetermined function; and λ is always a constant.
In each case, is the equation linear? If it is linear, is it homogeneous? Justify your answers.

[^21](a) heat equation: $\partial_{t} u(\mathbf{x})=\triangle u(\mathbf{x})$.
(b) Poisson Equation: $\triangle u(\mathbf{x})=q(\mathbf{x})$.
(c) Laplace Equation: $\triangle u(\mathbf{x})=0$.

(d) Monge-Ampère Equation: $q(x, y)=\operatorname{det}\left[\begin{array}{cc}\partial_{x}^{2} u(x, y) & \partial_{x} \partial_{y} u(x, y) \\ \partial_{x} \partial_{y} u(x, y) & \partial_{y}^{2} u(x, y)\end{array}\right]$.
(e) Reaction-Diffusion $\partial_{t} u(\mathbf{x} ; t)=\triangle u(\mathbf{x} ; t)+q(u(\mathbf{x} ; t))$.
(f) Scalar conservation Law $\partial_{t} u(x ; t)=-\partial_{x}(q \circ u)(x ; t)$.
(g) Helmholtz Equation: $\triangle u(\mathbf{x})=\lambda \cdot u(\mathbf{x})$.
(h) Airy's Equation: $\partial_{t} u(x ; t)=-\partial_{x}^{3} u(x ; t)$.
(i) Beam Equation: $\partial_{t} u(x ; t)=-\partial_{x}^{4} u(x ; t)$.
(j) Schrödinger Equation: $\partial_{t} u(\mathbf{x} ; t)=\mathbf{i} \triangle u(\mathbf{x} ; t)+q(\mathbf{x} ; t) \cdot u(\mathbf{x} ; t)$.
(k) Burger's Equation: $\partial_{t} u(x ; t)=-u(x ; t) \cdot \partial_{x} u(x ; t)$.
(l) Eikonal Equation: $\left|\partial_{x} u(x)\right|=1$.
2. Which of the following are eigenfunctions for the 2-dimensional Laplacian $\triangle=\partial_{x}^{2}+\partial_{y}^{2}$? In each case, if u is an eigenfunction, what is the eigenvalue?
(a) $u(x, y)=\sin (x) \sin (y)$ (Figure 5F.1(A) on page (100)
(b) $u(x, y)=\sin (x)+\sin (y)$ (Figure 5F.1(B) on page 100)
(c) $u(x, y)=\cos (2 x)+\cos (y)$ (Figure 5F.1(C) on page 100)
(d) $u(x, y)=\sin (3 x) \cdot \cos (4 y)$.
(e) $u(x, y)=\sin (3 x)+\cos (4 y)$.
(f) $u(x, y)=\sin (3 x)+\cos (3 y)$.
(g) $u(x, y)=\sin (3 x) \cdot \cosh (4 y)$.
(h) $u(x, y)=\sinh (3 x) \cdot \cosh (4 y)$.
(i) $u(x, y)=\sinh (3 x)+\cosh (4 y)$.
(j) $u(x, y)=\sinh (3 x)+\cosh (3 y)$.
(k) $u(x, y)=\sin (3 x+4 y)$.
(l) $u(x, y)=\sinh (3 x+4 y)$.
(m) $u(x, y)=\sin ^{3}(x) \cdot \cos ^{4}(y)$.
(n) $u(x, y)=e^{3 x} \cdot e^{4 y}$.
(o) $u(x, y)=e^{3 x}+e^{4 y}$.
(p) $u(x, y)=e^{3 x}+e^{3 y}$.

Chapter 5

Classification of PDEs and problem types

"If one looks at the different problems of the integral calculus which arise naturally when one wishes to go deep into the different parts of physics, it is impossible not to be struck by the analogies existing. Whether it be electrostatics or electrodynamics, the propogation of heat, optics, elasticity, or hydrodynamics, we are led always to differential equations of the same family."
—Henri Poincaré

5A Evolution vs. nonevolution equations

Recommended: $\S[B, \S[\square, \S[B, \S[B$.
An evolution equation is a PDE with a distinguished "time" coordinate, t. In other words, it describes functions of the form $u(\mathbf{x} ; t)$, and the equation has the form:

$$
\mathrm{D}_{t} u=\mathrm{D}_{\mathbf{x}} u
$$

where D_{t} is some differential operator involving only derivatives in the t variable (e.g. $\partial_{t}, \partial_{t}^{2}$, etc.), while $\mathrm{D}_{\mathbf{x}}$ is some differential operator involving only derivatives in the \mathbf{x} variables (e.g. $\partial_{x}, \partial_{y}^{2}, \triangle$, etc.)

Example 5A.1. The following are evolution equations:
(a) The heat equation " $\partial_{t} u=\triangle u$ " of $\S[B$.
(b) The wave equation " $\partial_{t}^{2} u=\triangle u$ " of $\oint 2 \mathrm{~B}$.
(c) The telegraph equation " $\kappa_{2} \partial_{t}^{2} u+\kappa_{1} \partial_{t} u=-\kappa_{0} u+\Delta u$ " of $\S 2 \mathrm{G}$.
(d) The Schrödinger equation " $\partial_{t} \omega=\frac{1}{\mathrm{i} \hbar} \mathrm{H} \omega$ " of $\S 3 \mathrm{~B}$ (here H is a Hamiltonian operator).
(e) Liouville's Equation, the Fokker-Plank equation, and Reaction-Diffusion Equations.

Nonexample 5A.2. The following are not evolution equations:
(a) The Laplace Equation " $\triangle u=0$ " of \S.
(b) The Poisson Equation " $\triangle u=q$ " of $\S(\mathbb{D}$.
(c) The Helmholtz Equation " $\triangle u=\lambda u$ " (where $\lambda \in \mathbb{C}$ is a constant -i.e. an eigenvalue of \triangle).
(d) The Stationary Schrödinger equation $\mathrm{H} \omega_{0}=E \cdot \omega_{0}$ (where $E \in \mathbb{C}$ is a constant eigenvalue).

In mathematical models of physical phenomena, most PDEs are evolution equations. Nonevolutionary PDEs generally arise as stationary state equations for evolution PDEs (e.g. Laplace's equation) or as resonance states (e.g. SturmLiouville, Helmholtz).

Order: The order of the differential operator $\partial_{x}^{2} \partial_{y}^{3}$ is $2+3=5$. More generally, the order of the differential operator $\partial_{1}^{k_{1}} \partial_{2}^{k_{2}} \ldots \partial_{D}^{k_{D}}$ is the sum $k_{1}+\ldots+k_{D}$. The order of a general differential operator is the highest order of any of its terms. For example, the Laplacian is second order. The order of a PDE is the highest order of the differential operator that appears in it. Thus, the Transport Equation, Liouville's Equation, and the (nondiffusive) Reaction Equation is first order, but all the other equations we have looked at (the heat equation, the wave equation, etc.) are of second order.

5B Initial value problems

Prerequisites: §5A.
Let $\mathbb{X} \subset \mathbb{R}^{D}$ be some domain, and let L be a differential operator on $\mathcal{C}^{\infty}(\mathbb{X} ; \mathbb{R})$. Consider evolution equation

$$
\begin{equation*}
\partial_{t} u=\mathrm{L} u, \tag{5B.1}
\end{equation*}
$$

for an unknown function $u: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$. An initial value problem (IVP) for equation (5B.1) is the following problem:

Given some function $f_{0}: \mathbb{X} \longrightarrow \mathbb{R}$ (the initial conditions), find a continuous function $u: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ which satisfies (5B.1) and also satisfies $u(\mathbf{x}, 0)=f_{0}(\mathbf{x})$, for all $\mathbf{x} \in \mathbb{X}$.

For example, suppose the domain \mathbb{X} is an iron pan being heated on a gas flame stove. You turn off the flame (so there is no further heat entering the system) and then throw some vegetables into the pan. Thus, (5B.1) is the Heat Equation, and f_{0} describes the initial distribution of heat: cold vegetables in a hot pan. The initial value problem asks: "How fast do the vegetables cook? How fast does the pan cool?"

Next, consider the second order-evolution equation

$$
\begin{equation*}
\partial_{t}^{2} u=\mathrm{L} u \tag{5B.2}
\end{equation*}
$$

for a unknown function $u: \mathbb{X} \times \mathbb{R}_{\not} \longrightarrow \mathbb{R}$. An initial value problem (or IVP, or Cauchy problem) for (5B.2) is as follows:

Given a function $f_{0}: \mathbb{X} \longrightarrow \mathbb{R}$ (the initial position), and/or another function $f_{1}: \mathbb{X} \longrightarrow \mathbb{R}$ (the initial velocity), find a continuously differentiable function $u: \mathbb{X} \times \mathbb{R}_{\not} \longrightarrow \mathbb{R}$ which satisfies (5B.2) and also satisfies $u(\mathbf{x}, 0)=f_{0}(\mathbf{x})$ and $\partial_{t} u(\mathbf{x}, 0)=f_{1}(\mathbf{x})$, for all $\mathbf{x} \in \mathbb{X}$.

For example, suppose (5B.1) is the wave equation on $\mathbb{X}=[0, L]$. Imagine $[0, L]$ as a vibrating string. Thus, f_{0} describes the initial displacement of the string, and f_{1} its initial momentum.

If $f_{0} \not \equiv 0$, and $f_{1} \equiv 0$, then the string is initially at rest, but is released from a displaced state -in other words, it is plucked (e.g. in a guitar or a harp). Hence, the initial value problem asks: "How does a guitar string sound when it is plucked?"

On the other hand, if $f_{0} \equiv 0$, and $f_{1} \not \equiv 0$, then the string is initially flat, but is imparted with nonzero momentum - in other words, it is struck (e.g. by the hammer in the piano). Hence, the initial value problem asks: "How does a piano string sound when it is struck?"

5C Boundary value problems

Prerequisites: §0D, § 1 . Recommended: §5B.
If $\mathbb{X} \subset \mathbb{R}^{D}$ is a finite domain, then $\partial \mathbb{X}$ denotes its boundary. The interior of \mathbb{X} is the set int (\mathbb{X}) of all points in \mathbb{X} not on the boundary.

Example 5C.1.

(a) If $\mathbb{I}=[0,1] \subset \mathbb{R}$ is the unit interval, then $\partial \mathbb{I}=\{0,1\}$ is a two-point set, and $\operatorname{int}(\mathbb{I})=(0,1)$.
(b) If $\mathbb{X}=[0,1]^{2} \subset \mathbb{R}^{2}$ is the unit square, then int $(\mathbb{X})=(0,1)^{2}$. and

$$
\partial \mathbb{X}=\{(x, y) \in \mathbb{X} ; x=0 \text { or } x=1 \text { or } y=0 \text { or } y=1\} .
$$

(c) In polar coordinates on \mathbb{R}^{2}, let $\mathbb{D}=\{(r, \theta) ; r \leq 1, \theta \in[-\pi, \pi)\}$ be the unit disk. Then $\partial \mathbb{D}=\{(1, \theta) ; \theta \in[-\pi, \pi)\}$ is the unit circle, and $\operatorname{int}(\mathbb{D})=\{(r, \theta) ; r<1, \theta \in[-\pi, \pi)\}$.
(d) In spherical coordinates on \mathbb{R}^{3}, let $\mathbb{B}=\left\{\mathbf{x} \in \mathbb{R}^{3} ;\|\mathbf{x}\| \leq 1\right\}$ be the 3dimensional unit ball in \mathbb{R}^{3}. Then $\partial \mathbb{B}=\mathbb{S}:=\left\{\left\{\mathbf{x} \in \mathbb{R}^{D} ;\|\mathbf{x}\|=1\right\}\right.$ is the unit sphere, and $\operatorname{int}(\mathbb{B})=\left\{\mathbf{x} \in \mathbb{R}^{D} ;\|\mathrm{x}\|<1\right\}$.
(e) In cylindrical coordinates on \mathbb{R}^{3}, let $\mathbb{X}=\{(r, \theta, z)$; $r \leq R,-\pi \leq \theta \leq \pi, 0 \leq z \leq L\}$ be the finite cylinder in \mathbb{R}^{3}. Then $\partial \mathbb{X}=\{(r, \theta, z) ; r=R$ or $z=0$ or $z=L\}$. \diamond

A boundary value problem (BVP) is a problem of the following kind:
Find a continuous function $u: \mathbb{X} \longrightarrow \mathbb{R}$ such that

1. u satisfies some $P D E$ at all \mathbf{x} in the interior of \mathbb{X}.
2. u also satisfies some other equation (maybe a differential equation) for all \mathbf{s} on the boundary of \mathbb{X}.

The condition u must satisfy on the boundary of \mathbb{X} is called a boundary condition. Note that there is no 'time variable' in our formulation of a BVP; thus, typically the PDE in question is an 'equilibrium' equation, like the Laplace equation or the Poisson equation.

If we try to solve an evolution equation with specified initial conditions and specified boundary conditions, then we are confronted with an 'initial/boundary value problem'. Formally, an initial/boundary value problem (I/BVP) is a problem of the following kind:

Find a continuous function $u: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ such that

1. u satisfies some (evolution) PDE at all \mathbf{x} in the interior of $\mathbb{X} \times \mathbb{R}_{+}$.
2. u satisfies some boundary condition for all $(\mathbf{s} ; t)$ in $(\partial \mathbb{X}) \times \mathbb{R}_{\neq}$.
3. $u(\mathbf{x} ; 0)$ also satisfies some initial condition (as described in $\S 5 \mathrm{~B}$) for all $\mathbf{x} \in \mathbb{X}$.

We will consider four kinds of boundary conditions: Dirichlet, Neumann, Mixed, and Periodic. Each of these boundary conditions has a particular physical interpretation, and yields particular kinds of solutions for a partial differential equation.

Figure 5C.1: $\quad f(x)=x(1-x)$ satisfies homogeneous Dirichlet boundary conditions on the interval $[0,1]$.

5C(i) Dirichlet boundary conditions

Let \mathbb{X} be a domain, and let $u: \mathbb{X} \longrightarrow \mathbb{R}$ be a function. We say that u satisfies homogeneous Dirichlet boundary conditions (HDBC) on \mathbb{X} if:

$$
\text { For all } \mathbf{s} \in \partial \mathbb{X}, \quad u(\mathbf{s}) \equiv 0
$$

Physical interpretation.

Thermodynamic. (Heat equation, Laplace Equation, or Poisson Equation) In this case, u represents a temperature distribution. We imagine that the domain \mathbb{X} represents some physical object, whose boundary $\partial \mathbb{X}$ is made out of metal or some other material which conducts heat almost perfectly. Hence, we can assume that the temperature on the boundary is always equal to the temperature of the surrounding environment.

We further assume that this environment has a constant temperature T_{E} (for example, \mathbb{X} is immersed in a 'bath' of some uniformly mixed fluid), which remains constant during the experiment (for example, the fluid is present in large enough quantities that the heat flowing into/out of \mathbb{X} does not measurably change it). We can then assume that the ambient temperature is $T_{E} \equiv 0$, by simply subtracting a constant temperature of T_{E} off the inside and the outside. (This is like changing from measuring temperature in degrees Kelvin to measuring in degrees Celsius; you're just adding 273° to both sides, which makes no mathematical difference.)

Electrostatic. (Laplace equation or Poisson Equation) In this case, u represents an electrostatic potential. The domain \mathbb{X} represents some compartment or region in space, whose boundary $\partial \mathbb{X}$ is made out of metal or some other perfect electrical conductor. Thus, the electrostatic potential within the metal boundary is a constant, which we can normalize to be zero.

Acoustic. (Wave equation) In this case, u represents the vibrations of some vibrating medium (e.g. a violin string or a drum skin). Homogeneous Dirich-

Figure 5C.2: (A) $f(r, \theta)=1-r$ satisfies homogeneous Dirichlet boundary conditions on the disk $\mathbb{D}=\{(r, \theta) ; r \leq 1\}$, but is not smooth at zero. (B) $f(r, \theta)=1-r^{2}$ satisfies homogeneous Dirichlet boundary conditions on the disk $\mathbb{D}=\{(r, \theta) ; r \leq 1\}$, and is smooth everywhere.
let boundary conditions mean that the medium is fixed on the boundary $\partial \mathbb{X}$ (e.g. a violin string is clamped at its endpoints; a drumskin is pulled down tightly around the rim of the drum).

The set of infinitely differentiable functions from \mathbb{X} to \mathbb{R} which satisfy homogeneous Dirichlet Boundary Conditions will be denoted $\mathcal{C}_{0}^{\infty}(\mathbb{X} ; \mathbb{R})$ or $\mathcal{C}_{0}^{\infty}(\mathbb{X})$. Thus, for example

$$
\mathcal{C}_{0}^{\infty}[0, L]=\{f:[0, L] \longrightarrow \mathbb{R} ; \quad f \text { is smooth, and } f(0)=0=f(L)\}
$$

The set of continuous functions from \mathbb{X} to \mathbb{R} which satisfy homogeneous Dirichlet Boundary Conditions will be denoted $\mathcal{C}_{0}(\mathbb{X} ; \mathbb{R})$ or $\mathcal{C}_{0}(\mathbb{X})$.

Example 5C.2.

(a) Suppose $\mathbb{X}=[0,1]$, and $f: \mathbb{X} \longrightarrow \mathbb{R}$ is defined by $f(x)=x(1-x)$. Then $f(0)=0=f(1)$, and f is smooth, so $f \in \mathcal{C}_{0}^{\infty}[0,1]$. (See Figure 5C.1).
(b) Let $\mathbb{X}=[0, \pi]$.

1. For any $n \in \mathbb{N}$, let $\mathbf{S}_{n}(x)=\sin (n \cdot x)$ (see Figure 6D.1 on page 113). Then $\mathbf{S}_{n} \in \mathcal{C}_{0}^{\infty}[0, \pi]$.
2. If $f(x)=5 \sin (x)-3 \sin (2 x)+7 \sin (3 x)$, then $f \in \mathcal{C}_{0}^{\infty}[0, \pi]$. More generally, any finite sum $\sum_{n=1}^{N} B_{n} \mathbf{S}_{n}(x)$ (for some constants B_{n}) is in $\mathcal{C}_{0}^{\infty}[0, \pi]$.
3. If $f(x)=\sum_{n=1}^{\infty} B_{n} \mathbf{S}_{n}(x)$ is a uniformly convergent Fourier sine series 1 , then $f \in \mathcal{C}_{0}^{\infty}[0, \pi]$.
(c) Let $\mathbb{D}=\{(r, \theta) ; r \leq 1\}$ be the unit disk. Let $f: \mathbb{D} \longrightarrow \mathbb{R}$ be the 'cone' in Figure 5C.2(A), defined: $f(r, \theta)=(1-r)$. Then f is continuous, and $f \equiv 0$ on the boundary of the disk, so f satisfies Dirichlet boundary conditions. Thus, $f \in \mathcal{C}_{0}(\mathbb{D})$. However, f is not smooth (it is nondifferentiable at zero), so $f \notin \mathcal{C}_{0}^{\infty}(\mathbb{D})$.
(d) Let $f: \mathbb{D} \longrightarrow \mathbb{R}$ be the 'dome' in Figure 5C.2(B), defined $f(r, \theta)=1-r^{2}$. Then $f \in \mathcal{C}_{0}^{\infty}(\mathbb{D})$.
(e) Let $\mathbb{X}=[0, \pi] \times[0, \pi]$ be the square of sidelength π.
4. For any $(n, m) \in \mathbb{N}^{2}$, let $\mathbf{S}_{n, m}(x, y)=\sin (n \cdot x) \cdot \sin (m \cdot y)$. Then $\mathbf{S}_{n, m} \in \mathcal{C}_{0}^{\infty}(\mathbb{X})$. (see Figure 9A.2 on page 181).
5. If $f(x)=5 \sin (x) \sin (2 y)-3 \sin (2 x) \sin (7 y)+7 \sin (3 x) \sin (y)$, then $f \in \mathcal{C}_{0}^{\infty}(\mathbb{X})$. More generally, any finite sum $\sum_{n=1}^{N} \sum_{m=1}^{M} B_{n, m} \mathbf{S}_{n, m}(x)$ is in $\mathcal{C}_{0}^{\infty}(\mathbb{X})$.
6. If $f=\sum_{n, m=1}^{\infty} B_{n, m} \mathbf{S}_{n, m}$ is a uniformly convergent two dimensional Fourier sine series ${ }^{2}$, then $f \in \mathcal{C}_{0}^{\infty}(\mathbb{X})$.

Exercise 5C.1. (i) Verify examples (b) to (e) above

(ii) Show that $\mathcal{C}_{0}^{\infty}(\mathbb{X})$ is a vector space.
(iii) Show that $\mathcal{C}_{0}(\mathbb{X})$ is a vector space.

Arbitrary nonhomogeneous Dirichlet boundary conditions are imposed by fixing some function $b: \partial \mathbb{X} \longrightarrow \mathbb{R}$, and then requiring:

$$
\begin{equation*}
u(\mathbf{s})=b(\mathbf{s}), \quad \text { for all } \mathbf{s} \in \partial \mathbb{X} \tag{5C.3}
\end{equation*}
$$

For example, the classical Dirichlet Problem is to find a continuous function $u: \mathbb{X} \longrightarrow \mathbb{R}$ satisfying the Dirichlet condition (5C.3), such that u also satisfies Laplace's Equation: $\triangle u(\mathbf{x})=0$ for all $\mathbf{x} \in \operatorname{int}(\mathbb{X})$.

[^22]
Physical interpretations.

Thermodynamic. u describes a stationary temperature distribution on \mathbb{X}, where the temperature is fixed on the boundary. Different parts of the boundary may have different temperatures, so heat may be flowing through the region \mathbb{X} from warmer boundary regions to cooler boundary regions. But the actual temperature distribution within \mathbb{X} is in equilibrium.

Electrostatic. u describes an electrostatic potential field within the region \mathbb{X}. The voltage level on the boundaries is fixed (e.g. boundaries of \mathbb{X} are wired up to batteries which maintain a constant voltage). However different parts of the boundary may have different voltages (the boundary is not a perfect conductor).

Minimal surface. u describes a minimal-energy surface (e.g. a soap film). The boundary of the surface is clamped in some position (e.g. the wire frame around the soap film); the interior of the surface must adapt to find the minimal energy configuration compatible with these boundary conditions. Minimal surfaces of low curvature are well-approximated by harmonic functions.

For example, if $\mathbb{X}=[0, L]$, and $b(0)$ and $b(L)$ are two constants, then the Dirichlet Problem is to find $u:[0, L] \longrightarrow \mathbb{R}$ such that

$$
\begin{equation*}
u(0)=b(0), \quad u(L)=b(L), \quad \text { and } \partial_{x}^{2} u(x)=0, \text { for } 0<x<L \tag{5C.4}
\end{equation*}
$$

That is, the temperature at the left-hand endpoint is fixed at $b(0)$, and at the right-hand endpoint is fixed at $b(L)$. The unique solution to this problem is the function $u(x)=(b(L)-b(0)) x / L+b(0)$. (Exercise 5C.2).

5C(ii) Neumann boundary conditions

Suppose \mathbb{X} is a domain with boundary $\partial \mathbb{X}$, and $u: \mathbb{X} \longrightarrow \mathbb{R}$ is some function. Then for any boundary point $\mathbf{s} \in \partial \mathbb{X}$, we use " $\partial_{\perp} u(\mathbf{s})$ " to denote the outward normal derivative ${ }^{5}$ of u on the boundary. Physically, $\partial_{\perp} u(\mathbf{s})$ is the rate of change in u as you leave \mathbb{X} by passing through $\partial \mathbb{X}$ in a perpendicular direction.

Example 5C.3.

(a) If $\mathbb{X}=[0,1]$, then $\partial_{\perp} u(0)=-\partial_{x} u(0)$ and $\partial_{\perp} u(1)=\partial_{x} u(1)$.
(b) Suppose $\mathbb{X}=[0,1]^{2} \subset \mathbb{R}^{2}$ is the unit square, and $(x, y) \in \partial \mathbb{X}$. There are four cases:

[^23]- If $x=0$ (left edge), then $\partial_{\perp} u(0, y)=-\partial_{x} u(0, y)$.
- If $x=1$ (right edge), then $\partial_{\perp} u(1, y)=\partial_{x} u(1, y)$.
- If $y=0$ (top edge), then $\partial_{\perp} u(x, 0)=-\partial_{y} u(x, 0)$.
- If $y=1$ (bottom edge), then $\partial_{\perp} u(x, 1)=\partial_{y} u(x, 1)$.
(If more than one of these conditions is true - for example, at $(0,0)$-then (x, y) is a corner, and $\partial_{\perp} u(x, y)$ is not well-defined).
(c) Let $\mathbb{D}=\{(r, \theta) ; r<1\}$ be the unit disk in the plane. Then $\partial \mathbb{D}$ is the set $\{(1, \theta) ; \theta \in[-\pi, \pi)\}$, and for any $(1, \theta) \in \partial \mathbb{D}, \quad \partial_{\perp} u(1, \theta)=\partial_{r} u(1, \theta)$.
(d) Let $\mathbb{D}=\{(r, \theta) ; r<R\}$ be the disk of radius R. Then $\partial \mathbb{D}=\{(R, \theta) ; \theta \in[-\pi, \pi)\}$, and for any $(R, \theta) \in \partial \mathbb{D}, \quad \partial_{\perp} u(R, \theta)=\partial_{r} u(R, \theta)$.
(e) Let $\mathbb{B}=\{(r, \phi, \theta) ; r<1\}$ be the unit ball in \mathbb{R}^{3}. Then $\partial \mathbb{B}=\{(r, \phi, \theta) ; r=1\}$ is the unit sphere. If $u(r, \phi, \theta)$ is a function in polar coordinates, then for any boundary point $\mathbf{s}=(1, \phi, \theta), \quad \partial_{\perp} u(\mathbf{s})=\partial_{r} u(\mathbf{s})$.
(f) Suppose $\mathbb{X}=\{(r, \theta, z) ; r \leq R, 0 \leq z \leq L,-\pi \leq \theta<\pi\}$, is the finite cylinder, and $(r, \theta, z) \in \partial \mathbb{X}$. There are three cases:
- If $r=R$ (sides), then $\partial_{\perp} u(R, \theta, z)=\partial_{r} u(R, \theta, z)$.
- If $z=0$ (bottom disk), then $\partial_{\perp} u(r, \theta, 0)=-\partial_{z} u(r, \theta, 0)$.
- If $z=L($ top disk $)$, then $\partial_{\perp} u(r, \theta, L)=\partial_{z} u(r, \theta, L)$.

We say that u satisfies homogeneous Neumann boundary conditions if

$$
\begin{equation*}
\partial_{\perp} u(\mathbf{s})=0 \text { for all } \mathbf{s} \in \partial \mathbb{X} \tag{5C.5}
\end{equation*}
$$

Physical Interpretations.

Thermodynamic. (Heat, Laplace, or Poisson equation) Suppose u represents a temperature distribution. Recall that Fourier's Law of Heat Flow (§ 1A on page 3) says that $\nabla u(\mathbf{s})$ is the speed and direction in which heat is flowing at \mathbf{s}. Recall that $\partial_{\perp} u(\mathbf{s})$ is the component of $\nabla u(\mathbf{s})$ which is perpendicular to $\partial \mathbb{X}$. Thus, homogeneous Neumann BC means that $\nabla u(\mathbf{s})$ is parallel to the boundary for all $\mathbf{s} \in \partial \mathbb{X}$. In other words no heat is crossing the boundary. This means that the boundary is a perfect insulator.

If u represents the concentration of a diffusing substance, then $\nabla u(\mathbf{s})$ is the flux of this substance at s. Homogeneous Neumann Boundary conditions mean that the boundary is an impermeable barrier to this substance.

Electrostatic. (Laplace or Poisson equation) Suppose u represents an electric potential. Thus $\nabla u(\mathbf{s})$ is the electric field at \mathbf{s}. Homogeneous Neumann BC means that $\nabla u(\mathbf{s})$ is parallel to the boundary for all $\mathbf{s} \in \partial \mathbb{X}$; i.e. no field lines penetrate the boundary.

The set of continuous functions from \mathbb{X} to \mathbb{R} which satisfy homogeneous Neumann boundary conditions will be denoted $\mathcal{C}_{\perp}(\mathbb{X})$. The set of infinitely differentiable functions from \mathbb{X} to \mathbb{R} which satisfy homogeneous Neumann boundary conditions will be denoted $\mathcal{C}_{\perp}^{\infty}(\mathbb{X})$. Thus, for example

$$
\mathcal{C}_{\perp}^{\infty}[0, L]=\left\{f:[0, L] \longrightarrow \mathbb{R} ; \quad f \text { is smooth, and } f^{\prime}(0)=0=f^{\prime}(L)\right\}
$$

Figure 5C.3: (A) $f(x)=\frac{1}{2} x^{2}-\frac{1}{3} x^{3}$ satsfies homogeneous Neumann boundary conditions on the interval $[0,1]$ (B) $f(r, \theta)=(1-r)^{2}$ satisfies homogeneous Neumann boundary conditions on the disk $\mathbb{D}=\{(r, \theta) ; r \leq 1\}$, but is not differentiable at zero.

Example 5C.4.

(a) Let $\mathbb{X}=[0,1]$, and let $f:[0,1] \longrightarrow \mathbb{R}$ be defined by $f(x)=\frac{1}{2} x^{2}-\frac{1}{3} x^{3}$ (See Figure $5 \mathrm{C} .3(\mathrm{~A}))$. Then $f^{\prime}(0)=0=f^{\prime}(1)$, and f is smooth, so $f \in \mathcal{C}_{\perp}^{\infty}[0,1]$.
(b) Let $\mathbb{X}=[0, \pi]$.

1. For any $n \in \mathbb{N}$, let $\mathbf{C}_{n}(x)=\cos (n \cdot x)$ (see Figure 6D.1 on page 113). Then $\mathbf{C}_{n} \in \mathcal{C}_{\perp}^{\infty}[0, \pi]$.
2. If $f(x)=5 \cos (x)-3 \cos (2 x)+7 \cos (3 x)$, then $f \in \mathcal{C}_{\perp}^{\infty}[0, \pi]$. More generally, any finite sum $\sum_{n=1}^{N} A_{n} \mathbf{C}_{n}(x)$ (for some constants A_{n}) is in $\mathcal{C}_{\perp}^{\infty}[0, \pi]$.
3. If $f(x)=\sum_{n=1}^{\infty} A_{n} \mathbf{C}_{n}(x)$ is a uniformly convergent Fourier cosine series $]^{4}$, and the derivative series $f^{\prime}(x)=-\sum_{n=1}^{\infty} n A_{n} \mathbf{S}_{n}(x)$ is also uniformly convergent, then $f \in \mathcal{C}_{\perp}^{\infty}[0, \pi]$.
(c) Let $\mathbb{D}=\{(r, \theta) ; r \leq 1\}$ be the unit disk.
4. Let $f: \mathbb{D} \longrightarrow \mathbb{R}$ be the "witch's hat" of Figure 5C.3(B), defined: $f(r, \theta):=(1-r)^{2}$. Then $\partial_{\perp} f \equiv 0$ on the boundary of the disk, so f satisfies Neumann boundary conditions. Also, f is continuous on \mathbb{D}; hence $f \in \mathcal{C}_{\perp}(\mathbb{D})$. However, f is not smooth (it is nondifferentiable at zero), so $f \notin \mathcal{C}_{\perp}^{\infty}(\mathbb{D})$.

Figure 5C.4: (A) $f(r, \theta)=\left(1-r^{2}\right)^{2}$ satisfies homogeneous Neumann boundary conditions on the disk, and is smooth everywhere. (B) $f(r, \theta)=\left(1+\cos (\theta)^{2}\right) \cdot\left(1-\left(1-r^{2}\right)^{4}\right)$ does not satisfy homogeneous Neumann boundary conditions on the disk, and is not constant on the boundary.
2. Let $f: \mathbb{D} \longrightarrow \mathbb{R}$ be the "bell" of Figure 5C.4(A), defined: $f(r, \theta):=$ $\left(1-r^{2}\right)^{2}$. Then $\partial_{\perp} f \equiv 0$ on the boundary of the disk, and f is smooth everywhere on \mathbb{D}, so $f \in \mathcal{C}_{\perp}^{\infty}(\mathbb{D})$.
3. Let $f: \mathbb{D} \longrightarrow \mathbb{R}$ be the "flower vase" of Figure 5C.4(B), defined $f(r, \theta):=\left(1+\cos (\theta)^{2}\right) \cdot\left(1-\left(1-r^{2}\right)^{4}\right)$. Then $\partial_{\perp} f \equiv 0$ on the boundary of the disk, and f is smooth everywhere on \mathbb{D}, so $f \in \mathcal{C}_{\perp}^{\infty}(\mathbb{D})$. Note that, in this case, the angular derivative is nonzero, so f is not constant on the boundary of the disk.
(d) Let $\mathbb{X}=[0, \pi] \times[0, \pi]$ be the square of sidelength π.

1. For any $(n, m) \in \mathbb{N}^{2}$, let $\mathbf{C}_{n, m}(x, y)=\cos (n x) \cdot \cos (m y)$ (see Figure 9A.2 on page 181). Then $\mathbf{C}_{n, m} \in \mathcal{C}_{\perp}^{\infty}(\mathbb{X})$.

[^24]2. If $f(x)=5 \cos (x) \cos (2 y)-3 \cos (2 x) \cos (7 y)+7 \cos (3 x) \cos (y)$, then $f \in \mathcal{C}_{\perp}^{\infty}(\mathbb{X})$. More generally, any finite sum $\sum_{n=1}^{N} \sum_{m=1}^{M} A_{n, m} \mathbf{C}_{n, m}(x)$ (for some constants $\left.A_{n, m}\right)$ is in $\mathcal{C}_{\perp}^{\infty}(\mathbb{X})$.
3. More generally, if $f=\sum_{n, m=0}^{\infty} A_{n, m} \mathbf{C}_{n, m}$ is a uniformly convergent two dimensional Fourier cosine series? , and the derivative series
\[

$$
\begin{aligned}
& \partial_{x} f(x, y)=-\sum_{n, m=0}^{\infty} n A_{n, m} \sin (n x) \cdot \cos (m y) \\
& \partial_{y} f(x, y)=-\sum_{n, m=0}^{\infty} m A_{n, m} \cos (n x) \cdot \sin (m y)
\end{aligned}
$$
\]

are also uniformly convergent, then $f \in \mathcal{C}_{\perp}^{\infty}(\mathbb{X})$.
Exercise 5C. 3 Verify examples (b) to (d)
Arbitrary nonhomogeneous Neumann Boundary conditions are imposed by fixing a function $b: \partial \mathbb{X} \longrightarrow \mathbb{R}$, and then requiring

$$
\begin{equation*}
\partial_{\perp} u(\mathbf{s})=b(\mathbf{s}) \text { for all } \mathbf{s} \in \partial \mathbb{X} \tag{5C.6}
\end{equation*}
$$

For example, the classical Neumann Problem is to find a continuously differentiable function $u: \mathbb{X} \longrightarrow \mathbb{R}$ satisfying the Neumann condition (5C.6), such that u also satisfies Laplace's Equation: $\triangle u(\mathbf{x})=0$ for all $\mathbf{x} \in \operatorname{int}(\mathbb{X})$.

Physical Interpretations.

Thermodynamic. Here u represents a temperature distribution, or the concentration of some diffusing material. Recall that Fourier's Law (§ 1A on page (3)) says that $\nabla u(\mathbf{s})$ is the flux of heat (or material) at \mathbf{s}. Thus, for any $\mathbf{s} \in \partial \mathbb{X}$, the derivative $\partial_{\perp} u(\mathbf{s})$ is the flux of heat/material across the boundary at \mathbf{s}. The nonhomogeneous Neumann Boundary condition $\partial_{\perp} u(\mathbf{s})=b(\mathbf{s})$ means that heat (or material) is being 'pumped' across the boundary at a constant rate described by the function $b(\mathbf{s})$.

Electrostatic. Here, u represents an electric potential. Thus $\nabla u(\mathbf{s})$ is the electric field at \mathbf{s}. Nonhomogeneous Neumann boundary conditions mean that the field vector perpendicular to the boundary is determined by the function $b(\mathbf{s})$.

[^25]
5C(iii) Mixed (or Robin) boundary conditions

These are a combination of Dirichlet and Neumann-type conditions obtained as follows: Fix functions $b: \partial \mathbb{X} \longrightarrow \mathbb{R}$, and $h, h_{\perp}: \partial \mathbb{X} \longrightarrow \mathbb{R}$. Then $\left(h, h_{\perp}, b\right)$ mixed boundary conditions are given:

$$
\begin{equation*}
h(\mathbf{s}) \cdot u(\mathbf{s})+h_{\perp}(\mathbf{s}) \cdot \partial_{\perp} u(\mathbf{s})=b(x) \text { for all } \mathbf{s} \in \partial \mathbb{X} . \tag{5C.7}
\end{equation*}
$$

For example:

- Dirichlet Conditions corresponds to $h \equiv 1$ and $h_{\perp} \equiv 0$.
- Neumann Conditions corresponds to $h \equiv 0$ and $h_{\perp} \equiv 1$.
- No boundary conditions corresponds to $h \equiv h_{\perp} \equiv 0$.
- Newton's Law of Cooling reads:

$$
\begin{equation*}
\partial_{\perp} u=c \cdot\left(u-T_{E}\right) \tag{5C.8}
\end{equation*}
$$

This describes a situation where the boundary is an imperfect conductor (with conductivity constant c), and is immersed in a bath with ambient temperature T_{E}. Thus, heat leaks in or out of the boundary at a rate proportional to c times the difference between the internal temperature u and the external temperature T_{E}. Equation (5C.8) can be rewritten:

$$
c \cdot u-\partial_{\perp} u=b
$$

where $b=c \cdot T_{E}$. This is the mixed boundary equation (5C.7), with $h \equiv c$ and $h_{\perp} \equiv-1$.

- Homogeneous mixed boundary conditions take the form:

$$
h \cdot u+h_{\perp} \cdot \partial_{\perp} u \equiv 0
$$

The set of functions in $\mathcal{C}^{\infty}(\mathbb{X})$ satisfying this property will be denoted $\mathcal{C}_{h, h}^{\infty}(\mathbb{X})$. Thus, for example, if $\mathbb{X}=[0, L]$, and $h(0), h_{\perp}(0), h(L)$ and $h_{\perp}(\bar{L})$ are four constants, then

$$
\mathcal{C}_{h, h_{\perp}}^{\infty}[0, L]=\left\{\begin{array}{c}
f:[0, L] \longrightarrow \mathbb{R} ; \quad f \text { is differentiable, } h(0) f(0)-h_{\perp}(0) f^{\prime}(0)=0 \\
\text { and } h(L) f(L)+h_{\perp}(L) f^{\prime}(L)=0 .
\end{array}\right\}
$$

Remarks. (a) Note that there is some redundancy in this formulation. Equation (5C.7) is equivalent to

$$
k \cdot h(\mathbf{s}) \cdot u(\mathbf{s})+k \cdot h_{\perp}(\mathbf{s}) \cdot \partial_{\perp} u(\mathbf{s})=k \cdot b(\mathbf{s})
$$

for any constant $k \neq 0$. Normally we chose k so that at least one of the coefficients h or h_{\perp} is equal to 1 .
(b) Some authors (e.g. [Pin98]) call this general boundary conditions, and, for mathematical convenience, write this as

$$
\begin{equation*}
\cos (\alpha) u+L \cdot \sin (\alpha) \partial_{\perp} u=T \tag{5C.9}
\end{equation*}
$$

where and α and T are parameters. Here, the " $\cos (\alpha), \sin (\alpha)$ " coefficients of (5C.9) are just a mathematical "gadget" to concisely express any weighted combination of Dirichlet and Neumann conditions. An expression of type (5C.7) can be transformed into one of type (5C.9) as follows: Let $\alpha:=\arctan \left(\frac{h_{\perp}}{L \cdot h}\right)$ (if $h=0$, then set $\alpha=\frac{\pi}{2}$) and let $T:=b \frac{\cos (\alpha)+L \sin (\alpha)}{h+h_{\perp}}$. Going the other way is easier; simply define $h:=\cos (\alpha), h_{\perp}:=L \cdot \sin (\alpha)$, and $T:=b$.

5C(iv) Periodic boundary conditions

Periodic boundary conditions means that function u "looks the same" on opposite edges of the domain. For example, if we are solving a PDE on the interval $[-\pi, \pi]$, then periodic boundary conditions are imposed by requiring

$$
u(-\pi)=u(\pi) \text { and } u^{\prime}(-\pi)=u^{\prime}(\pi) .
$$

Interpretation \#1: Pretend that u is actually a small piece of an infinitely extended, periodic function $\widetilde{u}: \mathbb{R} \longrightarrow \mathbb{R}$, where, for any $x \in \mathbb{R}$ and $n \in \mathbb{Z}$, we have:

$$
\widetilde{u}(x+2 n \pi)=u(x) .
$$

Thus u must have the same value - and the same derivative -at x and $x+2 n \pi$, for any $x \in \mathbb{R}$. In particular, u must have the same value and derivative at $-\pi$ and π. This explains the name "periodic boundary conditions".

Interpretation \#2: Suppose you 'glue together' the left and right ends of the interval $[-\pi, \pi]$ (i.e. glue $-\pi$ to π). Then the interval looks like a a circle (where $-\pi$ and π actually become the 'same' point). Thus u must have the same value -and the same derivative -at $-\pi$ and π.

Example 5C.5.

(a) $u(x)=\sin (x)$ and $v(x)=\cos (x)$ have periodic boundary conditions.
(b) For any $n \in \mathbb{N}$, the functions $\mathbf{S}_{n}(x)=\sin (n x)$ and $\mathbf{C}_{n}(x)=\cos (n x)$ have periodic boundary conditions. (See Figure 6D.1 on page 113.)
(c) $\sin (3 x)+2 \cos (4 x)$ has periodic boundary conditions.

Figure 5C.5: If we 'glue' the opposite edges of a square together, we get a torus.
(d) If $u_{1}(x)$ and $u_{2}(x)$ have periodic boundary conditions, and c_{1}, c_{2} are any constants, then $u(x)=c_{1} u_{1}(x)+c_{2} u_{2}(x)$ also has periodic boundary conditions.
Exercise 5C. 4 Verify these examples.
On the square $[-\pi, \pi] \times[-\pi, \pi]$, periodic boundary conditions are imposed by requiring:
(P1) $u(x,-\pi)=u(x, \pi)$ and $\partial_{y} u(x,-\pi)=\partial_{y} u(x, \pi)$, for all $x \in[-\pi, \pi]$.
(P2) $u(-\pi, y)=u(\pi, y)$ and $\partial_{x} u(-\pi, y)=\partial_{x} u(\pi, y)$ for all $y \in[-\pi, \pi]$.
Interpretation \#1: Pretend that u is actually a small piece of an infinitely extended, doubly periodic function $\widetilde{u}: \mathbb{R}^{2} \longrightarrow \mathbb{R}$, where, for every $(x, y) \in \mathbb{R}^{2}$, and every $n, m \in \mathbb{Z}$, we have:

$$
\widetilde{u}(x+2 n \pi, y+2 m \pi)=u(x, y) .
$$

Exercise 5C.5. Explain how conditions (P1) and (P1) arise naturally from this interpretation.

Interpretation \#2: Glue the top edge of the square to the bottom edge, and the right edge to the left edge. In other words, pretend that the square is really a torus (Figure 5C.5).

Example 5C.6.

(a) The functions $u(x, y)=\sin (x) \sin (y)$ and $v(x, y)=\cos (x) \cos (y)$ have periodic boundary conditions. So do the functions $w(x, y)=\sin (x) \cos (y)$ and $w(x, y)=\cos (x) \sin (y)$
(b) For any $(n, m) \in \mathbb{N}^{2}$, the functions $\mathbf{S}_{n, m}(x)=\sin (n x) \sin (m y)$ and $\mathbf{C}_{n, m}(x)=$ $\cos (n x) \cos (m x)$ have periodic boundary conditions. (See Figure 9A.2 on page 181.)
(c) $\sin (3 x) \sin (2 y)+2 \cos (4 x) \cos (7 y)$ has periodic boundary conditions.
(d) If $u_{1}(x, y)$ and $u_{2}(x, y)$ have periodic boundary conditions, and c_{1}, c_{2} are any constants, then $u(x, y)=c_{1} u_{1}(x, y)+c_{2} u_{2}(x, y)$ also has periodic boundary conditions.
Exercise 5C. 6 Verify these examples.
On the D-dimensional cube $[-\pi, \pi]^{D}$, we require, for $d=1,2, \ldots, D$ and all $x_{1}, \ldots, x_{D} \in[-\pi, \pi]$, that

$$
u\left(x_{1}, \ldots, x_{d-1},-\pi, x_{d+1}, \ldots, x_{D}\right)=u\left(x_{1}, \ldots, x_{d-1}, \pi, x_{d+1}, \ldots, x_{D}\right)
$$

and $\partial_{d} u\left(x_{1}, \ldots, x_{d-1},-\pi, x_{d+1}, \ldots, x_{D}\right)=\partial_{d} u\left(x_{1}, \ldots, x_{d-1}, \pi, x_{d+1}, \ldots, x_{D}\right)$.
Again, the idea is that we are identifying $[-\pi, \pi]^{D}$ with the D-dimensional torus. The space of all functions satisfying these conditions will be denoted $\mathcal{C}_{\text {per }}^{\infty}[-\pi, \pi]^{D}$. Thus, for example,

$$
\begin{aligned}
& \mathcal{C}_{\text {per }}^{\infty}[-\pi, \pi]=\{f:[-\pi, \pi] \longrightarrow \mathbb{R} ; \quad f \text { is differentiable }, \\
&\left.f(-\pi)=f(\pi) \text { and } f^{\prime}(-\pi)=f^{\prime}(\pi)\right\} \\
& \mathcal{C}_{\text {per }}^{\infty}[-\pi, \pi]^{2}=\{f:[-\pi, \pi] \times[-\pi, \pi] \longrightarrow \mathbb{R} ; \quad f \text { is differentiable, } \\
&\text { and satisfies (P1) and (P2) above }\}
\end{aligned}
$$

5D Uniqueness of solutions

Prerequisites: $\S[B, ~ \S[B, ~ \S[\square, ~ \S[B, ~ \S 5 C$.
Prerequisites (for proofs): $\S[\mathrm{E}, ~ \S(\mathrm{E}(\mathrm{iii}), ~ \S 0 \mathrm{O}$.
Differential equations are interesting primarily because they can be used to express the laws governing physical phenomena (e.g. heat flow, wave motion, electrostatics, etc.). By specifying particular initial conditions and boundary conditions, we try to mathematically encode the physical conditions, constraints and external influences which are present in a particular situation. A solution to the differential equation which satisfies these initial/boundary conditions thus constitutes a prediction about what will occur under these physical conditions.

However, this strategy can only succeed if there is a unique solution to the differential equation with particular initial/boundary conditions. If there are many mathematically correct solutions, then we cannot make a clear prediction about which of them will really occur. Sometimes we can reject some solutions as being 'unphysical' (e.g. they are nondifferentiable, or discontinuous, or contain unacceptable infinities, or predict negative values for a necessarily positive quantity like density). However, these notions of 'unphysicality' really just represent further mathematical constraints which we are implicitly imposing on the solution. If multiple solutions still exist, we should try to impose further constraints
(i.e. construct a more detailed or well-specified model) until we get a unique solution. Thus, the question of uniqueness of solutions is extremely important in the general theory of differential equations (both ordinary and partial). In this section, we will establish sufficient conditions for the uniqueness of solutions to I/BVPs for the Laplace, Poisson, Heat, and wave equations.

Let $\mathcal{S} \subset \mathbb{R}^{D}$. We say that \mathcal{S} is a smooth graph if there is an open subset $\mathbb{U} \subset \mathbb{R}^{D-1}$, a function $f: \mathbb{U} \longrightarrow \mathbb{R}$, and some $d \in[1 \ldots D]$, such that \mathcal{S} 'looks like' the graph of the function f, plotted over the domain \mathbb{U}, with the value of f plotted in the d th coordinate. In other words:
$\mathcal{S}=\left\{\left(u_{1}, \ldots, u_{d-1}, y, u_{d}, \ldots, u_{D-1}\right) ;\left(u_{1}, \ldots, u_{D-1}\right) \in \mathbb{U}, y=f\left(u_{1}, \ldots, u_{D-1}\right)\right\}$.
Intuitively, this means that \mathcal{S} looks like a smooth surface (oriented 'roughly perpendicular' to the d th dimension). More generally, if $\mathcal{S} \subset \mathbb{R}^{D}$, we say that \mathcal{S} is a smooth hypersurface if, for each $\mathbf{s} \in \mathcal{S}$, there exists some $\epsilon>0$ such that $\mathbb{B}(\mathbf{s}, \epsilon) \cap \mathcal{S}$ is a smooth graph.

Example 5D.1.

(a) Let $\mathbb{P} \subset \mathbb{R}^{D}$ be any $(D-1)$-dimensional hyperplane; then \mathbb{P} is a smooth hypersurface.
(b) Let $\mathbb{S}^{1}:=\left\{\mathbf{s} \in \mathbb{R}^{2} ;|\mathbf{s}|=1\right\}$ be the unit circle in \mathbb{R}^{2}. Then \mathbb{S}^{1} is a smooth hypersurface in \mathbb{R}^{2}.
(c) Let $\mathbb{S}^{2}:=\left\{\mathbf{s} \in \mathbb{R}^{3} ;|\mathbf{s}|=1\right\}$ be the unit sphere in \mathbb{R}^{3}. Then \mathbb{S}^{2} is a smooth hypersurface in \mathbb{R}^{3}.
(d) Let $\mathbb{S}^{D-1}:=\left\{\mathbf{s} \in \mathbb{R}^{D} ;|\mathbf{s}|=1\right\}$ be the unit hypersphere in \mathbb{R}^{D}. Then \mathbb{S}^{D-1} is a smooth hypersurface in \mathbb{R}^{D}.
(e) Let $\mathcal{S} \subset \mathbb{R}^{D}$ be any smooth hypersurface, and let $\mathbb{U} \subset \mathbb{R}^{D}$ be an open set. Then $\mathcal{S} \cap \mathbb{U}$ is also a smooth hypersurface (if it is nonempty).
Exercise 5D. 1 Verify these examples.
A domain $\mathbb{X} \subset \mathbb{R}^{D}$ has piecewise smooth boundary if $\partial \mathbb{X}$ is a finite union of smooth hypersurfaces. If $u: \mathbb{X} \longrightarrow \mathbb{R}$ is some differentiable function, then this implies that the normal derivative $\partial_{\perp} u(\mathbf{s})$ is well-defined for $\mathbf{s} \in \partial \mathbb{X}$, except for those \mathbf{s} on the (negligible) regions where two or more of these smooth hypersurfaces intersect. This means that it is meaningful to impose Neumann boundary conditions on u. It also means that certain methods from vector calculus can be applied to u (see \oint (iii) on page 561).

Example 5D.2. Every domain in Example 5C.1 on page 71 has a piecewise smooth boundary. (Exercise 5D. 2 Verify this.)

Indeed, every domain we will consider in this book will have a piecewise smooth boundary, as does any domain which is likely to arise in any physically realistic model. Hence, it suffices to obtain uniqueness results for such domains.

5D(i) Uniqueness for the Laplace and Poisson equations

Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a domain and let $u: \mathbb{X} \longrightarrow \mathbb{R}$. We say that u is continuous and harmonic on \mathbb{X} if u is continuous on \mathbb{X} and $\Delta u(\mathbf{x})=0$ for all $\mathbf{x} \in \operatorname{int}(\mathbb{X})$.

Lemma 5D.3. (Solution uniqueness for Laplace equation; homogeneous $B C$)
Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a bounded domain, and suppose $u: \mathbb{X} \longrightarrow \mathbb{R}$ is continuous and harmonic on \mathbb{X}. Then various homogeneous boundary conditions constrain the solution as follows:
(a) (Homogeneous Dirichlet BC) If $u(\mathbf{s})=0$ for all $\mathbf{s} \in \partial \mathbb{X}$, then u must be the constant 0 function: i.e. $u(\mathbf{x})=0$, for all $\mathbf{x} \in \mathbb{X}$.
(b) (Homogeneous Neumann BC) Suppose \mathbb{X} has a piecewise smooth boundary. If $\partial_{\perp} u(\mathbf{s})=0$ for all $\mathbf{s} \in \partial \mathbb{X}$, then u must be a constant: i.e. $u(\mathbf{x})=C$, for all $\mathbf{x} \in \mathbb{X}$.
(c) (Homogeneous Robin BC) Suppose \mathbb{X} has a piecewise smooth boundary, and let $h, h_{\perp}: \partial \mathbb{X} \longrightarrow \mathbb{R}_{+}$be two other continuous nonnegative functions such that $h(\mathbf{s})+h_{\perp}(\mathbf{s})>0$ for all $\mathbf{s} \in \partial \mathbb{X}$. If $h(\mathbf{s}) u(\mathbf{s})+h_{\perp}(\mathbf{s}) \partial_{\perp} u(\mathbf{s})=0$ for all $\mathbf{s} \in \partial \mathbb{X}$, then u must be a constant function.
Furthermore, if h is nonzero somewhere on $\partial \mathbb{X}$, then $u(\mathbf{x})=0$, for all $\mathrm{x} \in \mathbb{X}$.

Proof. (a) If $u: \mathbb{X} \longrightarrow \mathbb{R}$ is harmonic, then the Maximum Principle (Corollary 1 E. 2 on page 17) says that any maximum/minimum of u occurs somewhere on $\partial \mathbb{X}$. But $u(\mathbf{s})=0$ for all $\mathbf{s} \in \partial \mathbb{X}$; thus, $\max _{\mathbb{X}}(u)=0=\min _{\mathbb{X}}(u)$; thus, $u \equiv 0$.
(If \mathbb{X} has a piecewise smooth boundary, then another proof of (a) arises by setting $h \equiv 1$ and $h_{\perp} \equiv 0$ in part (c).)
To prove (b), set $h \equiv 0$ and $h_{\perp} \equiv 1$ in part (c).
To prove (c), we will use Green's Formula. We begin with the following claim.
Claim 1: For all $\mathbf{s} \in \partial \mathbb{X}$, we have $u(\mathbf{s}) \cdot \partial_{\perp} u(\mathbf{s}) \leq 0$.
Proof. The homogeneous Robin boundary conditions say $h(\mathbf{s}) u(\mathbf{s})+h_{\perp}(\mathbf{s}) \partial_{\perp} u(\mathbf{s})=$ 0 . Multiplying by $u(\mathbf{s})$, we get

$$
\begin{equation*}
h(\mathbf{s}) u^{2}(\mathbf{s})+u(\mathbf{s}) h_{\perp}(\mathbf{s}) \partial_{\perp} u(\mathbf{s})=0 . \tag{5D.1}
\end{equation*}
$$

If $h_{\perp}(\mathbf{s})=0$, then $h(\mathbf{s})$ must be nonzero, and equation (5D.1) reduces to $h(\mathbf{s}) u^{2}(\mathbf{s})=0$, which means $u(\mathbf{s})=0$, which means $u(\mathbf{s}) \cdot \partial_{\perp} u(\mathbf{s}) \leq 0$, as desired.

If $h_{\perp}(\mathbf{s}) \neq 0$, then we can rearrange equation (5D.1) to get

$$
u(\mathbf{s}) \cdot \partial_{\perp} u(\mathbf{s})=\frac{-h(\mathbf{s}) u^{2}(\mathbf{s})}{h_{\perp}(\mathbf{s})} \underset{(*)}{\leq} 0,
$$

where $(*)$ is because because $h(\mathbf{s}), h_{\perp}(\mathbf{s}) \geq 0$ by hypothesis, and of course $u^{2}(\mathbf{s}) \geq 0$. The claim follows. $\diamond_{\text {Claim } 1}$

Now, if u is harmonic, then u is infinitely differentiable, by Proposition IE.4 on page 18. Thus, we can apply vector calculus techniques from Appendix 0E(iii). We have

$$
\begin{align*}
0 & \underset{(*)}{\geq} \int_{\partial \mathbb{X}} u(\mathbf{s}) \cdot \partial_{\perp} u(\mathbf{s}) d \mathbf{s} \underset{\overline{(\dagger)}}{\overline{(\dagger)}} \int_{\mathbb{X}} u(\mathbf{x}) \Delta u(\mathbf{x})+|\nabla u(\mathbf{x})|^{2} d \mathbf{x} \\
& \overline{(\ddagger)} \tag{5D.2}\\
& \int_{\mathbb{X}}|\nabla u(\mathbf{x})|^{2} d \mathbf{x} \underset{(\stackrel{1}{2}}{\geq} 0
\end{align*}
$$

Here, $(*)$ is by Claim $1,(\dagger)$ is by Green's Formula (Theorem 0E.5(b) on page 564), (\ddagger) is because $\triangle u \equiv 0$, and (\diamond) is because $|\nabla u(\mathbf{x})|^{2} \geq 0$ for all $\mathbf{x} \in \mathbb{X}$.

The inequalities (5D.2) imply that

$$
\int_{\mathbb{X}}|\nabla u(\mathbf{x})|^{2} d \mathbf{x}=0 .
$$

But this implies that $|\nabla u(\mathbf{x})|=0$ for all $\mathbf{x} \in \mathbb{X}$, which means $\nabla u \equiv 0$, which means u is a constant on \mathbb{X}, as desired.
Now, if $\nabla u \equiv 0$, then clearly $\partial_{\perp} u(\mathbf{s})=0$ for all $\mathbf{s} \in \partial \mathbb{X}$. Thus, the Robin boundary conditions reduce to $h(\mathbf{s}) u(\mathbf{s})=0$. If $h(\mathbf{s}) \neq 0$ for some $\mathbf{s} \in \partial \mathbb{X}$, then we get $u(\mathbf{s})=0$. But since u is a constant, this means that $u \equiv 0$.

One of the nice things about linear differential equations is that linearity enormously simplifies the problem of solution uniqueness. First we show that the only solution satisfying homogeneous boundary conditions (and, if applicable, zero initial conditions) is the constant zero function (as in Lemma 5D. 3 above). Then it is easy to deduce uniqueness for arbitrary initial/boundary conditions.

Corollary 5D.4. (Solution uniqueness: Laplace equation, nonhomogeneous BC) Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a bounded domain, and let $b: \partial \mathbb{X} \longrightarrow \mathbb{R}$ be continuous.
(a) There exists at most one continuous, harmonic function $u: \mathbb{X} \longrightarrow \mathbb{R}$ which satisfies the nonhomogeneous Dirichlet BC $u(\mathbf{s})=b(\mathbf{s})$ for all $\mathbf{s} \in \partial \mathbb{X}$.
(b) Suppose \mathbb{X} has a piecewise smooth boundary.
[i] If $\int_{\partial \mathbb{X}} b(\mathbf{s}) d \mathbf{s} \neq 0$, then there is no continuous harmonic function u : $\mathbb{X} \longrightarrow \mathbb{R}$ which satisfies the nonhomogeneous Neumann BC $\partial_{\perp} u(\mathbf{s})=b(\mathbf{s})$ for all $\mathbf{s} \in \partial \mathbb{X}$.
[ii] Suppose $\int_{\partial \mathbb{X}} b(\mathbf{s}) d \mathbf{s}=0$. If $u_{1}, u_{2}: \mathbb{X} \longrightarrow \mathbb{R}$ are two continuous harmonic functions which both satisfy the nonhomogeneous Neumann BC $\partial_{\perp} u(\mathbf{s})=b(\mathbf{s})$ for all $\mathbf{s} \in \partial \mathbb{X}$, then $u_{1}=u_{2}+C$ for some constant C.
(c) Suppose \mathbb{X} has a piecewise smooth boundary, and let $h, h_{\perp}: \partial \mathbb{X} \longrightarrow \mathbb{R}_{+}$be two other continuous nonnegative functions such that $h(\mathbf{s})+h_{\perp}(\mathbf{s})>0$ for all $\mathbf{s} \in \partial \mathbb{X}$. If $u_{1}, u_{2}: \mathbb{X} \longrightarrow \mathbb{R}$ are two continuous harmonic functions which both satisfy the nonhomogeneous Robin BC $h(\mathbf{s}) u(\mathbf{s})+h_{\perp}(\mathbf{s}) \partial_{\perp} u(\mathbf{s})=$ $b(\mathbf{s})$ for all $\mathbf{s} \in \partial \mathbb{X}$, then $u_{1}=u_{2}+C$ for some constant C. Furthermore, if h is nonzero somewhere on $\partial \mathbb{X}$, then $u_{1}=u_{2}$.

Proof. Exercise 5D. 3 Hint: for (a), (c), and (b)[ii], suppose that $u_{1}, u_{2}: \mathbb{X} \longrightarrow \mathbb{R}$ are two continuous harmonic functions with the desired nonhomogeneous boundary conditions. Then $\left(u_{1}-u_{2}\right)$ is a continuous harmonic function satisfying homogeneous boundary conditions of the same kind; now apply the appropriate part of Lemma 5 D .3 to conclude that $\left(u_{1}-u_{2}\right)$ is zero or a constant.

For (b) [i], use Green's Formula (Theorem 0E.5(a) on page 564).

Exercise 5D.4. Let $\mathbb{X}=\mathbb{D}=\{(r, \theta) ; \theta \in[-\pi, \pi), r \leq 1\}$ be the closed unit disk (in polar coordinates). Consider the function $h: \mathbb{D} \longrightarrow \mathbb{R}$ defined by $h(r, \theta)=\log (r)$. In Cartesian coordinates, h has the form $h(x, y)=\log \left(x^{2}+y^{2}\right)$ (see Figure 1C.1(A) on page (10). In Example IC.2 we observed that h is harmonic. But h satisfies homogeneous Dirichlet BC on $\partial \mathbb{D}$, so it seems to be a counterexample to Lemma 5D.3(a). Also, $\partial_{\perp} h(x)=1$ for all $x \in \partial \mathbb{D}$, so h seems to be a counterexample to Corollary 5D.4(b) [i].

Why is this function not a counterexample to Lemma 5D. 3 or Corollary 5D.4(b) [i].?

Theorem 5D.5. (Solution uniqueness: Poisson equation, Nonhomogeneous BC) Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a bounded domain with a piecewise smooth boundary. Let $q: \mathbb{X} \longrightarrow \mathbb{R}$ be a continuous function (e.g. describing an electric charge or heat source), and let $b: \partial \mathbb{X} \longrightarrow \mathbb{R}$ be another continuous function (a boundary condition). Then there is at most one continuous function $u: \mathbb{X} \longrightarrow \mathbb{R}$ satisfying the Poisson Equation $\triangle u=q$, and satisfying either of the following nonhomogeneous boundary conditions:
(a) (Nonhomogeneous Dirichlet BC) $u(\mathbf{s})=b(\mathbf{s})$ for all $\mathbf{s} \in \partial \mathbb{X}$.
(b) (Nonhomogeneous Robin BC) $h(\mathbf{s})) u(\mathbf{s})+h_{\perp}(\mathbf{s}) \partial_{\perp} u(\mathbf{s})=b(\mathbf{s})$ for all $\mathbf{s} \in \partial \mathbb{X}$, where $h, h_{\perp}: \partial \mathbb{X} \longrightarrow \mathbb{R}_{+}$are two other nonnegative functions, and h is nontrivial.

Furthermore, if u_{1} and u_{2} are two functions satisfying $\triangle u=q$, and also satisfying:
(c) (Nonhomogeneous Neumann BC) $\partial_{\perp} u(\mathbf{s})=b(\mathbf{s})$ for all $\mathbf{s} \in \partial \mathbb{X}$.
....then $u_{1}=u_{2}+C$, where C is a constant.
Proof. Suppose u_{1} and u_{2} were two continuous functions satisfying one of (a) or (b), and such that $\triangle u_{1}=q=\triangle u_{2}$. Let $u=u_{1}-u_{2}$. Then u is continuous, harmonic, and satisfies one of (a) or (c) in Lemma 5D.3. Thus, $u \equiv 0$. But this means that $u_{1} \equiv u_{2}$. Hence, there can be at most one solution. The proof for (c) is Exercise 5D.5.

5D(ii) Uniqueness for the heat equation

Throughout this section, if $u: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ is a time-varying scalar field, and $t \in \mathbb{R}_{+}$, then define the function $u_{t}: \mathbb{X} \longrightarrow \mathbb{R}$ by $u_{t}(\mathbf{x}):=u(\mathbf{x} ; t)$, for all $\mathbf{x} \in \mathbb{X}$. (Note: u_{t} does not denote the time-derivative).

If $f: \mathbb{X} \longrightarrow \mathbb{R}$ is any integrable function, then the L^{2}-norm of f is defined

$$
\|f\|_{2}:=\left(\int_{\mathbb{X}}|f(\mathbf{x})|^{2} d \mathbf{x}\right)^{1 / 2}
$$

(See $\S 6 \mathrm{~B}$ for more information). We begin with a result which reinforces our intuition that the heat equation resembles 'melting' or 'erosion'.

Lemma 5D.6. (L^{2}-norm decay for heat equation)
Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a bounded domain with a piecewise smooth boundary. Suppose that $u: \mathbb{X} \times \mathbb{R}_{\not} \longrightarrow \mathbb{R}$ satisfies the following three conditions:
(a) (Regularity) u is continuous on $\mathbb{X} \times \mathbb{R}_{\not}$, and $\partial_{t} u$ and $\partial_{1}^{2} u, \ldots, \partial_{D}^{2} u$ are continuous on $\operatorname{int}(\mathbb{X}) \times \mathbb{R}_{+}$;
(b) (Heat equation) $\partial_{t} u=\triangle u$;
(c) (Homogeneous Dirichlet/Neumann BC) For all $\mathbf{s} \in \partial \mathbb{X}$ and $t \in \mathbb{R}_{+}$, either $u_{t}(\mathbf{s})=0$ or $\partial_{\perp} u_{t}(\mathbf{s})=0$. ${ }^{\text {. }}$

Define the function $E: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$by

$$
\begin{equation*}
E(t):=\left\|u_{t}\right\|_{2}^{2}=\int_{\mathbb{X}}\left|u_{t}(\mathbf{x})\right|^{2} d \mathbf{x}, \quad \text { for all } t \in \mathbb{R}_{+} . \tag{5D.3}
\end{equation*}
$$

Then E is differentiable and nonincreasing -that is, $E^{\prime}(t) \leq 0$ for all $t \in \mathbb{R}_{\neq}$.

[^26]Proof. For any $\mathbf{x} \in \mathbb{X}$ and $t \in \mathbb{R}_{+}$, we have

$$
\begin{equation*}
\partial_{t}\left|u_{t}(\mathbf{x})\right|^{2} \quad \overline{\overline{(*)}} \quad 2 u_{t}(\mathbf{x}) \cdot \partial_{t} u_{t}(\mathbf{x}) \underset{\overline{(\dagger)}}{\overline{=}} 2 u_{t}(\mathbf{x}) \cdot \Delta u_{t}(\mathbf{x}) \tag{5D.4}
\end{equation*}
$$

where $(*)$ is the Leibniz rule, and (\dagger) is because u satisfies the heat equation by hypothesis (b). Thus,

$$
\begin{equation*}
E^{\prime}(t) \overline{\overline{(*)}} \int_{\mathbb{X}} \partial_{t}\left|u_{t}(\mathbf{x})\right|^{2} d \mathbf{x} \underset{\overline{(\dagger)}}{\overline{(t)}} \quad 2 \int_{\mathbb{X}} u_{t}(\mathbf{x}) \cdot \triangle u_{t}(\mathbf{x}) d \mathbf{x} \tag{5D.5}
\end{equation*}
$$

Here (*) comes from differentiating the integral (5D.3) using Proposition 0G. 1 on page 567. Meanwhile, (\dagger) is by eqn.(5D.4).
Claim 1: For all $t \in \mathbb{R}_{+}, \int_{\mathbb{X}} u_{t}(\mathbf{x}) \cdot \Delta u_{t}(\mathbf{x}) d \mathbf{x}=-\int_{\mathbb{X}}\left\|\nabla u_{t}(\mathbf{x})\right\|^{2} d \mathbf{x}$.
Proof. For all $\mathbf{s} \in \partial \mathbb{X}$, either $u_{t}(\mathbf{s})=0$ or $\partial_{\perp} u_{t}(\mathbf{s})=0$ by hypothesis (c). But $\partial_{\perp} u_{t}(\mathbf{s})=\nabla u_{t}(\mathbf{s}) \bullet \overrightarrow{\mathbf{N}}(\mathbf{s})($ where $\overrightarrow{\mathbf{N}}(\mathbf{s})$ is the unit normal vector at $\mathbf{s})$, so this implies that $u_{t}(\mathbf{s}) \cdot \nabla u_{t}(\mathbf{s}) \bullet \overrightarrow{\mathbf{N}}(\mathbf{s})=0$ for all $\mathbf{s} \in \partial \mathbb{X}$. Thus,

$$
\begin{aligned}
0 & =\int_{\partial \mathbb{X}} u_{t}(\mathbf{s}) \cdot \nabla u_{t}(\mathbf{s}) \bullet \overrightarrow{\mathbf{N}}(\mathbf{s}) d \mathbf{s} \overline{\overline{(*)}} \int_{\mathbb{X}} \operatorname{div}\left(u_{t} \cdot \nabla u_{t}\right)(\mathbf{x}) d \mathbf{x} \\
& \overline{(\dagger)} \int_{\mathbb{X}}\left(u_{t} \cdot \operatorname{div} \nabla u_{t}+\nabla u_{t} \bullet \nabla u_{t}\right)(\mathbf{x}) d \mathbf{x} \\
& \overline{(\mp)} \int_{\mathbb{X}} u_{t}(\mathbf{x}) \cdot \Delta u_{t}(\mathbf{x}) d \mathbf{x}+\int_{\mathbb{X}}\left\|\nabla u_{t}(\mathbf{x})\right\|^{2} d \mathbf{x} .
\end{aligned}
$$

Here, $(*)$ is the Divergence Theorem 0E.4 on page 563, (\dagger) is by the Leibniz rule for divergences (Proposition 0E.2(b) on page 560) and (\ddagger) is because $\operatorname{div} \nabla u=\triangle u$, while $\nabla u_{t} \bullet \nabla u_{t}=\left\|\nabla u_{t}(\mathbf{x})\right\|^{2}$. We thus have

$$
\int_{\mathbb{X}} u_{t} \cdot \Delta u_{t}+\int_{\mathbb{X}}\left\|\nabla u_{t}\right\|^{2}=0
$$

Rearranging this equation yields the claim.
$\diamond_{\text {Claim } 1}$
Applying Claim 1 to equation (5D.5), we get

$$
E^{\prime}(t)=-2 \int_{\mathbb{X}}\left\|\nabla u_{t}(\mathbf{x})\right\|^{2} d \mathbf{x} \leq 0
$$

because $\left\|\nabla u_{t}(\mathbf{x})\right\|^{2} \geq 0$ for all $\mathbf{x} \in \mathbb{X}$.

Lemma 5D.7. (Solution uniqueness for heat equation; homogeneous I / BC) Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a bounded domain with a piecewise smooth boundary. Suppose that $u: \mathbb{X} \times \mathbb{R}_{\not} \longrightarrow \mathbb{R}$ satisfies the following four conditions:
(a) (Regularity) u is continuous on $\mathbb{X} \times \mathbb{R}_{\not}$, and $\partial_{t} u$ and $\partial_{1}^{2} u, \ldots, \partial_{D}^{2} u$ are continuous on $\operatorname{int}(\mathbb{X}) \times \mathbb{R}_{+}$;
(b) (Heat equation) $\partial_{t} u=\triangle u$;
(c) (Zero initial condition) $u_{0}(\mathbf{x})=0$ for all $\mathbf{x} \in \mathbb{X}$;
(d) (Homogeneous Dirichlet/Neumann BC) For all $\mathbf{s} \in \partial \mathbb{X}$ and $t \in \mathbb{R}_{+}$, either $u_{t}(\mathbf{s})=0$ or $\partial_{\perp} u_{t}(\mathbf{s})=0 . \square$

Then u must be the constant 0 function: $u \equiv 0$.
Proof. Define $E: \mathbb{R}_{\not} \longrightarrow \mathbb{R}_{\not}$ as in Lemma 5D.6. Then E is a nonincreasing function. But $E(0)=0$, because $u_{0} \equiv 0$ by hypothesis (c). Thus, $E(t)=0$ for all $t \in \mathbb{R}_{\neq}$. Thus, we must have $u_{t} \equiv 0$ for all $t \in \mathbb{R}_{\neq}$.

Theorem 5D.8. (Uniqueness: forced heat equation, nonhomogeneous I/BC)
Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a bounded domain with a piecewise smooth boundary. Let $\mathcal{I}: \mathbb{X} \longrightarrow \mathbb{R}$ be a continuous function (describing an initial condition), and let $b: \partial \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$, and $h, h_{\perp}: \partial \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ be three other continuous functions (describing time-varying boundary conditions). Let $f: \operatorname{int}(\mathbb{X}) \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ be another continuous function (describing exogenous heat being 'forced' into or out of the system). Then there is at most one solution function $u: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ satisfying the following four conditions:
(a) (Regularity) u is continuous on $\mathbb{X} \times \mathbb{R}_{\not}$, and $\partial_{t} u$ and $\partial_{1}^{2} u, \ldots, \partial_{D}^{2} u$ are continuous on $\operatorname{int}(\mathbb{X}) \times \mathbb{R}_{+}$;
(b) (Heat equation with forcing) $\partial_{t} u=\triangle u+f$;
(c) (Initial condition) $u(\mathbf{x}, 0)=\mathcal{I}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{X}$;
(d) (Nonhomogeneous Mixed BC) $h(\mathbf{s}, t) \cdot u_{t}(\mathbf{s})+h_{\perp}(\mathbf{s}, t) \cdot \partial_{\perp} u_{t}(\mathbf{s})=b(x, t)$, for all $\mathbf{s} \in \partial \mathbb{X}$ and $t \in \mathbb{R}_{+} .{ }^{\text {. }}$

[^27]Proof. Suppose u_{1} and u_{2} were two functions satisfying all of (a)-(d). Let $u=u_{1}-u_{2}$. Then u satisfies all of (a)-(d) in Lemma 5D.7. Thus, $u \equiv 0$. But this means that $u_{1} \equiv u_{2}$. Hence, there can be at most one solution.

5D(iii) Uniqueness for the wave equation

Throughout this section, if $u: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ is a time-varying scalar field, and $t \in \mathbb{R}_{+}$, then define the function $u_{t}: \mathbb{X} \longrightarrow \mathbb{R}$ by $u_{t}(\mathbf{x}):=u(\mathbf{x} ; t)$, for all $\mathbf{x} \in \mathbb{X}$. (Note: u_{t} does not denote the time-derivative). For all $t \geq 0$, the energy of u is defined:

$$
\begin{equation*}
E(t):=\frac{1}{2} \int_{\mathbb{X}}\left|\partial_{t} u_{t}(\mathbf{x})\right|^{2}+\left\|\nabla u_{t}(\mathbf{x})\right\|^{2} d \mathbf{x} . \tag{5D.6}
\end{equation*}
$$

We begin with a result which has an appealing physical interpretation.

Lemma 5D.9. (Conservation of Energy for wave equation)

Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a bounded domain with a piecewise smooth boundary. Suppose $u: \mathbb{X} \times \mathbb{R}_{\not} \longrightarrow \mathbb{R}$ satisfies the following three conditions:
(a) (Regularity) u is continuous on $\mathbb{X} \times \mathbb{R}_{+}$, and $u \in \mathcal{C}^{2}\left(\operatorname{int}(\mathbb{X}) \times \mathbb{R}_{+}\right)$;
(b) (Wave equation) $\partial_{t}^{2} u=\triangle u$;
(c) (Homogeneous Dirichlet/Neumann BC) For all $\mathbf{s} \in \partial \mathbb{X}$, either $u_{t}(\mathbf{s})=0$ for all $t \geq 0$, or $\partial_{\perp} u_{t}(\mathbf{s})=0$ for all $t \geq 0$. F

Then E is constant in time -that is, $\partial_{t} E(t)=0$ for all $t>0$.
Proof. The Leibniz rule says that

$$
\begin{align*}
\partial_{t}\left|\partial_{t} u\right|^{2} & =\left(\partial_{t}^{2} u\right) \cdot\left(\partial_{t} u\right)+\left(\partial_{t} u\right) \cdot\left(\partial_{t}^{2} u\right) \\
& =2 \cdot\left(\partial_{t} u\right) \cdot\left(\partial_{t}^{2} u\right), \tag{5D.7}\\
\text { and } \partial_{t}\|\nabla u\|^{2} & =\left(\partial_{t} \nabla u\right) \bullet(\nabla u)+(\nabla u) \bullet\left(\partial_{t} \nabla u\right) \\
& =2 \cdot(\nabla u) \bullet\left(\partial_{t} \nabla u\right) \\
& =2 \cdot(\nabla u) \bullet\left(\nabla \partial_{t} u\right) . \tag{5D.8}\\
\text { Thus, } \partial_{t} E & \overline{\overline{(*)}} \frac{1}{2} \int_{\mathbb{X}}\left(\partial_{t}\left|\partial_{t} u\right|^{2}+\partial_{t}\|\nabla u\|^{2}\right) \\
& \overline{(\dagger)} \int_{\mathbb{X}}\left(\partial_{t} u \cdot \partial_{t}^{2} u+(\nabla u) \bullet\left(\nabla \partial_{t} u\right)\right) . \tag{5D.9}
\end{align*}
$$

[^28]Here ($*$) comes from differentiating the integral (5D.6) using Proposition 0G. 1 on page 567). Meanwhile, (\dagger) comes from substituting (5D.7) and (5D.8).
Claim 1: Fix $\mathbf{s} \in \partial \mathbb{X}$ and let $\overrightarrow{\mathbf{N}}(\mathbf{s})$ be the outward unit normal vector to $\partial \mathbb{X}$ at \mathbf{s}. Then $\partial_{t} u_{t}(\mathbf{s}) \cdot \nabla u_{t}(\mathbf{s}) \bullet \overrightarrow{\mathbf{N}}(\mathbf{s})=0$, for all $t>0$.

Proof. By hypothesis (c), either $\partial_{\perp} u_{t}(\mathbf{s})=0$ for all $t>0$, or $u_{t}(\mathbf{s})=0$ for all $t>0$. Thus, either $\nabla u_{t}(\mathbf{s}) \bullet \overrightarrow{\mathbf{N}}(\mathbf{s})=0$ for all $t>0$, or $\partial_{t} u_{t}(\mathbf{s})=0$ for all $t>0$. In either case, $\partial_{t} u_{t}(\mathbf{s}) \cdot \nabla u_{t}(\mathbf{s}) \bullet \overrightarrow{\mathbf{N}}(\mathbf{s})=0$ for all $t>0 . \quad \diamond_{\text {Claim } 1}$

Claim 2: For any $t \in \mathbb{R}_{+}, \int_{\mathbb{X}} \nabla u_{t} \bullet \nabla \partial_{t} u_{t}=-\int_{\mathbb{X}} \partial_{t} u_{t} \cdot \Delta u_{t}$.
Proof. Integrating Claim 1 over $\partial \mathbb{X}$, we get

$$
\begin{aligned}
0 & =\int_{\partial \mathbb{X}} \partial_{t} u_{t}(\mathbf{s}) \cdot \nabla u_{t}(\mathbf{s}) \bullet \overrightarrow{\mathbf{N}}(\mathbf{s}) d \mathbf{s} \overline{\overline{(*)}} \int_{\mathbb{X}} \operatorname{div}\left(\partial_{t} u_{t} \cdot \nabla u_{t}\right)(\mathbf{x}) d \mathbf{x} \\
& \overline{(\dagger)} \int_{\mathbb{X}}\left(\partial_{t} u_{t} \cdot \operatorname{div} \nabla u_{t}+\nabla \partial_{t} u_{t} \bullet \nabla u_{t}\right)(\mathbf{x}) d \mathbf{x} \\
& \overline{\overline{(\dagger)}} \int_{\mathbb{X}}\left(\partial_{t} u_{t} \cdot \Delta u_{t}\right)(\mathbf{x}) d \mathbf{x}+\int_{\mathbb{X}}\left(\nabla \partial_{t} u_{t} \bullet \nabla u_{t}\right)(\mathbf{x}) d \mathbf{x} .
\end{aligned}
$$

Here, $(*)$ is the Divergence Theorem 0E.4 on page 563, (\dagger) is by the Leibniz rule for divergences (Proposition 0E.2(b) on page 560) and (\ddagger) is because $\operatorname{div} \nabla u_{t}=\triangle u_{t}$. We thus have

$$
\int_{\mathbb{X}} \nabla u_{t} \bullet \nabla \partial_{t} u_{t}+\int_{\mathbb{X}} \partial_{t} u_{t} \cdot \Delta u_{t}=0 .
$$

Rearranging this equation yields the claim.
Putting it all together, we get:

$$
\begin{aligned}
\partial_{t} E & \overline{\overline{(\uparrow)}} \int_{\mathbb{X}} \partial_{t} u \cdot \partial_{t}^{2} u+\int_{\mathbb{X}}(\nabla u) \bullet\left(\nabla \partial_{t} u\right) \\
& \overline{\overline{(\nmid)}} \int_{\mathbb{X}} \partial_{t} u \cdot \partial_{t}^{2} u-\int_{\mathbb{X}} \partial_{t} u \cdot \Delta u=\int_{\mathbb{X}} \partial_{t} u \cdot\left(\partial_{t}^{2} u-\triangle u\right) \\
& \overline{\overline{(*)}} \int_{\mathbb{X}} \partial_{t} u \cdot 0=0,
\end{aligned}
$$

as desired. Here, (\dagger) is by equation (5D.9), (\ddagger) is by Claim 2, and $(*)$ is because $\partial_{t}^{2} u-\triangle u \equiv 0$ because u satisfies the wave equation by hypothesis (b).

Physical interpretation. $E(t)$ can be interpreted as the total energy in the system at time t. The first term in the integrand of (5D.6) measures the kinetic energy of the wave motion, while the second term measures the potential energy stored in the deformation of the medium. With this physical interpretation, Lemma 5D.9 simply asserts the principle of Conservation of Energy: E must be constant in time, because no energy enters or leaves the system, by hypotheses (b) and (c).

Lemma 5D.10. (Solution uniqueness for wave equation; homogeneous I/BC) Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a bounded domain with a piecewise smooth boundary. Suppose $u: \mathbb{X} \times \mathbb{R}_{\not} \longrightarrow \mathbb{R}$ satisfies all five of the following conditions:
(a) (Regularity) u is continuous on $\mathbb{X} \times \mathbb{R}_{+}$, and $u \in \mathcal{C}^{2}\left(\operatorname{int}(\mathbb{X}) \times \mathbb{R}_{+}\right)$;
(b) (Wave equation) $\partial_{t}^{2} u=\triangle u$;
(c) (Zero initial position) $u_{0}(\mathbf{x})=0$, for all $\mathbf{x} \in \mathbb{X}$;
(d) (Zero initial velocity) $\partial_{t} u_{0}(\mathbf{x})=0$ for all $\mathbf{x} \in \mathbb{X}$;
(e) (Homogeneous Dirichlet/Neumann BC) For all $\mathbf{s} \in \partial \mathbb{X}$, either $u_{t}(\mathbf{s})=0$ for all $t \geq 0$, or $\partial_{\perp} u_{t}(\mathbf{s})=0$ for all $t \geq 0$. ${ }^{\text {ID }}$

Then u must be the constant 0 function: $u \equiv 0$.
Proof. Let $E: \mathbb{R}_{\neq} \longrightarrow \mathbb{R}_{\neq}$be the energy function from Lemma 5D.9. Then E is a constant. But $E(0)=0$ because $u_{0} \equiv 0$ and $\partial_{t} u_{0} \equiv 0$, by hypotheses (c) and (d). Thus, $E(t)=0$ for all $t \geq 0$. But this implies that $\left|\partial_{t} u_{t}(\mathbf{x})\right|^{2}=0$, and hence $\partial_{t} u_{t}(\mathbf{x})=0$, for all $\mathbf{x} \in \mathbb{X}$ and $t>0$. Thus, u is constant in time. Since $u_{0} \equiv 0$, we conclude that $u_{t} \equiv 0$ for all $t \geq 0$, as desired.

Theorem 5D.11. (Uniqueness: forced wave equation, nonhomogeneous I/BC) Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a bounded domain with a piecewise smooth boundary. Let $\mathcal{I}_{0}, \mathcal{I}_{1}: \mathbb{X} \longrightarrow \mathbb{R}$ be continuous functions (describing initial position and velocity). Let $b: \partial \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ be another continuous function (describing a time-varying boundary condition). Let $f: \operatorname{int}(\mathbb{X}) \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ be another continuous function (describing exogenous vibrations being 'forced' into the system). Then there is at most one solution function $u: \mathbb{X} \times \mathbb{R}_{\neq} \longrightarrow \mathbb{R}$ satisfying all five of the following conditions:
(a) (Regularity) u is continuous on $\mathbb{X} \times \mathbb{R}_{+}$, and $u \in \mathcal{C}^{2}\left(\operatorname{int}(\mathbb{X}) \times \mathbb{R}_{+}\right)$;

[^29](b) (Wave equation with forcing) $\partial_{t}^{2} u=\triangle u+f$;
(c) (Initial position) $u(\mathbf{x}, 0)=\mathcal{I}_{0}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{X}$.
(d) (Initial velocity) $\partial_{t} u(\mathbf{x}, 0)=\mathcal{I}_{1}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{X}$.
(e) (Nonhomogeneous Dirichlet/Neumann BC) For all $\mathbf{s} \in \partial \mathbb{X}$, either $u(\mathbf{s}, t)=$ $b(\mathbf{s}, t)$ for all $t \geq 0$, or $\partial_{\perp} u(\mathbf{s}, t)=b(\mathbf{s}, t)$ for all $t \geq 0$.

Proof. Suppose u_{1} and u_{2} were two functions satisfying all of (a)-(e). Let $u=u_{1}-u_{2}$. Then u satisfies all of (a)-(e), in Lemma 5D.10. Thus, $u \equiv 0$. But this means that $u_{1} \equiv u_{2}$. Hence, there can be at most one solution.

Remark. (a) Earlier, we observed that the initial position problem for the (unforced) wave equation represents a 'plucked string' (e.g. in a guitar), while the initial velocity problem represents a 'struck string' (e.g. in a piano). Continuing the musical analogy, the forced wave equation represents a rubbed string (e.g. in a violin or cello), as well as any other musical instrument driven by an exogenous vibration (e.g. any wind instrument).
(b) Notice Theorems 5D.5, 5D.8, and 5D. 11 apply under much more general conditions than any of the solution methods we will actually develop in this book (i.e. they work for almost any 'reasonable' domain, we allow for possible 'forcing', and we even allow the boundary conditions to vary in time). This is a recurring theme in differential equation theory; it is generally possible to prove 'qualitative' results (e.g. about existence, uniqueness, or general properties of solutions) in much more general settings than it is possible to get 'quantitative' results (i.e. explicit formulae for solutions). Indeed, for most nonlinear differential equations, qualitative results are pretty much all you can ever get.

5E* Classification of second order linear PDEs

5E(i) ...in two dimensions, with constant coefficients

Recall that $\mathcal{C}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$ is the space of all differentiable scalar fields on the plane \mathbb{R}^{2}. In general, a second-order linear differential operator L on $\mathcal{C}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$ with constant coefficients looks like:

$$
\begin{equation*}
\mathrm{L} u=a \cdot \partial_{x}^{2} u+b \cdot \partial_{x} \partial_{y} u+c \cdot \partial_{y}^{2} u+d \cdot \partial_{x} u+e \cdot \partial_{y} u+f \cdot u \tag{5E.1}
\end{equation*}
$$

[^30]where a, b, c, d, e, f are constants. Define:
\[

\alpha=f, \quad \boldsymbol{\beta}=\left[$$
\begin{array}{l}
d \\
e
\end{array}
$$\right] \quad and \quad \Gamma=\left[$$
\begin{array}{cc}
a & \frac{1}{2} b \\
\frac{1}{2} b & c
\end{array}
$$\right]=\left[$$
\begin{array}{cc}
\gamma_{11} & \gamma_{12} \\
\gamma_{21} & \gamma_{22}
\end{array}
$$\right] .
\]

Then we can rewrite (5E.1) as:

$$
\mathrm{L} u=\sum_{c, d=1}^{2} \gamma_{c, d} \cdot \partial_{c} \partial_{d} u+\sum_{d=1}^{2} \beta_{d} \cdot \partial_{d} u+\alpha \cdot u
$$

Any 2×2 symmetric matrix Γ defines a quadratic form $G: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ by
$G(x, y)=[x y] \cdot\left[\begin{array}{ll}\gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22}\end{array}\right] \cdot\left[\begin{array}{l}x \\ y\end{array}\right]=\gamma_{11} \cdot x^{2}+\left(\gamma_{12}+\gamma_{21}\right) \cdot x y+\gamma_{22} \cdot y^{2}$.
We say Γ is positive definite if, for all $x, y \in \mathbb{R}$, we have:

- $G(x, y) \geq 0 ;$
- $G(x, y)=0$ if and only if $x=0=y$.

Geometrically, this means that the graph of G defines an elliptic paraboloid in $\mathbb{R}^{2} \times \mathbb{R}$, which curves upwards in every direction. Equivalently, Γ is positive definite if there is a constant $K>0$ such that

$$
G(x, y) \geq K \cdot\left(x^{2}+y^{2}\right)
$$

for every $(x, y) \in \mathbb{R}^{2}$. We say Γ is negative definite if $-\Gamma$ is positive definite.
The differential operator L from equation (5E.1) is called elliptic if the matrix Γ is either positive definite or negative definite.

Example 5E.1. If $\mathrm{L}=\triangle$, then $\Gamma=\left[\begin{array}{ll}1 & \\ & 1\end{array}\right]$ is just the identity matrix. while $\boldsymbol{\beta}=0$ and $\alpha=0$. The identity matrix is clearly positive definite; thus, \triangle is an elliptic differential operator.

Suppose that L is an elliptic differential operator. Then:

- An elliptic PDE is one of the form: $\mathrm{L} u=0$ (or $\mathrm{L} u=g$). For example, the Laplace equation is elliptic.
- A parabolic PDE is one of the form: $\partial_{t}=\mathrm{L} u$. For example, the twodimensional heat equation is parabolic.
- A hyperbolic PDE is one of the form: $\partial_{t}^{2}=\mathrm{L} u$. For example, the twodimensional wave equation is hyperbolic.
(See Remark 16F.4 on page 371 for a partial justification of this terminology).

Exercise 5E.1. Show that Γ is positive definite if and only if $0<\operatorname{det}(\Gamma)=a c-\frac{1}{4} b^{2}$. In other words, L is elliptic if and only if $4 a c-b^{2}>0$.

5E(ii) ...in general

Recall that $\mathcal{C}^{\infty}\left(\mathbb{R}^{D} ; \mathbb{R}\right)$ is the space of all differentiable scalar fields on D-dimensional space. The general second-order linear differential operator on $\mathcal{C}^{\infty}\left(\mathbb{R}^{D} ; \mathbb{R}\right)$ has the form

$$
\begin{equation*}
\mathrm{L} u=\sum_{c, d=1}^{D} \gamma_{c, d} \cdot \partial_{c} \partial_{d} u+\sum_{d=1}^{D} \beta_{d} \cdot \partial_{d} u+\alpha \cdot u, \tag{5E.2}
\end{equation*}
$$

where $\alpha: \mathbb{R}^{D} \times \mathbb{R} \longrightarrow \mathbb{R}$ is some time-varying scalar field, $\left(\beta_{1}, \ldots, \beta_{D}\right)=\boldsymbol{\beta}$: $\mathbb{R}^{D} \times \mathbb{R} \longrightarrow \mathbb{R}^{D}$ is a time-varying vector field, and $\gamma_{c, d}: \mathbb{R}^{D} \times \mathbb{R} \longrightarrow \mathbb{R}$ are functions such that, for any $\mathbf{x} \in \mathbb{R}^{D}$ and $t \in \mathbb{R}$, the matrix

$$
\Gamma(\mathbf{x} ; t)=\left[\begin{array}{ccc}
\gamma_{11}(\mathbf{x} ; t) & \ldots & \gamma_{1 D}(\mathbf{x} ; t) \\
\vdots & \ddots & \vdots \\
\gamma_{D 1}(\mathbf{x} ; t) & \ldots & \gamma_{D D}(\mathbf{x} ; t)
\end{array}\right]
$$

is symmetric (i.e. $\gamma_{c d}=\gamma_{d c}$).

Example 5E.2.

(a) If $\mathbf{L}=\triangle$, then $\boldsymbol{\beta} \equiv 0, \alpha=0$, and $\Gamma \equiv \mathbf{I d}=\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1\end{array}\right]$.
(b) The Fokker-Plank Equation (see $\S \mathbb{1 F}$ on page 18) has the form $\partial_{t} u=\mathrm{L} u$, where $\alpha=-\operatorname{div} \overrightarrow{\mathbf{V}}(\mathbf{x}), \boldsymbol{\beta}(\mathbf{x})=-\nabla \overrightarrow{\mathbf{V}}(\mathbf{x})$, and $\Gamma \equiv$ Id. (Exercise 5E.2) \diamond

If the functions $\gamma_{c, d}, \beta_{d}$ and α are independent of \mathbf{x}, then we say L is spatially homogeneous. If they are also independent of t, we say that L has constant coefficients.

Any symmetric matrix Γ defines a quadratic form $G: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ by

$$
G(\mathbf{x})=\left[x_{1} \ldots x_{D}\right]\left[\begin{array}{ccc}
\gamma_{11} & \ldots & \gamma_{1 D} \\
\vdots & \ddots & \vdots \\
\gamma_{D 1} & \ldots & \gamma_{D D}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{D}
\end{array}\right]=\sum_{c, d=1}^{D} \gamma_{c, d} \cdot x_{c} \cdot x_{d}
$$

Γ is called positive definite if, for all $\mathbf{x} \in \mathbb{R}^{D}$, we have:

- $G(\mathbf{x}) \geq 0$;
- $G(\mathbf{x})=0$ if and only if $\mathbf{x}=0$.

Equivalently, Γ is positive definite if there is a constant $K_{\Gamma}>0$ such that $G(\mathbf{x}) \geq$ $K_{\Gamma} \cdot\|\mathbf{x}\|^{2}$ for every $\mathbf{x} \in \mathbb{R}^{D}$. On the other hand, Γ is negative definite if $-\Gamma$ is positive definite.

The differential operator L from equation (5E.2) is elliptic if the matrix $\Gamma(\mathbf{x} ; t)$ is either positive definite or negative definite for every $(\mathbf{x} ; t) \in \mathbb{R}^{D} \times \mathbb{R}_{+}$, and furthermore, there is some $K>0$ such that $K_{\Gamma(\mathbf{x} ; t)} \geq K$ for all $(\mathbf{x} ; t) \in$ $\mathbb{R}^{D} \times \mathbb{R}_{+}$. For example, the Laplacian and the Fokker-Plank operator are both elliptic. (Exercise 5E.3)

Suppose that L is an elliptic differential operator. Then:

- An elliptic PDE is one of the form: $\mathrm{L} u=0$ (or $\mathrm{L} u=g$).
- A parabolic PDE is one of the form: $\partial_{t}=\mathrm{L} u$.
- A hyperbolic PDE is one of the form: $\partial_{t}^{2}=\mathrm{L} u$.

Example 5E.3.

(a) Laplace's Equation and Poisson's Equation are elliptic PDEs.
(b) The heat equation and the Fokker-Plank Equation are parabolic.
(c) The wave equation is hyperbolic.

Parabolic equations are "generalized heat equations", describing diffusion through an inhomogeneous $\boxed{~ 17}$, anisotropi ${ }^{[2]}$ medium with drift. The terms in $\Gamma(\mathbf{x} ; t)$ describe the inhomogeneity and anisotropy of the diffusion ${ }^{[3]}$, while the vector field $\boldsymbol{\beta}$ describes the drift.

Hyperbolic equations are "generalized wave equations", describing wave propagation through an inhomogeneous, anisotropic medium with drift -for example, sound waves propagating through an air mass with variable temperature and pressure and wind blowing.

5F Practice problems

Evolution equations and initial value problems. For each of the following equations: u is an unknown function; q is always some fixed, predetermined function; and λ is always a constant. In each case, determine the order of the equation, and decide: is this an evolution equation? Why or why not?

[^31]1. heat equation: $\partial_{t} u(\mathbf{x})=\triangle u(\mathbf{x})$.
2. Poisson Equation: $\triangle u(\mathbf{x})=q(\mathbf{x})$.
3. Laplace Equation: $\triangle u(\mathbf{x})=0$.
4. Monge-Ampère Equation: $q(x, y)=\operatorname{det}\left[\begin{array}{cc}\partial_{x}^{2} u(x, y) & \partial_{x} \partial_{y} u(x, y) \\ \partial_{x} \partial_{y} u(x, y) & \partial_{y}^{2} u(x, y)\end{array}\right]$.
5. Reaction-Diffusion $\partial_{t} u(\mathbf{x} ; t)=\triangle u(\mathbf{x} ; t)+q(u(\mathbf{x} ; t))$.
6. Scalar conservation Law $\partial_{t} u(x ; t)=-\partial_{x}(q \circ u)(x ; t)$.
7. Helmholtz Equation: $\triangle u(\mathbf{x})=\lambda \cdot u(\mathbf{x})$.
8. Airy's Equation: $\partial_{t} u(x ; t)=-\partial_{x}^{3} u(x ; t)$.
9. Beam Equation: $\partial_{t} u(x ; t)=-\partial_{x}^{4} u(x ; t)$.
10. Schrödinger Equation: $\partial_{t} u(\mathbf{x} ; t)=\mathbf{i} \triangle u(\mathbf{x} ; t)+q(\mathbf{x} ; t) \cdot u(\mathbf{x} ; t)$.
11. Burger's Equation: $\partial_{t} u(x ; t)=-u(x ; t) \cdot \partial_{x} u(x ; t)$.
12. Eikonal Equation: $\left|\partial_{x} u(x)\right|=1$.

Boundary value problems.

1. Each of the following functions is defined on the interval $[0, \pi$], in Cartesian coordinates. For each function, decide: Does it satisfy homogeneous Dirichlet BC? Homogeneous Neumann BC? Homogeneous Robin ${ }^{[4]}$ BC? Periodic BC? Justify your answers.
(a) $u(x)=\sin (3 x)$.
(b) $u(x)=\sin (x)+3 \sin (2 x)-4 \sin (7 x)$.
(c) $u(x)=\cos (x)+3 \sin (3 x)-2 \cos (6 x)$.
(d) $u(x)=3+\cos (2 x)-4 \cos (6 x)$.
(e) $u(x)=5+\cos (2 x)-4 \cos (6 x)$.
2. Each of the following functions is defined on the interval $[-\pi, \pi]$, in Cartesian coordinates. For each function, decide: Does it satisfy homogeneous Dirichlet BC? Homogeneous Neumann BC? Homogeneous Robin ${ }^{\boxed{\pi}]}$ BC? Periodic BC? Justify your answers.
(a) $u(x)=\sin (x)+5 \sin (2 x)-2 \sin (3 x)$.
(b) $u(x)=3 \cos (x)-3 \sin (2 x)-4 \cos (2 x)$.

(A) $f(x, y)=\sin (x) \sin (y)$

(B) $g(x, y)=\sin (x)+\sin (y)$

(C) $h(x, y)=\cos (2 x)+\cos (y)$.

Figure 5F.1: Problems \# 3 , \# $\sqrt{b b}$ and $\#$ a
(c) $u(x)=6+\cos (x)-3 \cos (2 x)$.
3. Each of the following functions is defined on the box $[0, \pi]^{2}$. in Cartesian coordinates. For each function, decide: Does it satisfy homogeneous Dirichlet BC? Homogeneous Neumann BC? Homogeneous Robin ${ }^{[4]}$ BC? Periodic BC? Justify your answers.
(a) $f(x, y)=\sin (x) \sin (y)$ (Figure 5F.1(A))
(b) $g(x, y)=\sin (x)+\sin (y)$ (Figure 5F.1(B))
(c) $h(x, y)=\cos (2 x)+\cos (y)$ (Figure 5F.1(C))
(d) $u(x, y)=\sin (5 x) \sin (3 y)$.
(e) $u(x, y)=\cos (-2 x) \cos (7 y)$.
4. Each of the following functions is defined on the unit disk

$$
\mathbb{D}=\{(r, \theta) ; 0 \leq r \leq 1, \text { and } \theta \in[0,2 \pi)\}
$$

in polar coordinates. For each function, decide: Does it satisfy homogeneous Dirichlet BC? Homogeneous Neumann BC? Homogeneous Robin ${ }^{[4]}$ BC? Justify your answers.
(a) $u(r, \theta)=\left(1-r^{2}\right)$.
(b) $u(r, \theta)=1-r^{3}$.
(c) $u(r, \theta)=3+\left(1-r^{2}\right)^{2}$.

[^32](d) $u(r, \theta)=\sin (\theta)\left(1-r^{2}\right)^{2}$.
(e) $u(r, \theta)=\cos (2 \theta)\left(e-e^{r}\right)$.
5. Each of the following functions is defined on the 3-dimensional unit ball
$$
\mathbb{B}=\left\{(r, \theta, \varphi) ; 0 \leq r \leq 1, \theta \in[0,2 \pi), \quad \text { and } \quad \varphi \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\right\}
$$
in spherical coordinates. For each function, decide: Does it satisfy homogeneous Dirichlet BC? Homogeneous Neumann BC? Homogeneous Robin ${ }^{\text {[7] }}$ BC? Justify your answers.
(a) $u(r, \theta, \varphi)=(1-r)^{2}$.
(b) $u(r, \theta, \varphi)=(1-r)^{3}+5$.
6. Which Neumann BVP has solution(s) on the domain $\mathbb{X}=[0,1]$?
(a) $u^{\prime \prime}(x)=0, u^{\prime}(0)=1, u^{\prime}(1)=1$.
(b) $u^{\prime \prime}(x)=0, u^{\prime}(0)=1, u^{\prime}(1)=2$.
(c) $u^{\prime \prime}(x)=0, u^{\prime}(0)=1, u^{\prime}(1)=-1$.
(d) $u^{\prime \prime}(x)=0, u^{\prime}(0)=1, u^{\prime}(1)=-2$.
7. Which BVP of Laplace equation on the unit disk \mathbb{D} has a solution? Which BVP has more than one solution?
(a) $\triangle u=0, u(1, \theta)=0$, for all $\theta \in[-\pi, \pi)$.
(b) $\triangle u=0, u(1, \theta)=\sin \theta$, for all $\theta \in[-\pi, \pi)$.
(c) $\triangle u=0, \partial_{\perp} u(1, \theta)=\sin (\theta)$, for all $\theta \in[-\pi, \pi)$.
(d) $\triangle u=0, \partial_{\perp} u(1, \theta)=1+\cos (\theta)$, for all $\theta \in[-\pi, \pi)$.

102

III Fourier series on bounded domains

Any complex sound is a combination of simple 'pure tones' of different frequencies. For example, a musical chord is a superposition of three (or more) musical notes, each with a different frequency. In fact, a musical note itself is not really a single frequency at all; a note consists of a 'fundamental' frequency, plus a cascade of higher frequency 'harmonics'. The energy distribution of these harmonics is part of what gives each musical instrument its distinctive sound. The decomposition of a sound into separate frequencies is sometimes called its power spectrum. A crude graphical representation of this power spectrum is visible on most modern stereo systems (the little jiggling red bars).

Fourier theory is based on the idea that a real-valued function is like a sound, which can be represented as a superposition of 'pure tones' (i.e. sine waves and/or cosine waves) of distinct frequencies. This provides a 'coordinate system' for expressing functions, and within this coordinate system, we can express the solutions for many partial differential equations in a simple and elegant way. Fourier theory is also an essential tool in probability theory and signal analysis (although we will not discuss these applications in this book).

The idea of Fourier theory is simple, but to make this idea rigorous enough to be useful, we must deploy some formidable mathematical machinery. So we will begin by developing the necessary background concerning inner products, orthogonality, and the convergence of functions.

Chapter 6

Some functional analysis

"Mathematical science is in my opinion an indivisible whole, an organism whose vitality is conditioned upon the connection of its parts." —David Hilbert

6A Inner products

Prerequisites: §4A.
Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{D}$, with $\mathbf{x}=\left(x_{1}, \ldots, x_{D}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{D}\right)$. The inner product of \mathbf{x}, \mathbf{y} is defined:

$$
\langle\mathbf{x}, \mathbf{y}\rangle \quad:=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{D} y_{D}
$$

The inner product describes the geometric relationship between \mathbf{x} and \mathbf{y}, via the formula:

$$
\langle\mathbf{x}, \mathbf{y}\rangle \quad:=\quad\|\mathbf{x}\| \cdot\|\mathbf{y}\| \cdot \cos (\theta)
$$

where $\|\mathbf{x}\|$ and $\|\mathbf{y}\|$ are the lengths of vectors \mathbf{x} and \mathbf{y}, and θ is the angle between them. (Exercise 6A.1 Verify this). In particular, if \mathbf{x} and \mathbf{y} are perpendicular, then $\theta= \pm \frac{\pi}{2}$, and then $\langle\mathbf{x}, \mathbf{y}\rangle=0$; we then say that \mathbf{x} and \mathbf{y} are orthogonal. For example, $\mathbf{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ are orthogonal in \mathbb{R}^{2}, while

$$
\mathbf{u}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
0 \\
0 \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right], \quad \text { and } \quad \mathbf{w}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

are all orthogonal to one another in \mathbb{R}^{4}. Indeed, \mathbf{u}, \mathbf{v}, and \mathbf{w} also have unit norm; we call any such collection an orthonormal set of vectors. Thus, $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is an orthonormal set. However, $\{\mathbf{x}, \mathbf{y}\}$ is orthogonal but not orthonormal (because $\|\mathbf{x}\|=\|\mathbf{y}\|=\sqrt{2} \neq 1$) .

[^33]The norm of a vector satisfies the equation:

$$
\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{D}^{2}\right)^{1 / 2}=\langle\mathbf{x}, \mathbf{x}\rangle^{1 / 2}
$$

If $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ are a collection of mutually orthogonal vectors, and $\mathbf{x}=\mathbf{x}_{1}+\ldots+$ \mathbf{x}_{N}, then we have the generalized Pythagorean formula:

$$
\|\mathrm{x}\|^{2}=\left\|\mathrm{x}_{1}\right\|^{2}+\left\|\mathrm{x}_{2}\right\|^{2}+\ldots+\left\|\mathrm{x}_{N}\right\|^{2}
$$

(Exercise 6A.2 Verify the Pythagorean formula.)
An orthonormal basis of \mathbb{R}^{D} is any collection of mutually orthogonal vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{D}\right\}$, all of norm 1 , such that, for any $\mathbf{w} \in \mathbb{R}^{D}$, if we define $\omega_{d}=\left\langle\mathbf{w}, \mathbf{v}_{d}\right\rangle$ for all $d \in[1 . . D]$, then:

$$
\mathbf{w}=\omega_{1} \mathbf{v}_{1}+\omega_{2} \mathbf{v}_{2}+\ldots+\omega_{D} \mathbf{v}_{D}
$$

In other words, the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{D}\right\}$ defines a coordinate system for \mathbb{R}^{D}, and in this coordinate system, the vector \mathbf{w} has coordinates $\left(\omega_{1}, \omega_{2}, \ldots, \omega_{D}\right)$. If $\mathbf{x} \in \mathbb{R}^{D}$ is another vector, and $\xi_{d}=\left\langle\mathbf{x}, \mathbf{v}_{d}\right\rangle$ all $d \in[1 . . D]$, then we also have

$$
\mathbf{x}=\xi_{1} \mathbf{v}_{1}+\xi_{2} \mathbf{v}_{2}+\ldots+\xi_{D} \mathbf{v}_{D}
$$

We can then compute $\langle\mathbf{w}, \mathbf{x}\rangle$ using Parseval's Equality:

$$
\langle\mathbf{w}, \mathbf{x}\rangle=\omega_{1} \xi_{1}+\omega_{2} \xi_{2}+\cdots \omega_{D} \xi_{D} .
$$

(Exercise 6A. 3 Prove Parseval's equality.) In particular, if $\mathbf{x}=\mathbf{w}$, we get the the following version of the generalized Pythagorean formula:

$$
\|\mathbf{w}\|^{2}=\omega_{1}^{2}+\omega_{2}^{2}+\ldots+\omega_{D}^{2} .
$$

Example 6A.1.
(a) $\left\{\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ \vdots \\ 0\end{array}\right], \ldots\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 1\end{array}\right]\right\}$ is an orthonormal basis for \mathbb{R}^{D}.
(b) If $\mathbf{v}_{1}=\left[\begin{array}{c}\sqrt{3} / 2 \\ 1 / 2\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}-1 / 2 \\ \sqrt{3} / 2\end{array}\right]$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is an orthonormal basis of \mathbb{R}^{2}.
If $\mathbf{w}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, then $\omega_{1}=\sqrt{3}+2$ and $\omega_{2}=2 \sqrt{3}-1$, so that
$\left[\begin{array}{l}2 \\ 4\end{array}\right]=\omega_{1} \mathbf{v}_{1}+\omega_{2} \mathbf{v}_{2}=(\sqrt{3}+2) \cdot\left[\begin{array}{c}\sqrt{3} / 2 \\ 1 / 2\end{array}\right]+(2 \sqrt{3}-1) \cdot\left[\begin{array}{c}-1 / 2 \\ \sqrt{3} / 2\end{array}\right]$.
Thus, $\|\mathbf{w}\|_{2}^{2}=2^{2}+4^{2}=20$, and also, by Parseval's equality, $20=\omega_{1}^{2}+$ $\omega_{2}^{2}=(\sqrt{3}+2)^{2}+(1-2 \sqrt{3})^{2} \cdot(\underline{\text { Exercise 6A.4 }}$ Verify these claims. $) \diamond$

Figure 6A.1: The L^{2} norm of $f: \quad\|f\|_{2}=\sqrt{\int_{\mathbb{X}}|f(x)|^{2} d x}$

6B $\quad L^{2}$ space

The ideas of section 6A generalize to spaces of functions. Suppose $\mathbb{X} \subset \mathbb{R}^{D}$ is some bounded domain, and let $M:=\int_{\mathbb{X}} 1 d \mathbf{x}$ be the volume ${ }^{\mathbb{Z}}$ of the domain \mathbb{X}. (The second column of Table 6.1 provides examples of M for various domains.)

Domain			M		Inner Product
Unit interval	$\mathbb{X}=[0,1]$	$\subset \mathbb{R}$	length	$M=1$	$\langle f, g\rangle=\int_{0}^{1} f(x) \cdot g(x) d x$
π interval	$\mathbb{X}=[0, \pi]$	$\subset \mathbb{R}$	length	$M=\pi$	$\langle f, g\rangle=\frac{1}{\pi} \int_{0}^{\pi} f(x) \cdot g(x) d x$
Unit square	$\mathbb{X}=[0,1] \times[0,1]$	$\subset \mathbb{R}^{2}$	area	$M=1$	$\langle f, g\rangle=\int_{0}^{1} \int_{0}^{1} f(x, y) \cdot g(x, y) d x d y$
$\pi \times \pi$ square	$\mathbb{X}=[0, \pi] \times[0, \pi]$	$\subset \mathbb{R}^{2}$	area	$M=\pi^{2}$	$\langle f, g\rangle=\frac{1}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} f(x, y) \cdot g(x, y) d x d y$
Unit Disk (polar coords)	$\mathbb{X}=\{(r, \theta) ; r \leq 1\}$	$\subset \mathbb{R}^{2}$	area	$M=\pi$	$\langle f, g\rangle=\frac{1}{\pi} \int_{0}^{1} \int_{-\pi}^{\pi} f(r, \theta) \cdot g(r, \theta) r \cdot d \theta d r$
Unit cube	$\mathbb{X}=[0,1] \times[0,1] \times[0,1]$	$\subset \mathbb{R}^{3}$	volume	$M=1$	$\langle f, g\rangle=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f(x, y, z) \cdot g(x, y, z) d x d y d z$

Table 6.1: Inner products on various domains.
If $f, g: \mathbb{X} \longrightarrow \mathbb{R}$ are integrable functions, then the inner product of f and g is defined:

$$
\begin{equation*}
\langle f, g\rangle:=\frac{1}{M} \int_{\mathbb{X}} f(\mathbf{x}) \cdot g(\mathbf{x}) d \mathbf{x} \tag{6B.1}
\end{equation*}
$$

[^34]
Example 6B.1.

(a) Suppose $\mathbb{X}=[0,3]=\{x \in \mathbb{R} ; 0 \leq x \leq 3\}$. Then $M=3$. If $f(x)=x^{2}+1$ and $g(x)=x$ for all $x \in[0,3]$, then

$$
\langle f, g\rangle=\frac{1}{3} \int_{0}^{3} f(x) g(x) d x=\frac{1}{3} \int_{0}^{3}\left(x^{3}+x\right) d x=\frac{27}{4}+\frac{3}{2} .
$$

(b) The third column of Table 6.1 provides examples of $\langle f, g\rangle$ for various other domains.

The L^{2}-norm of an integrable function $f: \mathbb{X} \longrightarrow \mathbb{R}$ is defined

$$
\begin{equation*}
\|f\|_{2}:=\langle f, f\rangle^{1 / 2}=\left(\frac{1}{M} \int_{\mathbb{X}} f^{2}(\mathbf{x}) d \mathbf{x}\right)^{1 / 2} \tag{6B.2}
\end{equation*}
$$

(See Figure 6A.1. Of course, this integral may not converge.) The set of all integrable functions on \mathbb{X} with finite L^{2}-norm is denoted $\mathbf{L}^{2}(\mathbb{X})$, and is called L^{2}-space. For example, any bounded, continuous function $f: \mathbb{X} \longrightarrow \mathbb{R}$ is in $\mathbf{L}^{2}(\mathbb{X})$.

Example 6B.2. (a) Suppose $\mathbb{X}=[0,3]$, as in Example 6B.1, and let $f(x)=x+1$.
Then $f \in \mathbf{L}^{2}[0,3]$, because

$$
\begin{aligned}
\|f\|_{2}^{2} & =\langle f, f\rangle=\frac{1}{3} \int_{0}^{3}(x+1)^{2} d x \\
& =\frac{1}{3} \int_{0}^{3} x^{2}+2 x+1 d x=\frac{1}{3}\left(\frac{x^{3}}{3}+x^{2}+x\right)_{x=0}^{x=3}=7,
\end{aligned}
$$

hence $\|f\|_{2}=\sqrt{7}<\infty$.
(b) Let $\mathbb{X}=(0,1]$, and suppose $f \in \mathcal{C}^{\infty}(0,1]$ is defined $f(x):=1 / x$. Then $\|f\|_{2}=\infty$, so $f \notin \mathbf{L}^{2}(0,1]$.

Remark. Some authors define the inner product as $\langle f, g\rangle:=\int_{\mathbb{X}} f(\mathbf{x}) \cdot g(\mathbf{x}) d \mathbf{x}$, and define the L^{2}-norm as $\|f\|_{2}:=\left(\int_{\mathbb{X}} f^{2}(\mathbf{x}) d \mathbf{x}\right)^{1 / 2}$. In other words, these authors do not divide by the volume M of the domain. This yields a mathematically equivalent theory. The advantage of our definition is greater computational convenience in some situations. (For example, if $\mathbb{1}_{\mathbb{X}}$ is the constant 1 -valued function, then in our definition, $\left\|\mathbb{1}_{\mathbb{X}}\right\|_{2}=1$.) When comparing formulae from different books, you should always check their respective definitions of L^{2} norm.
L^{2} space on an infinite domain. Suppose $\mathbb{X} \subset \mathbb{R}^{D}$ is a region of infinite volume (or length, area, etc.). For example, maybe $\mathbb{X}=\mathbb{R}_{+}$is the positive halfline, or perhaps $\mathbb{X}=\mathbb{R}^{D}$. In this case, $M=\infty$, so it doesn't make any sense to divide by M. If $f, g: \mathbb{X} \longrightarrow \mathbb{R}$ are integrable functions, then the inner product of f and g is defined:

$$
\begin{equation*}
\langle f, g\rangle \quad:=\int_{\mathbb{X}} f(\mathbf{x}) \cdot g(\mathbf{x}) d \mathbf{x} \tag{6B.3}
\end{equation*}
$$

Example 6B.3. Suppose $\mathbb{X}=\mathbb{R}$. If $f(x)=e^{-|x|}$ and $g(x)=\left\{\begin{array}{lll}1 & \text { if } & 0<x<7 \\ 0 & & \text { otherwise }\end{array}\right.$, then

$$
\begin{aligned}
& \quad\langle f, g\rangle=\int_{-\infty}^{\infty} f(x) g(x) d x=\int_{0}^{7} e^{-x} d x=-\left(e^{-7}-e^{0}\right)= \\
& 1-\frac{1}{e^{7}} .
\end{aligned}
$$

The L^{2}-norm of an integrable function $f: \mathbb{X} \longrightarrow \mathbb{R}$ is defined

$$
\begin{equation*}
\|f\|_{2}=\langle f, f\rangle^{1 / 2}=\left(\int_{\mathbb{X}} f^{2}(\mathbf{x}) d \mathbf{x}\right)^{1 / 2} \tag{6B.4}
\end{equation*}
$$

Again, this integral may not converge. Indeed, even if f is bounded and continuous everywhere, this integral may still equal infinity. The set of all integrable functions on \mathbb{X} with finite L^{2}-norm is denoted $\mathbf{L}^{2}(\mathbb{X})$, and called L^{2}-space. (You may recall that on page 40 of $\S 3 \mathrm{~A}$, we discussed how L^{2}-space arises naturally in quantum mechanics as the space of 'physically meaningful' wavefunctions.)

Proposition 6B.4. Properties of the inner product
Whether it is defined using equation (6B.1) or (6B.3), the inner product has the following properties.

Bilinearity. For any $f_{1}, f_{2}, g_{1}, g_{2} \in \mathbf{L}^{2}(\mathbb{X})$, and any constants $r_{1}, r_{2}, s_{1}, s_{2} \in \mathbb{R}$,

$$
\left\langle r_{1} f_{1}+r_{2} f_{2}, s_{1} g_{1}+s_{2} g_{2}\right\rangle=r_{1} s_{1}\left\langle f_{1}, g_{1}\right\rangle+r_{1} s_{2}\left\langle f_{1}, g_{2}\right\rangle+r_{2} s_{1}\left\langle f_{2}, g_{1}\right\rangle+r_{2} s_{2}\left\langle f_{2}, g_{2}\right\rangle .
$$

Symmetry. For any $f, g \in \mathbf{L}^{2}(\mathbb{X}),\langle f, g\rangle=\langle g, f\rangle$.
Positive-definite. For any $f \in \mathbf{L}^{2}(\mathbb{X}),\langle f, f\rangle \geq 0$. Also, $\langle f, f\rangle=0$ if and only if $f=0$.

Proof. Exercise 6B. 1

If $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{D}$, recall that $\langle\mathbf{v}, \mathbf{w}\rangle=\|\mathbf{v}\| \cdot\|\mathbf{w}\| \cdot \cos (\theta)$, where θ is the angle between \mathbf{v} to \mathbf{w}. In particular, this implies that

$$
\begin{equation*}
|\langle\mathbf{v}, \mathbf{w}\rangle| \leq\|\mathbf{v}\| \cdot\|\mathbf{w}\| . \tag{6B.5}
\end{equation*}
$$

If $f, g \in \mathbf{L}^{2}(\mathbb{X})$ are two functions, then it doesn't make sense to talk about the 'angle' between f and g [as 'vectors' in $\mathbf{L}^{2}(\mathbb{X})$]. But an inequality analogous to (6B.5) is still true.

Theorem 6B.5. (Cauchy-Bunyakowski-Schwarz Inequality)
Let $f, g \in \mathbf{L}^{2}(\mathbb{X})$. Then $|\langle f, g\rangle| \leq\|f\|_{2} \cdot\|g\|_{2}$.
Proof. Let $A=\|g\|_{2}^{2}, B:=\langle f, g\rangle$, and $C:=\|f\|_{2}^{2}$; thus, we are trying to show that $B \leq \sqrt{A} \cdot \sqrt{C}$. Define $q: \mathbb{R} \longrightarrow \mathbb{R}$ by $q(t):=\|f-t \cdot g\|_{2}^{2}$. Then

$$
\begin{align*}
q(t) & =\langle f-t \cdot g, f-t \cdot g\rangle \overline{\overline{(b)}}\langle f, f\rangle-t\langle f, g\rangle-t\langle g, f\rangle+t^{2}\langle g, g\rangle \\
& =\|f\|_{2}^{2}+2\langle f, g\rangle t+\|g\|_{2}^{2} t^{2}=C+2 B t+A t^{2} \tag{6B.6}
\end{align*}
$$

a quadratic polynomial in t. (Here, step (b) is by Proposition 6B.4(a)).
Now, $q(t)=\|f-t \cdot g\|_{2}^{2} \geq 0$ for all $t \in \mathbb{R}$; thus, $q(t)$ has at most one root, so the discriminant of the quadratic polynomial (6B.6) is not positive. That is $4 B^{2}-4 A C \leq 0$. Thus, $B^{2} \leq A C$, and thus, $B \leq \sqrt{A} \cdot \sqrt{C}$, as desired.

Note. The CBS inequality involves three integrals: $\langle f, g\rangle,\|f\|_{2}$, and $\|g\|_{2}$. But the proof of Theorem 6B.5 does not involve any integrals at all. Instead, it just uses simple algebraic manipulations of the inner product operator. In particular, this means the same proof works whether we define the inner product using (6B.1) or using (6B.3). Indeed, the CBS inequality is not really about L^{2} spaces, per se - it is actually a theorem about a much broader class of abstract geometric structures, called inner product spaces. An enormous amount of knowledge about $\mathbf{L}^{2}(\mathbb{X})$ can be obtained from this abstract geometric approach, usually through simple algebraic arguments like the proof of Theorem 6B.5 (i.e. without lots of messy integration technicalities). This is the beginning of a beautiful area of mathematics called Hilbert space theory (see [Con90] for an excellent introduction).

$6 \mathrm{C}^{*}$ More about L^{2} space

Prerequisites: $\S[6 \mathrm{~B}, \S[0 \mathrm{C}$.
This section contains some material which is not directly germane to the solution methods we present later in the book, but may be interesting to some students who want a broader perspective.

6C(i) Complex L^{2} space

$\S 6 \mathrm{~B}$ introduced the inner product for real-valued functions. The inner product for complex-valued functions is slightly different. For any $z=x+y \mathbf{i} \in \mathbb{C}$, let $\bar{z}:=x-y \mathbf{i}$ denote the complex conjugate of z. Let $\mathbb{X} \subset \mathbb{R}^{D}$ be some domain, and let $f, g: \mathbb{X} \longrightarrow \mathbb{C}$ be complex-valued functions. We define

$$
\begin{equation*}
\langle f, g\rangle \quad:=\int_{\mathbb{X}} f(\mathbf{x}) \cdot \overline{g(\mathbf{x})} d \mathbf{x} \tag{6C.1}
\end{equation*}
$$

If g is real-valued, then $\bar{g}=g$, and then eqn.(6C.1) is equivalent to eqn.(6B.4).
For any $z \in \mathbb{C}$, recall that $z \cdot \bar{z}=|z|^{2}$. Thus, if f is a complex-valued function, then $f(x) \bar{f}(x)=|f(x)|^{2}$. It follows that we can define the L^{2}-norm of an integrable function $f: \mathbb{X} \longrightarrow \mathbb{C}$ just as before:

$$
\|f\|_{2}=\langle f, f\rangle^{1 / 2}=\left(\int_{\mathbb{X}}|f|^{2}(\mathbf{x}) d \mathbf{x}\right)^{1 / 2}
$$

and this quantity will always be a real number (when the integral converges). We define $\mathbf{L}^{2}(\mathbb{X} ; \mathbb{C})$ to be the set of all integrable functions $f: \mathbb{X} \longrightarrow \mathbb{C}$ such that $\|f\|_{2}<\infty$. ${ }^{\text {b }}$

Proposition 6C.1. Properties of the complex inner product
The inner product on $\mathbf{L}^{2}(\mathbb{X} ; \mathbb{C})$ has the following properties.
Sesquilinearity. For any $f_{1}, f_{2}, g_{1}, g_{2} \in \mathbf{L}^{2}(\mathbb{X} ; \mathbb{C})$, and any constants $b_{1}, b_{2}, c_{1}, c_{2} \in$ \mathbb{C},

$$
\left\langle b_{1} f_{1}+b_{2} f_{2}, c_{1} g_{1}+c_{2} g_{2}\right\rangle=b_{1} \bar{c}_{1}\left\langle f_{1}, g_{1}\right\rangle+b_{1} \bar{c}_{2}\left\langle f_{1}, g_{2}\right\rangle+b_{2} \bar{c}_{1}\left\langle f_{2}, g_{1}\right\rangle+b_{2} \bar{c}_{2}\left\langle f_{2}, g_{2}\right\rangle .
$$

Hermitian. For any $f, g \in \mathbf{L}^{2}(\mathbb{X} ; \mathbb{C}),\langle f, g\rangle=\overline{\langle g, f\rangle}$.
Positive-definite. For any $f \in \mathbf{L}^{2}(\mathbb{X} ; \mathbb{C}),\langle f, f\rangle$ is a real number and $\langle f, f\rangle \geq$ 0 . Also, $\langle f, f\rangle=0$ if and only if $f=0$.

CBS Inequality. For any $f, g \in \mathbf{L}^{2}(\mathbb{X} ; \mathbb{C}),|\langle f, g\rangle| \leq\|f\|_{2} \cdot\|g\|_{2}$.
Proof. Exercise 6C. 1 Hint: Imitate the proofs of Proposition 6B.4 and Theorem 6B.5. In your proof of the CBS inequality, don't forget that $\langle f, g\rangle+\overline{\langle f, g\rangle}=2 \operatorname{Re}[\langle f, g\rangle]$.

[^35]
6C(ii) Riemann vs. Lebesgue integrals

We have defined $\mathbf{L}^{2}(\mathbb{X})$ to be the set of all 'integrable' functions on \mathbb{X} with finite L^{2}-norm, but we have been somewhat vague about what we mean by 'integrable'. The most familiar and elementary integral is the Riemann integral. For example, if $\mathbb{X}=[a, b]$, and $f: \mathbb{X} \longrightarrow \mathbb{R}$, then the Riemann integral of f is defined

$$
\begin{equation*}
\int_{a}^{b} f(x) d x:=\lim _{N \rightarrow \infty} \frac{b-a}{N} \sum_{n=1}^{N} f\left(a+\frac{n(b-a)}{N}\right) \tag{6C.2}
\end{equation*}
$$

A similar (but more complicated) definition can be given if \mathbb{X} is an arbitrary domain in \mathbb{R}^{D}. We say f is Riemann integrable if the limit (6C.2) exists and is finite.

However, this is not what we mean here by 'integrable'. The problem is that the limit (6C.2) only exists if the function f is reasonably 'nice' (e.g. piecewise continuous). We need an integral which works even for extremely 'nasty' functions (e.g. functions which are discontinuous everywhere; functions which have a 'fractal' structure, etc.). This object is called the Lebesgue integral; its definition is similar to (6C.2) but much more complicated.

Loosely speaking, the 'Riemann sum' in (6C.2) chops the interval $[a, b]$ up into N equal subintervals. The corresponding sum in the Lebesgue integral allows us to chop $[a, b]$ into any number of 'Borel-measurable subsets'. A 'Borel-measurable subset' is any open set, any closed set, any (countably infinite) union or intersection of open or closed sets, any (countably infinite) union or intersection of these sets, etc. Clearly 'measurable subsets' can become very complex. The Lebesgue integral is obtained by taking a limit over all possible 'Riemann sums' obtained using such 'measurable partitions' of $[a, b]$. This is a very versatile and powerful construction, which can integrate incredibly bizarre and pathological functions. (See Remark 10D. 3 on page 211 for further discussion of Riemann vs. Lebesgue integration).

You might ask, 'Why would I want to integrate bizarre and pathological functions?' Indeed, the sorts of functions which arise in applied mathematics are almost always piecewise continuous, and for them, the Riemann integral works just fine. To answer this, consider the difference between the following two equations:

$$
\text { (a) } x^{2}=\frac{16}{9} ; \quad \text { (b) } x^{2}=2
$$

Both equations have solutions, but they are different. The solutions to (a) are rational numbers, for which we have an exact expression $x= \pm 4 / 3$. The solutions to (b) are irrational numbers, for which we have only approximate expressions: $x= \pm \sqrt{2} \approx \pm 1.414213562 \ldots$.

Irrational numbers are 'pathological': they do not admit nice, simple, exact expressions like $4 / 3$. We might be inclined to ignore such pathological objects in our mathematics - to pretend they don't exist. Indeed, this was precisely
the attitude of the ancient Greeks, whose mathematics was based entirely on rational numbers. The problem is: in this 'ancient Greek' mathematical universe, equation (b) has no solution. This is not only inconvenient, it is profoundly counterintuitive; after all, $\sqrt{2}$ is simply the length of the hypotenuse of a right angle triangle whose other sides both have length 1 . And surely the sidelength of a triangle should be a number.

Furthermore we can find rational numbers which seem to be arbitrarily good approximations to a solution of equation (b). For example,

$$
\begin{aligned}
\left(\frac{1,414}{100}\right)^{2} & =1.999396 \\
\left(\frac{1,414,213}{100,000}\right)^{2} & =1.999998409 \\
\left(\frac{141,421,356}{10,000,000}\right)^{2} & =1.999999993 \\
\vdots & \vdots
\end{aligned}
$$

It certainly seems like this sequence of rational numbers is converging to 'something'. Our name for that 'something' is $\sqrt{2}$. In fact, this is the only way we can ever specify $\sqrt{2}$. Since we cannot express $\sqrt{2}$ as a fraction or some simple decimal expansion, we can only say, ' $\sqrt{2}$ is the number to which the above sequence of rational numbers seems to be converging.'

But how do we know that any such number exists? Couldn't there just be a 'hole' in the real number line where we think $\sqrt{2}$ is supposed to be? The answer is that the set \mathbb{R} is complete - that is, any sequence in \mathbb{R} which 'looks like it is converging'团 does, in fact, converge to some limit point in \mathbb{R}. Because \mathbb{R} is complete, we are confident that $\sqrt{2}$ exists, even though we can never precisely specify its value.

Now let's return to $\mathbf{L}^{2}(\mathbb{X})$. Like the real line \mathbb{R}, the space $\mathbf{L}^{2}(\mathbb{X})$ has a geometry: a notion of 'distance' defined by the L^{2}-norm $\|\bullet\|_{2}$. This geometry provides us with a notion of convergence in $\mathbf{L}^{2}(\mathbb{X})$ (see $\S 6 \mathrm{E}(\mathrm{i})$ on page 117). Like \mathbb{R}, we would like $\mathbf{L}^{2}(\mathbb{X})$ to be complete, so that any sequence of functions which 'looks like it is converging' does, in fact, converge to some limit point in $\mathbf{L}^{2}(\mathbb{X})$.

Unfortunately, a sequence of perfectly 'nice' functions in $\mathbf{L}^{2}(\mathbb{X})$ can converge to a totally 'pathological' limit function, the same way that a sequence of 'nice' rational numbers can converge to an irrational number. If we exclude the pathological functions from $\mathbf{L}^{2}(\mathbb{X})$, we will be like the ancient Greeks, who excluded irrational numbers from their mathematics. We will encounter situations where a certain equation 'should' have a solution, but doesn't, just as the Greeks discovered that the equation $x^{2}=2$ had no solution in their mathematics.

[^36]Thus our definition of $\mathbf{L}^{2}(\mathbb{X})$ must include some pathological functions. But if these pathological functions are in $\mathbf{L}^{2}(\mathbb{X})$, and $\mathbf{L}^{2}(\mathbb{X})$ is defined as the set of elements with finite norm, and the norm $\|f\|_{2}$ is defined using an integral like (6B.2), then we must have a way of integrating these pathological functions. Hence the necessity of the Lebesgue integral.

Fortunately, all the functions we will encounter in this book are Riemann integrable. For the purposes of solving PDEs, you do not need to know how to compute the Lebesgue integral. But it is important to know that it exists, and that somewhere in the background, its presence is making all the mathematics work properly.

6D Orthogonality

Prerequisites: § [GA.

Two functions $f, g \in \mathbf{L}^{2}(\mathbb{X})$ are orthogonal if $\langle f, g\rangle=0$. Intuitively, this means that f and g are 'perpendicular' vectors in the infinite-dimensional vector space $\mathbf{L}^{2}(\mathbb{X})$.

Example 6D.1. Treat \sin and \cos as elements of $\mathbf{L}^{2}[-\pi, \pi]$. Then they are orthogonal:

$$
\langle\sin , \cos \rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sin (x) \cos (x) d x=0 . \quad \text { (Exercise 6D.1). }
$$

An orthogonal set of functions is a set $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ of elements in $\mathbf{L}^{2}(\mathbb{X})$ such that $\left\langle f_{j}, f_{k}\right\rangle=0$ whenever $j \neq k$. If, in addition, $\left\|f_{j}\right\|_{2}=1$ for all j, then we say this is an orthonormal set of functions. Fourier analysis is based on the orthogonality of certain families of trigonometric functions. Example 6D. 1 was an example of this, which generalizes as follows....

Proposition 6D.2. Trigonometric Orthogonality on $[-\pi, \pi]$
For every $n \in \mathbb{N}$, define the functions $\mathbf{S}_{n}, \mathbf{C}_{n}:[-\pi, \pi] \longrightarrow \mathbb{R}$ by $\mathbf{S}_{n}(x):=$ $\sin (n x)$ and $\mathbf{C}_{n}(x):=\cos (n x)$, for all $x \in[-\pi, \pi]$. (See Figure 6D.1). Then the set $\left\{\mathbf{C}_{0}, \mathbf{C}_{1}, \mathbf{C}_{2}, \ldots ; \mathbf{S}_{1}, \mathbf{S}_{2}, \mathbf{S}_{3}, \ldots\right\}$ is an orthogonal set of functions for $\mathbf{L}^{2}[-\pi, \pi]$. In other words:
(a) $\left\langle\mathbf{S}_{n}, \mathbf{S}_{m}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sin (n x) \sin (m x) d x=0$, whenever $n \neq m$.
(b) $\left\langle\mathbf{C}_{n}, \mathbf{C}_{m}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos (n x) \cos (m x) d x=0$, whenever $n \neq m$.
(c) $\left\langle\mathbf{S}_{n}, \mathbf{C}_{m}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sin (n x) \cos (m x) d x=0$, for any n and m.

Figure 6D.1: $\mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{C}_{3}$, and $\mathbf{C}_{4} ; \mathbf{S}_{1}, \mathbf{S}_{2}, \mathbf{S}_{3}$, and \mathbf{S}_{4}
(d) However, these functions are not orthonormal, because they do not have unit norm. Instead, for any $n \neq 0$,
$\left\|\mathbf{C}_{n}\right\|_{2}=\sqrt{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos (n x)^{2} d x}=\frac{1}{\sqrt{2}}$, and $\left\|\mathbf{S}_{n}\right\|_{2}=\sqrt{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sin (n x)^{2} d x}=\frac{1}{\sqrt{2}}$.

Proof. Exercise 6D. 2 Hint: Use the trigonometric identities: $2 \sin (\alpha) \cos (\beta)=$ $\sin (\alpha+\beta)+\sin (\alpha-\beta), 2 \sin (\alpha) \sin (\beta)=\cos (\alpha-\beta)-\cos (\alpha+\beta)$, and $2 \cos (\alpha) \cos (\beta)=$ $\cos (\alpha+\beta)+\cos (\alpha-\beta)$.

Remark. Notice that $\mathbf{C}_{0}(x)=1$ is just the constant function.
It is important to remember that the statement, " f and g are orthogonal" depends upon the domain \mathbb{X} which we are considering. For example, compare the following theorem to the preceeding one...

Proposition 6D.3. Trigonometric Orthogonality on $[0, L]$
Let $L>0$, and, for every $n \in \mathbb{N}$, define the functions $\mathbf{S}_{n}, \mathbf{C}_{n}:[0, L] \longrightarrow \mathbb{R}$ by $\mathbf{S}_{n}(x):=\sin \left(\frac{n \pi x}{L}\right)$ and $\mathbf{C}_{n}(x):=\cos \left(\frac{n \pi x}{L}\right)$, for all $x \in[0, L]$.
(a) The set $\left\{\mathbf{C}_{0}, \mathbf{C}_{1}, \mathbf{C}_{2}, \ldots\right\}$ is an orthogonal set of functions for $\mathbf{L}^{2}[0, L]$. In other words: $\left\langle\mathbf{C}_{n}, \mathbf{C}_{m}\right\rangle=\frac{1}{L} \int_{0}^{L} \cos \left(\frac{n \pi}{L} x\right) \cos \left(\frac{m \pi}{L} x\right) d x=0$, whenever $n \neq m$.

However, these functions are not orthonormal, because they do not have unit norm. Instead, for any $n \neq 0,\left\|\mathbf{C}_{n}\right\|_{2}=\sqrt{\frac{1}{L} \int_{0}^{L} \cos \left(\frac{n \pi}{L} x\right)^{2} d x}=$ $\frac{1}{\sqrt{2}}$.
(b) The set $\left\{\mathbf{S}_{1}, \mathbf{S}_{2}, \mathbf{S}_{3}, \ldots\right\}$ is an orthogonal set of functions for $\mathbf{L}^{2}[0, L]$. In other words: $\left\langle\mathbf{S}_{n}, \mathbf{S}_{m}\right\rangle=\frac{1}{L} \int_{0}^{L} \sin \left(\frac{n \pi}{L} x\right) \sin \left(\frac{m \pi}{L} x\right) d x=0$, whenever $n \neq m$.
However, these functions are not orthonormal, because they do not have unit norm. Instead, for any $n \neq 0,\left\|\mathbf{S}_{n}\right\|_{2}=\sqrt{\frac{1}{L} \int_{0}^{L} \sin \left(\frac{n \pi}{L} x\right)^{2} d x}=$ $\frac{1}{\sqrt{2}}$.
(c) The functions \mathbf{C}_{n} and \mathbf{S}_{m} are not orthogonal to one another on $[0, L]$. Instead:

$$
\left\langle\mathbf{S}_{n}, \mathbf{C}_{m}\right\rangle=\frac{1}{L} \int_{0}^{L} \sin \left(\frac{n \pi}{L} x\right) \cos \left(\frac{m \pi}{L} x\right) d x=\left\{\begin{array}{cc}
0 & \text { if } n+m \text { is even } \\
\frac{2 n}{\pi\left(n^{2}-m^{2}\right)} & \text { if } n+m \text { is odd. }
\end{array}\right.
$$

Proof. Exercise 6D. 3.

Remark. The trigonometric functions are just one of several important orthogonal sets of functions. Different orthogonal sets are useful for different domains or different applications. For example, in some cases, it is convenient to use a collection of orthogonal polynomial functions. Several orthogonal polynomial families exist, including the Legendre Polynomials (see § 16D on page 359), the Chebyshev polynomials (see Exercise 14B.1(e) on page 278 of $\S 14 \mathrm{~B}(\mathrm{in})$), the Hermite polynomials and the Laguerre polynomials. See [Bro89, Chap.3] for a good introduction.

In the study of partial differential equations, the following fact is particularly important:

Figure 6D.2: Four Haar basis elements: $\mathbf{H}_{1}, \mathbf{H}_{2}, \mathbf{H}_{3}, \mathbf{H}_{4}$

Let $\mathbb{X} \subset \mathbb{R}^{D}$ be any domain. If $f, g: \mathbb{X} \longrightarrow \mathbb{C}$ are two eigenfunctions of the Laplacian with different eigenvalues, then f and g are orthogonal in $\mathbf{L}^{2}(\mathbb{X})$.
(See Proposition 15E.9 on page 345 for a precise statement of this.) Because of this, we can get orthogonal sets whose members are eigenfunctions of the Laplacian (see Theorem 15E.12 on page 347). These orthogonal sets are the 'building blocks' with which we can construct solutions to a PDE satisfying prescribed initial conditions or boundary conditions. This is the basic strategy behind the solution methods of Chapters 11-14.

Exercise 6D.4. Figure 6D. 2 portrays the The Haar Basis. We define $\mathbf{H}_{0} \equiv 1$, and for any natural number $N \in \mathbb{N}$, we define the N th Haar function $\mathbf{H}_{N}:[0,1] \longrightarrow \mathbb{R}$ by:

$$
\mathbf{H}_{N}(x)=\left\{\begin{aligned}
1 & \text { if } \frac{2 n}{2^{N}} \leq x<\frac{2 n+1}{2^{N}}, \quad \text { for some } n \in\left[0 \ldots 2^{N-1}\right) \\
-1 & \text { if } \frac{2 n+1}{2^{N}} \leq x<\frac{2 n+2}{2^{N}}, \text { for some } n \in\left[0 \ldots 2^{N-1}\right) .
\end{aligned}\right.
$$

(a) Show that the set $\left\{\mathbf{H}_{0}, \mathbf{H}_{1}, \mathbf{H}_{2}, \mathbf{H}_{3}, \ldots\right\}$ is an orthonormal set in $\mathbf{L}^{2}[0,1]$.
(b) There is another way to define the Haar Basis. First recall that any number $x \in[0,1]$ has a unique binary expansion of the form

$$
x=\frac{x_{1}}{2}+\frac{x_{2}}{4}+\frac{x_{3}}{8}+\frac{x_{4}}{16}+\cdots+\frac{x_{n}}{2^{n}}+\cdots
$$

where $x_{1}, x_{2}, x_{3}, x_{4}, \ldots$ are all either 0 or 1 . Show that, for any $n \geq 1$,

$$
\mathbf{H}_{n}(x)=(-1)^{x_{n}}=\left\{\begin{array}{rll}
1 & \text { if } & x_{n}=0 \\
-1 & \text { if } & x_{n}=1 .
\end{array}\right.
$$

Exercise 6D.5 Figure 6D. 3 portrays a Wavelet Basis. We define $\mathbf{W}_{0} \equiv 1$,

Figure 6D.3: Seven Wavelet basis elements: $\quad \mathbf{W}_{1,0} ; \quad \mathbf{W}_{2,0}, \quad \mathbf{W}_{2,1}$; $\mathbf{W}_{3,0}, \mathbf{W}_{3,1}, \mathbf{W}_{3,2}, \mathbf{W}_{3,3}$
and for any $N \in \mathbb{N}$ and $n \in\left[0 \ldots 2^{N-1}\right)$, we define

$$
\mathbf{W}_{n ; N}(x)=\left\{\begin{aligned}
1 & \text { if } \frac{2 n}{2^{N}} \leq x<\frac{2 n+1}{2^{N}} \\
-1 & \text { if } \frac{2 n+1}{2^{N}} \leq x<\frac{2 n+2}{2^{N}} \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Show that the the set
$\left\{\mathbf{W}_{0} ; \mathbf{W}_{1,0} ; \mathbf{W}_{2,0}, \mathbf{W}_{2,1} ; \mathbf{W}_{3,0}, \mathbf{W}_{3,1}, \mathbf{W}_{3,2}, \mathbf{W}_{3,3} ; \mathbf{W}_{4,0}, \ldots, \mathbf{W}_{4,7} ; \mathbf{W}_{5,0}, \ldots, \mathbf{W}_{5,15} ; \ldots\right\}$
is an orthogonal set in $\mathbf{L}^{2}[0,1]$, but is not orthonormal: for any N and n, we have $\left\|\mathbf{W}_{n ; N}\right\|_{2}=\frac{1}{2^{(N-1) / 2}}$.

6E Convergence concepts

Prerequisites: $\S 4 \mathrm{~A}$.

If $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ is a sequence of numbers, we know what it means to say " $\lim _{n \rightarrow \infty} x_{n}=x$ ". We can think of convergence as a kind of "approximation".

Figure 6E.1: The sequence $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ converges to the constant 0 function in $\mathbf{L}^{2}(\mathbb{X})$.

Heuristically speaking, if the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to x, then, for very large n, the number x_{n} is a good approximation of x.

If $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ was a sequence of functions, and f was some other function, then we might want to say that " $\lim _{n \rightarrow \infty} f_{n}=f$ ". We again imagine convergence as a kind of "approximation". Heuristically speaking, if the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges to f, then, for very large n, the function f_{n} is a good approximation of f.

However, there are several ways we can interpret "good approximation", and these in turn lead to several different notions of "convergence". Thus, convergence of functions is a much more subtle concept that convergence of numbers. We will deal with three kinds of convergence here: L^{2}-convergence, pointwise convergence, and uniform convergence.

6E(i) $\quad L^{2}$ convergence

Let $\mathbb{X} \subset \mathbb{R}^{D}$ be some domain, and define

$$
M:=\left\{\begin{aligned}
\int_{\mathbb{X}} 1 d \mathbf{x} & \text { if } \mathbb{X} \text { is a finite domain } \\
1 & \text { if } \mathbb{X} \text { is an infinite domain }
\end{aligned}\right.
$$

If $f, g \in \mathbf{L}^{2}(\mathbb{X})$, then the L^{2}-distance between f and g is just

$$
\|f-g\|_{2}:=\left(\frac{1}{M} \int_{\mathbb{X}}|f(\mathbf{x})-g(\mathbf{x})|^{2} d \mathbf{x}\right)^{1 / 2}
$$

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

If we think of f as an "approximation" of g, then $\|f-g\|_{2}$ measures the root-mean-squared error of this approximation.

Lemma 6E.1. $\|\bullet\|_{2}$ is a norm. That is:
(a) For any $f: \mathbb{X} \longrightarrow \mathbb{R}$ and $r \in \mathbb{R}, \quad\|r \cdot f\|_{2}=|r| \cdot\|f\|_{2}$.
(b) (Triangle Inequality) For any $f, g: \mathbb{X} \longrightarrow \mathbb{R}, \quad\|f+g\|_{2} \leq\|f\|_{2}+\|g\|_{2}$.
(c) For any $f: \mathbb{X} \longrightarrow \mathbb{R},\|f\|_{2}=0$ if and only if $f \equiv 0$.

Proof. Exercise 6E. 1

If $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ is a sequence of successive approximations of f, then we say the sequence converges to f in L^{2} if $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{2}=0$ (sometimes this is called convergence in mean square). See Figure 6E.1. We then write $f=\mathbf{L}^{2}-\lim _{n \rightarrow \infty} f_{n}$.

Example 6E.2. In each of the following examples, let $\mathbb{X}=[0,1]$.
(a) Suppose $f_{n}(x)=\left\{\begin{array}{ll}1 & \text { if } 1 / n<x<2 / n \\ 0 & \text { otherwise }\end{array}\right.$ (Figure 6E.2A). Then $\left\|f_{n}\right\|_{2}=$ $\frac{1}{\sqrt{n}}\left(\underline{\text { Exercise 6E.2 }}\right.$). Hence, $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{2}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$, so the sequence $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ converges to the constant 0 function in $\mathbf{L}^{2}[0,1]$.
(b) For all $n \in \mathbb{N}$, let $f_{n}(x)=\left\{\begin{array}{ll}n & \text { if } 1 / n<x<2 / n ; \\ 0 & \text { otherwise }\end{array}\right.$ (Figure 6E.2B). Then $\left\|f_{n}\right\|_{2}=\sqrt{n}$ (Exercise 6E.3). Hence, $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{2}=\lim _{n \rightarrow \infty} \sqrt{n}=$ ∞, so the sequence $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ does not converge to zero in $\mathbf{L}^{2}[0,1]$.
(c) For each $n \in \mathbb{N}$, let $f_{n}(x)=\left\{\begin{array}{cc}1 & \text { if }\left|\frac{1}{2}-x\right|<\frac{1}{n} ; \\ 0 & \text { otherwise }\end{array}\right.$. Then the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges to 0 in L^{2}. (Exercise 6E.4)
(d) For all $n \in \mathbb{N}$, let $f_{n}(x)=\frac{1}{1+n \cdot\left|x-\frac{1}{2}\right|}$. Figure 6 E .3 portrays elements f_{1}, f_{10}, f_{100}, and f_{1000}; these picture strongly suggest that the sequence is converging to the constant 0 function in $\mathbf{L}^{2}[0,1]$. The proof of this is Exercise 6E. 5 .
(e) Recall the Wavelet functions from Example 6D.4(b). For any $N \in \mathbb{N}$ and $n \in\left[0 . .2^{N-1}\right)$, we had $\left\|\mathbf{W}_{N, n}\right\|_{2}=\frac{1}{2^{(N-1) / 2}}$. Thus, the sequence of wavelet basis elements converges to the constant 0 function in $\mathbf{L}^{2}[0,1]$.

Figure 6E.2: (A) Examples 6E.2(a), 6E.5(a), and 6E.9(a);
(B) Examples 6 E .2 (b) and 6E.5(b).

$$
f_{1}(x)=\frac{1}{1+1 \cdot\left|x-\frac{1}{2}\right|}
$$

$$
f_{10}(x)=\frac{1}{1+10 \cdot\left|x-\frac{1}{2}\right|}
$$

Figure 6E.3: Examples 6E.2(c) and 6E.5(c): If $f_{n}(x)=\frac{1}{1+n \cdot\left|x-\frac{1}{2}\right|}$, then the sequence $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ converges to the constant 0 function in $\mathbf{L}^{2}[0,1]$.

Note that, if we define $g_{n}=f-f_{n}$ for all $n \in \mathbb{N}$, then

$$
\left(f_{n} \xrightarrow[n \rightarrow \infty]{ } f \text { in } L^{2}\right) \Longleftrightarrow\left(g_{n} \xrightarrow[n \rightarrow \infty]{ } 0 \text { in } L^{2}\right)
$$

Hence, to understand L^{2}-convergence in general, it is sufficient to understand L^{2}-convergence to the constant 0 function.

Lemma 6E.3. The inner product function $\langle\bullet, \bullet\rangle$ is continuous with respect to L^{2} convergence. That is: if $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ and $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ are two sequences of functions in $\mathbf{L}^{2}(\mathbb{X})$, and $\mathbf{L}^{2}-\lim _{n \rightarrow \infty} f_{n}=f$ and $\mathbf{L}^{2}-\lim _{n \rightarrow \infty} g_{n}=g$, then $\lim _{n \rightarrow \infty}\left\langle f_{n}, g_{n}\right\rangle=\langle f, g\rangle$.
Proof. Exercise 6E. 6

6E(ii) Pointwise convergence

Convergence in L^{2} only means that the average approximation error gets small. It does not mean that $\lim _{n \rightarrow \infty} f_{n}(\mathbf{x})=f(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{X}$. If this equation is true, then we say that the sequence $\left\{f_{1}, f_{2}, \ldots\right\}$ converges pointwise to f (see Figure 6E.4. We then write $f \equiv \lim _{n \rightarrow \infty} f_{n}$. Pointwise convergence is generally considered stronger than L^{2} convergence because of the following result:

Theorem 6E.4. Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a bounded domain, and let $\left\{f_{1}, f_{2}, \ldots\right\}$ be a sequence of functions in $\mathbf{L}^{2}(\mathbb{X})$. Suppose:
(a) All the functions are uniformly bounded -that is, there is some $M>0$ such that $\left|f_{n}(x)\right|<M$ for all $n \in \mathbb{N}$ and all $x \in \mathbb{X}$.

Figure 6E.4: The sequence $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ converges pointwise to the constant 0 function. Thus, if we pick some random points $w, x, y, z \in \mathbb{X}$, then we see that $\lim _{n \rightarrow \infty} f_{n}(w)=0, \lim _{n \rightarrow \infty} f_{n}(x)=0, \lim _{n \rightarrow \infty} f_{n}(y)=0$, and $\lim _{n \rightarrow \infty} f_{n}(z)=0$.
(b) The sequence $\left\{f_{1}, f_{2}, \ldots\right\}$ converges pointwise to some function $f \in \mathbf{L}^{2}(\mathbb{X})$.

Then the sequence $\left\{f_{1}, f_{2}, \ldots\right\}$ also converges to f in L^{2}.
Proof. Exercise 6E. 7 Hint: You may use the following special case of Lebesgue's Dominated Convergence Theorem: ${ }^{\square}$

Let $\left\{g_{1}, g_{2}, \ldots\right\}$ be a sequence of integrable functions on the domain \mathbb{X}. Let $g: \mathbb{X} \longrightarrow \mathbb{R}$ be another such function. Suppose that
(a) There is some some $L>0$ such that $\left|g_{n}(x)\right|<L$ for all $n \in \mathbb{N}$ and all $x \in \mathbb{X}$.
(b) For all $x \in \mathbb{X}, \quad \lim _{n \rightarrow \infty} g_{n}(x)=g(x)$.

Then $\lim _{n \rightarrow \infty} \int_{\mathbb{X}} g_{n}(x) d x=\int_{\mathbb{X}} g(x) d x$.

[^37]

Figure 6E.5: Examples 6 E.5(d) and 6 E.9(d): If $g_{n}(x)=\frac{1}{1+n \cdot\left|x-\frac{1}{2 n}\right|}$, then the sequence $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ converges pointwise to the constant 0 function on $[0,1]$.

Let $g_{n}:=\left|f-f_{n}\right|^{2}$ for all $n \in \mathbb{N}$, and let $g=0$. Apply the Dominated Convergence Theorem.

Example 6E.5. In each of the following examples, let $\mathbb{X}=[0,1]$.
(a) As in Example 6E.2(a), for each $n \in \mathbb{N}$, let $f_{n}(x)=\left\{\begin{array}{ll}1 & \text { if } 1 / n<x<2 / n ; \\ 0 & \text { otherwise }\end{array}\right.$. (Fig.6E.2A). The sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges pointwise to the constant 0 function on $[0,1]$. Also, as predicted by Theorem 6E.4, the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges to the constant 0 function in L^{2} (see Example 6E.2(a)).
(b) As in Example 6E.2 (b), for each $n \in \mathbb{N}$, let $f_{n}(x)=\left\{\begin{array}{cc}n & \text { if } 1 / n<x<2 / n \text {; } \\ 0 & \text { otherwise }\end{array}\right.$ (Fig.6E.2B). Then this sequence converges pointwise to the constant 0 function, but does not converge to zero in $\mathbf{L}^{2}[0,1]$. This illustrates the importance of the boundedness hypothesis in Theorem 6E.4.
(c) As in Example $6 \mathrm{E} \cdot 2$ (c), for each $n \in \mathbb{N}$, let $f_{n}(x)=\left\{\begin{array}{cc}1 & \text { if }\left|\frac{1}{2}-x\right|<\frac{1}{n} \text {; } \\ 0 & \text { otherwise }\end{array}\right.$. Then the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ does not converges to 0 in pointwise, although it does converge in L^{2}.

Figure 6E.6: The uniform norm of f is defined: $\|f\|_{\infty}:=\sup _{x \in \mathbb{X}}|f(x)|$.
(d) Recall the functions $f_{n}(x)=\frac{1}{1+n \cdot\left|x-\frac{1}{2}\right|}$ from Example 6E.2(d). This sequence of functions converges to zero in $\mathbf{L}^{2}[0,1]$, however, it does not converge to zero pointwise (Exercise 6E.8).
(e) For all $n \in \mathbb{N}$, let $g_{n}(x)=\frac{1}{1+n \cdot\left|x-\frac{1}{2 n}\right|}$. Figure 6 E .5 on the facing page portrays elements $g_{1}, g_{5}, g_{10}, g_{15}, g_{30}$, and g_{50}; These picture strongly suggest that the sequence is converging pointwise to the constant 0 function on $[0,1]$. The proof of this is Exercise 6E.9.
(f) Recall from Example 6E.2(e) that the sequence of Wavelet basis elements $\left\{\mathbf{W}_{N ; n}\right\}$ converges to zero in $\mathbf{L}^{2}[0,1]$. Note, however, that it does not converge to zero pointwise (Exercise 6E.10).

Note that, if we define $g_{n}=f-f_{n}$ for all $n \in \mathbb{N}$, then

$$
\left(f_{n} \xrightarrow[n \rightarrow \infty]{ } f \text { pointwise }\right) \Longleftrightarrow\left(g_{n} \xrightarrow[n \rightarrow \infty]{ } 0 \text { pointwise }\right)
$$

Hence, to understand pointwise convergence in general, it is sufficient to understand pointwise convergence to the constant 0 function.

6E(iii) Uniform convergence

There is an even stronger form of convergence. If $f: \mathbb{X} \longrightarrow \mathbb{R}$ is a function, then the uniform norm of f is defined:

$$
\|f\|_{\infty}:=\sup _{\mathbf{x} \in \mathbb{X}}|f(\mathbf{x})| .
$$

This measures the farthest deviation of the function f from zero (see Figure 6E.6).

Example 6E.6. Suppose $\mathbb{X}=[0,1]$, and $f(x)=\frac{1}{3} x^{3}-\frac{1}{4} x$ (as in Figure 6E.8A). The minimal point of f is $x=\frac{1}{2}$, where $f^{\prime}\left(\frac{1}{2}\right)=0$ and $f\left(\frac{1}{2}\right)=\frac{-1}{12}$. The maximal point of f is $x=1$, where $f(1)=\frac{1}{12}$. Thus, $|f(x)|$ takes a maximum value of $\frac{1}{12}$ at either point, so that $\|f\|_{\infty}=\sup _{0 \leq x \leq 1}\left|\frac{1}{3} x^{3}-\frac{1}{4} x\right|=\frac{1}{12}$.

Lemma 6E.7. $\|\bullet\|_{\infty}$ is a norm. That is:
(a) For any $f: \mathbb{X} \longrightarrow \mathbb{R}$ and $r \in \mathbb{R}, \quad\|r \cdot f\|_{\infty}=|r| \cdot\|f\|_{\infty}$.
(b) (Triangle Inequality) For any $f, g: \mathbb{X} \longrightarrow \mathbb{R},\|f+g\|_{\infty} \leq\|f\|_{\infty}+\|g\|_{\infty}$.
(c) For any $f: \mathbb{X} \longrightarrow \mathbb{R},\|f\|_{\infty}=0$ if and only if $f \equiv 0$.

Proof. Exercise 6E. 11

Figure 6E.7: If $\|f-g\|_{\infty}<\epsilon$, this means that $g(x)$ is confined within an ϵ-tube around f for all x.

The uniform distance between two functions f and g is then given by:

$$
\|f-g\|_{\infty}=\sup _{\mathbf{x} \in \mathbb{X}}|f(\mathbf{x})-g(\mathbf{x})| .
$$

One way to interpret this is portrayed in Figure 6E.7. Define a "tube" of width ϵ around the function f. If $\|f-g\|_{\infty}<\epsilon$, this means that $g(x)$ is confined within this tube for all x.

Example 6E.8. Let $\mathbb{X}=[0,1]$, and suppose $f(x)=x(x+1)$ and $g(x)=2 x$ (as in Figure 6E.8B). For any $x \in[0,1]$,

$$
|f(x)-g(x)|=\left|x^{2}+x-2 x\right|=\left|x^{2}-x\right|=x-x^{2} .
$$

Linear Partial Differential Equations and Fourier Theory

Figure 6E.8: (A) The uniform norm of $f(x)=\frac{1}{3} x^{3}-\frac{1}{4} x$ (Example 6E.6). (B) The uniform distance between $f(x)=x(x+1)$ and $g(x)=2 x$ (Example 6E.8). (C) $g_{n}(x)=\left|x-\frac{1}{2}\right|^{n}$, for $n=1,2,3,4,5$ (Example (7b))
(because it is nonnegative). This expression takes its maximum at $x=\frac{1}{2}$ (to see this, solve for $f^{\prime}(x)=0$), and its value at $x=\frac{1}{2}$ is $\frac{1}{4}$. Thus, $\|f-g\|_{\infty}=$ $\sup _{x \in \mathbb{X}}|x(x-1)|=\frac{1}{4}$.

Let $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ be functions from \mathbb{X} to \mathbb{R}, and let $f: \mathbb{X} \longrightarrow \mathbb{R}$ be some other function. The sequence $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ converges uniformly to f if $\lim _{n \rightarrow \infty}\left\|g_{n}-f\right\|_{\infty}=0$. We then write $f=$ unif $-\lim _{n \rightarrow \infty} g_{n}$. This means not only that $\lim _{n \rightarrow \infty} g_{n}(\mathbf{x})=f(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{X}$, but furthermore, that the functions g_{n} converge to f everywhere at the same "speed". This is portrayed in Figure 6E.9. For any $\epsilon>0$, we can define a "tube" of width ϵ around f, and, no matter how small we make this tube, the sequence $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ will eventually enter this tube and remain there. To be precise: there is some N such that, for all $n>N$, the function g_{n} is confined within the ϵ-tube around f-i.e. $\left\|f-g_{n}\right\|_{\infty}<\epsilon$.

Example 6E.9. In each of the following examples, let $\mathbb{X}=[0,1]$.
(a) Suppose, as in Example 6E.5(a) on page 122, and Figure 6E.2B on page [19, that

$$
g_{n}(x)= \begin{cases}1 & \text { if } \frac{1}{n}<x<\frac{2}{n} \\ 0 & \text { otherwise }\end{cases}
$$

Then the sequence $\left\{g_{1}, g_{2}, \ldots\right\}$ converges pointwise to the constant zero function, but does not converge to zero uniformly on $[0,1]$. (Exercise 6E. 12 Verify these claims.).

Figure 6E.9: The sequence $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ converges uniformly to f.
(b) If $g_{n}(x)=\left|x-\frac{1}{2}\right|^{n}$ (see Figure 6E.8C), then $\left\|g_{n}\right\|_{\infty}=\frac{1}{2^{n}}$ (Exercise 6E.13). Thus, the sequence $\left\{g_{1}, g_{2}, \ldots\right\}$ converges to zero uniformly on $[0,1]$, because $\lim _{n \rightarrow \infty}\left\|g_{n}\right\|_{\infty}=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0$.
(c) If $g_{n}(x)=1 / n$ for all $x \in[0,1]$, then the sequence $\left\{g_{1}, g_{2}, \ldots\right\}$ converges to zero uniformly on $[0,1]$ (Exercise 6E.14).
(d) Recall the functions $g_{n}(x)=\frac{1}{1+n \cdot\left|x-\frac{1}{2 n}\right|}$ from Example 6E.5(e) (Figure 6E.5 on page (122). The sequence $\left\{g_{1}, g_{2}, \ldots\right\}$ converges pointwise to the constant zero function, but does not converge to zero uniformly on $[0,1]$. (Exercise 6E. 15 Verify these claims.).
Note that, if we define $g_{n}=f-f_{n}$ for all $n \in \mathbb{N}$, then

$$
\left(f_{n} \xrightarrow[n \rightarrow \infty]{ } f \text { uniformly }\right) \Longleftrightarrow\left(g_{n} \xrightarrow[n \rightarrow \infty]{ } 0 \text { uniformly }\right)
$$

Hence, to understand uniform convergence in general, it is sufficient to understand uniform convergence to the constant 0 function.

Uniform convergence is the 'best' kind of convergence. It has the most useful consequences, but it is also the most difficult to achieve. (In many cases, we must settle for pointwise or L^{2} convergence instead.) For example, the following consequences of uniform convergence are extremely useful.

Proposition 6E.10. Let $\mathbb{X} \subset \mathbb{R}^{D}$ be some domain. Let $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ be functions from \mathbb{X} to \mathbb{R}, and let $f: \mathbb{X} \longrightarrow \mathbb{R}$ be some other function. Suppose $f_{n} \xrightarrow[n \rightarrow \infty]{ } f$ uniformly.
(a) If $\left\{f_{n}\right\}_{n=1}^{\infty}$ are all continuous on \mathbb{X}, then f is also continuous on \mathbb{X}.
(b) If \mathbb{X} is compact (that is, closed and bounded), then $\lim _{n \rightarrow \infty} \int_{\mathbb{X}} f_{n}(x) d x=$ $\int_{\mathbb{X}} f(x) d x$
(c) Suppose the functions $\left\{f_{n}\right\}_{n=1}^{\infty}$ are all differentiable on \mathbb{X}, and suppose $f_{n}^{\prime} \xrightarrow[n \rightarrow \infty]{ } F$ uniformly. Then f is also differentiable, and $f^{\prime}=F$.

Proof. (a) Exercise 6E. 16 (Slightly challenging; for students with some analysis background).
For (b,c) see e.g. [Asm0.5, Theorems 4 and 5, p.91-92 of $\S 2.9$].

Note that Proposition 6E.10(a,c) are false if we replace 'uniformly' with 'pointwise' or 'in L^{2}.' (Proposition 6E.10(b) is sometimes true under these conditions, but only if we also add additional hypotheses.) Indeed, the next result says that uniform convergence is logically stronger than either pointwise or L^{2} convergence.

Corollary 6E.11. Let $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ be functions from \mathbb{X} to \mathbb{R}, and let $f: \mathbb{X} \longrightarrow \mathbb{R}$ be some other function.
(a) If $f_{n} \xrightarrow[n \rightarrow \infty]{ } f$ uniformly, then $f_{n} \xrightarrow[n \rightarrow \infty]{ } f$ pointwise.
(b) Suppose \mathbb{X} is compact (that is, closed and bounded). If $f_{n} \xrightarrow[n \rightarrow \infty]{ } f$ uniformly, then:
[i] $f_{n} \xrightarrow[n \rightarrow \infty]{ } f$ in L^{2}.
[ii] For any $g \in \mathbf{L}^{2}(\mathbb{X})$, we have $\lim _{n \rightarrow \infty}\left\langle f_{n}, g\right\rangle=\langle f, g\rangle$.
Proof. Exercise 6E. 17 (a) is easy. For (b), use Proposition 6E.10(b).

Sometimes, uniform convergence is a little too much to ask for, and we must settle for a slightly weaker form of convergence. Let $\mathbb{X} \subset \mathbb{R}^{D}$ be some domain. Let $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ be functions from \mathbb{X} to \mathbb{R}, and let $f: \mathbb{X} \longrightarrow \mathbb{R}$ be some other function. The sequence $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ converges semiuniformly to f if:
(a) $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ converges pointwise to f on \mathbb{X}; i.e. $f(x)=\lim _{n \rightarrow \infty} g_{n}(x)$ for all $x \in \mathbb{X}$.
(b) $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ converges uniformly to f on any closed subset of int (\mathbb{X}). In other words, if $\mathbb{Y} \subset \operatorname{int}(\mathbb{X})$ is any closed set, then

$$
\lim _{n \rightarrow \infty}\left(\sup _{y \in \mathbb{Y}}\left|f(y)-g_{n}(y)\right|\right)=0 .
$$

Heuristically speaking, this means that the sequence $\left\{g_{n}\right\}_{n=1}^{\infty}$ is 'trying' to converge to f uniformly on \mathbb{X}, but it is maybe getting 'stuck' at some of the boundary points of \mathbb{X}.

Example 6E.12. Let $\mathbb{X}:=(0,1)$. Recall the functions $g_{n}(x)=\frac{1}{1+n \cdot\left|x-\frac{1}{2 n}\right|}$ from Figure 6E.5 on page 122 . By Example 6E.9(d) on page 126, we know that this sequence doesn't converge uniformly to 0 on $(0,1)$. However, it does converge semiuniformly to 0 . First, we know it converges pointwise on $(0,1)$, by Example 6E.5(e) on page 123. Second, if $0<a<b<1$, it is easy to check that $\left\{g_{n}\right\}_{n=1}^{\infty}$ converges to f uniformly on the closed interval $[a, b]$ (Exercise 6E.18). It follows that $\left\{g_{n}\right\}_{n=1}^{\infty}$ converges to f uniformly on any closed subset of $(0,1)$.

Summary. The various forms of convergence are logically related as follows:
(Uniform convergence $) \Rightarrow$ (Semiuniform convergence $) \Rightarrow$ (Pointwise convergence $)$.
Also, if \mathbb{X} is compact, then

$$
(\text { Uniform convergence }) \quad \Longrightarrow \quad\left(\text { Convergence in } L^{2}\right) .
$$

Finally, if the sequence of functions is uniformly bounded and \mathbb{X} is compact, then

$$
(\text { Pointwise convergence }) \quad \Longrightarrow \quad\left(\text { Convergence in } L^{2}\right) .
$$

However, the opposite implications are not true. In general:

$$
\left(\text { Convergence in } L^{2}\right) \nRightarrow(\text { Pointwise convergence }) \nRightarrow(\text { Uniform convergence })
$$

6E(iv) Convergence of function series

Let $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ be functions from \mathbb{X} to \mathbb{R}. The function series $\sum_{n=1}^{\infty} f_{n}$ is the formal infinite summation of these functions; we would like to think of this series as defining another function from \mathbb{X} to \mathbb{R}. . Intuitively, the symbol " $\sum_{n=1}^{\infty} f_{n}$ " should represent the function which arises as the limit $\lim _{N \rightarrow \infty} F_{N}$, where, for each $N \in \mathbb{N}, \quad F_{N}(x):=\sum_{n=1}^{N} f_{n}(x)=f_{1}(x)+f_{2}(x)+\cdots+f_{N}(x)$ is the N th partial sum. To make this precise, we must specify the sense in which the partial sums $\left\{F_{1}, F_{2}, \ldots\right\}$ converge. If $F: \mathbb{X} \longrightarrow \mathbb{R}$ is this putative limit function, then we say that the series $\sum_{n=1}^{\infty} f_{n} \ldots$

- ...converges in L^{2} to F if $F=\mathbf{L}-\frac{2}{N \rightarrow \infty} \lim _{n=1}^{N} f_{n}$. We then write $F \underset{\text { L2 }}{\approx} \sum_{n=1}^{\infty} f_{n}$.
- ...converges pointwise to F if, for each $x \in \mathbb{X}, \quad F(x)=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} f_{n}(x)$. We then write $F \equiv \sum_{n=1}^{\infty} f_{n}$.
- ...converges uniformly to F if $F=\operatorname{unif}-\lim _{N \rightarrow \infty} \sum_{n=1}^{N} f_{n}$. We then write $F \xlongequal[\overline{\text { unif }}]{ } \sum_{n=1}^{\infty} f_{n}$.
The next result provides a useful condition for the uniform convergence of an infinite summation of functions; we will use this result often in our study of Fourier series and other eigenfunction expansions in Chapters 7 to 9:

Proposition 6E.13. Weierstrass M-test
Let $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ be functions from \mathbb{X} to \mathbb{R}. For every $n \in \mathbb{N}$, let $M_{n}:=\left\|f_{n}\right\|_{\infty}$. If $\sum_{n=1}^{\infty} M_{n}<\infty$, then the series $\sum_{n=1}^{\infty} f_{n}$ converges uniformly on \mathbb{X}.
Proof. Exercise 6E. 19 (a) Show that the series converges pointwise to some limit function $f: \mathbb{X} \longrightarrow \mathbb{R}$.
(b) For any $N \in \mathbb{N}$, show that $\left\|F-\sum_{n=1}^{N} f_{n}\right\|_{\infty} \leq \sum_{n=N+1}^{\infty} M_{n}$.
(c) Show that $\lim _{N \rightarrow \infty} \sum_{n=N+1}^{\infty} M_{n}=0$.

The next three sufficient conditions for convergence are also sometimes useful (but they are not used later in this book).

Proposition 6E.14. Dirichlet Test

(Optional)
(Optional)
Proposition 6E.15. Cauchy's Criterion
Let $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ be functions from \mathbb{X} to \mathbb{R}. For every $N \in \mathbb{N}$, let $C_{N}:=$ $\sup _{M>N}\left\|\sum_{n=N}^{M} f_{n}\right\|_{\infty}$.

$$
\text { Then }\left(\text { The series } \sum_{n=1}^{\infty} f_{n} \text { converges uniformly on } \mathbb{X}\right) \Longleftrightarrow\left(\lim _{N \rightarrow \infty} C_{N}=0\right) \text {. }
$$

Proof. See [CB87, §88].

Proposition 6E.16. Abel's Test

(Optional)
Let $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ be functions from \mathbb{X} to \mathbb{R}. Let $\left\{c_{k}\right\}_{k=1}^{\infty}$ be a sequence of positive real numbers. Then the series $\sum_{n=1}^{\infty} c_{n} f_{n}$ converges uniformly on \mathbb{X} if:

- $\lim _{n \rightarrow \infty} c_{k}=0$; and
- There is some $M>0$ such that, for all $N \in \mathbb{N}$, we have $\left\|\sum_{n=1}^{N} f_{n}\right\|_{\infty}<M$.

Proof. See [Asm05, Appendix to §2.10, p.99]

Prof. Se [CR8, 888].
(Opiona)
Let $\mathbb{X} \subset \mathbb{R}^{N}$ and $\mathbb{Y} \subset \mathbb{R}^{M}$ be two domains. Let $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ be a sequence of functions from \mathbb{X} to \mathbb{R}, such that the series $\sum_{n=1}^{\infty} f_{n}$ converges uniformly on \mathbb{X}. Let $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ be another sequence of functions from \mathbb{Y} to \mathbb{R}, and consider the sequence $\left\{h_{1}, h_{2}, \ldots\right\}$ of functions from $\mathbb{X} \times \mathbb{Y}$ to \mathbb{R}, defined by $h_{n}(x, y):=$ $f_{n}(x) g_{n}(y)$. Suppose:
(a) The sequence $\left\{g_{n}\right\}_{n=1}^{\infty}$ is uniformly bounded; i.e. there is some $M>0$ such that $\left|g_{n}(y)\right|<M$ for all $n \in \mathbb{N}$ and $y \in \mathbb{Y}$.
(b) The sequence $\left\{g_{n}\right\}_{n=1}^{\infty}$ is monotonic; i.e. either $g_{1}(y) \leq g_{2}(y) \leq g_{3}(y) \leq \cdots$ for all $y \in \mathbb{Y}$, or $g_{1}(y) \geq g_{2}(y) \geq g_{3}(y) \geq \cdots$ for all $y \in \mathbb{Y}$.

Then the series $\sum_{n=1}^{\infty} h_{n}$ converges uniformly on $\mathbb{X} \times \mathbb{Y}$.
Proof. See [CB87, §88].

6F Orthogonal and orthonormal Bases

Prerequisites: $\S 6 \mathrm{~A}, \S 6 \mathrm{E}(\mathrm{i})$. Recommended: $\S 6 \mathrm{E}(\mathrm{iv})$.
An orthogonal set in $\mathbf{L}^{2}(\mathbb{X})$ is a (finite or infinite) collection of functions $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \ldots\right\}$ such that $\left\langle\mathbf{b}_{k}, \mathbf{b}_{j}\right\rangle=0$ whenever $k \neq j$. Intuitively, the vectors $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \ldots\right\}$ are all 'perpendicular' to one another in the infinite-dimensional geometry of $\mathbf{L}^{2}(\mathbb{X})$. One consequence is an L^{2}-version of the Pythagorean Formula: For any $N \in \mathbb{N}$ and any real numbers $r_{1}, r_{2}, \ldots, r_{N} \in \mathbb{R}$, we have

$$
\begin{equation*}
\left\|r_{1} \mathbf{b}_{1}+r_{2} \mathbf{b}_{2}+\cdots+r_{N} \mathbf{b}_{n}\right\|_{2}^{2}=r_{1}^{2}\left\|\mathbf{b}_{1}\right\|_{2}^{2}+r_{2}^{2}\left\|\mathbf{b}_{N}\right\|_{2}^{2}+\cdots+r_{N}^{2}\left\|\mathbf{b}_{N}\right\|_{2}^{2} \tag{6F.1}
\end{equation*}
$$

(Exercise 6F. 1 Verify the L^{2} Pythagorean formula).
An orthogonal basis for $\mathbf{L}^{2}(\mathbb{X})$ is an infinite collection of functions $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \ldots\right\}$ such that:

- $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \ldots\right\}$ form an orthogonal set (i.e. $\left\langle\mathbf{b}_{k}, \mathbf{b}_{j}\right\rangle=0$ whenever $k \neq j$.)
- For any $\mathbf{g} \in \mathbf{L}^{2}(\mathbb{X})$, if we define $\gamma_{n}=\frac{\left\langle\mathbf{g}, \mathbf{b}_{n}\right\rangle}{\left\|\mathbf{b}_{n}\right\|_{2}^{2}}$, for all $n \in \mathbb{N}$, then $\mathbf{g} \underset{\mathrm{T} 2}{\approx} \quad \sum_{n=1}^{\infty} \gamma_{n} \mathbf{b}_{n}$.

Recall that this means that $\lim _{N \rightarrow \infty}\left\|\mathrm{~g}-\sum_{n=1}^{N} \gamma_{n} \mathbf{b}_{n}\right\|_{2}=0$. In other words, we can approximate \mathbf{g} as closely as we want in L^{2} norm with a partial sum $\sum_{n=1}^{N} \gamma_{n} \mathbf{b}_{n}$, if we make N large enough.

An orthonormal basis for $\mathbf{L}^{2}(\mathbb{X})$ is an infinite collection of functions $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \ldots\right\}$ such that:

- $\left\|\mathbf{b}_{k}\right\|_{2}=1$ for every k.
- $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \ldots\right\}$ is an orthogonal basis for $\mathbf{L}^{2}(\mathbb{X})$. In other words, $\left\langle\mathbf{b}_{k}, \mathbf{b}_{j}\right\rangle=$ 0 whenever $k \neq j$, and, for any $\mathbf{g} \in \mathbf{L}^{2}(\mathbb{X})$, if we define $\gamma_{n}=\left\langle\mathbf{g}, \mathbf{b}_{n}\right\rangle$ for all $n \in \mathbb{N}$, then $\mathbf{g} \quad \underset{\mathrm{I} 2}{\approx} \sum_{n=1}^{\infty} \gamma_{n} \mathbf{b}_{n}$.

One consequence of this is

Theorem 6F.1. Parseval's Equality

Let $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \ldots\right\}$ be an orthonormal basis for $\mathbf{L}^{2}(\mathbb{X})$, and let $\mathbf{f}, \mathbf{g} \in \mathbf{L}^{2}(\mathbb{X})$. Let $\varphi_{n}:=\left\langle\mathbf{f}, \mathbf{b}_{n}\right\rangle$ and $\gamma_{n}:=\left\langle\mathbf{g}, \mathbf{b}_{n}\right\rangle$ for all $n \in \mathbb{N}$. Then
(a) $\langle\mathbf{f}, \mathbf{g}\rangle=\sum_{n=1}^{\infty} \varphi_{n} \gamma_{n}$.
(b) $\|\mathbf{g}\|_{2}^{2}=\sum_{n=1}^{\infty}\left|\gamma_{n}\right|^{2}$.

Proof. Exercise 6F.2 Hint: For all $N \in \mathbb{N}$, let $\mathbf{F}_{N}:=\sum_{n=1}^{N} \varphi_{n} \mathbf{b}_{n}$ and $\mathbf{G}_{N}:=$ $\sum_{n=1}^{N} \gamma_{n} \mathbf{b}_{n}$.
(i) Show that $\left\langle\mathbf{F}_{N}, \mathbf{G}_{N}\right\rangle=\sum_{n=1}^{N} \varphi_{n} \gamma_{n}$ (Hint: the functions $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{N}\right\}$ are orthonormal).
(ii) To prove (a), show that $\langle\mathbf{f}, \mathbf{g}\rangle=\lim _{N \rightarrow \infty}\left\langle\mathbf{F}_{N}, \mathbf{G}_{N}\right\rangle$ (Hint: Use Lemma 6E.3).
(iii) To prove (b), set $\mathbf{f}=\mathbf{g}$ in (a).

The idea of Fourier analysis is to find an orthogonal basis for an L^{2}-space, using familiar trigonometric functions. We will return to this in Chapter [7.

Further reading:

Most of the mathematically rigorous texts on partial differential equations (such as [CB87], [Asm05] or [Eva91, Appendix D]) contain detailed and thorough discussions of L^{2} space, orthogonal basis, and the various convergence concepts discussed in this chapter. This is because almost all solutions to partial differential equations arise through some sort of infinite series or approximating sequence; hence it is essential to properly understand the various forms of function convergence and their relationships.

The convergence of sequences of functions is part of a subject called real analysis, and any advanced textbook on real analysis will contain extensive material on convergence. There are many other forms of function convergence we haven't even mentioned in this chapter, including \mathbf{L}^{p} convergence (for any value of p between 1 and ∞), convergence in measure, convergence almost everywhere, and weak* convergence. Different convergence modes are useful in different contexts,

Figure 6G.1: Problems for Chapter 6
and the logical relationships between them are fairly subtle. See [Fol84, §2.4] for a good summary. Other standard references are [WZ77, Chap.8], [KF75, §28.4-§28.5; §37], [Rud87] or [Roy88].

The geometry of infinite-dimensional vector spaces is called functional analysis, and is logically distinct from the convergence theory for functions (although of course, most of the important infinite dimensional spaces are spaces of functions). Infinite-dimensional vector spaces fall into several broad classes, depending upon the richness of the geometric and topological structure, which include Hilbert spaces [such as $\mathbf{L}^{2}(\mathbb{X})$], Banach Spaces $\left[\right.$ such as $\mathcal{C}(\mathbb{X})$ or $\left.\mathbf{L}^{1}(\mathbb{X})\right]$ and locally convex spaces. An excellent introduction to functional analysis is [Con90]. Other standard references are [FFI84, Chap.5] and [KF75, Chap.4]. Hilbert spaces are the mathematical foundation of quantum mechanics; see [Pru81, BEH94].

6G Practice problems

1. Let $\mathbb{X}=(0,1]$. For any $n \in \mathbb{N}$, define the function $f_{n}:(0,1] \longrightarrow \mathbb{R}$ by $f_{n}(x)=\exp (-n x)$. (Fig. 6G.1AA)
(a) Compute $\left\|f_{n}\right\|_{2}$ for all $n \in \mathbb{N}$.
(b) Does the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converge to the constant 0 function in $\mathbf{L}^{2}(0,1]$? Explain.
(c) Compute $\left\|f_{n}\right\|_{\infty}$ for all $n \in \mathbb{N}$.
(d) Does the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converge to the constant 0 function uniformly on $(0,1]$? Explain.
(e) Does the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converge to the constant 0 function pointwise on $(0,1]$? Explain.

2 . Let $\mathbb{X}=[0,1]$. For any $n \in \mathbb{N}$, define $f_{n}:[0,1] \longrightarrow \mathbb{R}$ by $f_{n}(x)=$ $\left\{\begin{array}{rll}\sqrt{n} & \text { if } & \frac{1}{n} \leq x<\frac{2}{n} \\ 0 & & \text { otherwise }\end{array}\right.$. (Fig. 6G.1B)
(a) Does the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converge to the constant 0 function pointwise on $[0,1]$? Explain.
(b) Compute $\left\|f_{n}\right\|_{2}$ for all $n \in \mathbb{N}$.
(A)
(B)

Figure 6G.2: Problems for Chapter 6
(c) Does the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converge to the constant 0 function in $\mathbf{L}^{2}[0,1]$? Explain.
(d) Compute $\left\|f_{n}\right\|_{\infty}$ for all $n \in \mathbb{N}$.
(e) Does the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converge to the constant 0 function uniformly on $[0,1]$? Explain.
3. Let $\mathbb{X}=\mathbb{R}$. For any $n \in \mathbb{N}$, define $f_{n}: \mathbb{R} \longrightarrow \mathbb{R}$ by $f_{n}(x)=\left\{\begin{array}{rll}\frac{1}{\sqrt{n}} & \text { if } & 0 \leq x<n \\ 0 & \text { otherwise }\end{array}\right.$. (Fig. 6G.1]
(a) Compute $\left\|f_{n}\right\|_{\infty}$ for all $n \in \mathbb{N}$.
(b) Does the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converge to the constant 0 function uniformly on \mathbb{R} ? Explain.
(c) Does the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converge to the constant 0 function pointwise on \mathbb{R} ? Explain.
(d) Compute $\left\|f_{n}\right\|_{2}$ for all $n \in \mathbb{N}$.
(e) Does the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converge to the constant 0 function in $\mathbf{L}^{2}(\mathbb{R})$? Explain.
4. Let $\mathbb{X}=(0,1]$. For all $n \in \mathbb{N}$, define $f_{n}:(0,1] \longrightarrow \mathbb{R}$ by $f_{n}(x)=\frac{1}{\sqrt[3]{n x}}$ (for all $x \in(0,1]$). (Figure 6G.2AA)
(a) Does the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converge to the constant 0 function pointwise on $(0,1]$? Why or why not?
(b) Compute $\left\|f_{n}\right\|_{2}$ for all $n \in \mathbb{N}$.
(c) Does the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converge to the constant 0 function in $\mathbf{L}^{2}(0,1]$? Why or why not?
(d) Compute $\left\|f_{n}\right\|_{\infty}$ for all $n \in \mathbb{N}$.
(e) Does the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converge to the constant 0 function uniformly on $(0,1]$? Explain.

5 . Let $\mathbb{X}=[0,1]$. For all $n \in \mathbb{N}$, define $f_{n}:[0,1] \longrightarrow \mathbb{R}$ by $f_{n}(x)=\frac{1}{(n x+1)^{2}}$ (for all $x \in[0,1]$). (Figure 6G.2B)
(a) Does the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converge to the constant 0 function pointwise on $[0,1]$? Explain.
(b) Compute $\left\|f_{n}\right\|_{2}$ for all $n \in \mathbb{N}$.
(c) Does the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converge to the constant 0 function in $\mathbf{L}^{2}[0,1]$? Explain.
(d) Compute $\left\|f_{n}\right\|_{\infty}$ for all $n \in \mathbb{N}$.

Hint: Look at the picture. Where is the value of $f_{n}(x)$ largest?
(e) Does the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converge to the constant 0 function uniformly on $[0,1]$? Explain.
6. In each of the following cases, you are given two functions $f, g:[0, \pi] \longrightarrow \mathbb{R}$. Compute the inner product $\langle f, g\rangle$.
(a) $f(x)=\sin (3 x), \quad g(x)=\sin (2 x)$.
(b) $f(x)=\sin (n x), \quad g(x)=\sin (m x)$, with $n \neq m$.
(c) $f(x)=\sin (n x)=g(x)$ for some $n \in \mathbb{N}$. Question: What is $\|f\|_{2}$?
(d) $f(x)=\cos (3 x), \quad g(x)=\cos (2 x)$.
(e) $f(x)=\cos (n x), \quad g(x)=\cos (m x)$, with $n \neq m$.
(f) $f(x)=\sin (3 x), \quad g(x)=\cos (2 x)$.
7. In each of the following cases, you are given two functions $f, g:[-\pi, \pi] \longrightarrow$ \mathbb{R}. Compute the inner product $\langle f, g\rangle$.
(a) $f(x)=\sin (n x), \quad g(x)=\sin (m x)$, with $n \neq m$.
(b) $f(x)=\sin (n x)=g(x)$ for some $n \in \mathbb{N}$. Question: What is $\|f\|_{2}$?
(c) $f(x)=\cos (n x), \quad g(x)=\cos (m x)$, with $n \neq m$.
(d) $f(x)=\sin (3 x), \quad g(x)=\cos (2 x)$.
8. Determine if f_{n} converges to f pointwise, in $L^{2}(\mathbb{X})$, or uniformly.
(a) $f_{n}(x)=e^{-n x^{2}}, f(x)=0, \mathbb{X}=[-1,1]$.
(b) $f_{n}(x)=n \sin (x / n), f(x)=x, \mathbb{X}=[-\pi, \pi]$.

Chapter 7

Fourier sine series and cosine series

"The art of doing mathematics consists in finding that special case which contains all the germs of generality."
 -David Hilbert

7A Fourier (co)sine series on $[0, \pi]$

Prerequisites: $\oint(6 \mathrm{E}(\mathrm{iv}), \S 6 \mathrm{~F}$.
Throughout this section, for all $n \in \mathbb{N}$, we define the functions $\mathbf{S}_{n}:[0, \pi] \longrightarrow$ \mathbb{R} and $\mathbf{C}_{n}:[0, \pi] \longrightarrow \mathbb{R}$ by $\mathbf{S}_{n}(x):=\sin (n x)$ and $\mathbf{C}_{n}(x):=\cos (n x)$, for all $x \in[0, \pi]$ (see Figure 6D.1] on page 113).

7A(i) Sine series on $[0, \pi]$
Recommended: §5C(i).
Suppose $f \in \mathbf{L}^{2}[0, \pi]$ (i.e. $f:[0, \pi] \longrightarrow \mathbb{R}$ is a function with $\|f\|_{2}<\infty$). We define the Fourier sine coefficients of f :

$$
\begin{equation*}
B_{n}:=\frac{\left\langle f, \mathbf{S}_{n}\right\rangle}{\left\|\mathbf{S}_{n}\right\|_{2}^{2}}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x, \quad \text { for all } n \geq 1 \tag{7A.1}
\end{equation*}
$$

The Fourier sine series of f is then the infinite summation of functions:

$$
\begin{equation*}
\sum_{n=1}^{\infty} B_{n} \mathbf{S}_{n}(x) \tag{7A.2}
\end{equation*}
$$

A function $f:[0, \pi] \longrightarrow \mathbb{R}$ is continuously differentiable on $[0, \pi]$ if f is continuous on $[0, \pi]$ (hence, bounded), $f^{\prime}(x)$ exists for all $x \in(0, \pi)$, and furthermore, the function $f^{\prime}:(0, \pi) \longrightarrow \mathbb{R}$ is itself bounded and continuous on $(0, \pi)$. Let $\mathcal{C}^{1}[0, \pi]$ be the space of all continuously differentiable functions.

We say f is piecewise continuously differentiable (or piecewise \mathcal{C}^{1}, or sectionally smooth) if there exist points $0=j_{0}<j_{1}<j_{2}<\cdots<j_{M+1}=\pi$ (for some $M \in \mathbb{N}$) such that f is bounded and continuously differentiable on each of the open intervals $\left(j_{m}, j_{m+1}\right)$; these are called \mathcal{C}^{1} intervals for f. In particular, any continuously differentiable function on $[0, \pi]$ is piecewise continuously differentiable (in this case, $M=0$ and the set $\left\{j_{1}, \ldots, j_{M}\right\}$ is empty, so all of $(0, \pi)$ is a \mathcal{C}^{1} interval).

Exercise 7A.1. (a) Show that any continuously differentiable function has finite L^{2}-norm. In other words, $\mathcal{C}^{1}[0, \pi] \subset \mathbf{L}^{2}[0, \pi]$.
(b) Show that any piecewise \mathcal{C}^{1} function on $[0, \pi]$ is in $\mathbf{L}^{2}[0, \pi]$.

Theorem 7A.1. Fourier Sine Series Convergence on $[0, \pi]$
(a) The set $\left\{\mathbf{S}_{1}, \mathbf{S}_{2}, \mathbf{S}_{3}, \ldots\right\}$ is an orthogonal basis for $\mathbf{L}^{2}[0, \pi]$. Thus, if $f \in$ $\mathbf{L}^{2}[0, \pi]$, then the sine series (7A.2) converges to f in L^{2}-norm, i.e. $f \underset{\mathrm{~T} 2}{ } \sum_{n=1}^{\infty} B_{n} \mathbf{S}_{n}$.
Furthermore, the coefficient sequence $\left\{B_{n}\right\}_{n=1}^{\infty}$ is the unique sequence of coefficients with this property. In other words, if $\left\{B_{n}^{\prime}\right\}_{n=1}^{\infty}$ is some other sequence of coefficients such that $f \underset{\mathrm{~T} 2}{\approx} \sum_{n=1}^{\infty} B_{n}^{\prime} \mathbf{S}_{n}$, then we must have $B_{n}^{\prime}=$ B_{n} for all $n \in \mathbb{N}$.
(b) If $f \in \mathcal{C}^{1}[0, \pi]$, then the sine series ($7 \mathrm{AA.2}$) converges pointwise on $(0, \pi)$.

More generally, if f is piecewise \mathcal{C}^{1}, then the sine series (7A.2) converges to f pointwise on each \mathcal{C}^{1} interval for f. In other words, if $\left\{j_{1}, \ldots, j_{m}\right\}$ is the set of discontinuity points of f and/or f^{\prime}, and $j_{m}<x<j_{m+1}$, then $f(x)=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} B_{n} \sin (n x)$.
(c) If $\sum_{n=1}^{\infty}\left|B_{n}\right|<\infty$, then the sine series (7A.2) converges to f uniformly on $[0, \pi]$.
(d) [i] If f is continuous and piecewise differentiable on $[0, \pi]$, and $f^{\prime} \in \mathbf{L}^{2}[0, \pi]$, and f satisfies homogeneous Dirichlet boundary conditions (i.e. $f(0)=$ $f(\pi)=0$), then the sine series (7A.2) converges to f uniformly on $[0, \pi]$.
[ii] Conversely, if the sine series (7A.2) converges to f uniformly on $[0, \pi]$, then f is continuous on $[0, \pi]$, and satisfies homogeneous Dirichlet boundary conditions.

$N=1$	$N=3$	$N=5$	$N=7$	$N=9$
㤩				
$N=11$	$N=21$	$N=41$	$N=101$	$N=2001$

Figure 7A.1: $\frac{4}{\pi} \sum_{\substack{n=1 \\ n \text { odd }}}^{N} \frac{1}{n} \sin (n x)$, for $N=1,3,5,7,9,11,21,41$, and 2001. Notice the Gibbs phenomenon in the plots for large N.
(e) If f is piecewise \mathcal{C}^{1}, and $\mathbb{K} \subset\left(j_{m}, j_{m+1}\right)$ is any closed subset of a \mathcal{C}^{1} interval of f, then the series (7A.2) converges uniformly to f on \mathbb{K}.
(f) Suppose $\left\{B_{n}\right\}_{n=1}^{\infty}$ is a nonnegative sequence decreasing to zero. (That is, $B_{1} \geq B_{2} \geq \cdots \geq 0$ and $\lim _{n \rightarrow \infty} B_{n}=0$). If $0<a<b<\pi$, then the series (7A.2) converges uniformly to f on $[a, b]$.

Proof. (c) is Exercise 7A. 2 (Hint: Use the Weierstrass M-test, Proposition 6E. 13 on page 129.)
($\mathbf{a}, \mathbf{b}, \mathbf{e}$) and (d) i$]$ are Exercise 7A. 3 (Hint: use Theorem 8A.1(a,b,d,e) on page 162, and Proposition 8C.5(a) and Lemma 8C.6(a) on page 171).
(d) $[$ ii] is Exercise 7A. $4 . \quad(f)$ is [Asm05, Thm.2, p. 97 of $\S 2.10]$.

Example 7A.2.

(a) If $f(x)=\sin (5 x)-2 \sin (3 x)$, then the Fourier sine series of f is just " $\sin (5 x)-2 \sin (3 x)$ ". In other words, the Fourier coefficients B_{n} are all zero, except that $B_{3}=-2$ and $B_{5}=1$.
(b) Suppose $f(x) \equiv 1$. For all $n \in \mathbb{N}$,

$$
\begin{aligned}
B_{n} & =\frac{2}{\pi} \int_{0}^{\pi} \sin (n x) d x=\left.\frac{-2}{n \pi} \cos (n x)\right|_{x=0} ^{x=\pi}=\frac{2}{n \pi}\left[1-(-1)^{n}\right] \\
& =\left\{\begin{aligned}
\frac{4}{n \pi} & \text { if } n \text { is odd } \\
0 & \text { if } n \text { is even }
\end{aligned}\right.
\end{aligned}
$$

Thus, the Fourier sine series is:

$$
\begin{equation*}
\frac{4}{\pi} \sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{1}{n} \sin (n x)=\frac{4}{\pi}\left(\sin (x)+\frac{\sin (3 x)}{3}+\frac{\sin (5 x)}{5}+\cdots\right) \tag{7A.3}
\end{equation*}
$$

Theorem 7A.1(a) says that $1 \underset{\text { I2 }}{\approx} \frac{4}{\pi} \sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{1}{n} \sin (n x)$. Figure 7A.1 displays
some partial sums of the series (7A.3). The function $f \equiv 1$ is clearly continuously differentiable, so, by Theorem 7A.1(b), the Fourier sine series converges pointwise to 1 on the interior of the interval $[0, \pi]$. However, the series does not converge to f at the points 0 or π. This is betrayed by the violent oscillations of the partial sums near these points; this is an example of the Gibbs phenomenon.

Since the Fourier sine series does not converge at the endpoints 0 and π, we know automatically that it does not converge to f uniformly on $[0, \pi]$. However, we could have also deduced this fact by noticing that f does not have homogeneous Dirichlet boundary conditions (because $f(0)=$ $1=f(\pi)$), whereas every finite sum of $\sin (n x)$-type functions does have homogeneous Dirichlet BC. Thus, the series (7A.3) is 'trying' to converge to f, but it is 'stuck' at the endpoints 0 and π. (This is the idea behind Theorem 7A.1(d)).
(c) If $f(x)=\cos (m x)$, then the Fourier sine series of f is: $\frac{4}{\pi} \sum_{\substack{n=1 \\ n+m \text { odd }}}^{\infty} \frac{n}{n^{2}-m^{2}} \sin (n x)$.
(Exercise 7A.5 Hint: Use Theorem 6D.3 on page 113).

Example 7A.3: $\sinh (\alpha x)$

If $\alpha>0$, and $f(x)=\sinh (\alpha x)$, then its Fourier sine series is given by:

$$
\sinh (\alpha x) \quad \underset{\mathrm{I} 2}{\approx} \quad \frac{2 \sinh (\alpha \pi)}{\pi} \sum_{n=1}^{\infty} \frac{n(-1)^{n+1}}{\alpha^{2}+n^{2}} \cdot \sin (n x)
$$

To prove this, we must show that, for all $n>0$,

$$
B_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sinh (\alpha x) \cdot \sin (n x) d x=\frac{2 \sinh (\alpha \pi)}{\pi} \frac{n(-1)^{n+1}}{\alpha^{2}+n^{2}}
$$

To begin with, let $I:=\int_{0}^{\pi} \sinh (\alpha x) \cdot \sin (n x) d x$. Then, applying integration by parts:

$$
\begin{aligned}
I & =\frac{-1}{n}\left[\left.\sinh (\alpha x) \cdot \cos (n x)\right|_{x=0} ^{x=\pi}-\alpha \cdot \int_{0}^{\pi} \cosh (\alpha x) \cdot \cos (n x) d x\right] \\
& =\frac{-1}{n}\left[\sinh (\alpha \pi) \cdot(-1)^{n}-\frac{\alpha}{n} \cdot\left(\left.\cosh (\alpha x) \cdot \sin (n x)\right|_{x=0} ^{x=\pi}-\alpha \int_{0}^{\pi} \sinh (\alpha x) \cdot \sin (n x) d x\right)\right] \\
& =\frac{-1}{n}\left[\sinh (\alpha \pi) \cdot(-1)^{n}-\frac{\alpha}{n} \cdot(0-\alpha \cdot I)\right] \\
& =\frac{-\sinh (\alpha \pi) \cdot(-1)^{n}}{n}-\frac{\alpha^{2}}{n^{2}} I . \\
\text { Hence: } I & =\frac{-\sinh (\alpha \pi) \cdot(-1)^{n}}{n}-\frac{\alpha^{2}}{n^{2}} I ; \\
\text { thus }\left(1+\frac{\alpha^{2}}{n^{2}}\right) I & =\frac{-\sinh (\alpha \pi) \cdot(-1)^{n}}{n} ; \\
\text { i.e. }\left(\frac{n^{2}+\alpha^{2}}{n^{2}}\right) I & =\frac{\sinh (\alpha \pi) \cdot(-1)^{n+1}}{n} ; \\
\text { so that } I & =\frac{n \cdot \sinh (\alpha \pi) \cdot(-1)^{n+1}}{n^{2}+\alpha^{2}} .
\end{aligned}
$$

Thus, $\quad B_{n}=\frac{2}{\pi} I=\frac{2}{\pi} \frac{n \cdot \sinh (\alpha \pi) \cdot(-1)^{n+1}}{n^{2}+\alpha^{2}}$.
The function sinh is clearly continuously differentiable, so Theorem 7A.1(b) implies that the Fourier sine series converges to $\sinh (\alpha x)$ pointwise on the open interval $(0, \pi)$. However, the series does not converge uniformly on $[0, \pi]$
(Exercise 7A. 6 Hint: What is $\sinh (\alpha \pi)$?).

7A(ii) Cosine series on $[0, \pi]$

Recommended: §5C(ii).
If $f \in \mathbf{L}^{2}[0, \pi]$, we define the Fourier cosine coefficients of f :

$$
\begin{align*}
& A_{0}:=\langle f, \mathbb{1}\rangle=\frac{1}{\pi} \int_{0}^{\pi} f(x) d x, \quad \text { and } \\
& A_{n}:=\frac{\left\langle f, \mathbf{C}_{n}\right\rangle}{\left\|\mathbf{C}_{n}\right\|_{2}^{2}}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) d x, \quad \text { for all } n \in \mathbb{N} . \tag{7A.4}
\end{align*}
$$

The Fourier cosine series of f is then the infinite summation of functions:

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{n} \mathbf{C}_{n}(x) \tag{7A.5}
\end{equation*}
$$

Theorem 7A.4. Fourier Cosine Series Convergence on $[0, \pi]$
(a) The set $\left\{\mathbf{C}_{0}, \mathbf{C}_{1}, \mathbf{C}_{2}, \ldots\right\}$ is an orthogonal basis for $\mathbf{L}^{2}[0, \pi]$. Thus, if $f \in$ $\mathbf{L}^{2}[0, \pi]$, then the cosine series (7A.5) converges to f in L^{2}-norm, i.e. $f \underset{\mathrm{~T} 2}{\approx} \sum_{n=0}^{\infty} A_{n} \mathbf{C}_{n}$.
Furthermore, the coefficient sequence $\left\{A_{n}\right\}_{n=0}^{\infty}$ is the unique sequence of coefficients with this property. In other words, if $\left\{A_{n}^{\prime}\right\}_{n=1}^{\infty}$ is some other sequence of coefficients such that $f \underset{\text { ᄃ2 }}{\widetilde{ }} \sum_{n=0}^{\infty} A_{n}^{\prime} \mathbf{C}_{n}$, then we must have $A_{n}^{\prime}=$ A_{n} for all $n \in \mathbb{N}$.
(b) If $f \in \mathcal{C}^{1}[0, \pi]$, then the cosine series (7A.5) converges pointwise on $(0, \pi)$.

If f is piecewise \mathcal{C}^{1} on $[0, \pi]$, then the cosine series (7A.5) converges to f pointwise on each \mathcal{C}^{1} interval for f. In other words, if $\left\{j_{1}, \ldots, j_{m}\right\}$ is the set of discontinuity points of f and/or f^{\prime}, and $j_{m}<x<j_{m+1}$, then $f(x)=\lim _{N \rightarrow \infty} \sum_{n=0}^{N} A_{n} \cos (n x)$.
(c) If $\sum_{n=0}^{\infty}\left|A_{n}\right|<\infty$, then the cosine series (7A.5) converges to f uniformly on $[0, \pi]$.
(d) [i] If f is continuous and piecewise differentiable on $[0, \pi]$, and $f^{\prime} \in \mathbf{L}^{2}[0, \pi]$, then the cosine series (7A.5) converges to f uniformly on $[0, \pi]$.
[ii] Conversely, if $\sum_{n=0}^{\infty} n\left|A_{n}\right|<\infty$, then $f \in \mathcal{C}^{1}[0, \pi]$ and f satisfies homogeneous Neumann boundary conditions (i.e. $f^{\prime}(0)=f^{\prime}(\pi)=0$).
(e) If f is piecewise \mathcal{C}^{1}, and $\mathbb{K} \subset\left(j_{m}, j_{m+1}\right)$ is any closed subset of a \mathcal{C}^{1} interval of f, then the series (7A.5) converges uniformly to f on \mathbb{K}.
(f) Suppose $\left\{A_{n}\right\}_{n=0}^{\infty}$ is a nonnegative sequence decreasing to zero. (That is, $A_{0} \geq A_{1} \geq A_{2} \geq \cdots \geq 0$ and $\lim _{n \rightarrow \infty} A_{n}=0$). If $0<a<b<\pi$, then the series (7A.5) converges uniformly to f on $[a, b]$.

Proof. (c) is Exercise 7A. 7 (Hint: Use the Weierstrass M-test, Proposition 6E. 13 on page 129.)
($\mathbf{a}, \mathbf{b}, \mathbf{e}$) and (d) $[\mathrm{i}]$ are Exercise 7A. 8 (Hint: use Theorem 8A.1(a,b,d,e) on page 162, and Proposition 8C.5(b) and Lemma 8C.6(b) on page 171).
(d)[ii] is Exercise 7A.9 (Hint: Use Theorem 7C.10(b) on page 158).
(f) is [Asm05, Thm.2, p. 97 of $\S 2.10]$.

Example 7A.5.

(a) If $f(x)=\cos (13 x)$, then the Fourier cosine series of f is just " $\cos (13 x)$ ". In other words, the Fourier coefficients A_{n} are all zero, except that $A_{13}=1$.
(b) Suppose $f(x) \equiv 1$. Then $f=\mathbf{C}_{0}$, so the Fourier cosine coefficients are: $A_{0}=1$, while $A_{1}=A_{2}=A_{3}=\ldots 0$.
(c) Let $f(x)=\sin (m x)$. If m is even, then the Fourier cosine series of f is:

$$
\frac{4}{\pi} \sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{n}{n^{2}-m^{2}} \cos (n x) .
$$

If m is $o d d$, then the Fourier cosine series of f is: $\frac{2}{\pi m}+\frac{4}{\pi} \sum_{\substack{n=2 \\ n \text { even }}}^{\infty} \frac{n}{n^{2}-m^{2}} \cos (n x)$.
(Exercise 7A. 10 Hint: Use Theorem 6D.3 on page 113).
Example 7A.6: $\cosh (x)$
Suppose $f(x)=\cosh (x)$. Then the Fourier cosine series of f is given by:

$$
\cosh (x) \quad \underset{\mathrm{T} 2}{\approx} \frac{\sinh (\pi)}{\pi}+\frac{2 \sinh (\pi)}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n} \cdot \cos (n x)}{n^{2}+1} .
$$

To see this, first note that $A_{0}=\frac{1}{\pi} \int_{0}^{\pi} \cosh (x) d x=\left.\frac{1}{\pi} \sinh (x)\right|_{x=0} ^{x=\pi}=$ $\frac{\sinh (\pi)}{\pi}$ (because $\left.\sinh (0)=0\right)$.
Next, let $I:=\int_{0}^{\pi} \cosh (x) \cdot \cos (n x) d x$. Then applying integration by parts, we get:

$$
\begin{aligned}
I & =\frac{1}{n}\left(\left.\cosh (x) \cdot \sin (n x)\right|_{x=0} ^{x=\pi}-\int_{0}^{\pi} \sinh (x) \cdot \sin (n x) d x\right) \\
& =\frac{-1}{n} \int_{0}^{\pi} \sinh (x) \cdot \sin (n x) d x \\
& =\frac{1}{n^{2}}\left(\left.\sinh (x) \cdot \cos (n x)\right|_{x=0} ^{x=\pi}-\int_{0}^{\pi} \cosh (x) \cdot \cos (n x) d x\right) \\
& =\frac{1}{n^{2}}(\sinh (\pi) \cdot \cos (n \pi)-I)=\frac{1}{n^{2}}\left((-1)^{n} \sinh (\pi)-I\right) .
\end{aligned}
$$

Thus, $\quad I=\frac{1}{n^{2}}\left((-1)^{n} \cdot \sinh (\pi)-I\right)$. Hence, $\quad\left(n^{2}+1\right) I=(-1)^{n}$.
$\sinh (\pi)$. Hence, $\quad I=\frac{(-1)^{n} \cdot \sinh (\pi)}{n^{2}+1}$. Thus, $A_{n}=\frac{2}{\pi} I=\frac{2}{\pi} \frac{(-1)^{n} \cdot \sinh (\pi)}{n^{2}+1}$. \diamond

Remark. (a) Almost any introduction to the theory of partial differential equations will contain a discussion of the Fourier convergence theorems. For example, see [Pow99, §1.3-1.7, pp.59-85], [[Z866, Thm.6.1, p.72] or [Hab87, §3.2, p.91].
(b) Please see Remark 8D.3 on page 174 for further technical remarks about the (non)convergence of Fourier (co)sine series, in situations where the hypotheses of Theorems $7 \mathrm{A}$.$] and 7 \mathrm{~A} .4$ are not satisfied.

7B Fourier (co) sine series on [0,L]

Prerequisites: $\S[6 \mathrm{E}, \mathrm{\xi F}$. Recommended: $\S[\mathrm{A}$.
Throughout this section, let $L>0$ be some positive real number. For all $n \in \mathbb{N}$, we define the functions $\mathbf{S}_{n}:[0, L] \longrightarrow \mathbb{R}$ and $\mathbf{C}_{n}:[0, L] \longrightarrow \mathbb{R}$ by $\mathbf{S}_{n}(x):=\sin \left(\frac{n \pi x}{L}\right)$ and $\mathbf{C}_{n}(x):=\cos \left(\frac{n \pi x}{L}\right)$, for all $x \in[0, L]$ (see Figure 6D.1 on page (113). Notice that, if $L=\pi$, then $\mathbf{S}_{n}(x)=\sin (n x)$ and $\mathbf{C}_{n}(x)=\cos (n x)$, as in $\S[7 \mathrm{~A}$. The results in this section exactly parallel those in $\S[7 \mathrm{~A}$, except that we replace π with L to obtain slightly greater generality. In principle, every statement in this section is equivalent to the corresponding statement in $\S[\boxed{A}$, through the change of variables $y=x / \pi$ (it is a useful exercise to reflect on this as you read this section).

7B(i) Sine series on $[0, L]$

Recommended: $\S[5 \mathrm{C}(\mathrm{i})$, , $\S(\mathrm{A}(\mathrm{i})$.
Fix $L>0$, and let $[0, L]$ be an interval of length L. If $f \in \mathbf{L}^{2}[0, L]$, we define the Fourier sine coefficients of f :

$$
B_{n}:=\frac{\left\langle f, \mathbf{S}_{n}\right\rangle}{\left\|\mathbf{S}_{n}\right\|_{2}^{2}}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad \text { for all } n \geq 1
$$

The Fourier sine series of f is then the infinite summation of functions:

$$
\begin{equation*}
\sum_{n=1}^{\infty} B_{n} \mathbf{S}_{n}(x) \tag{7B.1}
\end{equation*}
$$

A function $f:[0, L] \longrightarrow \mathbb{R}$ is continuously differentiable on $[0, L]$ if f is continuous on $[0, L]$ (hence, bounded), and $f^{\prime}(x)$ exists for all $x \in(0, L)$, and
furthermore, the function $f^{\prime}:(0, L) \longrightarrow \mathbb{R}$ is itself bounded and continuous on $(0, L)$. Let $\mathcal{C}^{1}[0, L]$ be the space of all continuously differentiable functions.

We say $f:[0, L] \longrightarrow \mathbb{R}$ is piecewise continuously differentiable (or piecewise \mathcal{C}^{1}, or sectionally smooth) if there exist points $0=j_{0}<j_{1}<j_{2}<$ $\cdots<j_{M+1}=L$ such that f is bounded and continuously differentiable on each of the open intervals $\left(j_{m}, j_{m+1}\right)$; these are called \mathcal{C}^{1} intervals for f. In particular, any continuously differentiable function on $[0, L]$ is piecewise continuously differentiable (in this case, all of $(0, L)$ is a \mathcal{C}^{1} interval).

Theorem 7B.1. Fourier Sine Series Convergence on $[0, L]$
Parts (a-f) of Theorem 7A.1 on page 138 are all still true if you replace " π " with " L " everywhere.
Proof. Exercise 7B. 1 Hint: Use the change-of-variables $y=\frac{\pi}{L} x$ to pass from $y \in[0, L]$ to $x \in[0, \pi]$.

Example 7B.2.

(a) If $f(x)=\sin \left(\frac{5 \pi}{L} x\right)$, then the Fourier sine series of f is just " $\sin \left(\frac{5 \pi}{L} x\right)$ ". In other words, the Fourier coefficients B_{n} are all zero, except that $B_{5}=1$.
(b) Suppose $f(x) \equiv 1$. For all $n \in \mathbb{N}$,

$$
\begin{aligned}
B_{n} & =\frac{2}{L} \int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right) d x=\left.\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{L}\right)\right|_{x=0} ^{x=L}=\frac{2}{n \pi}\left[1-(-1)^{n}\right] \\
& =\left\{\begin{aligned}
\frac{4}{n \pi} & \text { if } n \text { is odd } \\
0 & \text { if } n \text { is even }
\end{aligned}\right.
\end{aligned}
$$

Thus, the Fourier sine series is given: $\frac{4}{\pi} \sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{1}{n} \sin \left(\frac{n \pi}{L} x\right)$. Figure 7A. 1 displays some partial sums of this series (in the case $L=\pi$). The Gibbs phenomenon is clearly evident just as in Example 7A.2(b) on page 139 .
(c) If $f(x)=\cos \left(\frac{m \pi}{L} x\right)$, then the Fourier sine series of f is: $\frac{4}{\pi} \sum_{\substack{n=1 \\ n+m \text { odd }}}^{\infty} \frac{n}{n^{2}-m^{2}} \sin \left(\frac{n \pi}{L} x\right)$.
(Exercise 7B. 2 Hint: Use Theorem 6D.3 on page 113).
(d) If $\alpha>0$, and $f(x)=\sinh \left(\frac{\alpha \pi x}{L}\right)$, then its Fourier sine coefficients are computed:

$$
B_{n}=\frac{2}{L} \int_{0}^{L} \sinh \left(\frac{\alpha \pi x}{L}\right) \cdot \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2 \sinh (\alpha \pi)}{\pi} \frac{n(-1)^{n+1}}{\alpha^{2}+n^{2}} .
$$

(Exercise 7B.3).

7B(ii) Cosine series on $[0, L]$

Recommended: $\S\left[\begin{array}{c}{[(i i), ~} \\ \xi(\mathrm{A}(\mathrm{ii)} \text {. }\end{array}\right.$
If $f \in \mathbf{L}^{2}[0, L]$, we define the Fourier cosine coefficients of f :

$$
\begin{aligned}
A_{0} & :=\langle f, \mathbb{1}\rangle=\frac{1}{L} \int_{0}^{L} f(x) d x, \\
\text { and } \quad A_{n} & :=\frac{\left\langle f, \mathbf{C}_{n}\right\rangle}{\left\|\mathbf{C}_{n}\right\|_{2}^{2}}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad \text { for all } n>0 .
\end{aligned}
$$

The Fourier cosine series of f is then the infinite summation of functions:

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{n} \mathbf{C}_{n}(x) \tag{7B.2}
\end{equation*}
$$

Theorem 7B.3. Fourier Cosine Series Convergence on $[0, L]$
Parts (a-f) of Theorem 7A.4 on page 142 are all still true if you replace " π " with "L" everywhere.

Proof. Exercise 7B. 4 Hint: Use the change-of-variables $y:=\frac{\pi}{L} x$ to pass from $x \in[0, L]$ to $y \in[0, \pi]$.

Example 7B.4.

(a) If $f(x)=\cos \left(\frac{13 \pi}{L} x\right)$, then the Fourier cosine series of f is just " $\cos \left(\frac{13 \pi}{L} x\right)$ ". In other words, the Fourier coefficients A_{n} are all zero, except that $A_{13}=1$.
(b) Suppose $f(x) \equiv 1$. Then $f=\mathbf{C}_{0}$, so the Fourier cosine coefficients are: $A_{0}=1$, while $A_{1}=A_{2}=A_{3}=\ldots 0$.
(c) Let $f(x)=\sin \left(\frac{m \pi}{L} x\right)$. If m is even, then the Fourier cosine series of f is:

$$
\frac{4}{\pi} \sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{n}{n^{2}-m^{2}} \cos \left(\frac{n \pi}{L} x\right) .
$$

If m is $o d d$, then the Fourier cosine series of f is: $\frac{2}{\pi m}+\frac{4}{\pi} \sum_{\substack{n=2 \\ n \text { even }}}^{\infty} \frac{n}{n^{2}-m^{2}} \cos (n x)$.
(Exercise 7B. 5 Hint: Use Theorem 6D. 3 on page 113).

7C Computing Fourier (co)sine coefficients

Prerequisites: §[B].

When computing the Fourier sine coefficient $B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cdot \sin \left(\frac{n \pi}{L} x\right) d x$, it is simpler to first compute the integral $\int_{0}^{L} f(x) \cdot \sin \left(\frac{n \pi}{L} x\right) d x$, and then multiply the result by $\frac{2}{L}$. Likewise, to compute a Fourier cosine coefficients, first compute the integral $\int_{0}^{L} f(x) \cdot \cos \left(\frac{n \pi}{L} x\right) d x$, and then multiply the result by $\frac{2}{L}$. In this section, we review some useful techniques to compute these integrals.

7C(i) Integration by parts

Computing Fourier coefficients almost always involves integration by parts. Generally, if you can't compute it with integration by parts, you can't compute it. When evaluating a Fourier integral by parts, one almost always ends up with boundary terms of the form " $\cos (n \pi)$ " or "sin $\left(\frac{n}{2} \pi\right)$ ", etc. The following formulae are useful in this regard:

$$
\begin{equation*}
\sin (n \pi)=0 \text { for any } n \in \mathbb{Z} \tag{7C.3}
\end{equation*}
$$

For example, $\sin (-\pi)=\sin (0)=\sin (\pi)=\sin (2 \pi)=\sin (3 \pi)=0$.

$$
\begin{equation*}
\cos (n \pi)=(-1)^{n} \text { for any } n \in \mathbb{Z} \tag{7C.4}
\end{equation*}
$$

For example, $\cos (-\pi)=-1, \cos (0)=1, \cos (\pi)=-1, \cos (2 \pi)=1, \cos (3 \pi)=$ -1 , etc.

$$
\sin \left(\frac{n}{2} \pi\right)=\left\{\begin{align*}
0 & \text { if } n \text { is even } \tag{7C.5}\\
(-1)^{k} & \text { if } n \text { is odd, and } n=2 k+1
\end{align*}\right.
$$

For example, $\sin (0)=0, \sin \left(\frac{1}{2} \pi\right)=1, \sin (\pi)=0, \sin \left(\frac{3}{2} \pi\right)=-1$, etc.

$$
\cos \left(\frac{n}{2} \pi\right)=\left\{\begin{align*}
0 & \text { if } n \text { is odd } \tag{7C.6}\\
(-1)^{k} & \text { if } n \text { is even, and } n=2 k
\end{align*}\right.
$$

For example, $\cos (0)=1, \cos \left(\frac{1}{2} \pi\right)=0, \cos (\pi)=-1, \cos \left(\frac{3}{2} \pi\right)=0$, etc.
Exercise 7C.1. Verify equations (7C.3), (7C.4), (7C.5), and (7C.6).

7C(ii) Polynomials

Theorem 7C.1. Let $n \in \mathbb{N}$. Then

$$
\begin{align*}
& \text { (a) } \quad \int_{0}^{L} \sin \left(\frac{n \pi}{L} x\right) d x=\left\{\begin{aligned}
\frac{2 L}{n \pi} & \text { if } n \text { is odd; } \\
0 & \text { if } n \text { is even. }
\end{aligned}\right. \tag{7C.7}\\
& \text { (b) } \quad \int_{0}^{L} \cos \left(\frac{n \pi}{L} x\right) d x
\end{align*}= \begin{cases}L & \text { if } n=0 \tag{7C.8}\\
0 & \text { if } n>0 .\end{cases}
$$

For any $k \in\{1,2,3, \ldots\}$, we have the following recurrence relations:

$$
\begin{align*}
& \text { (c) } \int_{0}^{L} x^{k} \cdot \sin \left(\frac{n \pi}{L} x\right) d x=\frac{(-1)^{n+1}}{n} \cdot \frac{L^{k+1}}{\pi}+\frac{k}{n} \cdot \frac{L}{\pi} \int_{0}^{L} x^{k-1} \cdot \cos \left(\frac{n \pi}{L} x\right), \tag{7C.9}\\
& \text { (d) } \int_{0}^{L} x^{k} \cdot \cos \left(\frac{n \pi}{L} x\right) d x=\frac{-k}{n} \cdot \frac{L}{\pi} \int_{0}^{L} x^{k-1} \cdot \sin \left(\frac{n \pi}{L} x\right) . \tag{7C.10}
\end{align*}
$$

Proof. Exercise 7C. 2 Hint: for (c) and (d), use integration by parts.

Example 7C.2. In all of the following examples, let $L=\pi$.
(a) $\frac{2}{\pi} \int_{0}^{\pi} \sin (n x) d x=\frac{2}{\pi} \frac{1-(-1)^{n}}{n}$.
(b) $\frac{2}{\pi} \int_{0}^{\pi} x \cdot \sin (n x) d x=(-1)^{n+1} \frac{2}{n}$.
(c) $\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cdot \sin (n x) d x=(-1)^{n+1} \frac{2 \pi}{n}+\frac{4}{\pi n^{3}}\left((-1)^{n}-1\right)$.
(d) $\frac{2}{\pi} \int_{0}^{\pi} x^{3} \cdot \sin (n x) d x=(-1)^{n}\left(\frac{12}{n^{3}}-\frac{2 \pi^{2}}{n}\right)$.
(e) $\frac{2}{\pi} \int_{0}^{\pi} \cos (n x) d x= \begin{cases}2 & \text { if } n=0 \\ 0 & \text { if } n>0 .\end{cases}$
(f) $\frac{2}{\pi} \int_{0}^{\pi} x \cdot \cos (n x) d x=\frac{2}{\pi n^{2}}\left((-1)^{n}-1\right)$, if $n>0$.
(g) $\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cdot \cos (n x) d x=(-1)^{n} \frac{4}{n^{2}}$, if $n>0$.
(h) $\frac{2}{\pi} \int_{0}^{\pi} x^{3} \cdot \cos (n x) d x=(-1)^{n} \frac{6 \pi}{n^{2}}-\frac{12}{\pi n^{4}}\left((-1)^{n}-1\right)$, if $n>0$.

Proof. (b): We will show this in two ways. First, by direct computation:

$$
\begin{aligned}
\int_{0}^{\pi} x \cdot \sin (n x) d x & =\frac{-1}{n}\left(\left.x \cdot \cos (n x)\right|_{x=0} ^{x=\pi}-\int_{0}^{\pi} \cos (n x) d x\right) \\
& =\frac{-1}{n}\left(\pi \cdot \cos (n \pi)-\left.\frac{1}{n} \sin (n x)\right|_{x=0} ^{x=\pi}\right) \\
& =\frac{-1}{n}(-1)^{n} \pi=\frac{(-1)^{n+1} \pi}{n} .
\end{aligned}
$$

Thus, $\frac{2}{\pi} \int_{0}^{\pi} x \cdot \sin (n x) d x=\frac{2(-1)^{n+1}}{n}$, as desired.
Next, we verify (b) using Theorem 7C.1. Setting $L=\pi$ and $k=1$ in (7C.9), we have:

$$
\begin{aligned}
\int_{0}^{\pi} x \cdot \sin (n x) d x & =\frac{(-1)^{n+1}}{n} \cdot \frac{\pi^{1+1}}{\pi}+\frac{1}{n} \cdot \frac{\pi}{\pi} \int_{0}^{\pi} x^{k-1} \cdot \cos (n x) d x \\
& =\frac{(-1)^{n+1}}{n} \cdot \pi+\frac{1}{n} \int_{0}^{\pi} \cos (n x) d x=\frac{(-1)^{n+1}}{n} \cdot \pi
\end{aligned}
$$

because $\int_{0}^{\pi} \cos (n x) d x=0$ by 7C.8. Thus, $\frac{2}{\pi} \int_{0}^{\pi} x \cdot \sin (n x) d x=$ $\frac{2(-1)^{n+1}}{n}$, as desired.
Proof of (c):

$$
\begin{aligned}
\int_{0}^{\pi} x^{2} \cdot \sin (n x) d x & =\frac{-1}{n}\left(\left.x^{2} \cdot \cos (n x)\right|_{x=0} ^{x=\pi}-2 \int_{0}^{\pi} x \cos (n x) d x\right) \\
& =\frac{-1}{n}\left[\pi^{2} \cdot \cos (n \pi)-\frac{2}{n}\left(\left.x \cdot \sin (n x)\right|_{x=0} ^{x=\pi}-\int_{0}^{\pi} \sin (n x) d x\right)\right] \\
& =\frac{-1}{n}\left[\pi^{2} \cdot(-1)^{n}+\frac{2}{n}\left(\left.\frac{-1}{n} \cos (n x)\right|_{x=0} ^{x=\pi}\right)\right] \\
& =\frac{-1}{n}\left[\pi^{2} \cdot(-1)^{n}-\frac{2}{n^{2}}\left((-1)^{n}-1\right)\right] \\
& =\frac{2}{n^{3}}\left((-1)^{n}-1\right)+\frac{(-1)^{n+1} \pi^{2}}{n}
\end{aligned}
$$

The result follows.
Exercise 7C. 3 Verify (c) using Theorem 7C.1.
(g) We will show this in two ways. First, by direct computation:

$$
\begin{aligned}
\int_{0}^{\pi} x^{2} \cdot \cos (n x) d x & =\frac{1}{n}\left[\left.x^{2} \cdot \sin (n x)\right|_{x=0} ^{x=\pi}-2 \int_{0}^{\pi} x \cdot \sin (n x) d x\right] \\
& =\frac{-2}{n} \int_{0}^{\pi} x \cdot \sin (n x) d x \quad(\text { because } \sin (n x)=\sin (0)=0)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{n^{2}}\left[\left.x \cdot \cos (n x)\right|_{x=0} ^{x=\pi}-\int_{0}^{\pi} \cos (n x) d x\right] \\
& =\frac{2}{n^{2}}\left[\pi \cdot(-1)^{n}-\left.\frac{1}{n} \sin (n x)\right|_{x=0} ^{x=\pi}\right] \\
& =\frac{2 \pi \cdot(-1)^{n}}{n^{2}}
\end{aligned}
$$

Thus, $\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cdot \cos (n x) d x=\frac{4 \cdot(-1)^{n}}{n^{2}}$, as desired.
Next, we verify (g) using Theorem 7C.1. Setting $L=\pi$ and $k=2$ in (7C.10), we have:

$$
\begin{equation*}
\int_{0}^{\pi} x^{2} \cdot \cos (n x) d x=\frac{-k}{n} \cdot \frac{L}{\pi} \int_{0}^{p} i x^{k-1} \cdot \sin (n x)=\frac{-2}{n} \cdot \int_{0}^{\pi} x \cdot \sin (n x) . \tag{7C.11}
\end{equation*}
$$

Next, applying (7C.9) with $k=1$, we get:

$$
\int_{0}^{\pi} x \cdot \sin (n x)=\frac{(-1)^{n+1}}{n} \cdot \frac{\pi^{2}}{\pi}+\frac{1}{n} \cdot \frac{\pi}{\pi} \int_{0}^{\pi} \cos (n x)=\frac{(-1)^{n+1} \pi}{n}+\frac{1}{n} \int_{0}^{\pi} \cos (n x)
$$

Substituting this into (7C.11), we get

$$
\begin{equation*}
\int_{0}^{\pi} x^{2} \cdot \cos (n x) d x=\frac{-2}{n} \cdot\left[\frac{(-1)^{n+1} \pi}{n}+\frac{1}{n} \int_{0}^{\pi} \cos (n x)\right] . \tag{7C.12}
\end{equation*}
$$

We're assuming $n>0$. But then (7C.8) says $\int_{0}^{\pi} \cos (n x)=0$. Thus, we can simplify (7C.12) to conclude:

$$
\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cdot \cos (n x) d x=\frac{2}{\pi} \cdot \frac{-2}{n} \cdot \frac{(-1)^{n+1} \pi}{n}=\frac{4(-1)^{n}}{n^{2}}
$$

as desired.

Exercise 7C.4. Verify all of the other parts of Example 7C.2, both using Theorem FC.1, and through direct integration.

To compute the Fourier series of an arbitrary polynomial, we integrate one term at a time.

Example 7C.3. Let $L=\pi$ and let $f(x)=x^{2}-\pi \cdot x$. Then the Fourier sine series of f is:

$$
\frac{-8}{\pi} \sum_{\substack{n=1 \\ n=1 d}}^{\infty} \frac{1}{n^{3}} \sin (n x)=\frac{-8}{\pi}\left(\sin (x)+\frac{\sin (3 x)}{27}+\frac{\sin (5 x)}{125}+\frac{\sin (7 x)}{343}+\cdots \cdots \cdot\right)
$$

Figure 7C.1: Example 7C.4.

To see this, first, note that, by Example 7C.2(b)

$$
\int_{0}^{\pi} x \cdot \sin (n x) d x=\frac{-1}{n}(-1)^{n} \pi=\frac{(-1)^{n+1} \pi}{n}
$$

Next, by Example 7C.2(c),

$$
\int_{0}^{\pi} x^{2} \cdot \sin (n x) d x=\frac{2}{n^{3}}\left((-1)^{n}-1\right)+\frac{(-1)^{n+1} \pi^{2}}{n}
$$

Thus,

$$
\begin{aligned}
\int_{0}^{\pi}\left(x^{2}-\pi x\right) \cdot \sin (n x) d x & =\int_{0}^{\pi} x^{2} \cdot \sin (n x) d x-\pi \cdot \int_{0}^{\pi} x \cdot \sin (n x) d x \\
& =\frac{2}{n^{3}}\left((-1)^{n}-1\right)+\frac{(-1)^{n+1} \pi^{2}}{n}-\pi \cdot \frac{(-1)^{n+1} \pi}{n} \\
& =\frac{2}{n^{3}}\left((-1)^{n}-1\right) .
\end{aligned}
$$

Thus,
$B_{n}=\frac{2}{\pi} \int_{0}^{\pi}\left(x^{2}-\pi x\right) \cdot \sin (n x) d x=\frac{4}{\pi n^{3}}\left((-1)^{n}-1\right)=\left\{\begin{array}{rrr}-8 / \pi n^{3} & \text { if } n \text { is odd; } \\ 0 & \text { if } & n \text { is even. }\end{array}\right.$ \diamond

7C(iii) Step functions

Example 7C.4. Let $L=\pi$, and suppose $f(x)=\left\{\begin{array}{ll}1 & \text { if } \frac{\pi}{4} \leq x \leq \frac{3 \pi}{4} \\ 0 & \text { otherwise }\end{array}\right.$ (see Figure 7C.1). Then the Fourier sine coefficients of f are given:

$$
B_{n}=\left\{\begin{aligned}
0 & \text { if } n \text { is even; } \\
\frac{2 \sqrt{2}(-1)^{k}}{n \pi} & \text { if } n \text { is odd, and } n=4 k \pm 1 \text { for some } k \in \mathbb{N} .
\end{aligned}\right.
$$

$N=1$	N	$N=5$	$N=7$
$N=9$	$N=11$	$N=21$	$N=201$

Figure 7C.2: Partial Fourier sine series for Example 7C.4, for $N=$ $0,1,2,3,4,5,10$ and 100 . Notice the Gibbs phenomenon in the plots for large N.

To see this, observe that

$$
\begin{aligned}
\int_{0}^{\pi} f(x) \sin (n x) d x & =\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \sin (n x) d x=\left.\frac{-1}{n} \cos (n x)\right|_{x=\frac{\pi}{4}} ^{x=\frac{3 \pi}{4}} \\
& =\frac{-1}{n}\left(\cos \left(\frac{3 n \pi}{4}\right)-\cos \left(\frac{n \pi}{4}\right)\right) \\
& =\left\{\begin{aligned}
0 & \text { if } n \text { is even; } \\
\frac{\sqrt{2}(-1)^{k+1}}{n} & \text { if } n \text { is odd, and } n=4 k \pm 1 \text { for some } k \in \mathbb{N} .
\end{aligned}\right.
\end{aligned}
$$

(Exercise 7C.5). Thus, the Fourier sine series for f is:

$$
\frac{2 \sqrt{2}}{\pi}\left(\sin (x)+\sum_{k=1}^{N}(-1)^{k}\left(\frac{\sin ((4 k-1) x)}{4 k-1}+\frac{\sin ((4 k+1) x)}{4 k+1}\right)\right)
$$

(Exercise 7C.6).
Figure $\overline{7 \mathrm{C} .2}$ shows some of the partial sums of this series. The series converges pointwise to $f(x)$ in the interior of the intervals $\left[0, \frac{\pi}{4}\right),\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right)$, and $\left(\frac{3 \pi}{4}, \pi\right]$. However, it does not converge to f at the discontinuity points $\frac{\pi}{4}$ and $\frac{3 \pi}{4}$. In the plots, this is betrayed by the violent oscillations of the partial sums near these discontinuity points -this is an example of the Gibbs phenomenon. \diamond

Figure 7C.3: (A) A step function. (B) A piecewise linear function.

Example 7C.4 is an example of a step function. A function $F:[0, L] \longrightarrow \mathbb{R}$ is a step function (see Figure 7C.3(A)) if there are numbers $0=x_{0}<x_{1}<$ $x_{2}<x_{3}<\ldots<x_{M-1}<x_{M}=L$ and constants $a_{1}, a_{2}, \ldots, a_{M} \in \mathbb{R}$ such that

$$
F(x)=\left\{\begin{array}{rc}
a_{1} & \text { if } 0 \leq x \leq x_{1} ; \tag{7C.13}\\
a_{2} & \text { if } x_{1}<x \leq x_{2} ; \\
\vdots & \vdots \\
a_{m} & \text { if } x_{m-1}<x \leq x_{m} ; \\
\vdots & \vdots \\
a_{M} & \text { if } x_{M-1}<x \leq L .
\end{array}\right.
$$

For instance, in Example 7C.4, $M=3 ; x_{0}=0, x_{1}=\frac{\pi}{4}, x_{2}=\frac{3 \pi}{4}$, and $x_{3}=\pi$; $a_{1}=0=a_{3}$, and $a_{2}=1$.

To compute the Fourier coefficients of a step function, we simply break the integral into 'pieces', as in Example 7C.4. The general formula is given by the following theorem, but it is really not worth memorizing the formula. Instead, understand the idea.

Theorem 7C.5. Suppose $F:[0, L] \longrightarrow \mathbb{R}$ is a step function like (7C.13). Then the Fourier coefficients of F are given:

$$
\begin{aligned}
\frac{1}{L} \int_{0}^{L} F(x) & =\frac{1}{L} \sum_{m=1}^{M} a_{m} \cdot\left(x_{m}-x_{m-1}\right) ; \\
\frac{2}{L} \int_{0}^{L} F(x) \cdot \cos \left(\frac{n \pi}{L} x\right) d x & =\frac{-2}{\pi n} \sum_{m=1}^{M-1} \sin \left(\frac{n \pi}{L} \cdot x_{m}\right) \cdot\left(a_{m+1}-a_{m}\right) ;
\end{aligned}
$$

$$
\begin{aligned}
\frac{2}{L} \int_{0}^{L} F(x) \cdot \sin \left(\frac{n \pi}{L} x\right) d x=\frac{2}{\pi n} & \left(a_{1}+(-1)^{n+1} a_{M}\right) \\
& +\frac{2}{\pi n} \sum_{m=1}^{M-1} \cos \left(\frac{n \pi}{L} \cdot x_{m}\right) \cdot\left(a_{m+1}-a_{m}\right) .
\end{aligned}
$$

(A)

(B)

Figure 7C.4: (A) The step function $g(x)$ in Example 7C.6.
(B) The tent function $f(x)$ in Example 7C.7.

Example 7C.6. \quad Suppose $L=\pi$, and $g(x)=\left\{\begin{array}{ll}1 & \text { if } 0 \leq x<\frac{\pi}{2} \\ 0 & \text { if } \frac{\pi}{2} \leq x\end{array} \quad\right.$ (see Figure 7C.4A). Then the Fourier cosine series of $g(x)$ is:

$$
\frac{1}{2}+\frac{2}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} \cos ((2 k+1) x)
$$

In other words, $A_{0}=\frac{1}{2}$ and, for all $n>0, A_{n}=\left\{\begin{aligned} \frac{2}{\pi} \frac{(-1)^{k}}{2 k+1} & \text { if } n \text { is odd and } n=2 k+1 ; \\ 0 & \text { if } n \text { is even. }\end{aligned}\right.$
Exercise 7C. 8 Show this in two ways: first by direct integration, and then by applying the formula from Theorem 7C.5.

7C(iv) Piecewise linear functions

Example 7C.7: (The Tent Function)

Let $\mathbb{X}=[0, \pi]$ and let $f(x)=\left\{\begin{aligned} x & \text { if } 0 \leq x \leq \frac{\pi}{2} ; \\ \pi-x & \text { if } \frac{\pi}{2}<x \leq \pi .\end{aligned} \quad\right.$ (see Figure 7C.4B)
The Fourier sine series of f is: $\frac{4}{\pi} \sum_{\substack{n=1 \\ n \text { odd; } \\ n=2 k+1}}^{\infty} \frac{(-1)^{k}}{n^{2}} \sin (n x)$.
To prove this, we must show that, for all $n>0$,

$$
B_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x=\left\{\begin{aligned}
\frac{4}{n^{2} \pi}(-1)^{k} & \text { if } n \text { is odd, } n=2 k+1 \\
0 & \text { if } n \text { is even. }
\end{aligned}\right.
$$

To verify this, we observe that

$$
\int_{0}^{\pi} f(x) \sin (n x) d x=\int_{0}^{\pi / 2} x \sin (n x) d x+\int_{\pi / 2}^{\pi}(\pi-x) \sin (n x) d x
$$

Exercise 7C. 9 Complete the computation of B_{n}.
The tent function in Example 7C.7 is piecewise linear. A function F : $[0, L] \longrightarrow \mathbb{R}$ is piecewise linear (see Figure 7C.3(B) on page 153) if there are numbers $0=x_{0}<x_{1}<x_{1}<x_{2}<\ldots<x_{M-1}<x_{M}=L$ and constants $a_{1}, a_{2}, \ldots, a_{M} \in \mathbb{R}$ and $b \in \mathbb{R}$ such that

$$
F(x)=\left\{\begin{align*}
a_{1}(x-L)+b_{1} & \text { if } 0 \leq x \leq x_{1} ; \tag{7C.14}\\
a_{2}\left(x-x_{1}\right)+b_{2} & \text { if } x_{1}<x \leq x_{2} ; \\
\vdots & \vdots \\
a_{m}\left(x-x_{m}\right)+b_{m+1} & \text { if } x_{m}<x \leq x_{m+1} ; \\
\vdots & \vdots \\
a_{M}\left(x-x_{M-1}\right)+b_{M} & \text { if } x_{M-1}<x \leq L .
\end{align*}\right.
$$

where $b_{1}=b$, and, for all $m>1, b_{m}=a_{m}\left(x_{m}-x_{m-1}\right)+b_{m-1}$.
For instance, in Example 7C.7, $M=2, \quad x_{1}=\frac{\pi}{2}$ and $x_{2}=\pi ; a_{1}=1$ and $a_{2}=-1$.

To compute the Fourier coefficients of a piecewise linear function, we can break the integral into 'pieces', as in Example 7C.7. The general formula is given by the following theorem, but it is really not worth memorizing the formula. Instead, understand the idea.

Theorem 7C.8. Suppose $F:[0, L] \longrightarrow \mathbb{R}$ is a piecewise-linear function like (7C.14). Then the Fourier coefficients of F are given:

$$
\begin{aligned}
\frac{1}{L} \int_{0}^{L} F(x) & =\frac{1}{L} \sum_{m=1}^{M} \frac{a_{m}}{2}\left(x_{m}-x_{m-1}\right)^{2}+b_{m} \cdot\left(x_{m}-x_{m-1}\right) . \\
\frac{2}{L} \int_{0}^{L} F(x) \cdot \cos \left(\frac{n \pi}{L} x\right) d x & =\frac{2 L}{(\pi n)^{2}} \sum_{m=1}^{M} \cos \left(\frac{n \pi}{L} \cdot x_{m}\right) \cdot\left(a_{m}-a_{m+1}\right) \\
\frac{2}{L} \int_{0}^{L} F(x) \cdot \sin \left(\frac{n \pi}{L} x\right) d x & =\frac{2 L}{(\pi n)^{2}} \sum_{m=1}^{M-1} \sin \left(\frac{n \pi}{L} \cdot x_{m}\right) \cdot\left(a_{m}-a_{m+1}\right)
\end{aligned}
$$

(where we define $a_{M+1}:=a_{1}$ for convenience).
Proof. Exercise 7C. 10 Hint: invoke Theorem 厄C. 5 and integration by parts.

Note that the summands in this theorem read " $a_{m}-a_{m+1}$ ", not the other way around.

Example 7C.9: (Cosine series of the tent function)

Let Let $\mathbb{X}=[0, \pi]$ and let $f(x)=\left\{\begin{aligned} x & \text { if } 0 \leq x \leq \frac{\pi}{2} ; \\ \pi-x & \text { if } \frac{\pi}{2}<x \leq \pi .\end{aligned}\right.$ as in Example
7C.7. The Fourier cosine series of f is:

$$
\frac{\pi}{4}-\frac{8}{\pi} \sum_{\substack{n=1 \\ n=4 j+2, \\ \text { for some } j}}^{\infty} \frac{1}{n^{2}} \cos (n x)
$$

In other words,

$$
f(x)=\frac{\pi}{4}-\frac{8}{\pi}\left(\frac{\cos (2 x)}{4}+\frac{\cos (6 x)}{36}+\frac{\cos (10 x)}{100}+\frac{\cos (14 x)}{196}+\frac{\cos (18 x)}{324}+\ldots\right)
$$

To see this, first observe that

$$
\begin{aligned}
A_{0} & =\frac{1}{\pi} \int_{0}^{\pi} f(x) d x=\frac{1}{\pi}\left(\int_{0}^{\pi / 2} x d x+\int_{\pi / 2}^{\pi}(\pi-x) d x\right) \\
& =\frac{1}{\pi}\left(\left[\frac{x^{2}}{2}\right]_{0}^{\pi / 2}+\frac{\pi^{2}}{2}-\left[\frac{x^{2}}{2}\right]_{\pi / 2}^{\pi}\right)=\frac{1}{\pi}\left(\frac{\pi^{2}}{8}+\frac{\pi^{2}}{2}-\left(\frac{\pi^{2}}{2}-\frac{\pi^{2}}{8}\right)\right) \\
& =\frac{\pi^{2}}{4 \pi}=\frac{\pi}{4}
\end{aligned}
$$

Now let's compute A_{n} for $n>0$.

$$
\text { First, } \begin{aligned}
\int_{0}^{\pi / 2} x \cos (n x) d x & =\frac{1}{n}\left[\left.x \sin (n x)\right|_{0} ^{\pi / 2}-\int_{0}^{\pi / 2} \sin (n x) d x\right] \\
& =\frac{1}{n}\left[\frac{\pi}{2} \sin \left(\frac{n \pi}{2}\right)+\left.\frac{1}{n} \cos (n x)\right|_{0} ^{\pi / 2}\right] \\
& =\frac{\pi}{2 n} \sin \left(\frac{n \pi}{2}\right)+\frac{1}{n^{2}} \cos \left(\frac{n \pi}{2}\right)-\frac{1}{n^{2}}
\end{aligned}
$$

$$
\text { Next, } \quad \int_{\pi / 2}^{\pi} x \cos (n x) d x=\frac{1}{n}\left[\left.x \sin (n x)\right|_{\pi / 2} ^{\pi}-\int_{\pi / 2}^{\pi} \sin (n x) d x\right]
$$

$$
=\frac{1}{n}\left[\frac{-\pi}{2} \sin \left(\frac{n \pi}{2}\right)+\left.\frac{1}{n} \cos (n x)\right|_{\pi / 2} ^{\pi}\right]
$$

$$
=\frac{-\pi}{2 n} \sin \left(\frac{n \pi}{2}\right)+\frac{(-1)^{n}}{n^{2}}-\frac{1}{n^{2}} \cos \left(\frac{n \pi}{2}\right) .
$$

Finally, $\quad \int_{\pi / 2}^{\pi} \pi \cos (n x) d x=\left.\frac{\pi}{n} \sin (n x)\right|_{\pi / 2} ^{\pi}$

$$
=\frac{-\pi}{n} \sin \left(\frac{n \pi}{2}\right) .
$$

Putting it all together, we have:

$$
\begin{aligned}
\int_{0}^{\pi} f(x) \cos (n x) d x= & \int_{0}^{\pi / 2} x \cos (n x) d x+\int_{\pi / 2}^{\pi} \pi \cos (n x) d x-\int_{\pi / 2}^{\pi} x \cos (n x) d x \\
= & \frac{\pi}{2 n} \sin \left(\frac{n \pi}{2}\right)+\frac{1}{n^{2}} \cos \left(\frac{n \pi}{2}\right)-\frac{1}{n^{2}}-\frac{\pi}{n} \sin \left(\frac{n \pi}{2}\right) \\
& \quad+\frac{\pi}{2 n} \sin \left(\frac{n \pi}{2}\right)-\frac{(-1)^{n}}{n^{2}}+\frac{1}{n^{2}} \cos \left(\frac{n \pi}{2}\right) \\
= & \frac{2}{n^{2}} \cos \left(\frac{n \pi}{2}\right)-\frac{1+(-1)^{n}}{n^{2}}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\cos \left(\frac{n \pi}{2}\right) & =\left\{\begin{aligned}
(-1)^{k} & \text { if } n \text { is even and } n=2 k ; \\
0 & \text { if } n \text { is odd. }
\end{aligned}\right. \\
\text { while } \quad 1+(-1)^{n} & = \begin{cases}2 & \text { if } n \text { is even; } \\
0 & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \qquad 2 \cos \left(\frac{n \pi}{2}\right)-\left(1+(-1)^{n}\right)=\left\{\begin{aligned}
-4 & \text { if } n \text { is even, } n=2 k \text { and } k=2 j+1 \text { for some } j ; \\
0 & \text { otherwise. }
\end{aligned}\right. \\
& =\left\{\begin{aligned}
-4 & \text { if } n=4 j+2 \text { for some } j ; \\
0 & \text { otherwise. }
\end{aligned}\right. \\
& \text { Linear Partial Differential Equations and Fourier Theory }
\end{aligned}
$$

(for example, $n=2,6,10,14,18, \ldots$). Thus $A_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) d x$
$=\left\{\begin{aligned} \frac{-8}{n^{2} \pi} & \text { if } n=4 j+2 \text { for some } j ; \\ 0 & \text { otherwise. }\end{aligned}\right.$

$7 \mathrm{C}(\mathrm{v}) \quad$ Differentiating Fourier (co)sine series

Prerequisites: $\S[7 B, \$ 0 \mathrm{~F}$.
Suppose $f(x)=3 \sin (x)-5 \sin (2 x)+7 \sin (3 x)$. Then $f^{\prime}(x)=3 \cos (x)-$ $10 \cos (2 x)+21 \cos (3 x)$. Likewise, if $f(x)=3+2 \cos (x)-6 \cos (2 x)+11 \cos (3 x)$, then $f^{\prime}(x)=-2 \sin (x)+12 \sin (2 x)-33 \sin (3 x)$. This illustrates a general pattern.

Theorem 7C.10. Suppose $f \in \mathcal{C}^{\infty}[0, L]$
(a) Suppose f has Fourier sine series $\sum_{n=1}^{\infty} B_{n} \mathbf{S}_{n}(x)$. If $\sum_{n=1}^{\infty} n\left|B_{n}\right|<\infty$, then f^{\prime} has Fourier cosine series: $f^{\prime}(x)=\frac{\pi}{L} \sum_{n=1}^{\infty} n B_{n} \mathbf{C}_{n}(x)$, and this series converges uniformly.
(b) Suppose f has Fourier cosine series $\sum_{n=0}^{\infty} A_{n} \mathbf{C}_{n}(x)$. If $\sum_{n=1}^{\infty} n\left|A_{n}\right|<\infty$, then f^{\prime} has Fourier sine series: $f^{\prime}(x)=\frac{-\pi}{L} \sum_{n=1}^{\infty} n A_{n} \mathbf{S}_{n}(x)$, and this series converges uniformly.

Proof. Exercise 7C. 11 Hint: Apply Proposition 0F.1 on page 565.

Consequence: If $f(x)=A \cos \left(\frac{n \pi x}{L}\right)+B \sin \left(\frac{n \pi x}{L}\right)$ for some $A, B \in \mathbb{R}$, then $f^{\prime \prime}(x)=-\left(\frac{n \pi}{L}\right)^{2} \cdot f(x)$. In other words, f is an eigenfunction ${ }^{17}$ for the differentation operator ∂_{x}^{2}, with eigenvalue $\lambda=-\left(\frac{n \pi}{L}\right)^{2}$. More generally, for any $k \in \mathbb{N}$, we have $\partial_{x}^{2 k} f=\lambda^{k} \cdot f$.

7D Practice problems

In all of these problems, the domain is $\mathbb{X}=[0, \pi]$.

[^38]1. Let $\alpha>0$ be a constant. Compute the Fourier sine series of $f(x)=$ $\exp (\alpha \cdot x)$. At which points does the series converge pointwise? Why? Does the series converge uniformly? Why or why not?
2. Compute the Fourier cosine series of $f(x)=\sinh (x)$. At which points does the series converge pointwise? Why? Does the series converge uniformly? Why or why not?
3. Let $\alpha>0$ be a constant. Compute the Fourier sine series of $f(x)=$ $\cosh (\alpha x)$. At which points does the series converge pointwise? Why? Does the series converge uniformly? Why or why not?
4. Compute the Fourier cosine series of $f(x)=x$. At which points does the series converge pointwise? Why? Does the series converge uniformly? Why or why not?
5. Let $g(x)=\left\{\begin{array}{ll}1 & \text { if } 0 \leq x<\frac{\pi}{2} \\ 0 & \text { if } \frac{\pi}{2} \leq x\end{array}\right.$ (Fig. 7C.4A on p. 154
(a) Compute the Fourier cosine series of $g(x)$. At which points does the series converge pointwise? Why? Does the series converge uniformly? Why or why not?
(b) Compute the Fourier sine series of $g(x)$. At which points does the series converge pointwise? Why? Does the series converge uniformly? Why or why not?
6. Compute the Fourier cosine series of $g(x)= \begin{cases}3 & \text { if } 0 \leq x<\frac{\pi}{2} \\ 1 & \text { if } \frac{\pi}{2} \leq x\end{cases}$

At which points does the series converge pointwise? Why? Does the series converge uniformly? Why or why not?
7. Compute the Fourier sine series of $f(x)=\left\{\begin{array}{cc}x & \text { if } 0 \leq x \leq \frac{\pi}{2} \\ \pi-x & \text { if } \frac{\pi}{2}<x \leq \pi .\end{array}\right.$
(Fig. 7C.4B on p .154) At which points does the series converge pointwise? Why? Does the series converge uniformly? Why or why not?
Hint: Note that $\int_{0}^{\pi} f(x) \sin (n x) d x=\int_{0}^{\pi / 2} x \sin (n x) d x+\int_{\pi / 2}^{\pi}(\pi-x) \sin (n x) d x$.
8. Let $f:[0, \pi] \longrightarrow \mathbb{R}$ be defined: $f(x)=\left\{\begin{array}{lll}x & \text { if } & 0 \leq x \leq \frac{\pi}{2} \\ 0 & \text { if } & \frac{\pi}{2}<x \leq \pi\end{array}\right.$.

Compute the Fourier sine series for $f(x)$. At which points does the series converge pointwise? Why? Does the series converge uniformly? Why or why not?

Chapter 8

Real Fourier series and complex Fourier series

Abstract

"Ordinary language is totally unsuited for expressing what physics really asserts, since the words of everyday life are not sufficiently abstract. Only mathematics and mathematical logic can say as little as the physicist means to say." -Bertrand Russell

8A Real Fourier series on $[-\pi, \pi]$

Prerequisites: $\S 6 \mathrm{E}, \S 6 \mathrm{~F} . \quad$ Recommended: $\S 7 \mathrm{~A}, \S 5 \mathrm{C}(\mathrm{iv})$.
Throughout this section, for all $n \in \mathbb{N}$, we define the functions $\mathbf{S}_{n}:[-\pi, \pi] \longrightarrow$ \mathbb{R} and $\mathbf{C}_{n}:[-\pi, \pi] \longrightarrow \mathbb{R}$ by $\mathbf{S}_{n}(x):=\sin (n x)$ and $\mathbf{C}_{n}(x):=\cos (n x)$, for all $x \in[-\pi, \pi]$ (see Figure 6D.1 on page (113). If $f:[-\pi, \pi] \longrightarrow \mathbb{R}$ is any function with $\|f\|_{2}<\infty$, we define the (real) Fourier coefficients:

$$
\begin{aligned}
& A_{0}:=\left\langle f, \mathbf{C}_{0}\right\rangle=\langle f, \mathbb{1}\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x, \\
& A_{n}:=\frac{\left\langle f, \mathbf{C}_{n}\right\rangle}{\left\|\mathbf{C}_{n}\right\|_{2}^{2}}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x, \\
& \text { and } B_{n}:=\frac{\left\langle f, \mathbf{S}_{n}\right\rangle}{\left\|\mathbf{S}_{n}\right\|_{2}^{2}}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x \text {, for all } n \geq 1 \text {. }
\end{aligned}
$$

The (real) Fourier series of f is then the infinite summation of functions:

$$
\begin{equation*}
A_{0}+\sum_{n=1}^{\infty} A_{n} \mathbf{C}_{n}(x)++\sum_{n=1}^{\infty} B_{n} \mathbf{S}_{n}(x) \tag{8A.1}
\end{equation*}
$$

We define continuously differentiable and piecewise continuously differentiable functions on $[-\pi, \pi]$ in a manner exactly analogous to the definitions on $[0, \pi]$
(page 138). Let $\mathcal{C}^{1}[-\pi, \pi]$ be the set of all continuously differentiable functions $f:[-\pi, \pi] \longrightarrow \mathbb{R}$.
(b) If $f \in \mathcal{C}^{1}[-\pi, \pi]$ then the Fourier series (8A.1) converges pointwise on $(-\pi, \pi)$.
More generally, if f is piecewise \mathcal{C}^{1}, then the real Fourier series (8A.1) converges to f pointwise on each \mathcal{C}^{1} interval for f. In other words, if $\left\{j_{1}, \ldots, j_{m}\right\}$ is the set of discontinuity points of f and/or f^{\prime} in $[-\pi, \pi]$, and $j_{m}<x<j_{m+1}$, then $f(x)=A_{0}+\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left(A_{n} \cos (n x)+B_{n} \sin (n x)\right)$.
(c) If $\sum_{n=0}^{\infty}\left|A_{n}\right|+\sum_{n=1}^{\infty}\left|B_{n}\right|<\infty$, then the series (8A.1) converges to f uniformly on $[-\pi, \pi]$. (d) Suppose $f:[-\pi, \pi] \longrightarrow \mathbb{R}$ is continuous and piecewise differentiable, $f^{\prime} \in$
$\mathbf{L}^{2}[-\pi, \pi]$, and $f(-\pi)=f(\pi)$. Then the series (8A.1) converges to f d) Suppose $f:[-\pi, \pi] \longrightarrow \mathbb{R}$ is continuous and piecewise differentiable, $f^{\prime} \in$
$\mathbf{L}^{2}[-\pi, \pi]$, and $f(-\pi)=f(\pi)$. Then the series (8A.1) converges to f uniformly on $[-\pi, \pi]$.
(e) If f is piecewise \mathcal{C}^{1}, and $\mathbb{K} \subset\left(j_{m}, j_{m+1}\right)$ is any closed subset of a \mathcal{C}^{1} interval of f, then the series (8A.1) converges uniformly to f on \mathbb{K}.

Proof. For a proof of (a) see § 10D on page 207. For a proof of (b), see § 10B on page 197. (Alternately, (b) follows immediately from (e).) For a proof of (d) see $\S 10 \mathrm{C}$ on page 204.

Exercise 8A.1. (a) Show that any continuously differentiable function has finite L^{2}-norm. In other words, $\mathcal{C}^{1}[-\pi, \pi] \subset \mathbf{L}^{2}[\pi, \pi]$.
(b) Show that any piecewise \mathcal{C}^{1} function on $[-\pi, \pi]$ is in $\mathbf{L}^{2}[-\pi, \pi]$.

Theorem 8A.1. Fourier Convergence on $[-\pi, \pi]$
(a) The set $\left\{\mathbb{1}, \mathbf{S}_{1}, \mathbf{C}_{1}, \mathbf{S}_{2}, \mathbf{C}_{2}, \ldots\right\}$ is an orthogonal basis for $\mathbf{L}^{2}[-\pi, \pi]$. Thus, if $f \in \mathbf{L}^{2}[-\pi, \pi]$, then the Fourier series (8A.1) converges to f in L^{2}-norm. Furthermore, the coefficient sequences $\left\{A_{n}\right\}_{n=0}^{\infty}$ and $\left\{B_{n}\right\}_{n=1}^{\infty}$ are the unique sequences of coefficients with this property. In other words, if $\left\{A_{n}^{\prime}\right\}_{n=0}^{\infty}$ and $\left\{B_{n}^{\prime}\right\}_{n=1}^{\infty}$ are two other sequences of coefficients such that $f \underset{\mathrm{I} 2}{\approx} \sum_{n=0}^{\infty} A_{n}^{\prime} \mathbf{C}_{n}+$ $\sum_{n=1}^{\infty} B_{n}^{\prime} \mathbf{S}_{n}$, then we must have $A_{n}^{\prime}=A_{n}$ and $B_{n}^{\prime}=B_{n}$ for all $n \in \mathbb{N}$.
(c) is Exercise 8A. 2 (Hint: Use the Weierstrass M-test, Proposition 6E. 13 on
page 129.)
(e) is Exercise 8A. 3 (Hint: use Theorem 8D.1(e) and Proposition 8D.2 on page (173).

There is nothing special about the interval $[-\pi, \pi]$. Real Fourier series can be defined for functions on an interval $[-L, L]$ for any $L>0$. We chose $L=\pi$ because it makes the computations simpler. If $L \neq \pi$, then we can define a Fourier series analogous to 8 A.1 using the functions $\mathbf{S}_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$ and $\mathbf{C}_{n}(x)=\cos \left(\frac{n \pi x}{L}\right)$.

Exercise 8A.4. Let $L>0$, and let $f:[-L, L] \longrightarrow \mathbb{R}$. Generalize all parts of Theorem 8A. 1 to characterize the convergence of the real Fourier series of f.

Remark. Please see Remark 8D.3 on page 174 for further technical remarks about the (non)convergence of real Fourier series, in situations where the hypotheses of Theorem 8A.1 are not satisfied.

8B Computing real Fourier coefficients

Prerequisites: $\S[8 A . \quad$ Recommended: $\S \nabla \square$.
When computing the real Fourier coefficient $A_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot \cos (n x) d x$ (or $B_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot \sin (n x) d x$), it is simpler to first compute the integral $\int_{-\pi}^{\pi} f(x) \cdot \cos (n x) d x\left(\right.$ or $\left.\int_{-\pi}^{\pi} f(x) \cdot \sin (n x) d x\right)$, and then multiply the result by $\frac{1}{\pi}$. In this section, we review some useful techniques to compute this integral.

8B(i) Polynomials

Recommended: §7C(ii).

Theorem 8B.1. $\int_{-\pi}^{\pi} \sin (n x) d x=0=\int_{-\pi}^{\pi} \cos (n x) d x$.
For any $k \in\{1,2,3, \ldots\}$, we have the following recurrence relations:

- If k is even, then:

$$
\int_{-\pi}^{\pi} x^{k} \cdot \sin (n x) d x=0 \quad \text { and } \quad \int_{-\pi}^{\pi} x^{k} \cdot \cos (n x) d x=\frac{-k}{n} \int_{-\pi}^{\pi} x^{k-1} \cdot \sin (n x) d x
$$

- If $k>0$ is odd, then:

$$
\begin{aligned}
& \int_{-\pi}^{\pi} x^{k} \cdot \sin (n x) d x=\frac{2(-1)^{n+1} \pi^{k}}{n}+\frac{k}{n} \int_{-\pi}^{\pi} x^{k-1} \cdot \cos (n x) d x \\
& \int_{-\pi}^{\pi} x^{k} \cdot \cos (n x) d x=0
\end{aligned}
$$

and
Proof. Exercise 8B. 1 Hint: use integration by parts.

Example 8B.2.

(a) $p(x)=x$. Since $k=1$ is odd, we have

$$
\begin{aligned}
& \frac{1}{\pi} \int_{-\pi}^{\pi} x \cdot \cos (n x) d x=0 \\
& \text { and } \quad \begin{aligned}
\frac{1}{\pi} \int_{-\pi}^{\pi} x \cdot \sin (n x) d x & =\frac{2(-1)^{n+1} \pi^{0}}{n}+\frac{1}{n \pi} \int_{-\pi}^{\pi} \cos (n x) d x \\
& =\frac{2(-1)^{n+1}}{n}
\end{aligned}
\end{aligned}
$$

where equality ($*$) follows from case $k=0$ in Theorem 8B.1.
(b) $p(x)=x^{2}$. Since $k=2$ is even, we have, for all n,

$$
\begin{aligned}
\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \sin (n x) d x & =0 \\
\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos (n x) d x & =\frac{-2}{n \pi} \int_{-\pi}^{\pi} x^{1} \cdot \sin (n x) d x \\
& =\frac{-2}{n}\left(\frac{2(-1)^{n+1}}{n}\right)=\frac{4(-1)^{n}}{n^{2}} .
\end{aligned}
$$

where equality $(*)$ follows from the previous example.

8B(ii) Step functions

Recommended: § $\overline{7 C}($ iii) .
A function $F:[-\pi, \pi] \longrightarrow \mathbb{R}$ is a step function (see Figure 8B.1(A)) if there are numbers $-\pi=x_{0}<x_{1}<x_{2}<x_{3}<\cdots<x_{M-1}<x_{M}=\pi$ and constants $a_{1}, a_{2}, \ldots, a_{M} \in \mathbb{R}$ such that

$$
F(x)=\left\{\begin{array}{rc}
a_{1} & \text { if }-\pi \leq x \leq x_{1} \tag{8B.1}\\
a_{2} & \text { if } x_{1}<x \leq x_{2} \\
\vdots & \vdots \\
a_{m} & \text { if } x_{m-1}<x \leq x_{m} \\
\vdots & \vdots \\
a_{M} & \text { if } x_{M-1}<x \leq \pi
\end{array}\right.
$$

Figure 8B.1: (A) A step function. (B) A piecewise linear function.

To compute the Fourier coefficients of a step function, we break the integral into 'pieces'. The general formula is given by the following theorem, but it is really not worth memorizing the formula. Instead, understand the idea.

Theorem 8B.3. Suppose $F:[-\pi, \pi] \longrightarrow \mathbb{R}$ is a step function like (8B.1). Then the Fourier coefficients of F are given:

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} F(x) d x & =\frac{1}{2 \pi} \sum_{m=1}^{M} a_{m} \cdot\left(x_{m}-x_{m-1}\right) \\
\frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \cdot \cos (n x) d x & =\frac{-1}{\pi n} \sum_{m=1}^{M-1} \sin \left(n \cdot x_{m}\right) \cdot\left(a_{m+1}-a_{m}\right) \\
\frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \cdot \sin (n x) d x & =\frac{(-1)^{n}}{\pi n}\left(a_{1}-a_{M}\right)+\frac{1}{\pi n} \sum_{m=1}^{M-1} \cos \left(n \cdot x_{m}\right) \cdot\left(a_{m+1}-a_{m}\right)
\end{aligned}
$$

Proof. Exercise 8B. 2 Hint: Integrate the function piecewise. Use the fact that

$$
\begin{align*}
\int_{x_{m-1}}^{x_{m}} f(x) \sin (n x) & =\frac{a_{m}}{n}\left(\cos \left(n \cdot x_{m-1}\right)-\cos \left(n \cdot x_{m}\right)\right) \tag{E}\\
\text { and } \int_{x_{m-1}}^{x_{m}} f(x) \cos (n x) & =\frac{a_{m}}{n}\left(\cos \left(n \cdot x_{m}\right)-\cos \left(n \cdot x_{m-1}\right)\right) .
\end{align*}
$$

Remark. Note that the Fourier series of a step function f will converge uniformly to f on the interior of each "step", but will not converge to f at any of the step boundaries, because f is not continuous at these points.

Figure 8B.2: The step function in Example 8B.4.

Example 8B.4. Suppose $f(x)=\left\{\begin{array}{rll}-3 & \text { if } & -\pi \leq x<\frac{-\pi}{2} ; \\ 5 & \text { if } & \frac{-\pi}{2} \leq x<\frac{\pi}{2} ; \\ 2 & \text { if } & \frac{\pi}{2} \leq x \leq \pi .\end{array} \quad\right.$ (see Figure 8B.2).
In the notation of Theorem 8B.3, we have $M=3$, and

$$
\left.\begin{array}{rl}
x_{0}=-\pi ; \quad & x_{1}=\frac{-\pi}{2} ; \quad x_{2}=\frac{\pi}{2} ; \quad x_{3}=\pi ; \\
& a_{1}=-3 ; \quad a_{2}=5 ; \quad a_{3}=2 .
\end{array}\right\} \begin{aligned}
\text { Thus, } \quad A_{n}= & \frac{-1}{\pi n}\left[8 \cdot \sin \left(n \cdot \frac{-\pi}{2}\right)-3 \cdot \sin \left(n \cdot \frac{\pi}{2}\right)\right] \\
= & \left\{\begin{array}{rll}
0 & \text { if } & n \text { is even; } \\
(-1)^{k} \cdot \frac{11}{\pi n} & \text { if } & n=2 k+1 \text { is odd. }
\end{array}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
B_{n} & =\frac{1}{\pi n}\left[8 \cdot \cos \left(n \cdot \frac{-\pi}{2}\right)-3 \cdot \cos \left(n \cdot \frac{\pi}{2}\right)-5 \cdot \cos (n \cdot \pi)\right] \\
& =\left\{\begin{array}{rll}
\frac{5}{\pi n} & \text { if } & n \text { is odd; } \\
\frac{5}{\pi n}\left((-1)^{k}-1\right) & \text { if } & n=2 k \text { is even. }
\end{array}\right. \\
& =\left\{\begin{array}{rrr}
\frac{5}{\pi n} & \text { if } & n \text { is odd; } \\
0 & \text { if } & n \text { is divisible by } 4 ; \\
\frac{-10}{\pi n} & \text { if } & n \text { is even but not divisible by } 4 .
\end{array}\right.
\end{aligned}
$$

8B(iii) Piecewise linear functions

Recommended: §7C(iv).

A continuous function $F:[-\pi, \pi] \longrightarrow \mathbb{R}$ is piecewise linear (see Figure 8B.1(B)) if there are numbers $-\pi=x_{0}<x_{1}<x_{1}<x_{2}<\ldots<x_{M-1}<x_{M}=\pi$ and constants $a_{1}, a_{2}, \ldots, a_{M} \in \mathbb{R}$ and $b \in \mathbb{R}$ such that

$$
F(x)=\left\{\begin{align*}
a_{1}(x-\pi)+b_{1} & \text { if }-\pi<x<x_{1} ; \tag{8B.2}\\
a_{2}\left(x-x_{1}\right)+b_{2} & \text { if } x_{1}<x<x_{2} ; \\
\vdots & \vdots \\
a_{m}\left(x-x_{m}\right)+b_{m+1} & \text { if } x_{m}<x<x_{m+1} ; \\
\vdots & \vdots \\
a_{M}\left(x-x_{M-1}\right)+b_{M} & \text { if } x_{M-1}<x<\pi .
\end{align*}\right.
$$

where $b_{1}=b$, and, for all $m>1, b_{m}=a_{m}\left(x_{m}-x_{m-1}\right)+b_{m-1}$.
Example 8B.5. If $f(x)=|x|$, then f is piecewise linear, with: $x_{0}=-\pi, x_{1}=0$, and $x_{2}=\pi ; a_{1}=-1$ and $a_{2}=1 ; b_{1}=\pi$, and $b_{2}=0$.

To compute the Fourier coefficients of a piecewise linear function, we break the integral into 'pieces'. The general formula is given by the following theorem, but it is really not worth memorizing the formula. Instead, understand the idea.

Theorem 8B.6. Suppose $F:[-\pi, \pi] \longrightarrow \mathbb{R}$ is a piecewise-linear function like (8B.2). Then the Fourier coefficients of F are given:

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} F(x) d x & =\frac{1}{2 \pi} \sum_{m=1}^{M} \frac{a_{m}}{2}\left(x_{m}-x_{m-1}\right)^{2}+b_{m} \cdot\left(x_{m}-x_{m-1}\right) ; \\
\frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \cdot \cos (n x) d x & =\frac{1}{\pi n^{2}} \sum_{m=1}^{M} \cos \left(n x_{m}\right) \cdot\left(a_{m}-a_{m+1}\right) ; \\
\frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \cdot \sin (n x) d x & =\frac{1}{\pi n^{2}} \sum_{m=1}^{M-1} \sin \left(n x_{m}\right) \cdot\left(a_{m}-a_{m+1}\right) .
\end{aligned}
$$

(Here, we define $a_{M+1}:=a_{1}$ for convenience.)
Proof. Exercise 8B. 3 Hint: invoke Theorem 8B. 3 and integration by parts.
Note that the summands in this theorem read " $a_{m}-a_{m+1}$ ", not the other way around.

Example 8B.7. Recall $f(x)=|x|$, from Example 8B.5. Applying Theorem 8B.6, we have

$$
\begin{aligned}
A_{0} & =\frac{1}{2 \pi}\left[\frac{-1}{2}(0+\pi)^{2}+\pi \cdot(0+\pi)+\frac{1}{2}(\pi-0)^{2}+0 \cdot(\pi-0)\right]=\frac{\pi}{2} \\
A_{n} & =\frac{\pi}{\pi n^{2}}[(-1-1) \cdot \cos (n 0)(1+1) \cdot \cos (n \pi)] \\
& =\frac{1}{\pi n^{2}}\left[-2+2(-1)^{n}\right]=\frac{-2}{\pi n^{2}}\left[1-(-1)^{n}\right]
\end{aligned}
$$

while $B_{n}=0$ for all $n \in \mathbb{N}$, because f is an even function.

8B(iv) Differentiating real Fourier series

Prerequisites: § $8 \mathrm{~A}, ~ \S(0 \mathrm{~F}$.
Suppose $f(x)=3+2 \cos (x)-6 \cos (2 x)+11 \cos (3 x)+3 \sin (x)-5 \sin (2 x)+$ $7 \sin (3 x)$. Then $f^{\prime}(x)=-2 \sin (x)+12 \sin (2 x)-33 \sin (3 x)+3 \cos (x)-10 \cos (2 x)+$ $21 \cos (3 x)$. This illustrates a general pattern.

Theorem 8B.8. Let $f \in \mathcal{C}^{\infty}[-\pi, \pi]$, and suppose f has Fourier series $\sum_{n=0}^{\infty} A_{n} \mathbf{C}_{n}+\sum_{n=1}^{\infty} B_{n} \mathbf{S}_{n}$. If $\sum_{n=1}^{\infty} n\left|A_{n}\right|<\infty \quad$ and $\quad \sum_{n=1}^{\infty} n\left|B_{n}\right|<\infty$, then f^{\prime} has Fourier Series: $\sum_{n=1}^{\infty} n\left(B_{n} \mathbf{C}_{n}-A_{n} \mathbf{S}_{n}\right)$.

Proof. Exercise 8B. 4 Hint: Apply Proposition 0 0. 1 on page 565.

Consequence: If $f(x)=A \cos (n x)+B \sin (n x)$ for some $A, B \in \mathbb{R}$, then $f^{\prime \prime}(x)=-n^{2} f(x)$. In other words, f is an eigenfunction for the differentation operator ∂_{x}^{2}, with eigenvalue $-n^{2}$. Hence, for any $k \in \mathbb{N}$, we have $\partial_{x}^{2 k} f=$ $(-n)^{k} \cdot f$.

8C Relation between (co)sine series and real series

Prerequisites: § $[\boxed{Z A}, \S[B A$.

We have seen in $\S 8 \mathrm{~A}$ how the collection $\left\{\mathbf{C}_{n}\right\}_{n=0}^{\infty} \cup\left\{\mathbf{S}_{n}\right\}_{n=1}^{\infty}$ forms an orthogonal basis for $\mathbf{L}^{2}[-\pi, \pi]$. However, if we confine our attention to half this interval -that is, to $\mathbf{L}^{2}[0, \pi]$ - then the results of $\S \boxed{7 A}$ imply that we only need half as many basis elements; either the collection $\left\{\mathbf{C}_{n}\right\}_{n=0}^{\infty}$ or the collection $\left\{\mathbf{S}_{n}\right\}_{n=1}^{\infty}$ will suffice. Why is this? And what is the relationship between the Fourier (co)sine series of $\S[7 \mathrm{~A}$ and the Fourier series of $\S 8 \mathrm{~A}$?

A function $f:[-L, L] \longrightarrow \mathbb{R}$ is even if $f(-x)=f(x)$ for all $x \in[0, L]$. For example, the following functions are even:

- $f(x)=1$.
- $f(x)=|x|$.
- $f(x)=x^{2}$.
- $f(x)=x^{k}$ for any even $k \in \mathbb{N}$.
- $f(x)=\cos (x)$.

A function $f:[-L, L] \longrightarrow \mathbb{R}$ is odd if $f(-x)=-f(x)$ for all $x \in[0, L]$. For example, the following functions are odd:

- $f(x)=x$.
- $f(x)=x^{3}$.
- $f(x)=x^{k}$ for any odd $k \in \mathbb{N}$.
- $f(x)=\sin (x)$.

Every function can be 'split' into an 'even part' and an 'odd part'.
Proposition 8C.1. (a) For any $f:[-L, L] \longrightarrow \mathbb{R}$, there is a unique even function \check{f} and a unique odd function f such that $f=\check{f}+f$. To be specific:

$$
\check{f}(x)=\frac{f(x)+f(-x)}{2} \quad \text { and } \quad \dot{f}(x)=\frac{f(x)-f(-x)}{2}
$$

(b) If f is even, then $f=\check{f}$, and $f=0$.
(c) If f is odd, then $\mathscr{f}=0$, and $f=f$.

Proof. Exercise 8C. 1

The equation $f=\check{f}+f$ is called the even-odd decomposition of f. Next, we define the vector spaces:

$$
\begin{aligned}
& \mathbf{L}_{\text {even }}^{2}[-\pi, \pi] & :=\left\{\text { all even elements in } \mathbf{L}^{2}[-\pi, \pi]\right\} . \\
\text { and } & \mathbf{L}_{\text {odd }}^{2}[-\pi, \pi] & :=\left\{\text { all odd elements in } \mathbf{L}^{2}[-\pi, \pi]\right\} .
\end{aligned}
$$

Proposition 8C. 1 implies that any $f \in \mathbf{L}^{2}[-\pi, \pi]$ can be written (in a unique way) as $f=\check{f}+f$ for some $\check{f} \in \mathbf{L}_{\text {even }}^{2}[-\pi, \pi]$ and $f \in \mathbf{L}_{\text {odd }}^{2}[-\pi, \pi]$. (This is sometimes indicated by writing: $\mathbf{L}^{2}[-\pi, \pi]=\mathbf{L}_{\text {even }}^{2}[-\pi, \pi] \oplus \mathbf{L}_{\text {odd }}^{2}[-\pi, \pi]$.)

Lemma 8C.2. Let $n \in \mathbb{N}$.
(a) The function $\mathbf{C}_{n}(x)=\cos (n x)$ is even.
(b) The function $\mathbf{S}_{n}(x)=\sin (n x)$ is odd.

Let $f:[-\pi, \pi] \longrightarrow \mathbb{R}$ be any function.
(c) If $f(x)=\sum_{n=0}^{\infty} A_{n} \mathbf{C}_{n}(x)$, then f is even.
(d) If $f(x)=\sum_{n=1}^{\infty} B_{n} \mathbf{S}_{n}(x)$, then f is odd.

Proof. Exercise 8C. 2

In other words, cosine series are even, and sine series are odd. The converse is also true. To be precise:

Proposition 8C.3. Let $f:[-\pi, \pi] \longrightarrow \mathbb{R}$ be any function, and suppose f has real Fourier series $f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \mathbf{C}_{n}(x)+\sum_{n=1}^{\infty} B_{n} \mathbf{S}_{n}(x)$. Then:
(a) If f is odd, then $A_{n}=0$ for every $n \in \mathbb{N}$.
(b) If f is even, then $B_{n}=0$ for every $n \in \mathbb{N}$.

Proof. Exercise 8C. 3

From this, it follows immediately:

Proposition 8C.4.

(a) The set $\left\{\mathbf{C}_{0}, \mathbf{C}_{1}, \mathbf{C}_{2}, \ldots\right\}$ is an orthogonal basis for $\mathbf{L}_{\text {even }}^{2}[-\pi, \pi]$ (where $\mathbf{C}_{0}=$ 11).
(b) The set $\left\{\mathbf{S}_{1}, \mathbf{S}_{2}, \mathbf{S}_{3}, \ldots\right\}$ is an orthogonal basis for $\mathbf{L}_{\text {odd }}^{2}[-\pi, \pi]$.
(c) Suppose f has even-odd decomposition $f=\check{f}+\dot{f}$, and f has real Fourier series $f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \mathbf{C}_{n}(x)+\sum_{n=1}^{\infty} B_{n} \mathbf{S}_{n}(x)$. Then $\check{f}(x)=\sum_{n=0}^{\infty} A_{n} \mathbf{C}_{n}(x)$ and $\dot{f}(x)=\sum_{n=1}^{\infty} B_{n} \mathbf{S}_{n}(x)$.

Proof. Exercise 8C. 4

If $f:[0, \pi] \longrightarrow \mathbb{R}$, then we can "extend" f to a function on $[-\pi, \pi]$ in two ways:

- The even extension of f is defined: $f_{\text {even }}(x)=f(|x|)$ for all $x \in[-\pi, \pi]$.
- The odd extension of f is defined: $f_{\text {odd }}(x)=\left\{\begin{aligned} f(x) & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -f(-x) & \text { if } x<0\end{aligned}\right.$

Exercise 8C.5. (a) Show that $f_{\text {even }}$ is even and $f_{\text {odd }}$ is odd.
(b) For all $x \in[0, \pi]$, show that $f_{\text {even }}(x)=f(x)=f_{\text {odd }}(x)$.

Proposition 8C.5. Let $f:[0, \pi] \longrightarrow \mathbb{R}$ have even extension $f_{\text {even }}:[-\pi, \pi] \longrightarrow$ \mathbb{R} and odd extension $f_{\text {odd }}:[-\pi, \pi] \longrightarrow \mathbb{R}$.
(a) The Fourier sine series for f is the same as the real Fourier series for $f_{\text {odd }}$. In other words, the nth Fourier sine coefficient is given: $B_{n}=$ $\frac{1}{\pi} \int_{-\pi}^{\pi} f_{\text {odd }}(x) \mathbf{S}_{n}(x) d x$.
(b) The Fourier cosine series for f is the same as the real Fourier series for $f_{\text {even }}$. In other words, the nth Fourier cosine coefficient is given: $A_{n}=$ $\frac{1}{\pi} \int_{-\pi}^{\pi} f_{\text {even }}(x) \mathbf{C}_{n}(x) d x$.

Proof. Exercise 8C. 6

Let $f \in \mathcal{C}^{1}[0, \pi]$. Recall that Theorem 7A.1(d) (on page 138) says that the Fourier sine series of f converges to f uniformly on $[0, \pi]$ if and only if f satisfies homogeneous Dirichlet boundary conditions on $[0, \pi]$ (i.e. $f(0)=f(\pi)=0$). On the other hand, Theorem 7A.4(d) (on page 142) says that the Fourier cosine series of f always converges to f uniformly on $[0, \pi]$ if $f \in \mathcal{C}^{1}[0, \pi]$; furthermore, if the formal derivative of this cosine series converges to f^{\prime} uniformly on $[0, \pi]$, then f satisfies homogeneous Neumann boundary conditions on $[0, \pi]$ (i.e. $f^{\prime}(0)=$ $f^{\prime}(\pi)=0$). Meanwhile, if $F \in \mathcal{C}^{1}[-\pi, \pi]$, then Theorem 8A.1(d) (on page 162) says that the (real) Fourier series of F converges to F uniformly on $[-\pi, \pi]$ if F satisfies periodic boundary conditions on $[-\pi, \pi]$ (i.e. $F(-\pi)=F(\pi)$). The next result explains the logical relationship between these three statements.

Lemma 8C.6. Let $f:[0, \pi] \longrightarrow \mathbb{R}$ have even extension $f_{\text {even }}:[-\pi, \pi] \longrightarrow \mathbb{R}$ and odd extension $f_{\text {odd }}:[-\pi, \pi] \longrightarrow \mathbb{R}$. Suppose f is right-continuous at 0 and left-continuous at π.
(a) $f_{\text {odd }}$ is continuous at zero and satisfies periodic boundary conditions on on $[0, \pi]$.
(b) $f_{\text {even }}$ is always continuous at zero and always satisfies periodic boundary conditions on $[-\pi, \pi]$.

However, the derivative $f_{\text {even }}^{\prime}$ is continuous at zero and satisfies periodic
boundary conditions on $[-\pi, \pi]$ if and only if f satisfies homogeneous Neumann boundary conditions on $[0, \pi]$.

Proof. $\underline{\text { Exercise 8C. } 7}$

$[-\pi, \pi]$, if and only if f satisfies homogeneous Dirichlet boundary conditions

8D Complex Fourier series

Let $f, g: \mathbb{X} \longrightarrow \mathbb{C}$ be complex-valued functions. Recall from $\S 6 \mathrm{CC}(\mathrm{i})$ that we define their inner product:

$$
\langle f, g\rangle \quad:=\quad \frac{1}{M} \int_{\mathbb{X}} f(\mathbf{x}) \cdot \overline{g(\mathbf{x})} d \mathbf{x}
$$

where M is the length/area/volume of domain \mathbb{X}. Once again,
$\|f\|_{2} \quad:=\langle f, f\rangle^{1 / 2}=\left(\frac{1}{M} \int_{\mathbb{X}} f(\mathbf{x}) \overline{f(\mathbf{x})} d \mathbf{x}\right)^{1 / 2}=\left(\frac{1}{M} \int_{\mathbb{X}}|f(\mathbf{x})|^{2} d \mathbf{x}\right)^{1 / 2}$.
The concepts of orthogonality, L^{2} distance, and L^{2} convergence are exactly the same as before. Let $\mathbf{L}^{2}([-L, L] ; \mathbb{C})$ be the set of all complex-valued functions $f:[-L, L] \longrightarrow \mathbb{C}$ with $\|f\|_{2}<\infty$. For all $n \in \mathbb{Z}$, let

$$
\mathbf{E}_{n}(x) \quad:=\exp \left(\frac{\pi \mathbf{i} n x}{L}\right)
$$

(thus, $\mathbf{E}_{0}=\mathbb{1}$ is the constant unit function). For all $n>0$, notice that Euler's Formula (see page 551) implies:

$$
\begin{align*}
\mathbf{E}_{n}(x) & =\mathbf{C}_{n}(x)+\mathbf{i} \cdot \mathbf{S}_{n}(x) \tag{8D.1}\\
\text { and } \mathbf{E}_{-n}(x) & =\mathbf{C}_{n}(x)-\mathbf{i} \cdot \mathbf{S}_{n}(x)
\end{align*}
$$

Also, note that $\left\langle\mathbf{E}_{n}, \mathbf{E}_{m}\right\rangle=0$ if $n \neq m$, and $\left\|\mathbf{E}_{n}\right\|_{2}=1$ (Exercise 8D.1), so these functions form an orthonormal set.

If $f:[-L, L] \longrightarrow \mathbb{C}$ is any function with $\|f\|_{2}<\infty$, then we define the (complex) Fourier coefficients of f :

$$
\begin{equation*}
\widehat{f}_{n}:=\left\langle f, \mathbf{E}_{n}\right\rangle=\frac{1}{2 L} \int_{-L}^{L} f(x) \cdot \exp \left(\frac{-\pi \mathbf{i} n x}{L}\right) d x . \tag{8D.2}
\end{equation*}
$$

The (complex) Fourier Series of f is then the infinite summation of functions:

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \widehat{f}_{n} \cdot \mathbf{E}_{n} . \tag{8D.3}
\end{equation*}
$$

(note that in this sum, n ranges from $-\infty$ to ∞).

Theorem 8D.1. Complex Fourier Convergence

(a) The set $\left\{\ldots, \mathbf{E}_{-1}, \mathbf{E}_{0}, \mathbf{E}_{1}, \ldots\right\}$ is an orthonormal basis for $\mathbf{L}^{2}([-L, L] ; \mathbb{C})$. Thus, if $f \in \mathbf{L}^{2}([-L, L] ; \mathbb{C})$, then the complex Fourier series (8D.3) converges to f in L^{2}-norm.
Furthermore, $\left\{\widehat{f}_{n}\right\}_{n=-\infty}^{\infty}$ is the unique sequence of coefficients with this property.
(b) If f is continuously differentiabld on $[-\pi, \pi]$, then the Fourier series (8D.3) converges pointwise on $(-\pi, \pi)$.
More generally, if f is piecewise \mathcal{C}^{1}, then the complex Fourier series (8D.3) converges to f pointwise on each \mathcal{C}^{1} interval for f. In other words, if $\left\{j_{1}, \ldots, j_{m}\right\}$ is the set of discontinuity points of f and/or f^{\prime} in $[-L, L]$, and $j_{m}<x<j_{m+1}$, then $f(x)=\lim _{N \rightarrow \infty} \sum_{n=-N}^{N} \widehat{f}_{n} \mathbf{E}_{n}(x)$.
(c) If $\sum_{n=-\infty}^{\infty}\left|\widehat{f}_{n}\right|<\infty$, then the series (8D.3) converges to f uniformly on $[-\pi, \pi]$.
(d) Suppose $f:[-\pi, \pi] \longrightarrow \mathbb{R}$ is continuous and piecewise differentiable, $f^{\prime} \in$ $\mathbf{L}^{2}[-\pi, \pi]$, and $f(-\pi)=f(\pi)$. Then the series (8D.3) converges to f uniformly on $[-\pi, \pi]$.
(e) If f is piecewise \mathcal{C}^{1}, and $\mathbb{K} \subset\left(j_{m}, j_{m+1}\right)$ is any closed subset of a \mathcal{C}^{1} interval of f, then the series (8D.3) converges uniformly to f on \mathbb{K}.

Proof. For (a) is Exercise 8D. 2 (Hint: Use Theorem 8A.1(a) on page 162 and Proposition 8D.2 below).
For a direct proof of (a), see [Kat76, §I.5.5, p.29-30].
(b) is Exercise 8D. 3 (Hint: (i) use Theorem 8A.1(b) on page 162 and Proposition 8 D .2 below. (ii) For a second proof, derive (b) from from (e).)
(c) is Exercise 8D. 4 (Hint: Use the Weierstrass M-test, Proposition 6E. 13 on page 129 .)
(d) is Exercise 8D. 5 (Hint: use Theorem 8A.1(d) on page 162 and Proposition 8D. 2 below).
For a direct proof of (d) see [WZ77, Theorem 12.20, p.219].
For (e) see [Fol84, Theorem 8.43, p.256] or [Kat76, Corollary on p. 53 of §II.2.2].

[^39]
Proposition 8D.2. Relation between Real and Complex Fourier Series

Let $f:[-\pi, \pi] \longrightarrow \mathbb{R}$ be a real-valued function, and let $\left\{A_{n}\right\}_{n=0}^{\infty}$ and $\left\{B_{n}\right\}_{n=1}^{\infty}$ be its real Fourier coefficients, as defined on page 161. We can also regard f as a complex-valued function; let $\left\{\widehat{f}_{n}\right\}_{n=-\infty}^{\infty}$ be the complex Fourier coefficients of f, as defined by equation (8D.2) on page 172. Let $n \in \mathbb{N}_{+}$. Then
(a) $\widehat{f}_{n}=\frac{1}{2}\left(A_{n}-\mathbf{i} B_{n}\right)$, and $\widehat{f}_{-n}=\widehat{\hat{f}_{n}}=\frac{1}{2}\left(A_{n}+\mathbf{i} B_{n}\right)$.
(b) Thus, $A_{n}=\widehat{f}_{n}+\widehat{f}_{-n}$, and $B_{n}=\mathbf{i}\left(\widehat{f}_{n}-\widehat{f}_{-n}\right)$.
(c) $\widehat{f}_{0}=A_{0}$.

Proof. Exercise 8D. 6 Hint: use the equations (8D.1).

Exercise 8D.7. Show that Theorem 8D.1(a) and Theorem 8A.1(a) are equivalent, using the Proposition 8D.2.

Remark 8D.3: Further remarks on Fourier convergence

(a) In Theorems 7A.1(b), 7A.4(b), 8A.1(b) and 8D.1(b), if x is a discontinuity point of f, then the Fourier (co)sine series converges to the average of the 'left-hand' and 'right-hand' limits of f at x, namely:
$\frac{f(x-)+f(x+)}{2}$, where $f(x-):=\lim _{y \nearrow x} f(y)$ and $f(x+):=\lim _{y \backslash x} f(y)$.
(b) If the hypothesis of Theorems 7A.1(c), 7A.4(c), 8A.1(c) or 8D.1(c) is satisfied, then we say that the Fourier series (real, complex, sine or cosine) converges absolutely. (In fact, Theorems 7A.1(d) [i], 7A.4(d) [i], 8A.1(d) or 8D.1(d) can be strengthened to yield absolute convergence). Absolute convergence is stronger than uniform convergence, and functions with absolutely convergent Fourier series form a special class; see KKat76, §I.6, p.31-33] for more information.
(c) In Theorems 7A.1(e), 7A.4(e), 8A.1(e) and 8D.1(e), we don't quite need f to be differentiable to guarantee uniform convergence of the Fourier (co)sine series. Let $\alpha>0$ be a constant; we say that f is α-Hölder continuous on $[-\pi, \pi]$ if there is some $M<\infty$ such that,

$$
\text { For all } x, y \in[0, \pi], \quad \frac{|f(x)-f(y)|}{|x-y|^{\alpha}} \leq M
$$

Bernstein's Theorem says: If f is α-Hölder continuous for some $\alpha>\frac{1}{2}$, then the Fourier series (real, complex, sine or cosine) of f will converge uniformly
(indeed, absolutely) to f; see [Fol84, Theorem 8.39] or [Kat76, Thm 6.3 on p.32]. (If f was differentiable, then f would be α-Hölder continuous with $\alpha=1$, so Bernstein's Theorem immediately implies Theorems 7A.1(e) and 7A.4(e).)
(d) The total variation of f is defined
$\operatorname{var}(f):=\sup _{N \in \mathbb{N}} \sup _{-\pi \leq x_{0}<\cdots<x_{N} \leq \pi} \sum_{n=1}^{N}\left|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right| \overline{\overline{(*)}} \int_{-\pi}^{\pi}\left|f^{\prime}(x)\right| d x$.
Here, the supremum is taken over all finite increasing sequences $\{-\pi \leq$ $\left.x_{0}<x_{1}<\cdots<x_{N} \leq \pi\right\}$ (for any $N \in \mathbb{N}$), and equality ($*$) is true if and only if f is continuously differentiable. Zygmund's Theorem says: if $\operatorname{var}(f)<\infty$ (i.e. f has bounded variation) and f is α-Hölder continuous for some $\alpha>0$, then the Fourier series of f will converge uniformly (indeed, absolutely) to f on $[-\pi, \pi]$; see [Kat76, Thm 6.4 on p.33].
(e) However, merely being continuous is not sufficient for uniform Fourier convergence, or even pointwise convergence. There exists a continuous function $f:[0, \pi] \longrightarrow \mathbb{R}$ whose Fourier series does not converge pointwise on $(0, \pi)$-i.e. the series diverges at some points in $(0, \pi)$; see [WZ77, Theorem 12.35, p.227] or [Kat76, Theorem 2.1, p.51]. Thus, Theorems 7A.1(b), 7A.4(b), 8A.1(b) and 8D.1(b) are false if we replace 'differentiable' with 'continuous'.
(f) Fix $p \in[1, \infty)$. For any $f:[-\pi, \pi] \longrightarrow \mathbb{C}$, we define the L^{p}-norm of f :

$$
\|f\|_{p}=\left(\int_{-\pi}^{\pi}|f(x)|^{p} d x\right)^{1 / p}
$$

(Thus, if $p=2$, we get the familiar L^{2}-norm $\|f\|_{2}$). Let $\mathbf{L}^{p}[-\pi, \pi]$ be the set of all integrable functions $f:[-\pi, \pi] \longrightarrow \mathbb{C}$ such that $\|f\|_{p}<\infty$. Theorem 8D.1(a) say that, if $f \in \mathbf{L}^{2}[-\pi, \pi]$, then the complex Fourier series of f converges to f in L^{2}-norm. The Fourier series of f also converges in L^{p}-norm for any other $p \in(1, \infty)$. That is, for any $p \in(1, \infty)$ and any $f \in \mathbf{L}^{p}[-\pi, \pi]$, we have

$$
\lim _{N \rightarrow \infty}\left\|f-\sum_{n=-N}^{N} \widehat{f}_{n} \mathbf{E}_{n}\right\|_{p}=0
$$

See [Kat76, Theorem 1.5, p.50]. If $f \in \mathbf{L}^{p}[-\pi, \pi]$ is purely real-valued, then the same statement holds for the real Fourier series:

$$
\lim _{N \rightarrow \infty}\left\|f-\left(A_{0}+\sum_{n=1}^{N} A_{n} \mathbf{C}_{n}+\sum_{n=1}^{N} B_{n} \mathbf{S}_{n}\right)\right\|_{p}=0
$$

To understand the significance of L^{p}-convergence, we remark that if p is very large, then L^{p} convergence is 'almost' the same as uniform convergence. Also:

- If $p>q$, then $\mathbf{L}^{p}[-\pi, \pi] \subset \mathbf{L}^{q}[-\pi, \pi]$. (Exercise 8D.8).

For example, if $f \in \mathbf{L}^{3}[-\pi, \pi]$, then it follows that $f \in \mathbf{L}^{2}[-\pi, \pi]$ (but not vice versa). If $f \in \mathbf{L}^{2}[-\pi, \pi]$, then it follows that $f \in \mathbf{L}^{3 / 2}[-\pi, \pi]$ (but not vice versa).

- If $p>q$, and the Fourier series of f converges to f in L^{p}-norm, then it also converges to f in L^{q}-norm; see e.g. [Fol84, Proposition 6.12, p.178].

For example, if $f \in \mathbf{L}^{2}[\pi, \pi]$, then Theorem 8D.1(a) implies that the Fourier series of f converges to f in L^{q}-norm for all $q \in[1,2]$. (However, if $q<2$, then there are functions in $\mathbf{L}^{q}[-\pi, \pi]$ to which Theorem 8D.1(a) does not apply).

Finally, similar L^{p}-convergence statements hold for the Fourier (co)sine series of real-valued functions in $\mathbf{L}^{p}[0, \pi]$.
(g) The pointwise convergence of a Fourier series is a somewhat subtle and complicated business, once you depart from the realm of \mathcal{C}^{1} functions. In particular, the Fourier series of continuous (but non-differentiable) functions can be badly behaved. This is perplexing, because we know that Fourier series converge in L^{2} norm for any function in $\mathbf{L}^{2}[-\pi, \pi]$ (which includes all sorts of strange functions which are not differentiable anywhere). To bridge the gap between L^{2} and pointwise convergence, a variety of other 'summation schemes' have been introduced for Fourier coefficients. These include:

- The Cesáro mean $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} S_{N}(f)$, where $S_{N}(f):=\sum_{n=-N}^{N} \widehat{f}_{n} \mathbf{E}_{n}$ is the N th partial sum of the complex Fourier series (8D.3).
- The Abel mean $\lim _{r / 1} \sum_{n=-\infty}^{\infty} r^{|n|} \widehat{f}_{n} \mathbf{E}_{n}$.

These sums have somewhat nicer convergence properties than the 'standard' Fourier series (8D.3). (See $\S 18 \mathrm{~F}$ on page 461 for further discussion of the Abel mean.)
(h) There is a close relationship between the Fourier series of complex-valued functions on $[-\pi, \pi]$, and the Laurent series of complex-analytic functions defined near the unit circle; see § 18E on page 454.
(i) Remark (h) and the periodic boundary conditions required for Theorem 8D.1(d) both suggest that the Fourier series 'wants' us to identify the interval $(-\pi, \pi]$ with the unit circle \mathbb{S} in the complex plane, via the bijection $\phi:(-\pi, \pi] \longrightarrow \mathbb{S}$ defined by $\phi(x)=e^{i x}$. Now, \mathbb{S} is an abelian group under the complex multiplication operator. That is: if $s, t \in \mathbb{S}$, then their product $s \cdot t$ is also in \mathbb{S}, the multiplicative inverse s^{-1} is in \mathbb{S}, and the identity element 1 is an element of \mathbb{S}. Furthermore, \mathbb{S} is a compact subset of \mathbb{C}, and the multiplication operation is continuous with respect to the topology of \mathbb{S}. In summary, \mathbb{S} is a compact abelian topological group. The functions $\left\{\mathbf{E}_{n}\right\}_{n=-\infty}^{\infty}$ are then continuous homomorphisms from \mathbb{S} into \mathbb{S} (these are called the characters of the group).

The existence of the Fourier series (8D.3) and the convergence properties enumerated in Theorem 8D. 1 are actually a consequence of these facts. In fact, if \mathbb{G} is any compact abelian topological group, then one can develop a version of Fourier analysis on \mathbb{G}. The characters of \mathbb{G} are the continuous homomorphisms from \mathbb{G} into the unit circle group \mathbb{S}. The set of all characters of \mathbb{G} forms an orthonormal basis for $\mathbf{L}^{2}(\mathbb{G})$, so that almost any 'reasonable' function $f: \mathbb{G} \longrightarrow \mathbb{C}$ can be expressed as a complex-linear combination of these characters.

The study of Fourier series, their summability, and their generalizations to other compact abelian groups is called harmonic analysis, and is a crucial tool in many areas of mathematics, including the ergodic theory of dynamical systems and the representation theory of Lie groups. See [Fol84, Ch.8], [WZ77, Ch.12] or the book [Kat76] to learn more about this vast and fascinating area of mathematics.

Chapter 9

Multidimensional Fourier series

Abstract

"The scientist does not study nature because it is useful; he studies it because he delights in it, and he delights in it because it is beautiful. If nature were not beautiful, it would not be worth knowing, and if nature were not worth knowing, life would not be worth living." -Henri Poincaré

9A ...in two dimensions

Prerequisites: $\S[6 \mathrm{E}, \S[\mathrm{FF}$. Recommended: § 7 B .
Let $X, Y>0$, and let $\mathbb{X}:=[0, X] \times[0, Y]$ be an $X \times Y$ rectangle in the plane. Suppose $f: \mathbb{X} \longrightarrow \mathbb{R}$ is a real-valued function of two variables. For all $n, m \in \mathbb{N}_{+}:=\{1,2,3, \ldots\}$, we define the two-dimensional Fourier sine coefficients:

$$
B_{n, m}:=\frac{4}{X Y} \int_{0}^{X} \int_{0}^{Y} f(x, y) \sin \left(\frac{\pi n x}{X}\right) \sin \left(\frac{\pi m y}{Y}\right) d x d y .
$$

The two-dimensional Fourier sine series of f is the doubly infinite summation:

$$
\begin{equation*}
\sum_{n, m=1}^{\infty} B_{n, m} \sin \left(\frac{\pi n x}{X}\right) \sin \left(\frac{\pi m y}{Y}\right) \tag{9A.1}
\end{equation*}
$$

Notice that we are now summing over two independent indices, n and m.
Example 9A.1. Let $X=\pi=Y$, so that $\mathbb{X}=[0, \pi] \times[0, \pi]$, and let $f(x, y)=x \cdot y$. Then f has two-dimensional Fourier sine series:

$$
4 \sum_{n, m=1}^{\infty} \frac{(-1)^{n+m}}{n m} \sin (n x) \sin (m y) .
$$

Figure 9A.1: $\mathbf{C}_{n, m}$ for $n=1 \ldots 3$ and $m=0 \ldots 3$ (rotate page).

Figure 9A.2: $\mathbf{S}_{n, m}$ for $n=1 \ldots 3$ and $m=1 \ldots 3$ (rotate page).

To see this, recall from By Example 7C.2(c) on page 148, we know that

$$
\frac{2}{\pi} \int_{0}^{\pi} x \sin (x) d x=\frac{2(-1)^{n+1}}{n}
$$

Thus, $\quad B_{n, m}=\frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} x y \cdot \sin (n x) \sin (m y) d x d y$

$$
\begin{aligned}
& =\left(\frac{2}{\pi} \int_{0}^{\pi} x \sin (n x) d x\right) \cdot\left(\frac{2}{\pi} \int_{0}^{\pi} y \sin (m y) d y\right) \\
& =\left(\frac{2(-1)^{n+1}}{n}\right) \cdot\left(\frac{2(-1)^{m+1}}{m}\right)=\frac{4(-1)^{m+n}}{n m} .
\end{aligned}
$$

Example 9A.2.

Let $X=\pi=Y$, so that $\mathbb{X}=[0, \pi] \times[0, \pi]$, and let $f(x, y)=1$ be the constant 1 function. Then f has two-dimensional Fourier sine series:

$$
\frac{4}{\pi^{2}} \sum_{n, m=1}^{\infty} \frac{\left[1-(-1)^{n}\right]}{n} \frac{\left[1-(-1)^{m}\right]}{m} \sin (n x) \sin (m y)=\frac{16}{\pi^{2}} \sum_{\substack{n, m=1 \\ \text { both odd }}}^{\infty} \frac{1}{n \cdot m} \sin (n x) \sin (m y)
$$

Exercise 9A. 1 Verify this.
For all $n, m \in \mathbb{N}:=\{0,1,2,3, \ldots\}$, we define the two-dimensional Fourier cosine coefficients of f :

$$
\begin{aligned}
A_{0} & :=\frac{1}{X Y} \int_{0}^{X} \int_{0}^{Y} f(x, y) d x d y, \\
A_{n, 0} & :=\frac{2}{X Y} \int_{0}^{X} \int_{0}^{Y} f(x, y) \cos \left(\frac{\pi n x}{X}\right) d x d y \quad \text { for } n>0 ; \\
A_{0, m} & :=\frac{2}{X Y} \int_{0}^{X} \int_{0}^{Y} f(x, y) \cos \left(\frac{\pi m y}{X}\right) d x d y \quad \text { for } m>0 ; \text { and } \\
A_{n, m} & :=\frac{4}{X Y} \int_{0}^{X} \int_{0}^{Y} f(x, y) \cos \left(\frac{\pi n x}{X}\right) \cos \left(\frac{\pi m y}{Y}\right) d x d y \quad \text { for } n, m>0 .
\end{aligned}
$$

The two-dimensional Fourier cosine series of f is the doubly infinite summation:

$$
\begin{equation*}
\sum_{n, m=0}^{\infty} A_{n, m} \cos \left(\frac{\pi n x}{X}\right) \cos \left(\frac{\pi m y}{Y}\right) . \tag{9A.2}
\end{equation*}
$$

In what sense do these series converge to f ? For any $n, m \in \mathbb{N}$, define the functions $\mathbf{C}_{n, m}, \mathbf{S}_{n, m}:[0, X] \times[0, Y] \longrightarrow \mathbb{R}$ by

$$
\begin{aligned}
\mathbf{C}_{n, m}(x, y) & :=\cos \left(\frac{\pi n x}{X}\right) \cdot \cos \left(\frac{\pi m y}{Y}\right), \\
\text { and } \mathbf{S}_{n, m}(x, y) & :=\sin \left(\frac{\pi n x}{X}\right) \cdot \sin \left(\frac{\pi m y}{Y}\right),
\end{aligned}
$$

for all $(x, y) \in[0, X] \times[0, Y]$ (see Figures 9A.1 and 9A.2).

Theorem 9A.3. Two-dimensional Co/Sine Series Convergence
Let $X, Y>0$, and let $\mathbb{X}:=[0, X] \times[0, Y]$.
(a) [i] The set $\left\{\mathbf{S}_{n, m} ; n, m \in \mathbb{N}_{+}\right\}$is an orthogonal basis for $\mathbf{L}^{2}(\mathbb{X})$.
[ii] The set $\left\{\mathbf{C}_{n, m} ; n, m \in \mathbb{N}\right\}$ is also an orthogonal basis for $\mathbf{L}^{2}(\mathbb{X})$.
[iii] Thus, if $f \in \mathbf{L}^{2}(\mathbb{X})$, then the series (9A.1) and (9A.2) both converge to f in L^{2}-norm. Furthermore, the coefficient sequences $\left\{A_{n, m}\right\}_{n, m=0}^{\infty}$ and $\left\{B_{n, m}\right\}_{n, m=1}^{\infty}$ are the unique sequences of coefficients with this property.
(b) If $f \in \mathcal{C}^{1}(\mathbb{X})$ (i.e. f is continuously differentiable on \mathbb{X}), then the series (9A.1) and (9A.2) both converge to f pointwise on $(0, X) \times(0, Y)$.
(c) [i] If $\sum_{n, m=1}^{\infty}\left|B_{n, m}\right|<\infty$, then the two-dimensional Fourier sine series (9A.1) converges to f uniformly on \mathbb{X}.
[ii] If $\sum_{n, m=0}^{\infty}\left|A_{n, m}\right|<\infty$, then the two-dimensional Fourier cosine series (9A.2) converges to f uniformly on \mathbb{X}.
(d) [i] If $f \in \mathcal{C}^{1}(\mathbb{X})$, and the derivative functions $\partial_{x} f$ and $\partial_{y} f$ are both in $\mathbf{L}^{2}(\mathbb{X})$, and f satisfies homogeneous Dirichlet boundary conditions ${ }^{[}$on \mathbb{X}, then the two-dimensional Fourier sine series (9A.1) converges to f uniformly on \mathbb{X}.
[ii] Conversely, if the series (9A.1) converges to f uniformly on \mathbb{X}, then f is continuous and satisfies homogeneous Dirichlet boundary conditions.
(e) [i] If $f \in \mathcal{C}^{1}(\mathbb{X})$, the derivative functions $\partial_{x} f$ and $\partial_{y} f$ are both in $\mathbf{L}^{2}(\mathbb{X})$, then the two-dimensional Fourier cosine series (9A.2) converges to f uniformly on \mathbb{X}.

[^40]

Figure 9A.3: The box function $f(x, y)$ in Example 9A.4.
[ii] Conversely, if $\sum_{n, m=1}^{\infty} n\left|A_{n m}\right|<\infty$ and $\sum_{n, m=1}^{\infty} m\left|A_{n m}\right|<\infty$, then $f \in$ $\mathcal{C}^{1}(\mathbb{X})$, and f satisfies homogeneous Neumann boundary conditions on \mathbb{X}.

Proof. This is just the case $D=2$ of Theorem 9B.1 on page 187.

Example 9A.4. \quad Suppose $X=\pi=Y$, and $f(x, y)= \begin{cases}1 & \text { if } 0 \leq x<\frac{\pi}{2} \text { and } 0 \leq y<\frac{\pi}{2} \text {; } \\ 0 & \text { if } \frac{\pi}{2} \leq x \text { or } \frac{\pi}{2} \leq y .\end{cases}$ (See Figure 9A.3). Then the two-dimensional Fourier cosine series of f is:

$$
\begin{aligned}
\frac{1}{4} & +\frac{1}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} \cos ((2 k+1) x)+\frac{1}{\pi} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{2 j+1} \cos ((2 j+1) y) \\
& +\frac{4}{\pi^{2}} \sum_{k, j=0}^{\infty} \frac{(-1)^{k+j}}{(2 k+1)(2 j+1)} \cos ((2 k+1) x) \cdot \cos ((2 j+1) y)
\end{aligned}
$$

To see this, note that $f(x, y)=g(x) \cdot g(y)$, where $g(x)=\left\{\begin{array}{ll}1 & \text { if } 0 \leq x<\frac{\pi}{2} \\ 0 & \text { if } \frac{\pi}{2} \leq x\end{array}\right.$. Recall from Example 7C. 6 on page 154 that the (one-dimensional) Fourier cosine series of $g(x)$ is

$$
g(x) \quad \underset{\mathrm{T} 2}{\approx} \frac{1}{2}+\frac{2}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} \cos ((2 k+1) x)
$$

Thus, the cosine series for $f(x, y)$ is given:
$f(x, y)=g(x) \cdot g(y)$

[^41]$$
\underset{\mathrm{I} 2}{\approx}\left[\frac{1}{2}+\frac{2}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} \cos ((2 k+1) x)\right] \cdot\left[\frac{1}{2}+\frac{2}{\pi} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{2 j+1} \cos ((2 j+1) y)\right] .
$$

Mixed Fourier series. (Optional)
We can also define the mixed Fourier sine/cosine coefficients:

$$
\begin{aligned}
C_{n, 0}^{[s c]} & :=\frac{2}{X Y} \int_{0}^{X} \int_{0}^{Y} f(x, y) \sin \left(\frac{\pi n x}{X}\right) d x d y, \quad \text { for } n>0 . \\
C_{n, m}^{[s c]} & :=\frac{4}{X Y} \int_{0}^{X} \int_{0}^{Y} f(x, y) \sin \left(\frac{\pi n x}{X}\right) \cos \left(\frac{\pi m y}{Y}\right) d x d y, \quad \text { for } n, m>0 . \\
C_{0, m}^{[c s]} & :=\frac{2}{X Y} \int_{0}^{X} \int_{0}^{Y} f(x, y) \sin \left(\frac{\pi m y}{Y}\right) d x d y, \quad \text { for } m>0 . \\
C_{n, m}^{[c s]} & :=\frac{4}{X Y} \int_{0}^{X} \int_{0}^{Y} f(x, y) \cos \left(\frac{\pi n x}{X}\right) \sin \left(\frac{\pi m y}{Y}\right) d x d y, \quad \text { for } n, m>0 .
\end{aligned}
$$

The mixed Fourier sine/cosine series of f are then:

$$
\begin{array}{ll}
& \sum_{n=1, m=0}^{\infty} C_{n, m}^{[s c]} \sin \left(\frac{\pi n x}{X}\right) \cos \left(\frac{\pi m y}{Y}\right) \tag{9A.3}\\
\text { and } & \sum_{n=0, m=1}^{\infty} C_{n, m}^{[c s]} \cos \left(\frac{\pi n x}{X}\right) \sin \left(\frac{\pi m y}{Y}\right)
\end{array}
$$

For any $n, m \in \mathbb{N}$, define the functions $\mathbf{M}_{n, m}^{[s c]}, \mathbf{M}_{n, m}^{[c s]}:[0, X] \times[0, Y] \longrightarrow \mathbb{R}$ by

$$
\begin{aligned}
& \mathbf{M}_{n, m}^{[s c]}(x, y) \\
\text { and } \quad & \mathbf{M}_{n, m}^{[c s]}(x, y)
\end{aligned}=\sin \left(\frac{\pi n_{1} x}{X}\right) \cos \left(\frac{\pi n_{2} y}{Y}\right) .
$$

for all $(x, y) \in[0, X] \times[0, Y]$.
Proposition 9A.5. Two-dimensional Mixed Co/Sine Series Convergence
Let $\mathbb{X}:=[0, X] \times[0, Y]$. The sets of "mixed" functions, $\left\{\mathbf{M}_{n, m}^{[s c]} ; n \in \mathbb{N}_{+}, m \in \mathbb{N}\right\}$ and $\left\{\mathbf{M}_{n, m}^{[s s]} ; n \in \mathbb{N}, m \in \mathbb{N}_{+}\right\}$are both orthogonal basis for $\mathbf{L}^{2}(\mathbb{X})$. In other words, if $f \in \mathbf{L}^{2}(\mathbb{X})$, then the series (9A.3) both converge to f in L^{2}.

Exercise 9A.2. Formulate conditions for pointwise and uniform convergence of the © mixed series.

9B ...in many dimensions

Prerequisites: $\S[\mathrm{EE}, \S[\mathrm{FF}$. Recommended: $\S 9 \mathrm{~A}$.
Let $X_{1}, \ldots, X_{D}>0$, and let $\mathbb{X}:=\left[0, X_{1}\right] \times \cdots \times\left[0, X_{D}\right]$ be an $X_{1} \times \cdots \times X_{D}$ box in D-dimensional space. For any $\mathbf{n} \in \mathbb{N}^{D}$, define the functions $\mathbf{C}_{\mathbf{n}}: \mathbb{X} \longrightarrow \mathbb{R}$ and $\mathbf{S}_{\mathbf{n}}: \mathbb{X} \longrightarrow \mathbb{R}$ by

$$
\begin{align*}
& \mathbf{C}_{\mathbf{n}}\left(x_{1}, \ldots, x_{D}\right):=\cos \left(\frac{\pi n_{1} x_{1}}{X_{1}}\right) \cos \left(\frac{\pi n_{2} x_{2}}{X_{2}}\right) \cdots \cos \left(\frac{\pi n_{D} x_{D}}{X_{D}}\right), \tag{9B.1}\\
& \mathbf{S}_{\mathbf{n}}\left(x_{1}, \ldots, x_{D}\right):=\sin \left(\frac{\pi n_{1} x_{1}}{X_{1}}\right) \sin \left(\frac{\pi n_{2} x_{2}}{X_{2}}\right) \cdots \sin \left(\frac{\pi n_{D} x_{D}}{X_{D}}\right), \tag{9B.2}
\end{align*}
$$

for any $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{D}\right) \in \mathbb{X}$. Also, for any sequence $\boldsymbol{\omega}=\left(\omega_{1}, \ldots, \omega_{D}\right)$ of D symbols " s " and " c ", we can define the "mixed" functions, $\mathbf{M}_{\mathbf{n}}^{\omega}: \mathbb{X} \longrightarrow \mathbb{R}$. For example, if $D=3$, then define

$$
\mathbf{M}_{\mathbf{n}}^{[s c s]}(x, y, z):=\sin \left(\frac{\pi n_{1} x}{X_{x}}\right) \cos \left(\frac{\pi n_{2} y}{X_{y}}\right) \sin \left(\frac{\pi n_{3} z}{X_{z}}\right) .
$$

If $f: \mathbb{X} \longrightarrow \mathbb{R}$ is any function with $\|f\|_{2}<\infty$, then, for all $\mathbf{n} \in \mathbb{N}_{+}^{D}$, we define the multiple Fourier sine coefficients:

$$
B_{\mathbf{n}}:=\frac{\left\langle f, \mathbf{S}_{\mathbf{n}}\right\rangle}{\left\|\mathbf{S}_{\mathbf{n}}\right\|_{2}^{2}}=\frac{2^{D}}{X_{1} \cdots X_{D}} \int_{\mathbb{X}} f(\mathbf{x}) \cdot \mathbf{S}_{n}(\mathbf{x}) d \mathbf{x} .
$$

The multiple Fourier sine series of f is then:

$$
\begin{equation*}
\sum_{\mathbf{n} \in \mathbb{N}_{+}^{D}} B_{\mathbf{n}} \mathbf{S}_{\mathbf{n}} . \tag{9B.3}
\end{equation*}
$$

For all $\mathbf{n} \in \mathbb{N}^{D}$, we define the multiple Fourier cosine coefficients:

$$
\begin{aligned}
A_{0} & :=\langle f, \mathbb{1}\rangle=\frac{1}{X_{1} \cdots X_{D}} \int_{\mathbb{X}} f(\mathbf{x}) d \mathbf{x}, \\
\text { and } A_{\mathbf{n}} & :=\frac{\left\langle f, \mathbf{C}_{\mathbf{n}}\right\rangle}{\left\|\mathbf{C}_{\mathbf{n}}\right\|_{2}^{2}}=\frac{2^{d_{\mathbf{n}}}}{X_{1} \cdots X_{D}} \int_{\mathbb{X}} f(\mathbf{x}) \cdot \mathbf{C}_{n}(\mathbf{x}) d \mathbf{x} .
\end{aligned}
$$

where, for each $\mathbf{n} \in \mathbb{N}^{D}$, the number $d_{\mathbf{n}}$ is the number of nonzero entries in $\mathbf{n}=\left(n_{1}, n_{2}, \ldots, n_{D}\right)$. The multiple Fourier cosine series of f is then:

$$
\begin{equation*}
\sum_{\mathbf{n} \in \mathbb{N}^{D}} A_{\mathbf{n}} \mathbf{C}_{\mathbf{n}}, \quad \text { where } \mathbb{N}:=\{0,1,2,3, \ldots\} \tag{9B.4}
\end{equation*}
$$

Finally, we define the mixed Fourier Sine/Cosine coefficients:

$$
C_{\mathbf{n}}^{\omega}:=\frac{\left\langle f, \mathbf{M}_{\mathbf{n}}^{\omega}\right\rangle}{\left\|\mathbf{M}_{\mathbf{n}}^{\omega}\right\|_{2}^{2}}=\frac{2^{d_{\mathbf{n}}}}{X_{1} \cdots X_{D}} \int_{\mathbb{X}} f(\mathbf{x}) \cdot \mathbf{M}_{n}^{\omega}(\mathbf{x}) d \mathbf{x}
$$

where, for each $\mathbf{n} \in \mathbb{N}^{D}$, the number $d_{\mathbf{n}}$ is the number of nonzero entries n_{i} in $\mathbf{n}=\left(n_{1}, \ldots, n_{D}\right)$. The mixed Fourier Sine/Cosine series of f is then:

$$
\begin{equation*}
\sum_{\mathbf{n} \in \mathbb{N}^{D}} C_{\mathbf{n}}^{\omega} \mathbf{M}_{\mathbf{n}}^{\omega} . \tag{9B.5}
\end{equation*}
$$

Theorem 9B.1. Multidimensional Co/Sine Series Convergence on \mathbb{X}
Let $\mathbb{X}:=\left[0, X_{1}\right] \times \cdots \times\left[0, X_{D}\right]$ be a D-dimensional box.
(a) [i] The set $\left\{\mathbf{S}_{\mathbf{n}} ; \mathbf{n} \in \mathbb{N}_{+}^{D}\right\}$ is an orthogonal basis for $\mathbf{L}^{2}(\mathbb{X})$.
[ii] The set $\left\{\mathbf{C}_{\mathbf{n}} ; \mathbf{n} \in \mathbb{N}^{D}\right\}$ is an orthogonal basis for $\mathbf{L}^{2}(\mathbb{X})$.
[iii] For any sequence $\boldsymbol{\omega}$ of D symbols " " and " c ", the set of "mixed" functions, $\left\{\mathbf{M}_{\mathbf{n}}^{\omega} ; \mathbf{n} \in \mathbb{N}^{D}\right\}$ is an orthogonal basis for $\mathbf{L}^{2}(\mathbb{X})$.
[iv] In other words, if $f \in \mathbf{L}^{2}(\mathbb{X})$, then the series (9B.3), (9B.4), and (9B.5) all converge to f in L^{2}-norm. Furthermore, the coefficient sequences $\left\{A_{\mathbf{n}}\right\}_{\mathbf{n} \in \mathbb{N}^{D}},\left\{B_{\mathbf{n}}\right\}_{\mathbf{n} \in \mathbb{N}_{+}^{D}}$, and $\left\{C_{\mathbf{n}}^{\omega}\right\}_{\mathbf{n} \in \mathbb{N}^{D}}$ are the unique sequences of coefficients with these properties.
(b) If $f \in \mathcal{C}^{1}(\mathbb{X})$ (i.e. f is continuously differentiable on \mathbb{X}), then the series (9B.3), (9B.4), and (9B.5) converge pointwise on the interior of \mathbb{X}.
(c) [i] If $\sum_{\mathbf{n} \in \mathbb{N}_{+}^{D}}\left|B_{\mathbf{n}}\right|<\infty$, then the multidimensional Fourier sine series (9B.3) converges to f uniformly on \mathbb{X}.
[ii] If $\sum_{\mathbf{n} \in \mathbb{N}^{D}}\left|A_{\mathbf{n}}\right|<\infty$, then the multidimensional Fourier cosine series (9B.4) converges to f uniformly on \mathbb{X}.
(d) [i] If $f \in \mathcal{C}^{1}(\mathbb{X})$, and the derivative functions $\partial_{k} f$ are themselves in $\mathbf{L}^{2}(\mathbb{X})$ for all $k \in[1 \ldots D]$, and f satisfies homogeneous Dirichlet boundary conditions on \mathbb{X}, then the multidimensional Fourier sine series (9B.3) converges to f uniformly on \mathbb{X}.
[ii] Conversely, if the series (9B.3) converges to f uniformly on \mathbb{X}, then f is continuous and satisfies homogeneous Dirichlet boundary conditions.
(e) [i] If $f \in \mathcal{C}^{1}(\mathbb{X})$, and the derivative functions $\partial_{k} f$ are themselves in $\mathbf{L}^{2}(\mathbb{X})$ for all $k \in[1 \ldots D]$, then the multidimensional Fourier cosine series (9B.4) converges to f uniformly on \mathbb{X}.
[ii] Conversely, if $\sum_{\mathbf{n} \in \mathbb{N}^{D}}\left(n_{1}+\cdots+n_{D}\right)\left|A_{\mathbf{n}}\right|<\infty$, then $f \in \mathcal{C}^{1}(\mathbb{X})$, and f satisfies homogeneous Neumann boundary conditions.

Proof. The proof of (c) is Exercise 9B. 1 (Hint: Use the Weierstrass M-test, Proposition 6E.13 on page [29.)
The proofs of (d,e)[ii] are Exercise 9B. 2 (Hint: Generalize the solutions to Exercises 7A.4 and 7A.9 on pages 139 and 142).
The proof of (a) is Exercise 9B. $\mathbf{3}$ (Hint: Prove this by induction on the dimension D. The base case ($D=1$) is Theorems 7A.1(a) and 7A.4(a) on pages 138 and 142. Use Lemma 15C.2(f) (on page (330) to handle the induction step.)

We will prove (b), (d)[i] and (e) $[i]$ by induction on the dimension D. The base cases $(D=1)$ are Theorems 7A.1(b,d[i]) and 7A.4(b,d[i]) on pages 138 and 142.

For the induction step, suppose the theorem is true for D, and consider $D+1$. Let $\mathbb{X}:=\left[0, X_{0}\right] \times\left[0, X_{1}\right] \times \cdots \times\left[0, X_{D}\right]$ be a $(D+1)$-dimensional box. Note that $\mathbb{X}:=\left[0, X_{0}\right] \times \mathbb{X}^{*}$, where $\mathbb{X}^{*}:=\left[0, X_{1}\right] \times \cdots \times\left[0, X_{D}\right]$ is a D-dimensional box. If $f: \mathbb{X} \longrightarrow \mathbb{R}$, then for all $y \in\left[0, X_{0}\right]$, let $f^{y}: \mathbb{X}^{*} \longrightarrow \mathbb{R}$ be the function defined by $f^{y}(\mathbf{x}):=f(y, \mathbf{x})$ for all $\mathbf{x} \in \mathbb{X}^{*}$.
Claim 1: (a) If $f \in \mathcal{C}^{1}(\mathbb{X})$, then $f^{y} \in \mathcal{C}^{1}\left(\mathbb{X}^{*}\right)$ for all $y \in\left[0, X_{0}\right]$.
(b) Furthermore, if $\partial_{k} f \in \mathbf{L}^{2}(\mathbb{X})$ for all $k \in[1 \ldots D]$, then $\partial_{k}\left(f^{y}\right) \in \mathbf{L}^{2}\left(\mathbb{X}^{*}\right)$ for all $k \in[1 \ldots D]$ and all $y \in\left[0, X_{0}\right]$.
(c) If f satisfies homogenous Dirichlet $B C$ on \mathbb{X}, then f^{y} satisfies homogenous Dirichlet $B C$ on \mathbb{X}^{*}, for all $y \in\left[0, X_{0}\right]$.

Proof. Exercise 9B. 4
 $\diamond_{\text {Claim } 1}$

For all $\mathbf{n} \in \mathbb{N}^{D}$, define $\mathbf{C}_{\mathbf{n}}^{*}, \mathbf{S}_{\mathbf{n}}^{*}: \mathbb{X}^{*} \longrightarrow \mathbb{R}$ as in equations (9B.1) and (9B.2). For every $y \in\left[0, X_{0}\right]$, let

$$
A_{\mathbf{n}}^{y} \quad:=\frac{\left\langle f^{y}, \mathbf{C}_{\mathbf{n}}^{*}\right\rangle}{\left\|\mathbf{C}_{\mathbf{n}}^{*}\right\|_{2}^{2}} \quad \text { and } \quad B_{\mathbf{n}}^{y} \quad:=\frac{\left\langle f^{y}, \mathbf{S}_{\mathbf{n}}^{*}\right\rangle}{\left\|\mathbf{S}_{\mathbf{n}}^{*}\right\|_{2}^{2}}
$$

be the D-dimensional Fourier (co)sine coefficients for f^{y}, so that f^{y} has D dimensional Fourier (co)sine series:

$$
\begin{equation*}
\sum_{\mathbf{n} \in \mathbb{N}_{+}^{D}} B_{\mathbf{n}}^{y} \mathbf{S}_{\mathbf{n}}^{*} \underset{\mathrm{~L} 2}{\approx} \quad f^{y} \quad \underset{\mathrm{~T} 2}{\approx} \sum_{\mathbf{n} \in \mathbb{N}^{D}} A_{\mathbf{n}}^{y} \mathbf{C}_{\mathbf{n}}^{*} \tag{9B.6}
\end{equation*}
$$

Claim 2: For all $y \in\left[0, X_{0}\right]$, the two series in eqn.(9B.6) converge to f^{y} in the desired fashion (i.e. pointwise or uniform) on \mathbb{X}^{*}.

Proof. Exercise 9B. 5 (Hint: Use the induction hypothesis and Claim (1). $\diamond_{\text {Claim } 2}$

Fix $\mathbf{n} \in \mathbb{N}^{D}$. Define $\alpha_{\mathbf{n}}, \beta_{\mathbf{n}}:\left[0, X_{0}\right] \longrightarrow \mathbb{R}$ by $\alpha_{\mathbf{n}}(y):=A_{\mathbf{n}}^{y}$ and $\beta_{\mathbf{n}}(y):=B_{\mathbf{n}}^{y}$ for all $y \in\left[0, X_{0}\right]$.
Claim 3: For all $\mathbf{n} \in \mathbb{N}^{D}, \alpha_{\mathbf{n}} \in \mathbf{L}^{2}\left[0, X_{0}\right]$ and $\beta_{\mathbf{n}} \in \mathbf{L}^{2}\left[0, X_{0}\right]$.
Proof. We have

$$
\begin{aligned}
\left\|\alpha_{\mathbf{n}}\right\|_{2}^{2} & =\frac{1}{X_{0}} \int_{0}^{X_{0}}\left|\alpha_{\mathbf{n}}(y)\right|^{2} d y=\frac{1}{X_{0}} \int_{0}^{X_{0}}\left|\frac{\left\langle f^{y}, \mathbf{C}_{\mathbf{n}}^{*}\right\rangle}{\left\|\mathbf{C}_{\mathbf{n}}^{*}\right\|_{2}^{2}}\right|^{2} d y \\
& =\frac{1}{X_{0} \cdot\left\|\mathbf{C}_{\mathbf{n}}^{*}\right\|_{2}^{4}} \int_{0}^{X_{0}}\left|\left\langle f^{y}, \mathbf{C}_{\mathbf{n}}^{*}\right\rangle\right|^{2} d y \\
& \leq \frac{1}{X_{(*)} \cdot\left\|\mathbf{C}_{\mathbf{n}}^{*}\right\|_{2}^{4}} \int_{0}^{X_{0}}\left\|f^{y}\right\|_{2}^{2} \cdot\left\|\mathbf{C}_{\mathbf{n}}^{*}\right\|_{2}^{2} d y \\
& =\frac{1}{X_{0} \cdot\left\|\mathbf{C}_{\mathbf{n}}^{*}\right\|_{2}^{2}} \int_{0}^{X_{0}}\left\|f^{y}\right\|_{2}^{2} d y \\
& =\frac{1}{X_{0} \cdot\left\|\mathbf{C}_{\mathbf{n}}^{*}\right\|_{2}^{2}}\left(\int_{0}^{X_{0}} \frac{1}{X_{1} \cdots X_{D}} \int_{\mathbb{X}^{*}}\left|f^{y}(\mathbf{x})\right|^{2} d \mathbf{x}\right) d y \\
& =\frac{1}{X_{0} \cdots X_{D} \cdot\left\|\mathbf{C}_{\mathbf{n}}^{*}\right\|_{2}^{2}} \int_{\mathbb{X}}|f(y, \mathbf{x})|^{2} d(y ; \mathbf{x})=\frac{1}{\left\|\mathbf{C}_{\mathbf{n}}^{*}\right\|_{2}^{2}}\|f\|_{2}^{2} .
\end{aligned}
$$

Here, $(*)$ is the Cauchy-Bunyakowski-Schwarz Inequality (Theorem 6B. 5 on page (108).
Thus, $\left\|\alpha_{\mathbf{n}}\right\|_{2}^{2}<\infty$ because $\|f\|_{2}^{2}<\infty$ because $f \in \mathbf{L}^{2}(\mathbb{X})$ by hypothesis. Thus, $\alpha_{\mathbf{n}} \in \mathbf{L}^{2}\left[0, X_{0}\right]$. The proof that $\beta_{\mathbf{n}} \in \mathbf{L}^{2}\left[0, X_{0}\right]$ is similar. $\diamond_{\text {Claim 3 }}$
For all $m \in \mathbb{N}$, define $\mathbf{S}_{m}, \mathbf{C}_{m}:\left[0, X_{0}\right] \longrightarrow \mathbb{R}$ by $\mathbf{S}_{m}(y):=\sin \left(\pi m y / X_{0}\right)$ and $\mathbf{C}_{m}(y):=\cos \left(\pi m y / X_{0}\right)$, for all $y \in\left[0, X_{0}\right]$. For all $m \in \mathbb{N}$, let

$$
A_{m}^{\mathbf{n}} \quad:=\frac{\left\langle\alpha_{\mathbf{n}}, \mathbf{C}_{m}\right\rangle}{\left\|\mathbf{C}_{m}\right\|_{2}^{2}} \quad \text { and } \quad B_{m}^{\mathbf{n}} \quad:=\frac{\left\langle\beta_{\mathbf{n}}, \mathbf{S}_{m}\right\rangle}{\left\|\mathbf{S}_{m}\right\|_{2}^{2}}
$$

be the one-dimensional Fourier (co)sine coefficients for the functions $\alpha_{\mathbf{n}}$ and $\beta_{\mathbf{n}}$, so that we get one-dimensional Fourier (co)sine series

$$
\begin{equation*}
\alpha_{\mathbf{n}} \underset{\mathrm{T} 2}{\approx} \sum_{m=0}^{\infty} A_{m}^{\mathrm{n}} \mathbf{C}_{m} \quad \text { and } \quad \beta_{\mathbf{n}} \underset{\mathrm{T} 2}{\approx} \sum_{m=1}^{\infty} B_{m}^{\mathrm{n}} \mathbf{S}_{m} . \tag{9B.7}
\end{equation*}
$$

For all $\mathbf{n} \in \mathbb{N}^{D}$ and all $m \in \mathbb{N}$, define $\mathbf{S}_{m ; \mathbf{n}}, \mathbf{C}_{m ; \mathbf{n}}: \mathbb{X} \longrightarrow \mathbb{R}$ by $\mathbf{S}_{m ; \mathbf{n}}(y ; \mathbf{x}):=$ $\mathbf{S}_{m}(y) \cdot \mathbf{S}_{\mathbf{n}}(\mathbf{x})$ and $\mathbf{C}_{m ; \mathbf{n}}(y ; \mathbf{x}):=\mathbf{C}_{m}(y) \cdot \mathbf{C}_{\mathbf{n}}(\mathbf{x})$, for all $y \in\left[0, X_{0}\right]$ and $\mathbf{x} \in \mathbb{X}^{*}$. Then let

$$
A_{m ; \mathbf{n}}:=\frac{\left\langle f, \mathbf{C}_{m ; \mathbf{n}}\right\rangle}{\left\|\mathbf{C}_{m ; \mathbf{n}}\right\|_{2}^{2}} \quad \text { and } \quad B_{m ; \mathbf{n}} \quad:=\frac{\left\langle f, \mathbf{S}_{m ; \mathbf{n}}\right\rangle}{\left\|\mathbf{S}_{m ; \mathbf{n}}\right\|_{2}^{2}}
$$

be the $(D+1)$-dimensional Fourier (co)sine coefficients for the function f, so that we get ($D+1$)-dimensional Fourier (co)sine series

$$
\begin{equation*}
\sum_{m=0}^{\infty} \sum_{\mathbf{n} \in \mathbb{N}^{D}} A_{m ; \mathbf{n}} \mathbf{C}_{m ; \mathbf{n}} \quad \underset{\mathrm{I} 2}{\widetilde{\mathrm{I}}} \quad f \quad \underset{m=1}{\infty} \sum_{\mathbf{n} \in \mathbb{N}_{+}^{D}} B_{m ; \mathbf{n}} \mathbf{S}_{m ; \mathbf{n}} . \tag{9B.8}
\end{equation*}
$$

Claim 4: For all $\mathbf{n} \in \mathbb{N}^{D}$ and all $m \in \mathbb{N}, A_{m}^{\mathbf{n}}=A_{m ; \mathbf{n}}$ and $B_{m}^{\mathbf{n}}=B_{m ; \mathbf{n}}$.

Proof. Exercise 9B. 6

$\diamond_{\text {Claim } 4}$
Let $\partial_{0} f$ be the derivative of f in the 0th (or ' y ') coordinate, which we regard as a function $\partial_{0} f: \mathbb{X} \longrightarrow \mathbb{R}$.
Claim 5: (a) If $f \in \mathcal{C}^{1}(\mathbb{X})$, then for all $\mathbf{n} \in \mathbb{N}^{D}, \alpha_{\mathbf{n}} \in \mathcal{C}^{1}\left[0, X_{0}\right]$ and $\beta_{\mathbf{n}} \in \mathcal{C}^{1}\left[0, X_{0}\right]$.
(b) Furthermore, if $\partial_{0} f \in \mathbf{L}^{2}(\mathbb{X})$, then for all $\mathbf{n} \in \mathbb{N}^{D}, \alpha_{\mathbf{n}}^{\prime} \in \mathbf{L}^{2}\left[0, X_{0}\right]$ and $\beta_{\mathbf{n}}^{\prime} \in \mathbf{L}^{2}\left[0, X_{0}\right]$.
(c) If f satisfies homogeneous Dirichlet $B C$ on \mathbb{X}, then $\beta_{\mathbf{n}}$ satisfies homogeneous Dirichlet $B C$ on $\left[0, X_{0}\right]$, for all $\mathbf{n} \in \mathbb{N}_{+}^{D}$.

Proof. To prove (a), we proceed as follows.
Exercise 9B. 7 (a) Show that f is uniformly continuous on \mathbb{X}. (Hint: f is continuous on \mathbb{X}, and \mathbb{X} is compact.)
(b) Show: for any $y_{0} \in\left[0, X_{0}\right]$, the functions f^{y} converge uniformly to $f^{y_{0}}$ as $y \rightarrow y_{0}$.
(c) For any fixed $\mathbf{n} \in \mathbb{N}$, deduce that $\lim _{y \rightarrow y_{0}} A_{\mathbf{n}}^{y}=A_{\mathbf{n}}^{y_{0}}$ and $\lim _{y \rightarrow y_{0}} B_{\mathbf{n}}^{y}=B_{\mathbf{n}}^{y_{0}}$. (Hint: Use Corollary 6E.11(b) [ii] on page 127.)
(d) Conclude that the functions $\alpha_{\mathbf{n}}$ and $\beta_{\mathbf{n}}$ are continuous at y_{0}.

The conclusion of Exercise 9B.7(d) holds for all $y_{0} \in\left[0, X_{0}\right]$ and all $\mathbf{n} \in \mathbb{N}$. Thus, the functions $\alpha_{\mathbf{n}}$ and $\beta_{\mathbf{n}}$ are continuous on $\left[0, X_{0}\right]$, for all $\mathbf{n} \in \mathbb{N}$.
For all $y \in\left[0, X_{0}\right]$, let $\left(\partial_{0} f\right)^{y}: \mathbb{X}^{*} \longrightarrow \mathbb{R}$ be the function defined by $\left(\partial_{0} f\right)^{y}(\mathbf{x}):=\partial_{0} f(y, \mathbf{x})$ for all $\mathbf{x} \in \mathbb{X}^{*}$.
Exercise 9B. 8 Suppose $f \in \mathcal{C}^{1}(\mathbb{X})$. Use Proposition 0G. 1 on page 567 to show, for all $\mathbf{n} \in \mathbb{N}^{D}$, that the functions $\alpha_{\mathbf{n}}$ and $\beta_{\mathbf{n}}$ are differentiable on $\left[0, X_{0}\right]$; furthermore, for all $y \in\left[0, X_{0}\right]$,

$$
\begin{equation*}
\alpha_{\mathbf{n}}^{\prime}(y)=\frac{\left\langle\left(\partial_{0} f\right)^{y}, \mathbf{C}_{\mathbf{n}}\right\rangle}{\left\|\mathbf{C}_{\mathbf{n}}\right\|_{2}^{2}} \quad \text { and } \quad \beta_{\mathbf{n}}^{\prime}(y)=\frac{\left\langle\left(\partial_{0} f\right)^{y}, \mathbf{S}_{\mathbf{n}}\right\rangle}{\left\|\mathbf{S}_{\mathbf{n}}\right\|_{2}^{2}} \tag{9B.9}
\end{equation*}
$$

Exercise 9B. 9 Using the same technique as Exercise 9B.7, use eqn.(9B.9) to prove that the functions $\alpha_{\mathbf{n}}^{\prime}$ and $\beta_{\mathbf{n}}^{\prime}$ are continuous on $\left[0, X_{0}\right]$.
Thus, $\alpha_{\mathbf{n}} \in \mathcal{C}^{1}\left[0, X_{0}\right]$ and $\beta_{\mathbf{n}} \in \mathcal{C}^{1}\left[0, X_{0}\right]$; this proves part (a) of the Claim. The proof of (b) is Exercise 9B.10 (Hint. Imitate the proof of Claim (3). The proof of (c) is Exercise 9B.11.

Claim 6: The one-dimensional Fourier cosine series in eqn.(9B.7) converges to $\alpha_{\mathbf{n}}$, and the one-dimensional Fourier sine series in eqn.(9B.7) converges to $\beta_{\mathbf{n}}$ in the desired fashion (i.e. pointwise or uniform), for all $\mathbf{n} \in \mathbb{N}^{D}$.
Proof. Exercise 9B. 12 (Hint: Use Theorems 7A.1(b,d[i]) and 7A.4(b,d[i]) and Claim (5).

Now, Claim $⿴$ implies that the $(D+1)$-dimensional Fourier (co)sine series in (9B.8) can be rewritten as

$$
\begin{equation*}
\sum_{m=0}^{\infty} \sum_{\mathbf{n} \in \mathbb{N}^{D}} A_{m}^{\mathbf{n}} \mathbf{C}_{m} \mathbf{C}_{\mathbf{n}} \quad \underset{\mathrm{T} 2}{\approx} \quad \underset{\tilde{\mathrm{~T} 2}}{\approx} \sum_{m=1}^{\infty} \sum_{\mathbf{n} \in \mathbb{N}_{+}^{D}} B_{m}^{\mathbf{n}} \mathbf{S}_{m} \mathbf{S}_{\mathbf{n}} \tag{9B.10}
\end{equation*}
$$

Exercise 9B. 13 Suppose $f \in \mathcal{C}^{1}(\mathbb{X})$. Use the 'pointwise' versions of Claims 2 and 6 to show that the two series in eqn.(9B.10) converges to f pointwise on the interior of \mathbb{X}.

This proves part (b) of the Theorem.
Exercise 9B. 14 (hard) Suppose $f \in \mathcal{C}^{1}(\mathbb{X})$, the derivative functions $\partial_{0} f, \partial_{1} f, \ldots, \partial_{0} f$ (®) are all in $\mathbf{L}^{2}(\mathbb{X})$, and (for the sine series) f satisfies homogeneous Dirichlet boundary conditions. Use the 'uniform' versions of Claims \rrbracket and to the show that the series in eqn.(9B.10) converges to f uniformly if $f \in \mathcal{C}^{1}(\mathbb{X})$.
This proves parts (d)[i] and (e)[i] of the Theorem.

Remarks. (a) If f is a piecewise \mathcal{C}^{1} function on the interval $[0, \pi]$, then Theorems 7A. 1 and 7A.4 also yield pointwise convergence and 'local' uniform convergence of one-dimensional Fourier (co)sine to f inside the ' \mathcal{C} ' intervals' of f. Likewise, if f is a "piecewise \mathcal{C}^{1} function" on the D-dimensional domain \mathbb{X}, then one can extend Theorem 9B. 1 to get pointwise convergence and 'local' uniform convergence of D-dimensional Fourier (co)sine to f inside the ' \mathcal{C}^{1} regions' of f; however, it is too technically complicated to formally state this here.
(b) Remark 8D. 3 on page 174 provided some technical remarks about the (non)convergence of one-dimensional Fourier (co)sine series, when the hypotheses of Theorems 7A. 1 and 7A.4 are further weakened. Similar remarks apply to D dimensional Fourier series.
(c) It is also possible to define D-dimensional complex Fourier series on the D-dimensional box $[-\pi, \pi]^{D}$, in a manner analogous to the results of Section 8D, and then state and prove a theorem analogous to Theorem 9B.1 for such D-dimensional complex Fourier series. (Exercise 9B. 15 (Challenging) Do this.)

In Chapters 11-14, we will often propose a multiple Fourier series (or similar object) as the solution to some PDE, perhaps with certain boundary conditions. To verify that the Fourier series really satisfies the PDE, we must be able to
compute its Laplacian. If we also require the Fourier series solution to satisfy some Neumann boundary conditions, then we must be able to compute its normal derivatives on the boundary of the domain. For these purposes, the next result is crucial.

Proposition 9B.2. The Derivatives of a Multiple Fourier (co)sine series

Let $\mathbb{X}:=\left[0, X_{1}\right] \times \cdots \times\left[0, X_{D}\right]$. Let $f: \mathbb{X} \longrightarrow \mathbb{R}$ be have uniformly convergent Fourier series

$$
f \overline{\overline{\text { unif }}} A_{0}+\sum_{\mathbf{n} \in \mathbb{N}^{D}} A_{\mathbf{n}} \mathbf{C}_{\mathbf{n}}+\sum_{\mathbf{n} \in \mathbb{N}_{+}^{D}} B_{\mathbf{n}} \mathbf{S}_{\mathbf{n}} .
$$

(a) Fix $i \in[1 \ldots D]$. Suppose that $\sum_{\mathbf{n} \in \mathbb{N}^{D}} n_{i}\left|A_{\mathbf{n}}\right|+\sum_{\mathbf{n} \in \mathbb{N}_{+}^{D}} n_{i}\left|B_{\mathbf{n}}\right|<\infty$. Then the function $\partial_{i} f$ exists, and

$$
\partial_{i} f \underset{\mathrm{~L} 2}{\approx} \sum_{\mathbf{n} \in \mathbb{N}^{D}}\left(\frac{\pi n_{i}}{X_{i}}\right) \cdot\left(B_{\mathbf{n}} \mathbf{S}_{\mathbf{n}}^{\prime}-A_{\mathbf{n}} \mathbf{C}_{\mathbf{n}}^{\prime}\right) .
$$

Here, for all $\mathbf{n} \in \mathbb{N}^{D}$, and all $\mathbf{x} \in \mathbb{X}$, we define

$$
\begin{aligned}
\mathbf{C}_{\mathbf{n}}^{\prime}(\mathbf{x}) & :=\sin \left(\frac{\pi n_{i} x_{i}}{X_{i}}\right) \cdot \mathbf{C}_{\mathbf{n}}(\mathbf{x}) / \cos \left(\frac{\pi n_{i} x_{i}}{X_{i}}\right), \\
\text { and } \quad \mathbf{S}_{\mathbf{n}}^{\prime}(\mathbf{x}) & :=\cos \left(\frac{\pi n_{i} x_{i}}{X_{i}}\right) \cdot \mathbf{S}_{\mathbf{n}}(\mathbf{x}) / \sin \left(\frac{\pi n_{i} x_{i}}{X_{i}}\right)
\end{aligned}
$$

(b) Fix $i \in[1 \ldots D]$. Suppose that $\sum_{\mathbf{n} \in \mathbb{N}^{D}} n_{i}^{2}\left|A_{\mathbf{n}}\right|+\sum_{\mathbf{n} \in \mathbb{N}_{+}^{D}} n_{i}^{2}\left|B_{\mathbf{n}}\right|<\infty$. Then the function $\partial_{i}^{2} f$ exists, and

$$
\partial_{i}^{2} f \underset{\mathrm{~L} 2}{\widetilde{\widetilde{2}}} \sum_{\mathbf{n} \in \mathbb{N}^{D}}-\left(\frac{\pi n_{i}}{X_{i}}\right)^{2} \cdot\left(A_{\mathbf{n}} \mathbf{C}_{\mathbf{n}}+B_{\mathbf{n}} \mathbf{S}_{\mathbf{n}}\right) .
$$

(c) Suppose that $\sum_{\mathbf{n} \in \mathbb{N}^{D}}|\mathbf{n}|^{2}\left|A_{\mathbf{n}}\right|+\sum_{\mathbf{n} \in \mathbb{N}^{D}}|\mathbf{n}|^{2}\left|B_{\mathbf{n}}\right|<\infty$ (where we define $\left.|\mathbf{n}|^{2}:=n_{1}^{2}+\ldots+n_{D}^{2}\right)$. Then f is twice-differentiable, and

$$
\Delta f \quad \underset{\mathrm{IL}}{\approx} \quad-\pi^{2} \sum_{\mathbf{n} \in \mathbb{N}^{D}}\left[\left(\frac{n_{1}}{X_{1}}\right)^{2}+\cdots+\left(\frac{n_{D}}{X_{D}}\right)^{2}\right] \cdot\left(A_{\mathbf{n}} \mathbf{C}_{\mathbf{n}}+B_{\mathbf{n}} \mathbf{S}_{\mathbf{n}}\right) .
$$

Proof. Exercise 9B. 16 Hint: Apply Proposition 0F. 1 on page 565

Example 9B.3. Fix $\mathbf{n} \in \mathbb{N}^{D}$. If $f=A \cdot \mathbf{C}_{\mathbf{n}}+B \cdot \mathbf{S}_{\mathbf{n}}$, then

$$
\Delta f=-\pi^{2}\left[\left(\frac{n_{1}}{X_{1}}\right)^{2}+\cdots+\left(\frac{n_{D}}{X_{D}}\right)^{2}\right] \cdot f
$$

In particular, if $X_{1}=\cdots=X_{D}=\pi$, then this simplifies to: $\triangle f=-|\mathbf{n}|^{2} \cdot f$. In other words, f is an eigenfunction of the Laplacian operator, with eigenvalue $\lambda=-|\mathbf{n}|^{2}$.

9C Practice problems

Compute the two-dimensional Fourier sine transforms of the following functions. For each question, also determine: at which points does the series converge pointwise? Why? Does the series converge uniformly? Why or why not?

1. $f(x, y)=x^{2} \cdot y$.
2. $g(x, y)=x+y$.
3. $f(x, y)=\cos (N x) \cdot \cos (M y)$, for some integers $M, N>0$.
4. $f(x, y)=\sin (N x) \cdot \sinh (N y)$, for some integer $N>0$.

Chapter 10

Proofs of the Fourier convergence theorems

Abstract

"The profound study of nature is the most fertile source of mathematical discoveries." -Jean Joseph Fourier

In this section, we will prove Theorem 8A.1(a,b,d) on page 162 (and thus, indirectly prove 7A.1 (a,b,d) and 7A.4(a,b,d) on pages 138 and 142). Along the way, we will introduce some ideas which are of independent interest: Bessel's inequality, the Riemann-Lebesgue lemma, the Dirichlet kernel, convolutions and mollifiers, and the relationship between the smoothness of a function and the asymptotic decay of its Fourier coefficients. This chapter assumes no prior knowledge of analysis, beyond some background from Chapter 6. However, the presentation is slightly more abstract than most of the book, and is intended for more 'theoretically inclined' students.

10A Bessel, Riemann and Lebesgue

Prerequisites: §6D. Recommended: §7A, § 8 A.
We begin with a general result which is true for any orthonormal set in any L^{2} space.

Theorem 10A.1. (Bessel's Inequality)
Let $\mathbb{X} \subset \mathbb{R}^{D}$ be any bounded domain. Let $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ be any orthonormal set of functions in $\mathbf{L}^{2}(\mathbb{X})$. Let $f \in \mathbf{L}^{2}(\mathbb{X})$, and for all $n \in \mathbb{N}$, let $c_{n}:=\left\langle f, \phi_{n}\right\rangle$. Then for all $N \in \mathbb{N}$,

$$
\sum_{n=1}^{N}\left|c_{n}\right|^{2} \leq\|f\|_{2}^{2}
$$

In particular, $\lim _{n \rightarrow \infty} c_{n}=0$.

Proof. Without loss of generality, suppose $|\mathbb{X}|=1$, so that $\langle f, g\rangle=\int_{\mathbb{X}} f(x) g(x) d x$ for any $f, g \in \mathbf{L}^{2}(\mathbb{X})$. First note that

$$
\begin{align*}
& {\left[f(x)-\sum_{n=1}^{N} c_{n} \phi_{n}(x)\right]^{2}} \\
& \quad=f(x)^{2}-2 f(x) \sum_{n=1}^{N} c_{n} \phi_{n}(x)+\left(\sum_{n=1}^{N} c_{n} \phi_{n}(x)\right) \cdot\left(\sum_{m=1}^{N} c_{m} \phi_{m}(x)\right) \\
& \quad=f(x)^{2}-2 \sum_{n=1}^{N} c_{n} f(x) \phi_{n}(x)+\sum_{n, m=1}^{N} c_{n} c_{m} \phi_{n}(x) \phi_{m}(x) . \tag{10A.1}
\end{align*}
$$

Thus,

$$
\begin{aligned}
0 & \leq\left\|f-\sum_{n=1}^{N} c_{n} \phi_{n}\right\|_{2}^{2}=\int_{\mathbb{X}}\left[f(x)-\sum_{n=1}^{N} c_{n} \phi_{n}(x)\right]^{2} d x \\
& \overline{(*)} \int_{\mathbb{X}}\left(f(x)^{2}-2 \sum_{n=1}^{N} c_{n} f(x) \phi_{n}(x)+\sum_{n, m=1}^{N} c_{n} c_{m} \phi_{n}(x) \phi_{m}(x)\right) d x \\
& =\int_{\mathbb{X}} f(x)^{2} d x-2 \sum_{n=1}^{N} c_{n} \int_{\mathbb{X}} f(x) \phi_{n}(x) d x+\sum_{n, m=1}^{N} c_{n} c_{m} \int_{\mathbb{X}} \phi_{n}(x) \phi_{m}(x) d x \\
& =\underbrace{\langle f, f\rangle}_{\|f\|_{2}^{2}}-2 \sum_{n=1}^{N} c_{n} \underbrace{\left\langle f, \phi_{n}\right\rangle}_{c_{n}}+\sum_{n, m=1}^{N} c_{n} c_{m} \underbrace{\substack{\left.\phi_{m}\right\rangle}}_{\substack{=1 \\
\left\langle\phi_{n}, \phi_{m} n=m \\
=0 \\
\text { if } \\
n \neq m\right.}} \\
& =\|f\|_{2}^{2}-2 \sum_{n=1}^{N} c_{n}^{2}+\sum_{n=1}^{N} c_{n}^{2}=\|f\|_{2}^{2}-\sum_{n=1}^{N} c_{n}^{2} .
\end{aligned}
$$

Here, $(*)$ is by eqn. (10A.1). Thus, $0 \leq\|f\|_{2}^{2}-\sum_{n=1}^{N} c_{n}^{2}$. Thus $\sum_{n=1}^{N} c_{n}^{2} \leq\|f\|_{2}^{2}$, as desired.

Example 10A.2. Suppose $f \in \mathbf{L}^{2}[-\pi, \pi]$ has real Fourier coefficients $\left\{A_{n}\right\}_{n=0}^{\infty}$ and $\left\{B_{n}\right\}_{n=1}^{\infty}$, as defined on page 161. Then for all $N \in \mathbb{N}$,

$$
A_{0}^{2}+\sum_{n=1}^{N} \frac{\left|A_{n}\right|^{2}}{2}+\sum_{n=1}^{N} \frac{\left|B_{n}\right|^{2}}{2} \leq\|f\|_{2}^{2}
$$

Exercise 10A.1 Prove this. (Hint: Let $\mathbb{X}=[-\pi, \pi]$ and let $\left\{\phi_{k}\right\}_{k=1}^{\infty}=\left\{\sqrt{2} \mathbf{C}_{n}\right\}_{n=0}^{\infty} \sqcup$ $\left\{\sqrt{2} \mathbf{S}_{n}\right\}_{n=1}^{\infty}$. Show that $\left\{\phi_{k}\right\}_{k=1}^{\infty}$ is an orthonormal set of functions (Use Proposition 6D. 2 on page (112). Now apply Bessel's Inequality).

Corollary 10A.3. (Riemann-Lebesgue Lemma)

(a) Suppose $f \in \mathbf{L}^{2}[-\pi, \pi]$ has real Fourier coefficients $\left\{A_{n}\right\}_{n=0}^{\infty}$ and $\left\{B_{n}\right\}_{n=1}^{\infty}$, as defined on page 161. Then $\lim _{n \rightarrow \infty} A_{n}=0$ and $\lim _{n \rightarrow \infty} B_{n}=0$.
(b) Suppose $f \in \mathbf{L}^{2}[0, \pi]$ has Fourier cosine coefficients $\left\{A_{n}\right\}_{n=0}^{\infty}$, as defined by eqn.(7A.4) on page 141, and Fourier sine coefficients $\left\{B_{n}\right\}_{n=1}^{\infty}$, as defined by eqn.(7A.1) on page 137. Then $\lim _{n \rightarrow \infty} A_{n}=0$ and $\lim _{n \rightarrow \infty} B_{n}=0$.
Proof. Exercise 10A. 2 Hint: Use Example 10A.2.

10B Pointwise convergence

Prerequisites: $\S 8 \mathrm{~A}, \S[10 \mathrm{~A} . \quad$ Recommended: § 17 B .
In this section we will prove Theorem 8A.1(b), through a common strategy in harmonic analysis: the use of a summation kernel. For all $N \in \mathbb{N}$, the N th Dirichlet kernel is the function $\mathbf{D}_{N}:[-2 \pi, 2 \pi] \longrightarrow \mathbb{R}$ defined by

$$
\mathbf{D}_{N}(x):=1+2 \sum_{n=1}^{N} \cos (n x) \quad \text { (see Figure 10B.1). }
$$

Note that \mathbf{D}_{N} is 2π-periodic (i.e. $\mathbf{D}_{N}(x+2 \pi)=\mathbf{D}_{N}(x)$ for all $x \in[-2 \pi, 0]$). Thus, we could represent \mathbf{D}_{N} as a function from $[-\pi, \pi]$ into \mathbb{R}. However, it is sometimes convenient to extend \mathbf{D}_{N} to $[-2 \pi, 2 \pi]$. For example, for any function $f:[-\pi, \pi] \longrightarrow \mathbb{R}$, the convolution of \mathbf{D}_{N} and f is the function $\mathbf{D}_{N} * f:$ $[-\pi, \pi] \longrightarrow \mathbb{R}$ defined by

$$
\mathbf{D}_{N} * f(x):=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) \mathbf{D}_{N}(x-y) d y, \quad \text { for all } x \in[-\pi, \pi] .
$$

(Note that, to define $\mathbf{D}_{N} * f$, we must evaluate $\mathbf{D}_{N}(z)$ for all $z \in[-2 \pi, 2 \pi]$). The connection between Dirichlet kernels and Fourier series is given by the next lemma:

Lemma 10B.1. Let $f \in \mathbf{L}^{2}[-\pi, \pi]$, and for all $n \in \mathbb{N}$, let

$$
A_{n}:=\frac{1}{\pi} \int_{-\pi}^{\pi} \cos (n y) f(y) d y \quad \text { and } \quad B_{n}:=\frac{1}{\pi} \int_{-\pi}^{\pi} \sin (n y) f(y) d y
$$

be the real Fourier coefficients of f. Then for any $N \in \mathbb{N}$, and every $x \in[-\pi, \pi]$, we have

$$
A_{0}+\sum_{n=1}^{N} A_{n} \mathbf{C}_{n}(x)+\sum_{n=1}^{N} B_{n} \mathbf{S}_{n}(x)=\mathbf{D}_{N} * f(x)
$$

Figure 10B.1: The Dirichlet kernels $\mathbf{D}_{1}, \mathbf{D}_{2}, \ldots, \mathbf{D}_{9}$ plotted on interval $[-\pi, \pi]$. Note the increasing concentration of the function near $x=0$. (In the terminology of Section 10D(ii) and 17B, the sequence $\left\{\mathbf{D}_{1}, \mathbf{D}_{2}, \ldots\right\}$ is like an approximation of the identity.)

Proof. For any $x \in[-\pi, \pi]$, we have

$$
\begin{aligned}
A_{0} & +\sum_{n=1}^{N} A_{n} \mathbf{C}_{n}(x)+\sum_{n=1}^{N} B_{n} \mathbf{S}_{n}(x) \\
& =A_{0}+\sum_{n=1}^{N} \cos (n x)\left(\frac{1}{\pi} \int_{-\pi}^{\pi} \cos (n y) f(y) d y\right)+\sum_{n=1}^{N} \sin (n x)\left(\frac{1}{\pi} \int_{-\pi}^{\pi} \sin (n y) f(y) d y\right) \\
& =A_{0}+\sum_{n=1}^{N} \frac{1}{\pi}\left(\int_{-\pi}^{\pi} \cos (n x) \cos (n y) f(y) d y+\int_{-\pi}^{\pi} \sin (n x) \sin (n y) f(y) d y\right) \\
& =A_{0}+\sum_{n=1}^{N} \frac{1}{\pi} \int_{-\pi}^{\pi}(\cos (n x) \cos (n y)+\sin (n x) \sin (n y)) f(y) d y
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\overline{(*)}} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) d y+\sum_{n=1}^{N} \frac{1}{\pi} \int_{-\pi}^{\pi} \cos (n(x-y)) f(y) d y \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(f(y)+2 \sum_{n=1}^{N} \cos (n(x-y)) f(y)\right) d y \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) \mathbf{D}_{N}(x-y) d y=\mathbf{D}_{N} * f(x) .
\end{aligned}
$$

Here, $(*)$ uses the fact that $A_{0}:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) d y$, and also the well-known trigonometric identity $\cos (u-v)=\cos (u) \cos (v)+\sin (u) \sin (v)$ (with $u=n x$ and $v=n y$).

Remark. See Exercise 18 F .7 on page 464 for another proof of Lemma 10B. 1 for complex Fourier series.

Figure 10B.1] shows how the 'mass' of the Dirichlet kernel \mathbf{D}_{N} becomes increasingly concentrated near $x=0$ as $N \rightarrow \infty$. In the terminology of Sections 10 D and 17 B (pages 207 and 379), the sequence $\left\{\mathbf{D}_{1}, \mathbf{D}_{2}, \ldots\right\}$ is like an approximation of the identity. Thus, our strategy is to show that $\mathbf{D}_{N} * f(x) \rightarrow f(x)$ as $N \rightarrow \infty$, whenever f is continuous at x. Indeed, we will go further: when f is discontinuous at x, we will show that $\mathbf{D}_{N} * f(x)$ converges to the average of the left-hand and right-hand limits of f at x. First we need some technical results.

Lemma 10B.2.

(a) For any $N \in \mathbb{N}$, we have $\int_{0}^{\pi} \mathbf{D}_{N}(x) d x=\pi$.
(b) For any $N \in \mathbb{N}$ and $x \in(-\pi, 0) \sqcup(0, \pi)$, we have $\mathbf{D}_{N}(x)=\frac{\sin ((2 N+1) x / 2)}{\sin (x / 2)}$.
(c) Let $g:[0, \pi] \longrightarrow \mathbb{R}$ be a piecewise continuous function. Then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{0}^{\pi} g(x) \sin \left(\frac{(2 N+1) x}{2}\right) d x=0 \tag{®}
\end{equation*}
$$

Proof. The proof of (b) is Exercise 10B. 1 (Hint: Use trigonometric identities).
To prove (a), note that

$$
\begin{aligned}
\int_{0}^{\pi} \mathbf{D}_{N}(x) d x & =\int_{0}^{\pi} 1+2 \sum_{n=1}^{N} \cos (n x) d x=\int_{0}^{\pi} 1 d x+2 \sum_{n=1}^{N} \int_{0}^{\pi} \cos (n x) d x \\
& =\pi+2 \sum_{n=1}^{N} 0=\pi
\end{aligned}
$$

To prove (c), first observe that

$$
\begin{aligned}
\sin \left(\frac{(2 N+1) x}{2}\right) & =\sin \left(N x+\frac{x}{2}\right) \\
& =\sin (N x) \cos (x / 2)+\cos (N x) \sin (x / 2),
\end{aligned}
$$

where the last step uses the well-known trigonometric identity $\sin (u+v)=$ $\sin (u) \cos (v)+\cos (u) \sin (v)$ (with $u:=N x$ and $v:=x / 2$). Thus,

$$
\begin{aligned}
\int_{0}^{\pi} g(x) & \sin \left(\frac{(2 N+1) x}{2}\right) d x \\
& =\int_{0}^{\pi} g(x)(\sin (N x) \cos (x / 2)+\cos (N x) \sin (x / 2)) d x \\
& =\int_{0}^{\pi} \underbrace{g(x) \cos (x / 2)}_{G_{1}(x)} \underbrace{\sin (N x)}_{\mathbf{S}_{N}(x)} d x+\int_{0}^{\pi} \underbrace{g(x) \sin (x / 2)}_{G_{2}(x)} \underbrace{\cos (N x)}_{\mathbf{C}_{N}(x)} d x \\
\overline{\overline{(*)}} & \frac{2 \pi}{2 \pi} \int_{0}^{\pi} G_{1}(x) \mathbf{S}_{N}(x) d x+\frac{2 \pi}{2 \pi} \int_{0}^{\pi} G_{2}(x) \mathbf{C}_{N}(x) d x \\
\overline{\overline{(\dagger)}} & \frac{\pi}{2}\left\langle G_{1}, \mathbf{S}_{N}\right\rangle+\frac{\pi}{2}\left\langle G_{2}, \mathbf{C}_{N}\right\rangle \\
\underset{N \rightarrow \infty}{ } & 0+0, \quad \text { by Corollary 10A.3(b) (the Riemann-Lebesgue Lemma). }
\end{aligned}
$$

Here (\dagger) is by eqn.(10B.1) and (\ddagger) is by definition of the inner product on $\mathbf{L}^{2}[0, \pi]$. In $(*)$, we define the functions $G_{1}(x):=g(x) \cos (x / 2) G_{2}(x):=$ $g(x) \sin (x / 2)$; these functions are piecewise continuous because g is piecewise continuous; thus they are in $\mathbf{L}^{2}[0, \pi]$, so the Riemann-Lebesgue Lemma is applicable.

Figure 10B.2: (A) Left-hand and right-hand limits. Here, $L:=\lim _{y \nearrow x} f(x)$ and $R:=\lim _{y \backslash x} f(x)$.
(B) The right-hand derivative $f^{\curlywedge}(x)$.
(C) The left-hand derivative $f^{\prime}(x)$.

Let $f:[-\pi, \pi] \longrightarrow \mathbb{R}$ be a function. For any $x \in[-\pi, \pi)$, the right-hand limit of f at x is defined

$$
\lim _{y \backslash x} f(y):=\lim _{\epsilon \rightarrow 0} f(x+|\epsilon|) \quad \text { (if this limit exists). }
$$

Likewise，for any $x \in(-\pi, \pi]$ ，the left－hand limit of f at x is defined

$$
\lim _{y \nearrow x} f(y) \quad:=\lim _{\epsilon \rightarrow 0} f(x-|\epsilon|) \quad \text { (if this limit exists). }
$$

See Figure 10B．2（A）．Clearly，if f is continuous at x ，then the left－hand and right－hand limits both exist，and $\lim _{y \backslash x} f(y)=f(x)=\lim _{y \nearrow x} f(y)$ ．However，the left－hand and right－hand limits may exist even when f is not continuous．

For any $x \in[-\pi, \pi)$ ，let $f\left(x^{+}\right):=\lim _{y \backslash x} f(y)$ ．The right－hand derivative of f at x is defined
$f^{\ell}(x):=\lim _{y \backslash x} \frac{f(y)-f\left(x^{+}\right)}{y-x}=\lim _{\epsilon \rightarrow 0} \frac{f(x+|\epsilon|)-f\left(x^{+}\right)}{|\epsilon|} \quad$（if this limit exists）．
See Figure 10B．2（B）．Likewise，for any $x \in(-\pi, \pi]$ ，let $f\left(x^{-}\right):=\lim _{y / x} f(y)$ ．The left－hand derivative of f at x is defined
$f^{\dagger}(x):=\lim _{y \nearrow x} \frac{f(y)-f\left(x^{-}\right)}{y-x}=\lim _{\epsilon \rightarrow 0} \frac{f(x-|\epsilon|)-f\left(x^{-}\right)}{-|\epsilon|} \quad$（if this limit exists）．
See Figure 10B．2（C）．If $f^{\ell}(x)$ and $f^{\dagger}(x)$ both exist，then we say f is semidif－ ferentiable at x ．Clearly，f is differentiable at x if and only if f is continuous at x（so that $f\left(x^{-}\right)=f\left(x^{+}\right)$），and f semidifferentiable at x ，and $f^{\curlywedge}(x)=f^{〉}(x)$ ． In this case，$f^{\prime}(x)=f^{〔}(x)=f^{\curlywedge}(x)$ ．However，f can be semidifferentiable at x even when f is not differentiable（or even continuous）at x ．

Lemma 10B．3．Let $\tilde{f}:[-\pi, \pi] \longrightarrow \mathbb{R}$ be a piecewise continuous function which is semidifferentiable at 0 ．Then

$$
\lim _{N \rightarrow \infty} \int_{-\pi}^{\pi} \widetilde{f}(x) \mathbf{D}_{N}(x) d x=\pi \cdot\left(\lim _{x \nmid 0} \widetilde{f}(x)+\lim _{x \searrow 0} \widetilde{f}(x)\right) .
$$

Proof．It suffices to show that

$$
\begin{align*}
\lim _{N \rightarrow \infty} \int_{-\pi}^{0} \widetilde{f}(x) \mathbf{D}_{N}(x) d x & =\pi \cdot \lim _{x \nearrow 0} \widetilde{f}(x) \tag{10B.2}\\
\text { and } \quad \lim _{N \rightarrow \infty} \int_{0}^{\pi} \widetilde{f}(x) \mathbf{D}_{N}(x) d x & =\pi \cdot \lim _{x \searrow 0} \widetilde{f}(x) \tag{10B.3}
\end{align*}
$$

We will prove eqn．（10B．3）．Let $\widetilde{f}\left(0^{+}\right):=\lim _{x \searrow 0} \widetilde{f}(x)$ ，and consider the function $g:[0, \pi] \longrightarrow \mathbb{R}$ defined by $g(x):=\frac{\tilde{f}(x)-\tilde{f}\left(0^{+}\right)}{\sin (x / 2)}$ if $x>0$ ，while $g(0):=$ $2 \widetilde{f}^{〔}(0)$ ．
Claim 1：g is piecewise continuous on $[0, \pi]$ ．

Proof. Clearly, g is piecewise continuous on $(0, \pi]$ because \tilde{f} is piecewise continuous, while $\sin (x / 2)$ is nonzero on $(0, \pi]$. The only potential location of an unbounded discontinuity is at 0 . But

$$
\begin{aligned}
\lim _{x \searrow 0} g(x) & =\lim _{x \searrow 0} \frac{\tilde{f}(x)-\tilde{f}\left(0^{+}\right)}{\sin (x / 2)}=\lim _{x \searrow 0}\left(\frac{\tilde{f}(x)-\tilde{f}\left(0^{+}\right)}{x}\right) \cdot\left(\frac{x}{\sin (x / 2)}\right) \\
& =\underbrace{\left(\lim _{x \searrow 0} \frac{\tilde{f}(x)-\widetilde{f}\left(0^{+}\right)}{x-0}\right)}_{\tilde{f} \backslash(0)} \cdot 2 \cdot \underbrace{\left(\lim _{x \searrow 0} \frac{x / 2}{\sin (x / 2)}\right)}_{=1}=2 \tilde{f}^{\curlywedge}(0)=: \quad g(0) .
\end{aligned}
$$

Thus, g is (right-)continuous at 0 , as desired.
$\diamond_{\text {Claim } 1}$
Now,

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \int_{0}^{\pi} \widetilde{f}(x) \mathbf{D}_{N}(x) d x \\
& =\lim _{N \rightarrow \infty} \int_{0}^{\pi}\left(\widetilde{f}\left(0^{+}\right)+\widetilde{f}(x)-\widetilde{f}\left(0^{+}\right)\right) \mathbf{D}_{N}(x) d x \\
& =\lim _{N \rightarrow \infty} \int_{0}^{\pi} \widetilde{f}\left(0^{+}\right) \mathbf{D}_{N}(x) d x+\int_{0}^{\pi}\left(\widetilde{f}(x)-\widetilde{f}\left(0^{+}\right)\right) \mathbf{D}_{N}(x) d x \\
& \overline{\overline{(a)}} \pi \widetilde{f}\left(0^{+}\right)+\int_{0}^{\pi}\left(\widetilde{f}(x)-\widetilde{f}\left(0^{+}\right)\right) \mathbf{D}_{N}(x) d x \\
& \overline{\overline{(b)}} \pi \tilde{f}\left(0^{+}\right)+\lim _{N \rightarrow \infty} \int_{0}^{\pi} \frac{\widetilde{f}(x)-\widetilde{f}\left(0^{+}\right)}{\sin (x / 2)} \cdot \sin \left(\frac{(2 N+1) x}{2}\right) d x \\
& =\pi \tilde{f}\left(0^{+}\right)+\lim _{N \rightarrow \infty} \int_{0}^{\pi} g(x) \cdot \sin \left(\frac{(2 N+1) x}{2}\right) d x \\
& \overline{\overline{(c)}} \pi \tilde{f}\left(0^{+}\right)+0=\pi \widetilde{f}\left(0^{+}\right),
\end{aligned}
$$

as desired. Here, (a) is by Lemma 10B.2(a), (b) is by Lemma 10B.2(b), and (c) is by Lemma 10B.2(c), which is applicable because g is piecewise continuous by Claim 1.
This proves eqn.(10B.3). The proof of eqn.(10B.2) is Exercise 10B.2. Adding together equations (10B.2) and (10B.3) proves the lemma.

Lemma 10B.4. Let $f:[-\pi, \pi] \longrightarrow \mathbb{R}$ be piecewise continuous, and suppose that f is semidifferentiable at x (i.e. $f^{\curlywedge}(x)$ and $f^{\dagger}(x)$ exist). Then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \mathbf{D}_{N} * f(x)=\frac{1}{2}\left(\lim _{y \backslash x} f(y)+\lim _{y \nearrow x} f(y)\right) . \tag{10B.4}
\end{equation*}
$$

In particular, if f is continuous and semidifferentiable at x, then $\lim _{N \rightarrow \infty} \mathbf{D}_{N} *$ $f(x)=f(x)$.

Figure 10B.3: The 2π-periodic phase-shift of a function. (A) A function $f:[-\pi, \pi] \longrightarrow \mathbb{R}$.
(B) The function $y \mapsto f(x+y)$.
(C) The function $\tilde{f}:[-\pi, \pi] \longrightarrow \mathbb{R}$.

Proof. Suppose $x \in[0, \pi]$ (the case $x \in[-\pi, 0]$ is handled similarly). Define $\stackrel{\curvearrowright}{f}:[-\pi, \pi] \longrightarrow \mathbb{R}$ by

$$
\tilde{f}(y):=\left\{\begin{array}{rll}
f(y+x) & \text { if } & y \in[-\pi, \pi-x] ; \\
f(y+x-2 \pi) & \text { if } & y \in[\pi-x, \pi] .
\end{array}\right.
$$

(Effectively, we are treating f as a 2π-periodic function, and 'phase-shifting' f by x; see Figure 10B.3). Then

$$
\begin{aligned}
& 2 \pi \cdot \mathbf{D}_{N} * f(x)=\int_{-\pi}^{\pi} f(y) \mathbf{D}_{N}(x-y) d y \underset{\overline{(*)}}{\overline{(x}} \int_{-\pi}^{\pi} f(y) \mathbf{D}_{N}(y-x) d y \\
& \overline{\overline{(c)}} \int_{-\pi-x}^{\pi-x} f(z+x) \mathbf{D}_{N}(z) d z \\
& =\int_{-\pi-x}^{-\pi} f(z+x) \mathbf{D}_{N}(z) d z+\int_{-\pi}^{\pi-x} f(z+x) \mathbf{D}_{N}(z) d z \\
& \overline{\overline{(Q)}} \int_{\pi-x}^{\pi} f(w+x-2 \pi) \mathbf{D}_{N}(w-2 \pi) d w+\int_{-\pi}^{\pi-x} f(z+x) \mathbf{D}_{N}(z) d z \\
& \overline{\overline{(\dagger)}} \int_{\pi-x}^{\pi} \tilde{f}(w) \mathbf{D}_{N}(w) d w+\int_{-\pi}^{\pi-x} \underset{f}{f}(z) \mathbf{D}_{N}(z) d z \\
& =\int_{-\pi}^{\pi} \tilde{f}(z) \mathbf{D}_{N}(z) d z \overline{\overline{(0)}} \pi \cdot\left(\lim _{z \backslash 0} \tilde{f}(z)+\lim _{z \nearrow 0} \tilde{f}(z)\right) \\
& \overline{\overline{(\ddagger)}} \pi \cdot\left(\lim _{z \backslash 0} f(z+x)+\lim _{z \nearrow 0} f(z+x)\right) \\
& \overline{\overline{(c)}} \pi \cdot\left(\lim _{y \backslash x} f(y)+\lim _{y \nearrow x} f(y)\right) .
\end{aligned}
$$

Now divide both sides by 2π to get equation (10B.4).
Here, $(*)$ is because \mathbf{D}_{N} is even (i.e. $\mathbf{D}_{N}(-r)=\mathbf{D}_{N}(r)$ for all $r \in \mathbb{R}$). Both equalities marked (c) are the change of variables $z:=y-x$ (so that $y=z+x$). Likewise, equality (@) is the change of variables $w:=z+2 \pi$ (so that $z=w-2 \pi$). Both (\dagger) and (\ddagger) use the definition of \widetilde{f}, and (\dagger) also uses
the fact that \mathbf{D}_{N} is 2π-periodic, so that $\mathbf{D}_{N}(w-2 \pi)=\mathbf{D}_{N}(w)$ for all $w \in$ $[\pi-x, \pi]$. Finally, (\diamond) is by Lemma 10B.3 applied to $\underset{f}{f}$ (which is continuous and semidifferentiable at 0 because f is continuous and semidifferentiable at $x)$.

Proof of Theorem 8A.1(b). Let $x \in[-\pi, \pi]$, and suppose f is continuous and differentiable at x. Then

$$
\lim _{N \rightarrow \infty} A_{0}+\sum_{n=1}^{N} A_{n} \mathbf{C}_{n}(x)+\sum_{n=1}^{N} B_{n} \mathbf{S}_{n}(x) \overline{\overline{(*)}} \lim _{N \rightarrow \infty} \mathbf{D}_{N} * f(x) \overline{\overline{(\dagger)}} \quad f(x),
$$

as desired. Here, $(*)$ is by Lemma 10B. 1 and (\dagger) is by Lemma 10B.4.

Remarks. (a) Note that we have actually proved a slightly stronger result than Theorem 8A.1(b). If f is discontinuous, but semidifferentiable at x, then Lemmas 10B. 1 and 10B. 4 together imply that

$$
\lim _{N \rightarrow \infty} A_{0}+\sum_{n=1}^{N} A_{n} \mathbf{C}_{n}(x)+\sum_{n=1}^{N} B_{n} \mathbf{S}_{n}(x)=\frac{1}{2}\left(\lim _{y \backslash x} f(y)+\lim _{y \nearrow x} f(y)\right) .
$$

This is how the 'Pointwise Fourier Convergence Theorem' is stated in some texts.
(b) For other good expositions of this material, see [CB87, §30-31, pp.87-92]. [Asm0.5, Thm. 1, p. 30 of §2.2], [Pow99, §1.7, p.79], or [Bro8.9, Corollary 1.4.5, p.16].

10C Uniform convergence

Prerequisites: $\S[8 A, \S[0 A$.

In this section, we will prove Theorem 8A.1(d). First we state a 'discrete' version of the Cauchy-Bunyakowski-Schwarz Inequality (Theorem 6B.5 on page 108).

Lemma 10C.1. Cauchy-Bunyakowski-Schwarz Inequality in $\ell^{2}(\mathbb{N})$
Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be two infinite sequences of real numbers. Then

$$
\left(\sum_{n=1}^{\infty} a_{n} b_{n}\right)^{2} \leq\left(\sum_{n=1}^{\infty} a_{n}^{2}\right) \cdot\left(\sum_{n=1}^{\infty} b_{n}^{2}\right)
$$

whenever these sums are finite.
Proof. Exercise 10C. 1 Hint: imitate the proof of Theorem 6B.5 on page 108

Remark. For any infinite sequences of real numbers $\mathbf{a}:=\left(a_{n}\right)_{n=1}^{\infty}$ and $\mathbf{b}:=$ $\left(b_{n}\right)_{n=1}^{\infty}$, we can define $\langle\mathbf{a}, \mathbf{b}\rangle:=\sum_{n=1}^{\infty} a_{n} b_{n}$ and $\|\mathbf{a}\|_{2}:=\sqrt{\langle\mathbf{a}, \mathbf{a}\rangle}=\sqrt{\sum_{n=1}^{\infty} a_{n}^{2}}$. The set of all sequences a such that $\|\mathbf{a}\|_{2}<\infty$ is denoted $\ell^{2}(\mathbb{N})$. Lemma 10C. 1 can then be reformulated as the statement: "For all $\mathbf{a}, \mathbf{b} \in \ell^{2}(\mathbb{N}), \quad|\langle\mathbf{a}, \mathbf{b}\rangle| \leq$ $\|\mathbf{a}\|_{2} \cdot\|\mathbf{b}\|_{2}{ }^{\prime}$.

Next, we will prove a result which relates the 'smoothness' of the function f to the 'asymptotic decay rate' of its Fourier coefficients.

Lemma 10C.2. Let $f:[-\pi, \pi] \longrightarrow \mathbb{R}$ be continuous, with $f(-\pi)=f(\pi)$. Let $\left\{A_{n}\right\}_{n=0}^{\infty}$ and $\left\{B_{n}\right\}_{n=1}^{\infty}$ be the real Fourier coefficients of f, as defined on page 161 . If f is piecewise differentiable on $[-\pi, \pi]$, and $f^{\prime} \in \mathbf{L}^{2}[-\pi, \pi]$, then the sequences $\left\{A_{n}\right\}_{n=0}^{\infty}$ and $\left\{B_{n}\right\}_{n=1}^{\infty}$ converge to zero fast enough that $\sum_{n=1}^{\infty}\left|A_{n}\right|<\infty$ and $\sum_{n=1}^{\infty}\left|B_{n}\right|<\infty$.

Proof. If $f^{\prime} \in \mathbf{L}^{2}[-\pi, \pi]$, then we can compute its real Fourier coefficients $\left\{A_{n}^{\prime}\right\}_{n=0}^{\infty}$ and $\left\{B_{n}^{\prime}\right\}_{n=1}^{\infty}$.
Claim 1: For all $n \in \mathbb{N}, A_{n}=-B_{n}^{\prime} / n$ and $B_{n}=A_{n}^{\prime} / n$.
Proof. By definition,

$$
\begin{aligned}
A_{n}^{\prime} & :=\frac{1}{\pi} \int_{-\pi}^{\pi} f^{\prime}(x) \cos (n x) d x \\
& \left.\overline{\overline{(p)}} \frac{1}{\pi} f(x) \cos (n x)\right|_{x=-\pi} ^{x=\pi}+\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) n \sin (n x) d x \\
& \overline{\overline{(c)}} \frac{(-1)^{n}}{\pi}(f(\pi)-f(-\pi))+n B_{n} \overline{\overline{(*)}} n B_{n} \\
\text { Likewise, } \quad B_{n}^{\prime} & :=\frac{1}{\pi} \int_{-\pi}^{\pi} f^{\prime}(x) \sin (n x) d x \\
& \left.\overline{\overline{(\mathrm{p})}} \frac{1}{\pi} f(x) \sin (n x)\right|_{x=-\pi} ^{x=\pi}-\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) n \cos (n x) d x \\
& \overline{\overline{(\mathrm{~s})}}(0-0)-n A_{n}=-n A_{n} .
\end{aligned}
$$

Here, (p) is integration by parts, (c) is because $\cos (-n \pi)=(-1)^{n}=$ $\cos (n \pi),(*)$ is because $f(-\pi)=f(\pi)$, and (s) is because $\sin (-n \pi)=0=$ $\sin (n \pi)$.
Thus, $B_{n}^{\prime}=-n A_{n}$ and $A_{n}^{\prime}=n B_{n}$; hence $A_{n}=-B_{n}^{\prime} / n$ and $B_{n}=A_{n}^{\prime} / n$. $\diamond_{\text {Claim } 1}$

Let $K:=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ (a finite value). Then

$$
\begin{aligned}
\left(\sum_{n=1}^{\infty}\left|A_{n}\right|\right)^{2} & \overline{(*)}\left(\sum_{n=1}^{\infty} \frac{1}{n}\left|B_{n}^{\prime}\right|\right)^{2} \underset{(\mathrm{CBS})}{\leq}\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right) \cdot\left(\sum_{n=1}^{\infty}\left|B_{n}^{\prime}\right|^{2}\right) \\
= & K \cdot \sum_{n=1}^{\infty}\left|B_{n}^{\prime}\right|^{2} \underset{(\mathrm{~B})}{\leq} K \cdot\left\|f^{\prime}\right\|_{2}^{2} \underset{(+)}{<} \infty .
\end{aligned}
$$

Here, (*) is by Claim 1, (CBS) is by Lemma 10C.1, and (B) is by Bessel's inequality (Theorem 10A.1 on page 195). Finally, (\dagger) is because $f^{\prime} \in \mathbf{L}^{2}[-\pi, \pi]$ by hypothesis. It follows that $\sum_{n=1}^{\infty}\left|A_{n}\right|<\infty$. The proof that $\sum_{n=1}^{\infty}\left|B_{n}\right|<\infty$ is similar.

Proof of Theorem 8A.1(d). If $f:[-\pi, \pi] \longrightarrow \mathbb{R}$ is continuous and piecewise differentiable, $f^{\prime} \in \mathbf{L}^{2}[-\pi, \pi]$, and $f(-\pi)=f(\pi)$, then Lemma 10C. 2 implies that $\sum_{n=1}^{\infty}\left|A_{n}\right|+\sum_{n=1}^{\infty}\left|B_{n}\right|<\infty$. But then Theorem 8A.1.(c) says that the Fourier series of f converges uniformly. (Theorem 8A.1(c), in turn, is a direct consequence of the Weierstrass M test, Proposition 6E.13 on page 129.).

Remarks. (a) For other treatments of the material in this section, see [CB87, $\S 34-35, \mathrm{pp.105-109]}$ or [Asm05, Thm. 3, p. 90 of §2.9].
(b) The connection between smoothness of f and the asymptotic decay of its Fourier coefficients is a recurring theme in harmonic analysis. In general, the 'smoother' a function is, the 'faster' its Fourier coefficients decay to zero. The weakest statement of this kind is the Riemann-Lebesgue Lemma (Corollary 10A. 3 on page 197), which says that if f is merely in L^{2}, then its Fourier coefficients must converge to zero -although perhaps very slowly. (In the context of Fourier transforms of functions on \mathbb{R}, the corresponding statement is Theorem 19B. 1 on page (492). If f is 'slightly smoother' -specifically, if f is absolutely continuous or if f has bounded variation - then its Fourier coefficients decay to zero with speed comparable to the sequence $\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots\right\}$; see [Kat76, Thm.4.3 and 4.5 , pp.24-25]. If f is differentiable, then Lemma 10C. 2 says that its Fourier coefficients must decay fast enough that the sums $\sum_{n=1}^{\infty}\left|A_{n}\right|$ and $\sum_{n=1}^{\infty}\left|B_{n}\right|$ converge. (For Fourier transforms of functions on \mathbb{R}, the corresponding result is Theorem 19B. 7 on page 496.) More generally, if f is k times differentiable on $[-\pi, \pi]$, then its Fourier coefficients must decay fast enough that the sums
$\sum_{n=1}^{\infty} n^{k-1}\left|A_{n}\right|$ and $\sum_{n=1}^{\infty} n^{k-1}\left|B_{n}\right|$ converge; see [Kat76, Thm.4.3, p.24]. Finally, if f is analytid \rrbracket, on $[-\pi, \pi]$, then its Fourier coefficients must decay exponentially quickly to zero; that is, for small enough $r>0$, we have $\lim _{n \rightarrow \infty} r^{n}\left|A_{n}\right|=0$ and $\lim _{n \rightarrow \infty} r^{n}\left|B_{n}\right|=0$ (see Proposition 18E.3 on page 458).

At the other extreme, what about a sequence of Fourier coefficients which does not satisfy the Riemann-Lebesgue lemma - that is, which does not converge to zero? This corresponds to the Fourier series of an object which is more 'singular' than any function can be: a Laurent distribution or a measure on $[-\pi, \pi]$, which can have 'infinitely dense' concentrations of mass at some points. See [Kat76, §1.7, pp.34-46] or [Fo184, §8.5 and $\S 8.8$ on p. 258 and p.281].

10D L^{2} convergence

Prerequisites: $\S 6 B$.
In this section, we will prove Theorem 8A.1(a) (concerning the L^{2} convergence of Fourier series). For any $k \in \mathbb{N}$, let $\mathcal{C}_{\text {per }}^{k}[-\pi, \pi]$ be the set of functions f which are k times continuously differentiable on $[-\pi, \pi]$, and such that $f(-\pi)=f(\pi), f^{\prime}(-\pi)=f^{\prime}(\pi), \quad f^{\prime \prime}(-\pi)=f^{\prime \prime}(\pi), \ldots$, and $f^{(k)}(-\pi)=f^{(k)}(\pi)$. If $f \in \mathcal{C}_{\text {per }}^{1}[-\pi, \pi]$, then Theorem 8A.1 (d) (which we just proved in $\S 10 \mathrm{O}$) says the Fourier series of f converges uniformly. Then Corollary 6E.11](b) [i] (on page 127) immediately implies that the Fourier series of f converges in L^{2} norm. Unfortunately, this argument does not work for most functions in $\mathbf{L}^{2}[-\pi, \pi]$, which are not in $\mathcal{C}_{\text {per }}^{1}[-\pi, \pi]$. Our strategy will be to show that $\mathcal{C}_{\text {per }}^{1}[-\pi, \pi]$ is dense in $\mathbf{L}^{2}[-\pi, \pi]$; thus, the L^{2} convergence of Fourier series in $\mathcal{C}_{\text {per }}^{1}[-\pi, \pi]$ can be 'leveraged' to obtain L^{2} convergence for all functions in $\mathbf{L}^{2}[-\pi, \pi]$.

A subset $\mathcal{G} \subset \mathbf{L}^{2}[-\pi, \pi]$ is dense in $\mathbf{L}^{2}[-\pi, \pi]$ if, for any $f \in \mathbf{L}^{2}[-\pi, \pi]$, and any $\epsilon>0$, we can find some $g \in \mathcal{G}$ such that $\|f-g\|_{2}<\epsilon$. In other words, any element of $\mathbf{L}^{2}[-\pi, \pi]$ can be approximated arbitrarily closely $]$ by elements of \mathcal{G}. Aside from Theorem 8A.1(a), the major goal of this section is to prove the following result:

Theorem 10D.1. For all $k \in \mathbb{N}$, the subset $\mathcal{C}_{\text {per }}^{k}[-\pi, \pi]$ is dense in $\mathbf{L}^{2}[-\pi, \pi]$.
To achieve this goal, we must first examine the structure of integrable functions, and develop some useful machinery involving 'convolutions' and 'mollifiers'. Then we will prove Theorem 10D.1. Once Theorem 10D.1 is established,

[^42]we will prove Theorem 8A.1(a) by using Theorem 8A.1(d) and the triangle inequality.

10D(i) Integrable functions and step functions in $\mathbf{L}^{2}[-\pi, \pi]$

Prerequisites: $\S\left(6 \mathrm{~B}, \S_{6 \mathrm{E}(\mathrm{i})}\right.$.
We have defined $\mathbf{L}^{2}[-\pi, \pi]$ to be the set of 'integrable' functions $f:[-\pi, \pi] \longrightarrow$ \mathbb{R} such that $\int_{-\pi}^{\pi}|f(x)|^{2} d x<\infty$. But what exactly does integrable mean? To explain this, let Step $[-\pi, \pi]$ be the set of all step functions on $[-\pi, \pi]$ (see $\S 8 \mathrm{BB}(\mathrm{ii})$ on page 164 for the definition of step functions). If $f:[-\pi, \pi] \longrightarrow \mathbb{R}$ is any bounded function, then we can 'approximate' f using step functions in a natural way. First, let $\mathcal{Y}:=\left\{-\pi=y_{0}<y_{1}<y_{2}<y_{3}<\cdots<y_{M-1}<y_{M}=\pi\right\}$ be some finite 'mesh' of points in $[-\pi, \pi]$. For all $n \in \mathbb{N}$, let $\underline{a}_{n}:=\inf _{y_{n-1} \leq x \leq y_{n}} f(x)$ and $\bar{a}_{n}:=\sup _{y_{n-1} \leq x \leq y_{n}} f(x)$. Then define step functions $\underline{S}_{Y}:[-\pi, \pi] \longrightarrow \mathbb{R}$ and $\bar{S}_{\mathcal{Y}}:[-\pi, \pi] \longrightarrow \mathbb{R}$ by

$$
\begin{aligned}
& \underline{S}_{\mathcal{Y}}(x):=\left\{\begin{array}{rrl}
\underline{a}_{1} & \text { if } & -\pi \leq x \leq y_{1} ; \\
\underline{a}_{2} & \text { if } & y_{1}<x \leq y_{2} ; \\
& \vdots & \\
\underline{a}_{m} & \text { if } & y_{m-1}<x \leq y_{m} ; \\
& \vdots & \\
\underline{a}_{M} & \text { if } & y_{M-1}<x \leq \pi .
\end{array}\right. \\
& \text { and } \quad \bar{S}_{\mathcal{Y}}(x):=\left\{\begin{array}{rrl}
\bar{a}_{1} & \text { if } & -\pi \leq x \leq y_{1} ; \\
\bar{a}_{2} & \text { if } & y_{1}<x \leq y_{2} ; \\
& \vdots & \\
\bar{a}_{m} & \text { if } & y_{m-1}<x \leq y_{m} ; \\
& \vdots & \\
\bar{a}_{M} & \text { if } & y_{M-1}<x \leq \pi .
\end{array}\right.
\end{aligned}
$$

It is easy to compute the integrals of $\underline{S}_{\mathcal{Y}}$ and $\bar{S}_{\mathcal{Y}}$:
$\int_{-\pi}^{\pi} \underline{S}_{\mathcal{Y}}(x) d x=\sum_{n=1}^{N} \underline{a}_{n} \cdot\left|y_{n}-y_{n-1}\right| \quad$ and $\quad \int_{-\pi}^{\pi} \bar{S}_{\mathcal{Y}}(x) d x=\sum_{n=1}^{N} \bar{a}_{n} \cdot\left|y_{n}-y_{n-1}\right|$.
(You may recognize these as upper and lower Riemann sums of f). If the mesh $\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{M}\right\}$ is 'dense' enough in $[-\pi, \pi]$, so that $\underline{S}_{\mathcal{Y}}$ and $\bar{S}_{\mathcal{Y}}$ are 'good approximations' of f, then we might expect $\int_{-\pi}^{\pi} \underline{S}_{\mathcal{Y}}(x) d x$ and $\int_{-\pi}^{\pi} \bar{S}_{\mathcal{Y}}(x) d x$ to be good approximations of $\int_{-\pi}^{\pi} f(x) d x$ (if the integral of f is well-defined). Furthermore, it is clear from their definitions that $\underline{S}_{\mathcal{Y}}(x) \leq f(x) \leq \bar{S}_{\mathcal{Y}}(x)$ for all
$x \in[-\pi, \pi]$; thus we would expect

$$
\int_{-\pi}^{\pi} \underline{S}_{y}(x) d x \leq \int_{-\pi}^{\pi} f(x) d x \leq \int_{-\pi}^{\pi} \bar{S}_{\mathcal{Y}}(x) d x
$$

whenever the integral $\int_{-\pi}^{\pi} f(x) d x$ exists. Let \mathfrak{Y} be the set of all finite 'meshes' of points in $[-\pi, \pi]$. Formally:

$$
\mathfrak{Y}:=\left\{\begin{array}{ll}
\mathcal{Y} \subset[-\pi, \pi] \quad ; & \mathcal{Y}=\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{M}\right\}, \text { for some } M \in \mathbb{N} \\
& \text { and }-\pi=y_{0}<y_{1}<y_{2}<\cdots<y_{M}=\pi
\end{array}\right\} .
$$

We define the lower and upper semi-integrals of f :

$$
\begin{align*}
& \underline{I}(f) \quad:=\sup _{\mathcal{Y} \in \mathfrak{Y}} \int_{-\pi}^{\pi} \underline{S}_{\mathcal{Y}}(x) d x \tag{10D.1}\\
& =\sup \left\{\sum_{n=1}^{N}\left(\left|y_{n}-y_{n-1}\right| \cdot \inf _{y_{n-1} \leq x \leq y_{n}} f(x)\right) ; M \in \mathbb{N},-\pi=y_{0}<y_{1}<\cdots<y_{M}=\pi\right\} . \\
& \bar{I}(f) \quad:=\inf _{\mathcal{Y} \in \mathfrak{Y}} \int_{-\pi}^{\pi} \bar{S}_{\mathcal{Y}}(x) d x \tag{10D.2}\\
& =\inf \left\{\sum_{n=1}^{N}\left(\left|y_{n}-y_{n-1}\right| \cdot \sup _{y_{n-1} \leq x \leq y_{n}} f(x)\right) ; M \in \mathbb{N},-\pi=y_{0}<y_{1}<\cdots<y_{M}=\pi\right\} .
\end{align*}
$$

It is easy to see that $\underline{I}(f) \leq \bar{I}(f)$ (Exercise 10D. 1 Check this.). Indeed, if f is a sufficiently 'pathological' function, then we may have $\underline{I}(f)<\bar{I}(f)$. If $\underline{I}(f)=\bar{I}(f)$, then we say that f is (Riemann) integrable, and we define the (Riemann) integral of f :

$$
\int_{-\pi}^{\pi} f(x) d x:=\quad \underline{I}(f)=\bar{I}(f) .
$$

For example:

- Any bounded, piecewise continuous function on $[-\pi, \pi]$ is Riemann-integrable.
- Any continuous function on $[-\pi, \pi]$ is Riemann-integrable.
- Any step function on $[-\pi, \pi]$ is Riemann-integrable.

If $f:[-\pi, \pi] \longrightarrow \mathbb{R}$ is not bounded, then the definitions of $\underline{S}_{\mathcal{Y}}$ and/or $\bar{S}_{\mathcal{Y}}$ make no sense (because at least one of them is defined as " ∞ " or " $-\infty$ " on some interval). Thus, at least one of the expressions (10D.1) and (10D.2) is not welldefined if f is unbounded. In this case, for any $N \in \mathbb{N}$, we define the 'truncated' functions $f_{N}^{+}:[-\pi, \pi] \longrightarrow[0, N]$ and $f_{N}^{-}:[-\pi, \pi] \longrightarrow[-N, 0]$ as follows

$$
f_{N}^{+}(x):=\left\{\begin{array}{rll}
0 & \text { if } & f(x) \leq 0 ; \\
f(x) & \text { if } & 0 \leq f(x) \leq N ; \\
N & \text { if } & N \leq f(x) .
\end{array}\right.
$$

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

$$
\text { and } \quad f_{N}^{-}(x):=\left\{\begin{array}{rll}
-N & \text { if } & f(x) \leq-N \\
f(x) & \text { if } & -N \leq f(x) \leq 0 ; \\
0 & \text { if } & 0 \leq f(x)
\end{array}\right.
$$

The functions f_{N}^{+}and f_{N}^{-}are clearly bounded, so their Riemann integrals are potentially well-defined. If f_{N}^{+}and f_{N}^{-}are integrable for all $N \in \mathbb{N}$, then we say that f is (Riemann) measurable. We then define

$$
\int_{-\pi}^{\pi} f(x) d x:=\lim _{N \rightarrow \infty} \int_{-\pi}^{\pi} f_{N}^{+}(x) d x+\lim _{N \rightarrow \infty} \int_{-\pi}^{\pi} f_{N}^{-}(x) d x
$$

If both these limits are finite, then $\int_{-\pi}^{\pi} f(x) d x$ is well-defined, and we say that the unbounded function f is (Riemann) integrable. The set of all integrable functions (bounded or unbounded) is denoted $\mathbf{L}^{1}[-\pi, \pi]$, and for any $f \in \mathbf{L}^{1}[-\pi, \pi]$, we define

$$
\|f\|_{1}=\int_{-\pi}^{\pi}|f(x)| d x
$$

We can now define $\mathbf{L}^{2}[-\pi, \pi]$:
$\mathbf{L}^{2}[-\pi, \pi]:=\left\{\begin{array}{c}\text { all measurable functions } f:[-\pi, \pi] \longrightarrow \mathbb{R} \text { such that } \\ f^{2}:[-\pi, \pi] \longrightarrow \mathbb{R} \text { is integrable -i.e. } \int_{-\pi}^{\pi}|f(x)|^{2} d x<\infty\end{array}\right\}$.

Proposition 10D.2. Step $[-\pi, \pi]$ is dense in $\mathbf{L}^{2}[-\pi, \pi]$.
Proof. Let $f \in \mathbf{L}^{2}[-\pi, \pi]$ and let $\epsilon>0$. We want to find some $S \in \operatorname{Step}[-\pi, \pi]$ such that $\|f-S\|_{2}<\epsilon$.
First suppose that f is bounded. Since f^{2} is integrable, we know that $\underline{I}\left(f^{2}\right)=$ $\int_{-\pi}^{\pi} f^{2}(x) d x$, where $\underline{I}\left(f^{2}\right)$ is defined by expression (10D.1). Thus, we can find some step function $S_{0} \in \operatorname{Step}[-\pi, \pi]$ such that $0 \leq S_{0}(x) \leq f^{2}(x)$ for all $x \in[-\pi, \pi]$, and such that

$$
\begin{equation*}
0 \leq \int_{-\pi}^{\pi} f(x)^{2} d x-\int_{-\pi}^{\pi} S_{0}(x) d x<\epsilon \tag{10D.3}
\end{equation*}
$$

Define the step function $S \in \operatorname{Step}[-\pi, \pi]$ by $S(x):=\operatorname{sign}[f(x)] \cdot \sqrt{S_{0}(x)}$. Thus, $S^{2}(x)=S_{0}(x)$, and the sign of S agrees with that of f everywhere. Observe that

$$
\begin{align*}
(f-S)^{2} & =\frac{f-S}{f+S} \cdot(f-S)(f+S)=\frac{f-S}{f+S} \cdot\left(f^{2}-S^{2}\right) \\
& \underset{(*)}{\leq} f^{2}-S^{2}=f^{2}-S_{0} \tag{10D.4}
\end{align*}
$$

Here, $(*)$ is because $0<\frac{f-S}{f+S}<1$ (because for all x, either $f(x) \leq S(x) \leq 0$, or $0 \leq S(x) \leq f(x)$), while $f^{2}-S^{2} \geq 0$ (because $f^{2} \geq S_{0}=S^{2}$). Thus,

$$
\begin{aligned}
0 \leq\|f-S\|_{2}^{2} & =\int_{-\pi}^{\pi}(f(x)-S(x))^{2} d x \underset{(*)}{\leq} \int_{-\pi}^{\pi} f(x)^{2}-S_{0}(x) d x \\
& =\int_{-\pi}^{\pi} f(x)^{2} d x-\int_{-\pi}^{\pi} S_{0}(x) d x \underset{(\dagger)}{<} \epsilon,
\end{aligned}
$$

where $(*)$ is by eqn. (10D.4) and (\dagger) is by eqn. (10D.3).
This works for any $\epsilon>0$; thus the set $\operatorname{Step}[-\pi, \pi]$ is dense in the space of bounded elements of $\mathbf{L}^{2}[-\pi, \pi]$.
The case when f is unbounded is Exercise 10D. 2 (Hint: approximate f with bounded functions).

Remark 10D.3: To avoid developing a considerable amount of technical background, we have defined $\mathbf{L}^{2}[-\pi, \pi]$ using the Riemann integral. The 'true' definition of $\mathbf{L}^{2}[-\pi, \pi]$ involves the more powerful and versatile Lebesgue integral. (See §6C(ii) on page 110 for an earlier discussion of Lebesgue integration). The definition of the Lebesgue integral is similar to the Riemann integral, but instead of approximating f using step functions, we use simple functions. A simple function is a piecewise-constant function, like a step function, but instead of open intervals, the 'pieces' of a simple function are Borel-measurable subsets of $[-\pi, \pi]$. A Borel measurable subset is a countable union of countable intersections of countable unions of countable intersections of of countable unions/intersections of open and/or closed subsets of $[-\pi, \pi]$. In particular, any interval is Borel measurable (so any step function is a simple function), but Borel measurable subsets can be very complicated indeed. Thus, 'simple' functions are capable of approximating even pathological, wildly discontinuous functions on $[-\pi, \pi]$, so that the Lebesgue integral can be evaluated even on such crazy functions. The set of Lebesgue-integrable functions is thus much larger than the set of Riemannintegrable functions. Every Riemann-integrable function is Lebesgue integrable (and its Lebesgue integral is the same as its Riemann integral), but not vice versa.

The analogy of Proposition 10D.2 is still true if we define $\mathbf{L}^{2}[-\pi, \pi]$ using Lebesgue-integrable functions, and if we replace $S_{\text {tep }}[-\pi, \pi]$ with the set of all simple functions. The other results in this section can also be extended to the Lebesgue version of $\mathbf{L}^{2}[-\pi, \pi]$, but at the cost of considerable technical complexity.

Let $f:[-\pi, \pi] \longrightarrow \mathbb{R}$. Let $f^{j}:[-2 \pi, 2 \pi] \longrightarrow \mathbb{R}$ be the 2π-periodic exten-

Figure 10D.1: $f^{0}:[-2 \pi, 2 \pi]$ is the 2π-periodic extension of $f:[-\pi, \pi] \longrightarrow \mathbb{R}$.
sion of f, defined:

$$
f^{0}(x):=\left\{\begin{array}{rll}
f(x+2 \pi) & \text { if } & -2 \pi \leq x<-\pi ; \\
f(x) & \text { if } & -\pi \leq x \leq \pi ; \\
f(x-2 \pi) & \text { if } & \pi<x \leq 2 \pi .
\end{array} \quad\right. \text { (See Figure 10D.1) }
$$

(Observe that f is continuous if and only if f is continous and $f(-\pi)=f(\pi)$). For any $t \in \mathbb{R}$, define the function $f^{\overparen{t}}:[-\pi, \pi] \longrightarrow \mathbb{R}$ by $\tilde{f}^{\tilde{t}}(x)=f^{\hat{j}}(x-t)$. (For example, the function \tilde{f} defined on page 203 could be written: $\tilde{f}=f^{-x}$; see Figure 10B. 3 on page 203).

Lemma 10D.4. Let $f \in \mathbf{L}^{2}[-\pi, \pi]$. Then $f=\mathbf{L}^{2}-\lim _{t \rightarrow 0} f^{\hat{t}}$.
Proof. We will employ a classic strategy in real analysis: first prove the result for some 'nice' class of functions, and then prove it for all functions by approximating them with these nice functions. In this case, the nice functions are the step functions.
Claim 1: Let $S \in \operatorname{Step}[-\pi, \pi]$. Then $S=\mathbf{L}^{2}-\lim _{t \rightarrow 0} S^{\hat{t}}$.
Proof. Exercise 10D. 3
$\diamond_{\text {Claim } 1}$
Now, let $f \in \mathbf{L}^{2}[-\pi, \pi]$, and let $\epsilon>0$. Proposition 10D.2 says there is some $S \in \mathrm{Step}_{\text {tep }}[-\pi, \pi]$ such that

$$
\begin{equation*}
\|S-f\|_{2}<\frac{\epsilon}{3} \tag{10D.5}
\end{equation*}
$$

Claim 2: For all $t \in \mathbb{R},\left\|S^{\overparen{t}}-f^{\overparen{t}}\right\|_{2}=\|S-f\|_{2}$.

Proof. Exercise 10D. 4

Now, using Claim [1] , find $\delta>0$ such that, if $|t|<\delta$, then

$$
\begin{equation*}
\left\|S-S^{\hat{t}}\right\|_{2}<\frac{\epsilon}{3} \tag{10D.6}
\end{equation*}
$$

Then

$$
\begin{aligned}
\left\|f-f^{\widehat{t}}\right\|_{2} & =\left\|f-S+S-S^{\widehat{t}}+S^{\widehat{t}}-f^{\hat{t}}\right\|_{2} \\
& \leq\|f-S\|_{2}+\left\|S-S^{\widehat{t}}\right\|_{2}+\left\|S^{\widehat{t}}-f^{\widehat{t}}\right\|_{2} \underset{(*)}{\leq} \frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon .
\end{aligned}
$$

Here (\triangle) is the triangle inequality, and $(*)$ is by equations (10D.5) and (10D.6) and Claim [2].
This works for all $\epsilon>0$; thus, $f=\mathbf{L}^{2}-\lim _{t \rightarrow 0} f^{\overparen{t}}$.

There is one final technical result we will need about $\mathbf{L}^{2}[-\pi, \pi]$. If $f_{1}, f_{2}, \ldots, f_{N} \in$ $\mathbf{L}^{2}[-\pi, \pi]$ and $r_{1}, r_{2}, \ldots, r_{N} \in \mathbb{R}$ are real numbers, then the triangle inequality implies that

$$
\left\|r_{1} f_{1}+r_{2} f_{2}+\cdots+r_{N} f_{N}\right\|_{2} \leq\left|r_{1}\right| \cdot\left\|f_{1}\right\|_{2}+\left|r_{2}\right| \cdot\left\|f_{2}\right\|_{2}+\cdots+\left|r_{N}\right| \cdot\left\|f_{N}\right\|_{2}
$$

This is a special case of Minkowski's inequality. The next result says that the same inequality holds if we sum together a 'continuum' of functions.

Theorem 10D.5. (Minkowski's inequality for integrals)
Let $a<b$, and for all $t \in[a, b]$, let $f_{t} \in \mathbf{L}^{2}[-\pi, \pi]$. Define $F:[a, b] \times[-\pi, \pi] \longrightarrow \mathbb{R}$ by $F(t, x)=f_{t}(x)$ for all $(t, x) \in[a, b] \times[-\pi, \pi]$, and suppose that the family $\left\{f_{t}\right\}_{t \in[a, b]}$ is such that the function F is integrable on $[a, b] \times[-\pi, \pi]$. Let R : $[a, b] \longrightarrow \mathbb{R}$ be some other integrable function, and define $G:[-\pi, \pi] \longrightarrow \mathbb{R}$ by

$$
G(x):=\int_{a}^{b} R(t) f_{t}(x) d t, \quad \text { for all } x \in[-\pi, \pi]
$$

Then $G \in \mathbf{L}^{2}[-\pi, \pi]$, and

$$
\|G\|_{2} \leq \int_{a}^{b}|R(t)| \cdot\left\|f_{t}\right\|_{2} d t
$$

In particular, if $\left\|f_{t}\right\|_{2}<M$ for all $t \in[a, b]$, then $\|G\|_{2} \leq M \cdot\|R\|_{1}$, where $\|R\|_{1}:=\int_{a}^{b}|R(t)| d t$.

Proof. See [Fol84, Thm 6.18, p.186].

10D(ii) Convolutions and mollifiers

Prerequisites: $\S 10 \mathrm{D}(\mathrm{i})$. Recommended: $\S[7 \mathrm{~B}$.
Let $f, g:[-\pi, \pi] \longrightarrow \mathbb{R}$ be two integrable functions. Let $g^{0}:[-2 \pi, 2 \pi] \longrightarrow \mathbb{R}$ be the 2π-periodic extension of g (see Figure 10D. 1 on page 212). The (2π periodic) convolution of f and g is the function $f * g:[-\pi, \pi] \longrightarrow \mathbb{R}$ defined by

$$
f * g(x) \quad:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g^{O}(x-y) d y, \quad \text { for all } x \in[-\pi, \pi] .
$$

Convolution is an important and versatile mathematical operation, which appears frequently in harmonic analysis, probability theory, and the study of partial differential equations. We will encounter it again in Chapter 17, in the context of 'impulse-response' solutions to boundary value problems. In this subsection, we will develop the theory of convolutions on $[-\pi, \pi]$. We will actually develop slightly more than we need in order to prove Theorems 10D. 1 and 8A.1(a). Results which are not logically required for the proofs of Theorems 10D.1 and 8A.1(a) are marked with the margin symbol '(Optional)' and can be skipped on a first reading; however, we feel that these results are interesting enough in themselves to be worth including in the exposition.

Lemma 10D.6. (Properties of convolutions)
Let $f, g:[-\pi, \pi] \longrightarrow \mathbb{R}$ be integrable functions. The convolution of f and g has the following properties:
(a) (Commutativity) $f * g=g * f$.
(b) (Linearity) If $h:[-\pi, \pi] \longrightarrow \mathbb{R}$ is another integrable function, then $f *$ $(g+h)=f * g+f * h$ and $(f+g) * h=f * h+g * h$.
(c) If $f, g \in \mathbf{L}^{2}[-\pi, \pi]$, then $f * g$ is bounded: for all $x \in[-\pi, \pi]$, we have $|f * g(x)| \leq\|f\|_{2} \cdot\|g\|_{2}$. (In other words, $\|f * g\|_{\infty} \leq\|f\|_{2} \cdot\|g\|_{2}$.)

Proof. (a) is Exercise 10D.5. To prove (b), let $x \in[-\pi, \pi]$. Then

$$
\begin{align*}
f *(g+h)(x) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y)\left(g^{0}(x-y)+h^{\circ}(x-y)\right) d y \tag{®}\\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g^{\circ}(x-y) d y+\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) h^{\circ}(x-y) d y \\
& =f * g(x)+f * h(x) .
\end{align*}
$$

(c) Let $x \in[-\pi, \pi]$. Define $h \in \mathbf{L}^{2}[-\pi, \pi]$ by $h(y):=g^{(}(x-y)$. Then

$$
f * g(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g^{0}(x-y) d y=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) h(y) d y=\langle f, h\rangle
$$

$$
\begin{equation*}
\text { Thus, } \quad|f * g(x)|=|\langle f, h\rangle| \underset{(\mathrm{CBS})}{\leq}\|f\|_{2} \cdot\|h\|_{2} \tag{10D.7}
\end{equation*}
$$

where (CBS) is the Cauchy-Bunyakowski-Schwarz inequality (Theorem 6B.5 on page (108). But

$$
\begin{align*}
\|h\|_{2}^{2} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} h(y)^{2} d y=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g^{0}(x-y)^{2} d y \overline{\overline{(*)}} \frac{-1}{2 \pi} \int_{x+\pi}^{x-\pi} g^{0}(z)^{2} d z \\
& =\frac{1}{2 \pi} \int_{x-\pi}^{x+\pi} g^{O}(z)^{2} d z \overline{\overline{(\dagger)}} \frac{1}{2 \pi} \int_{-\pi}^{\pi} g(z)^{2} d z=\|g\|_{2}^{2} . \tag{10D.8}
\end{align*}
$$

Here, $(*)$ is the change of variables $z=x-y$ (so that $d z=-d y$) and (\dagger) is by definition of the periodic extension g of g.
Combining equations (10D.7) and (10D.8) we conclude that $|f * g(x)|<\|f\|_{2}$. $\|g\|_{2}$, as claimed.

Remarks. (a) Proposition 17G.1 on page 409 provides an analog to Lemma 10 D .6 for convolutions on \mathbb{R}^{D}.
(b) There is also an interesting relationship between convolution and complex Fourier coefficients; see Lemma 18 F .3 on page 463 .

Elements of $\mathbf{L}^{1}[-\pi, \pi]$ and $\mathbf{L}^{2}[-\pi, \pi]$ need not be differentiable, or even continuous (indeed, some of these functions are discontinuous 'almost everywhere'). But the convolution of even two highly discontinuous elements of $\mathbf{L}^{2}[-\pi, \pi]$ will be a continuous function. Furthermore, convolution with a smooth function has a powerful 'smoothing' effect on even the nastiest elements of $\mathbf{L}^{1}[-\pi, \pi]$.

Lemma 10D.7. Let $f, g \in \mathbf{L}^{1}[-\pi, \pi]$.
(a) $f * g(-\pi)=f * g(\pi)$.
(b) If $f \in \mathbf{L}^{1}[-\pi, \pi]$ and g is continuous with $g(-\pi)=g(\pi)$, then $f * g$ is continuous.
(c) If $f, g \in \mathbf{L}^{2}[-\pi, \pi]$, then $f * g$ is continuous.
(Optional)
(d) If g is differentiable on $[-\pi, \pi]$, then $f * g$ is also differentiable on $[-\pi, \pi]$, and $(f * g)^{\prime}=f *\left(g^{\prime}\right)$.
(e) If $g \in \mathcal{C}^{1}[-\pi, \pi]$, then $f * g \in \mathcal{C}_{\text {per }}^{1}[-\pi, \pi]$.
(f) For any $k \in \mathbb{N}$, if $g \in \mathcal{C}^{k}[-\pi, \pi]$, then $\left[f * g \in \mathcal{C}_{\text {per }}^{k}[-\pi, \pi]\right.$. Furthermore, (Optional) $(f * g)^{\prime}=f * g^{\prime},(f * g)^{\prime \prime}=f * g^{\prime \prime}, \ldots$, and $(f * g)^{(k)}=f * g^{(k)}$.

[^43]Proof. (a) $f * g(\pi)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g^{O}(\pi-y) d y \overline{\overline{(*)}} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g^{O}(\pi-y-$ $2 \pi) d y=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g^{\circ}(-\pi-y) d y=f * g(-\pi)$. Here, $(*)$ is because g° is 2π-periodic.
(b) Fix $x \in[-\pi, \pi]$ and let $\epsilon>0$. We must find some $\delta>0$ such that, for any $x_{1} \in[-\pi, \pi]$, if $\left|x-x_{1}\right|<\delta$ then $\left|f * g(x)-f * g\left(x_{1}\right)\right|<\epsilon$. But

$$
\begin{align*}
f * g(x)-f * g\left(x_{1}\right) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g^{0}(x-y) d y-\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g^{\circ}\left(x_{1}-y\right) d y \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g^{O}(x-y)-f(y) g^{\circ}\left(x_{1}-y\right) d y \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y)\left(g^{\circ}(x-y)-g^{0}\left(x_{1}-y\right)\right) d y . \tag{10D.9}
\end{align*}
$$

Since g is continuous on $[-\pi, \pi]$ and $g(-\pi)=g(\pi)$, it follows that g is continuous on $[-2 \pi, 2 \pi]$; since $[-2 \pi, 2 \pi]$ is a closed and bounded set, it then follows that g is uniformly continuous on $[-2 \pi, 2 \pi]$. That is, there is some $\delta>0$ such that, for any $z, z_{1} \in[-2 \pi, 2 \pi]$,

$$
\begin{equation*}
\text { if }\left|z-z_{1}\right|<\delta \text {, then } \quad\left|g^{0}(z)-g^{0}\left(z_{1}\right)\right|<\frac{2 \pi \epsilon}{\|f\|_{1}} \tag{10D.10}
\end{equation*}
$$

Now, suppose $\left|x-x_{1}\right|<\delta$. Then

$$
\begin{aligned}
\left|f * g(x)-f * g\left(x_{1}\right)\right| & \overline{\overline{(*)}}\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y)\left(g^{O}(x-y)-g^{O}\left(x_{1}-y\right)\right) d y\right| \\
& \stackrel{\leq}{(\Delta)} \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(y)| \cdot\left|g^{O}(x-y)-g^{O}\left(x_{1}-y\right)\right| d y \\
& \stackrel{\leq}{(\dagger)} \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(y)| \cdot \frac{2 \pi \epsilon}{\|f\|_{1}} d y=\frac{\epsilon}{\|f\|_{1}} \cdot \int_{-\pi}^{\pi}|f(y)| d y \\
& =\frac{\epsilon}{\|f\|_{1}} \cdot\|f\|_{1}=\epsilon
\end{aligned}
$$

Here, $(*)$ is by eqn. (10D.9), (\triangle) is the triangle inequality for integrals, and (\dagger) is by eqn.(10D.10), because $\left|(x-y)-\left(x_{1}-y\right)\right|<\delta$ for all $y \in[-\pi, \pi]$, because $\left|x-x_{1}\right|<\delta$.
Thus, if $\left|x-x_{1}\right|<\delta$ then $\left|f * g(x)-f * g\left(x_{1}\right)\right|<\epsilon$. This argument works for any $\epsilon>0$ and $x \in[-\pi, \pi]$. Thus, $f * g$ is continuous, as desired.
(c) Fix $x \in[-\pi, \pi]$ and let $\epsilon>0$. We must find some $\delta>0$ such that, for any $t \in[-\pi, \pi]$, if $|t|<\delta$ then $|f * g(x)-f * g(x-t)|<\epsilon$. But

$$
f * g(x-t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g^{0}(x-t-y) d y
$$

$$
=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y)\left(g^{\tilde{t}}\right)^{0}(x-y) d y=f * g^{\overparen{t}}(x) .
$$

Thus, $f * g(x)-f * g(x-t)=f * g(x)-f * g^{\overparen{t}}(x) \underset{\overline{(*)}}{\bar{\prime}} f *\left(g-g^{\widehat{t}}\right)(x)$,

$$
\text { so } \begin{align*}
|f * g(x)-f * g(x-t)| & =\left|f *\left(g-g^{\hat{t}}\right)(x)\right| \\
& \underset{(\dagger)}{\leq}\|f\|_{2} \cdot\left\|g-g^{\overparen{t}}\right\|_{2} . \tag{10D.11}
\end{align*}
$$

Here, $(*)$ is by Lemma 10D.6(b) and (\dagger) is by Lemma 10D.6(c).
However, Lemma 10D. 4 on page 212 says that $g=\mathbf{L}^{2}-\lim _{t \rightarrow 0} g^{\hat{t}}$. Thus, there exists some $\delta>0$ such that, if $|t|<\delta$, then $\left\|g-g^{\overparen{t}}\right\|_{2}<\epsilon /\|f\|_{2}$. Thus, if $|t|<\delta$, then

$$
|f * g(x)-f * g(x-t)| \underset{(*)}{\leq}\|f\|_{2} \cdot\left\|g-g^{\overparen{t}}\right\|_{2} \leq\|f\|_{2} \cdot \frac{\epsilon}{\|f\|_{2}}=\epsilon
$$

where ($*$) is by eqn. (10D.11). This argument works for any $\epsilon>0$ and $x \in$ $[-\pi, \pi]$. Thus, $f * g$ is continuous, as desired.
(d) We have

$$
\begin{aligned}
2 \pi(f * g)^{\prime}(x) & =2 \pi \partial_{x}(f * g)(x)=\partial_{x} \int_{-\pi}^{\pi} f(y) \cdot g(x-y) d y \\
& \overline{\overline{(*)}} \int_{-\pi}^{\pi} f(y) \cdot \partial_{x} g(x-y) d y=\int_{-\pi}^{\pi} f(y) \cdot g^{\prime}(x-y) d y \\
& =2 \pi f *\left(g^{\prime}\right)(x)
\end{aligned}
$$

Here, $(*)$ is by Proposition 0G.1 on page 567.
(e) Follows immediately from (a), (b) and (d).
(f) is Exercise 10D. 6 Hint: Use proof by induction, along with parts (b) and (d).

Remarks. (a) Proposition 17G.2 on page 410 provides an analog to Lemma 10 D .7 for convolutions on \mathbb{R}^{D}.
(b) (for algebraists) Let $\mathcal{C}_{\text {per }}[-\pi, \pi]$ be the set of all continuous functions $f:[-\pi, \pi] \longrightarrow \mathbb{R}$ such that $f(-\pi)=f(\pi)$. Then Lemmas 10D.6(a,b) and 10D.7(a,b) imply that $\mathcal{C}_{\text {per }}[-\pi, \pi]$ is a commutative ring, where functions are added pointwise, and where the convolution operator '*' plays the role of 'multiplication'. Furthermore, Lemma 10D.7(f) says that, for all $k \in \mathbb{N}$, the set $\mathcal{C}_{\text {per }}^{k}[-\pi, \pi]$ is an ideal of the ring $\mathcal{C}_{\text {per }}[-\pi, \pi]$. Note that this ring does not have

Figure 10D.2: An approximation of identity on $[-\pi, \pi]$. Here, $\epsilon>0$ is fixed, and $\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{-\epsilon}^{\epsilon} \gamma_{n}(x) d x=1$.
a multiplicative identity element. However, it does have 'approximations' of identity, as we shall now see.

For all $n \in \mathbb{N}$, let $\gamma_{n}:[-\pi, \pi] \longrightarrow \mathbb{R}$ be a nonnegative function. The sequence $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ is called an approximation of identity if it has the following properties:
(AI1) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} \gamma_{n}(y) d y=1$ for all $n \in \mathbb{N}$.
(AI2) For any $\epsilon>0, \quad \lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{-\epsilon}^{\epsilon} \gamma_{n}(x) d x=1$. (See Figure 10D.2).

Example 10D.8. Let $\Gamma:[-\pi, \pi] \longrightarrow \mathbb{R}$ be any nonnegative function with $\frac{1}{2 \pi} \int_{-\pi}^{\pi} \Gamma(x) d x=1$. For all $n \in \mathbb{N}$, define $\gamma_{n}:[-\pi, \pi] \longrightarrow \mathbb{R}$ by

$$
\gamma_{n}(x):=\left\{\begin{array}{rll}
0 & \text { if } & x<-\pi / n ; \\
n \Gamma(n x) & \text { if } & -\pi / n \leq x \leq \pi / n ; \\
0 & \text { if } & \pi / n<x .
\end{array} \quad\right. \text { (see Figure 10D.3). }
$$

Then $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ is a 2π-periodic approximation of identity (Exercise 10D.7). \diamond

The term 'approximation of identity' is due to the following result:

Figure 10D.3: Example 10D.8.
Proposition 10D.9. Let $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ be an approximation of identity. Let f : $[-\pi, \pi] \longrightarrow \mathbb{R}$ be some integrable function.
(a) If $f \in \mathbf{L}^{2}[-\pi, \pi]$ then $f=\mathbf{L}^{2}-\lim _{n \rightarrow \infty} \gamma_{n} * f$.
(b) If $x \in(-\pi, \pi)$ and f is continuous at x, then $f(x)=\lim _{n \rightarrow \infty} \gamma_{n} * f(x)$.

Proof. (a) Fix $\epsilon>0$. We must find $N \in \mathbb{N}$ such that, for all $n>N$, $\left\|f-\gamma_{n} * f\right\|_{2}<\epsilon$. First, find some $\eta>0$ which is small enough that

$$
\begin{equation*}
\left(2\|f\|_{2}+1\right) \cdot \eta<\epsilon . \tag{10D.12}
\end{equation*}
$$

Now, Lemma 10D.4 on page 212 says that there is some $\delta>0$ such that,

$$
\begin{equation*}
\text { For any } t \in(-\delta, \delta) \quad\left\|f-f^{\natural}\right\|_{2}<\eta \text {. } \tag{10D.13}
\end{equation*}
$$

Next, property (AI2) says there is some $N \in \mathbb{N}$ such that,

$$
\begin{equation*}
\text { For all } n>N, \quad 1-\eta<\frac{1}{2 \pi} \int_{-\delta}^{\delta} \gamma_{n}(y) d y \leq 1 . \tag{10D.14}
\end{equation*}
$$

Now, for any $x \in[-\pi, \pi]$ and $n \in \mathbb{N}$, observe that

$$
\begin{equation*}
f(x)=f(x) \cdot 1 \underset{\overline{(*)}}{\overline{=}} f(x) \frac{1}{2 \pi} \int_{-\pi}^{\pi} \gamma_{n}(y) d y=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \gamma_{n}(y) d y \tag{10D.15}
\end{equation*}
$$

where $(*)$ is by property (AI1). Thus, for all $x \in[-\pi, \pi]$ and $n \in \mathbb{N}$,

$$
\begin{aligned}
f(x)-\gamma_{n} * f(x) & \overline{(*)} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \gamma_{n}(t) d t-\frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{0}(x-t) \gamma_{n}(t) d t \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(f(x)-f^{0}(x-t)\right) \gamma_{n}(t) d t \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(f(x)-f^{\widehat{t}}(x)\right) \gamma_{n}(t) d t \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \gamma_{n}(t) \cdot F_{t}(x) d t,
\end{aligned}
$$

where, $(*)$ is by eqn. (10D.15), and where, for all $t \in[-\pi, \pi]$ we define the function $F_{t}:[-\pi, \pi] \longrightarrow \mathbb{R}$ by $F_{t}(x):=f(x)-f^{\overparen{t}}(x)$ for all $x \in[-\pi, \pi]$. Thus

$$
\begin{aligned}
&\left\|f-\gamma_{n} * f\right\|_{2}=\left\|\frac{1}{2 \pi} \int_{-\pi}^{\pi} \gamma_{n}(t) \cdot F_{t} d t\right\|_{2} \underset{(\mathrm{M})}{\leq} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\gamma_{n}(t)\right| \cdot\left\|F_{t}\right\|_{2} d t \\
&= \frac{1}{2 \pi} \int_{-\pi}^{-\delta} \gamma_{n}(t) \cdot\left\|F_{t}\right\|_{2} d t+\frac{1}{2 \pi} \int_{-\delta}^{\delta} \gamma_{n}(t) \cdot\left\|F_{t}\right\|_{2} d t+\frac{1}{2 \pi} \int_{\delta}^{\pi} \gamma_{n}(t) \cdot\left\|F_{t}\right\|_{2} d t \\
& \underset{(*)}{\leq} \frac{\|f\|_{2}}{\pi} \int_{-\pi}^{-\delta} \gamma_{n}(t) d t+\frac{1}{2 \pi} \int_{-\delta}^{\delta} \gamma_{n}(t) \cdot\left\|F_{t}\right\|_{2} d t+\frac{\|f\|_{2}}{\pi} \int_{\delta}^{\pi} \gamma_{n}(t) d t \\
& \leq \frac{\|f\|_{2}}{\pi}\left(\int_{-\pi}^{-\delta} \gamma_{n}(t) d t+\int_{\delta}^{\pi} \gamma_{n}(t) d t\right)+\frac{\eta}{2 \pi} \int_{-\delta}^{\delta} \gamma_{n}(t) d t \\
&< \\
&(()) 2\|f\|_{2} \cdot \eta+\eta \cdot 1=\left(2\|f\|_{2}+1\right) \cdot \eta \underset{(\pm)}{\leq} \epsilon .
\end{aligned}
$$

Here, (M) is Minkowski's inequality for integrals (Theorem 10D.5 on page 213).
Next, $(*)$ is because

$$
\left\|F_{t}\right\|_{2}=\left\|f-\overparen{f^{t}}\right\|_{2} \underset{(\Delta)}{\leq}\|f\|_{2}+\left\|f^{\hat{t}}\right\|_{2}=\|f\|_{2}+\|f\|_{2}=2\|f\|_{2}
$$

Next, (\dagger) is because $\left\|F_{t}\right\|_{2}<\eta$ for all $t \in(-\delta, \delta)$ by equation (10D.13). Inequality (\diamond) is because equation (10D.14) says $1-\eta<\frac{1}{2 \pi} \int_{-\delta}^{\delta} \gamma_{n}(t) d t \leq 1$; thus, we must have $\frac{1}{2 \pi} \int_{-\pi}^{-\delta} \gamma_{n}(t) d t+\frac{1}{2 \pi} \int_{\delta}^{\pi} \gamma_{n}(t) d t<\eta$. Finally, \ddagger) is by eqn.(10D.12).
This argument works for any $\epsilon>0$. We conclude that $f=\mathbf{L}^{2}-\lim _{n \rightarrow \infty} \gamma_{n} * f$.
(b) is Exercise 10D. 8 .

For any $k \in \mathbb{N}$, a \mathcal{C}^{k}-mollifier is an approximation of identity $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ such that $\gamma_{n} \in \mathcal{C}_{\text {per }}^{k}[-\pi, \pi]$ for all $n \in \mathbb{N}$. Lemma 10D.7(f) says that you can 'mollify' some initially pathological function f into a nice smooth approximation by convolving it with γ_{n}. Our last task in this section is to show how to construct such a \mathcal{C}^{k}-mollifier.

Lemma 10D.10. Let $\Gamma \in \mathcal{C}^{k}[-\pi, \pi]$ be such that $\frac{1}{2 \pi} \int_{-\pi}^{\pi} \Gamma(x) d x=1$, and such that

$$
\begin{aligned}
\Gamma(-\pi) & =\Gamma^{\prime}(-\pi)
\end{aligned}=\Gamma^{\prime \prime}(-\pi)=\cdots=\Gamma^{(k)}(-\pi)=0 .
$$

Define $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ as in Example 10D.8. Then $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ is a \mathcal{C}^{k}-mollifier.

Proof. Exercise 10D. 9

Example 10D.11. Let $g(x)=(x+\pi)^{k+1}(x-\pi)^{k+1}$, let $G=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(x) d x$, and then let $\Gamma(x):=g(x) / G$. Then Γ satisfies the hypotheses of Lemma 10D. 10 (Exercise 10D.10).

Remark. For more information about convolutions and mollifiers, see [Fol84, §8.2, pp.230-237] or [WZ77, Chap.9, pp.145-160].

10D(iii) Proof of Theorems 8A.1(a) and 10D.1.

Prerequisites: $\S 8 \mathrm{~A}, ~ \S 10 \mathrm{~A}, ~ \S 10 \mathrm{D}(\mathrm{ii})$.

Proof of Theorem 10D.1. Let $\left\{\gamma_{n}\right\}_{n=1}^{\infty} \subset \mathcal{C}_{\text {per }}^{k}[-\pi, \pi]$ be the \mathcal{C}^{k}-mollifier from Lemma 10D.10. Then Proposition 10D.9(a) says that $f=\mathbf{L}^{2}-\lim _{n \rightarrow \infty} \gamma_{n} * f$. Thus, for any $\epsilon>0$, we can find some $n \in \mathbb{N}$ such that $\left\|f-\gamma_{n} * f\right\|_{2}<\epsilon$. Furthermore, $\gamma_{n} \in \mathcal{C}^{k}[-\pi, \pi]$, so Lemma 10D.7(f) says that $\gamma_{n} * f \in \mathcal{C}_{\text {per }}^{k}[-\pi, \pi]$, for all $n \in \mathbb{N}$.

The proof of Theorem 8A.1(a) now follows a standard strategy in analysis: approximate the function f with a 'nice' function \widetilde{f}, establish convergence for the Fourier series of \tilde{f} first, and then use the triangle inequality to 'leverage' this into convergence for the Fourier series of f.

Proof of Theorem 8A.1(a). Let $f \in \mathbf{L}^{2}[-\pi, \pi]$. Fix $\epsilon>0$. Theorem 10D. 1 says there exists some $\tilde{f} \in \mathcal{C}_{\text {per }}^{1}[-\pi, \pi]$ such that

$$
\begin{equation*}
\|f-\widetilde{f}\|_{2}<\frac{\epsilon}{3} . \tag{10D.16}
\end{equation*}
$$

Let $\left\{A_{n}\right\}_{n=0}^{\infty}$ and $\left\{B_{n}\right\}_{n=1}^{\infty}$ be the real Fourier coefficients for f, and let $\left\{\widetilde{A}_{n}\right\}_{n=0}^{\infty}$ and $\left\{\widetilde{B}_{n}\right\}_{n=1}^{\infty}$ be the real Fourier coefficients for \widetilde{f}. Let $\bar{f}:=f-\widetilde{f}$,
and let $\left\{\bar{A}_{n}\right\}_{n=0}^{\infty}$ and $\left\{\bar{B}_{n}\right\}_{n=1}^{\infty}$ be the real Fourier coefficients for \bar{f}. Then for all $n \in \mathbb{N}$, we have

$$
\begin{equation*}
A_{n}=\bar{A}_{n}+\widetilde{A}_{n} \quad \text { and } \quad B_{n}=\bar{B}_{n}+\widetilde{B}_{n} \tag{10D.17}
\end{equation*}
$$

Also, for any $N \in \mathbb{N}$, we have

$$
\left.\left\|\bar{A}_{0}+\sum_{n=0}^{N} \bar{A}_{n} \mathbf{C}_{n}+\sum_{n=1}^{N} \bar{B}_{n} \mathbf{S}_{n}\right\|_{2}^{2} \underset{(\Delta)}{\leq} \bar{A}_{0}^{2}+\sum_{n=0}^{\infty}\left|\bar{A}_{n}\right|^{2} \cdot\left\|\mathbf{C}_{n}\right\|_{2}^{2}+\sum_{n=1}^{\infty}\left|\bar{B}_{n}\right|^{2} \cdot\left\|\mathbf{C}_{n}\right\|_{2}^{2}\right) \quad \begin{align*}
& \overline{(\uparrow)} \bar{A}_{0}^{2}+\sum_{n=0}^{\infty} \frac{\left|\bar{A}_{n}\right|^{2}}{2}+\sum_{n=1}^{\infty} \frac{\left|\bar{B}_{n}\right|^{2}}{2} \\
& \\
& \tag{10D.18}\\
& \underset{(\mathrm{~B})}{\leq}\|\bar{f}\|_{2}^{2}=\|f-\widetilde{f}\|_{2}^{2} \underset{(*)}{<}\left(\frac{\epsilon}{3}\right)^{2} \cdot(10 \mathrm{D} .18)
\end{align*}
$$

Here, (\triangle) is by the triangle inequality ${ }^{7}$, and (\dagger) is because $\left\|\mathbf{C}_{n}\right\|_{2}^{2}=\frac{1}{2}=\left\|\mathbf{S}_{n}\right\|_{2}^{2}$ for all $n \in \mathbb{N}$ (by Proposition 6D. 2 on page 112). (B) is Bessel's Inequality (Example 10A.2 on page 196), and (*) is by eqn. (10D.16).
Now, $\tilde{f} \in \mathcal{C}_{\text {per }}^{1}[-\pi, \pi]$, so Theorem 8A.1(d) (which we proved in Section 100 says that

$$
\text { unif- } \lim _{N \rightarrow \infty}\left(\widetilde{A}_{0}+\sum_{n=0}^{N} \widetilde{A}_{n} \mathbf{C}_{n}+\sum_{n=1}^{N} \widetilde{B}_{n} \mathbf{S}_{n}\right)=\widetilde{f} .
$$

Thus Corollary 6E.11(b) [i] on page 127 implies that

$$
\mathbf{L}^{2}-\lim _{N \rightarrow \infty}\left(\widetilde{A}_{0}+\sum_{n=0}^{N} \widetilde{A}_{n} \mathbf{C}_{n}+\sum_{n=1}^{N} \widetilde{B}_{n} \mathbf{S}_{n}\right)=\widetilde{f} .
$$

Thus, there exists some $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\|\widetilde{A}_{0}+\sum_{n=0}^{N} \widetilde{A}_{n} \mathbf{C}_{n}+\sum_{n=1}^{N} \widetilde{B}_{n} \mathbf{S}_{n}-\widetilde{f}\right\|_{2}<\frac{\epsilon}{3} . \tag{10D.19}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
& \left\|A_{0}+\sum_{n=0}^{N} A_{n} \mathbf{C}_{n}+\sum_{n=1}^{N} B_{n} \mathbf{S}_{n}-f\right\|_{2} \\
& \overline{(\uparrow)}\left\|\left(\bar{A}_{0}+\widetilde{A}_{0}\right)+\sum_{n=0}^{N}\left(\bar{A}_{n}+\widetilde{A}_{n}\right) \mathbf{C}_{n}+\sum_{n=1}^{N}\left(\bar{B}_{n}+\widetilde{B}_{n}\right) \mathbf{S}_{n}-\widetilde{f}+\widetilde{f}-f\right\|_{2}
\end{aligned}
$$

[^44]\[

$$
\begin{aligned}
& =\left\|\bar{A}_{0}+\sum_{n=0}^{N} \bar{A}_{n} \mathbf{C}_{n}+\sum_{n=1}^{N} \bar{B}_{n} \mathbf{S}_{n}+\widetilde{A}_{0}+\sum_{n=0}^{N} \widetilde{A}_{n} \mathbf{C}_{n}+\sum_{n=1}^{N} \widetilde{B}_{n} \mathbf{S}_{n}-\tilde{f}+\tilde{f}-f\right\|_{2} \\
& \underset{(\Delta)}{\leq}\left\|\bar{A}_{0}+\sum_{n=0}^{N} \bar{A}_{n} \mathbf{C}_{n}+\sum_{n=1}^{N} \bar{B}_{n} \mathbf{S}_{n}\right\|_{2}+\left\|\widetilde{A}_{0}+\sum_{n=0}^{N} \widetilde{A}_{n} \mathbf{C}_{n}+\sum_{n=1}^{N} \widetilde{B}_{n} \mathbf{S}_{n}-\widetilde{f}\right\|_{2}+\|\tilde{f}-f\|_{2} \\
& \underset{(*)}{\leq} \frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
\end{aligned}
$$
\]

Here, (\dagger) is by eqn. (10D.17), (\triangle) is the Triangle inequality, and $(*)$ is by inequalities (10D.16), (10D.18) and (10D.19).
This argument works for any $\epsilon>0$. We conclude that $A_{0}+\sum_{n=0}^{\infty} A_{n} \mathbf{C}_{n}+$ $\sum_{n=1}^{\infty} B_{n} \mathbf{S}_{n} \underset{\text { 단 }}{\approx} f$.

Recall that a function $f:[-\pi, \pi] \longrightarrow \mathbb{R}$ is analytic if f is infinitely differentiable, and the Taylor expansion of f around any $x \in[-\pi, \pi]$ has a nonzero radius of convergence. ${ }^{\text {. }}$ Let $\mathcal{C}_{\text {per }}^{\omega}[-\pi, \pi]$ be the set of all analytic functions f on $[-\pi, \pi]$ such that $f(-\pi)=f(\pi)$, and $f^{(k)}(-\pi)=f^{(k)}(\pi)$ for all $k \in \mathbb{N}$. For example, the functions sin and cos are in $\mathcal{C}_{\text {per }}^{\omega}[-\pi, \pi]$. Elements of $\mathcal{C}_{\text {per }}^{\omega}[-\pi, \pi]$ are some of the 'nicest' possible functions on $[-\pi, \pi]$. On the other hand, arbitrary elements of $\mathbf{L}^{2}[-\pi, \pi]$ can by quite 'nasty' (i.e. nondifferentiable, discontinuous). Thus, the following result is quite striking.

Corollary 10D.12. $\mathcal{C}_{\text {per }}^{\omega}[-\pi, \pi]$ is dense in $\mathbf{L}^{2}[-\pi, \pi]$.
Proof. Theorem 8A.1(a) says that any function in $\mathbf{L}^{2}[-\pi, \pi]$ can be approximated arbitrarily closely by a 'trigonometric polynomial' of the form $A_{0}+\sum_{n=1}^{N} A_{n} \mathbf{C}_{n}+\sum_{n=1}^{N} B_{n} \mathbf{S}_{n}$. But all trigonometric polynomials are in $\mathcal{C}_{\text {per }}^{\omega}[-\pi, \pi]$ (because they are finite linear combinations of the functions $\mathbf{S}_{n}(x):=\sin (n x)$ and $\mathbf{C}_{n}(x):=\cos (n x)$, which are all in $\left.\mathcal{C}_{\text {per }}^{\omega}[-\pi, \pi]\right)$. Thus, any function in $\mathbf{L}^{2}[-\pi, \pi]$ can be approximated arbitrarily closely by an element of $\mathcal{C}_{\text {per }}^{\omega}[-\pi, \pi]$-in other words, $\mathcal{C}_{\text {per }}^{\omega}[-\pi, \pi]$ is dense in $\mathbf{L}^{2}[-\pi, \pi]$.

Remarks. (a) Proposition 17G. 3 on page 411 provides a 'pointwise' version of the Theorem 10D. 1 for convolutional smoothing on \mathbb{R}^{D}.
(b) For another proof of the L^{2}-convergence of real Fourier series, see [Bro8.9, Theorems 1.5 .4 (p.20) and 2.3.10 (p.35)]. For a proof of the L^{2}-convergence of complex Fourier series (which is very similar), see [Kat76, §I.5.5, p.29-30].

[^45]
IV BVP solutions via eigenfunction expansions

A powerful and general method for solving linear PDEs is to represent the solutions using eigenfunction expansions. Rather than first deploying this idea in full abstract generality, we will start by illustrating it in a variety of special cases. We will gradually escalate the level of abstraction, so that the general theory is almost obvious when it is finally stated explicitly.

The orthogonal trigonometric functions $\mathbf{S}_{\mathbf{n}}$ and $\mathbf{C}_{\mathbf{n}}$ in a Fourier series are eigenfunctions of the Laplacian operator \triangle. Furthermore, the eigenfunctions $\mathbf{S}_{\mathbf{n}}$ and $\mathbf{C}_{\mathbf{n}}$ are particularly 'well-adapted' to domains like the interval $[0, \pi]$, the square $[0, \pi]^{2}$, or the cube $[0, \pi]^{3}$, for two reasons:

- The functions $\mathbf{S}_{\mathbf{n}}$ and $\mathbf{C}_{\mathbf{n}}$ and the domain $[0, \pi]^{k}$ are both easily expressed in a Cartesian coordinate system.
- The functions $\mathbf{S}_{\mathbf{n}}$ and $\mathbf{C}_{\mathbf{n}}$ satisfy desirable boundary conditions (e.g. homogeneous Dirichlet/Neumann) on the boundaries of the domain $[0, \pi]^{k}$.

Thus, we can use \mathbf{S}_{n} and \mathbf{C}_{n} as 'building blocks' to construct a solution to a given partial differential equation -a solution which also satisfies specified initial conditions and/or boundary conditions on $[0, \pi]^{k}$. In particular, we will use Fourier sine series to obtain homogeneous Dirichlet boundary conditions [by Theorems 7A.1(d), 9A.3(d) and 9B.1(d)], and Fourier cosine series to obtain homogeneous Neumann boundary conditions [by Theorems 7A.4(d), 9A.3(e) and 9B.1(e)]. This basic strategy underlies all the solution methods developed in Chapters 11 to [13.

When we consider other domains (e.g. disks, annuli, balls, etc.), the functions \mathbf{C}_{n} and \mathbf{S}_{n} are no longer so 'well-adapted'. In Chapter 14, we discover that, in polar coordinates, the 'well-adapted' eigenfunctions are combinations of trigonometric functions $\left(\mathbf{C}_{n}\right.$ and $\left.\mathbf{S}_{n}\right)$ with another class of transcendental functions called Bessel functions. This yields another orthogonal system of eigenfunctions. We can then represent most functions on the disks and annuli using Fourier-Bessel expansions (analogous to Fourier series), and we can then mimic the solution methods of Chapters 11 to [3].

Chapter 11

Boundary value problems on a line segment

"Mathematics is the music of reason."
—James Joseph Sylvester
Prerequisites: §[7A, §5C.
This chapter concerns boundary value problems on the line segment $[0, L]$, and provides solutions in the form of infinite series involving the functions $\mathbf{S}_{n}(x):=\sin \left(\frac{n \pi}{L} x\right)$ and $\mathbf{C}_{n}(x):=\cos \left(\frac{n \pi}{L} x\right)$. For simplicity, we will assume throughout the chapter that $L=\pi$. Thus $\mathbf{S}_{n}(x)=\sin (n x)$ and $\mathbf{C}_{n}(x)=$ $\cos (n x)$. We will also assume that (through an appropriate choice of time units) the physical constants in the various equations are all equal to one. Thus, the heat equation becomes " $\partial_{t} u=\Delta u$ ", the wave equation is " $\partial_{t}^{2} u=\triangle u$ ", etc.

This does not limit the generality of our results. For example, faced with a general heat equation of the form " $\partial_{t} u(x, t)=\kappa \cdot \Delta u$ " for $x \in[0, L]$, (with $\kappa \neq 1$ and $L \neq \pi$) you can simply replace the coordinate x with a new space coordinate $y=\frac{\pi}{L} x$ and replace t with a new time coordinate $s=\kappa t$, to reformulate the problem in a way compatible with the following methods.

11A The heat equation on a line segment

Proposition 11A.1. (Heat equation; homogeneous Dirichlet boundary)
Let $\mathbb{X}=[0, \pi]$, and let $f \in \mathbf{L}^{2}[0, \pi]$ be some function describing an initial heat distribution. Suppose f has Fourier Sine Series $f(x) \underset{\mathrm{T} 2}{ } \sum_{n=1}^{\infty} B_{n} \sin (n x)$, and
define the function $u: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by

$$
u(x ; t) \quad \underset{\mathrm{T} 2}{\approx} \quad \sum_{n=1}^{\infty} B_{n} \sin (n x) \cdot \exp \left(-n^{2} \cdot t\right), \quad \text { for all } x \in[0, \pi] \text { and } t \geq 0
$$

Then u is the unique solution to the one-dimensional heat equation " $\partial_{t} u=\partial_{x}^{2} u$ ", with homogeneous Dirichlet boundary conditions

$$
u(0 ; t)=u(\pi ; t)=0, \quad \text { for all } t>0
$$

and initial conditions: $u(x ; 0)=f(x)$, for all $x \in[0, \pi]$.
Furthermore, the series defining u converges semiuniformly on $\mathbb{X} \times \mathbb{R}_{+}$.

Proof. Exercise 11A. 1 Hint:

(a) Show that, when $t=0$, the Fourier series of $u(x ; 0)$ agrees with that of $f(x)$; hence $u(x ; 0)=f(x)$.
(b) Show that, for all $t>0, \quad \sum_{n=1}^{\infty}\left|n^{2} \cdot B_{n} \cdot e^{-n^{2} t}\right|<\infty$.
(c) For any $T>0$, apply Proposition 0F.1 on page 565 to conclude that
$\partial_{t} u(x ; t)=\overline{\overline{\text { unif }}} \sum_{n=1}^{\infty}-n^{2} B_{n} \sin (n x) \cdot \exp \left(-n^{2} \cdot t\right) \xlongequal[\overline{\text { unif }}]{ } \Delta u(x ; t) \quad$ on $[T, \infty)$.
(d) Observe that for any fixed $t>0, \quad \sum_{n=1}^{\infty}\left|B_{n} e^{-n^{2} t}\right|<\infty$.
(e) Apply part (c) of Theorem 7A. 1 on page 138 to show that the Fourier series of $u(x ; t)$ converges uniformly for all $t>0$.
(f) Apply part (d) of Theorem 7A.1 on page 138 to conclude that $u(0 ; t)=0=u(\pi, t)$ for all $t>0$.
(g) Apply Theorem 5D. 8 on page 91 to show that this solution is unique.

Example 11A.2. Consider a metal rod of length π, with initial temperature distribution $f(x)=\tau \cdot \sinh (\alpha x)$ (where $\tau, \alpha>0$ are constants), and homogeneous Dirichlet boundary condition. Proposition 11A. 1 tells us to get the Fourier sine series for $f(x)$. In Example 7A. 3 on page 140, we computed this to be $\frac{2 \tau \sinh (\alpha \pi)}{\pi} \sum_{n=1}^{\infty} \frac{n(-1)^{n+1}}{\alpha^{2}+n^{2}} \cdot \sin (n x)$. The evolving temperature distribution is therefore given:
$u(x ; t)=\frac{2 \tau \sinh (\alpha \pi)}{\pi} \sum_{n=1}^{\infty} \frac{n(-1)^{n+1}}{\alpha^{2}+n^{2}} \cdot \sin (n x) \cdot e^{-n^{2} t}$.

Proposition 11A.3. (Heat equation; homogeneous Neumann boundary)
Let $\mathbb{X}=[0, \pi]$, and let $f \in \mathbf{L}^{2}[0, \pi]$ be some function describing an initial heat distribution. Suppose f has Fourier Cosine Series $f(x) \underset{\widetilde{\mathrm{I}} 2}{\approx} \sum_{n=0}^{\infty} A_{n} \cos (n x)$, and define the function $u: \mathbb{X} \times \mathbb{R}_{\nrightarrow} \longrightarrow \mathbb{R}$ by

$$
u(x ; t) \quad \underset{\mathrm{T} 2}{\approx} \quad \sum_{n=0}^{\infty} A_{n} \cos (n x) \cdot \exp \left(-n^{2} \cdot t\right), \quad \text { for all } x \in[0, \pi] \text { and } t \geq 0
$$

Then u is the unique solution to the one-dimensional heat equation " $\partial_{t} u=\partial_{x}^{2} u$ ", with homogeneous Neumann boundary conditions

$$
\partial_{x} u(0 ; t)=\partial_{x} u(\pi ; t)=0, \quad \text { for all } t>0 .
$$

and initial conditions: $u(x ; 0)=f(x)$, for all $x \in[0, \pi]$.
Furthermore, the series defining u converges semiuniformly on $\mathbb{X} \times \mathbb{R}_{+}$.
Proof. Setting $t=0$, we get:

$$
\begin{aligned}
u(x ; 0) & =\sum_{n=1}^{\infty} A_{n} \cos (n x) \cdot \exp \left(-n^{2} \cdot 0\right)=\sum_{n=1}^{\infty} A_{n} \cos (n x) \cdot \exp (0) \\
& =\sum_{n=1}^{\infty} A_{n} \cos (n x) \cdot 1=\sum_{n=1}^{\infty} A_{n} \cos (n x)=f(x),
\end{aligned}
$$

so we have the desired initial conditions.
Let $M:=\max _{n \in \mathbb{N}}\left|A_{n}\right|$. Then $M<\infty$ (because $f \in \mathbf{L}^{2}$).
Claim 1: For all $t>0, \quad \sum_{n=0}^{\infty}\left|n^{2} \cdot A_{n} \cdot e^{-n^{2} t}\right|<\infty$.
Proof. Since $M=\max _{n \in \mathbb{N}}\left|A_{n}\right|$, we know that $\left|A_{n}\right|<M$ for all $n \in \mathbb{N}$. Thus,

$$
\sum_{n=0}^{\infty}\left|n^{2} \cdot A_{n} \cdot e^{-n^{2} t}\right| \leq \sum_{n=0}^{\infty}\left|n^{2}\right| \cdot M \cdot\left|e^{-n^{2} t}\right|=M \cdot \sum_{n=0}^{\infty} n^{2} \cdot e^{-n^{2} t}
$$

Hence, it suffices to show that $\sum_{n=0}^{\infty} n^{2} \cdot e^{-n^{2} t}<\infty$. To see this, let $E=e^{t}$.
Then $E>1$ (because $t>0$). Also, $n^{2} \cdot e^{-n^{2} t}=\frac{n^{2}}{E^{n^{2}}}$, for each $n \in \mathbb{N}$. Thus,

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{2} e^{-n^{2} t}=\sum_{n=1}^{\infty} \frac{n^{2}}{E^{n^{2}}} \leq \sum_{m=1}^{\infty} \frac{m}{E^{m}} \tag{11A.1}
\end{equation*}
$$

We must show that right-hand series in (11A.1) converges. We apply the Ratio Test:

$$
\lim _{m \rightarrow \infty} \frac{\frac{m+1}{E^{m+1}}}{\frac{m}{E^{m}}}=\lim _{m \rightarrow \infty} \frac{m+1}{m} \frac{E^{m}}{E^{m+1}}=\lim _{m \rightarrow \infty} \frac{1}{E}<1 .
$$

Hence the right-hand series in (11A.1) converges. $\diamond_{\text {Claim } 1}$
Claim 2: For any $T>0$, we have $\partial_{x} u(x ; t) \overline{\overline{\overline{\text { unif }}}}-\sum_{n=1}^{\infty} n A_{n} \sin (n x)$. $\exp \left(-n^{2} \cdot t\right)$ on $\mathbb{X} \times[T, \infty)$, and also $\partial_{x}^{2} u(x ; t) \overline{\overline{\text { unif }}}-\sum_{n=1}^{\infty} n^{2} A_{n} \cos (n x)$. $\exp \left(-n^{2} \cdot t\right)$ on $\mathbb{X} \times[T, \infty)$.
Proof. This follows from Claim $\mathbb{1}$ and two applications of Proposition 0F. 1 on page 565 .
Claim 3: For any $T>0$, we have $\partial_{t} u(x ; t) \xlongequal[\overline{\overline{u n i f}}]{ }-\sum_{n=1}^{\infty} n^{2} A_{n} \cos (n x)$. $\exp \left(-n^{2} \cdot t\right)$ on $[T, \infty)$.

$$
\text { Proof. } \quad \begin{aligned}
\partial_{t} u(x ; t) & =\partial_{t} \sum_{n=1}^{\infty} A_{n} \cos (n x) \cdot \exp \left(-n^{2} \cdot t\right) \\
& \overline{\overline{(*)}} \sum_{n=1}^{\infty} A_{n} \cos (n x) \cdot \partial_{t} \exp \left(-n^{2} \cdot t\right) \\
& =\sum_{n=1}^{\infty} A_{n} \cos (n x) \cdot\left(-n^{2}\right) \exp \left(-n^{2} \cdot t\right),
\end{aligned}
$$

where $(*)$ is by Claim 1 and Proposition 0F. 1 on page 565.
Combining Claims 2 and 3, we conclude that $\partial_{t} u(x ; t)=\Delta u(x ; t)$.
Finally Claim [also implies that, for any $t>0$,

$$
\sum_{n=0}^{\infty}\left|n \cdot A_{n} \cdot e^{-n^{2} t}\right|<\sum_{n=0}^{\infty}\left|n^{2} \cdot A_{n} \cdot e^{-n^{2} t}\right|<\infty
$$

Hence, Theorem 7A.4(d) [ii] on p. 142 implies that $u(x ; t)$ satisfies homogeneous Neumann boundary conditions for any $t>0$. (This can also be seen directly via Claim (2).
Finally, Theorem 5D.8 on page 91 implies that this solution is unique.

Example 11A.4. Consider a metal rod of length π, with initial temperature distribution $f(x)=\cosh (x)$ and homogeneous Neumann boundary condition. Proposition [1A.3 tells us to get the Fourier cosine series for $f(x)$. In Example 7 A. 6 on page 143, we computed this to be $\frac{\sinh (\pi)}{\pi}+$ $\frac{2 \sinh (\pi)}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n} \cdot \cos (n x)}{n^{2}+1}$. The evolving temperature distribution is therefore given:

$$
u(x ; t) \underset{\mathrm{I} 2}{\widetilde{2}} \frac{\sinh (\pi)}{\pi}+\frac{2 \sinh (\pi)}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n} \cdot \cos (n x)}{n^{2}+1} \cdot e^{-n^{2} t} .
$$

Exercise 11A.2. Let $L>0$ and let $\mathbb{X}:=[0, L]$. Let $\kappa>0$ be a diffusion constant, and consider the general one-dimensional heat equation

$$
\begin{equation*}
\partial_{t} u=\kappa \partial_{x}^{2} u \tag{11A.2}
\end{equation*}
$$

(a) Generalize Proposition 11A.1 to find the solution to eqn.(11A.2) on \mathbb{X} satisfying prescribed initial conditions and homogeneous Dirichlet boundary conditions.
(b) Generalize Proposition 11A.3 to find the solution to eqn.(11A.2) on \mathbb{X} satisfying prescribed initial conditions and homogeneous Neumann boundary conditions.

In both cases, prove that your solution converges, satisfies the desired initial conditions and boundary conditions, and satisfies eqn.(11A.2) (Hint: imitate the strategy suggested in Exercise 11A.1)

Exercise 11A. 3 Let $\mathbb{X}=[0, \pi]$, and let $f \in \mathbf{L}^{2}(\mathbb{X})$ be a function whose Fourier sine series satisfies $\sum_{n=1}^{\infty} n^{2}\left|B_{n}\right|<\infty$. Imitate Proposition 11A.1, to find a 'Fourier series' solution to the initial value problem for the one-dimensional free Schrödinger equation

$$
\begin{equation*}
\mathbf{i} \partial_{t} \omega=\frac{-1}{2} \partial_{x}^{2} \omega, \tag{11A.3}
\end{equation*}
$$

on \mathbb{X}, with initial conditions $\omega_{0}=f$, and satisfying homogeneous Dirichlet boundary conditions. Prove that your solution converges, satisfies the desired initial conditions and boundary conditions, and satisfies eqn.(11A.3). (Hint: imitate the strategy suggested in Exercise 11A.1).

11B The wave equation on a line (the vibrating string)

Prerequisites: $\S(7 \mathrm{~B}(\mathrm{i}), \S[5 \mathrm{~B}, ~ \S[\mathrm{Fa}, ~ \S 2 \mathrm{~B}(\mathrm{i})$.
Recommended: §17D(ii).
Imagine a piano string stretched tightly between two points. At equilibrium, the string is perfectly flat, but if we pluck or strike the string, it will vibrate,
meaning there will be a vertical displacement from equilibrium. Let $\mathbb{X}=[0, \pi]$ represent the string, and for any point $x \in \mathbb{X}$ on the string and time $t>0$, let $u(x ; t)$ be the vertical displacement of the string. Then u will obey the onedimensional wave equation:

$$
\begin{equation*}
\partial_{t}^{2} u(x ; t)=\triangle u(x ; t) . \tag{11B.1}
\end{equation*}
$$

However, since the string is fixed at its endpoints, the function u will also exhibit homogeneous Dirichlet boundary conditions

$$
\begin{equation*}
u(0 ; t)=u(\pi ; t)=0 \quad(\text { for all } t>0) \tag{11B.2}
\end{equation*}
$$

Proposition 11B.1. (Initial Position Problem for Vibrating String with fixed endpoints)

$f_{0}: \mathbb{X} \longrightarrow \mathbb{R}$ be a function describing the initial displacement of the string. Suppose f_{0} has Fourier Sine Series $f_{0}(x) \underset{\widetilde{\mathrm{I} 2}}{ } \sum_{n=1}^{\infty} B_{n} \sin (n x)$, and define the function $w: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by

$$
\begin{equation*}
w(x ; t) \underset{\mathrm{I} 2}{\widetilde{2}} \sum_{n=1}^{\infty} B_{n} \sin (n x) \cdot \cos (n t), \quad \text { for all } x \in[0, \pi] \text { and } t \geq 0 \tag{11B.3}
\end{equation*}
$$

Then w is the unique solution to the wave equation (11B.1), satisfying the Dirichlet boundary conditions (11B.2), as well as

$$
\begin{aligned}
& \text { Initial Position: } \left.\begin{array}{rl}
w(x, 0) & =f_{0}(x), \\
\text { Initial Velocity: } \partial_{t} w(x, 0) & =0,
\end{array}\right\} \quad \text { for all } x \in[0, \pi] .
\end{aligned}
$$

Proof. Exercise 11B. 1 Hint:
(a) Prove the trigonometric identity $\sin (n x) \cos (n t)=\frac{1}{2}(\sin (n(x-t))+\sin (n(x+t)))$.
(b) Use this identity to show that the Fourier sine series (11B.3) converges in L^{2} to the d'Alembert solution from Theorem 17D.8(a) on page 401.
(c) Apply Theorem 5D.11 on page 94 to show that this solution is unique.

Example 11B.2. Let $f_{0}(x)=\sin (5 x)$. Thus, $B_{5}=1$ and $B_{n}=0$ for all $n \neq 5$. Proposition 11B. 1 tells us that the corresponding solution to the wave equation is $w(x, t)=\cos (5 t) \sin (5 x)$. To see that w satisfies the wave equation, note that, for any $x \in[0, \pi]$ and $t>0$,

$$
\partial_{t} w(x, t)=-5 \sin (5 t) \sin (5 x) \quad \text { and } \quad 5 \cos (5 t) \cos (5 x)=\partial_{x} w(x, t)
$$

Thus $\partial_{t}^{2} w(x, t)=-25 \cos (5 t) \sin (5 x)=-25 \cos (5 t) \cos (5 x)=\partial_{x}^{2} w(x, t)$.

(A)

Figure 11B.1: (A) A harpstring at rest. (B) A harpstring being plucked. (C) The harpstring vibrating. (D) A big hammer striking a xylophone. (E) The initial velocity of the xylophone when struck.

Also w has the desired initial position because, for any $x \in[0, \pi]$, we have $w(x ; 0)=\cos (0) \sin (5 x)=\sin (5 x)=f_{0}(x)$, because $\cos (0)=1$.

Next, w has the desired initial velocity because for any $x \in[0, \pi]$, we have $\partial_{t} w(x ; 0)=5 \sin (0) \sin (5 x)=0$, because $\sin (0)=0$.
Finally w satisfies homogeneous Dirichlet BC because, for any $t>0$, we have $w(0, t)=\cos (5 t) \sin (0)=0$ and $w(\pi, t)=\cos (5 t) \sin (5 \pi)=0$, because $\sin (0)=0=\sin (5 \pi)$.

Example 11B.3: (The plucked harp string)

A harpist places her fingers at the midpoint of a harp string and plucks it. What is the formula describing the vibration of the string?

Solution: For simplicity, we imagine the string has length π. The tight string forms a straight line when at rest (Figure 11B.1A); the harpist plucks the string by pulling it away from this resting position and then releasing it. At the moment she releases it, the string's initial velocity is zero, and its initial position is described by a tent function like the one in Example 7C. 7 on page 155

$$
f_{0}(x)=\left\{\begin{aligned}
\alpha x & \text { if } 0 \leq x \leq \frac{\pi}{2} \\
\alpha(\pi-x) & \text { if } \frac{\pi}{2}<x \leq \pi .
\end{aligned} \quad\right. \text { (Figure 11B.1B) }
$$

where $\alpha>0$ is a constant describing the force with which she plucks the string (and its resulting amplitude).

Figure 11B.2: The plucked harpstring of Example 11B.3. From $t=0$ to $t=\pi / 2$, the initially triangular shape is blunted; at $t=\pi / 2$ it is totally flat. From $t=\pi / 2$ to $t=\pi$, the process happens in reverse, only the triangle grows back upside down. At $t=\pi$, the original triangle reappears, upside down. Then the entire process happens in reverse, until the original triangle reappears at $t=2 \pi$.

The endpoints of the harp string are fixed, so it vibrates with homogeneous Dirichlet boundary conditions. Thus, Proposition 11B. 1 tells us to find the Fourier sine series for f_{0}. In Example 7C.7, we computed this to be:

$$
f_{0} \underset{\mathrm{~L} 2}{\approx} \frac{4 \cdot \alpha}{\pi} \sum_{\substack{n=1 \\ n \text { odd; } \\ n=2 k+1}}^{\infty} \frac{(-1)^{k}}{n^{2}} \sin (n x)
$$

Thus, the resulting solution is: $u(x ; t) \underset{\text { I2 }}{\widetilde{\text { 2 }}} \frac{4 \cdot \alpha}{\pi} \sum_{\substack{n=1 \\ n \text { odd; } \\ n=2 k+1}}^{\infty} \frac{(-1)^{k}}{n^{2}} \sin (n x) \cos (n t)$; (See Figure 11B.2). This is not a very accurate model because we have not accounted for energy loss due to friction. In a real harpstring, these 'perfectly triangular' waveforms rapidly decay into gently curving waves depicted in Figure 11B.1(C); these slowly settle down to a stationary state.

Proposition 11B.4. (Initial Velocity Problem for Vibrating String with fixed
endpoints)
$f_{1}: \mathbb{X} \longrightarrow \mathbb{R}$ be a function describing the initial velocity of the string. Suppose f_{1} has Fourier Sine Series $f_{1}(x) \underset{\mathrm{I} 2}{\widetilde{ }} \sum_{n=1}^{\infty} B_{n} \sin (n x)$, and define the
function $v: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by

$$
\begin{equation*}
v(x ; t) \underset{\mathrm{I} 2}{\approx} \sum_{n=1}^{\infty} \frac{B_{n}}{n} \sin (n x) \cdot \sin (n t), \quad \text { for all } x \in[0, \pi] \text { and } t \geq 0 \tag{11B.4}
\end{equation*}
$$

Then v is the unique solution to the wave equation (11B.1), satisfying the Dirichlet boundary conditions (11B.2), as well as

$$
\begin{aligned}
& \text { Initial Position: } \quad v(x, 0)=0 ; \\
& \text { Initial Velocity: } \partial_{t} v(x, 0)=f_{1}(x), \quad \text { for all } x \in[0, \pi] .
\end{aligned}
$$

Proof. Exercise 11B. 2 Hint:
(a) Prove the trigonometric identity $-\sin (n x) \sin (n t)=\frac{1}{2}(\cos (n(x+t))-\cos (n(x-t)))$.
(b) Use this identity to show that the Fourier sine series (11B.4) converges in L^{2} to the d'Alembert solution from Theorem 17D.8(b) on page 401 .
(c) Apply Theorem 5D.11 on page 94 to show that this solution is unique.

Example 11B.5. Let $f_{1}(x)=3 \sin (8 x)$. Thus, $B_{8}=3$ and $B_{n}=0$ for all $n \neq 8$. Proposition 11B. 4 tells us that the corresponding solution to the wave equation is $w(x, t)=\frac{3}{8} \sin (8 t) \sin (8 x)$. To see that w satisfies the wave equation, note that, for any $x \in[0, \pi]$ and $t>0$,

$$
\begin{aligned}
& \partial_{t} w(x, t)=3 \sin (8 t) \cos (8 x) \quad \text { and } \quad 3 \cos (8 t) \sin (8 x)=\partial_{x} w(x, t) ; \\
& \text { Thus } \partial_{t}^{2} w(x, t)=-24 \cos (8 t) \cos (8 x)=-24 \cos (8 t) \cos (8 x)=\partial_{x}^{2} w(x, t) \text {. }
\end{aligned}
$$

Also w has the desired initial position because, for any $x \in[0, \pi]$, we have $w(x ; 0)=\frac{3}{8} \sin (0) \sin (8 x)=0$, because $\sin (0)=0$.
Next, w has the desired initial velocity because for any $x \in[0, \pi]$, we have $\partial_{t} w(x ; 0)=\frac{3}{8} 8 \cos (0) \sin (8 x)=3 \sin (8 x)=f_{1}(x)$, because $\cos (0)=1$.
Finally w satisfies homogeneous Dirichlet BC because, for any $t>0$, we have $w(0, t)=\frac{3}{8} \sin (8 t) \sin (0)=0$ and $w(\pi, t)=\frac{3}{8} \sin (8 t) \sin (8 \pi)=0$, because $\sin (0)=0=\sin (8 \pi)$.

Example 11B.6: (The Xylophone)

A musician strikes the midpoint of a xylophone bar with a broad, flat hammer. What is the formula describing the vibration of the string?
Solution: For simplicity, we imagine the bar has length π and is fixed at its endpoints (actually most xylophones satisfy neither requirement). At the moment when the hammer strikes it, the string's initial position is zero, and

234- DRAFT Chapter 11. Boundary value problems on a line segment
its initial velocity is determined by the distribution of force imparted by the hammer head. For simplicity, we will assume the hammer head has width $\pi / 2$, and hits the bar squarely at its midpoint (Figure 11B.1D). Thus, the initial velocity is given by the function:

$$
f_{1}(x)=\left\{\begin{array}{cl}
\alpha & \text { if } \frac{\pi}{4} \leq x \leq \frac{3 \pi}{4} \\
0 & \text { otherwise }
\end{array} \quad \text { (Figure 11B.1 } \mathrm{E}\right. \text {) }
$$

where $\alpha>0$ is a constant describing the force of the impact. Proposition $11 \mathrm{B.4}$ tells us to find the Fourier sine series for $f_{1}(x)$. From Example 7C.4 on page 151, we know this to be

$$
f_{1}(x) \underset{\mathrm{I} 2}{\approx} \frac{2 \alpha \sqrt{2}}{\pi}\left(\sin (x)+\sum_{k=1}^{\infty}(-1)^{k} \frac{\sin ((4 k-1) x)}{4 k-1}+\sum_{k=1}^{\infty}(-1)^{k} \frac{\sin ((4 k+1) x)}{4 k+1}\right) .
$$

The resulting vibrational motion is therefore described by:

$$
\begin{aligned}
v(x, t) \approx \underset{\mathrm{I} 2}{\approx} \frac{2 \alpha \sqrt{2}}{\pi}(\sin (x) \sin (t)+ & \sum_{k=1}^{\infty}(-1)^{k} \frac{\sin ((4 k-1) x) \sin ((4 k-1) t)}{(4 k-1)^{2}} \\
& \left.+\sum_{k=1}^{\infty}(-1)^{k} \frac{\sin ((4 k+1) x) \sin ((4 k+1) t)}{(4 k+1)^{2}}\right)
\end{aligned}
$$

\diamond
Exercise 11B. 3 Let $L>0$ and let $\mathbb{X}:=[0, L]$. Let $\lambda>0$ be a parameter describing wave velocity (determined by the string's tension, elasticity, density, etc.), and consider the general one-dimensional wave equation

$$
\begin{equation*}
\partial_{t}^{2} u=\lambda^{2} \partial_{x}^{2} u \tag{11B.5}
\end{equation*}
$$

(a) Generalize Proposition 11B. 1 to find the solution to eqn. (11B.5) on \mathbb{X} having zero initial velocity and a prescribed initial position, and homogeneous Dirichlet boundary conditions.
(b) Generalize Proposition 11B.4 to find the solution to eqn.(11B.5) on \mathbb{X} having zero initial position and a prescribed initial velocity, and homogeneous Dirichlet boundary conditions.

In both cases, prove that your solution converges, satisfies the desired initial conditions and boundary conditions, and satisfies eqn.(11B.5) (Hint: imitate the strategy suggested in Exercises 11B.1 and 11B.2.)

11C The Poisson problem on a line segment

Prerequisites: $\S 7 \mathrm{~B}, \S\left[\begin{array}{l}5 \mathrm{C} \\ \hline 1 \mathrm{D}\end{array}\right.$. Recommended: $\S 7 \mathrm{C}(\mathrm{v})$.
We can also use Fourier series to solve the one-dimensional Poisson problem on a line segment. This is not usually a practical solution method, because we already have a simple, complete solution to this problem using a double integral (see Example 1D.1 on page 131). However, we include this result anyways, as a simple illustration of Fourier techniques.

Proposition 11C.1. Let $\mathbb{X}=[0, \pi]$, and let $q: \mathbb{X} \longrightarrow \mathbb{R}$ be some function, with semiuniformly convergent Fourier sine series: $q(x) \underset{\widetilde{\mathrm{I}} 2}{ } \sum_{n=1}^{\infty} Q_{n} \sin (n x)$. Define the function $u: \mathbb{X} \longrightarrow \mathbb{R}$ by

$$
u(x) \quad \overline{\overline{\text { unif }}} \quad \sum_{n=1}^{\infty} \frac{-Q_{n}}{n^{2}} \sin (n x), \quad \text { for all } x \in[0, \pi] .
$$

Then u is the unique solution to the Poisson equation " $\Delta u(x)=q(x)$ " satisfying homogeneous Dirichlet boundary conditions: $u(0)=u(\pi)=0$.

Proof. Exercise 11C. 1 Hint: (a) Apply Proposition 0 F. 1 on page 565 twice to show that $\triangle u(x) \overline{\overline{\overline{u n i f}}} \sum_{n=1}^{\infty} Q_{n} \sin (n x)=q(x)$, for all $x \in \operatorname{int}(\mathbb{X})$. (Hint: The Fourier series of q is semiuniformly convergent).
(b) Observe that $\quad \sum_{n=1}^{\infty}\left|\frac{Q_{n}}{n^{2}}\right|<\infty$.
(c) Apply Theorem 7A.1(c) (p.138) to show that the given Fourier sine series for $u(x)$ converges uniformly.
(d) Apply Theorem 7A.1(d)[ii] (p.138) to conclude that $u(0)=0=u(\pi)$.
(e) Apply Theorem 5D.5(a) on page 88 to conclude that this solution is unique.

Proposition 11C.2. Let $\mathbb{X}=[0, \pi]$, and let $q: \mathbb{X} \longrightarrow \mathbb{R}$ be some some function, with semiuniformly convergent Fourier cosine series: $q(x) \underset{\mathrm{I} 2}{\approx} \sum_{n=1}^{\infty} Q_{n} \cos (n x)$, and suppose that $Q_{0}=0$. Fix any constant $K \in \mathbb{R}$, and define the function $u: \mathbb{X} \longrightarrow \mathbb{R}$ by

$$
\begin{equation*}
u(x) \underset{\overline{\text { unif }}}{\overline{ }} \sum_{n=1}^{\infty} \frac{-Q_{n}}{n^{2}} \cos (n x)+K, \quad \text { for all } x \in[0, \pi] . \tag{11C.1}
\end{equation*}
$$

Then u is a solution to the Poisson equation " $\triangle u(x)=q(x)$ ", satisfying homogeneous Neumann boundary conditions $u^{\prime}(0)=u^{\prime}(\pi)=0$.

Furthermore, all solutions to this Poisson equation with these boundary conditions have the form (11C.1) for some choice of K.

If $Q_{0} \neq 0$, however, the problem has no solution.

Proof. Exercise 11C. 2 Hint: (a) Apply Proposition 0F. 1 on page 565 twice to show that $\triangle u(x) \overline{\overline{\overline{u n i f}}} \sum_{n=1}^{\infty} Q_{n} \cos (n x)=q(x)$, for all $x \in \operatorname{int}(\mathbb{X})$. (Hint: The Fourier series of q is semiuniformly convergent).
(b) Observe that $\quad \sum_{n=1}^{\infty}\left|\frac{Q_{n}}{n}\right|<\infty$.
(c) Apply Theorem 7A.4(d)[ii] (p. (142) to conclude that $u^{\prime}(0)=0=u^{\prime}(\pi)$.
(d) Apply Theorem 5D.5(c) on page 88 to conclude that this solution is unique up to addition of a constant.

Exercise 11C.3. Mathematically, it is clear that the solution of Proposition 11C.2 cannot be well-defined if $Q_{0} \neq 0$. Provide a physical explanation for why this is to be expected.

11D Practice problems

1. Let $g(x)=\left\{\begin{array}{ll}1 & \text { if } 0 \leq x<\frac{\pi}{2} \\ 0 & \text { if } \frac{\pi}{2} \leq x\end{array}\right.$. (see problem \#5 of $\S 7 \mathrm{D}$)
(a) Find the solution to the one-dimensional heat equation $\partial_{t} u(x, t)=$ $\triangle u(x, t)$ on the interval $[0, \pi]$, with initial conditions $u(x, 0)=g(x)$ and homogeneous Dirichlet Boundary conditions.
(b) Find the solution to the one-dimensional heat equation $\partial_{t} u(x, t)=$ $\triangle u(x, t)$ on the interval $[0, \pi]$, with initial conditions $u(x, 0)=g(x)$ and homogeneous Neumann Boundary conditions.
(c) Find the solution to the one-dimensional wave equation $\partial_{t}^{2} w(x, t)=$ $\triangle w(x, t)$ on the interval $[0, \pi]$, satisfying homogeneous Dirichlet Boundary conditions, with initial position $w(x, 0)=0$ and initial velocity $\partial_{t} w(x, 0)=g(x)$.
2. Let $f(x)=\sin (3 x)$, for $x \in[0, \pi]$.
(a) Compute the Fourier Sine Series of $f(x)$ as an element of $\mathbf{L}^{2}[0, \pi]$.
(b) Compute the Fourier Cosine Series of $f(x)$ as an element of $\mathbf{L}^{2}[0, \pi]$.
(c) Solve the one-dimensional heat equation $\left(\partial_{t} u=\triangle u\right)$ on the domain $\mathbb{X}=[0, \pi]$, with initial conditions $u(x ; 0)=f(x)$, and the following boundary conditions:
i. Homogeneous Dirichlet boundary conditions.
ii. Homogeneous Neumann boundary conditions.
(d) Solve the the one-dimensional wave equation $\left(\partial_{t}^{2} v=\triangle v\right)$ on the domain $\mathbb{X}=[0, \pi]$, with homogeneous Dirichlet boundary conditions, and with
Initial position: $\quad v(x ; 0)=0$, Initial velocity: $\partial_{t} v(x ; 0)=f(x)$.
3. Let $f:[0, \pi] \longrightarrow \mathbb{R}$, and suppose f has

$$
\begin{aligned}
\text { Fourier cosine series: } & f(x)
\end{aligned}=\sum_{n=0}^{\infty} \frac{1}{2^{n}} \cos (n x), ~(x)=\sum_{n=1}^{\infty} \frac{1}{n!} \sin (n x)
$$

(a) Find the solution to the one-dimensional heat equation $\partial_{t} u=\Delta u$, with homogeneous Neumann boundary conditions, and initial conditions $u(x ; 0)=f(x)$ for all $x \in[0, \pi]$.
(b) Verify your solution in part (a). Check the heat equation, the initial conditions, and boundary conditions. [Hint: Use Proposition 0F.1] on page 565
(c) Find the solution to the one-dimensional wave equation $\partial_{t}^{2} u(x ; t)=$ $\triangle u(x ; t)$ with homogeneous Dirichlet boundary conditions, and

$$
\begin{aligned}
\text { Initial position } u(x ; 0) & =f(x), \text { for all } x \in[0, \pi] . \\
\text { Initial velocity } \partial_{t} u(x ; 0) & =0, \text { for all } x \in[0, \pi]
\end{aligned}
$$

4. Let $f:[0, \pi] \longrightarrow \mathbb{R}$ be defined by $f(x)=x$.
(a) Compute the Fourier sine series for f.
(b) Does the Fourier sine series converge pointwise to f on $(0, \pi)$? Justify your answer.
(c) Does the Fourier sine series converge uniformly to f on $[0, \pi]$? Justify your answer in two different ways.
(d) Compute the Fourier cosine series for f.
(e) Solve the one-dimensional heat equation $\left(\partial_{t} u=\triangle u\right)$ on the domain $\mathbb{X}:=[0, \pi]$, with initial conditions $u(x, 0):=f(x)$, and with the following boundary conditions:
[i] Homogeneous Dirichlet boundary conditions.
[ii] Homogeneous Neumann boundary conditions.
(f) Verify your solution to question (e) part [i]. That is: check that your solution satisfies the heat equation, the desired initial conditions, and homogeneous Dirichlet BC. [You may assume that the relevent series converge uniformly, if necessary. You may differentiate Fourier series termwise, if necessary.]
(g) Find the solution to the one-dimensional wave equation on the domain $\mathbb{X}:=[0, \pi]$, with homogeneous Dirichlet boundary conditions, and with

$$
\begin{aligned}
\text { Initial position } u(x ; 0) & =f(x), \text { for all } x \in[0, \pi] . \\
\text { Initial velocity } \partial_{t} u(x ; 0) & =0, \text { for all } x \in[0, \pi] .
\end{aligned}
$$

Chapter 12

Boundary value problems on a square

"Each problem that I solved became a rule which served afterwards to solve other problems."
-René Descartes
Prerequisites: $\S 9 \mathrm{~A}, ~ \S[\mathrm{Z}$. Recommended: $\S[1]$.
Multiple Fourier series can be used to find solutions to boundary value problems on a box $[0, X] \times[0, Y]$. The key idea is that the functions $\mathbf{S}_{n, m}(x, y):=$ $\sin \left(\frac{n \pi}{X} x\right) \sin \left(\frac{m \pi}{Y} y\right)$ and $\mathbf{C}_{n, m}(x, y):=\cos \left(\frac{n \pi}{X} x\right) \cos \left(\frac{m \pi}{Y} y\right)$ are eigenfunctions of the Laplacian operator. Furthermore, $\mathbf{S}_{n, m}$ satisfies Dirichlet boundary conditions, so any (uniformly convergent) Fourier sine series will also do so. Likewise, $\mathbf{C}_{n, m}$ satisfies Neumann boundary conditions, so any (sufficiently convergent) Fourier cosine series will also do so.

For simplicity, we will assume throughout that $X=Y=\pi$. Thus $\mathbf{S}_{n, m}(x)=$ $\sin (n x) \sin (m y)$ and $\mathbf{C}_{n, m}(x)=\cos (n x) \cos (m y)$. We will also assume that (through an appropriate choice of time units) the physical constants in the various equations are all equal to one. Thus, the heat equation becomes " $\partial_{t} u=\triangle u$ ", the wave equation is " $\partial_{t}^{2} u=\triangle u$ ", etc. This will allow us to develop the solution methods in the simplest possible scenario, without a lot of distracting technicalities.

The extension of these solution methods to equations with arbitrary physical constants on an arbitrary rectangular domain $[0, X] \times[0, Y]$ (for some $X, Y>$ $0)$ are left as exercises. These exercises are quite straightforward, but are an effective test of your understanding of the solution techniques.

Remark on Notation: Throughout this chapter (and the following ones) we will often write a function $u(x, y ; t)$ in the form $u_{t}(x, y)$. This emphasizes the distinguished role of the 'time' coordinate t, and makes it natural to think of fixing t at some value and applying the 2-dimensional Laplacian $\triangle=\partial_{x}^{2}+\partial_{y}^{2}$ to the resulting 2 -dimensional function u_{t}.

Figure 12A.1: The Dirichlet problem on a square. (A) Proposition 12A.1; (B) Propositions 12 A .2 and 12 A .4 .

Some authors use the subscript notation " u_{t} " to denote the partial derivative $\partial_{t} u$. We never use this notation. In this book, partial derivatives are always denoted by " $\partial_{t} u$ ", etc.

12A The Dirichlet problem on a square

In this section we will learn to solve the Dirichlet problem on a square domain \mathbb{X} : that is, to find a function which is harmonic on the interior of \mathbb{X} and which satisfies specified Dirichlet boundary conditions on the boundary \mathbb{X}. Solutions to the Dirichlet problem have several physical interpretations.

Heat: Imagine that the boundaries of \mathbb{X} are perfect heat conductors, which are in contact with external 'heat reservoirs' with fixed temperatures. For example, one boundary might be in contact with a heat source, and another, in contact with a coolant liquid. The solution to the Dirichlet problem is then the equilibrium temperature distribution on the interior of the box, given these constraints.

Electrostatic: Imagine that the boundaries of \mathbb{X} are electrical conductors which are held at some fixed voltage by the application of an external electric potential (different boundaries, or different parts of the same boundary, may be held at different voltages). The solution to the Dirichlet problem is then the electric potential field on the interior of the box, given these constraints.

Minimal surface: Imagine a squarish frame of wire, which we have bent in the vertical direction to have some shape. If we dip this wire frame in a soap

Figure 12A.2: The Dirichlet problem on a box. The curves represent isothermal contours (of a temperature distribution) or equipotential lines (of an electric voltage field).
solution, we can form a soap bubble (i.e. minimal-energy surface) which must obey the 'boundary conditions' imposed by the shape of the wire. The differential equation describing a minimal surface is not exactly the same as the Laplace equation; however, when the surface is not too steeply slanted (i.e. when the wire frame is not too bent), the Laplace equation is a good approximation; hence the solution to the Dirichlet problem is a good approximation of the shape of the soap bubble.

We will begin with the simplest problem: a constant, nonzero Dirichlet boundary condition on one side of the box, and zero boundary conditions on the other three sides.

Proposition 12A.1. (Dirichlet problem; one constant nonhomog. BC) Let $\mathbb{X}=[0, \pi] \times[0, \pi]$, and consider the Laplace equation " $\triangle u=0$ ", with

Proposition 12A. 1 $T=1, R=L=B=0$

$$
\begin{gathered}
\sin (x) \sinh (y) \\
T(x)=\sin (x), R=L=B=0 \quad T(x)=\sin (2 x) \sinh (2 y) \\
\sin (2 x), R=L=B=0
\end{gathered}
$$

Example 12 A .6
$T=$ tent function,$R=L=B=0$

Figure 12A.3: The Dirichlet problem on a box: 3-dimensional plots. You can imagine these as soap films.
nonhomogeneous Dirichlet boundary conditions [see Figure 12A.1(A)]:

$$
\begin{align*}
u(0, y)=u(\pi, y) & =0, \quad \text { for all } y \in[0, \pi) \tag{12A.1}\\
u(x, 0)=0 \quad \text { and } \quad u(x, \pi) & =1, \quad \text { for all } x \in[0, \pi] \tag{12A.2}
\end{align*}
$$

The unique solution to this problem is the function $u: \mathbb{X} \longrightarrow \mathbb{R}$ defined:

$$
u(x, y) \quad \widetilde{\mathrm{T} 2} \quad \frac{4}{\pi} \sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{1}{n \sinh (n \pi)} \sin (n x) \cdot \sinh (n y), \quad \text { for all }(x, y) \in \mathbb{X}
$$

[See Figures 12A.2(a) and 12A.3(a).] Furthermore, this series converges semiuniformly on int (X).

Proof. Exercise 12A. 1

(a) Check that, for all $n \in \mathbb{N}$, the function $u_{n}(x, y)=\sin (n x) \cdot \sinh (n y)$ satisfies the Laplace equation and the first boundary condition (12A.1). See Figures 12A.2(d,e,f) and 12A.3(d,e,f).
(b) Show that $\quad \sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} n^{2}\left|\frac{\sinh (n y)}{n \sinh (n \pi)}\right|<\infty$, for any fixed $y<\pi$. (Hint. If $y<\pi$, then $\sinh (n y) / \sinh (n \pi)$ decays like $\exp (n(y-\pi))$ as $n \rightarrow \infty$.)
(c) Apply Proposition 0F. 1 on page 565 to conclude that $\Delta u(x, y)=0$.
(d) Observe that $\quad \sum_{\substack{n=1 \\ n \text { odd }}}^{\infty}\left|\frac{\sinh (n y)}{n \sinh (n \pi)}\right|<\infty$, for any fixed $y<\pi$.
(e) Apply part (c) of Theorem 7 A. 1 on page 138 to show that the series given for $u(x, y)$ converges uniformly for any fixed $y<\pi$.
(f) Apply part (d) of Theorem 7A.1 on page 138 to conclude that $u(0, y)=0=u(\pi, y)$ for all $y<\pi$.
(g) Observe that $\sin (n x) \cdot \sinh (n \cdot 0)=0$ for all $n \in \mathbb{N}$ and all $x \in[0, \pi]$. Conclude that $u(x, 0)=0$ for all $x \in[0, \pi]$.
(h) To check that the solution also satisfies the boundary condition (12A.2), subsititute $y=\pi$ to get:
$u(x, \pi)=\frac{4}{\pi} \sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{1}{n \sinh (n \pi)} \sin (n x) \cdot \sinh (n \pi)=\frac{4}{\pi} \sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{1}{n} \sin (n x) \approx \underset{\widetilde{\mathrm{I}}}{\approx} 1$.
because $\frac{4}{\pi} \sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{1}{n} \sin (n x)$ is the (one-dimensional) Fourier sine series for the function $b(x)=1$ (see Example 7A.2(b) on page 139).
(i) Apply Theorem 5D.5(a) on page 88 to conclude that this solution is unique.

Proposition 12A.2. (Dirichlet Problem; four constant nonhomog. BC)
Let $\mathbb{X}=[0, \pi] \times[0, \pi]$, and consider the Laplace equation " $\triangle u=0$ ", with nonhomogeneous Dirichlet boundary conditions [see Figure 12A.1(B)]:

$$
\begin{array}{rlll}
u(0, y) & =L & \text { and } \quad u(\pi, y)=R, & \text { for all } y \in(0, \pi) ; \\
u(x, \pi) & =T & \text { and } \quad u(x, 0)=B, & \text { for all } x \in(0, \pi) .
\end{array}
$$

where L, R, T, and B are four constants. The unique solution to this problem is the function $u: \mathbb{X} \longrightarrow \mathbb{R}$ defined:

$$
u(x, y) \quad:=\quad l(x, y)+r(x, y)+t(x, y)+b(x, y), \quad \text { for all }(x, y) \in \mathbb{X}
$$

where, for all $(x, y) \in \mathbb{X}$,

where $c_{n}:=\frac{4}{n \pi \sinh (n \pi)}$, for all $n \in \mathbb{N}$.
Furthermore, these four series converge semiuniformly on int (\mathbb{X}).

Proof. Exercise 12A. 2

(a) Apply Proposition 12A.1 to show that each of the functions $l(x, y), r(x, y), t(x, y)$, $b(x, y)$ satisfies a Dirichlet problem where one side has nonzero temperature and the other three sides have zero temperature.
(b) Add these four together to get a solution to the original problem.
(c) Apply Theorem 5D.5(a) on page 88 to conclude that this solution is unique.

Exercise 12A.3. What happens to the solution at the four corners $(0,0),(0, \pi)$, $(\pi, 0)$ and (π, π) ?

Example 12A.3. Suppose $R=0=B, T=-3$, and $L=5$. Then the solution is:

$$
\begin{aligned}
u(x, y) & \approx \underset{\substack{n=1 \\
\text { I2 }}}{\approx} \sum_{n} \sinh (n(\pi-x)) \cdot \sin (n y)+T \sum_{\substack{n=1 \\
n \text { odd }}}^{\infty} c_{n} \sin (n x) \cdot \sinh (n y) \\
& =\frac{20}{\pi} \sum_{\substack{n=1 \\
n \text { odd }}}^{\infty} \frac{\sinh (n(\pi-x)) \cdot \sin (n y)}{n \sinh (n \pi)}-\frac{12}{\pi} \sum_{\substack{n=1 \\
n \text { odd }}}^{\infty} \frac{\sin (n x) \cdot \sinh (n y)}{n \sinh (n \pi)} .
\end{aligned}
$$

See Figures 12A.2(b) and 12A.3(b).

Proposition 12A.4. (Dirichlet Problem; arbitrary nonhomogeneous boundaries)

Let $\mathbb{X}=[0, \pi] \times[0, \pi]$, and consider the Laplace equation " $\triangle u=0$ ", with nonhomogeneous Dirichlet boundary conditions [see Figure 12A.1(B)]:

$$
\begin{array}{llll}
u(0, y)=L(y) & \text { and } \quad u(\pi, y)=R(y), & \text { for all } y \in(0, \pi) ; \\
u(x, \pi)=T(x) & \text { and } \quad u(x, 0)=B(x), & \text { for all } x \in(0, \pi) .
\end{array}
$$

where $L, R, T, B:[0, \pi] \longrightarrow \mathbb{R}$ are four arbitrary functions. Suppose these functions have (one-dimensional) Fourier sine series:
$L(y) \quad \underset{\mathrm{T} 2}{\approx} \quad \sum_{n=1}^{\infty} L_{n} \sin (n y)$,
$R(y) \underset{\mathrm{T} 2}{\approx} \sum_{n=1}^{\infty} R_{n} \sin (n y), \quad$ for all $y \in[0, \pi] ;$
$T(x) \quad \underset{\mathrm{T} 2}{\approx} \sum_{n=1}^{\infty} T_{n} \sin (n x), \quad$ and $\quad B(x) \underset{\mathrm{T} 2}{\approx} \sum_{n=1}^{\infty} B_{n} \sin (n x), \quad$ for all $x \in[0, \pi]$.
Linear Partial Differential Equations and Fourier Theory

The unique solution to this problem is the function $u: \mathbb{X} \longrightarrow \mathbb{R}$ defined:

$$
u(x, y):=l(x, y)+r(x, y)+t(x, y)+b(x, y), \quad \text { for all }(x, y) \in \mathbb{X}
$$

where, for all $(x, y) \in \mathbb{X}$,

$$
\begin{aligned}
l(x, y) & \approx \\
r(x, y) & \approx \sum_{n=1}^{\infty} \frac{L_{n}}{\sinh (n \pi)} \sinh (n(\pi-x)) \cdot \sin (n y), \\
t(x, y) & \approx \sum_{n=1}^{\infty} \frac{R_{n}}{\sinh (n \pi)} \sinh (n x) \cdot \sin (n y), \\
\text { and } b(x, y) & \approx \frac{T_{n}}{\operatorname{I2}} \sinh (n \pi) \\
& \approx \sum_{n=1}^{\infty} \frac{B_{n}}{\sinh (n \pi)} \sin (n x) \cdot \sinh (n y),
\end{aligned}
$$

Furthermore, these four series converge semiuniformly on int (\mathbb{X}).
Proof. Exercise 12A. 4 First we consider the function $t(x, y)$.
(a) Same as Exercise 12A.1(a)
(b) For any fixed $y<\pi$, show that $\sum_{n=1}^{\infty} n^{2} T^{n}\left|\frac{\sinh (n y)}{\sinh (n \pi)}\right|<\infty$. (Hint. If $y<\pi$, then $\sinh (n y) / \sinh (n \pi)$ decays like $\exp (n(y-\pi))$ as $n \rightarrow \infty$.)
(c) Combine part (b) and Proposition 0F.1 on page 565 to conclude that $t(x, y)$ is harmonic -i.e. $\Delta t(x, y)=0$.
Through symmetric reasoning, conclude that the functions $\ell(x, y), r(x, y)$ and $b(x, y)$ are also harmonic.
(d) Same as Exercise [2A.1(d)
(e) Apply part (c) of Theorem 7 A. 1 on page 138 to show that the series given for $t(x, y)$ converges uniformly for any fixed $y<\pi$.
(f) Apply part (d) of Theorem 7A.1 on page 138 to conclude that $t(0, y)=0=t(\pi, y)$ for all $y<\pi$.
(g) Observe that $\sin (n x) \cdot \sinh (n \cdot 0)=0$ for all $n \in \mathbb{N}$ and all $x \in[0, \pi]$. Conclude that $t(x, 0)=0$ for all $x \in[0, \pi]$.
(h) To check that the solution also satisfies the boundary condition (12A.2), subsititute $y=\pi$ to get:

$$
t(x, \pi)=\sum_{n=1}^{\infty} \frac{T_{n}}{\sinh (n \pi)} \sin (n x) \cdot \sinh (n \pi)=\frac{4}{\pi} \sum_{n=1}^{\infty} T_{n} \sin (n x)=T(x) .
$$

(j) At this point, we know that $t(x, \pi)=T(x)$ for all $x \in[0, \pi]$, and $t \equiv 0$ on the other three sides of the square. Through symmetric reasoning, show that:

- $\ell(0, y)=L(y)$ for all $y \in[0, \pi]$, and $\ell \equiv 0$ on the other three sides of the square.
- $r(\pi, y)=R(y)$ for all $y \in[0, \pi]$, and $r \equiv 0$ on the other three sides of the square.
- $b(x, 0)=B(x)$ for all $x \in[0, \pi]$, and $b \equiv 0$ on the other three sides of the square.
(k) Conclude that $u=t+b+r+\ell$ is harmonic and satisfies the desired boundary conditions.
(l) Apply Theorem 5D.5(a) on page 88 to conclude that this solution is unique.

Example 12A.5. If $T(x)=\sin (3 x)$, and $B \equiv L \equiv R \equiv 0$, then $u(x, y)=$ $\frac{\sin (3 x) \sinh (3 y)}{\sinh (3 \pi)}$.

Example 12A.6. Let $\mathbb{X}=[0, \pi] \times[0, \pi]$. Solve the 2-dimensional Laplace Equation on \mathbb{X}, with inhomogeneous Dirichlet boundary conditions:

$$
\begin{gathered}
u(0, y)=0 ; \quad u(\pi, y)=0 ; \quad u(x, 0)=0 \\
u(x, \pi)=T(x)=\left\{\begin{aligned}
x & \text { if } 0 \leq x \leq \frac{\pi}{2} \\
\pi-x & \text { if } \frac{\pi}{2}<x \leq \pi
\end{aligned} \quad\right. \text { (see Figure 7C.4(B) on page 154) }
\end{gathered}
$$

Solution: Recall from Example 7 C .7 on page 155 that $T(x)$ has Fourier series:

$$
T(x) \underset{\mathrm{⿺} 2}{\approx} \frac{4}{\pi} \sum_{\substack{n=1 \\ n \text { odd; } \\ n=2 k+1}}^{\infty} \frac{(-1)^{k}}{n^{2}} \sin (n x)
$$

Thus, the solution is $u(x, y) \quad \underset{\text { I2 }}{\approx} \quad \frac{4}{\pi} \sum_{\substack{n=1 \\ n \text { odd; } \\ n=2 k+1}}^{\infty} \frac{(-1)^{k}}{n^{2} \sinh (n \pi)} \sin (n x) \sinh (n y)$.
See Figures 12A.2(c) and 12A.3(c).
Exercise 12A.5. Let $X, Y>0$ and let $\mathbb{X}:=[0, X] \times[0, Y]$. Generalize Proposition [2A.4 to find the solution to the Laplace equation on \mathbb{X}, satisfying arbitrary nonhomogeneous Dirichlet boundary conditions on the four sides of $\partial \mathbb{X}$.

12B The heat equation on a square

12B(i) Homogeneous boundary conditions

Prerequisites: $\S 9 \mathrm{~A}, \S[5 \mathrm{~B}, \S[5 \mathrm{C}, ~ \S[\mathrm{~B}(\mathrm{ii}], \S(0 \mathrm{~F}$.

Linear Partial Differential Equations and Fourier Theory

Proposition 12B.1. (Heat equation; homogeneous Dirichlet boundary)
Consider the box $\mathbb{X}=[0, \pi] \times[0, \pi]$, and let $f: \mathbb{X} \longrightarrow \mathbb{R}$ be some function describing an initial heat distribution. Suppose f has Fourier Sine Series

$$
f(x, y) \underset{\mathrm{L} 2}{\approx} \sum_{n, m=1}^{\infty} B_{n, m} \sin (n x) \sin (m y)
$$

and define the function $u: \mathbb{X} \times \mathbb{R}_{\neq} \longrightarrow \mathbb{R}$ by

$$
u_{t}(x, y) \underset{\mathrm{L} 2}{\approx} \sum_{n, m=1}^{\infty} B_{n, m} \sin (n x) \cdot \sin (m y) \cdot \exp \left(-\left(n^{2}+m^{2}\right) \cdot t\right)
$$

for all $(x, y) \in \mathbb{X}$ and $t \geq 0$. Then u is the unique solution to the heat equation " $\partial_{t} u=\triangle u$ ", with homogeneous Dirichlet boundary conditions
$u_{t}(x, 0)=u_{t}(0, y)=u_{t}(\pi, y)=u_{t}(x, \pi) \quad=\quad 0, \quad$ for all $x, y \in[0, \pi]$ and $t>0$.
and initial conditions: $u_{0}(x, y)=f(x, y)$, for all $(x, y) \in \mathbb{X}$.
Furthermore, the series defining u converges semiuniformly on $\mathbb{X} \times \mathbb{R}_{+}$.
Proof. Exercise 12B. 1 Hint:
(a) Show that, when $t=0$, the two-dimensional Fourier series of $u_{0}(x, y)$ agrees with that of $f(x, y)$; hence $u_{0}(x, y)=f(x, y)$.
(b) Show that, for all $t>0, \quad \sum_{n, m=1}^{\infty}\left|\left(n^{2}+m^{2}\right) \cdot B_{n, m} \cdot e^{-\left(n^{2}+m^{2}\right) t}\right|<\infty$.
(c) For any $T>0$, apply Proposition 0F. 1 on page 565 to conclude that
$\partial_{t} u_{t}(x, y) \quad \overline{\overline{\text { unif }}} \sum_{n, m=1}^{\infty}-\left(n^{2}+m^{2}\right) B_{n, m} \sin (n x) \cdot \sin (m y) \cdot \exp \left(-\left(n^{2}+m^{2}\right) \cdot t\right) \underset{\overline{\overline{\text { unif }}}}{\bar{y}} \triangle u_{t}(x, y)$,
for all $(x, y ; t) \in \mathbb{X} \times[T, \infty)$.
(d) Observe that for all $t>0, \quad \sum_{n, m=1}^{\infty}\left|B_{n, m} e^{-\left(n^{2}+m^{2}\right) t}\right|<\infty$.
(e) Apply part (c)[i] of Theorem 9A.3 on page 183 to show that the two-dimensional Fourier series of u_{t} converges uniformly for any fixed $t>0$.
(f) Apply part (d)[ii] of Theorem 9A.3 on page 183 to conclude that u_{t} satisfies homogeneous Dirichlet boundary conditions, for all $t>0$.
(g) Apply Theorem 5D. 8 on page 91 to show that this solution is unique.

Figure 12B.1: (A) A hot metal rod quenched in a cold bucket. (B) A cross section of the rod in the bucket.

Example 12B.2: (The quenched rod)
On a cold January day, a blacksmith is tempering an iron rod. He pulls it out of the forge and plunges it, red-hot, into ice-cold water (Figure 12B.1A). The rod is very long and narrow, with a square cross section. We want to compute how the rod cooled.

Answer: The rod is immersed in freezing cold water, and is a good conductor, so we can assume that its outer surface takes the the surrounding water temperature of 0 degrees. Hence, we assume homogeneous Dirichlet boundary conditions.
Endow the rod with coordinate system (x, y, z), where z runs along the length of the rod. Since the rod is extremely long relative to its cross-section, we can neglect the z coordinate, and reduce to a 2-dimensional equation (Figure 12B.1B). Assume the rod was initially uniformly heated to a temperature of T. The initial temperature distribution is thus a constant function: $f(x, y)=T$. From Example 9A. 2 on page 182, we know that the constant function 1 has two-dimensional Fourier sine series:

$$
1 \underset{\mathrm{I} 2}{ } \frac{16}{\pi^{2}} \sum_{\substack{n, m=1 \\ \text { both odd }}}^{\infty} \frac{1}{n \cdot m} \sin (n x) \sin (m y) .
$$

Thus, $f(x, y) \underset{\mathrm{I} 2}{\approx} \frac{16 T}{\pi^{2}} \sum_{\substack{n, m=1 \\ \text { both odd }}}^{\infty} \frac{1}{n \cdot m} \sin (n x) \sin (m y)$. Thus, the time-varying thermal profile of the rod is given:

$$
u_{t}(x, y) \quad \underset{\mathrm{T} 2}{\approx} \frac{16 T}{\pi^{2}} \sum_{\substack{n, m=1 \\ \text { both odd }}}^{\infty} \frac{1}{n \cdot m} \sin (n x) \sin (m y) \exp \left(-\left(n^{2}+m^{2}\right) \cdot t\right) .
$$

Proposition 12B.3. (Heat equation; homogeneous Neumann boundary)
Consider the box $\mathbb{X}=[0, \pi] \times[0, \pi]$, and let $f: \mathbb{X} \longrightarrow \mathbb{R}$ be some function describing an initial heat distribution. Suppose f has Fourier Cosine Series

$$
f(x, y) \underset{\mathrm{L} 2}{\approx} \sum_{n, m=0}^{\infty} A_{n, m} \cos (n x) \cos (m y)
$$

and define the function $u: \mathbb{X} \times \mathbb{R}_{\neq} \longrightarrow \mathbb{R}$ by:

$$
u_{t}(x, y) \underset{\mathrm{⿺} 2}{\approx} \sum_{n, m=0}^{\infty} A_{n, m} \cos (n x) \cdot \cos (m y) \cdot \exp \left(-\left(n^{2}+m^{2}\right) \cdot t\right)
$$

for all $(x, y) \in \mathbb{X}$ and $t \geq 0$. Then u is the unique solution to the heat equation " $\partial_{t} u=\triangle u$ ", with homogeneous Neumann boundary conditions
$\partial_{y} u_{t}(x, 0)=\partial_{y} u_{t}(x, \pi)=\partial_{x} u_{t}(0, y)=\partial_{x} u_{t}(\pi, y)=0$, for all $x, y \in[0, \pi]$ and $t>0$.
and initial conditions: $\quad u_{0}(x, y)=f(x, y)$, for all $(x, y) \in \mathbb{X}$.
Furthermore, the series defining u converges semiuniformly on $\mathbb{X} \times \mathbb{R}_{+}$.
Proof. Exercise 12B. 2 Hint:
(a) Show that, when $t=0$, the two-dimensional Fourier cosine series of $u_{0}(x, y)$ agrees with that of $f(x, y)$; hence $u_{0}(x, y)=f(x, y)$.
(b) Show that, for all $t>0, \quad \sum_{n, m=0}^{\infty}\left|\left(n^{2}+m^{2}\right) \cdot A_{n, m} \cdot e^{-\left(n^{2}+m^{2}\right) t}\right|<\infty$.
(c) Apply Proposition 0F.1 on page 565 to conclude that
$\partial_{t} u_{t}(x, y) \quad \overline{\overline{\text { unif }}} \sum_{n, m=0}^{\infty}-\left(n^{2}+m^{2}\right) A_{n, m} \cos (n x) \cdot \cos (m y) \cdot \exp \left(-\left(n^{2}+m^{2}\right) \cdot t\right) \underset{\overline{\overline{\text { unif }}}}{\bar{y}} \Delta u_{t}(x, y)$,
for all $(x, y) \in \mathbb{X}$ and $t>0$.
(d) Observe that for all $t>0, \quad \sum_{n, m=0}^{\infty} n \cdot\left|A_{n, m} e^{-\left(n^{2}+m^{2}\right) t}\right|<\infty$ and $\sum_{n, m=0}^{\infty} m$. $\left|A_{n, m} e^{-\left(n^{2}+m^{2}\right) t}\right|<\infty$.
(e) Apply part (e)[ii] of Theorem 9A.3 on page 183 to conclude that u_{t} satisfies homogeneous Neumann boundary conditions, for any fixed $t>0$.
(f) Apply Theorem 5D.8 on page 91 to show that this solution is unique.

Example 12B.4. Suppose $\mathbb{X}=[0, \pi] \times[0, \pi]$
(a) Let $f(x, y)=\cos (3 x) \cos (4 y)+2 \cos (5 x) \cos (6 y)$. Then $A_{3,4}=1$ and $A_{5,6}=2$, and all other Fourier coefficients are zero. Thus, $u(x, y ; t)=$ $\cos (3 x) \cos (4 y) \cdot e^{-25 t}+\cos (5 x) \cos (6 y) \cdot e^{-59 t}$.
(b) Suppose $f(x, y)=\left\{\begin{array}{ll}1 & \text { if } 0 \leq x<\frac{\pi}{2} \text { and } 0 \leq y<\frac{\pi}{2} ; \\ 0 & \text { if } \frac{\pi}{2} \leq x \text { or } \frac{\pi}{2} \leq y .\end{array}\right.$ We know from Example 9A.4 on page 184 that the two-dimensional Fourier cosine series of f is:

$$
\begin{aligned}
f(x, y) \quad \underset{\mathrm{T} 2}{\approx} \frac{1}{4} & +\frac{1}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} \cos ((2 k+1) x)+\frac{1}{\pi} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{2 j+1} \cos ((2 j+1) y) \\
& +\frac{4}{\pi^{2}} \sum_{k, j=1}^{\infty} \frac{(-1)^{k+j}}{(2 k+1)(2 j+1)} \cos ((2 k+1) x) \cdot \cos ((2 j+1) y)
\end{aligned}
$$

Thus, the solution to the heat equation, with initial conditions $u_{0}(x, y)=$ $f(x, y)$ and homogeneous Neumann boundary conditions is given:

$$
\begin{aligned}
u_{t}(x, y) & \stackrel{\widetilde{\widetilde{\mathrm{I}} 2}}{ } \frac{1}{4}+\frac{1}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} \cos ((2 k+1) x) \cdot e^{-(2 k+1)^{2} t} \\
+ & \frac{1}{\pi} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{2 j+1} \cos ((2 j+1) y) \cdot e^{-(2 j+1)^{2} t} \\
+ & \frac{4}{\pi^{2}} \sum_{k, j=1}^{\infty} \frac{(-1)^{k+j}}{(2 k+1)(2 j+1)} \cos ((2 k+1) x) \cdot \cos ((2 j+1) y) \cdot e^{-\left[(2 k+1)^{2}+(2 j+1)^{2}\right] \cdot t}
\end{aligned}
$$

Exercise 12B.3. Let $X, Y>0$ and let $\mathbb{X}:=[0, X] \times[0, Y]$. Let $\kappa>0$ be a diffusion constant, and consider the general two-dimensional heat equation

$$
\begin{equation*}
\partial_{t} u=\kappa \triangle u \tag{12B.1}
\end{equation*}
$$

(a) Generalize Proposition 12B. 1 to find the solution to eqn.(12B.1) on \mathbb{X} satisfying prescribed initial conditions and homogeneous Dirichlet boundary conditions.
(b) Generalize Proposition 12B. 3 to find the solution to eqn.(12B.1) on \mathbb{X} satisfying prescribed initial conditions and homogeneous Neumann boundary conditions.

In both cases, prove that your solution converges, satisfies the desired initial conditions and boundary conditions, and satisfies eqn.(12B.1) (Hint: imitate the strategy suggested in Exercises 12B. 1 and 12B.2)

Exercise 12B.4. Let $f: \mathbb{X} \longrightarrow \mathbb{R}$ and suppose the Fourier sine series of f satisfies the constraint $\sum_{n, m=1}^{\infty}\left(n^{2}+m^{2}\right)\left|B_{n m}\right|<\infty$. Imitate Proposition 12 B.1 to find a Fourier series solution to the initial value problem for the two-dimensional free Schrödinger equation

$$
\begin{equation*}
\mathbf{i} \partial_{t} \omega=\frac{-1}{2} \Delta \omega \tag{12B.2}
\end{equation*}
$$

on the box $\mathbb{X}=[0, \pi]^{2}$, with homogeneous Dirichlet boundary conditions. Prove that your solution converges, satisfies the desired initial conditions and boundary conditions, and satisfies eqn.(12B.2). (Hint: imitate the strategy suggested in Exercise 12B.1, and also Exercise [2D.1 on page 260).

12B(ii) Nonhomogeneous boundary conditions

Prerequisites: $\S[2 \mathrm{~B}(\mathrm{i}), \S[2 \mathrm{~A}$. Recommended: $\S 12 \mathrm{C}(\mathrm{ii)}$.

Proposition 12B.5. (Heat equation on box; nonhomogeneous Dirichlet BC)
Let $\mathbb{X}=[0, \pi] \times[0, \pi]$. Let $f: \mathbb{X} \longrightarrow \mathbb{R}$ and let $L, R, T, B:[0, \pi] \longrightarrow \mathbb{R}$ be functions. Consider the Heat equation

$$
\partial_{t} u(x, y ; t)=\triangle u(x, y ; t)
$$

with initial conditions

$$
\begin{equation*}
u(x, y ; 0)=f(x, y), \quad \text { for all }(x, y) \in \mathbb{X} \tag{12B.3}
\end{equation*}
$$

and nonhomogeneous Dirichlet boundary conditions:

$$
\begin{array}{rlll}
u(x, \pi ; t) & =T(x) & \text { and } & u(x, 0 ; t) \tag{12B.4}
\end{array}=B(x), \quad \text { for all } x \in[0, \pi] ~ 子 \quad \text { for all } t>0
$$

This problem is solved as follows:

1. Let $w(x, y)$ be the solution to the Laplace Equation " $\triangle w(x, y)=0$ ", with the nonhomogeneous Dirichlet BC (12B.4).
2. Define $g(x, y):=f(x, y)-w(x, y)$. Let $v(x, y ; t)$ be the solution to the heat equation " $\partial_{t} v(x, y ; t)=\triangle v(x, y ; t)$ " with initial conditions $v(x, y ; 0)=g(x, y)$, and homogeneous Dirichlet BC.
3. Define $u(x, y ; t):=v(x, y ; t)+w(x, y)$. Then $u(x, y ; t)$ is a solution to the heat equation with initial conditions (12B.3) and nonhomogeneous Dirichlet $B C$ (12B.4).

Interpretation: In Proposition 12B.5, the function $w(x, y)$ represents the long-term thermal equilibrium that the system is 'trying' to attain. The function $g(x, y)=f(x, y)-w(x, y)$ thus measures the deviation between the current state and this equilibrium, and the function $v(x, y ; t)$ thus represents how this 'transient' deviation decays to zero over time.

Example 12B.6. Suppose $T(x)=\sin (2 x)$ and $R \equiv L \equiv 0$ and $B \equiv 0$. Then Proposition [12A.4 on page 244 says

$$
w(x, y)=\frac{\sin (2 x) \sinh (2 y)}{\sinh (2 \pi)}
$$

Suppose $f(x, y):=\sin (2 x) \sin (y)$. Then

$$
\begin{aligned}
& g(x, y)=f(x, y)-w(x, y)=\sin (2 x) \sin (y)-\frac{\sin (2 x) \sinh (2 y)}{\sinh (2 \pi)} \\
& \overline{\left({ }_{(*)}\right.} \\
& \sin (2 x) \sin (y)-\left(\frac{\sin (2 x)}{\sinh (2 \pi)}\right)\left(\frac{2 \sinh (2 \pi)}{\pi}\right) \sum_{m=1}^{\infty} \frac{m(-1)^{m+1}}{2^{2}+m^{2}} \cdot \sin (m y) \\
&=\sin (2 x) \sin (y)-\frac{2 \sin (2 x)}{\pi} \sum_{m=1}^{\infty} \frac{m(-1)^{m+1}}{4+m^{2}} \cdot \sin (m y) .
\end{aligned}
$$

Here $(*)$ is because Example 7A.3 on page 140 says $\sinh (2 y)=\frac{2 \sinh (2 \pi)}{\pi} \sum_{m=1}^{\infty} \frac{m(-1)^{m+1}}{2^{2}+m^{2}}$. $\sin (m y)$. Thus, Proposition 12B. 1 on page 247 says that
$v(x, y ; t)=\sin (2 x) \sin (y) e^{-5 t}-\frac{2 \sin (2 x)}{\pi} \sum_{m=1}^{\infty} \frac{m(-1)^{m+1}}{4+m^{2}} \cdot \sin (m x) \exp \left(-\left(4+m^{2}\right) t\right)$.
Finally, Proposition 12B.5 says the solution is $u(x, y ; t):=v(x, y ; t)+$ $\frac{\sin (2 x) \sinh (2 y)}{\sinh (2 \pi)}$.

Example 12B.7. A freshly baked baguette is removed from the oven and left on a wooden plank to cool near the window. The baguette is initially at a uniform temperature of $90^{\circ} \mathrm{C}$; the air temperature is $20^{\circ} \mathrm{C}$, and the temperature of the wooden plank (which was sitting in the sunlight) is $30^{\circ} \mathrm{C}$.
Mathematically model the cooling process near the center of the baguette. How long will it be before the baguette is cool enough to eat? (assuming 'cool enough' is below $40^{\circ} \mathrm{C}$.)

[^46]

Figure 12B.2: The temperature distribution of a baguette
Answer: For simplicity, we will assume the baguette has a square crosssection (and dimensions $\pi \times \pi$, of course). If we confine our attention to the middle of the baguette, we are far from the endpoints, so that we can neglect the longitudinal dimension and treat this as a two-dimensional problem.
Suppose the temperature distribution along a cross section through the center of the baguette is given by the function $u(x, y ; t)$. To simplify the problem, we will subtract $20^{\circ} \mathrm{C}$ off all temperatures. Thus, in the notation of Proposition [12B. 5 the boundary conditions are:

$$
\begin{aligned}
L(y)=R(y)=T(x) & =0 \quad \text { (the air) } \\
\text { and } \quad B(x) & =10 . \quad \text { (the wooden plank) }
\end{aligned}
$$

and our initial temperature distribution is $f(x, y)=70$ (see Figure 12B.2).
From Proposition 12A.1 on page 241, we know that the long-term equilibrium for these boundary conditions is given by:

$$
w(x, y) \underset{\mathrm{I} 2}{ } \frac{40}{\pi} \sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{1}{n \sinh (n \pi)} \sin (n x) \cdot \sinh (n(\pi-y)) .
$$

We want to represent this as a two-dimensional Fourier sine series. To do this, we need the (one-dimensional) Fourier sine series for $\sinh (n x)$. We set $\alpha=n$ in Example 7A. 3 on page 140, and get:

$$
\begin{equation*}
\sinh (n x) \quad \underset{\mathrm{I} 2}{\approx} \quad \frac{2 \sinh (n \pi)}{\pi} \sum_{m=1}^{\infty} \frac{m(-1)^{m+1}}{n^{2}+m^{2}} \cdot \sin (m x) \tag{12B.5}
\end{equation*}
$$

Thus,

$$
\sinh (n(\pi-y)) \quad \underset{\mathrm{T} 2}{\approx} \quad \frac{2 \sinh (n \pi)}{\pi} \sum_{m=1}^{\infty} \frac{m(-1)^{m+1}}{n^{2}+m^{2}} \cdot \sin (m \pi-m y)
$$

$$
=\quad \frac{2 \sinh (n \pi)}{\pi} \sum_{m=1}^{\infty} \frac{m}{n^{2}+m^{2}} \cdot \sin (m y)
$$

because $\sin (m \pi-n y)=\sin (m \pi) \cos (n y)-\cos (m \pi) \sin (n y)=(-1)^{m+1} \sin (n y)$.
Substituting this into (12B.5) yields:

$$
\begin{align*}
w(x, y) & \widetilde{\mathrm{T} 2} \\
& \frac{80}{\pi^{2}} \sum_{\substack{n=1 \\
n \text { odd }}}^{\infty} \sum_{m=1}^{\infty} \frac{m \cdot \sinh (n \pi)}{n \cdot \sinh (n \pi)\left(n^{2}+m^{2}\right)} \sin (n x) \cdot \sin (m y) \tag{12B.6}\\
& =\frac{80}{\pi^{2}} \sum_{\substack{n=1 \\
n \text { odd }}}^{\infty} \sum_{m=1}^{\infty} \frac{m \cdot \sin (n x) \cdot \sin (m y)}{n \cdot\left(n^{2}+m^{2}\right)}
\end{align*}
$$

Now, the initial temperature distribution is the constant function with value 70. Take the two-dimensional sine series from Example 9A.2 on page 182, and multiply it by 70 , to obtain:

$$
f(x, y)=70 \quad \underset{\mathrm{I} 2}{\approx} \frac{1120}{\pi^{2}} \sum_{\substack{n, m=1 \\ \text { both odd }}}^{\infty} \frac{1}{n \cdot m} \sin (n x) \sin (m y)
$$

Thus,

$$
\begin{aligned}
g(x, y) & =f(x, y)-w(x, y) \\
& \approx \frac{1120}{\pi^{2}} \sum_{\substack{n, m=1 \\
\text { both odd }}}^{\infty} \frac{\sin (n x) \cdot \sin (m y)}{n \cdot m}-\frac{80}{\pi^{2}} \sum_{\substack{n=1 \\
n \text { odd }}}^{\infty} \sum_{m=1}^{\infty} \frac{m \cdot \sin (n x) \cdot \sin (m y)}{n \cdot\left(n^{2}+m^{2}\right)}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
v(x, y ; t) \approx \frac{1120}{\pi^{2}} \sum_{\substack{n, m=1 \\
\text { both odd }}}^{\infty} & \frac{\sin (n x) \cdot \sin (m y)}{n \cdot m} \exp \left(-\left(n^{2}+m^{2}\right) t\right) \\
& -\frac{80}{\pi^{2}} \sum_{\substack{n=1 \\
n \text { odd }}}^{\infty} \sum_{m=1}^{\infty} \frac{m \cdot \sin (n x) \cdot \sin (m y)}{n \cdot\left(n^{2}+m^{2}\right)} \exp \left(-\left(n^{2}+m^{2}\right) t\right)
\end{aligned}
$$

If we combine the second term in this expression with (12B.6), we get the final answer:

$$
\begin{aligned}
u(x, y ; t)= & v(x, y ; t)+w(x, y) \\
\approx \frac{1120}{\pi^{2}} & \sum_{\substack{n, m=1 \\
\text { both odd }}}^{\infty} \frac{\sin (n x) \cdot \sin (m y)}{n \cdot m} \exp \left(-\left(n^{2}+m^{2}\right) t\right) \\
& +\frac{80}{\pi^{2}} \sum_{\substack{n=1 \\
n \text { odd }}}^{\infty} \sum_{m=1}^{\infty} \frac{m \cdot \sin (n x) \cdot \sin (m y)}{n \cdot\left(n^{2}+m^{2}\right)}\left[1-\exp \left(-\left(n^{2}+m^{2}\right) t\right)\right]
\end{aligned}
$$

12C The Poisson problem on a square

12C(i) Homogeneous boundary conditions

Proposition 12C.1. Let $\mathbb{X}=[0, \pi] \times[0, \pi]$, and let $q: \mathbb{X} \longrightarrow \mathbb{R}$ be some function with semiuniformly convergent Fourier sine series:

$$
q(x, y) \quad \underset{\mathrm{K} 2}{\approx} \quad \sum_{n, m=1}^{\infty} Q_{n, m} \sin (n x) \sin (m y)
$$

Define the function $u: \mathbb{X} \longrightarrow \mathbb{R}$ by $u(x, y) \underset{\overline{\text { unif }}}{ } \sum_{n, m=1}^{\infty} \frac{-Q_{n, m}}{n^{2}+m^{2}} \sin (n x) \sin (m y)$, for all $(x, y) \in \mathbb{X}$.

Then u is the unique solution to the Poisson equation " $\triangle u(x, y)=q(x, y)$ ", satisfying homogeneous Dirichlet boundary conditions $u(x, 0)=u(0, y)=u(x, \pi)=$ $u(\pi, y)=0$.

Proof. Exercise 12C. 1 (a) Use Proposition 0F. 1 on page 565 to show that u satisfies the Poisson equation on int (\mathbb{X}).
(b) Use Proposition 9A.3(e) on page 183 to show that u satisfies homogeneous Dirichlet $B C$.
(c) Apply Theorem 5D.5(a) on page 88 to conclude that this solution is unique.

Example 12C.2. A nuclear submarine beneath the Arctic Ocean has jettisoned a fuel rod from its reactor core (Figure 12C.1). The fuel rod is a very long, narrow, enriched uranium bar with square cross section. The radioactivity causes the fuel rod to be uniformly heated from within at a rate of Q, but the rod is immersed in freezing Arctic water. We want to compute its internal temperature distribution.

Answer: The rod is immersed in freezing cold water, and is a good conductor, so we can assume that its outer surface takes the the surrounding water temperature of 0 degrees. Hence, we assume homogeneous Dirichlet boundary conditions.

Endow the rod with coordinate system (x, y, z), where z runs along the length of the rod. Since the rod is extremely long relative to its cross-section, we can neglect the z coordinate, and reduce to a 2 -dimensional equation. The uniform heating is described by a constant function: $q(x, y)=Q$. From Example 9A.2

Figure 12C.1: A jettisoned fuel rod in the Arctic Ocean
on page 182, know that the constant function 1 has two-dimensional Fourier sine series:

$$
1 \underset{\mathrm{I} 2}{ } \frac{16}{\pi^{2}} \sum_{\substack{n, m=1 \\ \text { both odd }}}^{\infty} \frac{1}{n \cdot m} \sin (n x) \sin (m y)
$$

Thus, $q(x, y) \underset{\mathrm{I} 2}{\widetilde{(2)}} \frac{16 Q}{\pi^{2}} \sum_{\substack{n, m=1 \\ \text { both odd }}}^{\infty} \frac{1}{n \cdot m} \sin (n x) \sin (m y)$. The temperature distribution must satisfy Poisson's equation. Thus, the temperature distribution is:
$u(x, y) \underset{\overline{\text { unif }}}{\overline{ }} \frac{-16 Q}{\pi^{2}} \sum_{\substack{n, m=1 \\ \text { both odd }}}^{\infty} \frac{1}{n \cdot m \cdot\left(n^{2}+m^{2}\right)} \sin (n x) \sin (m y)$.
Example 12C.3. Suppose $q(x, y)=x \cdot y$. Then the solution to the Poisson equation $\Delta u=q$ on the square, with homogeneous Dirichlet boundary conditions, is given by:

$$
u(x, y) \equiv \overline{\overline{\text { unif }}} 4 \sum_{n, m=1}^{\infty} \frac{(-1)^{n+m+1}}{n m \cdot\left(n^{2}+m^{2}\right)} \sin (n x) \sin (m y)
$$

To see this, recall from Example 9A.1 on page 179 that the two-dimensional Fourier sine series for $q(x, y)$ is:

$$
x y \quad \underset{\mathrm{I} 2}{\approx} 4 \sum_{n, m=1}^{\infty} \frac{(-1)^{n+m}}{n m} \sin (n x) \sin (m y) .
$$

Now apply Proposition 12C.1.

Proposition 12C.4. Let $\mathbb{X}=[0, \pi] \times[0, \pi]$, and let $q: \mathbb{X} \longrightarrow \mathbb{R}$ be some function with semiuniformly convergent Fourier cosine series:

$$
q(x, y) \quad \underset{\mathrm{T} 2}{\approx} \quad \sum_{n, m=0}^{\infty} Q_{n, m} \cos (n x) \cos (m y) .
$$

Suppose that $Q_{0,0}=0$. Fix some constant $K \in \mathbb{R}$, and define the function $u: \mathbb{X} \longrightarrow \mathbb{R}$ by
for all $(x, y) \in \mathbb{X}$. Then u is a solution to the Poisson equation " $\triangle u(x, y)=$ $q(x, y) "$, satisfying homogeneous Neumann boundary conditions $\partial_{y} u(x, 0)=$ $\partial_{x} u(0, y)=\partial_{y} u(x, \pi)=\partial_{x} u(\pi, y)=0$.

Furthermore, all solutions to this Poisson equation with these boundary conditions have the form (12C.1).

If $Q_{0,0} \neq 0$, however, the problem has no solution.
Proof. Exercise 12C. 2 (a) Use Proposition 0F. 1 on page 565 to show that u satisfies the Poisson equation on int (\mathbb{X}).
(b) Use Proposition 9 A .3 on page 183 to show that u satisfies homogeneous Neumann BC.
(c) Apply Theorem 5D.5(c) on page 88 to conclude that this solution is unique up to addition of a constant.

Exercise 12C.3. Mathematically, it is clear that the solution of Proposition 12C.4 cannot be well-defined if $Q_{0,0} \neq 0$. Provide a physical explanation for why this is to be expected.

Example 12C.5. Suppose $q(x, y)=\cos (2 x) \cdot \cos (3 y)$. Then the solution to the Poisson equation $\Delta u=q$ on the square, with homogeneous Neumann boundary conditions, is given by:

$$
u(x, y)=\frac{-\cos (2 x) \cdot \cos (3 y)}{13}
$$

To see this, note that the two-dimensional Fourier Cosine series of $q(x, y)$ is just $\cos (2 x) \cdot \cos (3 y)$. In other words, $A_{2,3}=1$, and $A_{n, m}=0$ for all other n and m. In particular, $A_{0,0}=0$, so we can apply Proposition 12C.4 to conclude: $u(x, y)=\frac{-\cos (2 x) \cdot \cos (3 y)}{2^{2}+3^{2}}=\frac{-\cos (2 x) \cdot \cos (3 y)}{13}$.

12C(ii) Nonhomogeneous boundary conditions

Prerequisites: $\S 12 \mathrm{C}(\mathrm{i})$, , $\S 12 \mathrm{~A}$. Recommended: $\S 12 \mathrm{~B}(\mathrm{ii)}$.

Proposition 12C.6. (Poisson equation on box; nonhomogeneous Dirichlet BC) Let $\mathbb{X}=[0, \pi] \times[0, \pi]$. Let $q: \mathbb{X} \longrightarrow \mathbb{R}$ and $L, R, T, B:[0, \pi] \longrightarrow \mathbb{R}$ be functions. Consider the Poisson equation

$$
\begin{equation*}
\triangle u(x, y)=q(x, y), \tag{12C.2}
\end{equation*}
$$

with nonhomogeneous Dirichlet boundary conditions:

$$
\begin{array}{rlll}
u(x, \pi) & =T(x) & \text { and } \quad u(x, 0) & =B(x), \tag{12C.3}\\
& \text { for all } x \in[0, \pi] \\
u(0, y) & =L(y) & \text { and } \quad u(\pi, y) & =R(y), \\
\text { for all } y \in[0, \pi]
\end{array}
$$

(see Figure 12A.1(B) on page 249). This problem is solved as follows:

1. Let $v(x, y)$ be the solution ${ }^{[3]}$ to the Poisson equation (12C.2) with homogeneous Dirichlet BC: $v(x, 0)=v(0, y)=v(x, \pi)=v(\pi, y)=0$.
2. Let $w(x, y)$ be the solution ${ }^{(7)}$ to Laplace Eqation " $\triangle w(x, y)=0$ ", with the nonhomogeneous Dirichlet BC (12C.3).
3. Define $u(x, y):=v(x, y)+w(x, y)$; then $u(x, y)$ is a solution to the Poisson problem with the nonhomogeneous Dirichlet BC (12C.3).

Proof. Exercise 12C. 4

Example 12C.7. Suppose $q(x, y)=x \cdot y$. Find the solution to the Poisson equation $\triangle u=q$ on the square, with nonhomogeneous Dirichlet boundary conditions:

$$
\begin{align*}
u(0, y) & =0 ; \quad u(\pi, y)=0 ; \quad u(x, 0)=0 ; \tag{12C.4}\\
u(x, \pi)=T(x) & =\left\{\begin{array}{cl}
x & \text { if } 0 \leq x \leq \frac{\pi}{2} \\
\frac{\pi}{2}-x & \text { if } \frac{\pi}{2}<x \leq \pi
\end{array} \quad\right. \text { (see Figure 7C.4(B) on page 154) } \tag{12C.5}
\end{align*}
$$

Solution: In Example 12C.3, we found the solution to the Poisson equation $\Delta v=q$, with homogeneous Dirichlet boundary conditions; it was:

$$
v(x, y) \equiv \overline{\overline{\text { unif }}} 4 \sum_{n, m=1}^{\infty} \frac{(-1)^{n+m+1}}{n m \cdot\left(n^{2}+m^{2}\right)} \sin (n x) \sin (m y) .
$$

[^47]In Example 12A.6 on page 246, we found the solution to the Laplace equation $\Delta w=0$, with nonhomogeneous Dirichlet boundary conditions (12C.4) and (12C.5); it was:

$$
w(x, y) \quad \underset{\mathrm{L} 2}{\approx} \frac{4}{\pi} \sum_{\substack{n=1 \\ n=0 \text { odd; } \\ n=2 k+1}}^{\infty} \frac{(-1)^{k}}{n^{2} \sinh (n \pi)} \sin (n x) \sinh (n y)
$$

Thus, according to Proposition 12C.6 on the facing page, the solution to the nonhomogeneous Poisson problem is:

$$
\begin{aligned}
& u(x, y)=v(x, y)+w(x, y) \\
& \underset{\mathrm{L} 2}{ } 4 \sum_{n, m=1}^{\infty} \frac{(-1)^{n+m+1}}{n m \cdot\left(n^{2}+m^{2}\right)} \sin (n x) \sin (m y)+\frac{4}{\pi} \sum_{\substack{n=1 \\
n \text { odd; } \\
n=2 k+1}}^{\infty} \frac{(-1)^{k}}{n^{2} \sinh (n \pi)} \sin (n x) \sinh (n y) \\
& \diamond
\end{aligned}
$$

12D The wave equation on a square (the square drum)

Imagine a drumskin stretched tightly over a square frame. At equilibrium, the drumskin is perfectly flat, but if we strike the skin, it will vibrate, meaning that the membrane will experience vertical displacements from equilibrium. Let $\mathbb{X}=[0, \pi] \times[0, \pi]$ represent the square skin, and for any point $(x, y) \in \mathbb{X}$ on the drumskin and time $t>0$, let $u(x, y ; t)$ be the vertical displacement of the drum. Then u will obey the two-dimensional wave equation:

$$
\begin{equation*}
\partial_{t}^{2} u(x, y ; t)=\triangle u(x, y ; t) \tag{12D.1}
\end{equation*}
$$

However, since the skin is held down along the edges of the box, the function u will also exhibit homogeneous Dirichlet boundary conditions

$$
\left.\begin{array}{r}
u(x, \pi ; t)=0 \quad \text { and } \quad u(x, 0 ; t)=0, \quad \text { for all } x \in[0, \pi] \tag{12D.2}\\
u(0, y ; t)=0 \quad \text { and } \quad u(\pi, y ; t)=0, \text { for all } y \in[0, \pi]
\end{array}\right\} \quad \text { for all } t>0
$$

Proposition 12D.1. (Initial Position for Square Drumskin)

Let $\mathbb{X}=[0, \pi] \times[0, \pi]$, and let $f_{0}: \mathbb{X} \longrightarrow \mathbb{R}$ be a function describing the initial displacement of the drumskin. Suppose f_{0} has Fourier Sine Series
$f_{0}(x, y) \xlongequal[\overline{\overline{u n i f}}]{ } \sum_{n, m=1}^{\infty} B_{n, m} \sin (n x) \sin (m y)$, such that:

$$
\begin{equation*}
\sum_{n, m=1}^{\infty}\left(n^{2}+m^{2}\right)\left|B_{n, m}\right|<\infty . \tag{12D.3}
\end{equation*}
$$

Define the function $w: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by

$$
\begin{equation*}
w(x, y ; t) \underset{\overline{\text { unif }}}{ } \sum_{n, m=1}^{\infty} B_{n, m} \sin (n x) \cdot \sin (m y) \cdot \cos \left(\sqrt{n^{2}+m^{2}} \cdot t\right), \tag{12D.4}
\end{equation*}
$$

for all $(x, y) \in \mathbb{X}$ and $t \geq 0$. Then series (12D.4) converges uniformly, and $w(x, y ; t)$ is the unique solution to the wave equation (12D.1), satisfying the Dirichlet boundary conditions (12D.2), as well as

$$
\begin{aligned}
& \text { Initial Position: } \left.\begin{array}{rl}
w(x, y, 0) & =f_{0}(x, y), \\
\text { Initial Velocity: } \partial_{t} w(x, y, 0) & =0,
\end{array}\right\} \quad \text { for all }(x, y) \in \mathbb{X} .
\end{aligned}
$$

Proof. Exercise 12D. 1 (a) Use the hypothesis (12D.3) and Proposition 0F. 1 on page 565 to conclude that
$\partial_{t}^{2} w(x, y ; t) \xlongequal[\overline{\text { unif }}]{ }-\sum_{n, m=1}^{\infty}\left(n^{2}+m^{2}\right) \cdot B_{n, m} \sin (n x) \cdot \sin (m y) \cdot \cos \left(\sqrt{n^{2}+m^{2}} \cdot t\right) \xlongequal[\overline{\text { unit }}]{\bar{L}} \triangle w(x, y ; t)$
for all $(x, y) \in \mathbb{X}$ and $t>0$.
(b) Check that the Fourier series (12D.4) converges uniformly.
(c) Use Theorem 9A.3(d) [ii] on page 183 to conclude that w satisfies Dirichlet boundary conditions.
(d) Set $t=0$ to check the initial position.
(e) Set $t=0$ and use Proposition 0F.1 on page 565 to check initial velocity.
(f) Apply Theorem 5D.11 on page 94 to show that this solution is unique.

Example 12D.2. Suppose $f_{0}(x, y)=\sin (2 x) \cdot \sin (3 y)$. Then the solution to the wave equation on the square, with initial position f_{0}, and homogeneous Dirichlet boundary conditions, is given by:

$$
w(x, y ; t)=\sin (2 x) \cdot \sin (3 y) \cdot \cos (\sqrt{13} t) .
$$

To see this, note that the two-dimensional Fourier sine series of $f_{0}(x, y)$ is just $\sin (2 x) \cdot \sin (3 y)$. In other words, $B_{2,3}=1$, and $B_{n, m}=0$ for all other n and m. Apply Proposition 12D. 1 to conclude: $w(x, y ; t)=\sin (2 x) \cdot \sin (3 y)$. $\cos \left(\sqrt{2^{2}+3^{2}} t\right)=\sin (2 x) \cdot \sin (3 y) \cdot \cos (\sqrt{13} t)$.

Proposition 12D.3. (Initial Velocity for Square Drumskin)

Let $\mathbb{X}=[0, \pi] \times[0, \pi]$, and let $f_{1}: \mathbb{X} \longrightarrow \mathbb{R}$ be a function describing the initial velocity of the drumskin. Suppose f_{1} has Fourier Sine Series $f_{1}(x, y) \overline{\overline{\text { unif }}}$ $\sum_{n, m=1}^{\infty} B_{n, m} \sin (n x) \sin (m y)$, such that

$$
\begin{equation*}
\sum_{n, m=1}^{\infty} \sqrt{n^{2}+m^{2}} \cdot\left|B_{n, m}\right|<\infty \tag{12D.5}
\end{equation*}
$$

Define the function $v: \mathbb{X} \times \mathbb{R}_{\not} \longrightarrow \mathbb{R}$ by:

$$
\begin{equation*}
v(x, y ; t) \overline{\overline{\text { unif }}} \sum_{n, m=1}^{\infty} \frac{B_{n, m}}{\sqrt{n^{2}+m^{2}}} \sin (n x) \cdot \sin (m y) \cdot \sin \left(\sqrt{n^{2}+m^{2}} \cdot t\right) \tag{12D.6}
\end{equation*}
$$

for all $(x, y) \in \mathbb{X}$ and $t \geq 0$. Then the series (12D.6) converges uniformly, and $v(x, y ; t)$ is the unique solution to the wave equation (12D.1), satisfying the Dirichlet boundary conditions (12D.2), as well as

$$
\left.\begin{array}{l}
\text { Initial Position: } \quad v(x, y, 0)=0 \\
\text { Initial Velocity: } \quad \partial_{t} v(x, y, 0)=f_{1}(x, y) .
\end{array}\right\} \quad \text { for all }(x, y) \in \mathbb{X}
$$

Proof. Exercise 12D. 2 (a) Use the hypothesis (12D.5) and Proposition 0F.1 on page 565 to conclude that

$$
\begin{aligned}
\partial_{t}^{2} v(x, y ; t) & \overline{\overline{\overline{\text { unif }}}} \quad-\sum_{n, m=1}^{\infty} \sqrt{n^{2}+m^{2}} \cdot B_{n, m} \sin (n x) \cdot \sin (m y) \cdot \cos \left(\sqrt{n^{2}+m^{2}} \cdot t\right) \\
& \overline{\overline{\overline{\text { unif }}}} \quad \triangle v(x, y ; t)
\end{aligned}
$$

for all $(x, y) \in \mathbb{X}$ and $t>0$.
(b) Check that the Fourier series (12D.6) converges uniformly.
(c) Use Theorem 9A.3(d)[ii] on page 183 to conclude that $v(x, y ; t)$ satisfies Dirichlet boundary conditions.
(d) Set $t=0$ to check the initial position.
(e) Set $t=0$ and use Proposition 0F. 1 on page 565 to check initial velocity.
(f) Apply Theorem 5D.11 on page 94 to show that this solution is unique.

Remark. Note that it is important in these theorems not only for the Fourier series (12D.4) and (12D.6) to converge uniformly, but also for their formal second derivative series to converge uniformly. This is not guaranteed. This is the reason for imposing the hypotheses (12D.3) and (12D.5).

Example 12D.4. Suppose

$$
f_{1}(x, y)=\frac{16}{\pi^{2}} \sum_{\substack{n, m=1 \\ \text { both odd }}}^{99} \frac{1}{n \cdot m} \sin (n x) \sin (m y)
$$

(This is a partial sum of the two-dimensional Fourier sine series for the constant function $\widetilde{f}_{1}(x, y) \equiv 1$, from Example 9A.2 on page 182). Then the solution to the two-dimensional wave equation, with homogeneous Dirichlet boundary conditions and initial velocity f_{1}, is given:

$$
w(x, y ; t) \quad \underset{\mathrm{L} 2}{\approx} \frac{16}{\pi^{2}} \sum_{\substack{n, m=1 \\ \text { both odd }}}^{99} \frac{1}{n \cdot m \cdot \sqrt{n^{2}+m^{2}}} \sin (n x) \sin (m y) \sin \left(\sqrt{n^{2}+m^{2}} \cdot t\right)
$$

Question: Why can't we apply Theorem 12D.3 to the full Fourier series for the function $f_{1}=1$? (Hint: Is (12D.5) satisfied?)

Question: For the solutions of the heat equation and Poisson equation, in Propositions 12B.1, 12B.3, and 12C.1, we did not need to impose explicit hypotheses guaranteeing the uniform convergence of the given series (and its derivatives). But we do need explicit hypotheses to get convergence for the wave equation. Why is this?

12E Practice problems

1. Let $f(y)=4 \sin (5 y)$ for all $y \in[0, \pi]$.
(a) Solve the two-dimensional Laplace Equation $(\triangle u=0)$ on the square domain $\mathbb{X}=[0, \pi] \times[0, \pi]$, with nonhomogeneous Dirichlet boundary conditions:

$$
\begin{array}{lllll}
u(x, 0)=0 & \text { and } & u(x, \pi) & =0, & \text { for all } x \in[0, \pi] \\
u(0, y)=0 & \text { and } & u(\pi, y)=f(y), & \text { for all } y \in[0, \pi] .
\end{array}
$$

(b) Verify your solution to part (a) (i.e. check boundary conditions, Laplacian, etc.).
2. Let $f_{1}(x, y)=\sin (3 x) \sin (4 y)$.
(a) Solve the two-dimensional wave equation $\left(\partial_{t}^{2} u=\Delta u\right)$ on the square domain $\mathbb{X}=[0, \pi] \times[0, \pi]$, with on the square domain $\mathbb{X}=$ $[0, \pi] \times[0, \pi]$, with homogeneous Dirichlet boundary conditions, and initial conditions:

$$
\begin{array}{crll}
\text { Initial position: } & u(x, y, 0) & =0 & \text { for all }(x, y) \in \mathbb{X} \\
\text { Initial velocity: } & \partial_{t} u(x, y, 0) & =f_{1}(x, y) & \text { for all }(x, y) \in \mathbb{X}
\end{array}
$$

(b) Verify your that solution in part (a) satisfies the required initial conditions (don't worry about boundary conditions or checking the wave equation).
3. Solve the two-dimensional Laplace Equation $\triangle h=0$ on the square domain $\mathbb{X}=[0, \pi]^{2}$, with inhomogeneous Dirichlet boundary conditions:
(a) $h(\pi, y)=\sin (2 y)$ and $h(0, y)=0, \quad$ for all $y \in[0, \pi]$;
$h(x, 0)=0=h(x, \pi) \quad$ for all $x \in[0, \pi]$.
(b) $h(\pi, y)=0$ and $h(0, y)=\sin (4 y), \quad$ for all $y \in[0, \pi]$;
$h(x, \pi)=\sin (3 x) ; \quad h(x, 0)=0, \quad$ for all $x \in[0, \pi]$.
4. Let $\mathbb{X}=[0, \pi]^{2}$ and let $q(x, y)=\sin (x) \cdot \sin (3 y)+7 \sin (4 x) \cdot \sin (2 y)$. Solve the Poisson Equation $\triangle u(x, y)=q(x, y)$. with homogeneous Dirichlet boundary conditions.
5. Let $\mathbb{X}=[0, \pi]^{2}$. Solve the heat equation $\partial_{t} u(x, y ; t)=\triangle u(x, y ; t)$ on \mathbb{X}, with initial conditions $u(x, y ; 0)=\cos (5 x) \cdot \cos (y)$. and homogeneous Neumann boundary conditions.
6. Let $f(x, y)=\cos (2 x) \cos (3 y)$. Solve the following boundary value problems on the square domain $\mathbb{X}=[0, \pi]^{2}$ (Hint: see problem $\# 3$ of $\left.\S 9 \mathrm{C}\right)$.
(a) Solve the two-dimensional heat equation $\partial_{t} u=\triangle u$, with homogeneous Neumann boundary conditions, and initial conditions $u(x, y ; 0)=$ $f(x, y)$.
(b) Solve the two-dimensional wave equation $\partial_{t}^{2} u=\Delta u$, with homogeneous Dirichlet boundary conditions, initial position $w(x, y ; 0)=$ $f(x, y)$ and initial velocity $\partial_{t} w(x, y ; 0)=0$.
(c) Solve the two-dimensional Poisson Equation $\Delta u=f$ with homogeneous Neumann boundary conditions.
(d) Solve the two-dimensional Poisson Equation $\triangle u=f$ with homogeneous Dirichlet boundary conditions.
(e) Solve the two-dimensional Poisson Equation $\Delta v=f$ with inhomogeneous Dirichlet boundary conditions:

$$
\begin{array}{cccc}
v(\pi, y)=\sin (2 y) ; & v(0, y)=0 & \text { for all } y \in[0, \pi] . \\
v(x, 0)=0 & =v(x, \pi) & \text { for all } x \in[0, \pi] .
\end{array}
$$

7. $\mathbb{X}=[0, \pi]^{2}$ be the box of sidelength π. Let $f(x, y)=\sin (3 x) \cdot \sinh (3 y)$. (Hint: see problem \# I $_{1}$ of $\S 9 \mathrm{C}$).
(a) Solve the heat equation on \mathbb{X}, with initial conditions $u(x, y ; 0)=$ $f(x, y)$, and homogeneous Dirichlet boundary conditions.
(b) Let $T(x)=\sin (3 x)$. Solve the Laplace Equation $\triangle u(x, y)=0$ on the box, with inhomogeneous Dirichlet boundary conditions: $u(x, \pi)=T(x)$ and $u(x, 0)=0$ for $x \in[0, \pi] ; u(0, y)=0=$ $u(\pi, y)$, for $y \in[0, \pi]$.
(c) Solve the heat equation on the box with initial conditions on the box \mathbb{X}, with initial conditions $u(x, y ; 0)=0$, and the same inhomogeneous Dirichlet boundary conditions as in part (b).

Chapter 13

Boundary value problems on a cube

"Mathematical Analysis is as extensive as nature herself." -Jean Joseph Fourier
The Fourier series technique used to solve BVPs on a square box extends readily to 3 -dimensional cubes, and indeed, to rectilinear domains in any number of dimensions. As in Chapter 12, we will confine our exposition to the cube $[0, \pi]^{3}$, and assume that the physical constants in the various equations are all set to one. Thus, the heat equation becomes " $\partial_{t} u=\triangle u$ ", the wave equation is " $\partial_{t}^{2} u=\Delta u$ ", etc. This allows us to develop the solution methods with minimum technicalities. The extension of each solution method to equations with arbitrary physical constants on an arbitrary box $[0, X] \times[0, Y] \times[0, Z]$ (for some $X, Y, Z>$ 0) is left as a straightforward (but important!) exercise.

We will use the following notation:

- The cube of dimensions $\pi \times \pi \times \pi$ is denoted $\mathbb{X}=[0, \pi] \times[0, \pi] \times[0, \pi]=$ $[0, \pi]^{3}$.
- A point in the cube will be indicated by a vector $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$, where $0 \leq x_{1}, x_{2}, x_{3} \leq \pi$.
- If $f: \mathbb{X} \longrightarrow \mathbb{R}$ is a function on the cube, then

$$
\triangle f(\mathbf{x})=\partial_{1}^{2} f(\mathbf{x})+\partial_{2}^{2} f(\mathbf{x})+\partial_{3}^{2} f(\mathbf{x})
$$

- A triple of natural numbers will be denoted by $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right)$, where $n_{1}, n_{2}, n_{3} \in \mathbb{N}:=\{0,1,2,3,4, \ldots\}$. Let \mathbb{N}^{3} be the set of all triples $\mathbf{n}=$ $\left(n_{1}, n_{2}, n_{3}\right)$, where $n_{1}, n_{2}, n_{3} \in \mathbb{N}$. Thus, an expression of the form

$$
\sum_{\mathbf{n} \in \mathbb{N}^{3}}(\text { something about } \mathbf{n})
$$

should be read as: " $\sum_{n_{1}=0}^{\infty} \sum_{n_{2}=0}^{\infty} \sum_{n_{3}=0}^{\infty}\left(\right.$ something about $\left.\left(n_{1}, n_{2}, n_{3}\right)\right)$ ".
Let $\mathbb{N}_{+}:=\{1,2,3,4, \ldots\}$ be the set of nonzero natural numbers, and let \mathbb{N}_{+}^{3} be the set of all such triples. Thus, an expression of the form

$$
\sum_{\mathbf{n} \in \mathbb{N}_{+}^{3}}(\text { something about } \mathbf{n})
$$

should be read as: " $\sum_{n_{1}=1}^{\infty} \sum_{n_{2}=1}^{\infty} \sum_{n_{3}=1}^{\infty}\left(\right.$ something about $\left.\left(n_{1}, n_{2}, n_{3}\right)\right)$ ".

- For any $\mathbf{n} \in \mathbb{N}_{+}^{3}, \mathbf{S}_{\mathbf{n}}(\mathbf{x})=\sin \left(n_{1} x_{1}\right) \cdot \sin \left(n_{2} x_{2}\right) \cdot \sin \left(n_{3} x_{3}\right)$. The Fourier sine series of a function $f(\mathbf{x})$ thus has the form: $f(\mathbf{x})=\sum_{\mathbf{n} \in \mathbb{N}_{+}^{3}} B_{\mathbf{n}} \mathbf{S}_{\mathbf{n}}(\mathbf{x})$
- For any $\mathbf{n} \in \mathbb{N}^{3}, \quad \mathbf{C}_{\mathbf{n}}(\mathbf{x})=\cos \left(n_{1} x_{1}\right) \cdot \cos \left(n_{2} x_{2}\right) \cdot \cos \left(n_{3} x_{3}\right)$. The Fourier cosine series of a function $f(\mathbf{x})$ thus has the form: $f(\mathbf{x})=\sum_{\mathbf{n} \in \mathbb{N}^{3}} A_{\mathbf{n}} \mathbf{C}_{\mathbf{n}}(\mathbf{x})$
- For any $\mathbf{n} \in \mathbb{N}^{3}$, let $\|\mathbf{n}\|=\sqrt{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}}$. In particular, note that:

$$
\triangle \mathbf{S}_{\mathbf{n}}=-\|\mathbf{n}\|^{2} \cdot \mathbf{S}_{\mathbf{n}}, \quad \text { and } \quad \triangle \mathbf{C}_{\mathbf{n}}=-\|\mathbf{n}\|^{2} \cdot \mathbf{C}_{\mathbf{n}}
$$

(Exercise 13.1)

13A The heat equation on a cube

Proposition 13A.1. (Heat equation; homogeneous Dirichlet BC)

Consider the cube $\mathbb{X}=[0, \pi]^{3}$, and let $f: \mathbb{X} \longrightarrow \mathbb{R}$ be some function describing an initial heat distribution. Suppose f has Fourier sine series $f(\mathbf{x}) \underset{\mathrm{I} 2}{\widetilde{n} \in \mathbb{N}_{+}^{3}} B_{\mathbf{n}} \mathbf{S}_{\mathbf{n}}(\mathbf{x})$. Define the function $u: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by:

$$
u(\mathbf{x} ; t) \underset{\mathrm{I} 2}{\widetilde{\mathrm{I}}} \sum_{\mathbf{n} \in \mathbb{N}_{+}^{3}} B_{\mathbf{n}} \mathbf{S}_{\mathbf{n}}(\mathbf{x}) \cdot \exp \left(-\|\mathbf{n}\|^{2} \cdot t\right)
$$

Then u is the unique solution to the heat equation " $\partial_{t} u=\triangle u$ ", with homogeneous Dirichlet boundary conditions

$$
\begin{aligned}
u\left(x_{1}, x_{2}, 0 ; t\right) & \left.=u\left(x_{1}, x_{2}, \pi ; t\right)=u\left(x_{1}, 0, x_{3} ; t\right) \quad \text { (see Figure 13A.1A }\right) \\
& =u\left(x_{1}, \pi, x_{3} ; t\right)=u\left(0, x_{2}, x_{3} ; t\right)=u\left(\pi, x_{2}, x_{3}, ; t\right)=0,
\end{aligned}
$$

Figure 13A.1: Boundary conditions on a cube: (A) Dirichlet. (B) Neumann.
and initial conditions: $u(\mathbf{x} ; 0)=f(\mathbf{x})$.
Furthermore, the series defining u converges semiuniformly on $\mathbb{X} \times \mathbb{R}_{+}$.

Proof. Exercise 13A. 1

Example: An ice cube of dimensions $\pi \times \pi \times \pi$ is removed from a freezer (ambient temperature $-10^{\circ} \mathrm{C}$) and dropped into a pitcher of freshly brewed tea (initial temperature $+90^{\circ} \mathrm{C}$). We want to compute how long it takes the ice cube to melt.
Answer: We will assume that the cube has an initially uniform temperature of $-10^{\circ} \mathrm{C}$ and is completely immersed in the teat . We will also assume that the pitcher is large enough that its temperature doesn't change during the experiment.

We assume the outer surface of the cube takes the temperature of the surrounding tea. By subtracting 90 from the temperature of the cube and the water, we can set the water to have temperature 0 and the cube, -100 . Hence, we assume homogeneous Dirichlet boundary conditions; the initial temperature distribution is a constant function: $f(\mathbf{x})=-100$. The constant function -100 has Fourier sine series:

$$
-100 \underset{\mathrm{~T} 2}{\approx} \frac{-6400}{\pi^{3}} \sum_{\substack{\mathbf{n} \in \mathbb{N}_{+}^{3} \text { add } \\ n_{1}, n_{2}, n_{3} \text { all odd }}}^{\infty} \frac{1}{n_{1} n_{2} n_{3}} \mathbf{S}_{\mathbf{n}}(\mathbf{x}) .
$$

(Exercise 13A. 2 Verify this Fourier series). Let κ be the thermal conductivity

[^48]of the ice. Thus, the time-varying thermal profile of the cube is given
$$
u(\mathbf{x} ; t) \underset{\mathrm{T} 2}{\widetilde{\mathrm{I}}} \frac{-6400}{\pi^{3}} \sum_{\substack{\mathbf{n} \in \mathbb{N}_{+}^{3} \\ n_{1}, n_{2}, n_{3} \text { all odd }}}^{\infty} \frac{1}{n_{1} n_{2} n_{3}} \mathbf{S}_{\mathbf{n}}(\mathbf{x}) \exp \left(-\|\mathbf{n}\|^{2} \cdot \kappa \cdot t\right) .
$$

Thus, to determine how long it takes the cube to melt, we must solve for the minimum value of t such that $u(\mathbf{x}, t)>-90$ everywhere (recall than -90 corresponds to 0° C.). The coldest point in the cube is always at its center (Exercise 13A.3), which has coordinates $\left(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}\right)$, so we need to solve for t in the inequality $u\left(\left(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}\right) ; t\right) \geq-90$, which is equivalent to

$$
\begin{aligned}
\frac{90 \cdot \pi^{3}}{6400} & \geq \sum_{\substack{\mathbf{n} \in \mathbb{N}_{+}^{3} \\
n_{1}, n_{2}, n_{3} \text { all odd }}}^{\infty} \frac{1}{n_{1} n_{2} n_{3}} \mathbf{S}_{\mathbf{n}}\left(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}\right) \exp \left(-\|\mathbf{n}\|^{2} \cdot \kappa \cdot t\right) \\
& =\sum_{\substack{\mathbf{n} \in \mathbb{N}_{+}^{3} \\
n_{1}, n_{2}, n_{3} \text { all odd }}}^{\infty} \frac{1}{n_{1} n_{2} n_{3}} \sin \left(\frac{n_{1} \pi}{2}\right) \sin \left(\frac{n_{2} \pi}{2}\right) \sin \left(\frac{n_{3} \pi}{2}\right) \exp \left(-\|\mathbf{n}\|^{2} \cdot \kappa \cdot t\right) \\
& \overline{\overline{(\overline{C C \cdot 5]}}} \sum_{k_{1}, k_{2}, k_{3} \in \mathbb{N}_{+}} \frac{(-1)^{k_{1}+k_{2}+k_{3}} \exp \left(-\kappa \cdot\left[\left(2 k_{1}+1\right)^{2}+\left(2 k_{2}+1\right)^{2}+\left(2 k_{3}+1\right)^{2}\right] \cdot t\right)}{\left(2 k_{1}+1\right) \cdot\left(2 k_{2}+1\right) \cdot\left(2 k_{3}+1\right)} .
\end{aligned}
$$

where (7C.5) is by eqn. (7C.5) on p . 147. The solution of this inequality is Exercise 13A.4.

Exercise 13A.5. Imitating Proposition 13A.1, find a Fourier series solution to the initial value problem for the free Schrödinger equation

$$
\mathbf{i} \partial_{t} \omega=\frac{-1}{2} \Delta \omega,
$$

on the cube $\mathbb{X}=[0, \pi]^{3}$, with homogeneous Dirichlet boundary conditions. Prove that your solution converges, satisfies the desired initial conditions and boundary conditions, and satisfies the Schrödinger equation.

Proposition 13A.2. (Heat equation; homogeneous Neumann BC)

[^49]

Figure 13B.1: Dirichlet boundary conditions on a cube (A) Constant; Nonhomogeneous on one side only. (B) Arbitrary nonhomogeneous on all sides.

Consider the cube $\mathbb{X}=[0, \pi]^{3}$, and let $f: \mathbb{X} \longrightarrow \mathbb{R}$ be some function describing an initial heat distribution. Suppose f has Fourier Cosine Series $f(\mathbf{x}) \underset{\mathrm{L} 2}{\widetilde{2}} \sum_{\mathbf{n} \in \mathbb{N}^{3}} A_{\mathbf{n}} \mathbf{C}_{\mathbf{n}}(\mathbf{x})$. Define the function $u: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by:

$$
u(\mathbf{x} ; t) \underset{\mathrm{I} 2}{\approx} \sum_{\mathbf{n} \in \mathbb{N}^{3}} A_{\mathbf{n}} \mathbf{C}_{\mathbf{n}}(\mathbf{x}) \cdot \exp \left(-\|\mathbf{n}\|^{2} \cdot t\right) .
$$

Then u is the unique solution to the heat equation " $\partial_{t} u=\triangle u$ ", with homogeneous Neumann boundary conditions

$$
\begin{aligned}
\partial_{3} u\left(x_{1}, x_{2}, 0 ; t\right)=\partial_{3} u\left(x_{1}, x_{2}, \pi ; t\right)=\partial_{2} u\left(x_{1}, 0, x_{3} ; t\right) & = \\
\partial_{2} u\left(x_{1}, \pi, x_{3} ; t\right)=\partial_{1} u\left(0, x_{2}, x_{3} ; t\right)=\partial_{1} u\left(\pi, x_{2}, x_{3}, ; t\right) & =0 . \quad \text { (see Figure 13A.1B) }
\end{aligned}
$$

and initial conditions: $u(\mathbf{x} ; 0)=f(\mathbf{x})$.
Furthermore, the series defining u converges semiuniformly on $\mathbb{X} \times \mathbb{R}_{+}$.

Proof. Exercise 13A. 6

13B The Dirichlet problem on a cube

Prerequisites: $\S 9 \mathrm{~B}, \S 5 \mathrm{C}(\mathrm{i}), \S(\mathrm{d}$. Recommended: $\S 7 \mathrm{C}(\mathrm{v}), \S[2 \mathrm{~A}$.

Proposition 13B.1. (Laplace Equation; one constant nonhomog. Dirichlet BC)

Let $\mathbb{X}=[0, \pi]^{3}$, and consider the Laplace equation " $\triangle u=0$ ", with nonhomogeneous Dirichlet boundary conditions (see Figure 13B.1A):

$$
\begin{align*}
u\left(x_{1}, 0, x_{3}\right)=u\left(x_{1}, \pi, x_{3}\right)=u\left(0, x_{2}, x_{3}\right)=u\left(\pi, x_{2}, x_{3},\right) & =0 \tag{13B.1}\\
u\left(x_{1}, x_{2}, 0\right) & =0 \\
u\left(x_{1}, x_{2}, \pi\right) & =1 \tag{13~B.2}
\end{align*}
$$

The unique solution to this problem is the function $u: \mathbb{X} \longrightarrow \mathbb{R}$ defined

$$
u\left(x_{1}, x_{2}, x_{3}\right) \underset{\substack{\text { I2 } \\ n, m \text { both odd }}}{\approx} \frac{16}{n m \pi \sinh \left(\pi \sqrt{n^{2}+m^{2}}\right)} \sin (n x) \sin (m y) \cdot \sinh \left(\sqrt{n^{2}+m^{2}} \cdot x_{3}\right) .
$$

for all $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{X}$. Furthermore, this series converges semiuniformly on $\operatorname{int}(\mathbb{X})$.

Proof. Exercise 13B. 1 (a) Check that the series and its formal Laplacian both converge semiuniformly on int (\mathbb{X}). (b) Check that each of the functions $u_{n, m}(\mathbb{x})=$ $\sin (n x) \sin (m y) \cdot \sinh \left(\sqrt{n^{2}+m^{2}} x_{3}\right)$ satisfies the Laplace equation and the first boundary condition (13B.1). (c) To check that the solution also satisfies the boundary condition (13B.2), subsititute $x_{2}=\pi$ to get:

$$
\begin{aligned}
u\left(x_{1}, x_{2}, \pi\right) & =\sum_{\substack{n, m=1 \\
n, m^{m} \text { both odd }}}^{\infty} \frac{16}{n m \pi \sinh \left(\pi \sqrt{n^{2}+m^{2}}\right)} \sin (n x) \sin (m y) \cdot \sinh \left(\sqrt{n^{2}+m^{2}} \pi\right) \\
& =\sum_{\substack{n, m=1 \\
n, m \text { both odd }}}^{\infty} \frac{16}{n m \pi} \sin (n x) \sin (m y) \underset{\mathrm{IL}}{\widetilde{2}} 1,
\end{aligned}
$$

because this is the Fourier sine series for the function $b\left(x_{1}, x_{2}\right)=1$, by Example 9A.2 on page 182 .
(d) Apply Theorem 5D.5(a) on page 88 to conclude that this solution is unique.

Proposition 13B.2. (Laplace Equation; arbitrary nonhomogeneous Dirichlet BC)

Let $\mathbb{X}=[0, \pi]^{3}$, and consider the Laplace equation " $\triangle h=0$ ", with nonhomogeneous Dirichlet boundary conditions (see Figure 13B.1B):

$$
\begin{aligned}
h\left(x_{1}, x_{2}, 0\right) & =D\left(x_{1}, x_{2}\right) \\
h\left(x_{1}, 0, x_{3}\right) & =S\left(x_{1}, x_{3}\right) \\
h\left(0, x_{2}, x_{3}\right) & =W\left(x_{2}, x_{3}\right)
\end{aligned}
$$

Linear Partial Differential Equations and Fourier Theory
$h\left(x_{1}, x_{2}, \pi\right)=U\left(x_{1}, x_{2}\right)$
$h\left(x_{1}, \pi, x_{3}\right)=N\left(x_{1}, x_{3}\right)$
$h\left(\pi, x_{2}, x_{3},\right)=E\left(x_{2}, x_{3}\right)$
Marcus Pivato DRAFT
January 31, 2009
where $D\left(x_{1}, x_{2}\right), U\left(x_{1}, x_{2}\right), S\left(x_{1}, x_{3}\right), N\left(x_{1}, x_{3}\right), W\left(x_{2}, x_{3}\right)$, and $E\left(x_{2}, x_{3}\right)$ are six functions. Suppose that these functions have two-dimensional Fourier sine series:

$$
\begin{aligned}
& D\left(x_{1}, x_{2}\right) \quad \underset{\mathrm{T} 2}{\widetilde{ }} \sum_{n_{1}, n_{2}=1}^{\infty} D_{n_{1}, n_{2}} \sin \left(n_{1} x_{1}\right) \sin \left(n_{2} x_{2}\right) ; \\
& U\left(x_{1}, x_{2}\right) \quad \underset{\mathrm{T} 2}{\approx} \sum_{n_{1}, n_{2}=1}^{\infty} U_{n_{1}, n_{2}} \sin \left(n_{1} x_{1}\right) \sin \left(n_{2} x_{2}\right) ; \\
& S\left(x_{1}, x_{3}\right) \quad \underset{\mathrm{I} 2}{\approx} \sum_{n_{1}, n_{3}=1}^{\infty} S_{n_{1}, n_{3}} \sin \left(n_{1} x_{1}\right) \sin \left(n_{3} x_{3}\right) ; \\
& N\left(x_{1}, x_{3}\right) \quad \underset{\mathrm{T} 2}{\approx} \sum_{n_{1}, n_{3}=1}^{\infty} N_{n_{1}, n_{3}} \sin \left(n_{1} x_{1}\right) \sin \left(n_{3} x_{3}\right) ; \\
& W\left(x_{2}, x_{3}\right) \quad \underset{\mathrm{T} 2}{\approx} \sum_{n_{2}, n_{3}=1}^{\infty} W_{n_{2}, n_{3}} \sin \left(n_{2} x_{2}\right) \sin \left(n_{3} x_{3}\right) ; \\
& E\left(x_{2}, x_{3}\right) \quad \underset{\mathrm{T} 2}{\approx} \sum_{n_{2}, n_{3}=1}^{\infty} E_{n_{2}, n_{3}} \sin \left(n_{2} x_{2}\right) \sin \left(n_{3} x_{3}\right) .
\end{aligned}
$$

Then the unique solution to this problem is the function:

$$
\begin{aligned}
& h(\mathbf{x})=d(\mathbf{x})+u(\mathbf{x})+s(\mathbf{x})+n(\mathbf{x})+w(\mathbf{x})+e(\mathbf{x}) \\
& d\left(x_{1}, x_{2}, x_{3}\right) \quad \underset{\mathrm{I} 2}{ } \sum_{n_{1}, n_{2}=1}^{\infty} \frac{D_{n_{1}, n_{2}}}{\sinh \left(\pi \sqrt{n_{1}^{2}+n_{2}^{2}}\right)} \sin \left(n_{1} x_{1}\right) \sin \left(n_{2} x_{2}\right) \sinh \left(\sqrt{n_{1}^{2}+n_{2}^{2}} \cdot x_{3}\right) ; \\
& u\left(x_{1}, x_{2}, x_{3}\right) \underset{\mathrm{I} 2}{\approx} \sum_{n_{1}, n_{2}=1}^{\infty} \frac{U_{n_{1}, n_{2}}}{\sinh \left(\pi \sqrt{n_{1}^{2}+n_{2}^{2}}\right)} \sin \left(n_{1} x_{1}\right) \sin \left(n_{2} x_{2}\right) \sinh \left(\sqrt{n_{1}^{2}+n_{2}^{2}} \cdot\left(\pi-x_{3}\right)\right) ; \\
& s\left(x_{1}, x_{2}, x_{3}\right) \underset{\mathrm{I}_{2}}{\approx} \sum_{n_{1}, n_{3}=1}^{\infty} \frac{S_{n_{1}, n_{3}}}{\sinh \left(\pi \sqrt{n_{1}^{2}+n_{3}^{2}}\right)} \sin \left(n_{1} x_{1}\right) \sin \left(n_{3} x_{3}\right) \sinh \left(\sqrt{n_{1}^{2}+n_{3}^{2}} \cdot x_{2}\right) ; \\
& n\left(x_{1}, x_{2}, x_{3}\right) \underset{\mathrm{I} 2}{\approx} \sum_{n_{1}, n_{3}=1}^{\infty} \frac{N_{n_{1}, n_{3}}}{\sinh \left(\pi \sqrt{n_{1}^{2}+n_{3}^{2}}\right)} \sin \left(n_{1} x_{1}\right) \sin \left(n_{3} x_{3}\right) \sinh \left(\sqrt{n_{1}^{2}+n_{3}^{2}} \cdot\left(\pi-x_{2}\right)\right) ; \\
& w\left(x_{1}, x_{2}, x_{3}\right) \underset{\mathrm{L}_{2}}{\approx} \sum_{n_{2}, n_{3}=1}^{\infty} \frac{W_{n_{2}, n_{3}}}{\sinh \left(\pi \sqrt{n_{2}^{2}+n_{3}^{2}}\right)} \sin \left(n_{2} x_{2}\right) \sin \left(n_{3} x_{3}\right) \sinh \left(\sqrt{n_{2}^{2}+n_{3}^{2}} \cdot x_{1}\right) ; \\
& e\left(x_{1}, x_{2}, x_{3}\right) \underset{\mathrm{I} 2}{\approx} \sum_{n_{2}, n_{3}=1}^{\infty} \frac{E_{n_{2}, n_{3}}}{\sinh \left(\pi \sqrt{n_{2}^{2}+n_{3}^{2}}\right)} \sin \left(n_{2} x_{2}\right) \sin \left(n_{3} x_{3}\right) \sinh \left(\sqrt{n_{2}^{2}+n_{3}^{2}} \cdot\left(\pi-x_{1}\right)\right) .
\end{aligned}
$$

Furthermore, these six series converge semiuniformly on int (\mathbb{X}).

Proof. Exercise 13B. 2

13C The Poisson problem on a cube

Prerequisites: $\S 9 \mathrm{~B}, ~ \S 5 \mathrm{G}, \S(\mathrm{D} . \quad$ Recommended: $\S 11 \mathrm{~d}, ~ \S 12 \mathrm{~d}, \S[\mathrm{C}(\mathrm{v})$.

Proposition 13C.1. Poisson Problem on Cube; homogeneous Dirichlet BC
Let $\mathbb{X}=[0, \pi]^{3}$, and let $q: \mathbb{X} \longrightarrow \mathbb{R}$ be some function with semiuniformly convergent Fourier sine series: $q(\mathbf{x}) \underset{\widetilde{\mathrm{L}}}{\approx} \sum_{\mathbf{n} \in \mathbb{N}_{+}^{3}} Q_{\mathbf{n}} \mathbf{S}_{\mathbf{n}}(\mathbf{x})$. Define the function $u: \mathbb{X} \longrightarrow \mathbb{R}$ by

$$
u(\mathbf{x}) \overline{\overline{\text { unif }}} \sum_{\mathbf{n} \in \mathbb{N}_{+}^{3}} \frac{-Q_{\mathbf{n}}}{\|\mathbf{n}\|^{2}} \cdot \mathbf{S}_{\mathbf{n}}(\mathbf{x}), \quad \text { for all } \mathbf{x} \in \mathbb{X}
$$

Then u is the unique solution to the Poisson equation " $\Delta u(\mathbf{x})=q(\mathbf{x})$ ", satisfying homogeneous Dirichlet boundary conditions $u\left(x_{1}, x_{2}, 0\right)=u\left(x_{1}, x_{2}, \pi\right)=$ $u\left(x_{1}, 0, x_{3}\right)=u\left(x_{1}, \pi, x_{3}\right)=u\left(0, x_{2}, x_{3}\right)=u\left(\pi, x_{2}, x_{3},\right)=0$.
Proof. Exercise 13C. 1

Proposition 13C.2. Poisson Problem on Cube; homogeneous Neumann BC

Let $\mathbb{X}=[0, \pi]^{3}$, and let $q: \mathbb{X} \longrightarrow \mathbb{R}$ be some function with semiuniformly convergent Fourier cosine series: $q(\mathrm{x}) \underset{\mathrm{I} 2}{\widetilde{(2)}} \sum_{\mathbf{n} \in \mathbb{N}_{+}^{3}} Q_{\mathbf{n}} \mathbf{C}_{\mathbf{n}}(\mathrm{x})$.

Suppose $Q_{0,0,0}=0$. Fix some constant $K \in \mathbb{R}$, and define the function $u: \mathbb{X} \longrightarrow \mathbb{R}$ by

$$
\begin{equation*}
u(\mathbf{x}) \underset{\substack{\text { unif }}}{\overline{\overline{=}}} \sum_{\substack{\mathbf{n} \in \mathbb{N}^{3} \\ n_{1}, n_{2}, n_{3} \text { not all zero }}} \frac{-Q_{\mathbf{n}}}{\|\mathbf{n}\|^{2}} \cdot \mathbf{C}_{\mathbf{n}}(\mathbf{x}) \quad+\quad K, \quad \text { for all } \mathbf{x} \in \mathbb{X} . \tag{13C.1}
\end{equation*}
$$

Then u is a solution to the Poisson equation " $\Delta u(\mathbf{x})=q(\mathbf{x})$ ", satisfying homogeneous Neumann boundary conditions $\partial_{3} u\left(x_{1}, x_{2}, 0\right)=\partial_{3} u\left(x_{1}, x_{2}, \pi\right)=\partial_{2} u\left(x_{1}, 0, x_{3}\right)=$ $\partial_{2} u\left(x_{1}, \pi, x_{3}\right)=\partial_{1} u\left(0, x_{2}, x_{3}\right)=\partial_{1} u\left(\pi, x_{2}, x_{3},\right)=0$.

Furthermore, all solutions to this Poisson equation with these boundary conditions have the form (13C.1).

If $Q_{0,0,0} \neq 0$, however, the problem has no solution.
Proof. Exercise 13C. 2

Chapter 14

Boundary value problems in polar coordinates

"The source of all great mathematics is the special case, the concrete example. It is frequent in mathematics that every instance of a concept of seemingly great generality is in essence the same as a small and concrete special case."
-Paul Halmos

14A Introduction

Prerequisites: §0D(ii).
When solving a boundary value problem, the shape of the domain dictates the choice of coordinate system. Seek the coordinate system yielding the simplest description of the boundary. For rectangular domains, Cartesian coordinates are the most convenient. For disks and annuli in the plane, polar coordinates are a better choice. Recall that polar coordinates (r, θ) on \mathbb{R}^{2} are defined by the transformation:

$$
x=r \cdot \cos (\theta) \quad \text { and } y=r \cdot \sin (\theta) . \quad(\text { Figure 14A.1A) }
$$

with reverse transformation:

$$
r=\sqrt{x^{2}+y^{2}} \quad \text { and } \quad \theta=\arctan \left(\frac{y}{x}\right)
$$

Here, the coordinate r ranges over \mathbb{R}_{\neq}, while the variable θ ranges over $[-\pi, \pi)$. (Clearly, we could let θ range over any interval of length 2π; we just find $[-\pi, \pi$) the most convenient).

The three domains we will examine are:

- $\mathbb{D}=\{(r, \theta) ; r \leq R\}$, the disk of radius R; see Figure 14A.1B. For simplicity we will usually assume $R=1$.

Figure 14A.1: (A) Polar coordinates; (D) The annulus \mathbb{A}.

- $\mathbb{D}^{\complement}=\{(r, \theta) ; R \leq r\}$, the codisk or punctured plane of radius R; see Figure 14A.1C. For simplicity we will usually assume $R=1$.
- $\mathbb{A}=\left\{(r, \theta) ; R_{\min } \leq r \leq R_{\max }\right\}$, the annulus, of inner radius $R_{\text {min }}$ and outer radius $R_{\text {max }}$; see Figure 14A.1D.

The boundaries of these domains are circles. For example, the boundary of the disk \mathbb{D} of radius R is the circle:

$$
\partial \mathbb{D}=\mathbb{S}=\{(r, \theta) ; r=R\} .
$$

The circle can be parameterized by a single angular coordinate $\theta \in[-\pi, \pi)$. Thus, the boundary conditions will be specified by a function $b:[-\pi, \pi) \longrightarrow \mathbb{R}$. Note that, if $b(\theta)$ is to be continuous as a function on the circle, then it must be 2π-periodic as a function on $[-\pi, \pi)$.

In polar coordinates, the Laplacian is written:

$$
\begin{equation*}
\Delta u=\partial_{r}^{2} u+\frac{1}{r} \partial_{r} u+\frac{1}{r^{2}} \partial_{\theta}^{2} u \tag{14A.1}
\end{equation*}
$$

14B The Laplace equation in polar coordinates

14B(i) Polar harmonic functions

Prerequisites: $\S 0 \mathrm{D}(\mathrm{ii}], \S(1)$.

Figure 14B.1: Φ_{n} and Ψ_{n} for $n=2 \ldots 6$ (rotate page).

Figure 14B.2: ϕ_{n} and ψ_{n} for $n=1 \ldots 4$ (rotate page). Note that these plots have been 'truncated' to have vertical bounds ± 3, because these functions explode to $\pm \infty$ at zero.

Figure 14B.3: $\phi_{0}(r, \theta)=\log |r|$ (vertically truncated near zero).

Figure 14B.4: Radial growth/decay of polar-separated harmonic functions.

The following important harmonic functions separate in polar coordinates:

$$
\begin{array}{ll}
\Phi_{n}(r, \theta)=\cos (n \theta) \cdot r^{n} ; & \Psi_{n}(r, \theta)=\sin (n \theta) \cdot r^{n} ; \text { for } n \in \mathbb{N}_{+} \\
\phi_{n}(r, \theta)=\frac{\cos (n \theta)}{r^{n}} ; & \psi_{n}(r, \theta)=\frac{\sin (n \theta)}{r^{n}} ; \text { for } n \in \mathbb{N}_{+} \\
\Phi_{0}(r, \theta)=1 \text { and } & \phi_{0}(r, \theta)=\log (r)
\end{array}
$$

(Fig.14B.1)
(Fig.14B.2)
(Fig.14B.3)

Proposition 14B.1. The functions $\Phi_{n}, \Psi_{n}, \phi_{n}$, and ψ_{n} are harmonic, for all $n \in \mathbb{N}$.

Proof. See practice problems $\# \square$ to $\# 5$ in $\S[4]$.

Exercise 14B.1. (a) Show that $\Phi_{1}(r, \theta)=x$ and $\Psi_{1}(r, \theta)=y$ in Cartesian coordinates.
(b) Show that $\Phi_{2}(r, \theta)=x^{2}-y^{2}$ and $\Psi_{2}(r, \theta)=2 x y$ in Cartesian coordinates.
(c) Define $F_{n}: \mathbb{C} \longrightarrow \mathbb{C}$ by $F_{n}(z):=z^{n}$. Show that $\Phi_{n}(x, y)=\operatorname{Re}\left[F_{n}(x+y \mathbf{i})\right]$ and $\Psi_{n}(x, y)=\operatorname{Im}\left[F_{n}(x+y \mathbf{i})\right]$.
(d) (Hard) Show that Φ_{n} can be written as a homogeneous polynomial of degree n in x and y.
(e) Show that, if $(x, y) \in \partial \mathbb{D}$ (i.e. if $x^{2}+y^{2}=1$), then $\Phi_{N}(x, y)=\zeta_{N}(x)$, where

$$
\zeta_{N}(x):=2^{(N-1)} x^{N}+\sum_{n=1}^{\left\lfloor\frac{N}{2}\right\rfloor}(-1)^{n} 2^{(N-1-2 n)} \frac{N}{n}\binom{N-n-1}{n-1} x^{(N-2 n)} .
$$

is the Nth Chebyshev polynomial. (For more information, see [Bro89, §3.4]).
We will solve the Laplace equation in polar coordinates by representing solutions as sums of these simple functions. Note that Φ_{n} and Ψ_{n} are bounded at zero, but unbounded at infinity (Figure 14B.4(A) shows the radial growth of Φ_{n} and Ψ_{n}). Conversely, ϕ_{n} and ψ_{n} are unbounded at zero, but bounded at infinity) (Figure 14B.4(B) shows the radial decay of ϕ_{n} and ψ_{n}). Finally, Φ_{0} being constant, is bounded everywhere, while ϕ_{0} is unbounded at both 0 and ∞ (see Figure 14B.4B). Hence, when solving BVPs in a neighbourhood around zero (e.g. the disk), it is preferable to use Φ_{0}, Φ_{n} and Ψ_{n}. When solving BVPs on an unbounded domain (i.e. one "containing infinity") it is preferable to use Φ_{0}, ϕ_{n} and ψ_{n}. When solving BVP's on a domain containing neither zero nor infinity (e.g. the annulus), we use all of $\Phi_{n}, \Psi_{n}, \phi_{n}, \psi_{n}, \Phi_{0}$, and ϕ_{0}.

14B(ii) Boundary value problems on a disk

Prerequisites: $\S 5 \mathrm{EC}, \S[4 \mathrm{~A}, ~ \S 14 \mathrm{~B}(\mathrm{i}), \S 8 \mathrm{~A}, \S[0 \mathrm{~F}$.

Proposition 14B.2. (Laplace Equation, Unit Disk, nonhomog. Dirichlet BC)
Let $\mathbb{D}=\{(r, \theta) ; r \leq 1\}$ be the unit disk, and let $b \in \mathbf{L}^{2}[-\pi, \pi)$ be some function. Consider the Laplace equation " $\triangle u=0$ ", with nonhomogeneous Dirichlet boundary conditions:

$$
\begin{equation*}
u(1, \theta)=b(\theta), \quad \text { for all } \theta \in[-\pi, \pi) . \tag{14B.1}
\end{equation*}
$$

Suppose b has real Fourier series: $b(\theta) \underset{\mathrm{I} 2}{\approx} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos (n \theta)+\sum_{n=1}^{\infty} B_{n} \sin (n \theta)$.
Then the unique solution to this problem is the function $u: \mathbb{D} \longrightarrow \mathbb{R}$ defined:

$$
u(r, \theta) \quad \underset{\mathrm{I} 2}{\approx} A_{0}+\sum_{n=1}^{\infty} A_{n} \Phi_{n}(r, \theta)+\sum_{n=1}^{\infty} B_{n} \Psi_{n}(r, \theta)
$$

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

(A): A bent circular wire frame:
$b(\theta)=\sin (3 \theta)$.

(B): A bubble in the frame:
$u(r, \theta)=r^{3} \sin (3 \theta)$.

Figure 14B.5: A soap bubble in a bent wire frame.

$$
\begin{equation*}
=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos (n \theta) \cdot r^{n}+\sum_{n=1}^{\infty} B_{n} \sin (n \theta) \cdot r^{n} \tag{14B.2}
\end{equation*}
$$

Furthermore, the series (14B.2) converges semiuniformly to u on int (\mathbb{D}).
Proof. Exercise 14B. 2 (a) Fix $R<1$ and let $\mathbb{D}(R):=\{(r, \theta) ; r<R\}$. Show that on the domain $\mathbb{D}(R)$, the conditions of Proposition 0F.1 on page 565 are satisfied; use this to show that

$$
\Delta u(r, \theta)=\underset{\text { unif }}{=} \sum_{n=1}^{\infty} A_{n} \Delta \Phi_{n}(r, \theta)+\sum_{n=1}^{\infty} B_{n} \Delta \Psi_{n}(r, \theta)
$$

for all $(r, \theta) \in \mathbb{D}(R)$. Now use Proposition 14B.1 on page 277 to deduce that $\Delta u(r, \theta)=0$ for all $r \leq R$. Since this works for any $R<1$, conclude that $\Delta u \equiv 0$ on \mathbb{D}.
(b) To check that u also satisfies the boundary condition (14B.1), substitute $r=1$ into (14B.2) to get: $u(1, \theta) \underset{\mathrm{I2}}{\widetilde{\widetilde{2}}} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos (n \theta)+\sum_{n=1}^{\infty} B_{n} \sin (n \theta)=b(\theta)$.
(c) Use Proposition 5D.5(a) on page 88 to conclude that this solution is unique.

Example 14B.3. Take a circular wire frame of radius 1, and warp it so that its vertical distortion is described by the function $b(\theta)=\sin (3 \theta)$, shown in Figure 14B.5(A). Dip the frame into a soap solution to obtain a bubble with the bent wire as its boundary. What is the shape of the bubble?

Solution: A soap bubble suspended from the wire is a minimal surface, and minimal surfaces of low curvature are well-approximated by harmonic functions. Let $u(r, \theta)$ be a function describing the bubble surface. As long as the distortion $b(\theta)$ is relatively small, $u(r, \theta)$ will be a solution to Laplace's equation, with boundary conditions $u(1, \theta)=b(\theta)$. Thus, as shown in Figure 14B.5(B), $u(r, \theta)=r^{3} \sin (3 \theta)$.

Exercise 14B.3. Let $u(x, \theta)$ be a solution to the Dirichlet problem with boundary conditions $u(1, \theta)=b(\theta)$. Let $\mathbf{0}$ be the center of the disk (i.e. the point with radius 0). Use Proposition 14 B .2 to prove that $u(\mathbf{0})=\frac{1}{2 \pi} \int_{-\pi}^{\pi} b(\theta) d \theta$.

Proposition 14B.4. (Laplace Equation, Unit Disk, nonhomog. Neumann BC)

Let $\mathbb{D}=\{(r, \theta) ; r \leq 1\}$ be the unit disk, and let $b \in \mathbf{L}^{2}[-\pi, \pi)$. Consider the Laplace equation " $\triangle u=0$ ", with nonhomogeneous Neumann boundary conditions:

$$
\begin{equation*}
\partial_{r} u(1, \theta)=b(\theta), \quad \text { for all } \theta \in[-\pi, \pi) . \tag{14B.3}
\end{equation*}
$$

Suppose b has real Fourier series: $b(\theta) \underset{\text { I2 }}{\widetilde{2}} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos (n \theta)+\sum_{n=1}^{\infty} B_{n} \sin (n \theta)$.
If $A_{0}=0$, then the solutions to this problem are all functions $u: \mathbb{D} \longrightarrow \mathbb{R}$ of the form

$$
\begin{align*}
u(r, \theta) & \underset{\mathrm{I} 2}{ } \quad C+\sum_{n=1}^{\infty} \frac{A_{n}}{n} \Phi_{n}(r, \theta)+\sum_{n=1}^{\infty} \frac{B_{n}}{n} \Psi_{n}(r, \theta) \\
& =C+\sum_{n=1}^{\infty} \frac{A_{n}}{n} \cos (n \theta) \cdot r^{n}+\sum_{n=1}^{\infty} \frac{B_{n}}{n} \sin (n \theta) \cdot r^{n} \tag{14B.4}
\end{align*}
$$

where C is any constant. Furthermore, the series (14B.4) converges semiuniformly to u on int (\mathbb{D}).

However, if $A_{0} \neq 0$, then there is no solution.
Proof.
Claim 1: For any $r<1, \quad \sum_{n=1}^{\infty} n^{2} \frac{\left|A_{n}\right|}{n} \cdot r^{n}+\sum_{n=1}^{\infty} n^{2} \frac{\left|B_{n}\right|}{n} \cdot r^{n}<\infty$.
Proof. Let $M=\max \left\{\max \left\{\left|A_{n}\right|\right\}_{n=1}^{\infty}, \max \left\{\left|B_{n}\right|\right\}_{n=1}^{\infty}\right\}$. Then

$$
\begin{align*}
\sum_{n=1}^{\infty} n^{2} \frac{\left|A_{n}\right|}{n} \cdot r^{n}+\sum_{n=1}^{\infty} n^{2} \frac{\left|B_{n}\right|}{n} \cdot r^{n} & \leq \sum_{n=1}^{\infty} n^{2} \frac{M}{n} \cdot r^{n}+\sum_{n=1}^{\infty} n^{2} \frac{M}{n} \cdot r^{n} \\
& =2 M \sum_{n=1}^{\infty} n r^{n} . \tag{14B.5}
\end{align*}
$$

Let $f(r)=\frac{1}{1-r}$. Then $f^{\prime}(r)=\frac{1}{(1-r)^{2}}$. Recall that, for $|r|<1$, $f(r)=\sum_{n=0}^{\infty} r^{n}$. Thus, $f^{\prime}(r)=\sum_{n=1}^{\infty} n r^{n-1}=\frac{1}{r} \sum_{n=1}^{\infty} n r^{n}$. Hence, the right
hand side of eqn. (14B.5) is equal to

$$
2 M \sum_{n=1}^{\infty} n r^{n}=2 M r \cdot f^{\prime}(r)=2 M r \cdot \frac{1}{(1-r)^{2}}<\infty,
$$

for any $r<1$. $\diamond_{\text {Claim } 1}$
Let $R<1$ and let $\mathbb{D}(R)=\{(r, \theta) ; r \leq R\}$ be the disk of radius R. If $u(r, \theta)=$ $C+\sum_{n=1}^{\infty} \frac{A_{n}}{n} \Phi_{n}(r, \theta)+\sum_{n=1}^{\infty} \frac{B_{n}}{n} \Psi_{n}(r, \theta)$, then for all $(r, \theta) \in \mathbb{D}(R)$,

$$
\begin{aligned}
\Delta u(r, \theta) & \overline{\overline{\overline{\text { unif }}}} \sum_{n=1}^{\infty} \frac{A_{n}}{n} \triangle \Phi_{n}(r, \theta)+\sum_{n=1}^{\infty} \frac{B_{n}}{n} \triangle \Psi_{n}(r, \theta) \\
& \overline{\overline{(*)}} \sum_{n=1}^{\infty} \frac{A_{n}}{n}(0)+\sum_{n=1}^{\infty} \frac{B_{n}}{n}(0)=0,
\end{aligned}
$$

on $\mathbb{D}(R)$. Here, " $\overline{\text { unif }}$ " is by Proposition 0F. 1 on page 565 and Claim 1, while $(*)$ is by Proposition 14B. 1 on page 277.
To check boundary conditions, observe that, for all $R<1$ and all $(r, \theta) \in \mathbb{D}(R)$,

$$
\begin{aligned}
\partial_{r} u(r, \theta) & =\sum_{\overline{\text { unif }}} \frac{A_{n}}{n} \partial_{r} \Phi_{n}(r, \theta)+\sum_{n=1}^{\infty} \frac{B_{n}}{n} \partial_{r} \Psi_{n}(r, \theta) \\
& =\sum_{n=1}^{\infty} \frac{A_{n}}{n} n r^{n-1} \cos (n \theta)+\sum_{n=1}^{\infty} \frac{B_{n}}{n} n r^{n-1} \sin (n \theta) \\
& =\sum_{n=1}^{\infty} A_{n} r^{n-1} \cos (n \theta)+\sum_{n=1}^{\infty} B_{n} r^{n-1} \sin (n \theta) .
\end{aligned}
$$

Here " $\overline{\text { unii }}$ " is by Proposition 0F.1 on page 565. Hence, letting $R \rightarrow 1$, we get

$$
\begin{aligned}
\partial_{\perp} u(1, \theta) & =\partial_{r} u(1, \theta)=\sum_{n=1}^{\infty} A_{n} \cdot(1)^{n-1} \cos (n \theta)+\sum_{n=1}^{\infty} B_{n} \cdot(1)^{n-1} \sin (n \theta) \\
& =\sum_{n=1}^{\infty} A_{n} \cos (n \theta)+\sum_{n=1}^{\infty} B_{n} \sin (n \theta) \underset{\mathrm{I2}}{\approx} b(\theta),
\end{aligned}
$$

as desired. Here, " $\widetilde{\widetilde{12}}$ " is because this is the Fourier Series for $b(\theta)$, assuming $A_{0}=0$. (If $A_{0} \neq 0$, then this solution doesn't work.)
Finally, Proposition 5D.5(c) on page 88 implies that this solution is unique up to addition of a constant.

Figure 14B.6: The electric potential deduced from Scully's voltage measurements in Example [4B. 5 .

Remark. Physically speaking, why must $A_{0}=0$?
If $u(r, \theta)$ is an electric potential, then $\partial_{r} u$ is the radial component of the electric field. The requirement that $A_{0}=0$ is equivalent to requiring that the net electric flux entering the disk is zero, which is equivalent (via Gauss's law) to the assertion that the net electric charge contained in the disk is zero. If $A_{0} \neq 0$, then the net electric charge within the disk must be nonzero. Thus, if $q: \mathbb{D} \longrightarrow \mathbb{R}$ is the charge density field, then we must have $q \not \equiv 0$. However, $q=\Delta u$ (see Example 1D. 2 on page 14), so this means $\triangle u \neq 0$, which means u is not harmonic.

Example 14B.5. While covertly investigating mysterious electrical phenomena on a top-secret military installation in the Nevada desert, Mulder and Scully are trapped in a cylindrical concrete silo by the Cancer Stick Man. Scully happens to have a voltimeter, and she notices an electric field in the silo. Walking around the (circular) perimeter of the silo, Scully estimates the radial component of the electric field to be the function $b(\theta)=3 \sin (7 \theta)-\cos (2 \theta)$. Estimate the electric potential field inside the silo.

Solution: The electric potential will be a solution to Laplace's equation, with boundary conditions $\partial_{r} u(1, \theta)=3 \sin (7 \theta)-\cos (2 \theta)$. Thus,

$$
u(r, \theta)=C+\frac{3}{7} \sin (7 \theta) \cdot r^{7}-\frac{1}{2} \cos (2 \theta) \cdot r^{2} . \quad \text { (see Figure 14B.6) }
$$

Question: Moments later, Mulder repeats Scully's experiment, and finds that the perimeter field has changed to $b(\theta)=3 \sin (7 \theta)-\cos (2 \theta)+6$. He immediately suspects that an Alien Presence has entered the silo. Why?

14B(iii) Boundary value problems on a codisk

We will now solve the Dirichlet problem on an unbounded domain: the codisk

$$
\mathbb{D}^{\complement}:=\{(r, \theta) ; 1 \leq r, \theta \in[-\pi, \pi)\} .
$$

Physical Interpretations:

Chemical Concentration: Suppose there is an unknown source of some chemical hidden inside the disk, and that this chemical diffuses into the surrounding medium. Then the solution function $u(r, \theta)$ represents the equilibrium concentration of the chemical. In this case, it is reasonable to expect $u(r, \theta)$ to be bounded at infinity, by which we mean:

$$
\begin{equation*}
\lim _{r \rightarrow \infty}|u(r, \theta)| \neq \infty, \quad \text { for all } \theta \in[-\pi, \pi) . \tag{14B.6}
\end{equation*}
$$

Otherwise the chemical concentration would become very large far away from the center, which is not realistic.

Electric Potential: Suppose there is an unknown charge distribution inside the disk. Then the solution function $u(r, \theta)$ represents the electric potential field generated by this charge. Even though we don't know the exact charge distribution, we can use the boundary conditions to extrapolate the shape of the potential field outside the disk.

If the net charge within the disk is zero, then the electric potental far away from the disk should be bounded (because from far away, the charge distribution inside the disk 'looks' neutral); hence, the solution $u(r, \theta)$ will again satisfy the Boundedness Condition (14B.6).

However, if there is a nonzero net charge within the the disk, then the electric potential will not be bounded (because, even from far away, the disk still 'looks' charged). Nevertheless, the electric field generated by this potential should still decay to zero (because the influence of the charge should be weak at large distances). This means that, while the potential is unbounded, the gradient of the potential must decay to zero near infinity. In other words, we must impose the decaying gradient condition:

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \nabla u(r, \theta)=0, \quad \text { for all } \theta \in[-\pi, \pi) . \tag{14B.7}
\end{equation*}
$$

Proposition 14B.6. (Laplace equation, Codisk, nonhomog. Dirichlet BC)

Let $\mathbb{D}^{\complement}=\{(r, \theta) ; 1 \leq r\}$ be the codisk, and let $b \in \mathbf{L}^{2}[-\pi, \pi)$. Consider the Laplace equation " $\Delta u=0$ ", with nonhomogeneous Dirichlet boundary conditions:

$$
\begin{equation*}
u(1, \theta)=b(\theta), \quad \text { for all } \theta \in[-\pi, \pi) . \tag{14B.8}
\end{equation*}
$$

Suppose b has real Fourier series: $b(\theta) \underset{\mathrm{I} 2}{\widetilde{ }} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos (n \theta)+\sum_{n=1}^{\infty} B_{n} \sin (n \theta)$.
Then the unique solution to this problem which is bounded at infinity as in (14B.6) is the function $u: \mathbb{D}^{\complement} \longrightarrow \mathbb{R}$ defined:

$$
\begin{equation*}
u(r, \theta) \underset{\mathrm{T} 2}{\approx} A_{0}+\sum_{n=1}^{\infty} A_{n} \frac{\cos (n \theta)}{r^{n}}+\sum_{n=1}^{\infty} B_{n} \frac{\sin (n \theta)}{r^{n}} \tag{14B.9}
\end{equation*}
$$

Furthermore, the series (14B.9) converges semiuniformly to u on int $\left(\mathbb{D}^{\complement}\right)$.
Proof. Exercise 14B. 4 (a) To show that u is harmonic, apply eqn.(14A.1) on page 274 to get

$$
\begin{align*}
\Delta u(r, \theta)=\partial_{r}^{2} & \left(\sum_{n=1}^{\infty} A_{n} \frac{\cos (n \theta)}{r^{n}}+\sum_{n=1}^{\infty} B_{n} \frac{\sin (n \theta)}{r^{n}}\right)+\frac{1}{r} \partial_{r}\left(\sum_{n=1}^{\infty} A_{n} \frac{\cos (n \theta)}{r^{n}}+\sum_{n=1}^{\infty} B_{n} \frac{\sin (n \theta)}{r^{n}}\right) \\
& +\frac{1}{r^{2}} \partial_{\theta}^{2}\left(\sum_{n=1}^{\infty} A_{n} \frac{\cos (n \theta)}{r^{n}}+\sum_{n=1}^{\infty} B_{n} \frac{\sin (n \theta)}{r^{n}}\right) . \tag{14B.10}
\end{align*}
$$

Now let $R>1$. Check that, on the domain $\mathbb{D}^{\complement}(R)=\{(r, \theta) ; r>R\}$, the conditions of Proposition 0F. 1 on page 565 are satisfied; use this to simplify the expression (14B.10). Finally, apply Proposition 14B.1 on page 277 to deduce that $\Delta u(r, \theta)=0$ for all $r \geq R$. Since this works for any $R>1$, conclude that $\Delta u \equiv 0$ on \mathbb{D}^{C}.
(b) To check that the solution also satisfies the boundary condition (14B.8), subsititute $r=1$ into (14B.9) to get: $u(1, \theta) \underset{\mathrm{T} 2}{\widetilde{\mathrm{I}}} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos (n \theta)+\sum_{n=1}^{\infty} B_{n} \sin (n \theta)=b(\theta)$. (c) Use Proposition 5D.5(a) on page 88 to conclude that this solution is unique.

Example 14B.7. An unknown distribution of electric charges lies inside the unit disk in the plane. Using a voltimeter, the electric potential is measured along the perimeter of the circle, and is approximated by the function $b(\theta)=$ $\sin (2 \theta)+4 \cos (5 \theta)$. Far away from the origin, the potential is found to be close to zero. Estimate the electric potential field.

Solution: The electric potential will be a solution to Laplace's equation, with boundary conditions $u(1, \theta)=\sin (2 \theta)+4 \cos (5 \theta)$. Far away, the potential apparently remains bounded. Thus, as shown in Figure 14B.7,

$$
u(r, \theta)=\frac{\sin (2 \theta)}{r^{2}}+\frac{4 \cos (5 \theta)}{r^{5}} .
$$

Figure 14B.7: The electric potential deduced from voltage measurements in Example 14B.7.

Remark. Note that, for any constant $C \in \mathbb{R}$, another solution to the Dirichlet problem with boundary conditions (14B.8) is given by the function

$$
\begin{equation*}
u(r, \theta)=A_{0}+C \log (r)+\sum_{n=1}^{\infty} A_{n} \frac{\cos (n \theta)}{r^{n}}+\sum_{n=1}^{\infty} B_{n} \frac{\sin (n \theta)}{r^{n}} \tag{E}
\end{equation*}
$$

(Exercise 14B.5). However, unless $C=0$, this will not be bounded at infinity.
Proposition 14B.8. (Laplace equation, Codisk, nonhomog. Neumann BC)
Let $\mathbb{D}^{\complement}=\{(r, \theta) ; 1 \leq r\}$ be the codisk, and let $b \in \mathbf{L}^{2}[-\pi, \pi)$. Consider the Laplace equation " $\triangle u=0$ ", with nonhomogeneous Neumann boundary conditions:

$$
\begin{equation*}
-\partial_{\perp} u(1, \theta)=\partial_{r} u(1, \theta)=b(\theta), \quad \text { for all } \theta \in[-\pi, \pi) . \tag{14B.11}
\end{equation*}
$$

Suppose b has real Fourier series: $b(\theta) \underset{\mathrm{T} 2}{\widetilde{\mathrm{~T}}} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos (n \theta)+\sum_{n=1}^{\infty} B_{n} \sin (n \theta)$.
Fix a constant $C \in \mathbb{R}$, and define $u: \mathbb{D}^{\complement} \longrightarrow \mathbb{R}$ by:

$$
\begin{equation*}
u(r, \theta) \underset{\mathrm{I} 2}{\approx} C+A_{0} \log (r)+\sum_{n=1}^{\infty} \frac{-A_{n}}{n} \frac{\cos (n \theta)}{r^{n}}+\sum_{n=1}^{\infty} \frac{-B_{n}}{n} \frac{\sin (n \theta)}{r^{n}} \tag{14B.12}
\end{equation*}
$$

Then u is a solution to the Laplace equation, with nonhomogeneous Neumann boundary conditions (14B.11), and furthermore, obeys the Decaying Gradient Condition (14B.7) on $p .283$. Furthermore, all harmonic functions satisfying equations (14B.11) and (14B.7) must be of the form (14B.12). However, the solution (14B.12) is bounded at infinity as in (14B.6) if and only if $A_{0}=0$.

Finally, the series $\left(14 \mathrm{~B} .12\right.$) converges semiuniformly to u on int $\left(\mathbb{D}^{\complement}\right)$.
Proof. Exercise 14B. 6 (a) To show that u is harmonic, apply eqn.(14A.1) on page 274 to get

$$
\begin{align*}
\Delta u(r, \theta)= & \partial_{r}^{2} \\
& \left(A_{0} \log (r)-\sum_{n=1}^{\infty} \frac{A_{n}}{n} \frac{\cos (n \theta)}{r^{n}}-\sum_{n=1}^{\infty} \frac{B_{n}}{n} \frac{\sin (n \theta)}{r^{n}}\right) \\
& +\frac{1}{r} \partial_{r}\left(A_{0} \log (r)-\sum_{n=1}^{\infty} \frac{A_{n}}{n} \frac{\cos (n \theta)}{r^{n}}-\sum_{n=1}^{\infty} \frac{B_{n}}{n} \frac{\sin (n \theta)}{r^{n}}\right) \tag{14B.13}\\
& +\frac{1}{r^{2}} \partial_{\theta}^{2}\left(A_{0} \log (r)-\sum_{n=1}^{\infty} \frac{A_{n}}{n} \frac{\cos (n \theta)}{r^{n}}-\sum_{n=1}^{\infty} \frac{B_{n}}{n} \frac{\sin (n \theta)}{r^{n}}\right) .
\end{align*}
$$

Now let $R>1$. Check that, on the domain $\mathbb{D}^{\complement}(R)=\{(r, \theta) ; r>R\}$, the conditions of Proposition 0F.1 on page 565 are satisfied; use this to simplify the expression (14B.13). Finally, apply Proposition 4B.1] on page 277 to deduce that $\Delta u(r, \theta)=0$ for all $r \geq R$. Since this works for any $R>1$, conclude that $\triangle u \equiv 0$ on \mathbb{D}^{\complement}.
(b) To check that the solution also satisfies the boundary condition (14B.11), subsititute $r=1$ into (14B.12) and compute the radial derivative (using Proposition 0F. 1 on page 565 to get: $\partial_{r} u(1, \theta)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos (n \theta)+\sum_{n=1}^{\infty} B_{n} \sin (n \theta) \underset{\mathrm{I} 2}{\approx} b(\theta)$.
(c) Use Proposition 5D.5(c) on page 88 to show that this solution is unique up to addition of a constant.
(d) What is the physical interpretation of $A_{0}=0$?

Example 14B.9. An unknown distribution of electric charges lies inside the unit disk in the plane. The radial component of the electric field is measured along the perimeter of the circle, and is approximated by the function $b(\theta)=$ $0.9+\sin (2 \theta)+4 \cos (5 \theta)$. Estimate the electric potential potential (up to a constant).

Solution: The electric potential will be a solution to Laplace's equation, with boundary conditions $\partial_{r} u(1, \theta)=0.9+\sin (2 \theta)+4 \cos (5 \theta)$. Thus, as shown in Figure 14B.8,

$$
u(r, \theta)=C+0.9 \log (r)+\frac{-\sin (2 \theta)}{2 \cdot r^{2}}+\frac{-4 \cos (5 \theta)}{5 \cdot r^{5}} .
$$

14B(iv) Boundary value problems on an annulus

(A) Contour plot (unit disk occulted)

(B) Surface plot (unit disk deleted)

Figure 14B.8: The electric potential deduced from field measurements in Example 14B.9.

Proposition 14B.10. (Laplace Equation, Annulus, nonhomog. Dirichlet BC)

Let $\mathbb{A}=\left\{(r, \theta) ; R_{\text {min }} \leq r \leq R_{\max }\right\}$ be an annulus, and let $b, B:[-\pi, \pi) \longrightarrow$ \mathbb{R} be two functions. Consider the Laplace equation " $\triangle u=0$ ", with nonhomogeneous Dirichlet boundary conditions:

$$
\begin{equation*}
u\left(R_{\min }, \theta\right)=b(\theta) \text { and } u\left(R_{\max }, \theta\right)=B(\theta), \quad \text { for all } \theta \in[-\pi, \pi) . \tag{14B.14}
\end{equation*}
$$

Suppose b and B have real Fourier series:

$$
\begin{array}{rlll}
& b(\theta) & \widetilde{\mathrm{T} 2} & a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \theta)+\sum_{n=1}^{\infty} b_{n} \sin (n \theta) \\
\text { and } & B(\theta) & \widetilde{\mathrm{T} 2} & A_{0}+\sum_{n=1}^{\infty} A_{n} \cos (n \theta)+\sum_{n=1}^{\infty} B_{n} \sin (n \theta) .
\end{array}
$$

Then the unique solution to this problem is the function $u: \mathbb{A} \longrightarrow \mathbb{R}$ defined

$$
\begin{gather*}
u(r, \theta)=\underset{\mathrm{T} 2}{\approx} U_{0}+u_{0} \log (r)+\sum_{n=1}^{\infty}\left(U_{n} r^{n}+\frac{u_{n}}{r^{n}}\right) \cos (n \theta) \\
+\sum_{n=1}^{\infty}\left(V_{n} r^{n}+\frac{v_{n}}{r^{n}}\right) \sin (n \theta) \tag{14B.15}
\end{gather*}
$$

where the coefficients $\left\{u_{n}, U_{n}, v_{n}, V_{N}\right\}_{n=1}^{\infty}$ are the unique solutions to the equa-

Figure 14B.9: A bubble between two concentric circular wires
tions:

$$
\begin{aligned}
U_{0}+u_{0} \log \left(R_{\min }\right) & =a_{0} ; & U_{0}+u_{0} \log \left(R_{\max }\right) & =A_{0} ; \\
U_{n} R_{\min }^{n}+\frac{u_{n}}{R_{\min }^{n}} & =a_{n} ; & & U_{n} R_{\max }^{n}+\frac{u_{n}}{R_{\max }^{n}}=A_{n} ; \\
V_{n} R_{\min }^{n}+\frac{v_{n}}{R_{\min }^{n}} & =b_{n} ; & & V_{n} R_{\max }^{n}+\frac{v_{n}}{R_{\max }^{n}}=B_{n} .
\end{aligned}
$$

Furthermore, the series (14B.15) converges semiuniformly to u on int (\mathbb{A}).
Proof. Exercise 14B. 7 (a) To check that u is harmonic, generalize the strategies used to prove Proposition 14 B .2 on page 278 and Proposition 14 B .6 on page 284.
(b) To check that the solution also satisfies the boundary condition (14B.14), subsititute $r=R_{\min }$ and $r=R_{\max }$ into (14B.15) to get the Fourier series for b and B.
(c) Use Proposition 5D.5(a) on page 88 to show that this solution is unique.

Example: Consider an annular bubble spanning two concentric circular wire frames. The inner wire has radius $R_{\min }=1$, and is unwarped, but is elevated to a height of 4 cm , while the outer wire has radius $R_{\max }=2$, and is twisted to have shape $B(\theta)=\cos (3 \theta)-2 \sin (\theta)$. Estimate the shape of the bubble between the two wires.

Solution: We have $b(\theta)=4$, and $B(\theta)=\cos (3 \theta)-2 \sin (\theta)$. Thus:

$$
a_{0}=4 ; \quad A_{3}=1 ; \quad \text { and } \quad B_{1}=-2
$$

and all other coefficients of the boundary conditions are zero. Thus, our solution will have the form:
$u(r, \theta)=U_{0}+u_{0} \log (r)+\left(U_{3} r^{3}+\frac{u_{3}}{r^{3}}\right) \cdot \cos (3 \theta)+\left(V_{1} r+\frac{v_{1}}{r}\right) \cdot \sin (\theta)$, Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

Figure 14B.10: The Poisson kernel (see also Figure 17F. 1 on page 407)
where $U_{0}, u_{0}, U_{3}, u_{3}, V_{1}$, and v_{1} are chosen to solve the equations:

$$
\begin{aligned}
U_{0}+u_{0} \log (1) & =4 ; & U_{0}+u_{0} \log (2) & =0 \\
U_{3}+u_{3} & =0 ; & 8 U_{3}+\frac{u_{3}}{8} & =1 \\
V_{1}+v_{1} & =0 ; & 2 V_{1}+\frac{v_{1}}{2} & =-2 .
\end{aligned}
$$

which is equivalent to:

$$
\begin{aligned}
& U_{0}=4 ; \quad u_{0}=\frac{-U_{0}}{\log (2)}=\frac{-4}{\log (2)} ; \\
& u_{3}=-U_{3} ; \quad\left(8-\frac{1}{8}\right) U_{3}=1, \quad \text { and thus } \quad U_{3}=\frac{8}{63} ; \\
& v_{1}=-V_{1} ; \quad\left(2-\frac{1}{2}\right) V_{1}=-2, \quad \text { and thus } \quad V_{1}=\frac{-4}{3} .
\end{aligned}
$$

so that $u(r, \theta)=4-\frac{4 \log (r)}{\log (2)}+\frac{8}{63}\left(r^{3}-\frac{1}{r^{3}}\right) \cdot \cos (3 \theta)-\frac{4}{3}\left(r-\frac{1}{r}\right) \cdot \sin (\theta)$.

14B(v) Poisson's solution to Dirichlet problem on the disk

Prerequisites: $\S 14 \mathrm{~B}(\mathrm{ii})$. Recommended: $\$ 17 \mathrm{~F}$.
Let $\mathbb{D}=\{(r, \theta) ; r \leq R\}$ be the disk of radius R, and let $\partial \mathbb{D}=\mathbb{S}=\{(r, \theta) ; r=R\}$ be its boundary, the circle of radius R. Recall the Dirichlet problem on the disk

[^50]from $\S 14 \mathrm{~B}(\mathrm{ii)}$. We will now construct an 'integral representation formula' for the solution to this problem. The Poisson kernel is the function $\mathcal{P}: \mathbb{D} \times \mathbb{S} \longrightarrow \mathbb{R}$ defined:
$$
\mathcal{P}(\mathbf{x}, \mathbf{s}):=\frac{R^{2}-\|\mathbf{x}\|^{2}}{\|\mathbf{x}-\mathbf{s}\|^{2}} \quad \text { for any } \mathbf{x} \in \mathbb{D} \text { and } \mathbf{s} \in \mathbb{S} .
$$

In polar coordinates (Figure 14B.10B), we can parameterize $\mathbf{s} \in \mathbb{S}$ with a single angular coordinate $\sigma \in[-\pi, \pi)$, and assign \mathbf{x} the coordinates (r, θ). Poisson's kernel then takes the form:

$$
\mathcal{P}(\mathbf{x}, \mathbf{s})=\mathcal{P}(r, \theta ; \sigma)=\frac{R^{2}-r^{2}}{R^{2}-2 r R \cos (\theta-\sigma)+r^{2}}
$$

(Exercise 14B.8)

Proposition 14B.11. Poisson's Integral Formula

Let $\mathbb{D}=\{(r, \theta) ; r \leq R\}$ be the disk of radius R, and let $b \in \mathbf{L}^{2}[-\pi, \pi)$. Consider the Laplace equation " $\triangle u=0$ ", with nonhomogeneous Dirichlet boundary conditions $u(R, \theta)=b(\theta)$. The unique solution to this problem satisfies:
For any $r \in[0, R)$ and $\theta \in[-\pi, \pi), \quad u(r, \theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathcal{P}(r, \theta ; \sigma) \cdot b(\sigma) d \sigma$.
or, more abstractly, $\quad u(\mathbf{x})=\frac{1}{2 \pi} \int_{\mathbb{S}} \mathcal{P}(\mathbf{x}, \mathbf{s}) \cdot b(\mathbf{s}) d \mathbf{s}, \quad$ for any $\mathbf{x} \in \operatorname{int}(\mathbb{D})$.
Proof. For simplicity, assume $R=1$ (the general case can be obtained by rescaling). From Proposition 14B. 2 on page 278, we know that

$$
u(r, \theta) \quad \underset{\mathrm{I} 2}{\approx} \quad A_{0}+\sum_{n=1}^{\infty} A_{n} \cos (n \theta) \cdot r^{n}+\sum_{n=1}^{\infty} B_{n} \sin (n \theta) \cdot r^{n},
$$

where A_{n} and B_{n} are the (real) Fourier coefficients for the function b. Substituting in the definition of these coefficients (see $\S 8 \mathrm{~A}$ on page 161), we get:

$$
\begin{align*}
u(r, \theta)= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} b(\sigma) d \sigma+\sum_{n=1}^{\infty} \cos (n \theta) \cdot r^{n} \cdot\left(\frac{1}{\pi} \int_{-\pi}^{\pi} b(\sigma) \cos (n \sigma) d \sigma\right) \\
& +\sum_{n=1}^{\infty} \sin (n \theta) \cdot r^{n} \cdot\left(\frac{1}{\pi} \int_{-\pi}^{\pi} b(\sigma) \sin (n \sigma) d \sigma\right) \\
= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} b(\sigma)\left(1+2 \sum_{n=1}^{\infty} r^{n} \cdot \cos (n \theta) \cos (n \sigma)+2 \sum_{n=1}^{\infty} r^{n} \cdot \sin (n \theta) \sin (n \sigma)\right) d \sigma \\
\overline{(*)} & \frac{1}{2 \pi} \int_{-\pi}^{\pi} b(\sigma)\left(1+2 \sum_{n=1}^{\infty} r^{n} \cdot \cos (n(\theta-\sigma))\right) \tag{14B.17}
\end{align*}
$$

where $(*)$ is because $\cos (n \theta) \cos (n \sigma)+\sin (n \theta) \sin (n \sigma)=\cos (n(\theta-\sigma))$.
It now suffices to prove:
Claim 1: $1+2 \sum_{n=1}^{\infty} r^{n} \cdot \cos (n(\theta-\sigma))=\mathcal{P}(r, \theta ; \sigma)$.
Proof. By Euler's Formula (see page 551), $2 \cos (n(\theta-\sigma))=e^{\mathrm{i} n(\theta-\sigma)}+$ $e^{-\mathbf{i} n(\theta-\sigma)}$. Hence,

$$
\begin{equation*}
1+2 \sum_{n=1}^{\infty} r^{n} \cdot \cos (n(\theta-\sigma))=1+\sum_{n=1}^{\infty} r^{n} \cdot\left(e^{\mathbf{i} n(\theta-\sigma)}+e^{-\mathbf{i} n(\theta-\sigma)}\right) \tag{14B.18}
\end{equation*}
$$

Now define complex number $z=r \cdot e^{\mathbf{i}(\theta-\sigma)}$; then observe that $r^{n} \cdot e^{\mathbf{i} n(\theta-\sigma)}=$ z^{n} and $r^{n} \cdot e^{-\mathbf{i} n(\theta-\sigma)}=\bar{z}^{n}$. Thus, we can rewrite the right hand side of (14B.18) as:

$$
\begin{aligned}
1 & +\sum_{n=1}^{\infty} r^{n} \cdot e^{\mathbf{i} n(\theta-\sigma)}+\sum_{n=1}^{\infty} r^{n} \cdot e^{-\mathbf{i} n(\theta-\sigma)} \\
& =1+\sum_{n=1}^{\infty} z^{n}+\sum_{n=1}^{\infty} \bar{z}^{n} \overline{\overline{(\mathrm{a})}} 1+\frac{z}{1-z}+\frac{\bar{z}}{1-\bar{z}} \\
& =1+\frac{z-z \bar{z}+\bar{z}-z \bar{z}}{1-z-\bar{z}+z \bar{z}} \quad \overline{\overline{(\mathrm{~b})}} \quad 1+\frac{2 \operatorname{Re}[z]-2|z|^{2}}{1-2 \operatorname{Re}[z]+|z|^{2}} \\
& =\frac{1-2 \operatorname{Re}[z]+|z|^{2}}{1-2 \operatorname{Re}[z]+|z|^{2}}+\frac{2 \operatorname{Re}[z]-2|z|^{2}}{1-2 \operatorname{Re}[z]+|z|^{2}} \\
& =\frac{1-|z|^{2}}{1-2 \operatorname{Re}[z]+|z|^{2}} \quad \overline{\overline{(\mathrm{c})}} \quad \frac{1-r^{2}}{1-2 r \cos (\theta-\sigma)+r^{2}}=\mathcal{P}(r, \theta ; \sigma) .
\end{aligned}
$$

(a) is because $\sum_{n=1}^{\infty} x^{n}=\frac{x}{1-x}$ for any $x \in \mathbb{C}$ with $|x|<1 . \quad$ (b) is because $z+\bar{z}=$ $2 \operatorname{Re}[z]$ and $z \bar{z}=|z|^{2}$ for any $z \in \mathbb{C}$. (c) is because $|z|=r$ and $\operatorname{Re}[z]=\cos (\theta-\sigma)$ by definition of z.

Now, use Claim 1 to substitute $\mathcal{P}(r, \theta ; \sigma)$ into (14B.17); this yields the Poisson integral formula (14B.16).

14C Bessel functions

14C(i) Bessel's equation; Eigenfunctions of \triangle in Polar Coordinates

Prerequisites: $\S 4 B$, , $\S[4 \mathrm{~A} . \quad$ Recommended: $\S 16 \mathrm{C}$.

Figure 14C.1: Bessel functions near zero.
Fix $n \in \mathbb{N}$. The (2-dimensional) Bessel's Equation (of order n) is the ordinary differential equation

$$
\begin{equation*}
x^{2} \mathcal{R}^{\prime \prime}(x)+x \mathcal{R}^{\prime}(x)+\left(x^{2}-n^{2}\right) \cdot \mathcal{R}(x)=0 \tag{14C.1}
\end{equation*}
$$

where $\mathcal{R}:[0, \infty] \longrightarrow \mathbb{R}$ is an unknown function. In $\S 16 \mathrm{C}$, we will explain how this equation was first derived. In the present section, we will investigate its mathematical consequences.

The Bessel equation has two solutions:
$\mathcal{R}(x)=\mathcal{J}_{n}(x) \quad$ the nth order Bessel function of the first kind.
[See Figures 14C.1(A) and 14C.2(A)]
$\mathcal{R}(x)=\mathcal{Y}_{n}(x) \quad$ the nth order Bessel function of the second kind, or
Neumann function. [See Figures 14C.1(B) and 14C.2(B)]
Bessel functions are like trigonometric or logarithmic functions; the 'simplest' expression for them is in terms of a power series. Hence, you should treat the functions " \mathcal{J}_{n} " and " \mathcal{Y}_{n} " the same way you treat elementary functions like "sin", "tan" or "log". In $\S[4 \mathrm{G}$ we will derive an explicit power series for Bessel's functions, and in $\S[4 H$, we will derive some of their important properties. However, for now, we will simply take for granted that some solution functions \mathcal{J}_{n} exists, and discuss how we can use these functions to build eigenfunctions for the Laplacian which separate in polar coordinates.

Proposition 14C.1.

(A): $\mathcal{J}_{0}(x)$, for $x \in[0,100]$.

The x-intercepts of this graph are the roots $\kappa_{01}, \kappa_{02}, \kappa_{03}, \kappa_{04}, \ldots$

(B): $\mathcal{Y}_{0}(x)$, for $x \in[0,80]$.

Figure 14C.2: Bessel functions are asymptotically periodic.
Fix $\lambda>0$. For any $n \in \mathbb{N}$, define the functions $\Phi_{n, \lambda}, \Psi_{n, \lambda}, \phi_{n, \lambda}, \psi_{n, \lambda}: \mathbb{R}^{2} \longrightarrow$ \mathbb{R} by

$$
\begin{aligned}
& \Phi_{n, \lambda}(r, \theta)=\mathcal{J}_{n}(\lambda \cdot r) \cdot \cos (n \theta) ; \quad \quad \Psi_{n, \lambda}(r, \theta)=\mathcal{J}_{n}(\lambda \cdot r) \cdot \sin (n \theta) ; \\
& \phi_{n, \lambda}(r, \theta)=\mathcal{Y}_{n}(\lambda \cdot r) \cdot \cos (n \theta) ; \quad \text { and } \quad \psi_{n, \lambda}(r, \theta)=\mathcal{Y}_{n}(\lambda \cdot r) \cdot \sin (n \theta) \text {. }
\end{aligned}
$$

(see Figures 14C.3 and 14C.4). Then $\Phi_{n, \lambda}, \Psi_{n, \lambda}, \phi_{n, \lambda}$, and $\psi_{n, \lambda}$ are all eigenfunctions of the Laplacian with eigenvalue $-\lambda^{2}$:

$$
\begin{aligned}
\triangle \Phi_{n, \lambda} & =-\lambda^{2} \Phi_{n, \lambda} ; \quad \triangle \Psi_{n, \lambda} \quad=\quad-\lambda^{2} \Psi_{n, \lambda} ; \\
\triangle \phi_{n, \lambda} & =-\lambda^{2} \phi_{n, \lambda} ;
\end{aligned} \quad \text { and } \quad \triangle \psi_{n, \lambda}=-\lambda^{2} \psi_{n, \lambda} .
$$

Proof. See practice problems \#[12 to \# [15 of §14].
We can now use these eigenfunctions to solve PDEs in polar coordinates. Notice that \mathcal{J}_{n}-and thus, eigenfunctions $\Phi_{n, \lambda}$ and $\Psi_{n, \lambda}$-are bounded around zero (see Figure 14C.1A). On the other hand, \mathcal{Y}_{n}-and thus, eigenfunctions $\phi_{n, \lambda}$ and $\psi_{n, \lambda}$-are unbounded at zero (see Figure 14C.1B). Hence, when solving BVPs in a neighbourhood around zero (e.g. the disk), we should use $\mathcal{J}_{n}, \Phi_{n, \lambda}$ and $\Psi_{n, \lambda}$. When solving BVPs on a domain away from zero (e.g. the annulus), we can also use $\mathcal{Y}_{n}, \phi_{n, \lambda}$ and $\psi_{n, \lambda}$.

Figure 14C.3: $\Phi_{n, m}$ for $n=0,1,2$ and for $m=1,2,3,4,5$ (rotate page).

Figure 14C.4: $\Phi_{n, m}$ for $n=3,4,5$ and for $m=1,2,3,4,5$ (rotate page).

14C(ii) Boundary conditions; the roots of the Bessel function

Prerequisites: $\S 5 \mathrm{C}, \S(14 \mathrm{C}(\mathrm{i})$.
To obtain homogeneous Dirichlet boundary conditions on a disk of radius R, we need an eigenfunction of the form $\Phi_{n, \lambda}$ (or $\Psi_{n, \lambda}$) such that $\Phi_{n, \lambda}(R, \theta)=0$ for all $\theta \in[-\pi, \pi)$. Hence, we need:

$$
\begin{equation*}
\mathcal{J}_{n}(\lambda \cdot R)=0 \tag{14C.2}
\end{equation*}
$$

The roots of the Bessel function \mathcal{J}_{n} are the values $\kappa \in \mathbb{R}_{\neq}$such that $\mathcal{J}_{n}(\kappa)=0$. These roots form an increasing sequence

$$
\begin{equation*}
0 \leq \kappa_{n 1}<\kappa_{n 2}<\kappa_{n 3}<\kappa_{n 4}<\ldots \tag{14C.3}
\end{equation*}
$$

of irrational valuest ${ }^{2}$. Thus, to satisfy the homogeneous Dirichlet boundary condition (14C.2), we must set $\lambda:=\kappa_{n m} / R$ for some $m \in \mathbb{N}$. This yields an increasing sequence of eigenvalues:
$\lambda_{n 1}^{2}=\left(\frac{\kappa_{n 1}}{R}\right)^{2}<\lambda_{n 2}^{2}=\left(\frac{\kappa_{n 2}}{R}\right)^{2}<\lambda_{n 3}^{2}=\left(\frac{\kappa_{n 3}}{R}\right)^{2}<\lambda_{n 4}^{2}=\left(\frac{\kappa_{n 4}}{R}\right)^{2}<\ldots$
which are the eigenvalues which we can expect to see in this problem. The corresponding eigenfunctions will then have the form:

$$
\begin{equation*}
\Phi_{n, m}(r, \theta)=\mathcal{J}_{n}\left(\lambda_{n, m} \cdot r\right) \cdot \cos (n \theta) \quad \Psi_{n, m}(r, \theta)=\mathcal{J}_{n}\left(\lambda_{n, m} \cdot r\right) \cdot \sin (n \theta) \tag{14C.5}
\end{equation*}
$$

(see Figures 14C. 3 and 14C.4).

14C(iii) Initial conditions; Fourier-Bessel expansions

Prerequisites: $\S 5 \mathrm{~B}, \S 6 \mathrm{~F}, ~ \S 14 \mathrm{C}(\mathrm{ii)}$.
To solve an initial value problem, while satisfying the desired boundary conditions, we express our initial conditions as a sum of the eigenfunctions from expression (14C.5). This is called a Fourier-Bessel Expansion:

$$
\begin{align*}
f(r, \theta)=\sum_{n=0}^{\infty} \sum_{m=1}^{\infty} A_{n m} \cdot \Phi_{n m}(r, \theta) & +\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} \cdot \Psi_{n m}(r, \theta) \\
& +\sum_{n=0}^{\infty} \sum_{m=1}^{\infty} a_{n m} \cdot \phi_{n m}(r, \theta)+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b_{n m} \cdot \psi_{n m}(r, \theta) \tag{14C.6}
\end{align*}
$$

where $A_{n m}, B_{n m}, a_{n m}$, and $b_{n m}$ are all real-valued coefficients. Suppose we are considering boundary value problems on the unit disk \mathbb{D}. Then we want

[^51]this expansion to be bounded at 0 , so we don't want the second two types of eigenfunctions. Thus, expression (14C.6) simplifies to:
\[

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{m=1}^{\infty} A_{n m} \cdot \Phi_{n m}(r, \theta)+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} \cdot \Psi_{n m}(r, \theta) \tag{14C.7}
\end{equation*}
$$

\]

If we substitute the explicit expressions from (14C.5) for $\Phi_{n m}(r, \theta)$ and $\Psi_{n m}(r, \theta)$ into expression (14C.7), we get:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{m=1}^{\infty} A_{n m} \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \cos (n \theta)+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \sin (n \theta) \tag{14C.8}
\end{equation*}
$$

Now, if $f: \mathbb{D} \longrightarrow \mathbb{R}$ is some function describing initial conditions, is it always possible to express f using an expansion like (14C.8)? If so, how do we compute the coefficients $A_{n m}$ and $B_{n m}$ in expression (14C.8)? The answer to these questions lies in the following result:

Theorem 14C.2. The collection $\left\{\Phi_{n, m}, \Psi_{\ell, m} ; n=0 \ldots \infty, \ell \in \mathbb{N}, m \in \mathbb{N}\right\}$ is an orthogonal basis for $\mathbf{L}^{2}(\mathbb{D})$. Thus, suppose $f \in \mathbf{L}^{2}(\mathbb{D})$, and for all $n, m \in \mathbb{N}$, we define

$$
\begin{aligned}
A_{n m} & :=\frac{\left\langle f, \Phi_{n m}\right\rangle}{\left\|\Phi_{n} m\right\|_{2}^{2}} \\
& =\frac{2}{\pi R^{2} \cdot \mathcal{J}_{n+1}^{2}\left(\kappa_{n m}\right)} \cdot \int_{-\pi}^{\pi} \int_{0}^{R} f(r, \theta) \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \cos (n \theta) \cdot r d r d \theta \\
\text { and } \quad B_{n m} & :=\frac{\left\langle f, \Psi_{n m}\right\rangle}{\left\|\Psi_{n}\right\|_{2}^{2}} \\
& =\frac{2}{\pi R^{2} \cdot \mathcal{J}_{n+1}^{2}\left(\kappa_{n m}\right)} \cdot \int_{-\pi}^{\pi} \int_{0}^{R} f(r, \theta) \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \sin (n \theta) \cdot r d r d \theta
\end{aligned}
$$

Then the Fourier-Bessel series (14C.8) converges to f in L^{2}-norm.
Proof. (sketch) The fact that the collection $\left\{\Phi_{n, m}, \Psi_{\ell, m} ; n=0 \ldots \infty, \ell \in \mathbb{N}, m \in \mathbb{N}\right\}$ is an orthogonal set will be verified in Proposition 14 H .4 on page 313 of $\S 14 \mathrm{H}$. The fact that this orthogonal set is actually a basis of $\mathbf{L}^{2}(\mathbb{D})$ is too complicated for us to prove here. Given that this is true, if we define $A_{n m}:=$ $\left\langle f, \Phi_{n m}\right\rangle /\left\|\Phi_{n} m\right\|_{2}^{2}$ and $B_{n m}:=\left\langle f, \Psi_{n m}\right\rangle /\left\|\Psi_{n} m\right\|_{2}^{2}$, then the Fourier-Bessel series (14C.8) converges to f in L^{2}-norm, by definition of "orthogonal basis" (see $\S 6 \mathrm{~F}$ on page 131).
It remains to verify the integral expressions given for the two inner products. To do this, recall that

$$
\left\langle f, \Phi_{n m}\right\rangle=\frac{1}{\text { Area }[\mathbb{D}]} \int_{\mathbb{D}} f(\mathbf{x}) \cdot \Phi_{n m}(\mathbf{x}) d \mathbf{x}
$$

[^52]\[

$$
\begin{aligned}
& =\frac{1}{\pi R^{2}} \int_{0}^{2 \pi} \int_{0}^{R} f(r, \theta) \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \cos (n \theta) \cdot r d r d \theta \\
\text { and }\left\|\Phi_{n m}\right\|_{2}^{2} & =\left\langle\Phi_{n m}, \Phi_{n m}\right\rangle=\frac{1}{\pi R^{2}} \int_{-\pi}^{\pi} \int_{0}^{R} \mathcal{J}_{n}^{2}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \cos ^{2}(n \theta) \cdot r d r d \theta \\
& =\left(\frac{1}{R^{2}} \int_{0}^{R} \mathcal{J}_{n}^{2}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot r d r\right) \cdot\left(\frac{1}{\pi} \int_{-\pi}^{\pi} \cos ^{2}(n \theta) d \theta\right) \\
& \overline{(\dagger)} \frac{1}{R^{2}} \int_{0}^{R} \mathcal{J}_{n}^{2}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot r d r . \\
& \overline{(\ddagger)} \int_{0}^{1} \mathcal{J}_{n}^{2}\left(\kappa_{n m} \cdot s\right) \cdot s d s . \\
& \overline{(*)} \frac{1}{2} \mathcal{J}_{n+1}^{2}\left(\kappa_{n m}\right)
\end{aligned}
$$
\]

here, (\dagger) is by Proposition 6D. 2 on page 112, (\dagger) is the change of variables $s:=\frac{r}{R}$, so that $\left.d r=R d s\right)$, and $(*)$ is by Lemma 14H.3(b) on page 310 .

To compute the integrals in Theorem 14C.2, one generally uses 'integration by parts' techniques similar to those used to compute trigonometic Fourier coefficients (see e.g. $\S 7$ C on page 147). However, instead of the convenient trigonometric facts that $\sin ^{\prime}=\cos$ and $\cos ^{\prime}=-\sin$, one must make use of slightly more complicated recurrence relations of Proposition 14H.1] on page 309 of §[4H. See Remark 14 H .2 on page 310.

We will do not have space in this book to properly develop integration techniques for computing Fourier-Bessel coefficients. Instead, in the remaining discussion, we will simply assume that f is given to us in the form (14C.8).

14D The Poisson equation in polar coordinates

Proposition 14D.1. (Poisson Equation on Disk; homogeneous Dirichlet BC)
Let $\mathbb{D}=\{(r, \theta) ; r \leq R\}$ be a disk, and let $q \in \mathbf{L}^{2}(\mathbb{D})$ be some function. Consider the Posson equation " $\Delta u(r, \theta)=q(r, \theta)$ ", with homogeneous Dirichlet boundary conditions. Suppose q has semiuniformly convergent Fourier-Bessel series:
$q(r, \theta) \underset{\text { L } 2}{\approx} \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} A_{n m} \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \cos (n \theta)+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \sin (n \theta)$
Linear Partial Differential Equations and Fourier Theory
MRAFT

Then the unique solution to this problem is the function $u: \mathbb{D} \longrightarrow \mathbb{R}$ defined

$$
\begin{aligned}
u(r, \theta) \overline{\overline{\text { unif }}}-\sum_{n=0}^{\infty} & \sum_{m=1}^{\infty} \frac{R^{2} \cdot A_{n m}}{\kappa_{n m}^{2}} \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \cos (n \theta) \\
& -\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{R^{2} \cdot B_{n m}}{\kappa_{n m}^{2}} \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \sin (n \theta)
\end{aligned}
$$

Proof. Exercise 14D. 1

Remark. If $R=1$, then the expression for q simplifies to:

$$
q(r, \theta) \underset{\mathrm{I} 2}{\approx} \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} A_{n m} \cdot \mathcal{J}_{n}\left(\kappa_{n m} \cdot r\right) \cdot \cos (n \theta)+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} \cdot \mathcal{J}_{n}\left(\kappa_{n m} \cdot r\right) \cdot \sin (n \theta)
$$

and the solution simplifies to
$u(r, \theta) \xlongequal[\overline{\text { unif }}]{ }-\sum_{n=0}^{\infty} \sum_{m=1}^{\infty} \frac{A_{n m}}{\kappa_{n m}^{2}} \cdot \mathcal{J}_{n}\left(\kappa_{n m} \cdot r\right) \cdot \cos (n \theta)-\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{B_{n m}}{\kappa_{n m}^{2}} \cdot \mathcal{J}_{n}\left(\kappa_{n m} \cdot r\right) \cdot \sin (n \theta)$

Example 14D.2. Suppose $R=1$, and $q(r, \theta)=\mathcal{J}_{0}\left(\kappa_{0,3} \cdot r\right)+\mathcal{J}_{5}\left(\kappa_{2,5} \cdot r\right)$. $\sin (2 \theta)$. Then

$$
u(r, \theta)=\frac{-\mathcal{J}_{0}\left(\kappa_{0,3} \cdot r\right)}{\kappa_{0,3}^{2}}-\frac{\mathcal{J}_{5}\left(\kappa_{2,5} \cdot r\right) \cdot \sin (2 \theta)}{\kappa_{2,5}^{2}} .
$$

Proposition 14D.3. (Poisson Equation on Disk; nonhomogeneous Dirichlet BC)

Let $\mathbb{D}=\{(r, \theta) ; r \leq R\}$ be a disk. Let $b \in \mathbf{L}^{2}[-\pi, \pi)$ and $q \in \mathbf{L}^{2}(\mathbb{D})$. Consider the Poisson equation " $\triangle u(r, \theta)=q(r, \theta)$ ", with nonhomogeneous Dirichlet boundary conditions:

$$
\begin{equation*}
u(R, \theta)=b(\theta), \quad \text { for all } \theta \in[-\pi, \pi) . \tag{14D.1}
\end{equation*}
$$

1. Let $w: \mathbb{D} \longrightarrow \mathbb{R}$ be the solution [] to the Laplace Equation; " $\Delta w=0$ ", with the nonhomogeneous Dirichlet BC (14D.1).
2. Let $v: \mathbb{D} \longrightarrow \mathbb{R}$ be the solution to the Poisson Equation; " $\Delta v=q$ ", with the homogeneous Dirichlet BC.
3. Define $u(r, \theta):=v(r, \theta ; t)+w(r, \theta)$. Then $u(r, \theta)$ is a solution to the Poisson Equation with inhomogeneous Dirichlet BC (14D.1).

Proof. Exercise 14D. 2

Example 14D.4. Suppose $R=1$, and $q(r, \theta)=\mathcal{J}_{0}\left(\kappa_{0,3} \cdot r\right)+\mathcal{J}_{2}\left(\kappa_{2,5} \cdot r\right)$. $\sin (2 \theta)$. Let $b(\theta)=\sin (3 \theta)$.
From Example 14B. 3 on page 279, we know that the (bounded) solution to the Laplace equation with Dirichlet BC $w(1, \theta)=b(\theta)$ is:

$$
w(r, \theta)=r^{3} \sin (3 \theta)
$$

From Example 14D.2, we know that the solution to the Poisson equation $" \Delta v=q$ ", with homogeneous Dirichlet BC is:

$$
v(r, \theta)=\frac{\mathcal{J}_{0}\left(\kappa_{0,3} \cdot r\right)}{\kappa_{0,3}^{2}}+\frac{\mathcal{J}_{2}\left(\kappa_{2,5} \cdot r\right) \cdot \sin (2 \theta)}{\kappa_{2,5}^{2}}
$$

Thus, by Proposition 14D.3, the the solution to the Poisson equation " $\triangle u=$ $q "$, with Dirichlet BC $w(1, \theta)=b(\theta)$, is given:
$u(r, \theta)=v(r, \theta)+w(r, \theta)=\frac{\mathcal{J}_{0}\left(\kappa_{0,3} \cdot r\right)}{\kappa_{0,3}^{2}}+\frac{\mathcal{J}_{2}\left(\kappa_{2,5} \cdot r\right) \cdot \sin (2 \theta)}{\kappa_{2,5}^{2}}+$ $r^{3} \sin (3 \theta)$.

14E The heat equation in polar coordinates

Proposition 14E.1. (Heat equation on Disk; homogeneous Dirichlet BC)
Let $\mathbb{D}=\{(r, \theta) ; r \leq R\}$ be a disk, and consider the heat equation " $\partial_{t} u=$ $\triangle u$ ", with homogeneous Dirichlet boundary conditions, and initial conditions $u(r, \theta ; 0)=f(r, \theta)$. Suppose f has Fourier-Bessel series:
$f(r, \theta) \underset{\mathrm{I} 2}{\approx} \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} A_{n m} \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \cos (n \theta)+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \sin (n \theta)$

[^53]Then the unique solution to this problem is the function $u: \mathbb{D} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ defined:

$$
\begin{aligned}
& u(r, \theta ; t) \underset{\mathrm{I} 2}{\approx} \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} A_{n m} \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \cos (n \theta) \exp \left(\frac{-\kappa_{n m}^{2}}{R^{2}} t\right) \\
&+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \sin (n \theta) \exp \left(\frac{-\kappa_{n m}^{2}}{R^{2}} t\right)
\end{aligned}
$$

Furthermore, the series defining u converges semiuniformly on $\mathbb{D} \times \mathbb{R}_{+}$.

Proof. Exercise 14E. 1

Remark. If $R=1$, then the initial conditions simplify to:

$$
f(r, \theta) \underset{\mathrm{T} 2}{\approx} \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} A_{n m} \cdot \mathcal{J}_{n}\left(\kappa_{n m} \cdot r\right) \cdot \cos (n \theta)+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} \cdot \mathcal{J}_{n}\left(\kappa_{n m} \cdot r\right) \cdot \sin (n \theta)
$$

and the solution simplifies to:

$$
\begin{aligned}
u(r, \theta ; t) \quad \underset{\mathrm{I} 2}{\approx} \sum_{n=0}^{\infty} & \sum_{m=1}^{\infty} A_{n m} \cdot \mathcal{J}_{n}\left(\kappa_{n m} \cdot r\right) \cdot \cos (n \theta) \cdot e^{-\kappa_{n m}^{2} t} \\
& +\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} \cdot \mathcal{J}_{n}\left(\kappa_{n m} \cdot r\right) \cdot \sin (n \theta) \cdot e^{-\kappa_{n m}^{2} t} .
\end{aligned}
$$

Example 14E.2. Suppose $R=1$, and $f(r, \theta)=\mathcal{J}_{0}\left(\kappa_{0,7} \cdot r\right)-4 \mathcal{J}_{3}\left(\kappa_{3,2} \cdot r\right)$. $\cos (3 \theta)$. Then

$$
u(r, \theta ; t)=\mathcal{J}_{0}\left(\kappa_{0,7} \cdot r\right) \cdot e^{-\kappa_{0,7}^{2} t}-4 \mathcal{J}_{3}\left(\kappa_{3,2} \cdot r\right) \cdot \cos (3 \theta) \cdot e^{-\kappa_{32}^{2} t} .
$$

Proposition 14E.3. (Heat equation on Disk; nonhomogeneous Dirichlet BC)
Let $\mathbb{D}=\{(r, \theta) ; r \leq R\}$ be a disk, and let $f: \mathbb{D} \longrightarrow \mathbb{R}$ and $b:[-\pi, \pi) \longrightarrow \mathbb{R}$ be given functions. Consider the Heat equation " $\partial_{t} u=\Delta u$ ", with initial conditions $u(r, \theta)=f(r, \theta)$, and nonhomogeneous Dirichlet boundary conditions:

$$
\begin{equation*}
u(R, \theta)=b(\theta), \quad \text { for all } \theta \in[-\pi, \pi) \tag{14E.1}
\end{equation*}
$$

1. Let $w: \mathbb{D} \longrightarrow \mathbb{R}$ be the solution ${ }^{\text {冋 }}$ to the Laplace Equation; " $\triangle w=0$ ", with the nonhomogeneous Dirichlet BC (14E.1).

[^54]2. Define $g(r, \theta):=f(r, \theta)-w(r, \theta)$. Let $v: \mathbb{D} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ be the solution ${ }^{[}$ to the heat equation " $\partial_{t} v=\triangle v$ " with initial conditions $v(r, \theta)=g(r, \theta)$, and homogeneous Dirichlet BC.
3. Define $u(r, \theta ; t):=v(r, \theta ; t)+w(r, \theta)$. Then $u(r, \theta ; t)$ is a solution to the heat equation with initial conditions $u(r, \theta)=f(r, \theta)$, and inhomogeneous Dirichlet BC (14E.1).

Proof. Exercise 14E. 2

14 F The wave equation in polar coordinates

Imagine a drumskin stretched tightly over a circular frame. At equilibrium, the drumskin is perfectly flat, but if we strike the skin, it will vibrate, meaning that the membrane will experience vertical displacements from equilibrium. Let $\mathbb{D}=\{(r, \theta) ; r \leq R\}$ represent the round skin, and for any point $(r, \theta) \in \mathbb{D}$ on the drumskin and time $t>0$, let $u(r, \theta ; t)$ be the vertical displacement of the drum. Then u will obey the two-dimensional wave equation:

$$
\begin{equation*}
\partial_{t}^{2} u(r, \theta ; t)=\triangle u(r, \theta ; t) \tag{14F.1}
\end{equation*}
$$

However, since the skin is held down along the edges of the circle, the function u will also exhibit homogeneous Dirichlet boundary conditions:

$$
\begin{equation*}
u(R, \theta ; t)=0, \quad \text { for all } \theta \in[-\pi, \pi) \text { and } t \geq 0 \tag{14F.2}
\end{equation*}
$$

Proposition 14F.1. (Wave equation on Disk; homogeneous Dirichlet BC)
Let $\mathbb{D}=\{(r, \theta) ; r \leq R\}$ be a disk, and consider the wave equation " $\partial_{t}^{2} u=$ $\triangle u "$, with homogeneous Dirichlet boundary conditions, and

$$
\begin{aligned}
& \text { Initial position: } \quad u(r, \theta ; 0) \\
& \text { Initial velocity: }
\end{aligned} f_{0}(r, \theta) ;
$$

Suppose f_{0} and f_{1} have Fourier-Bessel series:

$$
\begin{aligned}
f_{0}(r, \theta) \quad \underset{\mathrm{I} 2}{\approx} \sum_{n=0}^{\infty} & \sum_{m=1}^{\infty} A_{n m} \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \cos (n \theta) \\
& +\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \sin (n \theta)
\end{aligned}
$$

[^55]\[

$$
\begin{aligned}
& \text { and } f_{1}(r, \theta) \quad \underset{\mathrm{T} 2}{\approx} \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} A_{n m}^{\prime} \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \cos (n \theta) \\
& +\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m}^{\prime} \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \sin (n \theta) . \\
& \text { Assume that } \quad \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} \kappa_{n m}^{2}\left|A_{n m}\right|+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \kappa_{n m}^{2}\left|B_{n m}\right|<\infty, \\
& \text { and } \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} \kappa_{n m}\left|A_{n m}^{\prime}\right|+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \kappa_{n m}\left|B_{n m}^{\prime}\right|<\infty .
\end{aligned}
$$
\]

Then the unique solution to this problem is the function $u: \mathbb{D} \times \mathbb{R}_{\nmid} \longrightarrow \mathbb{R}$ defined:

$$
\begin{aligned}
u(r, \theta ; t) \approx \sum_{n=0}^{\infty} & \sum_{m=1}^{\infty} A_{n m} \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \cos (n \theta) \cdot \cos \left(\frac{\kappa_{n m}}{R} t\right) \\
& +\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \sin (n \theta) \cdot \cos \left(\frac{\kappa_{n m}}{R} t\right) \\
& +\sum_{n=0}^{\infty} \sum_{m=1}^{\infty} \frac{R \cdot A_{n m}^{\prime}}{\kappa_{n m}} \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \cos (n \theta) \cdot \sin \left(\frac{\kappa_{n m}}{R} t\right) \\
& +\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{R \cdot B_{n m}^{\prime}}{\kappa_{n m}} \cdot \mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \sin (n \theta) \cdot \sin \left(\frac{\kappa_{n m}}{R} t\right)
\end{aligned}
$$

Proof. Exercise 14F. 1

Remark. If $R=1$, then the initial conditions would be:

$$
\begin{aligned}
f_{0}(r, \theta) \underset{\widetilde{\mathrm{I} 2}}{\approx} \sum_{n=0}^{\infty} & \sum_{m=1}^{\infty} A_{n m} \cdot \mathcal{J}_{n}\left(\kappa_{n m} \cdot r\right) \cdot \cos (n \theta) \\
& +\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} \cdot \mathcal{J}_{n}\left(\kappa_{n m} \cdot r\right) \cdot \sin (n \theta), \\
\text { and } f_{1}(r, \theta) \approx \underset{\mathrm{I} 2}{\widetilde{ }} \sum_{n=0}^{\infty} & \sum_{m=1}^{\infty} A_{n m}^{\prime} \cdot \mathcal{J}_{n}\left(\kappa_{n m} \cdot r\right) \cdot \cos (n \theta) \\
& +\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m}^{\prime} \cdot \mathcal{J}_{n}\left(\kappa_{n m} \cdot r\right) \cdot \sin (n \theta) .
\end{aligned}
$$

and the solution simplifies to:

$$
\begin{aligned}
& u(r, \theta ; t) \underset{\text { L2 }}{\approx} \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} A_{n m} \cdot \mathcal{J}_{n}\left(\kappa_{n m} \cdot r\right) \cdot \cos (n \theta) \cdot \cos \left(\kappa_{n m} t\right) \\
&+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{n m} \cdot \mathcal{J}_{n}\left(\kappa_{n m} \cdot r\right) \cdot \sin (n \theta) \cdot \cos \left(\kappa_{n m} t\right) \\
&+\sum_{n=0}^{\infty} \sum_{m=1}^{\infty} \frac{A_{n m}^{\prime}}{\kappa_{n m}} \cdot \mathcal{J}_{n}\left(\kappa_{n m} \cdot r\right) \cdot \cos (n \theta) \cdot \sin \left(\kappa_{n m} t\right) \\
&+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{B_{n m}^{\prime}}{\kappa_{n m}} \cdot \mathcal{J}_{n}\left(\kappa_{n m} \cdot r\right) \cdot \sin (n \theta) \cdot \sin \left(\kappa_{n m} t\right)
\end{aligned}
$$

Acoustic Interpretation: The vibration of the drumskin is a superposition of distinct modes of the form
$\Phi_{n m}(r, \theta)=\mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \cos (n \theta) \quad$ and $\Psi_{n m}(r, \theta)=\mathcal{J}_{n}\left(\frac{\kappa_{n m} \cdot r}{R}\right) \cdot \sin (n \theta)$,
for all $m, n \in \mathbb{N}$. For fixed m and n, the modes $\Phi_{n m}$ and and $\Psi_{n m}$ vibrate at (temporal) frequency $\lambda_{n m}=\frac{\kappa_{n m}}{R}$. In the case of the vibrating string, all the different modes vibrated at frequences that were integer multiples of the fundamental frequency; musically speaking, this means that they are 'in harmony'. In the case of a drum, however, the frequencies are all irrational multiples (because the roots $\kappa_{n m}$ are all irrationally related). Acoustically speaking, this means we expect a drum to sound somewhat more 'discordant' than a string.

Notice also that, as the radius R gets larger, the frequency $\lambda_{n m}=\frac{\kappa_{n m}}{R}$ gets smaller. This means that larger drums vibrate at lower frequencies, which matches our experience.

Example 14F.2. A circular membrane of radius $R=1$ is emitting a pure pitch at frequency κ_{35}. Roughly describe the space-time profile of the solution (as a pattern of distortions of the membrane).
Answer: The spatial distortion of the membrane must be a combination of modes vibrating at this frequency. Thus, we expect it to be a function of the form:

$$
\begin{aligned}
& u(r, \theta ; t)=\mathcal{J}_{3}\left(\kappa_{35} \cdot r\right)\left[(A \cdot \cos (3 \theta)+B \cdot \sin (3 \theta)) \cdot \cos \left(\kappa_{35} t\right)+\right. \\
&\left.\left(\frac{A^{\prime}}{\kappa_{35}} \cdot \cos (3 \theta)+\frac{B^{\prime}}{\kappa_{35}} \cdot \sin (3 \theta)\right) \cdot \sin \left(\kappa_{35} t\right)\right]
\end{aligned}
$$

By introducing some constant angular phase-shifts ϕ and ϕ^{\prime}, as well as new constants C and C^{\prime}, we can rewrite this (Exercise 14F.2) as:

$$
u(r, \theta ; t)=\mathcal{J}_{3}\left(\kappa_{35} \cdot r\right)\left(C \cdot \cos (3(\theta+\phi)) \cdot \cos \left(\kappa_{35} t\right)+\frac{C^{\prime}}{\kappa_{35}} \cdot \cos \left(3\left(\theta+\phi^{\prime}\right)\right) \cdot \sin \left(\kappa_{35} t\right)\right) .
$$

$$
\diamond
$$

Example 14F.3. An initially silent circular drum of radius $R=1$ is struck in its exact center with a drumstick having a spherical head. Describe the resulting pattern of vibrations.

Solution: This is a problem with nonzero initial velocity and zero initial position. Since the initial velocity (the impact of the drumstick) is rotationally symmetric (dead centre, spherical head), we can write it as a Fourer-Bessel expansion with no angular dependence:
$f_{1}(r, \theta)=f(r) \underset{\mathrm{T} 2}{\approx} \sum_{m=1}^{\infty} A_{m}^{\prime} \cdot \mathcal{J}_{0}\left(\kappa_{0 m} \cdot r\right) \quad\left(A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}, \ldots\right.$ some constants $)$
(all the higher-order Bessel functions disappear, since \mathcal{J}_{n} is always associated with terms of the form $\sin (n \theta)$ and $\cos (n \theta)$, which depend on θ.) Thus, the solution must have the form:

$$
u(r, \theta ; t)=u(r, t) \quad \underset{\mathrm{T} 2}{\approx} \sum_{m=1}^{\infty} \frac{A_{m}^{\prime}}{\kappa_{0 m}} \cdot \mathcal{J}_{0}\left(\kappa_{0 m} \cdot r\right) \cdot \sin \left(\kappa_{0 m} t\right)
$$

14G The power series for a Bessel function

Prerequisites: $\S 0 \mathrm{OH}(\mathrm{iii})$ Recommended: $\S(4 \mathrm{C}(\mathrm{i})$.
In $\S[4 \mathrm{C}-\varsigma[4 \mathrm{~F}$, we claimed that Bessel's equation had certain solutions called Bessel functions, and showed how to use these Bessel functions to solve differential equations in polar coordinates. Now we will derive an an explicit formula for these Bessel functions in terms of their power series.

Proposition 14G.1. Set $\lambda:=1$. For any fixed $m \in \mathbb{N}$ there is a solution $\mathcal{J}_{m}: \mathbb{R}_{+} \longrightarrow \mathbb{R}$ to the Bessel Equation

$$
\begin{equation*}
x^{2} \mathcal{J}^{\prime \prime}(x)+x \cdot \mathcal{J}^{\prime}(x)+\left(x^{2}-m^{2}\right) \cdot \mathcal{J}(x)=0, \quad \text { for all } x>0 \tag{14G.1}
\end{equation*}
$$

with a power series expansion:

$$
\begin{equation*}
\mathcal{J}_{m}(x)=\left(\frac{x}{2}\right)^{m} \cdot \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k} k!(m+k)!} x^{2 k} \tag{14G.2}
\end{equation*}
$$

(\mathcal{J}_{m} is called the m th order Bessel function of the first kind.)

Proof. The ODE (14G.1) satisfies the hypotheses of the Frobenius Theorem (see Example 0 H .5 on page 574 of Appendix 0 H (iii)). Thus, we can apply the Method of Frobenius to solve (14G.1). Suppose that \mathcal{J} is a solution, with an (unknown) power series $\mathcal{J}(x)=x^{M} \sum_{k=0}^{\infty} a_{k} x^{k}$, where a_{0}, a_{1}, \ldots are unknown coefficients, and $M \geq 0$. We assume that $a_{0} \neq 0$. We substitute this power series into eqn. (14G.1) to get equations relating the coefficients. The details of this computation are shown in Table 14.1.
Claim 1: $\quad M=m$.
Proof. If the Bessel equation is to be satisfied, the power series in the bottom row of Table 14.1 must be identically zero. In particular, this means that the coefficient labeled '(a)' must be zero; in other words $a_{0}\left(M^{2}-m^{2}\right)=0$. Since we know that $a_{0} \neq 0$, this means $\left(M^{2}-m^{2}\right)=0$-i.e. $M^{2}=m^{2}$. But $M \geq 0$, so this means $M=m$.

Claim 2: $\quad a_{1}=0$.
Proof. If the Bessel equation is to be satisfied, the power series in the bottom row of Table 14.1 must be identically zero. In particular, this means that the coefficient labeled '(b)' must be zero; in other words, $a_{1}\left[(M+1)^{2}-m^{2}\right]=$ 0.

Claim 1 says that $M=m$; hence this is equivalent to $a_{1}\left[(m+1)^{2}-m^{2}\right]=$ 0 . Clearly, $\left[(m+1)^{2}-m^{2}\right] \neq 0$; hence we conclude that $a_{1}=0 . \quad \diamond_{\text {Claim 2 }}$
Claim 3: For all $k \geq 2$, the coefficients $\left\{a_{2}, a_{3}, a_{4}, \ldots\right\}$ must satisfy the following recurrence relation:

$$
\begin{equation*}
a_{k}=\frac{-1}{(m+k)^{2}-m^{2}} a_{k-2}, \quad \text { for all even } k \in \mathbb{N} \text { with } k \geq 2 \tag{14G.3}
\end{equation*}
$$

On the other hand, $a_{k}=0$ for all odd $k \in \mathbb{N}$.
Proof. If the Bessel equation is to be satisfied, the power series in the bottom row of Table 14.1 must be identically zero. In particular, this means that all the coefficients b_{k} must be zero. In other words, $a_{k-2}+$ $\left((M+k)^{2}-m^{2}\right) a_{k}=0$.
From Claim 1, we know that $M=m$; hence this is equivalent to $a_{k-2}+$ $\left((m+k)^{2}-m^{2}\right) a_{k}=0$. In other words, $a_{k}=-a_{k-2} /\left((m+k)^{2}-m^{2}\right) a_{k}$. From Claim 2, we know that $a_{1}=0$. It follows from this equation that $a_{3}=0$; hence $a_{5}=0$, etc. Inductively, $a_{n}=0$ for all odd n. $\diamond_{\text {Claim 3 }}$

Claim 4: Assume we have fixed a value for a_{0}. Define

$$
a_{2 j} \quad:=\frac{(-1)^{j} \cdot a_{0}}{2^{2 j} j!(m+1)(m+2) \cdots(m+j)}, \quad \text { for all } j \in \mathbb{N} \text {. }
$$

Table 14.1: The method of Frobenius to solve Bessel's equation in the proof of 14G.1.

Then the sequence $\left\{a_{0}, a_{2}, a_{4}, \ldots\right\}$ satisfies the recurrence relation (14G.3).
Proof. Set $k=2 j$ in eqn.(14G.3). For any $j \geq 2$, we must show that $a_{2 j}=\frac{-a_{2 j-2}}{(m+2 j)^{2}-m^{2}}$. Now, by definition,

$$
a_{2 j-2}=a_{2(j-1)}:=\frac{(-1)^{j-1} \cdot a_{0}}{2^{2 j-2}(j-1)!(m+1)(m+2) \cdots(m+j-1)},
$$

Also,

$$
(m+2 j)^{2}-m^{2}=m^{2}+4 j m+4 j^{2}-m^{2}=4 j m+4 j^{2}=2^{2} j(m+j)
$$

Hence

$$
\begin{aligned}
\frac{-a_{2 j-2}}{(m+2 j)^{2}-m^{2}} & =\frac{-a_{2 j-2}}{2^{2} j(m+j)} \\
& =\frac{(-1)(-1)^{j-1} \cdot a_{0}}{2^{2} j(m+j) \cdot 2^{2 j-2}(j-1)!(m+1)(m+2) \cdots(m+j-1)} \\
& =\frac{(-1)^{j} \cdot a_{0}}{2^{2 j-2+2} \cdot j(j-1)!\cdot(m+1)(m+2) \cdots(m+j-1)(m+j)} \\
& =\frac{(-1)^{j} \cdot a_{0}}{2^{2 j} j!(m+1)(m+2) \cdots(m+j-1)(m+j)}=a_{2 j},
\end{aligned}
$$

as desired.

$$
\diamond_{\text {Claim } 4}
$$

By convention we define $a_{0}:=\frac{1}{2^{m}} \frac{1}{m!}$. We claim that that the resulting coefficients yield the Bessel function $\mathcal{J}_{m}(x)$ defined by (14G.2) To see this, let $b_{2 k}$ be the $2 k$ th coefficient of the Bessel series. By definition,

$$
\begin{aligned}
b_{2 k} & :=\frac{1}{2^{m}} \cdot \frac{(-1)^{k}}{2^{2 k} k!(m+k)!}=\frac{1}{2^{m}} \cdot \frac{(-1)^{k}}{2^{2 k} k!m!(m+1)(m+2) \cdots(m+k-1)(m+k)} \\
& =\frac{1}{2^{m} m!} \cdot \frac{(-1)^{k}}{2^{2 k} k!(m+1)(m+2) \cdots(m+k-1)(m+k)} \\
& =a_{0} \cdot\left(\frac{(-1)^{k+1}}{2^{2 k} k!(m+1)(m+2) \cdots(m+k-1)(m+k)}\right)=a_{2 k},
\end{aligned}
$$

as desired.

Corollary 14G.2. Fix $m \in \mathbb{N}$. For any $\lambda>0$, the Bessel Equation (16C.12) has solution $\mathcal{R}(r):=\mathcal{J}_{m}(\lambda r)$.

Remarks: (a) We can generalize the Bessel Equation be replacing m with an arbitrary real number $\mu \in \mathbb{R}$ with $\mu \geq 0$. The solution to this equation is the Bessel function

$$
\mathcal{J}_{\mu}(x)=\left(\frac{x}{2}\right)^{\mu} \cdot \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k} k!\Gamma(\mu+k+1)} x^{2 k}
$$

Here, Γ is the Gamma function; if $\mu=m \in \mathbb{N}$, then $\Gamma(m+k+1)=(m+k)$!, so this expression agrees with (14G.2).
(b) There is a second solution to (14G.1); a function $\mathcal{Y}_{m}(x)$ which is unbounded at zero. This is called a Neumann function (or a Bessel function of the second kind or a Weber-Bessel function). It's derivation is too complicated to discuss here. See [Bro89, §6.8, p.115] or [CB87, §68, p.233].

14H Properties of Bessel functions

Prerequisites: § 4 GG . Recommended: §[4C(i).
Let $\mathcal{J}_{n}(x)$ be the Bessel function defined by eqn.(14G.2) on page 305 of $\S 14 \mathrm{G}$. In this section, we will develop some computational tools to work with these functions. First, we will define Bessel functions with negative order as follows: for any $n \in \mathbb{N}$, we define

$$
\begin{equation*}
\mathcal{J}_{-n}(x) \quad:=\quad(-1)^{n} \mathcal{J}_{n}(x) . \tag{14H.4}
\end{equation*}
$$

We can now state the following useful recurrence relations

Proposition 14H.1. For any $m \in \mathbb{Z}$,
(a) $\frac{2 m}{x} \mathcal{J}_{m}(x)=\mathcal{J}_{m-1}(x)+\mathcal{J}_{m+1}(x)$.
(b) $2 \mathcal{J}_{m}^{\prime}(x)=\mathcal{J}_{m-1}(x)-\mathcal{J}_{m+1}(x)$.
(c) $\mathcal{J}_{0}^{\prime}(x)=-\mathcal{J}_{1}(x)$.
(d) $\partial_{x}\left(x^{m} \cdot \mathcal{J}_{m}(x)\right)=x^{m} \cdot \mathcal{J}_{m-1}(x)$.
(e) $\partial_{x}\left(\frac{1}{x^{m}} \mathcal{J}_{m}(x)\right)=\frac{-1}{x^{m}} \cdot \mathcal{J}_{m+1}(x)$.
(f) $\mathcal{J}_{m}^{\prime}(x)=\mathcal{J}_{m-1}(x)-\frac{m}{x} \mathcal{J}_{m}(x)$.
(g) $\mathcal{J}_{m}^{\prime}(x)=-\mathcal{J}_{m+1}(x)+\frac{m}{x} \mathcal{J}_{m}(x)$.

Proof. Exercise 14H. 1 (i) Prove (d) for $m \geq 1$ by substituting in the power series (14G.2) and differentiating.
(ii) Prove (e) for $m \geq 0$ by substituting in the power series (14G.2) and differentiating.
(iii) Use the definition (14H.4) and (i) and (ii) to prove (d) for $m \leq 0$ and (e) for $m \leq-1$.
(iv) Set $m=0$ in (e) to obtain (c).
(v) Deduce (f) and (g) from (d) and (e).
(vi) Compute the sum and difference of (f) and (g) to get (a) and (b).

Remark 14H.2: (Integration with Bessel functions)

The recurrence relations of Proposition 14H.1 can be used to simplify integrals involving Bessel functions. For example, parts (d) and (e) immediately imply that

$$
\begin{aligned}
\int x^{m} \cdot \mathcal{J}_{m-1}(x) d x & =x^{m} \cdot \mathcal{J}_{m}(x)+C \\
\text { and } \quad \int \frac{1}{x^{m}} \cdot \mathcal{J}_{m+1}(x) d x & =\frac{-1}{x^{m}} \mathcal{J}_{m}(x)+C
\end{aligned}
$$

The other relations are sometimes useful in an 'integration by parts' strategy. \diamond
For any $n \in \mathbb{N}$, let $0 \leq \kappa_{n, 1}<\kappa_{n, 2}<\kappa_{n, 3}<\cdots$ be the zeros of the nth Bessel function \mathcal{J}_{n} (i.e. $\mathcal{J}_{n}\left(\kappa_{n, m}\right)=0$ for all $m \in \mathbb{N}$). Proposition 14C. 1 on page 292 of $\S[14 \mathrm{C}(\mathrm{i})$ says we can use Bessel functions to define a sequence of polar-separated eigenfunctions of the Laplacian:

$$
\Phi_{n, m}(r, \theta):=\mathcal{J}_{n}\left(\kappa_{n, m} \cdot r\right) \cdot \cos (n \theta) ; \quad \Psi_{n, m}(r, \theta):=\mathcal{J}_{n}\left(\kappa_{n, m} \cdot r\right) \cdot \sin (n \theta) .
$$

In the proof of Theorem 14 C .2 on page 297 of $\S[14$ (iii)], we claimed that these eigenfunctions were orthogonal as elements of $\mathbf{L}^{2}(\mathbb{D})$. We will now verify this claim. First we must prove a technical lemma.

Lemma 14H.3. Fix $n \in \mathbb{N}$.
(a) If $m \neq M$, then $\int_{0}^{1} \mathcal{J}_{n}\left(\kappa_{n, m} \cdot r\right) \cdot \mathcal{J}_{n}\left(\kappa_{n, M} \cdot r\right) r d r=0$.
(b) $\int_{0}^{1} \mathcal{J}_{n}\left(\kappa_{n, m} \cdot r\right)^{2} \cdot r d r=\frac{1}{2} \mathcal{J}_{n+1}\left(\kappa_{n, m}\right)^{2}$.

Proof. (a) Let $\alpha=\kappa_{n, m}$ and $\beta=\kappa_{n, M}$. Define $f(x):=\mathcal{J}_{m}(\alpha x)$ and $g(x):=\mathcal{J}_{m}(\beta x)$. Hence we want to show that

$$
\int_{0}^{1} f(x) g(x) x d x=0
$$

Define $h(x)=x \cdot\left(f(x) g^{\prime}(x)-g(x) f^{\prime}(x)\right)$.
Claim 1: $\quad h^{\prime}(x)=\left(\alpha^{2}-\beta^{2}\right) f(x) g(x) x$.
Proof. First observe that

$$
\begin{aligned}
h^{\prime}(x)= & x \cdot \partial_{x}\left(f(x) g^{\prime}(x)-g(x) f^{\prime}(x)\right)+\left(f(x) g^{\prime}(x)-g(x) f^{\prime}(x)\right) \\
= & x \cdot\left(f(x) g^{\prime \prime}(x)+f^{\prime}(x) g^{\prime}(x)-g^{\prime}(x) f^{\prime}(x)-g(x) f^{\prime \prime}(x)\right) \\
& \quad+\left(f(x) g^{\prime}(x)-g(x) f^{\prime}(x)\right) \\
& \quad x \cdot\left(f(x) g^{\prime \prime}(x)-g(x) f^{\prime \prime}(x)\right)+\left(f(x) g^{\prime}(x)-g(x) f^{\prime}(x)\right) .
\end{aligned}
$$

By setting $\mathcal{R}=f$ or $\mathcal{R}=g$ in Corollary 14G.2, we obtain:

$$
\begin{aligned}
x^{2} f^{\prime \prime}(x)+x f^{\prime}(x)+\left(\alpha^{2} x^{2}-n^{2}\right) f(x) & =0 \\
\text { and } x^{2} g^{\prime \prime}(x)+x g^{\prime}(x)+\left(\beta^{2} x^{2}-n^{2}\right) g(x) & =0
\end{aligned}
$$

We multiply the first equation by $g(x)$ and the second by $f(x)$ to get

$$
\begin{aligned}
x^{2} f^{\prime \prime}(x) g(x)+x f^{\prime}(x) g(x)+\alpha^{2} x^{2} f(x) g(x)-n^{2} f(x) g(x) & =0, \\
\text { and } & x^{2} g^{\prime \prime}(x) f(x)+x g^{\prime}(x) f(x)+\beta^{2} x^{2} g(x) f(x)-n^{2} g(x) f(x)
\end{aligned}=0 .
$$

We then subtract these two equations to get
$x^{2}\left(f^{\prime \prime}(x) g(x)-g^{\prime \prime}(x) f(x)\right)+x\left(f^{\prime}(x) g(x)-g^{\prime}(x) f(x)\right)+\left(\alpha^{2}-\beta^{2}\right) f(x) g(x) x^{2}=0$.
Divide by x to get

$$
x\left(f^{\prime \prime}(x) g(x)-g^{\prime \prime}(x) f(x)\right)+\left(f^{\prime}(x) g(x)-g^{\prime}(x) f(x)\right)+\left(\alpha^{2}-\beta^{2}\right) f(x) g(x) x=0 .
$$

Hence we conclude

$$
\begin{aligned}
\left(\alpha^{2}-\beta^{2}\right) f(x) g(x) x & =x\left(g^{\prime \prime}(x) f(x)-f^{\prime \prime}(x) g(x)\right)+\left(g^{\prime}(x) f(x)-f^{\prime}(x) g(x)\right) \\
& =h^{\prime}(x)
\end{aligned}
$$

as desired

$$
\diamond_{\text {Claim } 1}
$$

It follows from Claim 1 that
$\left(\alpha^{2}-\beta^{2}\right) \cdot \int_{0}^{1} f(x) g(x) x d x=\int_{0}^{1} h^{\prime}(x) d x=h(1)-h(0) \overline{\overline{(*)}} 0-0=0$.
To see $(*)$, observe that $h(0)=0 \cdot\left(f(0) g^{\prime}(0)-g(0) f^{\prime}(0)\right)=0$. Also,

$$
h(1)=(1) \cdot\left(f(1) g^{\prime}(1)-g(1) f^{\prime}(1)\right)=0
$$

because $f(1)=\mathcal{J}_{n}\left(\kappa_{n, m}\right)=0$ and $g(1)=\mathcal{J}_{n}\left(\kappa_{n, N}\right)=0$.
(b) Let $\alpha=\kappa_{n, m}$ and $f(x):=\mathcal{J}_{m}(\alpha x)$. Hence we want to evaluate

$$
\int_{0}^{1} f(x)^{2} x d x
$$

Define $h(x):=x^{2}\left(f^{\prime}(x)\right)^{2}+\left(\alpha^{2} x^{2}-n^{2}\right) f^{2}(x)$.
Claim 2: $\quad h^{\prime}(x)=2 \alpha^{2} f(x)^{2} x$.
Proof. By setting $\mathcal{R}=f$ in Corollary 14G.2, we obtain:

$$
0=x^{2} f^{\prime \prime}(x)+x f^{\prime}(x)+\left(\alpha^{2} x^{2}-n^{2}\right) f(x)
$$

We multiply by $f^{\prime}(x)$ to get

$$
\begin{aligned}
0 & =x^{2} f^{\prime}(x) f^{\prime \prime}(x)+x\left(f^{\prime}(x)\right)^{2}+\left(\alpha^{2} x^{2}-n^{2}\right) f(x) f^{\prime}(x) \\
& =x^{2} f^{\prime}(x) f^{\prime \prime}(x)+x\left(f^{\prime}(x)\right)^{2}+\left(\alpha^{2} x^{2}-n^{2}\right) f(x) f^{\prime}(x)+\alpha^{2} x f^{2}(x)-\alpha^{2} x f^{2}(x) \\
& =\frac{1}{2} \partial_{x}\left[x^{2}\left(f^{\prime}(x)\right)^{2}+\left(\alpha^{2} x^{2}-n^{2}\right) f^{2}(x)\right]-\alpha^{2} x f^{2}(x) \\
& =\frac{1}{2} h^{\prime}(x)-\alpha^{2} x f^{2}(x) .
\end{aligned}
$$

It follows from Claim 2 that

$$
\begin{aligned}
& 2 \alpha^{2} \int_{0}^{1} f(x)^{2} x d x \\
& \quad=\int_{0}^{1} h^{\prime}(x) d x=h(1)-h(0) \\
& \quad=1^{2}\left(f^{\prime}(1)\right)^{2}+\left(\alpha^{2} 1^{2}-n^{2}\right) \underbrace{-\underbrace{0^{2}\left(f^{\prime}(0)\right)^{2}}_{0}+\underbrace{\left(\alpha^{2} 0^{2}-n^{2}\right)}_{[0 \text { if } n=0]} \underbrace{f^{2}(0)}_{[0 \text { if } n \neq 0]}}_{\substack{\mathcal{J}_{n}^{2}\left(\kappa_{n, m}\right) \\
f^{2}(1)}} \\
& \quad=f^{\prime}(1)^{2}=\left(\alpha \mathcal{J}_{n}^{\prime}(\alpha)\right)^{2}=\alpha^{2} \mathcal{J}_{n}^{\prime}(\alpha)^{2} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\int_{0}^{1} f(x)^{2} x d x & =\frac{1}{2} \mathcal{J}_{n}^{\prime}(\alpha)^{2} \overline{\overline{(*)}} \frac{1}{2}\left(\frac{n}{\alpha} \mathcal{J}_{n}(\alpha)-\mathcal{J}_{n+1}(\alpha)\right)^{2} \\
& =\frac{1}{\overline{(\uparrow)}}(\frac{n}{\kappa_{n, m}} \underbrace{\mathcal{J}_{n}\left(\kappa_{n, m}\right)}_{=0}-\mathcal{J}_{n+1}\left(\kappa_{n, m}\right))^{2}=\frac{1}{2} \mathcal{J}_{n+1}\left(\kappa_{n, m}\right)^{2},
\end{aligned}
$$

where $(*)$ is by Proposition $14 \mathrm{H} .1(\mathrm{~g})$ and (\dagger) is because $\alpha:=\kappa_{n, m}$.

Proposition 14H.4. Let $\mathbb{D}=\{(r, \theta) ; r \leq 1\}$ be the unit disk. Then the collection

$$
\left\{\Phi_{n, m}, \Psi_{\ell, m} ; n=0 \ldots \infty, \ell \in \mathbb{N}, m \in \mathbb{N}\right\}
$$

is an orthogonal set for $\mathbf{L}^{2}(\mathbb{D})$. In other words, for any $n, m, N, M \in \mathbb{N}$,

$$
\begin{equation*}
\left\langle\Phi_{n, m}, \Psi_{N, M}\right\rangle=\frac{1}{\pi} \int_{0}^{1} \int_{-\pi}^{\pi} \Phi_{n, m}(r, \theta) \cdot \Psi_{N, M}(r, \theta) d \theta r d r=0 . \tag{a}
\end{equation*}
$$

Furthermore, if $(n, m) \neq(N, M)$, then
(b) $\left\langle\Phi_{n, m}, \Phi_{N, M}\right\rangle=\frac{1}{\pi} \int_{0}^{1} \int_{-\pi}^{\pi} \Phi_{n, m}(r, \theta) \cdot \Phi_{N, M}(r, \theta) d \theta r d r=0$.
(c) $\left\langle\Psi_{n, m}, \Psi_{N, M}\right\rangle=\frac{1}{\pi} \int_{0}^{1} \int_{-\pi}^{\pi} \Psi_{n, m}(r, \theta) \cdot \Psi_{N, M}(r, \theta) d \theta r d r=0$.

Finally, for any (n, m),
(d) $\left\|\Phi_{n, m}\right\|_{2}=\frac{1}{\pi} \int_{0}^{1} \int_{-\pi}^{\pi} \Phi_{n, m}(r, \theta)^{2} d \theta r d r=\frac{1}{2} \mathcal{J}_{n+1}\left(\kappa_{n, m}\right)^{2}$.
(e) $\left\|\Psi_{n, m}\right\|_{2}=\frac{1}{\pi} \int_{0}^{1} \int_{-\pi}^{\pi} \Psi_{n, m}(r, \theta)^{2} d \theta r d r=\frac{1}{2} \mathcal{J}_{n+1}\left(\kappa_{n, m}\right)^{2}$.

Proof. (a) $\Phi_{n, m}$ and $\Psi_{N, M}$ separate in the coordinates (r, θ), so the integral splits in two:

$$
\begin{aligned}
& \int_{0}^{1} \int_{-\pi}^{\pi} \Phi_{n, m}(r, \theta) \cdot \Psi_{N, M}(r, \theta) d \theta r d r \\
& \quad=\int_{0}^{1} \int_{-\pi}^{\pi} \mathcal{J}_{n}\left(\kappa_{n, m} \cdot r\right) \cdot \cos (n \theta) \cdot \mathcal{J}_{N}\left(\kappa_{N, M} \cdot r\right) \cdot \sin (N \theta) d \theta r d r \\
& =\int_{0}^{1} \mathcal{J}_{n}\left(\kappa_{n, m} \cdot r\right) \cdot \mathcal{J}_{N}\left(\kappa_{N, M} \cdot r\right) r d r \cdot \underbrace{\int_{-\pi}^{\pi} \cos (n \theta) \cdot \sin (N \theta) d \theta}_{=0 \text { by Prop. } 6 \text { (6D.2(c), p.|112 }}=0 .
\end{aligned}
$$

(b) or (c) (Case $n \neq N$). Likewise, if $n \neq N$, then

$$
\begin{aligned}
& \int_{0}^{1} \int_{-\pi}^{\pi} \Phi_{n, m}(r, \theta) \cdot \Phi_{N, M}(r, \theta) d \theta r d r \\
& =\int_{0}^{1} \int_{-\pi}^{\pi} \mathcal{J}_{n}\left(\kappa_{n, m} \cdot r\right) \cdot \cos (n \theta) \cdot \mathcal{J}_{N}\left(\kappa_{N, M} \cdot r\right) \cdot \cos (N \theta) d \theta r d r \\
& =\int_{0}^{1} \mathcal{J}_{n}\left(\kappa_{n, m} \cdot r\right) \cdot \mathcal{J}_{N}\left(\kappa_{N, M} \cdot r\right) r d r \cdot \underbrace{\int_{-\pi}^{\pi} \cos (n \theta) \cdot \cos (N \theta) d \theta}_{-\pi}=0
\end{aligned}
$$

the case (c) is proved similarly.
(b) or (c) (Case $n=N$ but $m \neq M$). If $n=N$, then

$$
\begin{aligned}
& \int_{0}^{1} \int_{-\pi}^{\pi} \Phi_{n, m}(r, \theta) \cdot \Phi_{n, M}(r, \theta) d \theta r d r \\
& ==\int_{0}^{1} \int_{-\pi}^{\pi} \mathcal{J}_{n}\left(\kappa_{n, m} \cdot r\right) \cdot \cos (n \theta) \cdot \mathcal{J}_{n}\left(\kappa_{n, M} \cdot r\right) \cdot \cos (n \theta) d \theta r d r \\
& =\underbrace{\int_{0}^{1} \mathcal{J}_{n}\left(\kappa_{n, m} \cdot r\right) \cdot \mathcal{J}_{n}\left(\kappa_{n, M} \cdot r\right) r d r}_{=0 \text { by Lemma [4H.3)(a) }} \underbrace{\int_{-\pi}^{\pi} \cos (n \theta)^{2} d \theta}_{\substack{\pi \text { by } \\
\text { on p.DIL.2(d). }}}=0 \cdot \pi=0 .
\end{aligned}
$$

(d): If $n=N$ and $m=M$ then

$$
\begin{aligned}
& \int_{0}^{1} \int_{-\pi}^{\pi} \Phi_{n, m}(r, \theta)^{2} d \theta r d r=\int_{0}^{1} \int_{-\pi}^{\pi} \mathcal{J}_{n}\left(\kappa_{n, m} \cdot r\right)^{2} \cdot \cos (n \theta)^{2} d \theta r d r \\
& =\underbrace{\int_{0}^{1} \mathcal{J}_{n}\left(\kappa_{n, m} \cdot r\right)^{2} r d r}_{\begin{array}{c}
=\frac{1}{2} \mathcal{J}_{n+1}\left(\kappa_{n, m}\right)^{2} \\
\text { by Lemma 14H.3(b) }
\end{array}} . \underbrace{\int_{-\pi}^{\pi} \cos (n \theta)^{2} d \theta}_{\begin{array}{c}
\text { by Prop 6D.2(d) } \\
\text { on p. (112. }
\end{array}}=\frac{\pi}{2} \mathcal{J}_{n+1}\left(\kappa_{n, m}\right)^{2} .
\end{aligned}
$$

The proof of (e) is Exercise 14H.2.

Exercise 14H.3. (a) Use a 'separation of variables' argument (similar to Proposition 16C.2) to prove:

Proposition: Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a harmonic function -in other words suppose $\Delta f=0$.

Suppose f separates in polar coordinates, meaning that there is a function Θ : $[-\pi, \pi] \longrightarrow \mathbb{R}$ (satisfying periodic boundary conditions) and a function $\mathcal{R}: \mathbb{R}_{\not} \longrightarrow \mathbb{R}$ such that

$$
f(r, \theta)=\mathcal{R}(r) \cdot \Theta(\theta), \quad \text { for all } r \geq 0 \text { and } \theta \in[-\pi, \pi] .
$$

Then there is some $m \in \mathbb{N}$ such that

$$
\Theta(\theta)=A \cos (m \theta)+B \sin (m \theta), \quad \text { (for constants } A, B \in \mathbb{R} .)
$$

and \mathcal{R} is a solution to the Cauchy-Euler Equation:

$$
\begin{equation*}
r^{2} \mathcal{R}^{\prime \prime}(r)+r \cdot \mathcal{R}^{\prime}(r)-m^{2} \cdot \mathcal{R}(r)=0, \quad \text { for all } r>0 \tag{14H.5}
\end{equation*}
$$

(b) Let $\mathcal{R}(r)=r^{\alpha}$ where $\alpha= \pm m$. Show that $\mathcal{R}(r)$ is a solution to the Cauchy-Euler equation (14H.5).
(c) Deduce that $\Psi_{m}(r, \theta)=r^{m} \cdot \sin (m \theta) ; \quad \Phi_{m}(r, \theta)=r^{m} \cdot \cos (m \theta) ; \quad \psi_{m}(r, \theta)=$ $r^{-m} \cdot \sin (m \theta)$; and $\phi_{m}(r, \theta)=r^{-m} \cdot \cos (m \theta)$ are harmonic functions in \mathbb{R}^{2}.

14I Practice problems

1. For all (r, θ), let $\Phi_{n}(r, \theta)=r^{n} \cos (n \theta)$. Show that Φ_{n} is harmonic.
2. For all (r, θ), let $\Psi_{n}(r, \theta)=r^{n} \sin (n \theta)$. Show that Ψ_{n} is harmonic.
3. For all (r, θ) with $r>0$, let $\phi_{n}(r, \theta)=r^{-n} \cos (n \theta)$. Show that ϕ_{n} is harmonic.
4. For all (r, θ) with $r>0$, let $\psi_{n}(r, \theta)=r^{-n} \sin (n \theta)$. Show that ψ_{n} is harmonic.
5. For all (r, θ) with $r>0$, let $\phi_{0}(r, \theta)=\log |r|$. Show that ϕ_{0} is harmonic.
6. Let $b(\theta)=\cos (3 \theta)+2 \sin (5 \theta)$ for $\theta \in[-\pi, \pi)$.
(a) Find the bounded solution(s) to the Laplace equation on \mathbb{D}, with nonhomogeneous Dirichlet boundary conditions $u(1, \theta)=b(\theta)$. Is the solution unique?
(b) Find the bounded solution(s) to the Laplace equation on \mathbb{D}^{\complement}, with nonhomogeneous Dirichlet boundary conditions $u(1, \theta)=b(\theta)$. Is the solution unique?
(c) Find the 'decaying gradient' solution(s) to the Laplace equation on \mathbb{D}^{\complement}, with nonhomogeneous Neumann boundary conditions $\partial_{r} u(1, \theta)=$ $b(\theta)$. Is the solution unique?
7. Let $b(\theta)=2 \cos (\theta)-6 \sin (2 \theta)$, for $\theta \in[-\pi, \pi)$.
(a) Find the bounded solution(s) to the Laplace equation on \mathbb{D}, with nonhomogeneous Dirichlet boundary conditions: $u(1, \theta)=b(\theta)$ for all $\theta \in[-\pi, \pi)$. Is the solution unique?
(b) Find the bounded solution(s) to the Laplace equation on \mathbb{D}, with nonhomogeneous Neumann boundary conditions: $\partial_{r} u(1, \theta)=b(\theta)$ for all $\theta \in[-\pi, \pi)$. Is the solution unique?
8. Let $b(\theta)=4 \cos (5 \theta)$ for $\theta \in[-\pi, \pi)$.
(a) Find the bounded solution(s) to the Laplace equation on the disk $\mathbb{D}=\{(r, \theta) ; r \leq 1\}$, with nonhomogeneous Dirichlet boundary conditions $u(1, \theta)=b(\theta)$. Is the solution unique?
(b) Verify your answer in part (a) (i.e. check that the solution is harmonic and satisfies the prescribed boundary conditions.)
(Hint: Recall that $\triangle=\partial_{r}^{2}+\frac{1}{r} \partial_{r}+\frac{1}{r^{2}} \partial_{\theta}^{2}$.)
9. Let $b(\theta)=5+4 \sin (3 \theta)$ for $\theta \in[-\pi, \pi)$.
(a) Find the 'decaying gradient' solution(s) to the Laplace equation on the codisk $\mathbb{D}^{\complement}=\{(r, \theta) ; r \geq 1\}$, with nonhomogeneous Neumann boundary conditions $\partial_{r} u(1, \theta)=b(\theta)$. Is the solution unique?
(b) Verify that your answer in part (a) satisfies the prescribed boundary conditions. (Forget about the Laplacian).
10. Let $b(\theta)=2 \cos (5 \theta)+\sin (3 \theta)$, for $\theta \in[-\pi, \pi)$.
(a) Find the solution(s) (if any) to the Laplace equation on the disk $\mathbb{D}=\{(r, \theta) ; r \leq 1\}$, with nonhomogeneous Neumann boundary conditions: $\partial_{\perp} u(1, \theta)=b(\theta)$, for all $\theta \in[-\pi, \pi)$.
Is the solution unique? Why or why not?
(b) Find the bounded solution(s) (if any) to the Laplace equation on the codisk $\mathbb{D}^{\complement}=\{(r, \theta) ; r \geq 1\}$, with nonhomogeneous Dirichlet boundary conditions: $u(1, \theta)=b(\theta)$, for all $\theta \in[-\pi, \pi)$.
Is the solution unique? Why or why not?
11. Let \mathbb{D} be the unit disk. Let $b: \partial \mathbb{D} \longrightarrow \mathbb{R}$ be some function, and let $u: \mathbb{D} \longrightarrow \mathbb{R}$ be the solution to the corresponding Dirichlet problem with boundary conditions $b(\sigma)$. Prove that

$$
u(0,0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} b(\sigma) d \sigma
$$

Remark: This is a special case of the Mean Value Theorem for Harmonic Functions (Theorem 1E.1 on page 16), but do not simply 'quote' Theorem 1E.1 to solve this problem. Instead, apply Proposition 14B.11 on page 290 .
12. Let $\Phi_{n, \lambda}(r, \theta):=\mathcal{J}_{n}(\lambda \cdot r) \cdot \cos (n \theta)$. Show that $\triangle \Phi_{n, \lambda}=-\lambda^{2} \Phi_{n, \lambda}$.
13. Let $\Psi_{n, \lambda}(r, \theta):=\mathcal{J}_{n}(\lambda \cdot r) \cdot \sin (n \theta)$. Show that $\triangle \Psi_{n, \lambda}=-\lambda^{2} \Psi_{n, \lambda}$.
14. Let $\phi_{n, \lambda}(r, \theta):=\mathcal{Y}_{n}(\lambda \cdot r) \cdot \cos (n \theta)$. Show that $\triangle \phi_{n, \lambda}=-\lambda^{2} \phi_{n, \lambda}$.
15. $\psi_{n, \lambda}(r, \theta):=\mathcal{Y}_{n}(\lambda \cdot r) \cdot \sin (n \theta)$. Show that $\Delta \psi_{n, \lambda}=-\lambda^{2} \psi_{n, \lambda}$.

Chapter 15

Eigenfunction methods on arbitrary domains

"Science is built up with facts, as a house is with stones. But a collection of facts is no more a science than a heap of stones is a house."
-Henri Poincaré
The methods given in Chapters $11-14$ are all special cases of a single, general technique: the solution of initial/boundary value problems using eigenfunction expansions. The time has come to explicate this technique in full generality. The exposition in this chapter is somewhat more abstract than in previous chapters, but that is because the concepts we introduce are of such broad applicability. Technically, this chapter can be read without having read Chapters 11-14; however, this chapter will be easier to understand if you have have already read Chapters 11-14.

15A General solution to Poisson, heat and wave equation BVPs

Prerequisites: $\S 4 \mathrm{~B}(\mathrm{iv}), \S 5 \mathrm{D}, \S 6 \mathrm{~F}, \S 0 \mathrm{D}$. Recommended: Chapters 11, 12, 13, 14.
Throughout this section:

- Let $\mathbb{X} \subset \mathbb{R}^{D}$ be any bounded domain (e.g. a line segment, box, disk, sphere, etc. - see $\S(0 \mathrm{D})$. When we refer to Neumann boundary conditions, we will also assume that \mathbb{X} has a piecewise smooth boundary (so the normal derivative is well-defined).
- Let $\left\{\mathcal{S}_{k}\right\}_{k=1}^{\infty} \subset \mathbf{L}^{2}(\mathbb{X})$ be a Dirichlet eigenbasis -that is, $\left\{\mathcal{S}_{k}\right\}_{k=1}^{\infty}$ is an orthogonal basis of $\mathbf{L}^{2}(\mathbb{X})$, such that every \mathcal{S}_{k} is an eigenfunction of the Laplacian, and satisfies homogeneous Dirichlet boundary conditions on \mathbb{X} (i.e. $\mathcal{S}_{k}(\mathbf{x})=0$ for all $\mathbf{x} \in \partial \mathbb{X}$). For every $k \in \mathbb{N}$, let $-\lambda_{k}<0$ be the eigenvalue associated with \mathcal{S}_{k} (i.e. $\triangle \mathcal{S}_{k}=-\lambda_{k} \mathcal{S}_{k}$). We can assume without loss of generality that $\lambda_{k} \neq 0$ for all $k \in \mathbb{N}$ (Exercise 15A. 1

Why? Hint: Lemma 5D.3(a)).

- Let $\left\{\mathcal{C}_{k}\right\}_{k=0}^{\infty} \subset \mathbf{L}^{2}(\mathbb{X})$ be a Neumann eigenbasis -that is, $\left\{\mathcal{C}_{k}\right\}_{k=0}^{\infty}$ is an orthogonal basis $\mathbf{L}^{2}(\mathbb{X})$, such that every \mathcal{C}_{k} is an eigenfunction of the Laplacian, and satisfies homogeneous Neumann boundary conditions on \mathbb{X} (i.e. $\partial_{\perp} \mathcal{C}_{k}(\mathbf{x})=0$ for all $\mathbf{x} \in \partial \mathbb{X}$). For every $k \in \mathbb{N}$, let $-\mu_{k} \leq 0$ be the eigenvalue associated with \mathcal{C}_{k} (i.e. $\triangle \mathcal{C}_{k}=-\mu_{k} \mathcal{C}_{k}$). We can assume without loss of generality that \mathcal{C}_{0} is a constant function (so that $\mu_{0}=0$), while $\mu_{k} \neq 0$ for all $k \geq 1$ (Exercise 15A. 2 Why? Hint: Lemma 5D.3(b)).

Theorem 15 E .12 (page 347 below) will guarantee that we will be able to find a Dirichlet eigenbasis for any domain $\mathbb{X} \subset \mathbb{R}^{D}$, and a Neumann eigenbasis for many domains. If $f \in \mathbf{L}^{2}(\mathbb{X})$ is some other function (describing, for example, an initial condition), then we can express f as a combination of these basis elements, as described in \S 6F:

$$
\begin{array}{r}
f \quad \underset{\mathrm{I} 2}{\approx} \quad \sum_{k=0}^{\infty} A_{k} \mathcal{C}_{k}, \text { where } A_{k}:=\frac{\left\langle f, \mathcal{C}_{k}\right\rangle}{\left\|\mathcal{C}_{k}\right\|_{2}^{2}}, \text { for all } k \in \mathbb{N} ; \\
\text { and } f \tag{15A.2}\\
\underset{\mathrm{~T} 2}{\approx} \quad \sum_{k=1}^{\infty} B_{k} \mathcal{S}_{k}, \text { where } B_{k}:=\frac{\left\langle f, \mathcal{S}_{k}\right\rangle}{\left\|\mathcal{S}_{k}\right\|_{2}^{2}}, \text { for all } k \in \mathbb{N} .
\end{array}
$$

These expressions are called eigenfunction expansions for f.
Example 15A.1. (a) If $\mathbb{X}=[0, \pi] \subset \mathbb{R}$, then we could use the eigenbases $\left\{\mathcal{S}_{k}\right\}_{k=1}^{\infty}=\left\{\mathbf{S}_{n}\right\}_{n=1}^{\infty}$ and $\left\{\mathcal{C}_{k}\right\}_{k=0}^{\infty}=\left\{\mathbf{C}_{n}\right\}_{n=0}^{\infty}$, where $\mathbf{S}_{n}(x):=\sin (n x)$ and $\mathbf{C}_{n}(x):=\cos (n x)$ for all $n \in \mathbb{N}$. In this case, $\lambda_{n}=n^{2}=\mu_{n}$ for all $n \in \mathbb{N}$. Also the eigenfunction expansions (15A.1) and (15A.2) are, respectively, the Fourier Cosine Series and Fourier Sine Series for f, from § 7 A .
(b) If $\mathbb{X}=[0, \pi]^{2} \subset \mathbb{R}^{2}$, then we could use the eigenbases $\left\{\mathcal{S}_{k}\right\}_{k=1}^{\infty}=\left\{\mathbf{S}_{n, m}\right\}_{n, m=1}^{\infty}$ and $\left\{\mathcal{C}_{k}\right\}_{k=0}^{\infty}=\left\{\mathbf{C}_{n, m}\right\}_{n, m=0}^{\infty}$, where $\mathbf{S}_{n, n}(x, y):=\sin (n x) \sin (m y)$ and $\mathbf{C}_{n, m}(x):=$ $\cos (n x) \cos (m y)$ for all $n, m \in \mathbb{N}$. In this case, $\lambda_{n, m}=n^{2}+m^{2}=\mu_{n, m}$ for all $(n, m) \in \mathbb{N}$. Also, the eigenfunction expansions (15A.1) and (15A.2) are, respectively, the two-dimensional Fourier Cosine Series and Fourier Sine Series for f, from §9A.
(c) If $\mathbb{X}=\mathbb{D} \subset \mathbb{R}^{2}$, then we could use the Dirichlet eigenbasis $\left\{\mathcal{S}_{n}\right\}_{k=1}^{\infty}=$ $\left\{\Phi_{n, m}\right\}_{n=0, m=1}^{\infty} \sqcup\left\{\Psi_{n, m}\right\}_{n, m=1}^{\infty}$, where $\Phi_{n, m}$ and $\Psi_{n, m}$ are the type-1 FourierBessel eigenfunctions defined by eqn. (14C.5) on page 296 of $\$ 14 \mathrm{C}(\mathrm{ii)}$. In this case, we have eigenvalues $\lambda_{n, m}=\kappa_{n, m}^{2}$, as defined in equation (14C.4) on page 296. Then the eigenfunction expansion in (15A.2) is the Fourier-Bessel expansion for f, from $\S[4 \mathrm{C}(\mathrm{iii})$.

Theorem 15A.2. General Solution of the Poisson Equation

Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a bounded domain. Let $f \in \mathbf{L}^{2}(\mathbb{X})$, and let $b: \partial \mathbb{X} \longrightarrow \mathbb{R}$ be some other function. Let $u: \mathbb{X} \longrightarrow \mathbb{R}$ be a solution to the Poisson equation " $\triangle u=f$ ".
(a) Suppose $\left\{\mathcal{S}_{k}, \lambda_{k}\right\}_{k=1}^{\infty}$ is a Dirichlet eigenbasis, and $\left\{B_{n}\right\}_{n=1}^{\infty}$ are as in equation (15A.2). Assume that $\left|\lambda_{k}\right|>1$ for all but finitely many $k \in \mathbb{N}$. If u satisfies homogeneous Dirichlet $B C$ (i.e. $u(\mathbf{x})=0$ for all $\mathbf{x} \in \partial \mathbb{X}$), then $u \underset{\text { I2 }}{\widetilde{ }}-\sum_{n=1}^{\infty} \frac{B_{n}}{\lambda_{n}} \mathcal{S}_{n}$.
(b) Let $h: \mathbb{X} \longrightarrow \mathbb{R}$ be a solution to the Laplace equation " $\triangle h=0$ " satisfying the nonhomogeneous Dirichlet $B C h(\mathbf{x})=b(\mathbf{x})$ for all $\mathbf{x} \in \partial \mathbb{X}$. If u is as in part (a), then $w:=u+h$ is a solution to the Poisson equation " $\triangle w=f$ " and also satisfies Dirichlet $B C w(\mathbf{x})=b(\mathbf{x})$ for all $\mathbf{x} \in \partial \mathbb{X}$.
(c) Suppose $\left\{\mathcal{C}_{k}, \mu_{k}\right\}_{k=1}^{\infty}$ is a Neumann eigenbasis, and suppose that $\left|\mu_{k}\right|>1$ for all but finitely many $k \in \mathbb{N}$. Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be as in equation (15A.1), and suppose $A_{0}=0$. For any $j \in[1 \ldots D]$, let $\left\|\partial_{j} \mathcal{C}_{k}\right\|_{\infty}$ be the supremum of the j-derivative of \mathcal{C}_{k} on \mathbb{X}, and suppose that

$$
\begin{equation*}
\sum_{\substack{k=1 \\ \mu_{k} \neq 0}}^{\infty} \frac{\left|A_{k}\right|}{\left|\mu_{k}\right|}\left\|\partial_{j} \mathcal{C}_{k}\right\|_{\infty}<\infty \tag{15A.3}
\end{equation*}
$$

If u satisfies homogeneous Neumann $B C$ (i.e. $\partial_{\perp} u(\mathbf{x})=0$ for all $\mathbf{x} \in \partial \mathbb{X}$), then $u \underset{\mathrm{I} 2}{\approx} C-\sum_{\substack{k=1 \\ \mu_{k} \neq 0}}^{\infty} \frac{A_{k}}{\mu_{k}} \mathcal{C}_{k}$, where $C \in \mathbb{R}$ is an arbitrary constant.
However, if $A_{0} \neq 0$, then there is no solution to this problem with homogeneous Neumann BC.
(d) Let $h: \mathbb{X} \longrightarrow \mathbb{R}$ be a solution to the Laplace equation " $\triangle h=0$ " satisfying the nonhomogeneous Neumann $B C \partial_{\perp} h(\mathbf{x})=b(\mathbf{x})$ for all $\mathbf{x} \in \partial \mathbb{X}$. If u is as in part (c), then $w:=u+h$ is a solution to the Poisson equation " $\triangle w=f$ " and also satisfies Neumann $B C \partial_{\perp} w(\mathbf{x})=b(\mathbf{x})$ for all $\mathbf{x} \in \partial \mathbb{X}$.

Proof. Exercise 15A. 3 Hint: To show solution uniqueness, use Theorem 5D.5. For (a), imitate the proofs of Propositions 11C.1, 12C.1, 13C.1, and 14D.1. For (b,d), imitate the proofs of Propositions 12C.6 and 14D.3.
For (c), imitate the proofs of Propositions 11C.2, 12C.4 and 13C.2. Note that you need hypothesis (15A.3) to apply Proposition 0F.1.

Exercise 15A.4. Show how Propositions 11C.1, 11C.2, 12C.1, 12C.4, 12C.6 13C.1,
[3C.2, [4D.1, and 14D. 3 are all special cases of Theorem 15A.2. For the results involving Neumann BC, don't forget to check that (15A.3) is satisfied.

Theorem 15A.3. General Solution of the heat equation
Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a bounded domain. Let $f \in \mathbf{L}^{2}(\mathbb{X})$, and let $b: \partial \mathbb{X} \longrightarrow \mathbb{R}$ be some other function. Let $u: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ be a solution to the heat equation " $\partial_{t} u=\triangle u$ ", with initial conditions $u(\mathbf{x}, 0)=f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{X}$.
(a) Suppose $\left\{\mathcal{S}_{k}, \lambda_{k}\right\}_{k=1}^{\infty}$ is a Dirichlet eigenbasis, and $\left\{B_{n}\right\}_{n=1}^{\infty}$ are as in equation (15A.2). If u satisfies homogeneous Dirichlet BC (i.e. $u(\mathbf{x}, t)=0$ for all $\mathbf{x} \in \partial \mathbb{X}$ and $\left.t \in \mathbb{R}_{\not}\right)$, then $u \underset{\mathrm{I} 2}{\widetilde{2}} \sum_{n=1}^{\infty} B_{n} \exp \left(-\lambda_{n} t\right) \mathcal{S}_{n}$.
(b) Let $h: \mathbb{X} \longrightarrow \mathbb{R}$ be a solution to the Laplace equation " $\triangle h=0$ " satisfying the nonhomogeneous Dirichlet $B C h(\mathbf{x})=b(\mathbf{x})$ for all $\mathbf{x} \in \partial \mathbb{X}$. If u is as in part (a), then $w:=u+h$ is a solution to the heat equation " $\partial_{t} w=\triangle w$ ", with initial conditions $w(\mathbf{x}, 0)=f(\mathbf{x})+h(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{X}$, and also satisfies Dirichlet BC $w(\mathbf{x}, t)=b(\mathbf{x})$ for all $(\mathbf{x}, t) \in \partial \mathbb{X} \times \mathbb{R}_{+}$.
(c) Suppose $\left\{\mathcal{C}_{k}, \mu_{k}\right\}_{k=0}^{\infty}$ is a Neumann eigenbasis, and $\left\{A_{n}\right\}_{n=0}^{\infty}$ are as in equation (15A.1). Suppose the sequence $\left\{\mu_{k}\right\}_{k=0}^{\infty}$ grows fast enough that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\log (k)}{\mu_{k}}=0, \quad \text { and, for all } j \in[1 \ldots D], \quad \lim _{k \rightarrow \infty} \frac{\log \left\|\partial_{j} \mathcal{C}_{k}\right\|_{\infty}}{\mu_{k}}=0 \tag{15A.4}
\end{equation*}
$$

If u satisfies homogeneous Neumann $B C$ (i.e. $\partial_{\perp} u(\mathbf{x}, t)=0$ for all $\mathbf{x} \in \partial \mathbb{X}$ and $t \in \mathbb{R}_{+}$), then $u \underset{\mathrm{~T} 2}{\approx} \sum_{n=0}^{\infty} A_{n} \exp \left(-\mu_{n} t\right) \mathcal{C}_{n}$.
(d) Let $h: \mathbb{X} \longrightarrow \mathbb{R}$ be a solution to the Laplace equation " $\triangle h=0$ " satisfying the nonhomogeneous Neumann $B C \partial_{\perp} h(\mathbf{x})=b(\mathbf{x})$ for all $\mathbf{x} \in \partial \mathbb{X}$. If u is as in part (c), then $w:=u+h$ is a solution to the heat equation " $\partial_{t} w=\triangle w$ " with initial conditions $w(\mathbf{x}, 0)=f(\mathbf{x})+h(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{X}$, and also satisfies Neumann $B C \partial_{\perp} w(\mathbf{x}, t)=b(\mathbf{x})$ for all $(\mathbf{x}, t) \in \partial \mathbb{X} \times \mathbb{R}_{+}$.

Furthermore, in parts (a) and (c), the series defining u converges semiuniformly on $\mathbb{X} \times \mathbb{R}_{+}$.
Proof. Exercise 15A. 5 Hint: To show solution uniqueness, use Theorem 5D.8.
For part (a), imitate the proofs of Propositions 11A.1, 12B.1, 13A.1, and 14E.1.
For (b,d) imitate the proofs of Propositions 12B.5 and 14E.3.
For (c), imitate the proofs of Propositions 11A.3, 12B.3, and 13A.2. First use hypothesis (15A.4) to show that the sequence $\left\{e^{-\mu_{n} t}\left\|\partial_{j} \mathcal{C}_{n}\right\|_{\infty}\right\}_{n=0}^{\infty}$ is square-summable
for any $t>0$. Use Parseval's equality (Theorem 6F.1) to show that the sequence $\left\{\left|A_{k}\right|\right\}_{k=0}^{\infty}$ is also square-summable. Use the Cauchy-Bunyakowski-Schwarz inequality to conclude that the sequence $\left\{e^{-\mu_{n} t}\left|A_{k}\right|\left\|\partial_{j} \mathcal{C}_{n}\right\|_{\infty}\right\}_{n=0}^{\infty}$ is absolutely summable, which means the formal derivative $\partial_{j} u$ is absolutely convergent. Now apply Proposition OF.].

Exercise 15A.6. Show how Propositions 11A.1, 11A.3, 12B.1, 12B.3, 12B.5, 13A.1, [3A.2, [4E.1], and 14E.3. are all special cases of Theorem 15A.3. For the results involving Neumann BC, don't forget to check that (15A.4) is satisfied.

Theorem 15A.4. General Solution of the wave equation
Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a bounded domain and let $f \in \mathbf{L}^{2}(\mathbb{X})$. Suppose $u: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ is a solution to the wave equation " $\partial_{t}^{2} u=\triangle u$ ", and has initial position $u(\mathbf{x} ; 0)=$ $f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{X}$.
(a) Suppose $\left\{\mathcal{S}_{k}, \lambda_{k}\right\}_{k=1}^{\infty}$ is a Dirichlet eigenbasis, and $\left\{B_{n}\right\}_{n=1}^{\infty}$ are as in equation (15A.2). Suppose $\sum_{n=1}^{\infty}\left|\lambda_{n} B_{n}\right|<\infty$. If u satisfies homogeneous Dirichlet $B C$ (i.e. $u(\mathbf{x}, t)=0$ for all $\mathbf{x} \in \partial \mathbb{X}$ and $\left.t \in \mathbb{R}_{\not}\right)$, then $u \underset{\mathrm{I} 2}{\widetilde{ }} \sum_{n=1}^{\infty} B_{n} \cos \left(\sqrt{\lambda_{n}} t\right) \mathcal{S}_{n}$.
(b) Suppose $\left\{\mathcal{C}_{k}, \mu_{k}\right\}_{k=0}^{\infty}$ is a Neumann eigenbasis, and $\left\{A_{n}\right\}_{n=0}^{\infty}$ are as in equation (15A.1). Suppose the sequence $\left\{A_{n}\right\}_{n=0}^{\infty}$ decays quickly enough that

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|\mu_{n} A_{n}\right|<\infty, \quad \text { and, for all } j \in[1 \ldots D], \quad \sum_{n=0}^{\infty}\left|A_{n}\right| \cdot\left\|\partial_{j} \mathcal{C}_{n}\right\|_{\infty}<\infty \tag{15A.5}
\end{equation*}
$$

If u satisfies homogeneous Neumann BC (i.e. $\partial_{\perp} u(\mathbf{x}, t)=0$ for all $\mathbf{x} \in \partial \mathbb{X}$ and $\left.t \in \mathbb{R}_{+}\right)$, then $u \underset{\mathrm{~T} 2}{\approx} \sum_{n=0}^{\infty} A_{n} \cos \left(\sqrt{\mu_{n}} t\right) \mathcal{C}_{n}$.

Now suppose $u: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ is a solution to the wave equation " $\partial_{t}^{2} u=\triangle u$ ", and has initial velocity $\partial_{t} u(\mathbf{x} ; 0)=f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{X}$.
(c) Suppose $\sum_{n=1}^{\infty} \sqrt{\lambda_{n}}\left|B_{n}\right|<\infty$. If u satisfies homogeneous Dirichlet BC, then $u \underset{\text { г} 2}{\approx} \sum_{n=1}^{\infty} \frac{B_{n}}{\sqrt{\lambda_{n}}} \sin \left(\sqrt{\lambda_{n}} t\right) \mathcal{S}_{n}$.
(d) Suppose the sequence $\left\{A_{n}\right\}_{n=0}^{\infty}$ decays quickly enough that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sqrt{\mu_{n}}\left|A_{n}\right|<\infty, \quad \text { and, for all } j \in[1 \ldots D], \quad \sum_{n=1}^{\infty} \frac{\left|A_{n}\right|}{\sqrt{\mu_{n}}}\left\|\partial_{j} \mathcal{C}_{n}\right\|_{\infty}<\infty \tag{15A.6}
\end{equation*}
$$

If u satisfies homogeneous Neumann $B C$, then there is some constant $C \in \mathbb{R}$ such that, for all $\mathbf{x} \in \mathbb{X}$, we have $u(\mathbf{x} ; 0)=C$, and for all $t \in \mathbb{R}$, we have

$$
u(\mathbf{x} ; t) \quad \underset{\mathrm{T} 2}{\approx} \quad A_{0} t+\sum_{n=1}^{\infty} \frac{A_{n}}{\sqrt{\mu_{n}}} \sin \left(\sqrt{\mu_{n}} t\right) \mathcal{C}_{n}(\mathbf{x})+C .
$$

(e) To obtain a solution with both a specified initial position and a specified initial velocity, add the solutions from (a) and (c) for homogeneous Dirichlet BC. Add the solutions from (b) and (d) for homogeneous Neumann BC (setting $C=0$ in part (d)).

Proof. Exercise 15A. 7 Hint: To show solution uniqueness, use Theorem 5D.11. For (a), imitate Propositions 12D. 1 and 14F.1. For (c) imitate the proof of Propositions 12D. 3 and 14F.1. For (b) and (d), use hypotheses (15A.5) and (15A.6) to apply Proposition 0F.1.

Exercise 15A.8. Show how Propositions 11B.1, 11B.4 12D.1, 12D.3, and 14F. 1 are all special cases of Theorem 15A.4(a,c).

Exercise 15A.9. What is the physical meaning of a nonzero value of A_{0} in Theorem 15A.4(d)?

Theorems 15 A .2 , 15 A .3 , and 15 A .4 allow us to solve I/BVPs on any domain, once we have a suitable eigenbasis. We illustrate with a simple example.

Proposition 15A.5. Eigenbases for a Triangle

Let $\mathbb{X}:=\left\{(x, y) \in[0, \pi]^{2} ; y \leq x\right\}$ be a filled right-angle triangle (Figure 15A.1).
(a) For any two-element subset $\{n, m\} \subset \mathbb{N}$ (i.e. $n \neq m$), let $\mathcal{S}_{\{n, m\}}:=$ $\sin (n x) \sin (m y)-\sin (m x) \sin (n y)$, and let $\lambda_{\{n, m\}}:=n^{2}+m^{2}$. Then:
[i] $\mathcal{S}_{\{n, m\}}$ is an eigenfunction of the Laplacian: $\triangle \mathcal{S}_{\{n, m\}}=-\lambda_{\{n, m\}} \mathcal{S}_{\{n, m\}}$. [ii] $\left\{\mathcal{S}_{\{n, m\}}\right\}_{\{n, m\} \subset \mathbb{N}}$ is a Dirichlet eigenbasis for $\mathbf{L}^{2}(\mathbb{X})$.
(b) Let $\mathbf{C}_{0,0}=1$, and for any two-element subset $\{n, m\} \subset \mathbb{N}$, let $\mathcal{C}_{\{n, m\}}:=$ $\cos (n x) \cos (m y)+\cos (m x) \cos (n y)$, and let $\lambda_{\{n, m\}}:=n^{2}+m^{2}$. Then:

Figure 15A.1: Right-angle triangular domain of Proposition 15A.5
[i] $\mathcal{C}_{\{n, m\}}$ is an eigenfunction of the Laplacian: $\triangle \mathcal{C}_{\{n, m\}}=-\lambda_{\{n, m\}} \mathcal{C}_{\{n, m\}}$.
[ii] $\left\{\mathcal{C}_{\{n, m\}}\right\}_{\{n, m\} \subset \mathbb{N}}$ is a Neumann eigenbasis for $\mathbf{L}^{2}(\mathbb{X})$.
Proof. Exercise 15A. 10 Hint: Part [i] is a straightforward computation, as is the verification of the homogeneous boundary conditions (Hint: on the hypotenuse, $\left.\partial_{\perp}=\partial_{2}-\partial_{1}\right)$. To verify that the specified sets are orthogonal bases, use Theorem 94.3.

Exercise 15A.11. (a) Combine Proposition 15 A .5 with Theorems 15A.2, 15A.3, and 15 A.4 to provide a general solution method for solving the Poisson equation, heat equation, and wave equation on a right-angle triangle domain, with either Dirichlet or Neumann boundary conditions.
(b) Set up and solve some simple initial/boundary value problems using your method.

Remark 15A.6. There is nothing special about the role of the Laplacian \triangle in Theorems 15A.2, 15A.3, and 15A.4. If L is any linear differential operator, for which we have 'solution uniqueness' results analogous to the results of $\S[\square$, then Theorems $15 \mathrm{~A} .2,15 \mathrm{~A} .3$, and 15 A .4 are still true if you replace " \triangle " with " L " everywhere (Exercise 15A. 12 Verify this). In particular, if L is an elliptic differential operator (see $\S(5 \mathrm{E}$), then:

- Theorem 15 A .2 becomes the general solution to the boundary value problem for the nonhomogeneous elliptic PDE "L $u=f$ ".
- Theorem 15A. 3 becomes the general solution to the the initial/boundary value problem for the homogeneous parabolic PDE " $\partial_{t} u=\mathrm{L} u$ ".
- Theorem 15A. 4 becomes the general solution to the initial value problem for the homogeneous hyperbolic PDE " $\partial_{t}^{2} u=\mathrm{L} u$ ".

Theorem 15E.17 on page 349 (below) discusses the existence of Dirichlet eigenbases for other elliptic differential operators.

Exercise 15A.13. Let $\mathbb{X} \subset \mathbb{R}^{3}$ be a bounded domain, and consider a quantum particle confined to the domain \mathbb{X} by an 'infinite potential well' $V: \mathbb{R}^{3} \longrightarrow \mathbb{R} \cup\{\infty\}$, where $V(\mathbf{x})=0$ for all $\mathbf{x} \in \mathbb{X}$, and $V(\mathbf{x})=\infty$ for all $\mathbf{x} \notin \mathbb{X}$ (see Examples 3C.4 and 3C.5 on pages $49-50$ for discussion of the physical meaning of this model). Modify Theorem [15A.3 to state and prove a theorem describing the general solution to the initial value problem for the Schrödinger equation with the potential V.

Hint. If $\omega: \mathbb{R}^{3} \times \mathbb{R} \longrightarrow \mathbb{C}$ is a solution to the corresponding Schrödinger equation, then we can assume $\omega_{t}(\mathbf{x})=0$ for all $\mathbf{x} \notin \mathbb{X}$. If ω is also continuous, then we can model the particle using a function $\omega: \mathbb{X} \times \mathbb{R} \longrightarrow \mathbb{C}$, which satisfies homogeneous Dirichlet boundary conditions on $\partial \mathbb{X}$.

15B General solution to Laplace equation BVPs

Theorems 15A.2(b,d) and 15A.3(b,d) both used the same strategy to solve a PDE with nonhomogeneous boundary conditions:

- Solve the original PDE with homogeneous boundary conditions.
- Solve the Laplace equation with the specified nonhomogeneous BC.
- Add these two solutions together to get a solution to the original problem.

However, we do not yet have a general method for solving the Laplace equation. That is the goal of this section. Throughout this section, we make the following assumptions.

- Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a bounded domain, whose boundary $\partial \mathbb{X}$ is piecewise smooth. This has two consequences: (1) The normal derivative on the boundary is well-defined (so we can meaningfully impose Neumann boundary conditions); and (2) We can meaningfully speak of integrating functions over $\partial \mathbb{X}$. For example, if $\mathbb{X} \subset \mathbb{R}^{2}$, then $\partial \mathbb{X}$ should be a finite union of smooth curves. If $\mathbb{X} \subset \mathbb{R}^{3}$, then $\partial \mathbb{X}$ should be a finite union of smooth surfaces, etc. If $b, c: \partial \mathbb{X} \longrightarrow \mathbb{R}$ are functions, then define
$\langle b, c\rangle \quad:=\int_{\partial \mathbb{X}} b(\mathbf{x}) \cdot c(\mathbf{x}) d x \quad$ and $\quad\|b\|_{2} \quad:=\quad \sqrt{\langle b, b\rangle}:=\left(\int_{\partial \mathbb{X}}|b(\mathbf{x})|^{2} d x\right)^{1 / 2}$,
where these are computed as contour integrals (or surface integrals, etc.) over $\partial \mathbb{X}$. As usual, let $\mathbf{L}^{2}(\partial \mathbb{X})$ be the set of all integrable functions b : $\partial \mathbb{X} \longrightarrow \mathbb{R}$ such that $\|b\|_{2}<\infty$ (see $\S 6 \mathrm{~B}$ for further discussion).
- Let $\left\{\Xi_{n}\right\}_{n=1}^{\infty}$ be an orthogonal basis for $\mathbf{L}^{2}(\partial \mathbb{X})$. Thus, for any $b \in \mathbf{L}^{2}(\mathbb{X})$, we can write

$$
\begin{equation*}
b \quad \underset{\mathrm{I} 2}{\approx} \quad \sum_{n=1}^{\infty} B_{n} \Xi_{n} \quad \text { where } \quad B_{n} \quad:=\frac{\left\langle b, \Xi_{n}\right\rangle}{\left\|\Xi_{n}\right\|_{2}^{2}}, \quad \text { for all } n \in \mathbb{N} . \tag{15B.1}
\end{equation*}
$$

- For all $n \in \mathbb{N}$, let $\mathcal{H}_{n}: \mathbb{X} \longrightarrow \mathbb{R}$ be a harmonic function (i.e. $\Delta \mathcal{H}_{n}=$ 0) satisfying the nonhomogeneous Dirichlet boundary condition $\mathcal{H}_{n}(\mathbf{x})=$ $\Xi_{n}(\mathbf{x})$ for all $\mathrm{x} \in \partial \mathbb{X}$. The system $\mathfrak{H}:=\left\{\mathcal{H}_{n}\right\}_{n=1}^{\infty}$ is called a Dirichlet harmonic basis for \mathbb{X}.
- Suppose $\Xi_{1} \equiv 1$ is the constant function. Then $\int_{\partial \mathbb{X}} \Xi_{n}(\mathbf{x}) d x=\left\langle\Xi_{n}, 1\right\rangle=$ 0 , for all $n \geq 2$ (by orthogonality). For all $n \geq 2$, let $\mathcal{G}_{n}: \mathbb{X} \longrightarrow \mathbb{R}$ be a harmonic function (i.e. $\triangle \mathcal{G}_{n}=0$) satisfying the nonhomogeneous Neumann boundary condition $\partial_{\perp} \mathcal{G}_{n}(\mathbf{x})=\Xi_{n}(\mathbf{x})$ for all $\mathbf{x} \in \partial \mathbb{X}$. The system $\mathfrak{G}:=\{1\} \sqcup\left\{\mathcal{G}_{n}\right\}_{n=2}^{\infty}$ is called a Neumann harmonic basis for \mathbb{X}. (Note that $\partial_{\perp} 1=0$, not Ξ_{1}).

Note. Although they are called 'harmonic bases for \mathbb{X} ', \mathfrak{H} and $\left\{\partial_{\perp} \mathcal{G}_{n}\right\}_{n=2}^{\infty}$ are actually orthogonal bases for $\mathbf{L}^{2}(\partial \mathbb{X})$, not for $\mathbf{L}^{2}(\mathbb{X})$.

Exercise 15B.1. Show that there is no harmonic function \mathcal{G}_{1} on \mathbb{X} satisfying the Neumann boundary condition $\partial_{\perp} \mathcal{G}_{1}(\mathbf{x})=1$ for all $\mathbf{x} \in \partial \mathbb{X}$. Hint: Use Corollary 5D.4(b) [i] on page 87.

Example 15B.1. If $\mathbb{X}=[0, \pi]^{2} \subset \mathbb{R}^{2}$, then $\partial \mathbb{X}=\mathbf{L} \cup \mathbf{R} \cup \mathbf{T} \cup \mathbf{B}$, where

$$
\mathbf{L}:=\{0\} \times[0, \pi], \quad \mathbf{R}:=\{\pi\} \times[0, \pi], \quad \mathbf{B}:=[0, \pi] \times\{0\}, \text { and } \mathbf{T}:=[0, \pi] \times\{\pi\} .
$$

(See Figure 12A.1(B) on page 240).
(a) Let $\left\{\Xi_{k}\right\}_{k=1}^{\infty}:=\left\{\mathcal{L}_{n}\right\}_{n=1}^{\infty} \sqcup\left\{\mathcal{R}_{n}\right\}_{n=1}^{\infty} \sqcup\left\{\mathcal{B}_{n}\right\}_{n=1}^{\infty} \sqcup\left\{\mathcal{I}_{n}\right\}_{n=1}^{\infty}$, where, for all $n \in \mathbb{N}$, the functions $\mathcal{L}_{n}, \mathcal{R}_{n}, \mathcal{B}_{n}, \mathcal{T}_{n}: \partial \mathbb{X} \longrightarrow \mathbb{R}$ are defined by

$$
\begin{aligned}
\mathcal{L}_{n}(x, y) & :=\left\{\begin{aligned}
\sin (n y) & \text { if }(x, y) \in \mathbf{L} ; \\
0 & \text { otherwise. }
\end{aligned}\right. \\
\mathcal{R}_{n}(x, y) & :=\left\{\begin{aligned}
\sin (n y) & \text { if }(x, y) \in \mathbf{R} ; \\
0 & \text { otherwise. }
\end{aligned}\right. \\
\mathcal{B}_{n}(x, y) & :=\left\{\begin{aligned}
\sin (n x) & \text { if }(x, y) \in \mathbf{B} ; \\
0 & \text { otherwise. }
\end{aligned}\right. \\
\text { and } \mathcal{T}_{n}(x, y) & :=\left\{\begin{aligned}
\sin (n x) & \text { if }(x, y) \in \mathbf{T} ; \\
0 & \text { otherwise. }
\end{aligned}\right.
\end{aligned}
$$

Now, $\left\{\mathcal{L}_{n}\right\}_{n=1}^{\infty}$ is an orthogonal basis for $\mathbf{L}^{2}(\mathbf{L})$ (by Theorem 7A.1). Likewise, $\left\{\mathcal{R}_{n}\right\}_{n=1}^{\infty}$ is an orthogonal basis for $\mathbf{L}^{2}(\mathbf{R}),\left\{\mathcal{B}_{n}\right\}_{n=1}^{\infty}$ is an orthogonal basis for $\mathbf{L}^{2}(\mathbf{B})$, and $\left\{\mathcal{T}_{n}\right\}_{n=1}^{\infty}$ is an orthogonal basis for $\mathbf{L}^{2}(\mathbf{T})$. Thus, $\left\{\Xi_{k}\right\}_{k=1}^{\infty}$ is an orthogonal basis for $\mathbf{L}^{2}(\partial \mathbb{X})$.
Let $\mathfrak{H}:=\left\{\mathcal{H}_{n}^{L}\right\}_{n=1}^{\infty} \sqcup\left\{\mathcal{H}_{n}^{R}\right\}_{n=1}^{\infty} \sqcup\left\{\mathcal{H}_{n}^{T}\right\}_{n=1}^{\infty} \sqcup\left\{\mathcal{H}_{n}^{B}\right\}_{n=1}^{\infty}$, where for all $n \in \mathbb{N}$, and all $(x, y) \in[0, \pi]^{2}$, we define

$$
\begin{aligned}
\mathcal{H}_{n}^{L}(x, y) & :=\frac{\sinh (n(\pi-x)) \sin (n y)}{\sinh (n \pi)} \\
\mathcal{H}_{n}^{R}(x, y) & :=\frac{\sinh (n x) \sin (n y)}{\sinh (n \pi)} \\
\mathcal{H}_{n}^{B}(x, y) & :=\frac{\sin (n x) \sinh (n(\pi-y))}{\sinh (n \pi)} \\
\text { and } \mathcal{H}_{n}^{T}(x, y) & :=\frac{\sin (n x) \sinh (n y)}{\sinh (n \pi)}
\end{aligned}
$$

(See Figures 12 A .2 and 12 A .3 on pages 241-242). Then \mathfrak{H} is a Dirichlet harmonic basis for \mathbb{X}. This was the key fact employed by Proposition 12A.4 on page 244 to solve the Laplace Equation on $[0, \pi]^{2}$ with arbitrary nonhomogeneous Dirichlet boundary conditions.
(b) Let $\left\{\Xi_{k}\right\}_{k=1}^{\infty}:=\left\{\Xi_{1}, \Xi_{=}, \Xi_{\|}, \Xi_{\diamond}\right\} \sqcup\left\{\mathcal{L}_{n}\right\}_{n=1}^{\infty} \sqcup\left\{\mathcal{R}_{n}\right\}_{n=1}^{\infty} \sqcup\left\{\mathcal{B}_{n}\right\}_{n=1}^{\infty} \sqcup$ $\left\{\mathcal{T}_{n}\right\}_{n=1}^{\infty}$. Here, for all $(x, y) \in \partial[0, \pi]^{2}$, we define

$$
\begin{aligned}
& \Xi_{1}(x, y) \\
& :=1 ; \\
\Xi_{\|}(x, y) & :=\left\{\begin{array}{rll}
1 & \text { if } & (x, y) \in \mathbf{R} ; \\
-1 & \text { if } & (x, y) \in \mathbf{L} ; \\
0 & \text { if } & (x, y) \in \mathbf{B} \sqcup \mathbf{T} .
\end{array}\right. \\
\Xi_{=}(x, y) & :=\left\{\begin{array}{rll}
1 & \text { if } & (x, y) \in \mathbf{T} ; \\
-1 & \text { if } & (x, y) \in \mathbf{B} ; \\
0 & \text { if } & (x, y) \in \mathbf{L} \sqcup \mathbf{R} .
\end{array}\right. \\
\text { and } \quad & \Xi_{\diamond}(x, y)
\end{aligned}:=\left\{\begin{array}{rll}
1 & \text { if } & (x, y) \in \mathbf{L} \sqcup \mathbf{R} ; \\
-1 & \text { if } & (x, y) \in \mathbf{T} \sqcup \mathbf{B} .
\end{array}\right.
$$

Meanwhile, for all $n \in \mathbb{N}$, the functions $\mathcal{L}_{n}, \mathcal{R}_{n}, \mathcal{B}_{n}, \mathcal{T}_{n}: \partial \mathbb{X} \longrightarrow \mathbb{R}$ are defined by

$$
\begin{aligned}
\mathcal{L}_{n}(x, y) & :=\left\{\begin{aligned}
\cos (n y) & \text { if }(x, y) \in \mathbf{L} ; \\
0 & \text { otherwise }
\end{aligned}\right. \\
\mathcal{R}_{n}(x, y) & :=\left\{\begin{aligned}
\cos (n y) & \text { if }(x, y) \in \mathbf{R} ; \\
0 & \text { otherwise }
\end{aligned}\right. \\
\mathcal{B}_{n}(x, y) & :=\left\{\begin{aligned}
\cos (n x) & \text { if }(x, y) \in \mathbf{B} \\
0 & \text { otherwise }
\end{aligned}\right.
\end{aligned}
$$

$$
\text { and } \mathcal{T}_{n}(x, y):=\left\{\begin{aligned}
\cos (n x) & \text { if }(x, y) \in \mathbf{T} \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Now, $\{1\} \sqcup\left\{\mathcal{L}_{n}\right\}_{n=1}^{\infty}$ is an orthogonal basis for $\mathbf{L}^{2}(\mathbf{L})$ (by Theorem 7A.1). Likewise, $\{1\} \sqcup\left\{\mathcal{R}_{n}\right\}_{n=1}^{\infty}$ is an orthogonal basis for $\mathbf{L}^{2}(\mathbf{R}),\{1\} \sqcup\left\{\mathcal{B}_{n}\right\}_{n=1}^{\infty}$ is an orthogonal basis for $\mathbf{L}^{2}(\mathbf{B})$, and $\{1\} \sqcup\left\{\mathcal{T}_{n}\right\}_{n=1}^{\infty}$ is an orthogonal basis for $\mathbf{L}^{2}(\mathbf{T})$. It follows that $\left\{\Xi_{k}\right\}_{k=1}^{\infty}$ is an orthogonal basis for $\mathbf{L}^{2}(\partial \mathbb{X})$ (Exercise 15B.2). Let $\mathfrak{G}:=\left\{1, \mathcal{G}_{=}, \mathcal{G}_{\|}, \mathcal{G}_{\diamond}\right\} \sqcup\left\{\mathcal{G}_{n}^{L}\right\}_{n=1}^{\infty} \sqcup\left\{\mathcal{G}_{n}^{R}\right\}_{n=1}^{\infty} \sqcup\left\{\mathcal{G}_{n}^{B}\right\}_{n=1}^{\infty} \sqcup\left\{\mathcal{G}_{n}^{T}\right\}_{n=1}^{\infty}$, where, for all $(x, y) \in[0, \pi]^{2}$,

$$
\begin{aligned}
\mathcal{G}_{\|}(x, y) & :=x ; \\
\mathcal{G}_{=}(x, y) & :=y ; \\
\text { and } \quad \mathcal{G}_{\diamond}(x, y) & :=\frac{1}{\pi}\left(\left(x-\frac{\pi}{2}\right)^{2}-\left(y-\frac{\pi}{2}\right)^{2}\right) .
\end{aligned}
$$

The graphs of $\mathcal{G}_{\|}(x, y)$ and $\mathcal{G}_{=}(x, y)$ are inclined planes at 45° in the x and y directions respectively. The graph of \mathcal{G}_{\diamond} is a 'saddle' shape very similar to Figure 1C.1(B) on page 10. Meanwhile, for all $n \geq 1$, and all $(x, y) \in[0, \pi]^{2}$, we define

$$
\begin{aligned}
\mathcal{G}_{n}^{L}(x, y) & :=\frac{\cosh (n(\pi-x)) \cos (n y)}{n \sinh (n \pi)} ; \\
\mathcal{G}_{n}^{R}(x, y) & :=\frac{\cosh (n x) \cos (n y)}{n \sinh (n \pi)} ; \\
\mathcal{G}_{n}^{B}(x, y) & :=\frac{\cos (n x) \cosh (n(\pi-y))}{n \sinh (n \pi)} ; \\
\text { and } \mathcal{G}_{n}^{T}(x, y) & :=\frac{\cos (n x) \cosh (n y)}{n \sinh (n \pi)} .
\end{aligned}
$$

Then \mathfrak{G} is a Neumann harmonic basis for \mathbb{X} (Exercise 15B.3).

Example 15B.2. (a) If $\mathbb{X}=\mathbb{D}=\{(r, \theta) ; r \leq 1\}$ (the unit disk in polar coordinates), then $\partial \mathbb{X}=\mathbb{S}=\{(r, \theta) ; r=1\}$ (the unit circle). In this case, let $\left\{\Xi_{k}\right\}_{k=1}^{\infty}:=\left\{\mathcal{C}_{n}\right\}_{n=0}^{\infty} \sqcup\left\{\mathcal{S}_{n}\right\}_{n=1}^{\infty}$, where, for all $n \in \mathbb{N}$ and $\theta \in[-\pi, \pi)$,

$$
\mathcal{C}_{n}(\theta, 1) \quad:=\cos (n \theta) \quad \text { and } \quad \mathcal{S}_{n}(\theta, 1) \quad:=\sin (n \theta) .
$$

Then $\left\{\Xi_{k}\right\}_{k=1}^{\infty}$ is a basis of $\mathbf{L}^{2}(\mathbb{S})$, by Theorem 8A.1. Let $\mathfrak{H}:=\left\{\Phi_{n}\right\}_{n=0}^{\infty} \sqcup$ $\left\{\Psi_{n}\right\}_{n=1}^{\infty}$, where $\Phi_{0} \equiv 1$, and where, for all $n \geq 1$ and $(r, \theta) \in \mathbb{D}$, we define

$$
\Phi_{n}(r, \theta):=\cos (n \theta) \cdot r^{n} \quad \text { and } \quad \Psi_{n}(r, \theta):=\sin (n \theta) \cdot r^{n} .
$$

(See Figure 14 B .1 on page 275). Then \mathfrak{H} is a Dirichlet harmonic basis for \mathbb{D}; this was the key fact employed by Proposition 14B.2 on page 278, to solve the

Laplace Equation on \mathbb{D} with arbitrary nonhomogeneous Dirichlet boundary conditions.

Suppose $\Xi_{1}=\mathcal{C}_{0}$ (i.e. $\Xi_{1} \equiv 1$). Let $\mathfrak{G}:=\{1\} \sqcup\left\{\Phi_{n} / n\right\}_{n=1}^{\infty} \sqcup\left\{\Psi_{n} / n\right\}_{n=1}^{\infty}$, where, for all $n \in \mathbb{N}$ and $(r, \theta) \in \mathbb{D}$, we have

$$
\Phi_{n}(r, \theta) / n:=\frac{\cos (n \theta) \cdot r^{n}}{n} \quad \text { and } \quad \Psi_{n}(r, \theta) / n:=\frac{\sin (n \theta) \cdot r^{n}}{n}
$$

Then \mathfrak{G} is a Neumann harmonic basis for \mathbb{D}; this was the key fact employed by Proposition $14 \mathrm{B.4}$ on page 280 , to solve the Laplace Equation on \mathbb{D} with arbitrary nonhomogeneous Neumann boundary conditions.
(b) If $\mathbb{X}=\mathbb{D}^{\complement}=\{(r, \theta) ; r \geq 1\}$ (in polar coordinates) ${ }^{1}$, then $\partial \mathbb{X}=\mathbb{S}=$ $\{(r, \theta) ; r=1\}$. In this case, let $\left\{\Xi_{k}\right\}_{k=1}^{\infty}:=\left\{\mathcal{C}_{n}\right\}_{n=0}^{\infty} \sqcup\left\{\mathcal{S}_{n}\right\}_{n=1}^{\infty}$, just as in Example (a). However, this time, let $\mathfrak{H}:=\left\{\Phi_{0}\right\} \sqcup\left\{\phi_{n}\right\}_{n=1}^{\infty} \sqcup\left\{\psi_{n}\right\}_{n=1}^{\infty}$, where $\Phi_{0} \equiv 1$, and where, for all $n \geq 1$ and $(r, \theta) \in \mathbb{D}$, we define

$$
\phi_{n}(r, \theta):=\cos (n \theta) / r^{n} \quad \text { and } \quad \psi_{n}(r, \theta):=\sin (n \theta) / r^{n}
$$

(See Figure 14B.2 on page 276). Then \mathfrak{H} is a Dirichlet harmonic basis for \mathbb{D}^{\complement}; this was the key fact employed by Proposition 14B.6 on page 284, to solve the Laplace Equation on \mathbb{D}^{\complement} with arbitrary nonhomogeneous Neumann boundary conditions.

Recall $\Xi_{1}=\mathcal{C}_{0} \equiv 1$. Let $\mathfrak{G}:=\{1\} \sqcup\left\{-\phi_{n} / n\right\}_{n=1}^{\infty} \sqcup\left\{-\psi_{n} / n\right\}_{n=1}^{\infty}$, where ϕ_{n} and ψ_{n} are as defined above, for all $n \geq 1$. Then \mathfrak{G} is a Neumann harmonic basis for \mathbb{D}^{\complement}; this was the key fact employed by Proposition 14 B .8 on page 285, to solve the Laplace Equation on \mathbb{D}^{\complement} with arbitrary nonhomogeneous Neumann boundary conditions. ${ }^{2}$

Theorem 15B.3. General solution to Laplace equation

Let $b \in \mathbf{L}^{2}(\partial \mathbb{X})$ have orthogonal expansion (15B.1). Let $\mathfrak{H}:=\left\{\mathcal{H}_{k}\right\}_{k=1}^{\infty}$ be a Dirichlet harmonic basis for \mathbb{X} and let $\mathfrak{G}:=\{1\} \sqcup\left\{\mathcal{G}_{k}\right\}_{k=2}^{\infty}$ be a Neumann harmonic basis for \mathbb{X}.

[^56](a) Let $u \underset{\mathrm{~T} 2}{\approx} \sum_{k=1}^{\infty} B_{k} \mathcal{H}_{k}$. If this series converges uniformly to u on the interior of \mathbb{X}, then u is the unique continuous harmonic function with nonhomogeneous Dirichlet $B C u(\mathbf{x})=b(\mathbf{x})$ for all $\mathbf{x} \in \partial \mathbb{X}$.
(b) Suppose $\Xi_{1} \equiv 1$. If $B_{1} \neq 0$, then there is no continuous harmonic function on \mathbb{X} with nonhomogeneous Neumann $B C \partial_{\perp} u(\mathbf{x})=b(\mathbf{x})$ for all $\mathbf{x} \in \partial \mathbb{X}$.
Suppose $B_{1}=0$. Let $u \underset{\mathrm{~T} 2}{\approx} \sum_{k=2}^{\infty} B_{k} \mathcal{G}_{k}+C$, where $C \in \mathbb{R}$ is any constant. If this series converges uniformly to u on the interior of \mathbb{X}, then it is a continuous harmonic function with nonhomogeneous Neumann BC $\partial_{\perp} u(\mathbf{x})=b(\mathbf{x})$ for all $\mathbf{x} \in \partial \mathbb{X}$. Furthermore, all solutions to this BVP have this form, for some value of $C \in \mathbb{R}$.

Proof. Exercise 15B. 4 Hint: The boundary conditions follow from expansion (15B.1). To verify that u is harmonic, use the Mean Value Theorem (Theorem 1E. 1 on page 16). (Use Proposition 6E.10(b) on page 127 to guarantee that the integral of the sum is the sum of the integrals.) Finally, use Corollary 5D.4 on page 87 to show solution uniqueness.

Exercise 15B.5. Show how Propositions 12A.4, 13B.2, 14B.2, 14B.4 14B.6, 14B.8 and 14B.10 are all special cases of Theorem 15B.3.

Remark. There is nothing special about the role of the Laplacian \triangle in Theorem 15B.3. If L is any linear differential operator, then something like Theorem 15B. 3 is still true if you replace " \triangle " with " L " everywhere. In particular, if L is an elliptic differential operator (see $\S 5 \mathrm{E}$), then Theorem 15 B .3 becomes the general solution to the boundary value problem for the homogeneous elliptic PDE "L $u \equiv 0$ ".

However, if L is an arbitrary differential operator, then there is no guarantee that you will find a 'harmonic basis' $\left\{\mathcal{H}_{k}\right\}_{k=1}^{\infty}$ of functions such that $\mathrm{L} \mathcal{H}_{k} \equiv 0$ for all $k \in \mathbb{N}$, and such that the collection $\left\{\mathcal{H}_{k}\right\}_{k=1}^{\infty}$ (or $\left\{\partial_{\perp} \mathcal{H}_{k}\right\}_{k=1}^{\infty}$) provides an orthonormal basis for $\mathbf{L}^{2}(\partial \mathbb{X})$. (Even for the Laplacian, this is a nontrivial problem; see e.g. Corollary 15 C .8 on page 333 below.)

Furthermore, once you define $u \underset{\mathrm{~T} 2}{\approx} \sum_{k=1}^{\infty} B_{k} \mathcal{H}_{k}$ as in Theorem 15B.3, you might not be able to use something like the Mean Value Theorem to guarantee that $\mathrm{L} u=0$. Instead you must 'formally differentiate' the series $\sum_{k=1}^{\infty} B_{k} \mathcal{H}_{k}$ and $\sum_{k=1}^{\infty} B_{k} \mathcal{G}_{k}$ using Proposition 0F.1 on page 565. For this to work, you need some convergence conditions on the 'formal derivatives' of these series. For example,
if L was an N th order differential operator, it would be sufficient to require that $\sum_{k=1}^{\infty}\left|B_{k}\right| \cdot\left\|\partial_{j}^{N} \mathcal{H}_{k}\right\|_{\infty}<\infty$ and $\sum_{k=1}^{\infty}\left|B_{k}\right| \cdot\left\|\partial_{j}^{N} \mathcal{G}_{k}\right\|_{\infty}<\infty$ for all $j \in[1 \ldots D]$

(Exercise 15B. 6 Verify this).

Finally, for an arbitrary differential operator, there may not be a result like Corollary 5D.4 on page 87, which guarantees a unique solution to a Dirichlet/Neumann BVP. It may be necessary to impose further constraints to get a unique solution.

15C Eigenbases on Cartesian products

If $\mathbb{X}_{1} \subset \mathbb{R}^{D_{1}}$ and $\mathbb{X}_{2} \subset \mathbb{R}^{D_{2}}$ are two domains, then their Cartesian product is the set

$$
\mathbb{X}_{1} \times \mathbb{X}_{2}:=\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) ; \mathbf{x}_{1} \in \mathbb{X}_{1} \text { and } \mathbf{x}_{2} \in \mathbb{X}_{2}\right\} \subset \mathbb{R}^{D_{1}+D_{2}}
$$

Example 15C.1. (a) if $\mathbb{X}_{1}=[0, \pi] \subset \mathbb{R}$ and $\mathbb{X}_{2}=[0, \pi]^{2} \subset \mathbb{R}^{2}$ then $\mathbb{X}_{1} \times \mathbb{X}_{2}=$ $[0, \pi]^{3} \subset \mathbb{R}^{3}$.
(b) If $\mathbb{X}_{1}=\mathbb{D} \subset \mathbb{R}^{2}$ and $\mathbb{X}_{2}=[0, \pi] \subset \mathbb{R}$, then $\mathbb{X}_{1} \times \mathbb{X}_{2}=\{(r, \theta, z) ;(r, \theta) \in$ \mathbb{D} and $0 \leq z \leq \pi\} \subset \mathbb{R}^{3}$ is the cylinder of height π.

To apply the solution methods from Sections 15A and 15B, we must first construct eigenbases and/or harmonic bases on the domain \mathbb{X}; that is the goal of this section. We begin with some technical results which are useful and straightforward to prove.

Lemma 15C.2. Let $\mathbb{X}_{1} \subset \mathbb{R}^{D_{1}}$ and $\mathbb{X}_{2} \subset \mathbb{R}^{D_{2}}$. Let $\mathbb{X}:=\mathbb{X}_{1} \times \mathbb{X}_{2} \subset \mathbb{R}^{D_{1}+D_{2}}$.
(a) $\partial \mathbb{X}=\left[\left(\partial \mathbb{X}_{1}\right) \times \mathbb{X}_{2}\right] \cup\left[\mathbb{X}_{1} \times\left(\partial \mathbb{X}_{2}\right)\right]$.

Let $\Phi_{1}: \mathbb{X}_{1} \longrightarrow \mathbb{R}$ and $\Phi_{2}: \mathbb{X}_{2} \longrightarrow \mathbb{R}$, and define $\Phi=\Phi_{1} \cdot \Phi_{2}: \mathbb{X} \longrightarrow \mathbb{R}$ by $\Phi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right):=\Phi_{1}\left(\mathbf{x}_{1}\right) \cdot \Phi_{2}\left(\mathbf{x}_{2}\right)$ for all $\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in \mathbf{X}$.
(b) If Φ_{1} satisfies homogeneous Dirichlet $B C$ on \mathbb{X}_{1} and Φ_{2} satisfies homogeneous Dirichlet BC on \mathbb{X}_{2}, then Φ satisfies homogeneous Dirichlet $B C$ on \mathbb{X}.
(c) If Φ_{1} satisfies homogeneous Neumann $B C$ on \mathbb{X}_{1} and Φ_{2} satisfies homogeneous Neumann $B C$ on \mathbb{X}_{2}, then Φ satisfies homogeneous Neumann BC on \mathbb{X}.
(d) $\|\Phi\|_{2}=\left\|\Phi_{1}\right\|_{2} \cdot\left\|\Phi_{2}\right\|_{2}$. Thus, if $\Phi_{1} \in \mathbf{L}^{2}\left(\mathbb{X}_{1}\right)$ and $\Phi_{2} \in \mathbf{L}^{2}\left(\mathbb{X}_{2}\right)$ then $\Phi \in \mathbf{L}^{2}(\mathbb{X})$.
(e) If $\Psi_{1} \in \mathbf{L}^{2}\left(\mathbb{X}_{1}\right)$ and $\Psi_{2} \in \mathbf{L}^{2}\left(\mathbb{X}_{2}\right)$ and $\Psi=\Psi_{1} \cdot \Psi_{2}$ then $\langle\Phi, \Psi\rangle=\left\langle\Phi_{1}, \Psi_{1}\right\rangle$. $\left\langle\Phi_{2}, \Psi_{2}\right\rangle$.
(f) Let $\left\{\Phi_{n}^{(1)}\right\}_{n=1}^{\infty}$ be an orthogonal basis for $\mathbf{L}^{2}\left(\mathbb{X}_{1}\right)$ and let $\left\{\Phi_{m}^{(2)}\right\}_{m=1}^{\infty}$ be an orthogonal basis for $\mathbf{L}^{2}\left(\mathbb{X}_{2}\right)$. For all $(n, m) \in \mathbb{N}$, let $\Phi_{n, m}:=\Phi_{n}^{(1)} \cdot \Phi_{m}^{(2)}$. Then $\left\{\Phi_{n, m}\right\}_{n, m=1}^{\infty}$ is an orthogonal basis for $\mathbf{L}^{2}(\mathbb{X})$.

Let \triangle_{1} be the Laplacian operator on $\mathbb{R}^{D_{1}}$, let \triangle_{2} be the Laplacian operator on $\mathbb{R}^{D_{2}}$, and let \triangle be the Laplacian operator on $\mathbb{R}^{D_{1}+D_{2}}$.
(g) $\triangle \Phi\left(\mathrm{x}_{1}, \mathbf{x}_{2}\right)=\left(\triangle_{1} \Phi_{1}\left(\mathbf{x}_{1}\right)\right) \cdot \Phi_{2}\left(\mathrm{x}_{2}\right)+\Phi_{1}\left(\mathbf{x}_{1}\right) \cdot\left(\triangle_{2} \Phi_{2}\left(\mathbf{x}_{2}\right)\right)$.
(h) Thus, if Φ_{1} is an eigenfunction of \triangle_{1} with eigenvalue λ_{1}, and Φ_{2} is an eigenfunction of \triangle_{2} with eigenvalue λ_{2}, then Φ is an eigenfunction of \triangle with eigenvalue $\left(\lambda_{1}+\lambda_{2}\right)$.

Proof. Exercise 15C. 1 (Remark: For part (f), just show that $\left\{\Phi_{n, m}\right\}_{n, m=1}^{\infty}$ is an orthogonal collection of functions. Showing that $\left\{\Phi_{n, m}\right\}_{n, m=1}^{\infty}$ is actually a basis for $\mathbf{L}^{2}(\mathbb{X})$ requires methods beyond the scope of this course.)

Corollary 15C.3. Eigenbases for Cartesian Products

Let $\mathbb{X}_{1} \subset \mathbb{R}^{D_{1}}$ and $\mathbb{X}_{2} \subset \mathbb{R}^{D_{2}}$. Let $\mathbb{X}:=\mathbb{X}_{1} \times \mathbb{X}_{2} \subset \mathbb{R}^{D_{1}+D_{2}}$. Let $\left\{\Phi_{n}^{(1)}\right\}_{n=1}^{\infty}$ be a Dirichlet (or Neumann) eigenbasis for $\mathbf{L}^{2}\left(\mathbb{X}_{1}\right)$, and let $\left\{\Phi_{m}^{(2)}\right\}_{m=1}^{\infty}$ be a Dirichlet (respectively Neumann) eigenbasis for $\mathbf{L}^{2}\left(\mathbb{X}_{2}\right)$. For all $(n, m) \in \mathbb{N}$, define $\Phi_{n, m}=\Phi_{n}^{(1)} \cdot \Phi_{m}^{(2)}$. Then $\left\{\Phi_{n, m}\right\}_{n, m=1}^{\infty}$ Dirichlet (respectively Neumann) eigenbasis for $\mathbf{L}^{2}(\mathbb{X})$.

Proof. Exercise 15C. 2 Just combine Lemma 15C.2(b,c,f,h).

Example 15C.4. Let $\mathbb{X}_{1}=[0, \pi]$ and $\mathbb{X}_{2}=[0, \pi]^{2}$, so $\mathbb{X}_{1} \times \mathbb{X}_{2}=[0, \pi]^{3}$. Note that $\partial\left([0, \pi]^{3}\right)=\left(\{0, \pi\} \times[0, \pi]^{2}\right) \cup\left([0, \pi] \times \partial[0, \pi]^{2}\right)$. For all $\ell \in \mathbb{N}$, define \mathbf{C}_{ℓ} and $\mathbf{S}_{\ell} \in \mathbf{L}^{2}[0, \pi]$ by $\mathbf{C}_{\ell}(x):=\cos (\ell x)$ and $\mathbf{S}_{\ell}(x):=\sin (\ell x)$. For all $m, n \in \mathbb{N}$, define $\mathbf{C}_{m, n}$ and $\mathbf{S}_{m, n} \in \mathbf{L}^{2}\left([0, \pi]^{2}\right)$ by $\mathbf{C}_{m, n}(y, z):=\cos (m y) \cos (n z)$ and $\mathbf{S}_{m, n}(y, z):=\sin (m y) \sin (n z)$.
For any $\ell, m, n \in \mathbb{N}$, define $\mathbf{C}_{\ell, m, n}$ and $\mathbf{S}_{\ell, m, n} \in \mathbf{L}^{2}(\mathbb{X})$ by $\mathbf{C}_{\ell, m, n}(x, y, z):=$ $\mathbf{C}_{\ell}(x) \cdot \mathbf{C}_{m, n}(y, z)=\cos (\ell x) \cos (m y) \cos (n z)$ and $\mathbf{S}_{\ell, m, n}(x, y, z):=\mathbf{S}_{\ell}(x)$. $\mathbf{S}_{m, n}(y, z)=\sin (\ell x) \sin (m y) \sin (n z)$.

Now, $\left\{\mathbf{S}_{\ell}\right\}_{\ell=1}^{\infty}$ is a Dirichlet eigenbasis for $[0, \pi]$ (by Theorem 7A.1), and $\left\{\mathbf{S}_{m, n}\right\}_{m, n=1}^{\infty}$ is a Dirichlet eigenbasis for $[0, \pi]^{2}$ (by Theorem 9A.3(a)); thus, Corollary 15 C .3 says that $\left\{\mathbf{S}_{\ell, m, n}\right\}_{\ell, m, n=1}^{\infty}$ is a Dirichlet eigenbasis for $[0, \pi]^{3}$ (as earlier noted by Theorem 9B.1).
Likewise, $\left\{\mathbf{C}_{\ell}\right\}_{\ell=0}^{\infty}$ is a Neumann eigenbasis for $[0, \pi]$ (by Theorem 7A.4), and $\left\{\mathbf{C}_{m, n}\right\}_{m, n=0}^{\infty}$ is a Neumann eigenbasis for $[0, \pi]^{2}$; (by Theorem 9A.3(b)); thus, Corollary 15C.3 says that $\left\{\mathbf{C}_{\ell, m, n}\right\}_{\ell, m, n=0}^{\infty}$ is a Neumann eigenbasis for $[0, \pi]^{3}$ (as earlier noted by Theorem 9B.1).

Example 15C.5. Let $\mathbb{X}_{1}=\mathbb{D}$ and $\mathbb{X}_{2}=[0, \pi]$, so that $\mathbb{X}_{1} \times \mathbb{X}_{2}$ is the cylinder of height π and radius 1 . Let $\mathbb{S}:=\partial \mathbb{D}$ (the unit circle). Note that $\partial \mathbb{X}=$ $(\mathbb{S} \times[0, \pi]) \cup(\mathbb{D} \times\{0, \pi\})$. For all $n \in \mathbb{N}$, define $\mathbf{S}_{n} \in \mathbf{L}^{2}[0, \pi]$ as in Example 15C.4. For all $\ell, m \in \mathbb{N}$, let $\Phi_{\ell, m}$ and $\Psi_{\ell, m}$ be the type-1 Fourier-Bessel eigenfunctions defined by eqn.(14C.5) on page 296 of $\S 14 \mathrm{C}(\mathrm{ii)}$. For any $\ell, m, n \in \mathbb{N}$, define $\Phi_{\ell, m, n}$ and $\Psi_{\ell, m, n} \in \mathbf{L}^{2}(\mathbb{X})$ by $\Phi_{\ell, m, n}(r, \theta, z):=\Phi_{\ell, m}(r, \theta) \cdot \mathbf{S}_{n}(z)$ and $\Psi_{\ell, m, n}(r, \theta, z):=\Psi_{\ell, m}(r, \theta) \cdot \mathbf{S}_{n}(z)$.
Now $\left\{\Phi_{m, n}, \Psi_{m, n}\right\}_{m, n=1}^{\infty}$ is a Dirichlet eigenbasis for the disk \mathbb{D} (by Theorem 14C.2) and $\left\{\mathbf{S}_{n}\right\}_{n=1}^{\infty}$ is a Dirichlet eigenbasis for the line $[0, \pi]$ (by Theorem 7A.1); thus, Corollary 15C.3 says that $\left\{\Phi_{\ell, m, n}, \Psi_{\ell, m, n}\right\}_{\ell, m, n=1}^{\infty}$ is a Dirichlet eigenbasis for the cylinder \mathbb{X}.

Exercise 15C.3. (a) Combine Example 15 C .5 with Theorems 15A.2, 15 A .3 , and 15 A .4 to provide a general solution method for solving the Poisson equation, heat equation, and wave equation on a finite cylinder with Dirichlet boundary conditions.
(b) Set up and solve some simple initial/boundary value problems using your method. -

Exercise 15C.4. In cylindrical coordinates on \mathbb{R}^{3}, let $\mathbb{X}=\{(r, \theta, z) ; 1 \leq r, 0 \leq$ $z \leq \pi$, and $-\pi \leq \theta<\pi\}$ be the punctured slab of thickness π, having a cylindrical hole of radius 1 .
(a) Express \mathbb{X} as a Cartesian product of the punctured plane and a line segment.
(b) Use Corollary 15C. 3 to obtain a Dirichlet eigenbasis for \mathbb{X}.
(c) Apply Theorems $15 \mathrm{~A} .2,15 \mathrm{~A} .3$, and 15 A .4 to provide a general solution method for solving the Poisson equation, heat equation, and wave equation on the punctured slab with Dirichlet boundary conditions.
(d) Set up and solve some simple initial/boundary value problems using your method.
-

Exercise 15C.5. Let $\mathbb{X}_{1}=\left\{(x, y) \in[0, \pi]^{2} ; y \leq x\right\}$ be the right angle triangle from Proposition 15A.5 on page 322, and let $\mathbb{X}_{2}=[0, \pi] \subset \mathbb{R}$. Then $\mathbb{X}=\mathbb{X}_{1} \times \mathbb{X}_{2}$ is a right-angle triangular prism.
(a) Use Proposition 15 A .5 and Corollary 15C.3 to obtain Dirichlet and Neumann eigenbases for the prism \mathbb{X}.
(b) Apply Theorems 15A.2, 15A.3, and 15 A .4 to provide a general solution method for solving the Poisson equation, heat equation, and wave equation on the prism with Dirichlet or Neumann boundary conditions.
(c) Set up and solve some simple initial/boundary value problems using your method. \bullet

We now move on to the problem of constructing harmonic bases on a Cartesian product. We will need two technical lemmas.

Lemma 15C.6. Harmonic functions on Cartesian products

Let $\mathbb{X}_{1} \subset \mathbb{R}^{D_{1}}$ and $\mathbb{X}_{2} \subset \mathbb{R}^{D_{2}}$. Let $\mathbb{X}:=\mathbb{X}_{1} \times \mathbb{X}_{2} \subset \mathbb{R}^{D_{1}+D_{2}}$.
Let $\mathcal{E}_{1}: \mathbb{X}_{1} \longrightarrow \mathbb{R}$ be an eigenfunction of \triangle_{1} with eigenvalue λ, and let $\mathcal{E}_{2}: \mathbb{X}_{2} \longrightarrow \mathbb{R}$ be an eigenfunction of \triangle_{2} with eigenvalue $-\lambda$. If we define $\mathcal{H}:=\mathcal{E}_{1} \cdot \mathcal{E}_{2}: \mathbb{X} \longrightarrow \mathbb{R}$, as in Lemma 15C.2, then \mathcal{H} is a harmonic function -that is, $\triangle \mathcal{H}=0$.

Proof. Exercise 15C. 6 Hint: Use Lemma 15C.2(h).

Lemma 15C.7. Orthogonal bases on almost-disjoint unions
Let $\mathbb{Y}_{1}, \mathbb{Y}_{2} \subset \mathbb{R}^{D}$ be two ($D-1$)-dimensional subsets (e.g. two curves in \mathbb{R}^{2}, two surfaces in \mathbb{R}^{3}, etc.). Suppose that $\mathbb{Y}_{1} \cap \mathbb{Y}_{2}$ has dimension ($D-2$) (e.g. it is a discrete set of points in \mathbb{R}^{2}, or a curve in \mathbb{R}^{3}, etc.). Let $\left\{\Phi_{n}^{(1)}\right\}_{n=1}^{\infty}$ be an orthogonal basis for $\mathbf{L}^{2}\left(\mathbb{Y}_{1}\right)$, such that $\Phi_{n}^{(1)}(\mathbf{y})=0$ for all $\mathbf{y} \in \mathbb{Y}_{2}$ and $n \in \mathbb{N}$. Likewise, let $\left\{\Phi_{n}^{(2)}\right\}_{n=1}^{\infty}$ be an orthogonal basis for $\mathbf{L}^{2}\left(\mathbb{Y}_{2}\right)$, such that $\Phi_{n}^{(2)}(\mathbf{y})=0$ for all $\mathbf{y} \in \mathbb{Y}_{1}$ and $n \in \mathbb{N}$. Then $\left\{\Phi_{n}^{(1)}\right\}_{n=1}^{\infty} \sqcup\left\{\Phi_{n}^{(2)}\right\}_{n=1}^{\infty}$ is an orthogonal basis for $\mathbf{L}^{2}\left(\mathbb{Y}_{1} \cup \mathbb{Y}_{2}\right)$.

Proof. Exercise 15C. 7 Hint: the ($D-1$)-dimensional integral of any function on $\mathbb{Y}_{1} \cap \mathbb{Y}_{2}$ must be zero.

For the rest of this section we adopt the following notational convention: if $f \sim \mathbb{X} \longrightarrow \mathbb{R}$ is a function, then let \tilde{f} denote the restriction of f to a function $\widetilde{f}: \partial \mathbb{X} \longrightarrow \mathbb{R}$ (that is, $\widetilde{f}:=f_{\left.\right|_{X \mathbb{X}}}$).

Corollary 15C.8. Harmonic bases on Cartesian products

Let $\mathbb{X}_{1} \subset \mathbb{R}^{D_{1}}$ and $\mathbb{X}_{2} \subset \mathbb{R}^{D_{2}}$. Let $\mathbb{X}:=\mathbb{X}_{1} \times \mathbb{X}_{2} \subset \mathbb{R}^{D_{1}+D_{2}}$.
Let $\left\{\Xi_{m}^{2}\right\}_{m \in \mathbb{M}_{2}}$ be an orthogonal basis for $\mathbf{L}^{2}\left(\partial \mathbb{X}_{2}\right)$ (here, \mathbb{M}_{2} is some indexing set, either finite or infinite; e.g. $\mathbb{M}_{2}=\mathbb{N}$). Let $\left\{\mathcal{E}_{n}^{1}\right\}_{n=1}^{\infty}$ be a Dirichlet eigenbasis for \mathbb{X}_{1}. For all $n \in \mathbb{N}$, suppose $\triangle_{1} \mathcal{E}_{n}^{1}=-\lambda_{n}^{(1)} \mathcal{E}_{n}^{1}$, and for all $m \in \mathbb{M}_{2}$, let
$\mathcal{F}_{n, m}^{2} \in \mathbf{L}^{2}\left(\mathbb{X}_{2}\right)$ be an eigenfunction of \triangle_{2} with eigenvalue $+\lambda_{n}^{(1)}$, such that $\widetilde{\mathcal{F}}_{n, m}^{2}=\Xi_{m}^{2}$. Let $\mathcal{H}_{n, m}^{1}:=\mathcal{E}_{n}^{1} \cdot \mathcal{F}_{n, m}^{2}: \mathbb{X} \longrightarrow \mathbb{R}$, for all $n \in \mathbb{N}$ and $m \in \mathbb{M}_{2}$.

Likewise, let $\left\{\Xi_{m}^{1}\right\}_{m \in \mathbb{M}_{1}}$ be an orthogonal basis for $\mathbf{L}^{2}\left(\partial \mathbb{X}_{1}\right)$ (where \mathbb{M}_{1} is some indexing set), and let $\left\{\mathcal{E}_{n}^{2}\right\}_{n=1}^{\infty}$ be a Dirichlet eigenbasis for \mathbb{X}_{2}. For all $n \in \mathbb{N}$, suppose $\triangle_{2} \mathcal{E}_{n}^{2}=-\lambda_{n}^{(2)} \mathcal{E}_{n}^{2}$, and for all $m \in \mathbb{M}_{1}$, let $\mathcal{F}_{n, m}^{1} \in \mathbf{L}^{2}\left(\mathbb{X}_{1}\right)$ be an eigenfunction of \triangle_{1} with eigenvalue $+\lambda_{n}^{(2)}$, such that $\widetilde{\mathcal{F}}_{n, m}^{1}=\Xi_{m}^{1}$. Define $\mathcal{H}_{n, m}^{2}:=\mathcal{F}_{n, m}^{1} \cdot \mathcal{E}_{n}^{2}: \mathbb{X} \longrightarrow \mathbb{R}$, for all $n \in \mathbb{N}$ and $m \in \mathbb{M}_{1}$.

Then $\mathfrak{H}:=\left\{\mathcal{H}_{n, m}^{1} ; n \in \mathbb{N}, m \in \mathbb{M}_{2}\right\} \sqcup\left\{\mathcal{H}_{n, m}^{2} ; n \in \mathbb{N}, m \in \mathbb{M}_{1}\right\}$ is a Dirichlet harmonic basis for $\mathbf{L}^{2}(\partial \mathbb{X})$.

Proof. Exercise 15C. 8 (a) Use Lemma 15 C .6 to verify that all the functions $\mathcal{H}_{n, m}^{1}$ and $\mathcal{H}_{n, m}^{2}$ are harmonic on \mathbb{X}.
(b) Show that $\left\{\widetilde{\mathcal{H}}_{n, m}^{1}\right\}_{n \in \mathbb{N}, m \in \mathbb{M}_{2}}$ is an orthogonal basis for $\mathbf{L}^{2}\left(\mathbb{X}_{1} \times\left(\partial \mathbb{X}_{2}\right)\right)$, while $\left\{\widetilde{\mathcal{H}}_{n, m}^{2}\right\}_{n \in \mathbb{N}, m \in \mathbb{M}_{1}}$ is an orthogonal basis for $\mathbf{L}^{2}\left(\left(\partial \mathbb{X}_{1}\right) \times \mathbb{X}_{2}\right)$. Use Lemma 15C.2(f).
(c) Show that \mathfrak{H} is an orthogonal basis for $\mathbf{L}^{2}(\partial \mathbb{X})$. Use Lemma 15C.2(a) and Lemma 15 C .7 .

Example 15C.9. Let $\mathbb{X}_{1}=[0, \pi]=\mathbb{X}_{2}$, so that $\mathbb{X}=[0, \pi]^{2}$. Observe that $\partial\left([0, \pi]^{2}\right)=(\{0, \pi\} \times[0, \pi]) \cup([0, \pi] \times\{0, \pi\})$.

Observe that $\partial \mathbb{X}_{1}=\{0, \pi\}=\partial \mathbb{X}_{2}$ (a two-element set), and $\mathbf{L}^{2}\{0, \pi\}$ is 2dimensional vector space (isomorphic to \mathbb{R}^{2}). Let $\mathbb{M}_{1}:=\{1,2\}=: \mathbb{M}_{2}$. Let $\Xi_{1}^{1}=\Xi_{1}^{2}=\Xi_{1}$ and $\Xi_{2}^{1}=\Xi_{2}^{2}=\Xi_{2}$, where $\Xi_{1}, \Xi_{2}:\{0, \pi\} \longrightarrow \mathbb{R}$ are defined:

$$
\Xi_{2}(0):=1=: \Xi_{1}(\pi), \quad \text { and } \quad \Xi_{2}(\pi):=0=: \Xi_{1}(0) .
$$

Then $\left\{\Xi_{1}, \Xi_{2}\right\}$ is an orthogonal basis for $\mathbf{L}^{2}\{0, \pi\}$. For all $n \in \mathbb{N}$, let

$$
\begin{aligned}
\mathcal{E}_{n}^{1}(x)=\mathcal{E}_{n}^{2}(x)=\mathcal{E}_{n}(x) & :=\sin (n x) \\
\mathcal{F}_{n, 1}^{1}(x)=\mathcal{F}_{n, 1}^{2}(x)=\mathcal{F}_{n, 1}(x) & :=\sinh (n x) / \sinh (n \pi) \\
\mathcal{F}_{n, 2}^{1}(x)=\mathcal{F}_{n, 2}^{2}(x)=\mathcal{F}_{n, 2}(x) & :=\sinh (n(\pi-x)) / \sinh (n \pi)
\end{aligned}
$$

Then $\left\{\mathcal{E}_{n}\right\}_{n=1}^{\infty}$ is a Dirichlet eigenbasis for $[0, \pi]$ (by Theorem 7A.1), while $\widetilde{\mathcal{F}}_{n, 1}=\Xi_{1}$ and $\widetilde{\mathcal{F}}_{n, 2}=\Xi_{2}$ for all $n \in \mathbb{N}$.

For each $n \in \mathbb{N}$, we have eigenvalue $\lambda_{n}:=n^{2}$. That is $\triangle \mathcal{E}_{n}(x)=-n^{2} \mathcal{E}_{n}(x)$ while $\triangle \mathcal{F}_{n, m}(x)=n^{2} \mathcal{F}_{n, m}(x)$. Thus, the functions $\mathcal{H}_{n}(x, y):=\mathcal{E}_{n}(x) \mathcal{F}_{n, m}(y)$
are harmonic, by Lemma 15 C .6 . Thus, if we define

$$
\begin{aligned}
\mathcal{H}_{n, 1}^{1}(x, y) & :=\mathcal{E}_{n}^{1}(x) \cdot \mathcal{F}_{n, 1}^{2}(y)=\frac{\sin (n x) \sinh (n y)}{\sinh (n \pi)} \\
\mathcal{H}_{n, 2}^{1}(x, y) & :=\mathcal{E}_{n}^{1}(x) \cdot \mathcal{F}_{n, 2}^{2}(y)=\frac{\sin (n x) \sinh (n(\pi-y))}{\sinh (n \pi)}, \\
\mathcal{H}_{n, 1}^{2}(x, y) & :=\mathcal{F}_{n, 1}^{1}(x) \cdot \mathcal{E}_{n}^{2}(y)=\frac{\sinh (n x) \sin (n y)}{\sinh (n \pi)}, \\
\mathcal{H}_{n, 2}^{2}(x, y) & :=\mathcal{F}_{n, 2}^{1}(x) \cdot \mathcal{E}_{n}^{2}(y)=\frac{\sinh (n(\pi-x)) \sin (n y)}{\sinh (n \pi)},
\end{aligned}
$$

then Corollary 15 C .8 says that the collection $\left\{\mathcal{H}_{n, 1}^{1}\right\}_{n \in \mathbb{N}} \sqcup\left\{\mathcal{H}_{n, 2}^{1}\right\}_{n \in \mathbb{N}} \sqcup\left\{\mathcal{H}_{n, 1}^{2}\right\}_{n \in \mathbb{N}} \sqcup$ $\left\{\mathcal{H}_{n, 2}^{2}\right\}_{n \in \mathbb{N}}$ is a Dirichlet harmonic basis for $[0, \pi]^{2}$-a fact we already observed in Example 15B.1(a), and exploited earlier in Proposition 12A.4.

Example 15C.10. Let $\mathbb{X}_{1}=\mathbb{D} \subset \mathbb{R}^{2}$ and $\mathbb{X}_{2}=[0, \pi]$, so that $\mathbb{X}_{1} \times \mathbb{X}_{2} \subset \mathbb{R}^{3}$ is the cylinder of height π and radius 1 . Note that $\partial \mathbb{X}=(\mathbb{S} \times[0, \pi]) \cup$ $(\mathbb{D} \times\{0, \pi\})$.

For all $n \in \mathbb{N}$ and $\ell \in \mathbb{N}$, let $\mathcal{E}_{\ell, n}^{1}:=\Phi_{\ell, n}$, and $\mathcal{E}_{\ell,-n}^{1}:=\Psi_{\ell, n}$, where $\Phi_{\ell, n}$ and $\Psi_{\ell, n}$ are the type-1 Fourier-Bessel eigenfunctions defined by eqn. (14C.5) on page 296 of $\left\{14 \mathrm{C}\left(\mathrm{ii)}\right.\right.$. Then $\left\{\mathcal{E}_{\ell, n}^{1} ; \ell \in \mathbb{N}\right.$ and $\left.n \in \mathbb{Z}\right\}$ is a Dirichlet eigenbasis for \mathbb{D}, by Theorem 14C.2.

As in Example 15C.9, $\partial[0, \pi]=\{0, \pi\}$. Let $\mathbb{M}_{2}:=\{0,1\}$ and let $\Xi_{1}^{2}:\{0, \pi\} \longrightarrow$ \mathbb{R} and $\Xi_{2}^{2}:\{0, \pi\} \longrightarrow \mathbb{R}$ be as in Example 15C.9. Let $\left\{\kappa_{\ell, n}\right\}_{\ell, n=1}^{\infty}$ be the roots of the Bessel function \mathcal{J}_{n}, as described in equation (14C.3) on page 296. For every $(\ell, n) \in \mathbb{N} \times \mathbb{Z}$, define $\mathcal{F}_{\ell, n ; 1}^{2}$ and $\mathcal{F}_{\ell, n ; 2}^{2} \in \mathbf{L}^{2}[0, \pi]$ by

$$
\mathcal{F}_{\ell, n ; 1}^{2}(z):=\frac{\sinh \left(\kappa_{\ell,|n|} \cdot z\right)}{\sinh \left(\kappa_{\ell,|n|} \pi\right)} \quad \text { and } \quad \mathcal{F}_{\ell, n ; 2}^{2}(z):=\frac{\sinh \left(\kappa_{\ell,|n|} \cdot(\pi-z)\right)}{\sinh \left(\kappa_{\ell,|n|} \pi\right)}
$$

for all $z \in[0, \pi]$. Then clearly $\widetilde{\mathcal{F}}_{\ell, n ; 1}^{2}=\Xi_{1}^{2}$ and $\widetilde{\mathcal{F}}_{\ell, n ; 2}^{2}=\Xi_{2}^{2}$.
For each $(\ell, n) \in \mathbb{N} \times \mathbb{Z}$, we have eigenvalue $-\kappa_{\ell,|n|}^{2}$ by equation (14C.4) on page 296. That is $\triangle \Phi_{\ell, n}(r, \theta)=-\kappa_{\ell, n}^{2} \Phi_{\ell, n}(r, \theta)$ and $\triangle \Psi_{\ell, n}(r, \theta)=-\kappa_{\ell, n}^{2} \Psi_{\ell, n}(r, \theta)$; thus, $\triangle \mathcal{E}_{\ell, n}^{1}(z)=-\kappa_{\ell,|n|}^{2} \mathcal{E}_{\ell, n}^{1}(z)$ for all $(\ell, n) \in \mathbb{N} \times \mathbb{Z}$. Meanwhile, $\triangle \mathcal{F}_{\ell, n ; m}^{1}(z)=$
$\kappa_{\ell,|n|}^{2} \mathcal{F}_{\ell, n ; m}^{1}(z)$, for all $(\ell, n ; m) \in \mathbb{N} \times \mathbb{Z} \times\{1,2\}$. Thus, the functions

$$
\begin{aligned}
\mathcal{H}_{\ell, n, 1}^{1}(r, \theta, z) & :=\mathcal{E}_{\ell, n}^{1}(r, \theta) \cdot \mathcal{F}_{\ell, n ; 1}^{2}(z)=\frac{\Phi_{\ell, n}(r, \theta) \sinh \left(\kappa_{\ell, n} \cdot z\right)}{\sinh \left(\kappa_{\ell, n} \pi\right)}, \\
\mathcal{H}_{\ell, n, 2}^{1}(r, \theta, z) & :=\mathcal{E}_{\ell, n}^{1}(r, \theta) \cdot \mathcal{F}_{\ell, n ; 2}^{2}(z)=\frac{\Phi_{\ell, n}(r, \theta) \sinh \left(\kappa_{\ell, n} \cdot(\pi-z)\right)}{\sinh \left(\kappa_{\ell, n} \pi\right)}, \\
\mathcal{H}_{\ell,-n, 1}^{1}(r, \theta, z) & :=\mathcal{E}_{\ell,-n}^{1}(r, \theta) \cdot \mathcal{F}_{\ell,-n ; 1}^{2}(z)=\frac{\Psi_{\ell, n}(r, \theta) \sinh \left(\kappa_{\ell, n} \cdot z\right)}{\sinh \left(\kappa_{\ell, n} \pi\right)}, \\
\mathcal{H}_{\ell,-n, 2}^{1}(r, \theta, z) & :=\mathcal{E}_{\ell,-n}^{1}(r, \theta) \cdot \mathcal{F}_{\ell,-n ; 2}^{2}(z)=\frac{\Psi_{\ell, n}(r, \theta) \sinh \left(\kappa_{\ell, n} \cdot(\pi-z)\right)}{\sinh \left(\kappa_{\ell, n} \pi\right)}
\end{aligned} \text { and }
$$

are all harmonic, by Lemma 15C.6.
Recall that $\partial \mathbb{D}=\mathbb{S}$. Let $\mathbb{M}_{1}:=\mathbb{Z}$, and for all $m \in \mathbb{Z}$, define $\Xi_{m}^{1} \in \mathbf{L}^{2}(\mathbb{S})$ by $\Xi_{m}^{1}(1, \theta):=\sin (m \theta)$ (if $m>0$) and $\Xi_{m}^{1}(1, \theta):=\cos (m \theta)$ (if $m \leq 0$), for all $\theta \in[-\pi, \pi] ;$ then $\left\{\Xi_{m}^{1}\right\}_{m \in \mathbb{Z}}$ is an orthogonal bass for $\mathbf{L}^{2}(\mathbb{S})$, by Theorem 8A. 1. For all $n \in \mathbb{N}$ and $z \in[0, \pi]$, define $\mathcal{E}_{n}^{2}(z):=\sin (n z)$ as in Example 15C.9. Then $\left\{\mathcal{E}_{n}^{2}\right\}_{n=1}^{\infty}$ is a Dirichlet eigenbasis for $[0, \pi]$, by Theorem 7A.1. For all $n \in \mathbb{N}$, the eigenfunction \mathcal{E}_{n}^{2} has eigenvalue $\lambda_{n}^{(2)}:=-n^{2}$. For all $m \in \mathbb{Z}$, let $\mathcal{F}_{n, m}^{1}: \mathbb{D} \longrightarrow \mathbb{R}$ be an eigenfunction of the Laplacian with eigenvalue n^{2}, and with boundary condition $\mathcal{F}_{n, m}^{1}(1, \theta)=\Xi_{m}^{1}(\theta)$ for all $\theta \in[-\pi, \pi]$ (see Exercise 15C.9(a) below). The function $\mathcal{H}_{n, m}^{2}(r, \theta, z):=\mathcal{F}_{n, m}^{1}(r, \theta) \cdot \mathcal{E}_{n}^{2}(z)$ is harmonic, by Lemma 15C.6. Thus, Corollary 15 C .8 says that the collection

$$
\left\{\mathcal{H}_{\ell, n, m}^{1} ; \ell \in \mathbb{N}, n \in \mathbb{Z}, m=1,2\right\} \quad \sqcup \quad\left\{\mathcal{H}_{n, m}^{2} ; n \in \mathbb{N}, m \in \mathbb{Z}\right\}
$$

is a Dirichlet harmonic basis for the cylinder \mathbb{X}.
Exercise 15C.9. (a) Example 15 C .10 posits the existence of eigenfunctions $\mathcal{F}_{n, m}^{1}$: $\mathbb{D} \longrightarrow \mathbb{R}$ of the Laplacian with eigenvalue n^{2} and with boundary condition $\mathcal{F}_{n, m}^{1}(1, \theta)=$ $\Xi_{m}^{1}(\theta)$ for all $\theta \in[-\pi, \pi]$. Assume $\mathcal{F}_{n, m}^{1}$ separates in polar coordinates - that is, $\mathcal{F}_{n, m}^{1}(r, \theta)=\mathcal{R}(r) \cdot \Xi_{m}(\theta)$, where $\mathcal{R}:[0,1] \longrightarrow \mathbb{R}$ is some unknown function with $\mathcal{R}(1)=1$. Show that \mathcal{R} must satisfy the ordinary differential equation $r^{2} \mathcal{R}^{\prime \prime}(r)+$ $r \mathcal{R}^{\prime}(r)-\left(r^{2}+1\right) n^{2} \mathcal{R}(r)=0$. Use the Method of Frobenius (§O(iiii)) to solve this ODE and get an expression for $\mathcal{F}_{n, m}^{1}$.
(b) Combine Theorem 15B. 3 with Example 15C. 10 to obtain a general solution to the Laplace equation on a finite cylinder with nonhomogeneous Dirichlet boundary conditions.
(c) Set up and solve a few simple Dirichlet problems using your method.

Exercise 15C.10. Let $\mathbb{X}=\{(r, \theta, z) ; 1 \leq r$ and $0 \leq z \leq \pi\}$ be the punctured slab from Exercise [15C.4.
(a) Use Corollary 15 C .8 to obtain a Dirichlet harmonic basis for \mathbb{X}.
(b) Apply Theorem 15B. 3 to obtain a general solution to the Laplace equation on the punctured slab with nonhomogeneous Dirichlet boundary conditions.
(c) Set up and solve a few simple Dirichlet problems using your method.

Exercise 15C.11. Let \mathbb{X} be the right-angle triangular prism from Exercise 15C.5.
(a) Use Proposition 15 A .5 and Corollary 15 C .8 to obtain a Dirichlet harmonic basis for \mathbb{X}.
(b) Apply Theorem 15B.3 to obtain a general solution to the Laplace equation on the prism with nonhomogeneous Dirichlet boundary conditions.
(c) Set up and solve a few simple Dirichlet problems using your method.

Exercise 15C.12. State and prove a theorem analogous to Corollary 15 C .8 for
Neumann harmonic bases.

15D General method for solving I/BVPs

Prerequisites: § 15 A , $\S 15 \mathrm{~B}$. Recommended: § 15 C .
We now provide a general method for solving initial/boundary value problems. Throughout this section, let $\mathbb{X} \subset \mathbb{R}^{D}$ be a domain. Let L be a linear differential operator on \mathbb{X} (e.g. $L=\triangle$).

1. Pick a suitable coordinate system. Find the coordinate system where your problem can be expressed in simplest form. Generally, this is a coordinate system where the domain \mathbb{X} can be described using a few simple inequalities. For example, if $\mathbb{X}=[0, L]^{D}$, then probably the Cartesian coordinate system is best. If $\mathbb{X}=\mathbb{D}$ or \mathbb{D}^{\complement} or \mathbb{A}, then probably polar coordinates on \mathbb{R}^{2} are the most suitable. If $\mathbb{X}=\mathbb{B}$ or $\mathbb{X}=\partial \mathbb{B}$, then probably spherical polar coordinates on \mathbb{R}^{3} are best.

If the differential operator L has nonconstant coefficients, then you should also seek a coordinate system where these coefficients can be expressed using the simplest formulae. (If $\mathrm{L}=\triangle$, then it has constant coefficients, so this is not an issue).

Finally, if several coordinate systems are equally suitable for describing \mathbb{X} and L , then find the coordinate system where the initial conditions and/or boundary conditions can be expressed most easily. For example, if $\mathbb{X}=\mathbb{R}^{2}$ and $L=\triangle$, then either Cartesian or polar coordinates might be appropriate. However, if the initial conditions are rotationally symmetric around zero, then polar coordinates would be more appropriate. If the initial conditions are invariant under translation in some direction, then Cartesian coordinates would be more appropriate.

Note. Don't forget to find the correct expression for L in the new coordinate system. For example, in Cartesian coordinates on \mathbb{R}^{2}, we have $\triangle u(x, y)=$ $\partial_{y}^{2} u(x, y)+\partial_{y}^{2} u(x, y)$. However, in polar coordinates, $\triangle u(r, \theta)=\partial_{r}^{2} u(r, \theta)+$ $\frac{1}{r} \partial_{r} u(r, \theta)+\frac{1}{r^{2}} \partial_{\theta}^{2} u(r, \theta)$. If you apply the 'Cartesian' Laplacian to a function expressed in polar coordinates, the result will be nonsense.
2. Eliminate irrelevant coordinates. A coordinate x is "irrelevant" if:
(a) membership in the domain \mathbb{X} does not depend on this coordinate; and
(b) the coefficients of L do not depend on this coordinate; and
(c) the initial and/or boundary conditions do not depend on this coordinate.

In this case, we can eliminate the x coordinate from all equations, by expressing the domain \mathbb{X}, the operator L and the initial/boundary conditions as functions of only the non- x coordinates. This reduces the dimension of the problem, thereby simplifying it.

To illustrate (a), suppose $\mathbb{X}=\mathbb{D}$ or \mathbb{D}^{\complement} or \mathbb{A}, and we use the polar coordinate system (r, θ); then the angle coordinate θ is irrelevant to membership in \mathbb{X}. On the other hand, suppose $\mathbb{X}=\mathbb{R}^{2} \times[0, L]$ is the 'slab' of thickness L in \mathbb{R}^{3}, and we use Cartesian coordinates (x, y, z). Then the coordinates x and y are irrelevant to membership in \mathbb{X}.

If $L=\triangle$ or any other differential operator with constant coefficients, then (b) is automatically satisfied.

To illustrate (c), suppose $\mathbb{X}=\mathbb{D}$ and we use polar coordinates. Let $f: \mathbb{D} \longrightarrow$ \mathbb{R} be some initial condition. If $f(r, \theta)$ is a function only of r, and doesn't depend on θ, then θ is a redundant coordinate and can be eliminated, thereby reducing the BVP to a one-dimensional problem, as in Example 14F.3 on page 305 .

On the other hand, let $b: \mathbb{S} \longrightarrow \mathbb{R}$ be a boundary condition. Then θ is only irrelevant if b is a constant function (otherwise b has nontrivial dependence on $\theta)$.

Now, suppose $\mathbb{X}=\mathbb{R}^{2} \times[0, L]$ is the 'slab' of thickness L in \mathbb{R}^{3}. If the boundary condition $b: \partial \mathbb{X} \longrightarrow \mathbb{R}$ is constant on the top and bottom faces of the slab, then the x and y coordinates can be eliminated, thereby reducing the BVP to a one-dimensional problem: a BVP on the line segment $[0, L]$, which can be solved using the methods of Chapter 11.

In some cases, a certain coordinate can be eliminated if it is 'approximately' irrelevant. For example, if the domain \mathbb{X} is particularly 'long' in the x dimension relative to its other dimensions, and the boundary conditions are roughly constant in the x dimension, then we can approximate 'long' with 'infinite' and 'roughly constant' with 'exactly constant', and eliminate the x dimension from the problem. This method was used in Example 12B. 2 on page 248 (the 'quenched rod'), Example 12B.7 on page 252 (the 'baguette'), and Example 12 C .2 on page 255 (the 'nuclear fuel rod').
3. Find an eigenbasis for $\mathbf{L}^{2}(\mathbb{X})$. If \mathbb{X} is one of the 'standard' domains we have studied in this book, then use the eigenbases we have introduced in Chapters [-9, Section [4], or Section 150. Otherwise, you must construct a suitable eigenbasis. Theorem 15 E .12 (page 347) guarantees that such an eigenbasis exists,
but it doesn't tell you how to construct it. The actual construction of eigenbases is usually done using Separation of Variables, discussed in Chapter 16. The separation of the "time" variable is really just a consequence of the fact that we have an eigenfunction. The separation of the "space" variables is not necessary to get an eigenfunction, but it is very convenient, for two reasons:

1. Separation of variables is a powerful strategy for finding the eigenfunctions; it reduces the problem to set of independent ODEs which can each be solved using classical ODE methods.
2. If an eigenfunction \mathcal{E}_{n} appears in 'separated' form, then it is often easier to compute the inner product $\left\langle\mathcal{E}_{n}, f\right\rangle$, where f is some other function. This is important when the eigenfunctions form an orthogonal basis, and we want to compute the coefficients of f in this basis.
3. Find a harmonic basis for $\mathbf{L}^{2}(\partial \mathbb{X})$ (if there are nonhomogeneous boundary conditions). The same remarks apply as in Step 3.
4. Solve the problem Express any initial conditions in terms of the eigenbasis from step $\# 3$, as described in 915 A Express any boundary conditions in terms of the harmonic basis from step $\# 4$, as described in $\S 15 \mathrm{~B}$.

If $L=\triangle$, then use Theorems 15A.2, 15A.3, 15A.4, and/or 15B.3. If L is some other linear differential operator, then use the appropriate analogues of these theorems (see Remark 15A.6).
6. Verify convergence. Note that Theorems 15A.2, 15A.3, 15A.4, and/or 15B.3 require the eigenvalue sequences $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ and/or $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ to grow at a certain speed, or require the coefficient sequences $\left\{A_{n}\right\}_{n=0}^{\infty}$ and $\left\{B_{n}\right\}_{n=1}^{\infty}$ to decay at a certain speed, so as to guarantee that the solution series and its formal derivatives are absolutely convergent. These conditions are important, and must be checked. Typically, if $L=\triangle$, the growth conditions on $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ and $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ are easily satisfied. However, if you try to extend these theorems to some other linear differential operator, the conditions on $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ and $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ must be checked.
7. Check the uniqueness of the solution. Section 5D describes conditions under which boundary value problems for the Poisson, Laplace, Heat, and wave equations will have a unique solution. Check that these conditions are satisfied. If $L \neq \triangle$, then you will need to establish solution uniqueness using theorems analogous to those found in Section 5D. (General theorems for the existence/uniqueness of solutions to I/BVPs can be found in most advanced texts on PDE theory, such as [Eva.9]]).

If the solution is not unique, then it is important to enumerate all solutions to the problem. Remember that your ultimate goal here is to predict the behaviour
of some physical system in response to some initial or boundary condition. If the solution to the I/BVP is not unique, then you cannot make a precise prediction; instead, your prediction must take the form of a precisely specified range of possible outcomes.

15E Eigenfunctions of self-adjoint operators

The solution methods of Section 15 A are only relevant if we know that a suitable eigenbasis for the Laplacian exists on the domain of interest. If we want to develop similar methods for some other linear differential operator L (as described in Remark 15A.6 on page 323), then we must first know that suitable eigenbases exists for L. In this section, we will discuss the eigenfunctions and eigenvalues of an important class of linear operators: self-adjoint operators. This class includes the Laplacian and all other symmetric elliptic differential operators.

A linear operator $F: \mathbb{R}^{D} \longrightarrow \mathbb{R}^{D}$ is self-adjoint if, for any vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{D}$,

$$
\langle F(\mathbf{x}), \mathbf{y}\rangle=\langle\mathbf{x}, F(\mathbf{y})\rangle
$$

Example 15E.1. The matrix $\left[\begin{array}{cc}1 & -2 \\ -2 & 1\end{array}\right]$ defines a self-adjoint operator on \mathbb{R}^{2}, because for any $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$ in \mathbb{R}^{2}, we have

$$
\begin{aligned}
\langle F(\mathbf{x}), \mathbf{y}\rangle & =\left\langle\left[\begin{array}{l}
x_{1}-2 x_{2} \\
x_{2}-2 x_{1}
\end{array}\right],\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]\right\rangle=y_{1}\left(x_{1}-2 x_{2}\right)+y_{2}\left(x_{2}-2 x_{1}\right) \\
& =x_{1}\left(y_{1}-2 y_{2}\right)+x_{2}\left(y_{2}-2 y_{1}\right)=\left\langle\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right],\left[\begin{array}{l}
y_{1}-2 y_{2} \\
y_{2}-2 y_{1}
\end{array}\right]\right\rangle \\
& =\langle\mathbf{x}, F(\mathbf{y})\rangle .
\end{aligned}
$$

Theorem 15E.2. Let $F: \mathbb{R}^{D} \longrightarrow \mathbb{R}^{D}$ be a linear operator with matrix \mathbf{A}. Then F is self-adjoint if and only if \mathbf{A} is symmetric (i.e. $a_{i j}=a_{j i}$ for all j, i)

A linear operator $\mathrm{L}: \mathcal{C}^{\infty} \longrightarrow \mathcal{C}^{\infty}$ is self-adjoint if, for any two functions $f, g \in \mathcal{C}^{\infty}$,

$$
\langle\mathrm{L}[f], g\rangle=\langle f, \mathrm{~L}[g]\rangle
$$

whenever both sides are well-defined ${ }^{[3}$.

[^57]
Example 15E.3: Multiplication Operators are Self-Adjoint.

Let $\mathbb{X} \subset \mathbb{R}^{D}$ be any bounded domain. Let $\mathcal{C}^{\infty}:=\mathcal{C}^{\infty}(\mathbb{X} ; \mathbb{R})$. Fix $q \in \mathcal{C}^{\infty}(\mathbb{X})$, and define the operator $\mathrm{Q}: \mathcal{C}^{\infty} \longrightarrow \mathcal{C}^{\infty}$ by $\mathrm{Q}(f):=q \cdot f$ for any $f \in \mathcal{C}^{\infty}$. Then Q is self-adjoint. To see this, let $f, g \in \mathcal{C}^{\infty}$. Then

$$
\langle q \cdot f, g\rangle=\int_{\mathbb{X}}(q \cdot f) \cdot g d x=\int_{\mathbb{X}} f \cdot(q \cdot g) d x=\langle f, q \cdot g\rangle .
$$

(These integrals are all well-defined because q, f and g are all continuous and hence bounded on \mathbb{X}.)

Let $L>0$, and consider the interval $[0, L]$. Recall that $\mathcal{C}^{\infty}[0, L]$ is the set of all smooth functions from $[0, L]$ into \mathbb{R}, and that:
$\mathcal{C}_{0}^{\infty}[0, L]$ is the space of all $f \in \mathcal{C}^{\infty}[0, L]$ satisfying homogeneous Dirichlet boundary conditions: $f(0)=0=f(L)$ (see $\S 5 \mathrm{C}(\mathrm{i})$).
$\mathcal{C}_{\perp}^{\infty}[0, L]$ is the space of all $f \in \mathcal{C}^{\infty}[0, L]$ satisfying $f:[0, L] \longrightarrow \mathbb{R}$ satisfying homogeneous Neumann boundary conditions: $f^{\prime}(0)=0=f^{\prime}(L)$ (see §5C(ii)).
$\mathcal{C}_{\text {per }}^{\infty}[0, L]$ is the space of all $f \in \mathcal{C}^{\infty}[0, L]$ satisfying $f:[0, L] \longrightarrow \mathbb{R}$ satisfying periodic boundary conditions: $f(0)=f(L)$ and $f^{\prime}(0)=f^{\prime}(L)$ (see \S EC(iv)).
$\mathcal{C}_{h, h_{\perp}}^{\infty}[0, L]$ is the space of all $f \in \mathcal{C}^{\infty}[0, L]$ satisfying homogeneous mixed boundary conditions, for any fixed real numbers $h(0), h_{\perp}(0), h(L)$ and $h_{\perp}(L)$ (see $\oint 5 \mathrm{C}$ (iii)).

When restricted to these function spaces, the one-dimensional Laplacian operator ∂_{x}^{2} is self-adjoint.

Proposition 15E.4. Let $L>0$, and consider the operator ∂_{x}^{2} on $\mathcal{C}^{\infty}[0, L]$.
(a) ∂_{x}^{2} is self-adjoint when restricted to $\mathcal{C}_{0}^{\infty}[0, L]$.
(b) ∂_{x}^{2} is self-adjoint when restricted to $\mathcal{C}_{\perp}^{\infty}[0, L]$.
(c) ∂_{x}^{2} is self-adjoint when restricted to $\mathcal{C}_{\text {per }}^{\infty}[0, L]$.
(d) ∂_{x}^{2} is self-adjoint when restricted to $\mathcal{C}_{h, h_{\perp}}^{\infty}[0, L]$, for any $h(0), h_{\perp}(0), h(L)$ and $h_{\perp}(L)$ in \mathbb{R}.

Proof. Let $f, g:[0, L] \longrightarrow \mathbb{R}$ be smooth functions. We apply integration by parts to get:

$$
\begin{equation*}
\left\langle\partial_{x}^{2} f, g\right\rangle=\int_{0}^{L} f^{\prime \prime}(x) \cdot g(x) d x=\left.f^{\prime}(x) \cdot g(x)\right|_{x=0} ^{x=L}-\int_{0}^{L} f^{\prime}(x) \cdot g^{\prime}(x) d x \tag{15E.1}
\end{equation*}
$$

But if we apply Dirichlet, Neumann, or Periodic boundary conditions, we get:

$$
\begin{aligned}
& \left.f^{\prime}(x) \cdot g(x)\right|_{x=0} ^{x=L}=f^{\prime}(L) \cdot g(L)-f^{\prime}(0) \cdot g(0) \\
& \quad=\left\{\begin{array}{cll}
f^{\prime}(L) \cdot 0-f^{\prime}(0) \cdot 0 & =0 & \text { (if homog. Dirichlet BC) } \\
0 \cdot g(L)-0 \cdot g(0) & =0 & \text { (if homog. Neumann BC) } \\
f^{\prime}(0) \cdot g(0)-f^{\prime}(0) \cdot g(0) & =0 & \text { (if Periodic BC) }
\end{array}\right. \\
& \quad=0 \quad \text { in all cases. }
\end{aligned}
$$

Thus, the first term in 15E.1 is zero, so $\left\langle\partial_{x}^{2} f, g\right\rangle=\int_{0}^{L} f^{\prime}(x) \cdot g^{\prime}(x) d x$.
But by the same reasoning, with f and g interchanged, $\int_{0}^{L} f^{\prime}(x) \cdot g^{\prime}(x) d x=$ $\left\langle f, \partial_{x}^{2} g\right\rangle$.
Thus, we've proved parts (a), (b), and (c). To prove part (d), first note that

$$
\begin{aligned}
\left.f^{\prime}(x) \cdot g(x)\right|_{x=0} ^{x=L} & =f^{\prime}(L) \cdot g(L)-f^{\prime}(0) \cdot g(0) \\
& =f(L) \cdot \frac{h(L)}{h_{\perp}(L)} \cdot g(L)+f(0) \cdot \frac{h(0)}{h_{\perp}(0)} \cdot g(0) \\
& =f(L) \cdot g^{\prime}(L)-f(0) \cdot g^{\prime}(0)=\left.f(x) \cdot g^{\prime}(x)\right|_{x=0} ^{x=L}
\end{aligned}
$$

Hence, substituting $\left.f(x) \cdot g^{\prime}(x)\right|_{x=0} ^{x=L}$ for $\left.f^{\prime}(x) \cdot g(x)\right|_{x=0} ^{x=L}$ in 15E.1), we get:

$$
\left\langle\partial_{x}^{2} f, g\right\rangle=\int_{0}^{L} f^{\prime \prime}(x) \cdot g(x) d x=\int_{0}^{L} f(x) \cdot g^{\prime \prime}(x) d x=\left\langle f, \partial_{x}^{2} g\right\rangle .
$$

Proposition 15E. 4 generalizes to higher-dimensional Laplacians in the obvious way:

Theorem 15E.5. Let $L>0$.
(a) The Laplacian operator \triangle is self-adjoint on any of the spaces: $\mathcal{C}_{0}^{\infty}[0, L]^{D}$, $\mathcal{C}_{\perp}^{\infty}[0, L]^{D}, \mathcal{C}_{h, h_{\perp}}^{\infty}[0, L]^{D}$ or $\mathcal{C}_{\text {per }}^{\infty}[0, L]^{D}$.
(b) More generally, if $\mathbb{X} \subset \mathbb{R}^{D}$ is any bounded domain with a smooth boundary ${ }^{\text {W }}$, then the Laplacian operator \triangle is self-adjoint on any of the spaces: $\mathcal{C}_{0}^{\infty}(\mathbb{X}), \mathcal{C}_{\perp}^{\infty}(\mathbb{X})$, or $\mathcal{C}_{h, h_{\perp}}^{\infty}(\mathbb{X})$.

In other words, the Laplacian is self-adjoint whenever we impose homogeneous Dirichlet, Neumann, or mixed boundary conditions, or (when meaningful) periodic boundary conditions.

Proof. (a) Exercise 15E. 2 Hint: The argument is similar to Proposition 15E.4. Apply integration by parts in each dimension, and cancel the "boundary" terms using the boundary conditions.
(b) Exercise 15E. 3 Hint: Use Green's Formulae (Corollary 0E.5(c) on page 564) to set up an 'integration by parts' argument similar to Proposition [5E.4.

If L_{1} and L_{2} are two self-adjoint operators, then their sum $L_{1}+L_{2}$ is also self-adjoint (Exercise 15E.4).

Example 15E.6. Let $\mathbb{X} \subset \mathbb{R}^{D}$ be some domain (e.g. a cube), and let $V: \mathbb{X} \longrightarrow \mathbb{R}$ be a potential describing the force acting on a quantum particle (e.g. an electron) confined to the region \mathbb{X} by an infinite potential barrier along $\partial \mathbb{X}$. Consider the Hamiltonian operator H defined in Section 3B on page 41:

$$
\mathrm{H} \omega(\mathbf{x})=\frac{-\hbar^{2}}{2 m} \triangle \omega(\mathbf{x})+V(\mathbf{x}) \cdot \omega(\mathbf{x}), \quad \text { for all } \mathbf{x} \in \mathbb{X}
$$

(Here, \hbar is Plank's constant, m is the mass of the particle, and $\omega \in \mathcal{C}_{0}^{\infty} \mathbb{X}$ is its wavefunction.) The operator H is self-adjoint on $\mathcal{C}_{0}^{\infty}(\mathbb{X})$. To see this, note that $\mathrm{H}[\omega]=\frac{-\hbar^{2}}{2 m} \Delta \omega+\mathrm{V}[\omega]$, where $\mathrm{V}[\omega]=V \cdot \omega$. Now, \triangle is self-adjoint by Theorem 15E.5(b), and V is self-adjoint from Example 15E.3; thus, their sum H is also self-adjoint. The stationary Schrödinger equation $\mathrm{H} \omega=\lambda \omega$ simply says that ω is an eigenfunction of H with eigenvalue λ.

Example 15E.7. Let $s, q:[0, L] \longrightarrow \mathbb{R}$ be differentiable. The SturmLiouville operator

$$
\mathrm{SL}_{s, q}[f]:=s \cdot f^{\prime \prime}+s^{\prime} \cdot f^{\prime}+q \cdot f
$$

is self-adjoint on any of the spaces $\mathcal{C}_{0}^{\infty}[0, L], \mathcal{C}_{\perp}^{\infty}[0, L], \mathcal{C}_{h, h_{\perp}}^{\infty}[0, L]$ or $\mathcal{C}_{\text {per }}^{\infty}[0, L]$. To see this, notice that

$$
\begin{equation*}
\mathrm{SL}_{s, q}[f]=\left(s \cdot f^{\prime}\right)^{\prime}+(q \cdot f)=\mathrm{S}[f]+\mathrm{Q}[f], \tag{15E.2}
\end{equation*}
$$

where $\mathrm{Q}[f]=q \cdot f$ is just a multiplication operator, and $\mathrm{S}[f]=\left(s \cdot f^{\prime}\right)^{\prime}$. We know that Q is self-adjoint from Example 15 E .3 . We claim that S is also self-adjoint. To see this, note that:

$$
\begin{aligned}
\langle\mathrm{S}[f], g\rangle & =\int_{0}^{L}\left(s \cdot f^{\prime}\right)^{\prime}(x) \cdot g(x) d x \\
& \left.\overline{\overline{(*)}} s(x) \cdot f^{\prime}(x) \cdot g(x)\right|_{x=0} ^{x=L}-\int_{0}^{L} s(x) \cdot f^{\prime}(x) \cdot g^{\prime}(x) d x
\end{aligned}
$$

[^58]\[

$$
\begin{aligned}
& \left.\overline{(*)} s(x) \cdot f^{\prime}(x) \cdot g(x)\right|_{x=0} ^{x=L}-\left.s(x) \cdot f(x) \cdot g^{\prime}(x)\right|_{x=0} ^{x=L}+\int_{0}^{L} f(x) \cdot\left(s \cdot g^{\prime}\right)^{\prime}(x) d x \\
& \overline{\overline{(\dagger)}} \int_{0}^{L} f(x) \cdot\left(s \cdot g^{\prime}\right)^{\prime}(x) d x \quad=\quad\langle f, \mathrm{~S}[g]\rangle .
\end{aligned}
$$
\]

Here, each (*) is integration by parts, and (\dagger) follows from any of the cited boundary conditions as in Proposition 15E. 4 on page 341 (Exercise 15E.5). Thus, S is self-adjoint, so $\mathrm{SL}_{s, q}=\mathrm{S}+\mathrm{Q}$ is self-adjoint.

If $\mathrm{SL}_{s, q}$ is a Sturm-Liouville operator, then the corresponding Sturm-Liouville equation is the linear ordinary differential equation

$$
\begin{equation*}
\mathrm{SL}_{s, q}[f]=\lambda f . \tag{15E.3}
\end{equation*}
$$

where $f:[0, L] \longrightarrow \mathbb{C}$ and $\lambda \in \mathbb{C}$ are unknown. Clearly, equation (15E.3) simply asserts that f is an eigenfunction of $\mathrm{SL}_{s, q}$, with eigenvalue λ. Sturm-Liouville equations appear frequently in the study of ordinary and partial differential equations.

Example 15E.8. (a) The one-dimensional Helmholtz equation $f^{\prime \prime}(x)=\lambda f(x)$ is a Sturm-Liouville equation, with $s \equiv 1$ (constant) and $q \equiv 0$.
(b) The one-dimensional stationary Schrödinger equation

$$
\frac{-\hbar^{2}}{2 m} f^{\prime \prime}(x)+V(x) \cdot f(x)=\lambda f(x), \quad \text { for all } x \in[0, L] .
$$

is a Sturm-Liouville equation, with $s \equiv \frac{-\hbar^{2}}{2 m}$ (constant) and $q(x):=V(x)$.
(c) The Cauchy-Euler equation $x^{2} f^{\prime \prime}(x)+2 x f^{\prime}(x)-\lambda \cdot f(x)=0$ is a SturmLiouville equation: let $s(x):=x^{2}$ and $q \equiv 0$
(d) The Legendre equation $\left(1-x^{2}\right) f^{\prime \prime}(x)-2 x f^{\prime}(x)+\mu f(x)=0$ is a SturmLiouville equation: let $s(x):=\left(1-x^{2}\right), q \equiv 0$, and let $\lambda:=-\mu$.

For more information about Sturm-Liouville problems, see [Bro89, §2.6, pp.3944], [Pow99, §2.7, pp.146-150], [Con90, §II.6, pp.49-53], and especially [CB87, Chap.6, pp.159-203].

Examples 15 E .6 and 15 E .8 , Theorem 15 E .5 , and the solution methods of $\S \boxed{\boxed{4}}$ all illustrate the importance of the eigenfunctions of self-adjoint operators. One nice property of self-adjoint operators is that their eigenfunctions are orthogonal.

[^59]Proposition 15E.9. Suppose L is a self-adjoint operator. If f_{1} and f_{2} are eigenfunctions of L with eigenvalues $\lambda_{1} \neq \lambda_{2}$, then f_{1} and f_{2} are orthogonal.

Proof. By hypothesis, $\mathrm{L}\left[f_{k}\right]=\lambda_{k} \cdot f_{k}$, for $k=1,2$. Thus,

$$
\lambda_{1} \cdot\left\langle f_{1}, f_{2}\right\rangle=\left\langle\lambda_{1} \cdot f_{1}, f_{2}\right\rangle=\left\langle\mathrm{L}\left[f_{1}\right], f_{2}\right\rangle \overline{\overline{(*)}}\left\langle f_{1}, \mathrm{~L}\left[f_{2}\right]\right\rangle=\left\langle f_{1}, \lambda_{2} \cdot f_{2}\right\rangle=\lambda_{2} \cdot\left\langle f_{1}, f_{2}\right\rangle,
$$

where (*) follows from self-adjointness. Since $\lambda_{1} \neq \lambda_{2}$, this can only happen if $\left\langle f_{1}, f_{2}\right\rangle=0$.

Example 15E.10. Eigenfunctions of ∂_{x}^{2}

(a) Let ∂_{x}^{2} act on $\mathcal{C}^{\infty}[0, L]$. Then all real numbers $\lambda \in \mathbb{R}$ are eigenvalues of ∂_{x}^{2}. For any $\mu \in \mathbb{R}$,

- If $\lambda=\mu^{2}>0$, the eigenfunctions are of the form $\phi(x)=A \sinh (\mu$. $x)+B \cosh (\mu \cdot x)$ for any constants $A, B \in \mathbb{R}$.
- If $\lambda=0$, the eigenfunctions are of the form $\phi(x)=A x+B$ for any constants $A, B \in \mathbb{R}$.
- If $\lambda=-\mu^{2}<0$, the eigenfunctions are of the form $\phi(x)=A \sin (\mu$. $x)+B \cos (\mu \cdot x)$ for any constants $A, B \in \mathbb{R}$.

Note: Because we have not imposed any boundary conditions, Proposition 15 E .4 does not apply; indeed ∂_{x}^{2} is not a self-adjoint operator on $\mathcal{C}^{\infty}[0, L]$.
(b) Let ∂_{x}^{2} act on $\mathcal{C}^{\infty}([0, L] ; \mathbb{C})$. Then all complex numbers $\lambda \in \mathbb{C}$ are eigenvalues of ∂_{x}^{2}. For any $\mu \in \mathbb{C}$, with $\lambda=\mu^{2}$, the eigenvalue λ has eigenfunctions of the form $\phi(x)=A \exp (\mu \cdot x)+B \exp (-\mu \cdot x)$ for any constants $A, B \in \mathbb{C}$. (Note that the three cases of the previous example arise by taking $\lambda \in \mathbb{R}$.) Again, Proposition 15 E .4 does not apply in this case, because ∂_{x}^{2} is not a self-adjoint operator on $\mathcal{C}^{\infty}([0, L] ; \mathbb{C})$.
(c) Now let ∂_{x}^{2} act on $\mathcal{C}_{0}^{\infty}[0, L]$. Then the eigenvalues of ∂_{x}^{2} are $\lambda_{n}=-\left(\frac{n \pi}{L}\right)^{2}$ for every $n \in \mathbb{N}$, each of multiplicity 1 ; the corresponding eigenfunctions are all scalar multiples of $\mathbf{S}_{n}(x):=\sin \left(\frac{n \pi x}{L}\right)$.
(d) If ∂_{x}^{2} acts on $\mathcal{C}_{\perp}^{\infty}[0, L]$, then the eigenvalues of ∂_{x}^{2} are again $\lambda_{n}=-\left(\frac{n \pi}{L}\right)^{2}$ for every $n \in \mathbb{N}$, each of multiplicity 1 , but the corresponding eigenfunctions are now all scalar multiples of $\mathbf{C}_{n}(x):=\cos \left(\frac{n \pi x}{L}\right)$. Also, 0 is an eigenvalue, with eigenfunction $\mathbf{C}_{0}=\mathbb{1}$.
(e) Let $h>0$, and let ∂_{x}^{2} act on $\mathcal{C}=\left\{f \in \mathcal{C}^{\infty}[0, L] ; f(0)=0\right.$ and $\left.h \cdot f(L)+f^{\prime}(L)=0\right\}$. Then the eigenfunctions of ∂_{x}^{2} are all scalar multiples of

$$
\Phi_{n}(x):=\sin \left(\mu_{n} \cdot x\right),
$$

with eigenvalue $\lambda_{n}=-\mu_{n}^{2}$, where $\mu_{n}>0$ is any real number such that

$$
\tan \left(L \cdot \mu_{n}\right)=\frac{-\mu_{n}}{h}
$$

This is a transcendental equation in the unknown μ_{n}. Thus, although there is an infinite sequence of solutions $\left\{\mu_{0}<\mu_{1}<\mu_{2}<\ldots\right\}$, there is no closed-form algebraic expression for μ_{n}. At best, we can estimate μ_{n} through numerical methods.
(f) Let $h(0), h_{\perp}(0), h(L)$, and $h_{\perp}(L)$ be real numbers, and let ∂_{x}^{2} act on $\mathcal{C}_{h, h_{\perp}}^{\infty}[0, L]$. Then the eigenfunctions of ∂_{x}^{2} are all scalar multiples of

$$
\Phi_{n}(x):=\sin \left(\theta_{n}+\mu_{n} \cdot x\right)
$$

with eigenvalue $\lambda_{n}=-\mu_{n}^{2}$, where $\theta_{n} \in[0,2 \pi]$ and $\mu_{n}>0$ are constants satisfying the transcendental equations:

$$
\tan \left(\theta_{n}\right)=\mu_{n} \cdot \frac{h_{\perp}(0)}{h(0)} \quad \text { and } \quad \tan \left(\mu_{n} \cdot L+\theta_{n}\right)=-\mu_{n} \cdot \frac{h_{\perp}(L)}{h(L)} .
$$

(Exercise 15E.6). In particular, if $h_{\perp}(0)=0$, then we must have $\theta=0$. If $h(L)=h$ and $h_{\perp}(L)=1$, then we return to Example (e).
(g) Let ∂_{x}^{2} act on $\mathcal{C}_{\text {per }}^{\infty}[-L, L]$. Then the eigenvalues of ∂_{x}^{2} are again $\lambda_{n}=$ $-\left(\frac{n \pi}{L}\right)^{2}$, for every $n \in \mathbb{N}$, each having multiplicity 2 . The corresponding eigenfunctions are of the form $A \cdot \mathbf{S}_{n}+B \cdot \mathbf{C}_{n}$ for any $A, B \in \mathbb{R}$. In particular, 0 is an eigenvalue, with eigenfunction $\mathbf{C}_{0}=\mathbb{1}$.
(h) Let ∂_{x}^{2} act on $\mathcal{C}_{\text {per }}^{\infty}([-L, L] ; \mathbb{C})$. Then the eigenvalues of ∂_{x}^{2} are again $\lambda_{n}=$ $-\left(\frac{n \pi}{L}\right)^{2}$, for every $n \in \mathbb{N}$, each having multiplicity 2. The corresponding eigenfunctions are of the form $A \cdot \mathbf{E}_{n}+B \cdot \mathbf{E}_{-n}$ for any $A, B \in \mathbb{R}$, where $\mathbf{E}_{n}(x):=\exp \left(\frac{\pi \mathbf{i} n x}{L}\right)$. In particular 0 is an eigenvalue, with eigenfunction $\mathbf{E}_{0}=\mathbb{1}$.

Example 15E.11. Eigenfunctions of \triangle
(a) Let Δ act on $\mathcal{C}_{0}^{\infty}[0, L]^{D}$. Then the eigenvalues of \triangle are the numbers $\lambda_{\mathbf{m}}:=-\left(\frac{\pi}{L}\right)^{2} \cdot\|\mathbf{m}\|^{2}$ for all $\mathbf{m} \in \mathbb{N}_{+}^{D}$. (Here, if $\mathbf{m}=\left(m_{1}, \ldots, m_{D}\right)$, then $\left.\|\mathbf{m}\|^{2}:=m_{1}^{2}+\ldots+m_{d}^{2}\right)$. The eigenspace of $\lambda_{\mathbf{m}}$ is spanned by all functions

$$
\mathbf{S}_{\mathbf{n}}\left(x_{1}, \ldots, x_{D}\right):=\sin \left(\frac{\pi n_{1} x_{1}}{L}\right) \sin \left(\frac{\pi n_{2} x_{2}}{L}\right) \cdots \sin \left(\frac{\pi n_{D} x_{D}}{L}\right),
$$

for all $\mathbf{n}=\left(n_{1}, \ldots, n_{D}\right) \in \mathbb{N}_{+}^{D}$ such that $\|\mathbf{n}\|=\|\mathbf{m}\|$.
(b) Now let \triangle act on $\mathcal{C}_{\perp}^{\infty}[0, L]^{D}$. Then the eigenvalues of \triangle are λ_{m} for all $\mathbf{m} \in \mathbb{N}^{D}$. The eigenspace of $\lambda_{\mathbf{m}}$ is spanned by all functions

$$
\mathbf{C}_{\mathbf{n}}\left(x_{1}, \ldots, x_{D}\right):=\quad \cos \left(\frac{\pi n_{1} x_{1}}{L}\right) \cos \left(\frac{\pi n_{2} x_{2}}{L}\right) \cdots \cos \left(\frac{\pi n_{D} x_{D}}{L}\right)
$$

for all $\mathbf{n} \in \mathbb{N}^{D}$ such that $\|\mathbf{n}\|=\|\mathbf{m}\|$. In particular, 0 is an eigenvalue whose eigenspace is the set of constant functions -i.e. multiples of $\mathbf{C}_{0}=\mathbb{1}$.
(c) Let \triangle act on $\mathcal{C}_{\text {per }}^{\infty}[-L, L]^{D}$. Then the eigenvalues of \triangle are again $\lambda_{\mathbf{m}}$ for all $\mathbf{m} \in \mathbb{N}^{D}$. The eigenspace of $\lambda_{\mathbf{m}}$ contains $\mathbf{C}_{\mathbf{n}}$ and $\mathbf{S}_{\mathbf{n}}$ for all $\mathbf{n} \in \mathbb{N}^{D}$ such that $\|\mathbf{n}\|=\|\mathbf{m}\|$.
(d) Let \triangle act on $\mathcal{C}_{\text {per }}^{\infty}\left([-L, L]^{D} ; \mathbb{C}\right)$. Then the eigenvalues of \triangle are again $\lambda_{\mathbf{m}}$ for all $\mathbf{m} \in \mathbb{N}^{D}$. The eigenspace of $\lambda_{\mathbf{m}}$ is spanned by all functions

$$
\mathbf{E}_{\mathbf{n}}\left(x_{1}, \ldots, x_{D}\right):=\quad \exp \left(\frac{\pi \mathbf{i} n_{1} x_{1}}{L}\right) \cdots \exp \left(\frac{\pi \mathbf{i} n_{D} x_{D}}{L}\right)
$$

for all $\mathbf{n} \in \mathbb{Z}^{D}$ such that $\|\mathbf{n}\|=\|\mathbf{m}\|$.
The alert reader will notice that, in each of the above scenarios (except Examples 15E.10(a) and 15E.10(b), where ∂_{x}^{2} is not self-adjoint), the eigenfunctions are not only orthogonal, but actually form an orthogonal basis for the corresponding L^{2}-space. This is not a coincidence. If \mathcal{C} is a subspace of $\mathbf{L}^{2}(\mathbb{X})$, and $\mathrm{L}: \mathcal{C} \longrightarrow \mathcal{C}$ is a linear operator, then a set $\left\{\Phi_{n}\right\}_{n=1}^{\infty} \subset \mathcal{C}$ is an L-eigenbasis for $\mathbf{L}^{2}(\mathbb{X})$ if $\left\{\Phi_{n}\right\}_{n=1}^{\infty}$ is an orthogonal basis for $\mathbf{L}^{2}(\mathbb{X})$, and for every $n \in \mathbb{N}, \Phi_{n}$ is an eigenfunction for L.

Theorem 15E.12. Eigenbases of the Laplacian

(a) Let $L>0$. Let \mathcal{C} be any one of $\mathcal{C}_{0}^{\infty}[0, L]^{D}, \mathcal{C}_{\perp}^{\infty}[0, L]^{D}$, or $\mathcal{C}_{\text {per }}^{\infty}[0, L]^{D}$, and treat \triangle as a linear operator on \mathcal{C}. Then there is a \triangle-eigenbasis for $\mathbf{L}^{2}[0, L]^{D}$ consisting of elements of \mathcal{C}. The corresponding eigenvalues of \triangle are the values $\lambda_{\mathbf{m}}$ defined in Example 15E.11(a), for all $\mathbf{m} \in \mathbb{N}^{D}$.
(b) More generally, if $\mathbb{X} \subset \mathbb{R}^{D}$ is any bounded open domain, then there is a \triangle-eigenbasis for $\mathbf{L}^{2}[\mathbb{X}]$ consisting of elements of $\mathcal{C}_{0}^{\infty}[\mathbb{X}]$. The corresponding eigenvalues of \triangle on \mathcal{C} form a decreasing sequence $0>\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots$ with $\lim _{n \rightarrow \infty} \lambda_{n}=-\infty$.

In both (a) and (b), some of the eigenspaces may be many-dimensional.

Proof. (a) we have already established. The eigenfunctions of the Laplacian in these contexts are $\left\{\mathbf{C}_{\mathbf{n}} ; \mathbf{n} \in \mathbb{N}^{D}\right\}$ and/or $\left\{\mathbf{S}_{\mathbf{n}} ; \mathbf{n} \in \mathbb{N}_{+}^{D}\right\}$. Theorem 8A.1(a) on page 162 and Theorem 9B.1(a) on page 187 tell us that these form orthogonal bases for $\mathbf{L}^{2}[0, L]^{D}$.
(b) follows from Theorem 15E.17 on the next page. Alternately, see [War83], Chapter 6, p. 255; exercise 16(g), or [Cha93], Theorem 3.21, p. 156.

Example 15E.13. (a) Let $\mathbb{B}=\left\{\mathbf{x} \in \mathbb{R}^{D} ;\|\mathbf{x}\|<R\right\}$ be the ball of radius R. Then there is a \triangle-eigenbasis for $\mathbf{L}^{2}(\mathbb{B})$ consisting of functions which are zero on the spherical boundary of \mathbb{B}.
(b) Let $\mathbb{A}=\left\{(x, y) \in \mathbb{R}^{2} ; r^{2}<x^{2}+y^{2}<R^{2}\right\}$ be the annulus of inner radius r and outer radius R in the plane. Then there is a \triangle-eigenbasis for $\mathbf{L}^{2}(\mathbb{A})$ consisting of functions which are zero on the inner and outer boundary circles of \mathbb{A}.

Theorem 15E.14. Eigenbases for Sturm-Liouville operators

Let $L>0$, let $s, q:[0, L] \longrightarrow \mathbb{R}$ be differentiable functions, and let $\mathrm{SL}_{s, q}$ be the Sturm-Liouville operator defined by s and q on $\mathcal{C}_{0}^{\infty}[0, L]$. Then there exists an $\mathrm{SL}_{s, q}$-eigenbasis for $\mathbf{L}^{2}[0, L]$ consisting of elements of $\mathcal{C}_{0}^{\infty}[0, L]$. The corresponding eigenvalues of $\mathrm{SL}_{s, q}$ form an infinite increasing sequence $0<\lambda_{0}<\lambda_{1}<\lambda_{2}<\ldots$, with $\lim _{n \rightarrow \infty} \lambda_{n}=\infty$. Each eigenspace is one-dimensional.

Proof. See [Tit62, Theorem 1.9]. For a proof in the special case when $s \equiv 1$, see [Con90, Theorem 6.12, p.52].

Symmetric Elliptic Operators. The rest of this section concerns the eigenfunctions of symmetric elliptic operators. (Please see $\oint 5 \mathrm{E}$ for the definition of an elliptic operator.)

Lemma 15E.15. Let $\mathbb{X} \subset \mathbb{R}^{D}$. If L is an elliptic differential operator on $\mathcal{C}^{\infty}(\mathbb{X})$, then there are functions $\omega_{c d}: \mathbb{X} \longrightarrow \mathbb{R}$ for all $c, d \in[1 \ldots D]$, and functions $\alpha, \xi_{1}, \ldots, \xi_{D}: \mathbb{X} \longrightarrow \mathbb{R}$ such that L can be written in divergence form:

$$
\begin{aligned}
\mathrm{L}[u] & =\sum_{c, d=1}^{D} \partial_{c}\left(\omega_{c d} \cdot \partial_{d} u\right)+\sum_{d=1}^{D} \xi_{d} \cdot \partial_{d} u+\alpha \cdot u, \\
& =\operatorname{div}[\boldsymbol{\Omega} \cdot \nabla \phi]+\langle\Xi, \nabla \phi\rangle+\alpha \cdot u,
\end{aligned}
$$

where $\Xi=\left[\begin{array}{c}\xi_{1} \\ \vdots \\ \xi_{D}\end{array}\right]$, and $\boldsymbol{\Omega}=\left[\begin{array}{ccc}\omega_{11} \ldots \omega_{1 D} \\ \vdots & \ddots & \vdots \\ \omega_{D 1} \ldots \omega_{D D}\end{array}\right]$ is a symmetric, positive-definite matrix.

Proof. Exercise 15E. 7 Hint. Use the same strategy as as equation (15E.2).

L is called symmetric if, in the divergence form, $\Xi \equiv 0$. For example, in the case when $L=\triangle$, we have $\Omega=\mathbf{I d}$ and $\Xi=0$, so \triangle is symmetric.

Theorem 15E.16. If $\mathbb{X} \subset \mathbb{R}^{D}$ is an open bounded domain, then any symmetric elliptic differential operator on $\mathcal{C}_{0}^{\infty}(\mathbb{X})$ is self-adjoint.

Proof. This is a generalization of the integration-by-parts argument used to prove Proposition [15E.4 on page 341 and Theorem [5E.5 on page 342. See [Eva91, §6.5, p.334].

Theorem 15E.17. Let $\mathbb{X} \subset \mathbb{R}^{D}$ be an open, bounded domain, and let L be any symmetric, elliptic differential operator on $\mathcal{C}_{0}^{\infty}(\mathbb{X})$. Then there exists an L-eigenbasis for $\mathbf{L}^{2}(\mathbb{X})$ consisting of elements of $\mathcal{C}_{0}^{\infty}(\mathbb{X})$. The corresponding eigenvalues of L form an infinite decreasing series $0>\lambda_{0} \geq \lambda_{1} \geq \lambda_{2} \geq \ldots$, with $\lim _{n \rightarrow \infty} \lambda_{n}=-\infty$.

Proof. See of [Eva.91, Theorem 1, §6.5.1, p.335].

Remark. Theorems 15E.12, 15E.14, and 15E. 17 are all manifestations of a far more general result, the Spectral Theorem for Unbounded Self-Adjoint Operators. Unfortunately, it would take us too far afield to even set up the necessary background to precisely state this theorem. See [Con90, §X.4 p. 319] for a good exposition.

Further reading

The study of eigenfunctions and eigenvalues is sometimes called spectral theory. For a good introduction to the spectral theory of linear operators on function spaces, see [Con90]. An analogy of the Laplacian can be defined on any Riemannian manifold; it is often called the Laplace-Beltrami operator, and its eigenfunctions reveal much about the geometry of the manifold; see [War833, Chap.6] or [Cha93, §3.9]. In particular, the eigenfunctions of the Laplacian on spheres have been extensively studied. These are called spherical harmonics, and a sort of "Fourier theory" can be developed on spheres, analogous to multivariate Fourier theory on the cube $[0, L]^{D}$, but with the spherical harmonics forming the orthonormal basis [Tak94, Mül66]. Much of this theory generalizes to a broader family of manifolds called symmetric spaces [Ter85, Hel81]. The eigenfunctions of the Laplacian on symmetric spaces are closely related to the theory of Lie groups and their representations [CW68, Sug75], a subject which is sometimes called noncommutative harmonic analysis [Tay86].

V Miscellaneous solution methods

In Chapters 11 to 15, we saw how initial/boundary value problems for linear partial differential equations could be solved by first identifying an orthogonal basis of eigenfunctions for the relevant differential operator (usually the Laplacian), and then representing the desired initial conditions or boundary conditions as an infinite summation of these eigenfunctions. For each bounded domain, each boundary condition, and each coordinate system we considered, we found a system of eigenfunctions that was 'adapted' to that domain, boundary conditions, and coordinate system.

This method is extremely powerful, but it raises several questions:

1. What if you are confronted with a new domain or coordinate system, where none of the known eigenfunction bases is applicable? Theorem 15E. 12 on page 347 says that a suitable eigenfunction basis for this domain always exists, in principle. But how do you go about discovering such a basis in practice? For that matter, how were eigenfunctions bases like the FourierBessel functions discovered in the first place? Where did Bessel's equation come from?
2. What if you are dealing with an unbounded domain, such as diffusion in \mathbb{R}^{3} ? In this case, Theorem 15E. 12 is not applicable, and in general, it may not be possible (or at least, not feasible) to represent initial/boundary conditions in terms of eigenfunctions. What alternative methods are available?
3. The eigenfunction method is difficult to connect to our physical intuitions. For example, intuitively, heat 'seaps' slowly through space, and temperature distributions gradually and irreversibly decay towards uniformity. It is thus impossible to send a long-distance 'signal' using heat. On the other hand, waves maintain their shape and propagate across great distances with a constant velocity; hence they can be used to send signals through space. These familiar intiutions are not explained or justified by the eigenfunction method. Is there an alternative solution method where these intuitions have a clear mathematical expression?

Part V provides answers to these questions. In Chapter 16, we introduce a powerful and versatile technique called separation of variables, to construct eigenfunctions adapted to any coordinate system. In Chapter 17, we develop the entirely different solution technology of impulse-response functions, which allows you to solve differential equations on unbounded domains, and which has an an appealing intuitive interpretation. Finally, in Chapter 18, we explore some
surprising and beautiful applications of complex analysis to harmonic functions and Fourier theory.

Chapter 16

Separation of variables

"Before creation God did just pure mathematics. Then He thought it would be a pleasant change to do some applied."

16A Separation of variables in Cartesian coordinates on \mathbb{R}^{2}

Prerequisites: $\S[B], \S \llbracket$.
A function $u: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is said to separate if we can write $u(x, y)=$ $X(x) \cdot Y(y)$ for some functions $X, Y: \mathbb{R} \longrightarrow \mathbb{R}$. If u is a solution to some partial differential equation, we say u is a separated solution.

Example 16A.1. The heat equation on \mathbb{R}
We wish to find $u: \mathbb{R} \times \mathbb{R}_{\neq} \longrightarrow \mathbb{R}$ such that $\partial_{t} u=\partial_{x}^{2} u$. Suppose $u(x ; t)=$ $X(x) \cdot T(t)$, where

$$
X(x)=\exp (\mathbf{i} \mu x) \quad \text { and } \quad T(t)=\exp \left(-\mu^{2} t\right)
$$

for some constant $\mu \in \mathbb{R}$. Then $u(x ; t)=\exp \left(\mu \mathbf{i} x-\mu^{2} t\right)$, so that $\partial_{x}^{2} u=$ $-\mu^{2} \cdot u=\partial_{t} u$. Thus, u is a separated solution to the heat equation.

Separation of variables is a strategy for for solving partial differential equations by specifically looking for separated solutions. At first, it seem like we are making our lives harder by insisting on a solution in separated form. However, often, we can use the hypothesis of separation to actually simplify the problem.

Suppose we are given some PDE for a function $u: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ of two variables. Separation of variables is the following strategy:

1. Hypothesize that u can be written as a product of two functions, $X(x)$ and $Y(y)$, each depending on only one coordinate; in other words, assume that

$$
\begin{equation*}
u(x, y)=X(x) \cdot Y(y) \tag{16A.1}
\end{equation*}
$$

2. When we evaluate the PDE on a function of type (16A.1), we may find that the PDE decomposes into two separate, ordinary differential equations for each of the two functions X and Y. Thus, we can solve these ODEs independently, and combine the resulting solutions to get a solution for u.

Example 16A.2. Laplace's Equation in \mathbb{R}^{2}

Suppose we want to find a function $u: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ such that $\Delta u \equiv 0$. If $u(x, y)=X(x) \cdot Y(y)$, then

$$
\Delta u=\partial_{x}^{2}(X \cdot Y)+\partial_{y}^{2}(X \cdot Y)=\left(\partial_{x}^{2} X\right) \cdot Y+X \cdot\left(\partial_{y}^{2} Y\right)=X^{\prime \prime} \cdot Y+X \cdot Y^{\prime \prime}
$$

where we denote $X^{\prime \prime}=\partial_{x}^{2} X$ and $Y^{\prime \prime}=\partial_{y}^{2} Y$. Thus,

$$
\begin{aligned}
\Delta u(x, y) & =X^{\prime \prime}(x) \cdot Y(y)+X(x) \cdot Y^{\prime \prime}(y) \\
& =\left(X^{\prime \prime}(x) \cdot Y(y)+X(x) \cdot Y^{\prime \prime}(y)\right) \frac{X(x) Y(y)}{X(x) Y(y)} \\
& =\left(\frac{X^{\prime \prime}(x)}{X(x)}+\frac{Y^{\prime \prime}(y)}{Y(y)}\right) \cdot u(x, y) .
\end{aligned}
$$

Thus, dividing by $u(x, y)$, Laplace's equation is equivalent to:

$$
0=\frac{\Delta u(x, y)}{u(x, y)}=\frac{X^{\prime \prime}(x)}{X(x)}+\frac{Y^{\prime \prime}(y)}{Y(y)}
$$

This is a sum of two functions which depend on different variables. The only way the sum can be identically zero is if each of the component functions is constant:

$$
\frac{X^{\prime \prime}}{X} \equiv \lambda, \quad \frac{Y^{\prime \prime}}{Y} \equiv-\lambda
$$

So, pick some separation constant $\lambda \in \mathbb{R}$, and then solve the two ordinary differential equations:

$$
\begin{equation*}
X^{\prime \prime}(x)=\lambda \cdot X(x) \quad \text { and } \quad Y^{\prime \prime}(y)=-\lambda \cdot Y(y) \tag{16A.2}
\end{equation*}
$$

The (real-valued) solutions to (16A.2) depends on the sign of λ. Let $\mu=\sqrt{|\lambda|}$. Then the solutions of (16A.2) have the form:

$$
X(x)=\left\{\begin{aligned}
A \sinh (\mu x)+B \cosh (\mu x) & \text { if } \lambda>0 \\
A x+B & \text { if } \lambda=0 \\
A \sin (\mu x)+B \cos (\mu x) & \text { if } \lambda<0
\end{aligned}\right.
$$

where A and B are arbitrary constants. Assuming $\lambda<0$, and $\mu=\sqrt{|\lambda|}$, we get:
$X(x)=A \sin (\mu x)+B \cos (\mu x) \quad$ and $\quad Y(y)=C \sinh (\mu x)+D \cosh (\mu x)$.

This yields the following separated solution to Laplace's equation:
$u(x, y)=X(x) \cdot Y(y)=(A \sin (\mu x)+B \cos (\mu x)) \cdot(C \sinh (\mu x)+D \cosh (\mu x))$
(16A.3)
Alternately, we could consider the general complex solution to (16A.2), given by:

$$
X(x)=\exp (\sqrt{\lambda} \cdot x)
$$

where $\sqrt{\lambda} \in \mathbb{C}$ is some complex number. For example, if $\lambda<0$ and $\mu=\sqrt{|\lambda|}$, then $\sqrt{\lambda}= \pm \mu \mathbf{i}$ are imaginary, and

$$
\begin{aligned}
& X_{1}(x)
\end{aligned}=\exp (\mathbf{i} \mu x)=\cos (\mu x)+\mathbf{i} \sin (\mu x), ~(-\mathbf{i} \mu x)=\cos (\mu x)-\mathbf{i} \sin (\mu x) .
$$

are two linearly independent solutions to (16A.2). The general solution is then given by:

$$
X(x)=a \cdot X_{1}(x)+b \cdot X_{2}(x)=(a+b) \cdot \cos (\mu x)+\mathbf{i} \cdot(a-b) \cdot \sin (\mu x) .
$$

Meanwhile, the general form for $Y(y)$ is
$Y(y)=c \cdot \exp (\mu y)+d \cdot \exp (-\mu y)=(c+d) \cosh (\mu y)+(c-d) \sinh (\mu y)$.
The corresponding separated solution to Laplace's equation is:
$u(x, y)=X(x) \cdot Y(y)=(A \sin (\mu x)+B \mathbf{i} \cos (\mu x)) \cdot(C \sinh (\mu x)+D \cosh (\mu x))$,
where $A=(a+b), B=(a-b), C=(c+d)$, and $D=(c-d)$. In this case, we just recover solution (16A.3). However, we could also construct separated solutions where $\lambda \in \mathbb{C}$ is an arbitrary complex number, and $\sqrt{\lambda}$ is one of its square roots.

16B Separation of variables in Cartesian coordinates on \mathbb{R}^{D}

Recommended: §[6A.

Given some PDE for a function $u: \mathbb{R}^{D} \longrightarrow \mathbb{R}$, we apply the strategy of separation of variables as follows:

1. Hypothesize that u can be written as a product of D functions, each depending on only one coordinate; in other words, assume that

$$
\begin{equation*}
u\left(x_{1}, \ldots, x_{D}\right)=u_{1}\left(x_{1}\right) \cdot u_{2}\left(x_{2}\right) \ldots u_{D}\left(x_{D}\right) \tag{16B.5}
\end{equation*}
$$

2. When we evaluate the PDE on a function of type (16B.5), we may find that the PDE decomposes into D separate, ordinary differential equations for each of the D functions u_{1}, \ldots, u_{D}. Thus, we can solve these ODEs independently, and combine the resulting solutions to get a solution for u.

Example 16B.1. Laplace's Equation in \mathbb{R}^{D} :

Suppose we want to find a function $u: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ such that $\triangle u \equiv 0$. As in the two-dimensional case (Example 16A.2), we reason:

If $u(\mathbf{x})=X_{1}\left(x_{1}\right) \cdot X_{2}\left(x_{2}\right) \ldots X_{D}\left(x_{D}\right)$, then $\Delta u=\left(\frac{X_{1}^{\prime \prime}}{X_{1}}+\frac{X_{2}^{\prime \prime}}{X_{2}}+\ldots+\frac{X_{D}^{\prime \prime}}{X_{D}}\right) \cdot u$.
Thus, Laplace's equation is equivalent to:

$$
0=\frac{\Delta u}{u}(\mathbf{x})=\frac{X_{1}^{\prime \prime}}{X_{1}}\left(x_{1}\right)+\frac{X_{2}^{\prime \prime}}{X_{2}}\left(x_{2}\right)+\ldots+\frac{X_{D}^{\prime \prime}}{x_{D}}\left(x_{D}\right) .
$$

This is a sum of D distinct functions, each of which depends on a different variable. The only way the sum can be identically zero is if each of the component functions is constant:

$$
\begin{equation*}
\frac{X_{1}^{\prime \prime}}{X_{1}} \equiv \lambda_{1}, \quad \frac{X_{2}^{\prime \prime}}{X_{2}} \equiv \lambda_{2}, \quad \ldots, \quad \frac{X_{D}^{\prime \prime}}{X_{D}} \equiv \lambda_{D} \tag{16B.6}
\end{equation*}
$$

such that

$$
\begin{equation*}
\lambda_{1}+\lambda_{2}+\ldots+\lambda_{D}=0 \tag{16B.7}
\end{equation*}
$$

So, pick some separation constant $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{D}\right) \in \mathbb{R}^{D}$ satisfying (16B.7), and then solve the ODEs:

$$
\begin{equation*}
X_{d}^{\prime \prime}=\lambda_{d} \cdot X_{d} \quad \text { for } \mathrm{d}=1,2, \ldots, \mathrm{D} \tag{16B.8}
\end{equation*}
$$

The (real-valued) solutions to (16B.8) depends on the sign of λ (and clearly, if (16B.7) is going to be true, either all λ_{d} are zero, or some are negative and some are positive). Let $\mu=\sqrt{|\lambda|}$. Then the solutions of (16B.8) have the form:

$$
X(x)=\left\{\begin{aligned}
A \exp (\mu x)+B \exp (-\mu x) & \text { if } \lambda>0 \\
A x+B & \text { if } \lambda=0 \\
A \sin (\mu x)+B \cos (\mu x) & \text { if } \lambda<0
\end{aligned}\right.
$$

where A and B are arbitrary constants. We then combine these as in Example 16A.2.

16C Separation in polar coordinates: Bessel's equation

Prerequisites: $\S 0 \mathrm{D}(\mathrm{ii)}, \S(\mathrm{O} . \quad$ Recommended: $\S 14 \mathrm{G}, \S 16 \mathrm{~A}$.
In $\S[14 \mathrm{C}-\S[4 \mathrm{~F}$, we explained how to use solutions of Bessel's equation to solve the heat equation or wave equation in polar coordinates. In this section, we will see how Bessel derived his equation in the first place: it arises naturally when one uses 'separation of variables' to find eigenfunctions of the Laplacian in polar coordinates. First, a technical lemma from the theory of ordinary differential equations:

Lemma 16C.1. Let $\Theta:[-\pi, \pi] \longrightarrow \mathbb{R}$ be a function satisfying periodic boundary conditions [i.e. $\Theta(-\pi)=\Theta(\pi)$ and $\Theta^{\prime}(-\pi)=\Theta^{\prime}(\pi)$]. Let $\mu>0$ be some constant, and suppose Θ satisfies the linear ordinary differential equation:

$$
\begin{equation*}
\Theta^{\prime \prime}(\theta)=-\mu \cdot \Theta(\theta), \quad \text { for all } \theta \in[-\pi, \pi] . \tag{16C.9}
\end{equation*}
$$

Then $\mu=m^{2}$ for some $m \in \mathbb{N}$, and Θ must be a function of the form:

$$
\Theta(\theta)=A \cos (m \theta)+B \sin (m \theta), \quad \text { (for constants } A, B \in \mathbb{C} \text {.) }
$$

Proof. Eqn.(16C.9) is a second-order linear ODE, so the set of all solutions to eqn. (16C.9) is a two-dimensional vector space. This vector space is spanned by functions of the form $\Theta(\theta)=e^{r \theta}$, where r is any root of the characteristic polynomial $p(x)=x^{2}+\mu$. The two roots of this polynomial are of course $r= \pm \sqrt{\mu} \mathbf{i}$. Let $m=\sqrt{\mu}$ (it will turn out that m is an integer, although we don't know this yet). Hence the general solution to (16C.9) is

$$
\Theta(\theta)=C_{1} e^{m \mathbf{i} \theta}+C_{2} e^{-m \mathbf{i} \theta}
$$

where C_{1} and C_{2} are any two constants. The periodic boundary conditions mean that

$$
\Theta(-\pi)=\Theta(\pi) \quad \text { and } \quad \Theta^{\prime}(-\pi)=\Theta^{\prime}(\pi),
$$

which means

$$
\begin{align*}
C_{1} e^{-m \mathbf{i} \pi}+C_{2} e^{m \mathbf{i} \pi} & =C_{1} e^{m \mathbf{i} \pi}+C_{2} e^{-m \mathbf{i} \pi} \tag{16C.10}\\
\text { and } m \mathbf{i} C_{1} e^{-m \mathbf{i} \pi}-m \mathbf{i} C_{2} e^{m \mathbf{i} \pi} & =m \mathbf{i} C_{1} e^{m \mathbf{i} \pi}-m \mathbf{i} C_{2} e^{-m \mathbf{i} \pi} . \tag{16C.11}
\end{align*}
$$

If we divide both sides of the eqn.(16C.11) by $m \mathbf{i}$, we get

$$
C_{1} e^{-m \mathbf{i} \pi}-C_{2} e^{m \mathbf{i} \pi}=\underset{\text { Marcus Pivato } \quad C_{1} e^{m \mathbf{i} \pi}-C_{2} e^{-m \mathbf{i} \pi} .}{\text { DRAFT } \quad \text { January 31, 2009 }} \text { Linear Partial Differential Equations and Fourier Theory } \quad l
$$

If we add this to eqn. (16C.10), we get

$$
2 C_{1} e^{-m \mathbf{i} \pi}=2 C_{1} e^{m \mathbf{i} \pi}
$$

which is equivalent to $e^{2 m \mathbf{i} \pi}=1$. Hence, m must be some integer, and $\mu=m^{2}$.
Now, let $A:=C_{1}+C_{2}$ and $B^{\prime}:=C_{1}-C_{2}$. Then $C_{1}=\frac{1}{2}\left(A+B^{\prime}\right)$ and $C_{2}=\frac{1}{2}\left(A-B^{\prime}\right)$. Thus,

$$
\begin{aligned}
\Theta(\theta) & =C_{1} e^{m \mathbf{i} \theta}+C_{2} e^{-m \mathbf{i} \theta}=\left(A+B^{\prime}\right) e^{m \mathbf{i} \theta}+\left(A-B^{\prime}\right) e^{-m \mathbf{i} \theta} \\
& =\frac{A}{2}\left(e^{m \mathbf{i} \theta}+e^{-m \mathbf{i} \theta}\right)+\frac{B^{\prime} \mathbf{i}}{2 \mathbf{i}}\left(e^{m \mathbf{i} \theta}-e^{-m \mathbf{i} \theta}\right)=A \cos (m \theta)+B^{\prime} \mathbf{i} \sin (m \theta)
\end{aligned}
$$

because of the Euler formulas: $\cos (x)=\frac{1}{2}\left(e^{\mathbf{i} x}+e^{-\mathbf{i} x}\right)$ and $\sin (x)=\frac{1}{2 \mathbf{i}}\left(e^{\mathbf{i} x}-\right.$ $\left.e^{-\mathbf{i} x}\right)$.
Now let $B=B^{\prime} \mathbf{i}$; then $\Theta(\theta)=A \cos (m \theta)+B \sin (m \theta)$, as desired.

Proposition 16C.2. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be an eigenfunction of the Laplacian [i.e. $\triangle f=-\lambda^{2} \cdot f$ for some constant $\lambda \in \mathbb{R}$]. Suppose f separates in polar coordinates, meaning that there is a function $\Theta:[-\pi, \pi] \longrightarrow \mathbb{R}$ (satisfying periodic boundary conditions) and a function $\mathcal{R}: \mathbb{R}_{+} \longrightarrow \mathbb{R}$ such that

$$
f(r, \theta)=\mathcal{R}(r) \cdot \Theta(\theta), \quad \text { for all } r \geq 0 \text { and } \theta \in[-\pi, \pi] .
$$

Then there is some $m \in \mathbb{N}$ such that

$$
\Theta(\theta)=A \cos (m \theta)+B \sin (m \theta), \quad \text { (for constants } A, B \in \mathbb{R} .)
$$

and \mathcal{R} is a solution to the (m th order) Bessel Equation:

$$
\begin{equation*}
r^{2} \mathcal{R}^{\prime \prime}(r)+r \cdot \mathcal{R}^{\prime}(r)+\left(\lambda^{2} r^{2}-m^{2}\right) \cdot \mathcal{R}(r)=0, \quad \text { for all } r>0 \tag{16C.12}
\end{equation*}
$$

Proof. Recall that, in polar coordinates, $\triangle f=\partial_{r}^{2} f+\frac{1}{r} \partial_{r} f+\frac{1}{r^{2}} \partial_{\theta}^{2} f$.
Thus, if $f(r, \theta)=\mathcal{R}(r) \cdot \Theta(\theta)$, then the eigenvector equation $\triangle f=-\lambda^{2} \cdot f$ becomes

$$
\begin{aligned}
-\lambda^{2} \cdot \mathcal{R}(r) \cdot \Theta(\theta) & =\triangle \mathcal{R}(r) \cdot \Theta(\theta) \\
& =\partial_{r}^{2} \mathcal{R}(r) \cdot \Theta(\theta)+\frac{1}{r} \partial_{r} \mathcal{R}(r) \cdot \Theta(\theta)+\frac{1}{r^{2}} \partial_{\theta}^{2} \mathcal{R}(r) \cdot \Theta(\theta) \\
& =\mathcal{R}^{\prime \prime}(r) \Theta(\theta)+\frac{1}{r} \mathcal{R}^{\prime}(r) \Theta(\theta)+\frac{1}{r^{2}} \mathcal{R}(r) \Theta^{\prime \prime}(\theta),
\end{aligned}
$$

which is equivalent to

$$
\begin{align*}
-\lambda^{2} & =\frac{\mathcal{R}^{\prime \prime}(r) \Theta(\theta)+\frac{1}{r} \mathcal{R}^{\prime}(r) \Theta(\theta)+\frac{1}{r^{2}} \mathcal{R}(r) \Theta^{\prime \prime}(\theta)}{\mathcal{R}(r) \cdot \Theta(\theta)} \\
& =\frac{\mathcal{R}^{\prime \prime}(r)}{\mathcal{R}(r)}+\frac{\mathcal{R}^{\prime}(r)}{r \mathcal{R}(r)}+\frac{\Theta^{\prime \prime}(\theta)}{r^{2} \Theta(\theta)} \tag{16C.13}
\end{align*}
$$

If we multiply both sides of $(\underline{16 \mathrm{C} .13})$ by r^{2} and isolate the $\Theta^{\prime \prime}$ term, we get:

$$
\begin{equation*}
-\lambda^{2} r^{2}-\frac{r^{2} \mathcal{R}^{\prime \prime}(r)}{\mathcal{R}(r)}+\frac{r \mathcal{R}^{\prime}(r)}{\mathcal{R}(r)}=\frac{\Theta^{\prime \prime}(\theta)}{\Theta(\theta)} \tag{16C.14}
\end{equation*}
$$

Abstractly, equation (16C.14) has the form: $F(r)=G(\theta)$, where F is a function depending only on r and G is a function depending only on θ. The only way this can be true is if there is some constant $\mu \in \mathbb{R}$ such that $F(r)=-\mu$ for all $r>0$ and $G(\theta)=-\mu$ for all $\theta \in[-\pi, \pi)$. In other words,

$$
\begin{align*}
\frac{\Theta^{\prime \prime}(\theta)}{\Theta(\theta)} & =-\mu, \text { for all } \theta \in[-\pi, \pi), \tag{16C.15}\\
\text { and } \lambda^{2} r^{2}+\frac{r^{2} \mathcal{R}^{\prime \prime}(r)}{\mathcal{R}(r)}+\frac{r \mathcal{R}^{\prime}(r)}{\mathcal{R}(r)} & =\mu, \text { for all } r \geq 0 \tag{16C.16}
\end{align*}
$$

Multiply both sides of equation (16C.15) by $\Theta(\theta)$ to get:

$$
\begin{equation*}
\Theta^{\prime \prime}(\theta)=-\mu \cdot \Theta(\theta), \quad \text { for all } \theta \in[-\pi, \pi) \tag{16C.17}
\end{equation*}
$$

Multiply both sides of equation (16C.16) by $\mathcal{R}(r)$ to get:

$$
\begin{equation*}
r^{2} \mathcal{R}^{\prime \prime}(r)+r \cdot \mathcal{R}^{\prime}(r)+\lambda^{2} r^{2} \mathcal{R}(r)=\mu \mathcal{R}(r), \quad \text { for all } r>0 \tag{16C.18}
\end{equation*}
$$

Apply Lemma 16C.1 to to eqn. 16C.17) to deduce that $\mu=m^{2}$ for some $m \in \mathbb{N}$, and that $\Theta(\theta)=A \cos (m \theta)+B \sin (m \theta)$. Substitute $\mu=m^{2}$ into eqn.(16C.18) to get

$$
r^{2} \mathcal{R}^{\prime \prime}(r)+r \cdot \mathcal{R}^{\prime}(r)+\lambda^{2} r^{2} \mathcal{R}(r)=m^{2} \mathcal{R}(r)
$$

Now subtract $m^{2} \mathcal{R}(r)$ from both sides to get Bessel's equation (16C.12).

16D Separation in spherical coordinates: Legendre's equation

Figure 16D.1: (A) Spherical coordinates. (B) Zonal functions.
Recall that spherical coordinates (r, θ, ϕ) on \mathbb{R}^{3} are defined by the transformation:
$x=r \cdot \sin (\phi) \cdot \cos (\theta), \quad y=r \cdot \sin (\phi) \cdot \sin (\theta) \quad$ and $\quad z=r \cdot \cos (\phi)$.
where $r \in \mathbb{R}_{+}, \theta \in[-\pi, \pi)$, and $\phi \in[0, \pi]$. The reverse transformation is defined:
$r=\sqrt{x^{2}+y^{2}+z^{2}}, \quad \theta=\arctan \left(\frac{y}{x}\right) \quad$ and $\phi=\arctan \left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right)$.
[See Figure 16D.1(A)]. Geometrically, r is the radial distance from the origin. If we fix $r=1$, then we get a sphere of radius 1 . On the surface of this sphere, θ is longitude and ϕ is latitude. In terms of these coordinates, the Laplacian is written:

$$
\triangle f(r, \theta, \phi)=\partial_{r}^{2} f+\frac{2}{r} \partial_{r} f+\frac{1}{r^{2} \sin (\phi)} \partial_{\phi}^{2} f+\frac{\cot (\phi)}{r^{2}} \partial_{\phi} f+\frac{1}{r^{2} \sin (\phi)^{2}} \partial_{\theta}^{2} f .
$$

(Exercise 16D.1)

A function $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ is called zonal if $f(r, \theta, \phi)$ depends only on on r and ϕ-in other words, $f(r, \theta, \phi)=F(r, \phi)$, where $F: \mathbb{R}_{+} \times[0, \pi] \longrightarrow \mathbb{R}$ is some other function. If we restrict f to the aforementioned sphere of radius 1 , then f is invariant under rotations around the 'north-south axis' of the sphere. Thus, f is constant along lines of equal latitude around the sphere, so it divides the sphere into 'zones' from north to south [Figure 16D.1(B)].

Proposition 16D.1. Let $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ be zonal. Suppose f is a harmonic function (i.e. $\triangle f=0$). Suppose f separates in spherical coordinates, meaning
that there are (bounded) functions $\Phi:[0, \pi] \longrightarrow \mathbb{R}$ and $\mathcal{R}: \mathbb{R}_{+} \longrightarrow \mathbb{R}$ such that

$$
f(r, \theta, \phi)=\mathcal{R}(r) \cdot \Phi(\phi), \quad \text { for all } r \geq 0, \quad \phi \in[0, \pi] \text {, and } \theta \in[-\pi, \pi] .
$$

Then there is some $\mu \in \mathbb{R}$ such that $\Phi(\phi)=\mathcal{L}[\cos (\phi)]$, where $\mathcal{L}:[-1,1] \longrightarrow \mathbb{R}$ is a (bounded) solution of the Legendre Equation:

$$
\begin{equation*}
\left(1-x^{2}\right) \mathcal{L}^{\prime \prime}(x)-2 x \mathcal{L}^{\prime}(x)+\mu \mathcal{L}(x)=0, \tag{16D.19}
\end{equation*}
$$

and \mathcal{R} is a (bounded) solution to the Cauchy-Euler Equation:

$$
\begin{equation*}
r^{2} \mathcal{R}^{\prime \prime}(r)+2 r \cdot \mathcal{R}^{\prime}(r)-\mu \cdot \mathcal{R}(r)=0, \quad \text { for all } r>0 \tag{16D.20}
\end{equation*}
$$

Proof. By hypothesis

$$
\begin{aligned}
& 0= \Delta f(r, \theta, \phi) \\
&= \partial_{r}^{2} f+\frac{2}{r} \partial_{r} f+\frac{1}{r^{2} \sin (\phi)} \partial_{\phi}^{2} f+\frac{\cot (\phi)}{r^{2}} \partial_{\phi} f+\frac{1}{r^{2} \sin (\phi)^{2}} \partial_{\theta}^{2} f \\
& \begin{array}{l}
\overline{(*)} \\
\\
\\
\\
\\
\\
\quad \mathcal{R}^{\prime \prime}(r) \cdot \Phi(\phi)+\frac{2}{r} \mathcal{R}^{\prime}(r) \cdot \Phi(\phi) \\
\\
\quad+\frac{1}{r^{2} \sin (\phi)} \mathcal{R}(r) \cdot \Phi^{\prime \prime}(\phi)+\frac{\cot (\phi)}{r^{2}} \mathcal{R}(r) \cdot \Phi^{\prime}(\phi)+0 .
\end{array}
\end{aligned}
$$

[where $(*)$ is because $f(r, \theta, \phi)=\mathcal{R}(r) \cdot \Phi(\phi)$.] Hence, multiplying both sides by $\frac{r^{2}}{\mathcal{R}(r) \cdot \Phi(\phi)}$, we obtain

$$
0=\frac{r^{2} \mathcal{R}^{\prime \prime}(r)}{\mathcal{R}(r)}+\frac{2 r \mathcal{R}^{\prime}(r)}{\mathcal{R}(r)}+\frac{1}{\sin (\phi)} \frac{\Phi^{\prime \prime}(\phi)}{\Phi(\phi)}+\frac{\cot (\phi) \Phi^{\prime}(\phi)}{\Phi(\phi)}
$$

Or, equivalently,

$$
\begin{equation*}
\frac{r^{2} \mathcal{R}^{\prime \prime}(r)}{\mathcal{R}(r)}+\frac{2 r \mathcal{R}^{\prime}(r)}{\mathcal{R}(r)}=\frac{-1}{\sin (\phi)} \frac{\Phi^{\prime \prime}(\phi)}{\Phi(\phi)}-\frac{\cot (\phi) \Phi^{\prime}(\phi)}{\Phi(\phi)} . \tag{16D.21}
\end{equation*}
$$

Now, the left hand side of (16D.21) depends only on the variable r, whereas the right hand side depends only on ϕ. The only way that these two expressions can be equal for all values of r and ϕ is if both expressions are constants. In other words, there is some constant $\mu \in \mathbb{R}$ (called a separation constant) such that

$$
\begin{aligned}
\frac{r^{2} \mathcal{R}^{\prime \prime}(r)}{\mathcal{R}(r)}+\frac{2 r \mathcal{R}^{\prime}(r)}{\mathcal{R}(r)} & =\mu, \quad \text { for all } r \geq 0, \\
\text { and } \frac{1}{\sin (\phi)} \frac{\Phi^{\prime \prime}(\phi)}{\Phi(\phi)}+\frac{\cot (\phi) \Phi^{\prime}(\phi)}{\Phi(\phi)} & =-\mu, \quad \text { for all } \phi \in[0, \pi] .
\end{aligned}
$$

Or, equivalently,

$$
\begin{align*}
r^{2} \mathcal{R}^{\prime \prime}(r)+2 r \mathcal{R}^{\prime}(r) & =\mu \mathcal{R}(r), \text { for all } r \geq 0 \tag{16D.22}\\
\text { and } \frac{\Phi^{\prime \prime}(\phi)}{\sin (\phi)}+\cot (\phi) \Phi^{\prime}(\phi) & =-\mu \Phi(\phi), \text { for all } \phi \in[0, \pi] \tag{16D.23}
\end{align*}
$$

If we make the change of variables $x=\cos (\phi)$ (so that $\phi=\arccos (x)$, where $x \in[-1,1])$, then $\Phi(\phi)=\mathcal{L}(\cos (\phi))=\mathcal{L}(x)$, where \mathcal{L} is some other (unknown) function.

Claim 1: The function Φ satisfies the $O D E$ (16D.23) if and only if \mathcal{L} satisfies the Legendre equation (16D.19).

Proof. Exercise 16D. 2 (Hint: This is a straightforward application of the Chain Rule.)
$\diamond_{\text {Claim } 1}$
Finally, observe that the ODE (16D.22) is equivalent to the Cauchy-Euler equation (16D.20).

For all $n \in \mathbb{N}$, we define the nth Legendre Polynomial by

$$
\begin{equation*}
\mathcal{P}_{n}(x) \quad:=\frac{1}{n!2^{n}} \partial_{x}^{n}\left[\left(x^{2}-1\right)\right]^{n} \tag{16D.24}
\end{equation*}
$$

For example:

$$
\begin{array}{ll}
\mathcal{P}_{0}(x)=1 & \mathcal{P}_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
\mathcal{P}_{1}(x)=x & \mathcal{P}_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \\
\mathcal{P}_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) & \mathcal{P}_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right)
\end{array}
$$

Lemma 16D.2. Let $n \in \mathbb{N}$. Then the Legendre Polynomial \mathcal{P}_{n} is a solution to the Legendre Equation (16D.19) with $\mu=n(n+1)$.

Proof. Exercise 16D.3 (Direct computation)

Is \mathcal{P}_{n} the only solution to the Legendre Equation (16D.19)? No, because the Legendre Equation is an order-two linear ODE, so the set of solutions forms a two-dimensional vector space \mathcal{V}. The scalar multiples of \mathcal{P}_{n} form a onedimensional subspace of \mathcal{V}. However, to be physically meaningful, we need the solutions to be bounded at $x= \pm 1$. So instead we ask: is \mathcal{P}_{n} the only bounded solution to the Legendre Equation (16D.19)? Also, what happens if $\mu \neq n(n+1)$ for any $n \in \mathbb{N}$?

Lemma 16D.3.

(a) If $\mu=n(n+1)$ for some $n \in \mathbb{N}$, then (up to multiplication by a scalar), the Legendre polynomial $\mathcal{P}_{n}(x)$ is the unique solution to the Legendre Equation (16D.19) which is bounded on $[-1,1]$.
(b) If $\mu \neq n(n+1)$ for any $n \in \mathbb{N}$, then all solutions to the Legendre Equation (16D.19) are infinite power series which diverge at $x= \pm 1$ (and thus, are unsuitable for Proposition 16D.1).

Proof. We apply the Power series method (see $\S 0 H(\mathrm{iii})$ on page 571). Suppose $\mathcal{L}(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is some analytic function defined on $[-1,1]$ (where the coefficients $\left\{a_{n}\right\}_{n=1}^{\infty}$ are as yet unknown).
Claim 1: $\quad \mathcal{L}(x)$ satisfies the Legendre Equation (16D.19) if and only if the coefficients $\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ satisfy the recurrence relation

$$
\begin{equation*}
a_{k+2}=\frac{k(k+1)-\mu}{(k+2)(k+1)} a_{k}, \quad \text { for all } k \in \mathbb{N} \tag{16D.25}
\end{equation*}
$$

In particular, $a_{2}=\frac{-\mu}{2} a_{0}$ and $a_{3}=\frac{2-\mu}{6} a_{1}$.
Proof. We will substitute the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ into the Legendre Equation (16D.19). The details of the computation are shown on the right side of Figure 16D.2. The computation yields the equation $0=\sum_{k=0}^{\infty} b_{k} x_{k}$, where $b_{k}:=(k+2)(k+1) a_{k+2}+[\mu-k(k+1)] a_{k}$ for all $k \in \mathbb{N}$. It follows that $b_{k}=0$ for all $k \in \mathbb{N}$; in other words, that

$$
(k+2)(k+1) a_{k+2}+[\mu-k(k+1)] a_{k} \quad=\quad 0, \quad \text { for all } k \in \mathbb{N}
$$

Rearranging this equation produces the desired recurrence relation (16D.25).
$\diamond_{\text {Claim } 1}$
The space of all solutions to the Legendre Equation (16D.19) is a two-dimensional vector space, because the Legendre equation is a linear differential equation of order 2. We will now find a basis for this space. Recall that \mathcal{L} is even if $\mathcal{L}(-x)=\mathcal{L}(x)$ for all $x \in[-1,1]$, and \mathcal{L} is odd if $\mathcal{L}(-x)=-\mathcal{L}(x)$ for all $x \in[-1,1]$.
Claim 2: There is a unique even analytic function $\mathcal{E}(x)$ and a unique odd analytic function $\mathcal{O}(x)$ which satisfy the Legendre Equation (16D.19), such that $\mathcal{E}(1)=1=\mathcal{O}(1)$, and such that any other solution $\mathcal{L}(x)$ can be written as a linear combination $\mathcal{L}(x)=a \mathcal{E}(x)+b \mathcal{O}(x)$, for some constants $a, b \in \mathbb{R}$.

Proof. Claim 1 implies that the power series $\mathcal{L}(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is entirely determined by the coefficients a_{0} and a_{1}. To be precise, $\mathcal{L}(x)=\mathcal{E}(x)+$ $\mathcal{O}(x)$, where $\mathcal{E}(x)=\sum_{n=0}^{\infty} a_{2 n} x^{2 n}$ and $\mathcal{O}(x)=\sum_{n=0}^{\infty} a_{2 n+1} x^{2 n+1}$ both satisfy the recurrence relation (16D.25), and thus, are solutions to the Legendre Equation (16D.19).

Claim 3: Suppose $\mu=n(n+1)$ for some $n \in \mathbb{N}$. Then the Legendre equation (16D.19) has a degree-n polynomial as one of its solutions. To be precise:
(a) If n is even, then $a_{k}=0$ for all even $k>n$. Hence, $\mathcal{E}(x)$ is a degree- n polynomial.
(b) If n is odd, then $a_{k}=0$ for all odd $k>n$. Hence, $\mathcal{O}(x)$ is a degree- n polynomial.

Proof. Exercise 16D. 4
$\diamond_{\text {Claim } 3}$
Thus, there is a one-dimensional space of polynomial solutions to the Legendre equation -namely all scalar multiples of $\mathcal{E}(x)$ (if n is even) or $\mathcal{O}(x)$ (if n is odd).
Claim 4: If $\mu \neq n(n+1)$ for any $n \in \mathbb{N}$, the series $\mathcal{E}(x)$ and $\mathcal{O}(x)$ both diverge at $x= \pm 1$.

Proof. Exercise 16D. 5 (a) First note that an infinite number of coefficients $\left\{a_{n}\right\}_{n=0}^{\infty}$ are nonzero.
(b) Show that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=1$.
(c) Conclude that the series $\mathcal{E}(x)$ and $\mathcal{O}(x)$ diverge when $x= \pm 1 . \quad \diamond_{\text {Claim 4 }}$

So, there exist solutions to the Legendre equation (16D.19) that are bounded on $[-1,1]$ if and only if $\mu=n(n+1)$ for some $n \in \mathbb{N}$, and in this case, the bounded solutions are all scalar multiples of a polynomial of degree n [either $\mathcal{E}(x)$ or $\mathcal{O}(x)$]. But Lemma 16 D .2 says that the Legendre polynomial $\mathcal{P}_{n}(x)$ is a solution to the Legendre equation (16D.19). Thus, (up to multiplication by a constant), $\mathcal{P}_{n}(x)$ must be equal to $\mathcal{E}(x)$ (if n is even) or $\mathcal{O}(x)$ (if n is odd).

Remark: Sometimes the Legendre polynomials are defined as the (unique) polynomial solutions to Legendre's equation; the definition we have given in eqn.(16D.24) is then derived from this definition, and is called Rodrigues Formula.

Lemma 16D.4. Let $\mathcal{R}: \mathbb{R}_{+} \longrightarrow \mathbb{R}$ be a solution to the Cauchy-Euler equation

$$
\begin{equation*}
r^{2} \mathcal{R}^{\prime \prime}(r)+2 r \cdot \mathcal{R}^{\prime}(r)-n(n+1) \cdot \mathcal{R}(r)=0, \quad \text { for all } r>0 \tag{16D.26}
\end{equation*}
$$

Then $\mathcal{R}(r)=A r^{n}+\frac{B}{r^{n+1}}$ for some constants A and B.
If \mathcal{R} is bounded at zero, then $B=0$, so $\mathcal{R}(r)=A r^{n}$.
Proof. Check that $f(r)=r^{n}$ and $g(r)=r^{-n-1}$ are solutions to eqn. (16D.26).
But (16D.26) is a second-order linear ODE, so the solutions form a 2-dimensional vector space. Since f and g are linearly independent, they span this vector space.

Corollary 16D.5. Let $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ be a zonal harmonic function that separates in spherical coordinates (as in Proposition 16D.1). Then there is some $m \in \mathbb{N}$ such that $f(r, \phi, \theta)=C r^{n} \cdot \mathcal{P}_{n}[\cos (\phi)]$, where \mathcal{P}_{n} is the nth Legendre Polynomial, and $C \in \mathbb{R}$ is some constant. (See Figure 16D.3.)
Proof. Combine Proposition 16D. 1 with Lemmas 16D.3 and 16D. 4
Thus, the Legendre polynomials are important when solving the Laplace equation on spherical domains. We now describe some of their important properties

Proposition 16D.6. Legendre polynomials satisfy the following recurrence relations:
(a) $(2 n+1) \mathcal{P}_{n}(x)=\mathcal{P}_{n+1}^{\prime}(x)-\mathcal{P}_{n-1}^{\prime}(x)$.
(b) $(2 n+1) x \mathcal{P}_{n}(x)=(n+1) \mathcal{P}_{n+1}(x)+n \mathcal{P}_{n-1}^{\prime}(x)$.

Proof. Exercise 16D. 6

Proposition 16D.7. The Legendre polynomials form an orthogonal set for $\mathbf{L}^{2}[-1,1]$. That is:
(a) For any $n \neq m,\left\langle\mathcal{P}_{n}, \mathcal{P}_{m}\right\rangle=\frac{1}{2} \int_{-1}^{1} \mathcal{P}_{n}(x) \mathcal{P}_{m}(x) d x=0$.
(b) For any $n \in \mathbb{N},\left\|\mathcal{P}_{n}\right\|_{2}^{2}=\frac{1}{2} \int_{-1}^{1} \mathcal{P}_{n}^{2}(x) d x=\frac{1}{2 n+1}$.

Proof. (a) Exercise 16D.7 (Hint: Start with the Rodrigues formula (16D.24). Apply integration by parts n times.)
(b) Exercise 16D. 8 (Hint: Use Proposition 16D.6(b).)

$$
r \mathcal{P}_{1}(\cos (\phi))
$$

$$
r^{3} \mathcal{P}_{3}(\cos (\phi))
$$

$$
r^{4} \mathcal{P}_{4}(\cos (\phi))
$$

$r^{5} \mathcal{P}_{5}(\cos (\phi))$

$r^{6} \mathcal{P}_{6}(\cos (\phi))$

Figure 16D.3: Planar cross-sections of the zonal harmonic functions $r \mathcal{P}_{1}(\cos (\phi))$ to $r^{6} \mathcal{P}_{6}(\cos (\phi))$, plotted for $r \in[0 \ldots 6]$; see Corollary 16D.5 on the preceding page. Remember that these are functions in \mathbb{R}^{3}. To visualize these functions in three dimensions, take the above contour plots and mentally rotate them around the vertical axis.

Because of Proposition 16D.7, we can try to represent an arbitrary function $f \in \mathbf{L}^{2}[-1,1]$ in terms of Legendre polynomials, to obtain a Legendre Series:

$$
\begin{equation*}
f(x) \quad \underset{\mathrm{T} 2}{\approx} \quad \sum_{n=0}^{\infty} a_{n} \mathcal{P}_{n}(x), \tag{16D.27}
\end{equation*}
$$

where $a_{n}:=\frac{\left\langle f, \mathcal{P}_{n}\right\rangle}{\left\|\mathcal{P}_{n}\right\|_{2}^{2}}=\frac{2 n+1}{2} \int_{-1}^{1} f(x) \mathcal{P}_{n}(x) d x$ is the nth Legendre coefficient of f.

Theorem 16D.8. The Legendre polynomials form an orthogonal basis for $\mathbf{L}^{2}[-1,1]$. Thus, if $f \in \mathbf{L}^{2}[-1,1]$, then the Legendre series (16D.27) converges to f in L^{2}.

Proof. See [Bro8.9, Thm 3.2.4, p.50].

Let $\mathbb{B}=\{(r, \theta, \phi) ; r \leq 1, \theta \in[-\pi, \pi], \phi \in[0, \pi]\}$ be the unit ball in spherical coordinates. Thus, $\partial \mathbb{B}=\{(1, \theta, \phi) ; \theta \in[-\pi, \pi], \phi \in[0, \pi]\}$ is the unit sphere. Recall that a zonal function on $\partial \mathbb{B}$ is a function which depends only on the 'latitude' coordinate ϕ, and not on the 'longitude' coordinate θ.

Theorem 16D.9. Dirichlet problem on a ball

Let $f: \partial \mathbb{B} \longrightarrow \mathbb{R}$ be some function describing a heat distribution on the surface of the ball. Suppose f is zonal -i.e. $f(1, \theta, \phi)=F(\cos (\phi))$, where $F \in \mathbf{L}^{2}[-1,1]$, and F has Legendre series

$$
F(x) \underset{\mathrm{T} 2}{\approx} \sum_{n=0}^{\infty} a_{n} \mathcal{P}_{n}(x) .
$$

Define $u: \mathbb{B} \longrightarrow \mathbb{R}$ by $u(r, \phi, \theta)=\sum_{n=0}^{\infty} a_{n} r^{n} \mathcal{P}_{n}(\cos (\phi))$. Then u is the uniqe solution to the Laplace equation, satisfying the nonhomogeneous Dirichlet boundary conditions

$$
u(1, \theta, \phi) \quad \underset{\mathrm{I} 2}{\widetilde{ }} \quad f(\theta, \phi), \quad \text { for all }(1, \theta, \phi) \in \partial \mathbb{B}
$$

16E Separated vs. quasiseparated

Prerequisites: $\S 16 \mathrm{~B}$.
If we use complex-valued functions like (16A.4) as the components of the separated solution (16B.5) on page 355, then we will still get mathematically valid solutions to Laplace's equation (as long as (16B.7) is true). However, these solutions are not physically meaningful - what does a complex-valued heat distribution feel like? This is not a problem, because we can extract real-valued solutions from the complex solution as follows.

Proposition 16E.1. Suppose L is a linear differential operator with realvalued coefficients, and $g: \mathbb{R}^{D} \longrightarrow \mathbb{R}$, and consider the nonhomogeneous $P D E$ "L $u=g$ ".

If $u: \mathbb{R}^{D} \longrightarrow \mathbb{C}$ is a (complex-valued) solution to this PDE, and we define $u_{R}(\mathbf{x})=\operatorname{Re}[u(\mathbf{x})]$ and $u_{I}(\mathbf{x})=\operatorname{Im}[u(\mathbf{x})]$, then $\mathrm{L} u_{R}=g$ and $\mathrm{L} u_{I}=0$.

Proof. Exercise 16E. 1

In this case, the solutions u_{R} and u_{I} are not themselves generally going to be in separated form. Since they arise as the real and imaginary components of a complex separated solution, we call u_{R} and u_{I} quasiseparated solutions.

Example 16E.2. Recall the separated solutions to the two-dimensional Laplace equation from Example 16A.2 on page 354. Here, $\mathrm{L}=\triangle$ and $g \equiv 0$, and, for any fixed $\mu \in \mathbb{R}$, the function

$$
u(x, y)=X(x) \cdot Y(y)=\exp (\mu y) \cdot \exp (\mu \mathbf{i} y)
$$

is a complex solution to Laplace's equation. Thus,

$$
u_{R}(x, y)=\exp (\mu x) \cos (\mu y) \quad \text { and } \quad u_{I}(x, y)=\exp (\mu x) \sin (\mu y)
$$

are real-valued solutions of the form obtained earlier.

16F The polynomial formalism

Prerequisites: $\S[6 \mathrm{~B}, ~ §[\mathbb{B}$.
Separation of variables seems like a bit of a miracle. Just how generally applicable is it? To answer this, it is convenient to adopt a polynomial formalism for differential operators. If L is a differential operator with constan杩

[^60]coefficients, we will formally represent L as a "polynomial" in the "variables" $\partial_{1}, \partial_{2}, \ldots, \partial_{D}$. For example, we can write the Laplacian:
$$
\triangle=\partial_{1}^{2}+\partial_{2}^{2}+\ldots+\partial_{D}^{2}=\mathcal{P}\left(\partial_{1}, \partial_{2}, \ldots, \partial_{D}\right)
$$
where $\mathcal{P}\left(x_{1}, x_{2}, \ldots, x_{D}\right)=x_{1}^{2}+x_{2}^{2}+\ldots+x_{D}^{2}$.
In another example, the general second-order linear PDE
$$
A \partial_{x}^{2} u+B \partial_{x} \partial_{y} u+C \partial_{y}^{2} u+D \partial_{x} u+E \partial_{y} u+F u=G
$$
(where A, B, C, \ldots, F are constants) can be rewritten:
$$
\mathcal{P}\left(\partial_{x}, \partial_{y}\right) u=g
$$
where $\mathcal{P}(x, y)=A x^{2}+B x y+C y^{2}+D x+E y+F$.
The polynomial \mathcal{P} is called the polynomial symbol of L, and provides a convenient method for generating separated solutions

Proposition 16F.1. Suppose that L is a linear differential operator on \mathbb{R}^{D} with polynomial symbol \mathcal{P}. Regard $\mathcal{P}: \mathbb{C}^{D} \longrightarrow \mathbb{C}$ as a function.

Fix $\mathbf{z}=\left(z_{1}, \ldots, z_{D}\right) \in \mathbb{C}^{D}$, and define $u_{\mathbf{z}}: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ by

$$
u_{\mathbf{z}}\left(x_{1}, \ldots, x_{D}\right)=\exp \left(z_{1} x_{1}\right) \cdot \exp \left(z_{2} x_{2}\right) \ldots \exp \left(z_{D} x_{D}\right)=\exp (\mathbf{z} \bullet \mathbf{x})
$$

Then $\mathrm{L} u_{\mathbf{z}}(\mathbf{x})=\mathcal{P}(\mathbf{z}) \cdot u_{\mathbf{z}}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{D}$.
In particular, if \mathbf{z} is a root of \mathcal{P} (that is, $\mathcal{P}\left(z_{1}, \ldots, z_{D}\right)=0$), then $\mathrm{L} u=0$.
Proof. Exercise 16F. 1 Hint: First, use formula (0C.1) on page 551 to show that $\partial_{d} u_{\mathbf{z}}=z_{d} \cdot u_{\mathbf{z}}$, and, more generally, $\partial_{d}^{n} u_{\mathbf{z}}=z_{d}^{n} \cdot u_{\mathbf{z}}$.

Thus, many2 separated solutions of the differential equation " $L u=0$ " are defined by the the complex-valued solutions of the algebraic equation " $\mathcal{P}(\mathbf{z})=0$ ".

Example 16F.2. Consider again the two-dimensional Laplace equation

$$
\partial_{x}^{2} u+\partial_{y}^{2} u=0
$$

The corresponding polynomial is $\mathcal{P}(x, y)=x^{2}+y^{2}$. Thus, if $z_{1}, z_{2} \in \mathbb{C}$ are any complex numbers such that $z_{1}^{2}+z_{2}^{2}=0$, then

$$
u(x, y)=\exp \left(z_{1} x+z_{2} y\right)=\exp \left(z_{1} x\right) \cdot \exp \left(z_{2} y\right)
$$

is a solution to Laplace's equation. In particular, if $z_{1}=1$, then we must have $z_{2}= \pm \mathbf{i}$. Say we pick $z_{2}=\mathbf{i}$; then the solution becomes

$$
u(x, y)=\exp (x) \cdot \exp (\mathbf{i} y)=e^{x} \cdot(\cos (y)+\mathbf{i} \sin (y)) .
$$

[^61]More generally, if we choose $z_{1}=\mu \in \mathbb{R}$ to be a real number, then we must choose $z_{2}= \pm \mu \mathbf{i}$ to be purely imaginary, and the solution becomes

$$
u(x, y)=\exp (\mu x) \cdot \exp (\pm \mu \mathbf{i} y)=e^{\mu x} \cdot(\cos (\pm \mu y)+\mathbf{i} \sin (\pm \mu y))
$$

Compare this with the separated solutions obtained from Example 16A.2 on page 354.

Example 16F.3. Consider the one-dimensional telegraph equation:

$$
\begin{equation*}
\partial_{t}^{2} u+2 \partial_{t} u+u=\triangle u \tag{16F.28}
\end{equation*}
$$

We can rewrite this as

$$
\partial_{t}^{2} u+2 \partial_{t} u+u-\partial_{x}^{2} u=0
$$

which is equivalent to " $\mathrm{L} u=0$ ", where L is the linear differential operator

$$
\mathbf{L}=\partial_{t}^{2}+2 \partial_{t}+u-\partial_{x}^{2}
$$

with polynomial symbol

$$
\mathcal{P}(x, t)=t^{2}+2 t+1-x^{2}=(t+1+x)(t+1-x)
$$

Thus, the equation " $\mathcal{P}(\alpha, \beta)=0$ " has solutions:

$$
\alpha= \pm(\beta+1)
$$

So, if we define $u(x, t)=\exp (\alpha \cdot x) \exp (\beta \cdot t)$, then u is a separated solution to equation (16F.28). (Exercise 16F. 2 Check this.). In particular, suppose we choose $\alpha=-\beta-1$. Then the separated solution is $u(x, t)=\exp (\beta(t-x)-x)$. If $\beta=\beta_{R}+\beta_{I} \mathbf{i}$ is a complex number, then the quasiseparated solutions are:

$$
\begin{aligned}
u_{R} & =\exp \left(\beta_{R}(x+t)-x\right) \cdot \cos \left(\beta_{I}(x+t)\right) \\
u_{I} & =\exp \left(\beta_{R}(x+t)-x\right) \cdot \sin \left(\beta_{I}(x+t)\right) .
\end{aligned}
$$

Remark 16F.4: The polynomial formalism provides part of the motivation for the classification of PDEs as elliptic, hyperbolid3, etc. Notice that, if L is an elliptic differential operator on \mathbb{R}^{2}, then the real-valued solutions to $\mathcal{P}\left(z_{1}, z_{2}\right)=0$ (if any) form an ellipse in \mathbb{R}^{2}. In \mathbb{R}^{D}, the solutions form an ellipsoid.

Similarly, if we consider the parabolic PDE " $\partial_{t} u=\mathrm{L} u$ ", the the corresponding differential operator $\mathrm{L}-\partial_{t}$ has polynomial symbol $\mathcal{Q}(\mathrm{x} ; t)=\mathcal{P}(\mathrm{x})-t$. The real-valued solutions to $\mathcal{Q}(\mathbf{x} ; t)=0$ form a paraboloid in $\mathbb{R}^{D} \times \mathbb{R}$. For example, the 1-dimensional heat equation " $\partial_{x}^{2} u-\partial_{t} u=0$ " yields the classic equation " $t=x^{2}$ " for a parabola in the (x, t)-plane. Similarly, with a hyperbolic PDE, the differential operator $\mathrm{L}-\partial_{t}^{2}$ has polynomial symbol $\mathcal{Q}(\mathbf{x} ; t)=\mathcal{P}(\mathbf{x})-t^{2}$, and the roots form a hyperboloid.

[^62]
16G Constraints

Prerequisites: $\{[67$.

Normally, we are not interested in just any solution to a PDE; we want a solution which satisfies certain constraints. The most common constraints are:

- Boundary Conditions: If the PDE is defined on some bounded domain $\mathbb{X} \subset \mathbb{R}^{D}$, then we may want the solution function u (or its derivatives) to have certain values on the boundary of this domain.
- Boundedness: If the domain \mathbb{X} is unbounded (e.g. $\mathbb{X}=\mathbb{R}^{D}$), then we may want the solution u to be bounded; in other words, we want some finite $M>0$ such that $|u(\mathbf{x})|<M$ for all values of some coordinate x_{d}.

16G(i) Boundedness

The solution obtained through Proposition 16F.11 is not generally going to be bounded, because the exponential function $f(x)=\exp (\lambda x)$ is not bounded as a function of x, unless λ is a purely imaginary number. More generally:

Proposition 16G.1. Fix $\mathbf{z}=\left(z_{1}, \ldots, z_{D}\right) \in \mathbb{C}^{D}$, and suppose $u_{\mathbf{z}}: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ is defined as in Proposition 16F.1]:

$$
u_{\mathbf{z}}\left(x_{1}, \ldots, x_{D}\right)=\exp \left(z_{1} x_{1}\right) \cdot \exp \left(z_{2} x_{2}\right) \ldots \exp \left(z_{D} x_{D}\right)=\exp (\mathbf{z} \bullet \mathbf{x}) .
$$

Then:

1. $u(\mathbf{x})$ is bounded for all values of the variable $x_{d} \in \mathbb{R}$ if and only if $z_{d}=\lambda \mathbf{i}$ for some $\lambda \in \mathbb{R}$.
2. $u(\mathbf{x})$ is bounded for all $x_{d}>0$ if and only if $z_{d}=\rho+\lambda \mathbf{i}$ for some $\rho \leq 0$.
3. $u(\mathbf{x})$ is bounded for all $x_{d}<0$ if and only if $z_{d}=\rho+\lambda \mathbf{i}$ for some $\rho \geq 0$.

Proof. Exercise 16G. 1

Example 16G.2. Recall the one-dimensional telegraph equation of Example 16F.3:

$$
\partial_{t}^{2} u+2 \partial_{t} u+u=\triangle u
$$

We constructed a separated solution of the form: $u(x, t)=\exp (\alpha x+\beta t)$, where $\alpha= \pm(\beta+1)$. This solution will be bounded in time if and only if β is a purely imaginary number; i.e. $\beta=\beta_{I} \cdot \mathbf{i}$. Then $\alpha= \pm\left(\beta_{I} \cdot \mathbf{i}+1\right)$, so that

[^63]$u(x, t)=\exp (\pm x) \cdot \exp \left(\beta_{I} \cdot(t \pm x) \cdot \mathbf{i}\right)$; thus, the quasiseparated solutions are:
$u_{R}=\exp (\pm x) \cdot \cos \left(\beta_{I} \cdot(t \pm x)\right) \quad$ and $\quad u_{I}=\exp (\pm x) \cdot \sin \left(\beta_{I} \cdot(t \pm x)\right)$.
Unfortunately, this solution is unbounded in space, which is probably not what we want. An alternative is to set $\beta=\beta_{I} \mathbf{i}-1$, and then set $\alpha=\beta+1=\beta_{I} \mathbf{i}$. Then the solution becomes $u(x, t)=\exp \left(\beta_{I} \mathbf{i}(x+t)-t\right)=e^{-t} \exp \left(\beta_{I} \mathbf{i}(x+t)\right)$, and the quasiseparated solutions are:
$$
u_{R}=e^{-t} \cdot \cos \left(\beta_{I}(x+t)\right) \quad \text { and } \quad u_{I}=e^{-t} \cdot \sin \left(\beta_{I}(x+t)\right) .
$$

These solutions are exponentially decaying as $t \rightarrow \infty$, and thus, bounded in "forward time". For any fixed time t, they are also bounded (and actually periodic) functions of the space variable x.

16G(ii) Boundary conditions

Prerequisites: §50.

There is no cureall like Proposition 16G. 1 for satisfying boundary conditions, since generally they are different in each problem. Generally, a single separated solution (say, from Proposition 16F.3) will not be able to satisfy the conditions; we must sum together several solutions, so that they "cancel out" in suitable ways along the boundaries. For these purposes, the following Euler identities are often useful:

$$
\begin{array}{ll}
\sin (x)=\frac{e^{x \mathbf{i}}-e^{-x \mathbf{i}}}{2 \mathbf{i}} ; & \cos (x)=\frac{e^{x \mathbf{i}}+e^{-x \mathbf{i}}}{2 \mathbf{i}} ; \\
\sinh (x)=\frac{e^{x}-e^{-x}}{2} ; & \cosh (x)=\frac{e^{x}+e^{-x}}{2}
\end{array}
$$

which we can utilize along with the following boundary information:

$$
\begin{aligned}
-\cos ^{\prime}(n \pi)=\sin (n \pi) & =0, \quad \text { for all } n \in \mathbb{Z} \\
\sin ^{\prime}\left(\left(n+\frac{1}{2}\right) \pi\right)=\cos \left(\left(n+\frac{1}{2}\right) \pi\right) & =0, \quad \text { for all } n \in \mathbb{Z} \\
\cosh ^{\prime}(0)=\sinh (0) & =0
\end{aligned}
$$

For "rectangular" domains, the boundaries are obtained by fixing a particular coordinate at a particular value; i.e. they are each of the form form $\left\{\mathbf{x} \in \mathbb{R}^{D} ; x_{d}=K\right\}$ for some constant K and some dimension d. The convenient thing about a separated solution is that it is a product of D functions, and only one of them is involved in satisfying this boundary condition.

For example, recall Example 16 F .2 on page 370, which gave the separated solution $u(x, y)=e^{\mu x} \cdot(\cos (\pm \mu y)+\mathbf{i} \sin (\pm \mu y))$ for the two-dimensional Laplace
equation, where $\mu \in \mathbb{R}$. Suppose we want the solution to satisfy homogeneous Dirichlet boundary conditions:

$$
u(x, y)=0 \quad \text { if } \quad x=0, \quad \text { or } y=0, \quad \text { or } \quad y=\pi .
$$

To satisfy these three conditions, we proceed as follows:
First, let $u_{1}(x, y)=e^{\mu x} \cdot(\cos (\mu y)+\mathbf{i} \sin (\mu y))$,

$$
\text { and } u_{2}(x, y)=e^{\mu x} \cdot(\cos (-\mu y)+\mathbf{i} \sin (-\mu y))=e^{\mu x} \cdot(\cos (\mu y)-\mathbf{i} \sin (\mu y)) .
$$

If we define $v(x, y)=u_{1}(x, y)-u_{2}(x, y)$, then

$$
v(x, y)=2 e^{\mu x} \cdot \mathbf{i} \sin (\mu y)
$$

At this point, $v(x, y)$ already satisfies the boundary conditions for $\{y=0\}$ and $\{y=\pi\}$. To satisfy the remaining condition:

$$
\begin{aligned}
\text { Let } v_{1}(x, y) & =2 e^{\mu x} \cdot \mathbf{i} \sin (\mu y) \\
\text { and } v_{1}(x, y) & =2 e^{-\mu x} \cdot \mathbf{i} \sin (\mu y)
\end{aligned}
$$

If we define $w(x, y)=v_{1}(x, y)-v_{2}(x, y)$, then

$$
w(x, y)=4 \sinh (\mu x) \cdot \mathbf{i} \sin (\mu y)
$$

also satisfies the boundary condition at $\{x=0\}$.

Chapter 17

Impulse-response methods

"Nature laughs at the difficulties of integration."
-Pierre-Simon Laplace

17A Introduction

A fundamental concept in science is causality: an initial event (an impulse) at some location \mathbf{y} causes a later event (a response) at another location \mathbf{x} (Figure 17 A .1 A). In an evolving, spatially distributed system (e.g. a temperature distribution, a rippling pond, etc.), the system state at each location results from a combination of the responses to the impulses from all other locations (as in Figure 17 A .1 B$)$.

If the system is described by a linear PDE, then we expect some sort of 'superposition principle' to apply (Theorem 4C.3 on page 65). Hence, we can replace the word 'combination' with 'sum', and say:

The state of the system at \mathbf{x} is a sum of the responses to the impulses from all other locations.
(See Figure 17 A .1 B). However, there are an infinite number -indeed, a continuum -of 'other locations', so we are 'summing' over a continuum of responses. But a 'sum' over a continuum is just an integral. Hence, statement (17A.1) becomes:

In a linear PDE, the solution at \mathbf{x} is an integral of the responses to the impulses from all other locations.

The relation between impulse and response (i.e. between cause and effect) is described by impulse-response function, $\Gamma(\mathbf{y} \rightarrow \mathbf{x})$, which measures the degree of 'influence' which point \mathbf{y} has on point \mathbf{x}. In other words, $\Gamma(\mathbf{y} \rightarrow \mathbf{x})$ measures the strength of the response at \mathbf{x} to an impulse at \mathbf{y}. In a system which evolves in time, Γ may also depend on time (since it takes time for the effect from \mathbf{y} to propagate to \mathbf{x}), so Γ also depends on time, and is written $\Gamma_{t}(\mathbf{y} \rightarrow \mathbf{x})$.

Intuitively, Γ should have four properties:

Figure 17A.1: (A) $\Gamma(\mathbf{y} \rightarrow \mathbf{x})$ describes the 'response' at \mathbf{x} to an 'impulse' at \mathbf{y}. (B) The state at \mathbf{x} is a sum of its responses to the impulses at $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{5}$.
(i) Influence should decay with distance. In other words, if \mathbf{y} and \mathbf{x} are close together, then $\Gamma(\mathbf{y} \rightarrow \mathbf{x})$ should be large; if \mathbf{y} and \mathbf{x} are far apart, then $\Gamma(\mathbf{y} \rightarrow \mathbf{x})$ should be small (Figure 17A.2).
(ii) In a spatially homogeneous or translation invariant system (Figure 17A.3(A)), Γ should only depend on the displacement from \mathbf{y} to \mathbf{x}, so that we can write $\Gamma(\mathbf{y} \rightarrow \mathbf{x})=\gamma(\mathbf{x}-\mathbf{y})$, where γ is some other function.
(iii) In an isotropic or rotation invariant system system (Figure 17A.3(B)), Γ should only depend on the distance between \mathbf{y} and \mathbf{x}, so that we can write $\Gamma(\mathbf{y} \rightarrow \mathbf{x})=\psi(|\mathbf{x}-\mathbf{y}|)$, where ψ is a function of one real variable, and $\lim _{r \rightarrow \infty} \psi(r)=0$.
(iv) In a time-evolving system, the value of $\Gamma_{t}(\mathbf{y} \rightarrow \mathbf{x})$ should first grow as t increases (as the effect 'propagates' from \mathbf{y} to \mathbf{x}), reach a maximum value, and then decrease to zero as t grows large (as the effect 'dissipates' through space) (see Figure 17A.4).

Thus, if there is an 'impulse' of magnitude \mathcal{I} at \mathbf{y}, and $\mathcal{R}(\mathbf{x})$ is the 'response' at \mathbf{x}, then

$$
\mathcal{R}(\mathbf{x})=\mathcal{I} \cdot \Gamma(\mathbf{y} \rightarrow \mathbf{x}) \quad(\text { see Figure } 17 \mathrm{~A} .5 \mathrm{~A})
$$

What if there is an impulse $\mathcal{I}\left(\mathbf{y}_{1}\right)$ at \mathbf{y}_{1}, an impulse $\mathcal{I}\left(\mathbf{y}_{2}\right)$ at \mathbf{y}_{2}, and an impulse $\mathcal{I}\left(\mathbf{y}_{3}\right)$ at \mathbf{y}_{3} ? Then statement (17A.1) implies:
$\mathcal{R}(\mathbf{x})=\mathcal{I}\left(\mathbf{y}_{1}\right) \cdot \Gamma\left(\mathbf{y}_{1} \rightarrow \mathbf{x}\right)+\mathcal{I}\left(\mathbf{y}_{2}\right) \cdot \Gamma\left(\mathbf{y}_{2} \rightarrow \mathbf{x}\right) \quad+\mathcal{I}\left(\mathbf{y}_{3}\right) \cdot \Gamma\left(\mathbf{y}_{3} \rightarrow \mathbf{x}\right)$.
(see Figure 17 A .5 B). If \mathbb{X} is the domain of the PDE, then suppose, for every \mathbf{y}

Figure 17A.2: The influence of \mathbf{y} on \mathbf{x} becomes small as the distance from \mathbf{y} to x grows large.

Figure 17A.3: (A) Translation invariance: If $\mathbf{y}_{2}=\mathbf{y}_{1}+\mathbf{v}$ and $\mathbf{x}_{2}=\mathbf{x}_{1}+\mathbf{v}$, then $\Gamma\left(\mathbf{y}_{2} \rightarrow \mathbf{x}_{2}\right)=\Gamma\left(\mathbf{y}_{1} \rightarrow \mathbf{x}_{1}\right)$. (B) Rotation invariance: If \mathbf{y}_{1} and \mathbf{y}_{2} are both the same distance from \mathbf{x} (i.e. they lie on the circle of radius r around \mathbf{x}), then $\Gamma\left(\mathbf{y}_{2} \rightarrow \mathbf{x}\right)=\Gamma\left(\mathbf{y}_{1} \rightarrow \mathbf{x}\right)$.

Figure 17A.4: The time-dependent impulse-response function first grows large, and then decays to zero.

Figure 17A.5: (A) An 'impulse' of magnitude \mathcal{I} at \mathbf{y} triggers a 'response' of magnitude $\mathcal{I} \cdot \Gamma(\mathbf{y} \rightarrow \mathbf{x})$ at $\mathbf{x} . \quad$ (B) Multiple 'impulses' of magnitude $\mathcal{I}_{1}, \mathcal{I}_{2}$ and \mathcal{I}_{3} at $\mathbf{y}_{1}, \mathbf{y}_{2}$ and \mathbf{y}_{3}, respectively, triggers a 'response' at \mathbf{x} of magnitude $\mathcal{I}_{1} \cdot \Gamma\left(\mathbf{y}_{1} \rightarrow \mathbf{x}\right)+\mathcal{I}_{2} \cdot \Gamma\left(\mathbf{y}_{2} \rightarrow \mathbf{x}\right)+\mathcal{I}_{3} \cdot \Gamma\left(\mathbf{y}_{3} \rightarrow \mathbf{x}\right)$.
in \mathbb{X}, that $\mathcal{I}(\mathbf{y})$ is the impulse at \mathbf{y}. Then statement (17A.1) takes the form:

$$
\begin{equation*}
\mathcal{R}(\mathbf{x})=\sum_{\mathbf{y} \in \mathbb{X}} \mathcal{I}(\mathbf{y}) \cdot \Gamma(\mathbf{y} \rightarrow \mathbf{x}) \tag{17A.3}
\end{equation*}
$$

But now we are summing over all \mathbf{y} in \mathbb{X}, and usually, $\mathbb{X}=\mathbb{R}^{D}$ or some subset, so the 'summation' in (17A.3) doesn't make mathematical sense. We must replace the sum with an integral, as in statement (17A.2), to obtain:

$$
\begin{equation*}
\mathcal{R}(\mathbf{x})=\int_{\mathbb{X}} \mathcal{I}(\mathbf{y}) \cdot \Gamma(\mathbf{y} \rightarrow \mathbf{x}) d \mathbf{y} \tag{17A.4}
\end{equation*}
$$

If the system is spatially homogeneous, then according to (ii), this becomes

$$
\mathcal{R}(\mathbf{x})=\int \mathcal{I}(\mathbf{y}) \cdot \gamma(\mathbf{x}-\mathbf{y}) d \mathbf{y}
$$

This integral is called a convolution, and is usually written as $\mathcal{I} * \gamma$. In other words,

$$
\begin{equation*}
\mathcal{R}(\mathbf{x})=\mathcal{I} * \gamma(\mathbf{x}), \quad \text { where } \quad \mathcal{I} * \gamma(\mathbf{x}):=\int \mathcal{I}(\mathbf{y}) \cdot \gamma(\mathbf{x}-\mathbf{y}) d \mathbf{y} \tag{17A.5}
\end{equation*}
$$

Note that $\mathcal{I} * \gamma$ is a function of \mathbf{x}. The variable \mathbf{y} appears on the right hand side, but as only an integration variable.

In a time-dependent system, (17A.4) becomes:

$$
\mathcal{R}(\mathbf{x} ; t)=\int_{\mathbb{X}} \mathcal{I}(\mathbf{y}) \cdot \Gamma_{t}(\mathbf{y} \rightarrow \mathbf{x}) d \mathbf{y}
$$

while (17A.5) becomes:

$$
\begin{equation*}
\mathcal{R}(\mathbf{x} ; t)=\mathcal{I} * \gamma_{t}(\mathbf{x}), \quad \text { where } \quad \mathcal{I} * \gamma_{t}(\mathbf{x})=\int \mathcal{I}(\mathbf{y}) \cdot \gamma_{t}(\mathbf{x}-\mathbf{y}) d \mathbf{y} . \tag{17A.6}
\end{equation*}
$$

The following surprising property is often useful:
Proposition 17A.1. If $f, g: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ are integrable functions, then $g * f=$ $f * g$.
Proof. (Case $D=1$) Fix $x \in \mathbb{R}$. Then

$$
\begin{aligned}
(g * f)(x) & =\int_{-\infty}^{\infty} g(y) \cdot f(x-y) d y \overline{\overline{(s)}} \int_{\infty}^{-\infty} g(x-z) \cdot f(z) \cdot(-1) d z \\
& =\int_{-\infty}^{\infty} f(z) \cdot g(x-z) d z=(f * g)(x)
\end{aligned}
$$

Here, step (s) was the substitution $z=x-y$, so that $y=x-z$ and $d y=-d z$.
Exercise 17A. 1 Generalize this proof to the case $D \geq 2$.

Remarks: (a) Depending on the context, impulse-response functions are sometimes called solution kernels, or Green's functions or impulse functions.
(b) If f and g are analytic functions, then there is an efficient way to compute $f * g$ using complex analysis; see Corollary 18H.3 on page 474.

17B Approximations of identity

17B(i) ...in one dimension

Prerequisites: § $\boxed{77 A}$.
Suppose $\gamma: \mathbb{R} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ was a one-dimensional impulse response function, as in equation (17A.6). Thus, if $\mathcal{I}: \mathbb{R} \longrightarrow \mathbb{R}$ is a function describing the initial 'impulse', then for any time $t>0$, the 'response' is given by the function \mathcal{R}_{t} defined:

$$
\begin{equation*}
\mathcal{R}_{t}(x):=\mathcal{I} * \gamma_{t}(x)=\int_{-\infty}^{\infty} \mathcal{I}(y) \cdot \gamma_{t}(x-y) d y . \tag{17B.1}
\end{equation*}
$$

Intuitively, if t is close to zero, then the response \mathcal{R}_{t} should be concentrated near the locations where the impulse \mathcal{I} is concentrated (because the energy has not yet been able to propagate very far). By inspecting eqn.(17B.1), we see that this means that the mass of γ_{t} should be 'concentrated' near zero. Formally, we say that γ is an approximation of the identity if it has the following properties (Figure 17B.1):
(AI1) $\gamma_{t}(x) \geq 0$ everywhere, and $\int_{-\infty}^{\infty} \gamma_{t}(x) d x=1$ for any fixed $t>0$.
(AI2) For any $\epsilon>0, \quad \lim _{t \rightarrow 0} \int_{-\epsilon}^{\epsilon} \gamma_{t}(x) d x=1$.
Property (AI1) says that γ_{t} is a probability density. (AI2) says that γ_{t} concentrates all of its "mass" at zero as $t \rightarrow 0$. (Heuristically speaking, the function γ_{t} is converging to the 'Dirac delta function' δ_{0} as $t \rightarrow 0$.)

Example 17B.1.

(a) Let $\gamma_{t}(x)=\left\{\begin{array}{lll}\frac{1}{t} & \text { if } & 0 \leq x \leq t ; \\ 0 & \text { if } & x<0 \text { or } t<x .\end{array} \quad\right.$ (Figure 17B.2

Thus, for any $t>0$, the graph of γ_{t} is a 'box' of width t and height $1 / t$. Then γ is an approximation of identity. (See Practice Problem \# 11 on page 413.)

Figure 17B.1: γ is an approximation of the identity.

Figure 17B.2: Example 17B.1(a)
(b) Let $\gamma_{t}(x)=\left\{\begin{array}{rll}\frac{1}{2 t} & \text { if } & |x| \leq t \\ 0 & \text { if } & t<|x|\end{array}\right.$.

Thus, for any $t>0$, the graph of γ_{t} is a 'box' of width $2 t$ and height $1 / 2 t$. Then γ is an approximation of identity. (See Practice Problem \# 12 on page 413.)

A function satisfying properties (AI1) and (AI2) is called an approximation of the identity because of the following theorem:

Proposition 17B.2. Let $\gamma: \mathbb{R} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ be an approximation of identity.
(a) Let $\mathcal{I}: \mathbb{R} \longrightarrow \mathbb{R}$ be a bounded continuous function. Then for all $x \in \mathbb{R}$, $\lim _{t \rightarrow 0} \mathcal{I} * \gamma_{t}(x)=\mathcal{I}(x)$.
(b) Let $\mathcal{I}: \mathbb{R} \longrightarrow \mathbb{R}$ be any bounded integrable function. If $x \in \mathbb{R}$ is any continuity-point of \mathcal{I}, then $\lim _{t \rightarrow 0} \mathcal{I} * \gamma_{t}(x)=\mathcal{I}(x)$.

Proof. (a) Fix $x \in \mathbb{R}$. Given any $\epsilon>0$, find $\delta>0$ such that,

$$
\text { For all } y \in \mathbb{R}, \quad(|y-x|<\delta) \quad \Longrightarrow \quad\left(|\mathcal{I}(y)-\mathcal{I}(x)|<\frac{\epsilon}{3}\right) \text {. }
$$

(Such an ϵ exists because \mathcal{I} is continuous). Thus,

$$
\begin{align*}
& \left|\mathcal{I}(x) \cdot \int_{x-\delta}^{x+\delta} \gamma_{t}(x-y) d y-\int_{x-\delta}^{x+\delta} \mathcal{I}(y) \cdot \gamma_{t}(x-y) d y\right| \\
& \quad=\left|\int_{x-\delta}^{x+\delta}(\mathcal{I}(x)-\mathcal{I}(y)) \cdot \gamma_{t}(x-y) d y\right| \leq \int_{x-\delta}^{x+\delta}|\mathcal{I}(x)-\mathcal{I}(y)| \cdot \gamma_{t}(x-y) d y \\
& \quad<\frac{\epsilon}{3} \int_{x-\delta}^{x+\delta} \gamma_{t}(x-y) d y \underset{\text { (Al1) }}{<} \frac{\epsilon}{3} . \tag{17B.2}
\end{align*}
$$

(Here (AI1) is by property (AI1) of γ_{t}.)
Recall that \mathcal{I} is bounded. Suppose $|\mathcal{I}(y)|<M$ for all $y \in \mathbb{R}$; using (AI2), find some small $\tau>0$ such that, if $t<\tau$, then $\int_{x-\delta}^{x+\delta} \gamma_{t}(y) d y>1-\frac{\epsilon}{3 M}$; hence

$$
\underset{\text { ar Partial Differential Equations and Fourier Theory }}{\int_{-\infty}^{x-\delta} \gamma_{t}(y) d y+\int_{x+\delta}^{\infty} \gamma_{t}(y) d y=\int_{-\infty}^{\infty} \gamma_{t}(y) d y-\int_{\text {Marcus Pivato }}^{x+\delta} \gamma_{t}(y) d y}
$$

$$
\begin{equation*}
\underset{(\mathrm{Al1})}{<} \quad 1-\left(1-\frac{\epsilon}{3 M}\right)=\frac{\epsilon}{3 M} . \tag{17B.3}
\end{equation*}
$$

(Here (AI1) is by property (AI1) of γ_{t}.) Thus,

$$
\begin{array}{rl}
\mid \mathcal{I} & * \gamma_{t}(x)-\int_{x-\delta}^{x+\delta} \mathcal{I}(y) \cdot \gamma_{t}(x-y) d y \mid \\
& \leq\left|\int_{-\infty}^{\infty} \mathcal{I}(y) \cdot \gamma_{t}(x-y) d y-\int_{x-\delta}^{x+\delta} \mathcal{I}(y) \cdot \gamma_{t}(x-y) d y\right| \\
& =\left|\int_{-\infty}^{x-\delta} \mathcal{I}(y) \cdot \gamma_{t}(x-y) d y+\int_{x+\delta}^{\infty} \mathcal{I}(y) \cdot \gamma_{t}(x-y) d y\right| \\
& \leq \int_{-\infty}^{x-\delta}\left|\mathcal{I}(y) \cdot \gamma_{t}(x-y)\right| d y+\int_{x+\delta}^{\infty}\left|\mathcal{I}(y) \cdot \gamma_{t}(x-y)\right| d y \\
& \leq \int_{-\infty}^{x-\delta} M \cdot \gamma_{t}(x-y) d y+\int_{x+\delta}^{\infty} M \cdot \gamma_{t}(x-y) d y \\
& \leq M \cdot\left(\int_{-\infty}^{x-\delta} \gamma_{t}(x-y) d y+\int_{x+\delta}^{\infty} \gamma_{t}(x-y) d y\right) \\
& M \cdot \frac{\epsilon}{3 M}=\frac{\epsilon}{3} . \tag{17B.4}
\end{array}
$$

(Here, $(*)$ is by eqn.(17B.3).) Combining equations (17B.2) and (17B.4) we have:

$$
\begin{align*}
& \left\lvert\, \begin{array}{lll}
\mathcal{I}(x) \cdot \int_{x-\delta}^{x+\delta} \gamma_{t}(x-y) d y & -\mathcal{I} * \gamma_{t}(x) \mid \\
\leq & \left|\mathcal{I}(x) \cdot \int_{x-\delta}^{x+\delta} \gamma_{t}(x-y) d y-\int_{x-\delta}^{x+\delta} \mathcal{I}(y) \cdot \gamma_{t}(x-y) d y\right| \\
\quad & +\left|\int_{x-\delta}^{x+\delta} \mathcal{I}(y) \cdot \gamma_{t}(x-y) d y-\mathcal{I} * \gamma_{t}(x)\right| \\
\leq \frac{\epsilon}{3}+\frac{\epsilon}{3}=\frac{2 \epsilon}{3} .
\end{array}\right.
\end{align*}
$$

But if $t<\tau$, then $\left|1-\int_{x-\delta}^{x+\delta} \gamma_{t}(x-y) d y\right|<\frac{\epsilon}{3 M}$. Thus,

$$
\begin{align*}
\left|\mathcal{I}(x)-\mathcal{I}(x) \cdot \int_{x-\delta}^{x+\delta} \gamma_{t}(x-y) d y\right| & \leq|\mathcal{I}(x)| \cdot\left|1-\int_{x-\delta}^{x+\delta} \gamma_{t}(x-y) d y\right| \\
& <|\mathcal{I}(x)| \cdot \frac{\epsilon}{3 M} \leq M \cdot \frac{\epsilon}{3 M}=\frac{\epsilon}{3} \tag{17B.6}
\end{align*}
$$

Combining equations (17B.5) and (17B.6) we have:
$\left|\mathcal{I}(x)-\mathcal{I} * \gamma_{t}(x)\right|$

$$
\begin{aligned}
& \leq\left|\mathcal{I}(x)-\mathcal{I}(x) \cdot \int_{x-\delta}^{x+\delta} \gamma_{t}(x-y) d y\right|+\left|\mathcal{I}(x) \cdot \int_{x-\delta}^{x+\delta} \gamma_{t}(x-y) d y-\mathcal{I} * \gamma_{t}(x)\right| \\
& \leq \frac{\epsilon}{3}+\frac{2 \epsilon}{3} \cdot=\epsilon .
\end{aligned}
$$

Since ϵ can be made arbitrarily small, we're done.
(b) Exercise 17B. 1 (Hint: imitate part (a)).

In other words, as $t \rightarrow 0$, the convolution $\mathcal{I} * \gamma_{t}$ resembles \mathcal{I} with arbitrarily high accuracy. Similar convergence results can be proved in other norms (e.g. L^{2} convergence, uniform convergence).

Example 17B.3. Let $\gamma_{t}(x)=\left\{\begin{array}{ccl}\frac{1}{t} & \text { if } & 0 \leq x \leq t \\ 0 & \text { if } & x<0 \text { or } t<x\end{array}, \quad\right.$ as in Example 17B.1(a). Suppose $\mathcal{I}: \mathbb{R} \longrightarrow \mathbb{R}$ is a continuous function. Then for any $x \in \mathbb{R}$,

$$
\mathcal{I} * \gamma_{t}(x)=\int_{-\infty}^{\infty} \mathcal{I}(y) \cdot \gamma_{t}(x-y) d y=\frac{1}{t} \int_{x-t}^{x} \mathcal{I}(y) d y=\frac{1}{t}(\mathcal{J}(x)-\mathcal{J}(x-t)),
$$

where \mathcal{J} is an antiderivative of \mathcal{I}. Thus, as implied by Proposition 17B.2,

$$
\lim _{t \rightarrow 0} \mathcal{I} * \gamma_{t}(x)=\lim _{t \rightarrow 0} \frac{\mathcal{J}(x)-\mathcal{J}(x-t)}{t} \overline{\overline{(*)}} \mathcal{J}^{\prime}(x) \overline{\overline{(+)}} \mathcal{I}(x) .
$$

(Here (*) is just the definition of differentiation, and (\dagger) is because \mathcal{J} is an antiderivative of I.)

17B(ii) ...in many dimensions

Prerequisites: $\S[1 \mathrm{~B}(\mathrm{i})$. Recommended: $\S[7 \mathrm{C}(\mathrm{i})$.
A nonnegative function $\gamma: \mathbb{R}^{D} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}_{\not}$ is called an approximation of the identity if it has the following two properties:
(AI1) $\int_{\mathbb{R}^{D}} \gamma_{t}(\mathbf{x}) d \mathbf{x}=1$ for all $t \in[0, \infty]$.
(AI2) For any $\epsilon>0, \quad \lim _{t \rightarrow 0} \int_{\mathbb{B}(0 ; \epsilon)} \gamma_{t}(\mathbf{x}) d \mathbf{x}=1$.
Property (AI1) says that γ_{t} is a probability density. (AI2) says that γ_{t} concentrates all of its "mass" at zero as $t \rightarrow 0$.
Example 17B.4. Define $\gamma: \mathbb{R}^{2} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by $\gamma_{t}(x, y)=\left\{\begin{array}{cl}\frac{1}{4 t^{2}} & \text { if }|x| \leq t \text { and }|y| \leq t ; \\ 0 & \text { otherwise. }\end{array}\right.$.
Then γ is an approximation of the identity on \mathbb{R}^{2}. (Exercise 17B.2)

Proposition 17B.5. Let $\gamma: \mathbb{R}^{D} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ be an approximation of the identity.
(a) Let $\mathcal{I}: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ be a bounded continuous function. Then for every $\mathbf{x} \in \mathbb{R}^{D}$, we have $\lim _{t \rightarrow 0} \mathcal{I} * \gamma_{t}(\mathbf{x})=\mathcal{I}(\mathbf{x})$.
(b) Let $\mathcal{I}: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ be any bounded integrable function. If $\mathbf{x} \in \mathbb{R}^{D}$ is any continuity-point of \mathcal{I}, then $\lim _{t \rightarrow 0} \mathcal{I} * \gamma_{t}(\mathbf{x})=\mathcal{I}(\mathbf{x})$.

Proof. Exercise 17B. 3 Hint: the argument is basically identical to that of Proposition 17B.2; just replace the interval $(-\epsilon, \epsilon)$ with a ball of radius ϵ.

In other words, as $t \rightarrow 0$, the convolution $\mathcal{I} * \gamma_{t}$ resembles \mathcal{I} with arbitrarily high accuracy. Similar convergence results can be proved in other norms (e.g. L^{2} convergence, uniform convergence).

When solving partial differential equations, approximations of identity are invariably used in conjunction with the following result:

Proposition 17B.6. Let L be a linear differential operator on $\mathcal{C}^{\infty}\left(\mathbb{R}^{D} ; \mathbb{R}\right)$.
(a) If $\gamma: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ is a solution to the homogeneous equation " $\mathcal{L}=0$ ", then for any function $\mathcal{I}: \mathbb{R}^{D} \longrightarrow \mathbb{R}$, the function $u=\mathcal{I} * \gamma$ satisfies: $\mathrm{L} u=0$.
(b) If $\gamma: \mathbb{R}^{D} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ satisfies the evolution equation" $\partial_{t}^{n} \gamma=\mathrm{L} \gamma$ ", and we define $\gamma_{t}(\mathbf{x}):=\gamma(\mathbf{x} ; t)$, then for any function $\mathcal{I}: \mathbb{R}^{D} \longrightarrow \mathbb{R}$, the function $u_{t}=\mathcal{I} * \gamma_{t}$ satisfies: $\partial_{t}^{n} u=\mathrm{L} u$.

Proof. Exercise 17B. 4 Hint: Generalize the proof of Proposition 17 C .1 on the facing page, by replacing the one-dimensional convolution integral with a D dimensional convolution integral, and by replacing the Laplacian with an arbitrary linear operator L.

Corollary 17B.7. Suppose γ is an approximation of the identity and satisfies the evolution equation " $\partial_{t}^{n} \gamma=\mathrm{L} \gamma$ ". For any $\mathcal{I}: \mathbb{R}^{D} \longrightarrow \mathbb{R}$, define $u: \mathbb{R}^{D} \times$ $\mathbb{R}_{+} \longrightarrow \mathbb{R}$ by:

- $u(\mathbf{x} ; 0)=\mathcal{I}(\mathbf{x})$.
- $u_{t}=\mathcal{I} * \gamma_{t}$, for all $t>0$.

Then u is a solution to the equation " $\partial_{t}^{n} u=\mathrm{L} u$ ", and u satisfies the initial conditions $u(\mathbf{x}, 0)=\mathcal{I}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{D}$.

Proof. Combine Propositions 17B.5 and 17B.6.

We say that γ is the fundamental solution (or solution kernel, or Green's function or impulse function) for the PDE. For example, the D-dimensional Gauss-Weierstrass kernel is a fundamental solution for the D-dimensional heat equation.

17C The Gaussian convolution solution (heat equation)

17C(i) ...in one dimension
Prerequisites: $\S[1 \mathrm{~B}(\mathrm{i}), ~ \S[7 \mathrm{~B}(\mathrm{i}), ~ \S(0 \mathrm{G} . \quad$ Recommended: $\S[7 \mathrm{~A}, \S 20 \mathrm{~A}(\mathrm{ii}]$.
Given two functions $\mathcal{I}, \mathcal{G}: \mathbb{R} \longrightarrow \mathbb{R}$, recall (from $\S(17 \mathrm{~A})$ that their convolution is the function $\mathcal{I} * \mathcal{G}: \mathbb{R} \longrightarrow \mathbb{R}$ defined:

$$
\mathcal{I} * \mathcal{G}(x):=\int_{-\infty}^{\infty} \mathcal{I}(y) \cdot \mathcal{G}(x-y) d y, \quad \text { for all } x \in \mathbb{R}
$$

Recall the Gauss-Weierstrass kernel from Example 1B.1 on page 6:

$$
\mathcal{G}_{t}(x):=\frac{1}{2 \sqrt{\pi t}} \exp \left(\frac{-x^{2}}{4 t}\right), \quad \text { for all } x \in \mathbb{R} \text { and } t>0
$$

We will use $\mathcal{G}_{t}(x)$ as an impulse-response function to solve the one-dimensional heat equation.

Proposition 17C.1. Let $\mathcal{I}: \mathbb{R} \longrightarrow \mathbb{R}$ be a bounded integrable function. Define $u: \mathbb{R} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by $u(x ; t):=\mathcal{I} * \mathcal{G}_{t}(x)$ for all $x \in \mathbb{R}$ and $t>0$. Then u is a solution to the one-dimensional heat equation.

Proof. For any fixed $y \in \mathbb{R}$, define $u_{y}(x ; t)=\mathcal{I}(y) \cdot \mathcal{G}_{t}(x-y)$.
Claim 1: $\quad u_{y}(x ; t)$ is a solution of the one-dimensional heat equation.
Proof. First note that $\partial_{t} \mathcal{G}_{t}(x-y)=\partial_{x}^{2} \mathcal{G}_{t}(x-y)$ (Exercise 17C.1 $)$.
Now, y is a constant, so we treat $\mathcal{I}(y)$ as a constant when differentiating by x or by t. Thus,

$$
\begin{aligned}
\partial_{t} u_{y}(x, t) & =\mathcal{I}(y) \cdot \partial_{t} \mathcal{G}_{t}(x-y)=\mathcal{I}(y) \cdot \partial_{x}^{2} \mathcal{G}_{t}(x-y) \\
& =\partial_{x}^{2} u_{y}(x, t)=\triangle u_{y}(x, t),
\end{aligned}
$$

as desired.

$$
\diamond_{\text {Claim } 1}
$$

Now, $u(x, t)=\mathcal{I} * \mathcal{G}_{t}=\int_{-\infty}^{\infty} \mathcal{I}(y) \cdot \mathcal{G}_{t}(x-y) d y=\int_{-\infty}^{\infty} u_{y}(x ; t) d y$. Thus,

$$
\partial_{t} u(x, t) \underset{(*)}{\overline{(*)}} \int_{-\infty}^{\infty} \partial_{t} u_{y}(x ; t) d y \underset{(\uparrow)}{\overline{(\dagger)}} \int_{-\infty}^{\infty} \Delta u_{y}(x ; t) d y \underset{\overline{(*)}}{\overline{(}} \quad \triangle u(x, t) .
$$

[^64]

Figure 17C.1: Discrete convolution: a superposition of Gaussians

Figure 17C.2: Convolution as a limit of 'discrete' convolutions.

Here, (\dagger) is by Claim 1, and $(*)$ is by Proposition 0G. 1 on page 567.
(Exercise 17C. 2 Verify that the conditions of Proposition 0G.1 are satisfied.)

Remark. One way to visualize the 'Gaussian convolution' $u(x ; t)=\mathcal{I} * \mathcal{G}_{t}(x)$ is as follows. Consider a finely spaced " ϵ-mesh" of points on the real line,

$$
\epsilon \cdot \mathbb{Z}=\{n \epsilon ; n \in \mathbb{Z}\}
$$

For every $n \in \mathbb{Z}$, define the function $\mathcal{G}_{t}^{(n)}(x)=\mathcal{G}_{t}(x-n \epsilon)$. For example, $\mathcal{G}_{t}^{(5)}(x)=\mathcal{G}_{t}(x-5 \epsilon)$ looks like a copy of the Gauss-Weierstrass kernel, but centered at 5ϵ (see Figure 17C.1AA).

For each $n \in \mathbb{Z}$, let $I_{n}=\mathcal{I}(n \cdot \epsilon)$ (see Figure 17C.1C). Now consider the infinite linear combination of Gauss-Weierstrass kernels (see Figure 17C.1D):

$$
u_{\epsilon}(x ; t)=\epsilon \cdot \sum_{n=-\infty}^{\infty} I_{n} \cdot \mathcal{G}_{t}^{(n)}(x) .
$$

Now imagine that the ϵ-mesh become 'infinitely dense', by letting $\epsilon \rightarrow 0$. Define $u(x ; t)=\lim _{\epsilon \rightarrow 0} u_{\epsilon}(x ; t)$. I claim that $u(x ; t)=\mathcal{I} * \mathcal{G}_{t}(x)$. To see this, note that

$$
\begin{aligned}
u(x ; t) & =\lim _{\epsilon \rightarrow 0} \epsilon \cdot \sum_{n=-\infty}^{\infty} I_{n} \cdot \mathcal{G}_{t}^{(n)}(x)=\lim _{\epsilon \rightarrow 0} \epsilon \cdot \sum_{n=-\infty}^{\infty} \mathcal{I}(n \epsilon) \cdot \mathcal{G}_{t}(x-n \epsilon) \\
& \overline{(*)} \int_{-\infty}^{\infty} \mathcal{I}(y) \cdot \mathcal{G}_{t}(x-y) d y=\mathcal{I} * \mathcal{G}_{t}(y),
\end{aligned}
$$

as shown in Figure 17C.2.
Exercise 17C.3. Rigorously justify step (*) in the previous computation. (Hint. Use a Riemann sum.)

Proposition 17C.2. The Gauss-Weierstrass kernel is an approximation of identity (see $\S\left[\begin{array}{|c|}\hline 7 \mathrm{~B}(\mathrm{i})\end{array}\right)$, meaning that it satisfies the following two properties:
(AI1) $\mathcal{G}_{t}(x) \geq 0$ everywhere, and $\int_{-\infty}^{\infty} \mathcal{G}_{t}(x) d x=1$ for any fixed $t>0$.
(AI2) For any $\epsilon>0, \lim _{t \rightarrow 0} \int_{-\epsilon}^{\epsilon} \mathcal{G}_{t}(x) d x=1$.

Proof. Exercise 17C. 4

Figure 17C.3: The Heaviside step function $\mathcal{H}(x)$.
Corollary 17C.3. Let $\mathcal{I}: \mathbb{R} \longrightarrow \mathbb{R}$ be a bounded integrable function. Define the function $u: \mathbb{R} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by

- $u_{0}(x):=\mathcal{I}(x)$ for all $x \in \mathbb{R}$ (initial conditions).
- $u_{t}:=\mathcal{I} * \mathcal{G}_{t}$, for all $t>0$.

Then u is a solution to the one-dimensional heat equation. Furthermore:
(a) If \mathcal{I} is continuous on \mathbb{R}, then u is continuous on $\mathbb{R} \times \mathbb{R}_{\not}$.
(b) Even if \mathcal{I} is not continuous, the function u is still continuous on $\mathbb{R} \times \mathbb{R}_{+}$, and u is also continuous at $(x, 0)$ for any $x \in \mathbb{R}$ where \mathcal{I} is continuous.

Proof. Propositions 17C. 1 says that u is a solution to the heat equation. Combine Proposition 17 C .2 with Proposition 17 B .2 on page 381 to verify the continuity assertions (a) and (b).

The 'continuity' part of Corollary 17 C .3 means that u is the solution to the initial value problem for the heat equation with initial conditions \mathcal{I}. Because of Corollary 17 C .3 , we say that \mathcal{G} is the fundamental solution (or solution kernel, or Green's function or impulse function) for the heat equation.

Example 17C.4: The Heaviside Step function

Consider the Heaviside step function $\mathcal{H}(x)=\left\{\begin{array}{ll}1 & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{array}\right.$ (see Figure 17C.3). The solution to the one-dimensional heat equation with initial conditions $u(x, 0)=\mathcal{H}(x)$ is given by:

$$
\begin{aligned}
& u(x, t) \overline{(\times)} \mathcal{H} * \mathcal{G}_{t}(x) \overline{\overline{(+)}} \mathcal{G}_{t} * \mathcal{H}(x)=\int_{-\infty}^{\infty} \mathcal{G}_{t}(y) \cdot \mathcal{H}(x-y) d y \\
& =\frac{1}{2 \sqrt{\pi t}} \int_{-\infty}^{\infty} \exp \left(\frac{-y^{2}}{4 t}\right) \mathcal{H}(x-y) d y \quad \overline{\overline{(\pm)}} \quad \frac{1}{2 \sqrt{\pi t}} \int_{-\infty}^{x} \exp \left(\frac{-y^{2}}{4 t}\right) d y \\
& \overline{\overline{(\Delta)}} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x / \sqrt{2 t}} \exp \left(\frac{-z^{2}}{2}\right) d z=\Phi\left(\frac{x}{\sqrt{2 t}}\right) .
\end{aligned}
$$

Figure 17C.4: $u_{t}(x)=\left(\mathcal{H} * \mathcal{G}_{t}\right)(x)$ evaluated at several $x \in \mathbb{R}$.

Figure 17C.5: $u_{t}(x)=\left(\mathcal{H} * \mathcal{G}_{t}\right)(x)$ for several $t>0$.

Here, $(*)$ is by Prop. 17 C .1 on page 385; (\dagger) is by Prop. 17 A .1 on page 378; (\ddagger) is because $\mathcal{H}(x-y)=\left\{\begin{array}{ll}1 & \text { if } y \leq x \\ 0 & \text { if } y>x\end{array}, \quad\right.$ and (\diamond) is where we make the substitution $z=\frac{y}{\sqrt{2 t}}$; thus, $d y=\sqrt{2 t} d z$.
Here, $\Phi(x)$ is the cumulative distribution function of the standard normal probability measure defined:

$$
\Phi(x):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(\frac{-z^{2}}{2}\right) d z
$$

(see Figure 17C.4). At time zero, $u(x, 0)=\mathcal{H}(x)$ is a step function. For $t>0$, $u(x, t)$ looks like a compressed version of $\Phi(x)$: a steep sigmoid function. As t increases, this sigmoid becomes broader and flatter. (see Figure 17C.5). \diamond

When computing convolutions, you can often avoid a lot of messy integrals by exploiting the following properties:

Proposition 17C.5. Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be integrable functions. Then:
(a) If $h: \mathbb{R} \longrightarrow \mathbb{R}$ is another integrable function, then $f *(g+h)=(f * g)+$ $(f * h)$.
(b) If $r \in \mathbb{R}$ is a constant, then $f *(r \cdot g)=r \cdot(f * g)$.
(c) Suppose $d \in \mathbb{R}$ is some 'displacement', and we define $f_{\triangleright d}(x)=f(x-d)$. Then $\left(f_{\triangleright d} * g\right)(x)=(f * g)(x-d)$. (i.e. $\left(f_{\triangleright d}\right) * g=(f * g)_{\triangleright d}$.)

Proof. See Practice Problems \#2 and \# 3 on page 411 of $\S[7 \mathrm{H}$.

Example 17C.6: A staircase function

Suppose $\mathcal{I}(x)=\left\{\begin{array}{ll}0 & \text { if } x<0 \\ 1 & \text { if } 0 \leq x<1 \\ 2 & \text { if } 1 \leq x<2 \\ 0 & \text { if } 2 \leq x\end{array}\right.$ (see Figure 17C.6A). Let $\Phi(x)$ be the sigmoid function from Example 17C.4. Then

$$
u(x, t)=\Phi\left(\frac{x}{\sqrt{2 t}}\right)+\Phi\left(\frac{x-1}{\sqrt{2 t}}\right)-2 \cdot \Phi\left(\frac{x-2}{\sqrt{2 t}}\right) \quad \text { (see Figure 17C.6B) }
$$

[^65]

To see this, observe that we can write:

$$
\begin{align*}
\mathcal{I}(x) & =\mathcal{H}(x)+\mathcal{H}(x-1)-2 \cdot \mathcal{H}(x-2) \tag{17C.1}\\
& =\mathcal{H}+\mathcal{H}_{\triangleright 1}(x)-2 \mathcal{H}_{\triangleright 2}(x), \tag{17C.2}
\end{align*}
$$

where eqn. (17C.2) uses the notation of Proposition 17C.5(c). Thus,

$$
\begin{array}{rll}
u(x ; t) & \overline{\overline{(*)}} & \mathcal{I} * \mathcal{G}_{t}(x) \quad \overline{\overline{(\uparrow)}} \quad\left(\mathcal{H}+\mathcal{H}_{\triangleright 1}-2 \mathcal{H}_{\triangleright 2}\right) * \mathcal{G}_{t}(x) \\
& \overline{\overline{(+)}} & \mathcal{H} * \mathcal{G}_{t}(x)+\mathcal{H}_{\triangleright 1} * \mathcal{G}_{t}(x)-2 \mathcal{H}_{\triangleright 2} * \mathcal{G}_{t}(x) \\
& \overline{\overline{(\Delta)}} & \mathcal{H} * \mathcal{G}_{t}(x)+\mathcal{H} * \mathcal{G}_{t}(x-1)-2 \mathcal{H} * \mathcal{G}_{t}(x-2) \\
& \overline{\overline{(व)}} & \Phi\left(\frac{x}{\sqrt{2 t}}\right)+\Phi\left(\frac{x-1}{\sqrt{2 t}}\right)-2 \Phi\left(\frac{x-2}{\sqrt{2 t}}\right) . \tag{17C.3}
\end{array}
$$

Here, $(*)$ is by Proposition 17 C .1 on page 385; (\dagger) is by eqn. (17C.2); (\ddagger) is by Proposition 17C.5(a) and (b); (\diamond) is by Proposition 17C.5(c); and ($\mathbb{I})$ is by Example 17 C .4 .

Another approach. Begin with eqn. (17C.1), and, rather than using Proposition 17 C .5 , use instead the linearity of the heat equation, along with Theorem 4C.3 on page 65, to deduce that the solution must have the form:

$$
\begin{equation*}
u(x, t)=u_{0}(x, t)+u_{1}(x, t)-2 \cdot u_{2}(x, t), \tag{17C.4}
\end{equation*}
$$

where

- $u_{0}(x, t)$ is the solution with initial conditions $u_{0}(x, 0)=\mathcal{H}(x)$,
- $u_{1}(x, t)$ is the solution with initial conditions $u_{1}(x, 0)=\mathcal{H}(x-1)$,
- $u_{2}(x, t)$ is the solution with initial conditions $u_{2}(x, 0)=\mathcal{H}(x-2)$,

But then we know, from Example 17C.4 that

$$
\begin{equation*}
u_{0}(x, t)=\Phi\left(\frac{x}{\sqrt{2 t}}\right) ; \quad u_{1}(x, t)=\Phi\left(\frac{x-1}{\sqrt{2 t}}\right) ; \quad \text { and } u_{2}(x, t)=\Phi\left(\frac{x-2}{\sqrt{2 t}}\right) ; \tag{17C.5}
\end{equation*}
$$

Now combine (17C.4) with (17C.5) to again obtain the solution (17C.3). \diamond
Remark. The Gaussian convolution solution to the heat equation is revisited in $\S 20 \mathrm{~A}(\mathrm{ii}]$ on page 530, using the methods of Fourier transforms.

17C(ii) ...in many dimensions

Prerequisites: $\S[1 \mathrm{~B}(\mathrm{ii}), \S 17 \mathrm{~B}(\mathrm{ii})$. Recommended: $\S 17 \mathrm{~A}, \S[17 \mathrm{C}(\mathrm{i})$.
Given two functions $\mathcal{I}, \mathcal{G}: \mathbb{R}^{D} \longrightarrow \mathbb{R}$, their convolution is the function $\mathcal{I} * \mathcal{G}: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ defined:

$$
\mathcal{I} * \mathcal{G}(\mathbf{x}) \quad:=\int_{\mathbb{R}^{D}} \mathcal{I}(\mathbf{y}) \cdot \mathcal{G}(\mathbf{x}-\mathbf{y}) d \mathbf{y} .
$$

Note that $\mathcal{I} * \mathcal{G}$ is a function of \mathbf{x}. The variable \mathbf{y} appears on the right hand side, but as an integration variable.

Consider the the D-dimensional Gauss-Weierstrass kernel:

$$
\mathcal{G}_{t}(\mathbf{x}):=\frac{1}{(4 \pi t)^{D / 2}} \exp \left(\frac{-\|\mathbf{x}\|^{2}}{4 t}\right), \quad \text { for all } \mathbf{x} \in \mathbb{R}^{D} \text { and } t>0
$$

(See Examples 1B.2(b,c) on page 8). We will use $\mathcal{G}_{t}(x)$ as an impulse-response function to solve the D-dimensional heat equation.

Theorem 17C.7.

Suppose $\mathcal{I}: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ is a bounded continuous function. Define the function $u: \mathbb{R}^{D} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by:

- $u_{0}(\mathbf{x}):=\mathcal{I}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{D}$ (initial conditions).
- $u_{t}:=\mathcal{I} * \mathcal{G}_{t}$, for all $t>0$.

Then u is a continuous solution to the heat equation on \mathbb{R}^{D} with initial conditions \mathcal{I}.

Proof.
Claim 1: $\quad u(\mathrm{x} ; t)$ is a solution to the D-dimensional heat equation.
Proof. Exercise 17C. 5 Hint: Combine Example 1B.2(c) on page 8 with Proposition 17B.6(b) on page 384.

Claim 2: $\quad \mathcal{G}$ is an approximation of the identity on \mathbb{R}^{D}.

Proof. Exercise 17C. 6

Now apply Corollary 17B.7 on page 384

Because of Theorem [17C.7, we say that \mathcal{G} is the fundamental solution for the heat equation.

Exercise 17C.7. In Theorem 17C.7, suppose the initial condition \mathcal{I} had some points of discontinuity in \mathbb{R}^{D}. What can you say about the continuity of the function u ? In what sense is u still a solution to the initial value problem with initial conditions $u_{0}=\mathcal{I}$?

17D d'Alembert's solution (one-dimensional wave equation)

"Algebra is generous; she often gives more than is asked of her." —Jean le Rond d'Alembert
d'Alembert's method provides a solution to the one-dimensional wave equation

$$
\begin{equation*}
\partial_{t}^{2} u=\partial_{x}^{2} u \tag{17D.1}
\end{equation*}
$$

with any initial conditions, using combinations of travelling waves and ripples. First we'll discuss this in the infinite domain $\mathbb{X}=\mathbb{R}$, then we'll consider a finite domain like $\mathbb{X}=[a, b]$.

17D(i) Unbounded domain

Prerequisites: $\oint 2 \mathrm{~B}(\mathrm{i})$ Recommended: $\oint 17 \mathrm{~A}$.

Lemma 17D.1. (Travelling Wave Solution)

Let $f_{0}: \mathbb{R} \longrightarrow \mathbb{R}$ be any twice-differentiable function. Define the functions $w_{L}, w_{R}: \mathbb{R} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by $w_{L}(x, t):=f_{0}(x+t)$ and $w_{R}(x, t):=f_{0}(x-t)$, for any $x \in \mathbb{R}$ and any $t \geq 0$ (see Figure 17D.1). Then w_{L} and w_{R} are solutions to the wave equation (17D.1), with

$$
\begin{array}{ccl}
\text { Initial Position: } \quad w_{L}(x, 0)= & f_{0}(x)=w_{R}(x, 0), \\
\text { Initial Velocities: } \partial_{t} w_{L}(x, 0)= & f_{0}^{\prime}(x) ; \quad \partial_{t} w_{R}(x, 0)= & -f_{0}^{\prime}(x) . \\
& \text { Marcus Pivato } \quad \text { DRAFT } & \text { January 31, 2009 }
\end{array}
$$

Define $w: \mathbb{R} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by $w(x, t):=\frac{1}{2}\left(w_{L}(x, t)+w_{R}(x, t)\right)$, for all $x \in \mathbb{R}$ and $t \geq 0$. Then w is a solution to the wave equation (17D.1), with Initial Position $w(x, 0)=f_{0}(x)$ and Initial Velocity $\partial_{t} w(x, 0)=0$.

Proof. See Practice Problem \# 5 on page 412.

Physically, w_{L} represents a leftwards-travelling wave: take a copy of the function f_{0} and just rigidly translate it to the left. Similarly, w_{R} represents a rightwards-travelling wave. (Naïvely, it seems that $w_{L}(x, t)=f_{0}(x+t)$ should be a rightwards travelling wave, while w_{R} should be leftwards travelling wave. Yet the opposite is true. Think about this until you understand it. It may be helpful to do the following: Let $f_{0}(x)=x^{2}$. Plot $f_{0}(x)$, and then plot $w_{L}(x, 5)=f(x+5)=(x+5)^{2}$. Observe the 'motion' of the parabola.)

Figure 17D.1: The d'Alembert travelling wave solution; $f_{0}(x)=\frac{1}{x^{2}+1}$ from Example 17D.2.

Example 17D.2. (a) If $f_{0}(x)=\frac{1}{x^{2}+1}$, then $w(x)=\frac{1}{2}\left(\frac{1}{(x+t)^{2}+1}+\frac{1}{(x-t)^{2}+1}\right)$ (Figure 17D.1)
(b) If $f_{0}(x)=\sin (x)$, then

$$
\begin{aligned}
w(x ; t) & =\frac{1}{2}(\sin (x+t)+\sin (x-t)) \\
& =\frac{1}{2}(\sin (x) \cos (t)+\cos (x) \sin (t)+\sin (x) \cos (t)-\cos (x) \sin (t)) \\
& =\frac{1}{2}(2 \sin (x) \cos (t))=\cos (t) \sin (x),
\end{aligned}
$$

In other words, two sinusoidal waves, traveling in opposite directions, when superposed, result in a sinusoidal standing wave.

Figure 17D.2: The travelling box wave $w_{L}(x, t)=f_{0}(x+t)$ from Example 17D.2(c).
(c) (see Figure 17D.2) Suppose $f_{0}(x)=\left\{\begin{array}{cc}1 & \text { if }-1<x<1 \\ 0 & \text { otherwise }\end{array}\right.$. Then: $w_{L}(x, t)=f_{0}(x+t)=\left\{\begin{array}{cc}1 & \text { if }-1<x+t<1 \\ 0 & \text { otherwise }\end{array}=\left\{\begin{array}{ccc}1 & \text { if } & -1-t<x<1-t ; \\ 0 & \text { otherwise. }\end{array}\right.\right.$
(Notice that the solutions w_{L} and w_{R} are continuous (or differentiable) only when f_{0} is continuous (or differentiable). But the formulae of Lemma 17D. 1 make sense even when the original wave equation itself ceases to make sense, as in Example (c). This is an example of a generalized solution of the wave equation.)

Lemma 17D.3. (Ripple Solution)

Let $f_{1}: \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function. Define the function $v: \mathbb{R} \times$ $\mathbb{R}_{+} \longrightarrow \mathbb{R}$ by $v(x, t):=\frac{1}{2} \int_{x-t}^{x+t} f_{1}(y) d y$, for any $x \in \mathbb{R}$ and any $t \geq 0$. Then v is a solution to the wave equation (17D.1), with

Initial Position: $v(x, 0)=0 ; \quad$ Initial Velocity: $\partial_{t} v(x, 0)=f_{1}(x)$.

Proof. See Practice Problem \# 6 in $\$[7 \mathrm{H}$.

Physically, v represents a "ripple". You can imagine that f_{1} describes the energy profile of an "impulse" which is imparted into the vibrating medium at time zero; this energy propagates outwards, leaving a disturbance in its wake (see Figure 17D.5).

[^66]

Figure 17D.3: The ripple solution with initial velocity $f_{1}(x)=\frac{1}{1+x^{2}}$ (see Example 17D.4(a)).

Example 17D.4. (a) If $f_{1}(x)=\frac{1}{1+x^{2}}$, then the d'Alembert solution to the initial velocity problem is

$$
\begin{aligned}
v(x, t) & =\frac{1}{2} \int_{x-t}^{x+t} f_{1}(y) d y=\frac{1}{2} \int_{x-t}^{x+t} \frac{1}{1+y^{2}} d y \\
& =\left.\frac{1}{2} \arctan (y)\right|_{y=x-t} ^{y=x+t}=\frac{1}{2}(\arctan (x+t)-\arctan (x-t))
\end{aligned}
$$

(see Figure 17D.3).
(b) If $f_{1}(x)=\cos (x)$, then

$$
\begin{aligned}
v(x, t) & =\frac{1}{2} \int_{x-t}^{x+t} \cos (y) d y=\frac{1}{2}(\sin (x+t)-\sin (x-t)) \\
& =\frac{1}{2}(\sin (x) \cos (t)+\cos (x) \sin (t)-\sin (x) \cos (t)+\cos (x) \sin (t)) \\
& =\frac{1}{2}(2 \cos (x) \sin (t))=\sin (t) \cos (x) .
\end{aligned}
$$

(c) Let $f_{1}(x)=\left\{\begin{array}{ll}2 & \text { if }-1<x<1 \\ 0 & \text { otherwise }\end{array}\right.$ (Figures 17D.4 and 17D.5). If $t>2$, then

$$
v(x, t)=\left\{\begin{array}{rlll}
0 & \text { if } & x+t & <-1 \\
x+t+1 & \text { if }-1 & \leq x+t & <1 \\
2 & \text { if } x-t & \leq-1<1 & \leq x+t \\
t+1-x & \text { if }-1 & \leq x-t & <1 \\
0 & \text { if } 1 & \leq x-t
\end{array}\right.
$$

Figure 17D.4: The d'Alembert ripple solution from Example 17D.4(c), evaluated for various $x \in \mathbb{R}$, assuming $t>2$.

Figure 17D.5: The d'Alembert ripple solution from Example 17D.4(c), evolving in time.

Figure 17D.6: The ripple solution with initial velocity: $f_{1}(x)=\frac{-2 x}{\left(x^{2}+1\right)^{2}}$ (Example 17D.4(d)).

$$
=\left\{\begin{array}{rll}
0 & \text { if } & x<-1-t \\
x+t+1 & \text { if }-1-t \leq x<1-t \\
2 & \text { if } 1-t & \leq x<t-1 \\
t+1-x & \text { if } t-1 & \leq x<t+1 \\
0 & \text { if } t+1 & \leq x
\end{array}\right.
$$

Exercise 17D. 1 Verify this formula. Find a similar formula for when $t<2$.
Notice that, in this example, the wave of displacement propagates outwards through the medium, and the medium remains displaced. The model contains no "restoring force" which would cause the displacement to return to zero.
(d) If $f_{1}(x)=\frac{-2 x}{\left(x^{2}+1\right)^{2}}$, then $g(x)=\frac{1}{x^{2}+1}$, and $v(x)=\frac{1}{2}\left(\frac{1}{(x+t)^{2}+1}-\frac{1}{(x-t)^{2}+1}\right)$ (see Figure 17D.6)

Remark. If $g: \mathbb{R} \longrightarrow \mathbb{R}$ is an antiderivative of f_{1} (i.e. $g^{\prime}(x)=f_{1}(x)$, then $v(x, t)=g(x+t)-g(x-t)$. Thus, the d'Alembert "ripple" solution looks like the d'Alembert "travelling wave" solution, but with the rightward travelling wave being vertically inverted.

Exercise 17D.2. (a) Express the d'Alembert "ripple" solution as a convolution, as described in $\S 17 \mathrm{~A}$ on page 375. Hint: Find an impulse-response function $\Gamma_{t}(x)$, such that $f_{1} * \Gamma_{t}(x)=\frac{1}{2} \int_{x-t}^{x+t} f_{1}(y) d y$.
(b) Is Γ_{t} an approximation of identity? Why or why not?

Proposition 17D.5. (d'Alembert Solution on an infinite wire)

Figure 17D.7: The odd $2 L$-periodic extension.
Let $f_{0}: \mathbb{R} \longrightarrow \mathbb{R}$ be twice-differentiable, and $f_{1}: \mathbb{R} \longrightarrow \mathbb{R}$ be differentiable. Define the function $u: \mathbb{R} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by
$u(x, t) \quad:=\frac{1}{2}\left(w_{L}(x, t)+w_{R}(x, t)\right)+v(x, t), \quad$ for all $x \in \mathbb{R}$ and $t \geq 0$, where w_{L}, w_{R}, and v are as in Lemmas 17D.1 and 17D.3. Then u satisfies the wave equation, with

Initial Position: $v(x, 0)=f_{0}(x) ; \quad$ Initial Velocity: $\partial_{t} v(x, 0)=f_{1}(x)$.
Furthermore, all solutions to the wave equation with these initial conditions are of this type.
Proof. This follows from Lemmas 17D. 1 and 17D.3.

Remark. There is no nice extension of the d'Alembert solution in higher dimensions. The closest analogy is Poisson's spherical mean solution to the three-dimensional wave equation in free space, which is discussed in \S 20B(ii) on page 534.

17D(ii) Bounded domain

Prerequisites: $\S[17 \mathrm{D}(\mathrm{i})$, , $\S[\mathrm{EC}(\mathrm{i})$.
The d'Alembert solution in $\S[17 \mathrm{D}(\mathrm{i}]$ works fine if $\mathbb{X}=\mathbb{R}$, but what if $\mathbb{X}=$ $[0, L)$? We must "extend" the initial conditions in some way. If $f:[0, L) \longrightarrow \mathbb{R}$ is any function, then an extension of f is any function $\bar{f}: \mathbb{R} \longrightarrow \mathbb{R}$ such that $\bar{f}(x)=f(x)$ whenever $0 \leq x \leq L$. If f is continuous and differentiable, then we normally require its extension to also be continuous and differentiable.

The extension we want is the odd, $2 L$-periodic extension, which is defined as the unique function $\bar{f}: \mathbb{R} \longrightarrow \mathbb{R}$ with the following three properties (see Figure 17D.7):

Figure 17D.8: The odd, $2 L$-periodic extension.

1. $\bar{f}(x)=f(x)$ whenever $0 \leq x \leq L$.
2. \bar{f} is an odd function, $]$ meaning: $\bar{f}(-x)=-\bar{f}(x)$ for all $x \in \mathbb{R}$.
3. \bar{f} is $2 L$-periodic, meaning $\bar{f}(x+2 L)=\bar{f}(x)$ for all $x \in \mathbb{R}$.

Example 17D.6.

(a) Suppose $L=1$, and $f(x)=1$ for all $x \in[0,1)$ (Figure 17D.8A). Then the odd, 2-periodic extension is defined:

$$
\bar{f}(x)=\left\{\begin{align*}
1 & \text { if } x \in \ldots \cup[-2,-1) \cup[0,1) \cup[2,3) \cup \ldots \tag{Figure17D.8B}\\
-1 & \text { if } x \in \ldots \cup[-1,0) \cup[1,2) \cup[3,4) \cup \ldots
\end{align*}\right.
$$

(b) Suppose $L=1$, and $f(x)= \begin{cases}1 & \text { if } x \in\left[0, \frac{1}{2}\right) \\ 0 & \text { if } x \in\left[\frac{1}{2}, 1\right)\end{cases}$
(Figure 17D.8C).
Then the odd, 2-periodic extension is defined:

$$
\bar{f}(x)=\left\{\begin{align*}
1 & \text { if } x \in \ldots \cup\left[-2,-1 \frac{1}{2}\right) \cup\left[0, \frac{1}{2}\right) \cup\left[2,2 \frac{1}{2}\right) \cup \ldots \tag{Figure17D.8D}\\
-1 & \text { if } x \in \ldots \cup\left[-\frac{1}{2}, 0\right) \cup\left[1 \frac{1}{2}, 2\right) \cup\left[3 \frac{1}{2}, 4\right) \cup \ldots \\
0 & \text { otherwise }
\end{align*}\right.
$$

[^67](c) Suppose $L=\pi$, and $f(x)=\sin (x)$ for all $x \in[0, \pi) \quad$ (Figure 17D.8E) Then the odd, 2π-periodic extension is given by $\bar{f}(x)=\sin (x)$ for all $x \in \mathbb{R}$ (Figure 17D.8E).
Exercise 17D. 3 Verify this.
We will now provide a general formula for the odd periodic extension, and characterize its continuity and/or differentiability. First some terminology. If $f:[0, L) \longrightarrow \mathbb{R}$ is a function, then we say that f is right-differentiable at 0 if the right-hand derivative $f^{\wedge}(0)$ is well-defined (see page 201). We can usually extend f to a function $f:[0, L] \longrightarrow \mathbb{R}$ by defining $f\left(L^{-}\right):=\lim _{x / L} f(x)$, where this denotes the left-hand limit of f at L, if this limit exists (see page 201 for definition). We then say that f is left-differentiable at L if the left-hand derivative $f^{\dagger}(L)$ exists.

Proposition 17D.7. Let $f:[0, L) \longrightarrow \mathbb{R}$ be any function
(a) The odd, $2 L$-periodic extension of f is given:

$$
\bar{f}(x)=\left\{\begin{array}{rcrl}
f(x) & \text { if } & 0 & \leq x<L \\
-f(-x) & \text { if } & -L & \leq x<0 \\
f(x-2 n L) & \text { if } & 2 n L & \leq x \leq(2 n+1) L, \text { for some } n \in \mathbb{Z} \\
-f(2 n L-x) & \text { if } & (2 n-1) L & \leq x \leq 2 n L, \text { for some } n \in \mathbb{Z}
\end{array}\right.
$$

(b) \bar{f} is continuous at $0, L, 2 L$ etc. if and only if $f(0)=f\left(L^{-}\right)=0$.
(c) \bar{f} is differentiable at $0, L, 2 L$, etc. if and only if it is continuous, f is right-differentiable at 0 , and f and left-differentiable at L.

Proof. Exercise 17D. 4

Proposition 17D.8. (d'Alembert solution on a finite string)

Let $f_{0}:[0, L) \longrightarrow \mathbb{R}$ and $f_{1}:[0, L) \longrightarrow \mathbb{R}$ be differentiable functions, and let their odd periodic extensions be $\bar{f}_{0}: \mathbb{R} \longrightarrow \mathbb{R}$ and $\bar{f}_{1}: \mathbb{R} \longrightarrow \mathbb{R}$.
(a) Define $w:[0, L] \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by

$$
w(x, t):=\frac{1}{2}\left(\bar{f}_{0}(x-t)+\bar{f}_{0}(x+t)\right), \quad \text { for all } x \in[0, L] \text { and } t \geq 0
$$

Then w is a solution to the wave equation (17D.1) with initial conditions:

$$
w(x, 0)=f_{0}(x) \quad \text { and } \quad \partial_{t} w(x, 0)=0, \quad \text { for all } x \in[0, L],
$$

Linear Partial Differential Equations and Fourier Theory Marcus Pivato Draft January 31, 2009
and homogeneous Dirichlet boundary conditions:

$$
w(0, t)=0=w(L, t), \quad \text { for all } t \geq 0
$$

The function w is continuous if and only if f_{0} satisfies homogeneous Dirichlet boundary conditions (i.e. $f(0)=f\left(L^{-}\right)=0$). In addition, w is differentiable if and only if f_{0} is also right-differentiable at 0 and left-differentiable at L.
(b) Define $v:[0, L] \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by

$$
v(x, t) \quad:=\frac{1}{2} \int_{x-t}^{x+t} \bar{f}_{1}(y) d y, \quad \text { for all } x \in[0, L] \text { and } t \geq 0
$$

Then v is a solution to the wave equation (17D.1) with initial conditions:

$$
v(x, 0)=0 \quad \text { and } \quad \partial_{t} v(x, 0)=f_{1}(x), \quad \text { for all } x \in[0, L]
$$

and homogeneous Dirichlet boundary conditions:

$$
v(0, t)=0=v(L, t), \quad \text { for all } t \geq 0 .
$$

The function v is always continuous. However, v is differentiable if and only if f_{1} satisfies homogeneous Dirichlet boundary conditions.
(c) Define $u:[0, L] \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by $u(x, t):=w(x, t)+v(x, t)$, for all $x \in[0, L]$ and $t \geq 0$. Then $u(x, t)$ is a solution to the wave equation (17D.1) with initial conditions:

$$
u(x, 0)=f_{0}(x) \quad \text { and } \quad \partial_{t} u(x, 0)=f_{1}(x), \quad \text { for all } x \in[0, L]
$$

and homogeneous Dirichlet boundary conditions:

$$
u(0, t)=0=u(L, t), \quad \text { for all } t \geq 0
$$

Clearly, u is continuous (respectively, differentiable) whenever v and w are continuous (respectively, differentiable).

Proof. The fact that u, w, and v are solutions to their respective initial value problems follows from Proposition 17 D .5 on page 398. The verification of homogeneous Dirichlet conditions is Exercise 17D.5. The conditions for continuity/differentiability are Exercise 17D. 6 .

Figure 17E.1: The Dirichlet problem on a half-plane.

17E Poisson's solution (Dirichlet problem on half-plane)

Consider the half-plane domain $\mathbb{H}:=\left\{(x, y) \in \mathbb{R}^{2} ; y \geq 0\right\}$. The boundary of this domain is just the x axis: $\partial \mathbb{H}=\{(x, 0) ; x \in \mathbb{R}\}$. Thus, we impose boundary conditions by choosing some function $b: \mathbb{R} \longrightarrow \mathbb{R}$. Figure 17 E .1 illustrates the corresponding Dirichlet problem: find a continuous function $u: \mathbb{H} \longrightarrow \mathbb{R}$ such that

1. u is harmonic -i.e. u satisfies the Laplace equation: $\triangle u(x, y)=0$ for all $x \in \mathbb{R}$ and $y>0$.
2. u satisfies the nonhomogeneous Dirichlet boundary condition: $u(x, 0)=$ $b(x)$, for all $x \in \mathbb{R}$.

Physical Interpretation: Imagine that \mathbb{H} is an infinite 'ocean', so that $\partial \mathbb{H}$ is the beach. Imagine that $b(x)$ is the concentration of some chemical which has soaked into the sand of the beach. The harmonic function $u(x, y)$ on \mathbb{H} describes the equilibrium concentration of this chemical, as it seeps from the sandy beach and diffuses into the water ${ }^{3}$. The boundary condition ' $u(x, 0)=b(x)$ ' represents the chemical content of the sand. Note that $b(x)$ is constant in time; this represents the assumption that the chemical content of the sand is large compared to the amount seeping into the water; hence, we can assume the sand's chemical content remains effectively constant over time, as small amounts diffuse into the water.

[^68]

Figure 17E.2: Two views of the Poisson kernel $\mathcal{K}_{y}(x)$.
We will solve the half-plane Dirichlet problem using the impulse-response method. For any $y>0$, define the Poisson kernel $\mathcal{K}_{y}: \mathbb{R} \longrightarrow \mathbb{R}$ by:

$$
\begin{equation*}
\mathcal{K}_{y}(x):=\frac{y}{\pi\left(x^{2}+y^{2}\right)} . \quad \text { (Figure 17E.2) } \tag{17E.1}
\end{equation*}
$$

Observe that:

- $\mathcal{K}_{y}(x)$ is smooth for all $y>0$ and $x \in \mathbb{R}$.
- $\mathcal{K}_{y}(x)$ has a singularity at $(0,0)$. That is: $\lim _{(x, y) \rightarrow(0,0)} \mathcal{K}_{y}(x)=\infty$,
- $\mathcal{K}_{y}(x)$ decays near infinity. That is, for any fixed $y>0, \lim _{x \rightarrow \pm \infty} \mathcal{K}_{y}(x)=$ 0 , and also, for any fixed $x \in \mathbb{R}, \lim _{y \rightarrow \infty} \mathcal{K}_{y}(x)=0$.
Thus, $\mathcal{K}_{y}(x)$ has the profile of an impulse-response function as described in $\S 17 \mathrm{~A}$ on page 375. Heuristically speaking, you can think of $\mathcal{K}_{y}(x)$ as the solution to the Dirichlet problem on \mathbb{H}, with boundary condition $b(x)=\delta_{0}(x)$, where δ_{0} is the infamous 'Dirac delta function'. In other words, $\mathcal{K}_{y}(x)$ is the equilibrium concentration of a chemical diffusing into the water from an 'infinite' concentration of chemical localized at a single point on the beach (say, a leaking barrel of toxic waste).

Proposition 17E.1. Poisson Kernel Solution to Half-Plane Dirichlet problem
Let $b: \mathbb{R} \longrightarrow \mathbb{R}$ be a bounded, continuous, integrable function. Define $u: \mathbb{H} \longrightarrow$ \mathbb{R} as follows:

$$
u(x, y):=b * \mathcal{K}_{y}(x)=\frac{y}{\pi} \int_{-\infty}^{\infty} \frac{b(z)}{(x-z)^{2}+y^{2}} d z
$$

Figure 17E.3: Example 17 E .2 .
for all $x \in \mathbb{R}$ and $y>0$, while for all $x \in \mathbb{R}$, we define $u(x, 0):=b(x)$. Then u is the solution to the Laplace equation $(\triangle u=0)$ which is bounded at infinity and which satisfies the nonhomogeneous Dirichlet boundary condition $u(x, 0)=b(x)$, for all $x \in \mathbb{R}$.

Proof. (sketch)
Claim 1: Define $\mathcal{K}(x, y)=\mathcal{K}_{y}(x)$ for all $(x, y) \in \mathbb{H}$, except $(0,0)$. Then the function $\mathcal{K}: \mathbb{H} \longrightarrow \mathbb{R}$ is harmonic on the interior of \mathbb{H}.

Proof. See Practice Problem \# 44 on page 414 of $\S 17 \mathrm{H}$. $\diamond_{\text {Claim } 1}$
Claim 2: Thus, the function $u: \mathbb{H} \longrightarrow \mathbb{R}$ is harmonic on the interior of \mathbb{H}.
Proof. Exercise 17E. 1 Hint: Combine Claim 1 with Proposition 0G. 1 on page $667 \stackrel{\diamond}{\text { Claim 2 }}$

Recall that we defined u on the boundary of \mathbb{H} by $u(x, 0)=b(x)$. It remains to show that u is continuous when defined in this way.
Claim 3: For any $x \in \mathbb{R}, \quad \lim _{y \rightarrow 0} u(x, y)=b(x)$.
Proof. Exercise 17E. 2 Show that the kernel \mathcal{K}_{y} is an approximation of the identity as $y \rightarrow 0$. Then apply Proposition 17 B .2 on page 381 to conclude that $\lim _{y \rightarrow 0}\left(b * \mathcal{K}_{y}\right)(x)=b(x)$ for all $x \in \mathbb{R}$.

Finally, this solution is unique by Theorem 5D.5(a) on page 88.

Example 17E.2. Let $A<B$ be real numbers. Let $b(x):=\left\{\begin{array}{cc}1 & \text { if } A<x<B ; \\ 0 & \text { otherwise. }\end{array}\right.$.

Then Proposition 20C. 3 yields solution:

$$
\begin{aligned}
U(x, y) & \overline{\overline{(*)}} b * \mathcal{K}_{y}(x) \overline{\overline{(\dagger)}} \frac{y}{\pi} \int_{A}^{B} \frac{1}{(x-z)^{2}+y^{2}} d z \overline{\overline{(\mathrm{~S})}} \frac{y^{2}}{\pi} \int_{\frac{A-x}{y}}^{\frac{B-x}{y}} \frac{1}{y^{2} w^{2}+y^{2}} d w \\
& =\frac{1}{\pi} \int_{\frac{A-x}{y}}^{\frac{B-x}{y}} \frac{1}{w^{2}+1} d w=\left.\frac{1}{\pi} \arctan (w)\right|_{w=\frac{A-x}{y}} ^{w=\frac{B-x}{y}} \\
& =\frac{1}{\pi} \arctan \left(\frac{B-x}{y}\right)-\arctan \left(\frac{A-x}{y}\right) \overline{\overline{(\mathrm{T})}} \frac{1}{\pi}\left(\theta_{B}-\theta_{A}\right)
\end{aligned}
$$

where θ_{B} and θ_{A} are as in Figure 17E.3. Here, $(*)$ is Proposition 20C.3; (\dagger) is eqn. (17E.1); (S) is the substitution $w=\frac{z-x}{y}$, so that $d w=\frac{1}{y} d z$ and $d z=y d w ; \quad$ and (\mathbf{T}) follows from elementary trigonometry.
Note that, if $A<x$ (as in Fig. 17E.3A), then $A-x<0$, so θ_{A} is negative, so that $U(x, y)=\frac{1}{\pi}\left(\theta_{B}+\left|\theta_{A}\right|\right)$. If $A>x$, then we have the situation in Fig. 17E.3B. In either case, the interpretation is the same:
$U(x, y)=\frac{1}{\pi}\left(\theta_{B}-\theta_{A}\right)=\frac{1}{\pi}\binom{$ the angle subtended by interval $[A, B]$, as }{ seen by an observer at the point $(x, y)}$.
This is reasonable, because if this observer moves far away from the interval $[A, B]$, or views it at an acute angle, then the subtended angle $\left(\theta_{B}-\theta_{A}\right)$ will become small -hence, the value of $U(x, y)$ will also become small.

Remark. We will revisit the Poisson kernel solution to the half-plane Dirichlet problem in § 20C(ii) on page 539, where we will prove Proposition 17E.1 using Fourier transform methods.

17F Poisson's solution (Dirichlet problem on the disk)

Prerequisites: $\S 1 \mathrm{C}, ~ \S 0 \mathrm{D}(\mathrm{ii}), \S 5 \mathrm{G}, \S 0 \mathrm{G} . \quad$ Recommended: $\S 17 \mathrm{~A}, ~ \S 14 \mathrm{~B}(\mathrm{v}) \cdot \mathrm{L}^{2}$
Let $\mathbb{D}:=\left\{(x, y) \in \mathbb{R}^{2} ; \sqrt{x^{2}+y^{2}} \leq R\right\}$ be the disk of radius R in \mathbb{R}^{2}. Thus, \mathbb{D} has boundary $\partial \mathbb{D}=\mathbb{S}:=\left\{(x, y) \in \mathbb{R}^{2} ; \sqrt{x^{2}+y^{2}}=R\right\}$ (the circle of radius R). Suppose $b: \partial \mathbb{D} \longrightarrow \mathbb{R}$ is some function on the boundary. The Dirichlet problem on \mathbb{D} asks for a continuous function $u: \mathbb{D} \longrightarrow \mathbb{R}$ such that:

- u is harmonic-i.e. u satisfies the Laplace equation $\triangle u \equiv 0$.

[^69]

Figure 17F.1: The Poisson kernel

- u satisfies the nonhomogeneous Dirichlet Boundary Condition $u(x, y)=$ $b(x, y)$ for all $(x, y) \in \partial \mathbb{D}$.

If u represents the concentration of some chemical diffusing into \mathbb{D} from the boundary, then the value of $u(x, y)$ at any point (x, y) in the interior of the disk should represent some sort of 'average' of the chemical reaching (x, y) from all points on the boundary. This is the inspiration of Poisson's Solution. We define the Poisson kernel $\mathcal{P}: \mathbb{D} \times \mathbb{S} \longrightarrow \mathbb{R}$ as follows:

$$
\mathcal{P}(\mathbf{x}, \mathbf{s}):=\frac{R^{2}-\|\mathbf{x}\|^{2}}{\|\mathbf{x}-\mathbf{s}\|^{2}}, \quad \text { for all } \mathbf{x} \in \mathbb{D} \text { and } \mathbf{s} \in \mathbb{S} .
$$

As shown in Figure 17F.1(A), the denominator, $\|\mathrm{x}-\mathrm{s}\|^{2}$, is just the squareddistance from \mathbf{x} to \mathbf{s}. The numerator, $R^{2}-\|\mathbf{x}\|^{2}$, roughly measures the distance from \mathbf{x} to the boundary \mathbb{S}; if \mathbf{x} is close to \mathbb{S}, then $R^{2}-\|\mathbf{x}\|^{2}$ becomes very small. Intuitively speaking, $\mathcal{P}(\mathbf{x}, \mathbf{s})$ measures the 'influence' of the boundary condition at the point \mathbf{s} on the value of u at \mathbf{x}; see Figure 17F.2.

In polar coordinates (Figure 17F.1B), we can parameterize $\mathbf{s} \in \mathbb{S}$ with a single angular coordinate $\sigma \in[-\pi, \pi)$, so that $\mathbf{s}=(R \cos (\sigma), R \sin (\sigma))$. If \mathbf{x} has coordinates (x, y), then Poisson's kernel takes the form:

$$
\mathcal{P}(\mathbf{x}, \mathbf{s})=\mathcal{P}_{\sigma}(x, y)=\frac{R^{2}-x^{2}-y^{2}}{(x-R \cos (\sigma))^{2}+(y-R \sin (\sigma))^{2}} .
$$

Proposition 17F.1. Poisson's Integral Formula

Figure 17F.2: The Poisson kernel $\mathcal{P}(\mathbf{x}, \mathbf{s})$ as a function of \mathbf{x}. (for some fixed value of \mathbf{s}). This surface illustrates the 'influence' of the boundary condition at the point \mathbf{s} on the point \mathbf{x}. (The point \mathbf{s} is located at the 'peak' of the surface.)

Let $\mathbb{D}=\left\{(x, y) ; x^{2}+y^{2} \leq R^{2}\right\}$ be the disk of radius R, and let $b: \partial \mathbb{D} \longrightarrow \mathbb{R}$ be continuous. The unique solution to the corresponding Dirichlet problem is the function $u: \mathbb{D} \longrightarrow \mathbb{R}$ defined as follows:

For any (x, y) on the interior of $\mathbb{D} \quad u(x, y):=\frac{1}{2 \pi} \int_{-\pi}^{\pi} b(\sigma) \cdot \mathcal{P}_{\sigma}(x, y) d \sigma$,
while, for $(x, y) \in \partial \mathbb{D}$, we define $u(x, y):=b(x, y)$.
That is, for any $\mathbf{x} \in \mathbb{D}, u(\mathbf{x}):=\left\{\begin{array}{rll}\frac{1}{2 \pi} \int_{\mathbb{S}} b(\mathbf{s}) \cdot \mathcal{P}(\mathbf{x}, \mathbf{s}) d \mathbf{s} & \text { if } & \|x\|<R ; \\ b(\mathbf{x}) & \text { if } & \|x\|=R .\end{array}\right.$
Proof. (sketch) For simplicity, assume $R=1$ (the proof for $R \neq 1$ is similar). Thus,

$$
\mathcal{P}_{\sigma}(x, y)=\frac{1-x^{2}-y^{2}}{(x-\cos (\sigma))^{2}+(y-\sin (\sigma))^{2}} .
$$

Claim 1: Fix $\sigma \in[-\pi, \pi)$. The function $\mathcal{P}_{\sigma}: \mathbb{D} \longrightarrow \mathbb{R}$ is harmonic on the interior of \mathbb{D}.
$\diamond_{\text {Claim } 1}$
Claim 2: Thus, the function u is harmonic on the interior of \mathbb{D}.
Proof. Exercise 17F. 2 Hint: Combine Claim 1 with Proposition 0G. 1 on page 567.

Recall that we defined u on the boundary \mathbb{S} of \mathbb{D} by $u(\mathbf{s})=b(\mathbf{s})$. It remains to show that u is continuous when defined in this way.
Claim 3: For any $\mathbf{s} \in \mathbb{S}, \quad \lim _{(x, y) \rightarrow \mathbf{s}} u(x, y)=b(\mathbf{s})$.

Proof. Exercise 17F. 3 (Hard)

Hint: Write (x, y) in polar coordinates as (r, θ). Thus, our claim becomes $\lim _{\theta \rightarrow \sigma} \lim _{r \rightarrow 1} u(r, \theta)=$ $b(\sigma)$.
(a) Show that $\mathcal{P}_{\sigma}(x, y)=\mathcal{P}_{r}(\theta-\sigma)$, where, for any $r \in[0,1)$, we define

$$
\mathcal{P}_{r}(\phi)=\frac{1-r^{2}}{1-2 r \cos (\phi)+r^{2}}, \quad \text { for all } \phi \in[-\pi, \pi) .
$$

(b) Thus, $u(r, \theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} b(\sigma) \cdot \mathcal{P}_{r}(\theta-\sigma) d \sigma$ is a sort of 'convolution on a circle'.

We can write this: $u(r, \theta)=\left(b \star \mathcal{P}_{r}\right)(\theta)$.
(c) Show that the function \mathcal{P}_{r} is an 'approximation of the identity' as $r \rightarrow 1$, meaning that, for any continuous function $b: \mathbb{S} \longrightarrow \mathbb{R}, \quad \lim _{r \rightarrow 1}\left(b \star \mathcal{P}_{r}\right)(\theta)=b(\theta)$. For your proof, borrow from the proof of Proposition 17B.2 on page $381 \diamond_{\text {Claim } 3}$

Finally, this solution is unique by Theorem 5D.5(a) on page 88.

17G* Properties of convolution

Prerequisites: $\S[7 \mathrm{~A} . \quad$ Recommended: $\S \boxed{\pi} \mathrm{C}$.
We have introduced the convolution operator to solve the Heat Equation, but it is actually ubiquitous, not only in the theory of PDEs, but in other areas of mathematics, especially probability theory, harmonic analysis, and group representation theory. We can define an algebra of functions using the operations of convolution and addition; this algebra is as natural as the one you would form using 'normal' multiplication and addition. $尸$

Proposition 17G.1. Algebraic Properties of Convolution

Let $f, g, h: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ be integrable functions. Then the convolutions of f, g, and h have the following relations:

Commutativity: $f * g=g * f$.
Associativity: $f *(g * h)=(f * g) * h$.
Distribution: $f *(g+h)=(f * g)+(f * h)$.

[^70]Linearity: $f *(r \cdot g)=r \cdot(f * g)$ for any constant $r \in \mathbb{R}$.
Proof. Commutativity is just Proposition 17A.1. In the case $D=1$, the proofs of the other three properties are Practice Problems $\# \mathbb{\square}$ and $\# 2$ in $\S[7 \mathrm{H}$. The proofs for $D \geq 2$ are Exercise 17G. 1 .

Remark. Let $\mathbf{L}^{1}\left(\mathbb{R}^{D}\right)$ be the set of all integrable functions on \mathbb{R}^{D}. The properties of Commutativity, Associativity, and Distribution mean that the set $\mathbf{L}^{1}\left(\mathbb{R}^{D}\right)$, together with the operations ' + ' (pointwise addition) and ' $*$ ' (convolution), is a ring (in the language of abstract algebra). This, together with Linearity, makes $\mathbf{L}^{1}\left(\mathbb{R}^{D}\right)$ an algebra over \mathbb{R}.

Example 17 C .4 on page 388 exemplifies the convenient "smoothing" properties of convolution. If we convolve a "rough" function with a "smooth" function, then this "smooths out" the rough function.

Proposition 17G.2. Regularity Properties of Convolution

Let $f, g: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ be integrable functions.
(a) If f is continuous, then so is $f * g$ (regardless of whether g is.)
(b) If f is differentiable, then so is $f * g$. Furthermore, $\partial_{d}(f * g)=\left(\partial_{d} f\right) * g$.
(c) If f is N times differentiable, then so is $f * g$, and

$$
\partial_{1}^{n_{1}} \partial_{2}^{n_{2}} \ldots \partial_{D}^{n_{D}}(f * g)=\left(\partial_{1}^{n_{1}} \partial_{2}^{n_{2}} \ldots \partial_{D}^{n_{D}} f\right) * g
$$

for any $n_{1}, n_{2}, \ldots, n_{D}$ such that $n_{1}+\ldots+n_{D} \leq N$.
(d) More generally, if L is any linear differential operator of degree N or less, with constant coefficients, then $\mathrm{L}(f * g)=(\mathrm{L} f) * g$.
(e) Thus, if f is a solution to the homogeneous linear equation " $\mathrm{L} f=0$ ", then so is $f * g$.
(f) If f is infinitely differentiable, then so is $f * g$.

Proof. Exercise 17G. 2

This has a convenient consequence: any function, no matter how "rough", can be approximated arbitrarily closely by smooth functions.

Figure 17H.1: Problems \#1(a), \#1(b), \#1(c) and \#2(a).
Proposition 17G.3. Suppose $f: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ is integrable. Then there is a sequence $f_{1}, f_{2}, f_{3}, \ldots$ of infinitely differentiable functions which converges pointwise to f. In other words, for every $\mathbf{x} \in \mathbb{R}^{D}, \lim _{n \rightarrow \infty} f_{n}(\mathbf{x})=f(\mathbf{x})$.

Proof. Exercise 17G. 3 Hint: Use the fact that the Gauss-Weierstrass kernel is infinitely differentiable, and is also an approximation of identity. Then use Part 6 of the previous theorem.

Remarks. (a) We have formulated Proposition 17 G .3 in terms of pointwise convergence, but similar results hold for L^{2} convergence, L^{1} convergence, uniform convergence, etc. We're neglecting these to avoid technicalities.
(b) In $\S 10 \mathrm{D}$ (ii] on page 214, we discuss the convolution of periodic functions on the interval $[-\pi, \pi]$, and develop a theory quite similar to the theory developed here. In particular, Lemma 10D. 6 on page 214 is analogous to Proposition 17G.1, Lemma 10D.7 on page 215 is analogous to Proposition 17G.2, and Theorem 10D. 1 on page 207 is analogous to Proposition 17G.3, except that the convergence is in L^{2} norm.

17H Practice problems

1. Let $f, g, h: \mathbb{R} \longrightarrow \mathbb{R}$ be integrable functions. Show that $f *(g * h)=$ $(f * g) * h$.
2. Let $f, g, h: \mathbb{R} \longrightarrow \mathbb{R}$ be integrable functions, and let $r \in \mathbb{R}$ be a constant. Prove that $f *(r \cdot g+h)=r \cdot(f * g)+(f * h)$.
3. Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be integrable functions. Let $d \in \mathbb{R}$ be some 'displacement' and define $f_{\triangleright d}(x)=f(x-d)$. Prove that $\left(f_{\triangleright d}\right) * g=(f * g)_{\triangleright d}$.
4. In each of the following, use the method of Gaussian convolutions to find the solution to the one-dimensional heat equation $\partial_{t} u(x ; t)=\partial_{x}^{2} u(x ; t)$ with initial conditions $u(x, 0)=\mathcal{I}(x)$.
(a) $\mathcal{I}(x)=\left\{\begin{array}{rll}-1 & \text { if } & -1 \leq x \leq 1 \\ 0 & \text { if } & x<-1 \text { or } 1<x\end{array} . \quad\right.$ (see Figure 17H.1A).
(In this case, sketch your solution evolving in time.)
(b) $\mathcal{I}(x)=\left\{\begin{array}{lll}1 & \text { if } & 0 \leq x \leq 1 \\ 0 & & \text { otherwise }\end{array} \quad\right.$ (see Figure 17H.1B).
(c) $\mathcal{I}(x)=\left\{\begin{array}{rll}-1 & \text { if } & -1 \leq x \leq 0 \\ 1 & \text { if } & 0 \leq x \leq 1 \\ 0 & & \text { otherwise }\end{array} \quad\right.$ (see Figure 17H.1 C).
5. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be some differentiable function. Define $v(x ; t)=$ $\frac{1}{2}(f(x+t)+f(x-t))$.
(a) Show that $v(x ; t)$ satisfies the one-dimensional wave equation $\partial_{t}^{2} v(x ; t)=$ $\partial_{x}^{2} v(x ; t)$
(b) Compute the initial position $v(x ; 0)$.
(c) Compute the initial velocity $\partial_{t} v(x ; 0)$.
6. Let $f_{1}: \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function. For any $x \in \mathbb{R}$ and any $t \geq 0$, define $v(x, t)=\frac{1}{2} \int_{x-t}^{x+t} f_{1}(y) d y$.
(a) Show that $v(x ; t)$ satisfies the one-dimensional wave equation $\partial_{t}^{2} v(x ; t)=$ $\partial_{x}^{2} v(x ; t)$
(b) Compute the initial position $v(x ; 0)$.
(c) Compute the initial velocity $\partial_{t} v(x ; 0)$.
7. In each of the following, use the d'Alembert method to find the solution to the one-dimensional wave equation $\partial_{t}^{2} u(x ; t)=\partial_{x}^{2} u(x ; t)$ with initial position $u(x, 0)=f_{0}(x)$ and initial velocity $\partial_{t} u(x, 0)=f_{1}(x)$.
In each case, identify whether the solution satisfies homogeneous Dirichlet boundary conditions when treated as a function on the interval $[0, \pi]$. Justify your answer.
(a) $f_{0}(x)=\left\{\begin{array}{lll}1 & \text { if } & 0 \leq x<1 \\ 0 & & \text { otherwise }\end{array} ; \quad\right.$ and $\quad f_{1}(x)=0 \quad$ (see Figure 17H.1B).
(b) $f_{0}(x)=\sin (3 x)$ and $f_{1}(x)=0$.
(c) $f_{0}(x)=0 \quad$ and $\quad f_{1}(x)=\sin (5 x)$.
(d) $f_{0}(x)=\cos (2 x)$ and $f_{1}(x)=0$.
(e) $f_{0}(x)=0 \quad$ and $\quad f_{1}(x)=\cos (4 x)$.
(f) $f_{0}(x)=x^{1 / 3} \quad$ and $\quad f_{1}(x)=0$.
(g) $f_{0}(x)=0 \quad$ and $\quad f_{1}(x)=x^{1 / 3}$.
(h) $f_{0}(x)=0 \quad$ and $\quad f_{1}(x)=\tanh (x)=\frac{\sinh (x)}{\cosh (x)}$.
8. Let $\mathcal{G}_{t}(x)=\frac{1}{2 \sqrt{\pi t}} \exp \left(\frac{-x^{2}}{4 t}\right)$ be the Gauss-Weierstrass Kernel. Fix $s, t>0$; we claim that $\mathcal{G}_{s} * \mathcal{G}_{t}=\mathcal{G}_{s+t}$. (For example, if $s=3$ and $t=5$, this means that $\left.\mathcal{G}_{3} * \mathcal{G}_{5}=\mathcal{G}_{8}\right)$.
(a) Prove that $\mathcal{G}_{s} * \mathcal{G}_{t}=\mathcal{G}_{s+t}$ by directly computing the convolution integral.
(b) Use Corollary 17 C .3 on page 388 to find a short and elegant proof that $\mathcal{G}_{s} * \mathcal{G}_{t}=\mathcal{G}_{s+t}$ without computing any convolution integrals.

Remark. Because of this result, probabilists say that the set $\left\{\mathcal{G}_{t}\right\}_{t \in \mathbb{R}_{+}}$ forms a stable family of probability distributions on \mathbb{R}. Analysts say that $\left\{\mathcal{G}_{t}\right\}_{t \in \mathbb{R}_{+}}$is a one-parameter semigroup under convolution.
9. Let $\mathcal{G}_{t}(x, y)=\frac{1}{4 \pi t} \exp \left(\frac{-\left(x^{2}+y^{2}\right)}{4 t}\right)$ be the 2-dimensional Gauss-Weierstrass Kernel. Suppose $h: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is a harmonic function. Show that $h * \mathcal{G}_{t}=h$ for all $t>0$.
10. Let \mathbb{D} be the unit disk. Let $b: \partial \mathbb{D} \longrightarrow \mathbb{R}$ be some function, and let $u: \mathbb{D} \longrightarrow \mathbb{R}$ be the solution to the corresponding Dirichlet problem with boundary conditions $b(\sigma)$. Prove that

$$
u(0,0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} b(\sigma) d \sigma
$$

Remark. This is a special case of the Mean Value Theorem for Harmonic Functions (Theorem 1E.1 on page 16), but do not simply 'quote' Theorem [E.1 to solve this problem. Instead, apply Proposition 17F.1] on page 407.
11. Let $\gamma_{t}(x)=\left\{\begin{array}{ccc}\frac{1}{t} & \text { if } \quad 0 \leq x \leq t ; \\ 0 & \text { if } \quad x<0 \text { or } t<x .\end{array} \quad\right.$ (Figure 17B.2). Show that γ is an approximation of identity.
12. Let $\gamma_{t}(x)=\left\{\begin{array}{rll}\frac{1}{2 t} & \text { if } & |x| \leq t \\ 0 & \text { if } & t<|x|\end{array}\right.$. Show that γ is an approximation of identity.
13. Let $\mathbb{D}=\left\{\mathbf{x} \in \mathbb{R}^{2} ;|\mathbf{x}| \leq 1\right\}$ be the unit disk.
(a) Let $u: \mathbb{D} \longrightarrow \mathbb{R}$ be the unique solution to the Laplace equation $(\Delta u=0)$ satisfying the nonhomogeneous Dirichlet boundary conditions $u(\mathbf{s})=1$, for all $\mathbf{s} \in \mathbb{S}$. Show that u must be constant: $u(\mathbf{x})=1$ for all $\mathbf{x} \in \mathbb{D}$.
(b) Recall that the Poisson Kernel $\mathcal{P}: \mathbb{D} \times \mathbb{S} \longrightarrow \mathbb{R}$ is defined by $\mathcal{P}(\mathbf{x}, \mathbf{s})=$ $\frac{1-\|\mathbf{x}\|^{2}}{\|\mathbf{x}-\mathbf{s}\|^{2}}, \quad$ for any $\mathbf{x} \in \mathbb{D}$ and $\mathbf{s} \in \mathbb{S}$. Show that, for any fixed $\mathbf{x} \in \mathbb{D}$, $\frac{1}{2 \pi} \int_{\mathbb{S}} \mathcal{P}(\mathbf{x}, \mathbf{s}) d \mathbf{s}=1$.
(c) Let $b: \mathbb{S} \longrightarrow \mathbb{R}$ be any function, and $\triangle u=0$) satisfying the nonhomogeneous Dirichlet boundary conditions $u(\mathbf{s})=b(\mathbf{s})$, for all $\mathbf{s} \in \mathbb{S}$.
Let $m:=\min _{\mathbf{s} \in \mathbb{S}} b(\mathbf{s})$, and $M:=\max _{\mathbf{s} \in \mathbb{S}} b(\mathbf{s})$. Show that:

$$
\text { For all } \mathrm{x} \in \mathbb{D}, \quad m \leq u(\mathbf{x}) \leq M
$$

[In other words, the harmonic function u must take its maximal and minimal values on the boundary of the domain \mathbb{D}. This is a special case of the Maximum Principle for harmonic functions; see Corollary [E.2 on page [7]
14. Let $\mathbb{H}:=\left\{(x, y) \in \mathbb{R}^{2} ; y \geq 0\right\}$ be the half-plane. Recall that the half-plane Poisson kernel is the function $\mathcal{K}: \mathbb{H} \longrightarrow \mathbb{R}$ defined $\mathcal{K}(x, y):=\frac{y}{\pi\left(x^{2}+y^{2}\right)}$ for all $(x, y) \in \mathbb{H}$ except $(0,0)$ (where it is not defined). Show that \mathcal{K} is harmonic on the interior of \mathbb{H}.

Chapter 18

Applications of complex analysis

Abstract

"The shortest path between two truths in the real domain passes through the complex domain." -Jacques Hadamard

Complex analysis is one of the most surprising and beautiful areas of mathematics. It also has some unexpected applications to PDEs and Fourier theory, which we will briefly survey in this chapter. Our survey is far from comprehensive - that would require another entire book. Instead, our goal in this chapter is to merely to sketch the possibilities. If you are interested in further exploring the interactions between complex analysis and PDEs, we suggest [Asm02] and [CB03], as well as [Asm05], Chapter 12], [Fis99, Chapters 4 and 5], [Lan855, Chapter VIII], or the innovative and lavishly illustrated [Nee.97, Chapter 12].

This chapter assumes no prior knowledge of complex analysis. However, the presentation is slightly more abstract than most of the book, and is intended for more 'theoretically inclined' students. Nevertheless, someone who only wants the computational machinery of residue calculus can skip Sections 18B, 18E and 187, and skim the proofs in Sections 180, 18D, and 18G, proceeding rapidly to Section 18 H .

18A Holomorphic functions

Prerequisites: $\S 0 \mathrm{O}, \S \mathbb{O}$.
Let $\mathbb{U} \subset \mathbb{C}$ be a open set, and let $f: \mathbb{U} \longrightarrow \mathbb{C}$ be a complex-valued function. If $u \in \mathbb{U}$, then the (complex) derivative of f at u is defined:

$$
\begin{equation*}
f^{\prime}(u):=\lim _{\substack{c \rightarrow u \\ c \in \mathbb{C}}} \frac{f(c)-f(u)}{c-u}, \tag{18A.1}
\end{equation*}
$$

where all terms in this formula are understood as complex numbers. We say that f is complex-differentiable at u if $f^{\prime}(u)$ exists.

If we identify \mathbb{C} with \mathbb{R}^{2} in the obvious way, then we might imagine f as a function from a domain $\mathbb{U} \subset \mathbb{R}^{2}$ into \mathbb{R}^{2}, and assume that the complex derivate f^{\prime} was just another way of expressing the (real-valued) Jacobian matrix of f. But this is not the case. Not all (real-)differentiable functions on \mathbb{R}^{2} can be regarded as complex-differentiable functions on \mathbb{C}. To see this, let $f_{r}:=\operatorname{Re}[f]: \mathbb{U} \longrightarrow \mathbb{R}$ and $f_{i}:=\operatorname{Im}[f]: \mathbb{U} \longrightarrow \mathbb{R}$ be the real and imaginary parts of f, so that we can write $f(u)=f_{r}(u)+f_{i}(u) \mathbf{i}$ for any $u \in \mathbb{U}$. For any $u \in \mathbb{U}$, let $u_{r}:=\operatorname{Re}[u]$ and $u_{i}:=\operatorname{Im}[u]$, so that $u=u_{r}+u_{i} \mathbf{i}$. Then the (real-valued) Jacobian matrix of f has the form

$$
\left[\begin{array}{cc}
\partial_{r} f_{r} & \partial_{r} f_{i} \tag{18A.2}\\
\partial_{i} f_{r} & \partial_{i} f_{i}
\end{array}\right] .
$$

The relationship between the complex derivative (18A.1) and the Jacobian (18A.2) is the subject of the following fundamental result:

Theorem 18A.1. (Cauchy-Riemann)

Let $f: \mathbb{U} \longrightarrow \mathbb{C}$ and let $u \in \mathbb{U}$. Then f is complex-differentiable at u if and only if the partial derivatives $\partial_{r} f_{r}(u), \partial_{r} f_{i}(u), \partial_{i} f_{r}(u)$ and $\partial_{i} f_{i}(u)$ all exist, and furthermore, satisfy the Cauchy-Riemann differential equations (CRDEs)

$$
\begin{equation*}
\partial_{r} f_{r}(u)=\partial_{i} f_{i}(u) \quad \text { and } \quad \partial_{i} f_{r}(u)=-\partial_{r} f_{i}(u) . \tag{18A.3}
\end{equation*}
$$

In this case, $f^{\prime}(u)=\partial_{r} f_{r}(u)-\mathbf{i} \partial_{i} f_{r}(u)=\partial_{i} f_{i}(u)+\mathbf{i} \partial_{r} f_{i}(u)$.
Proof. Exercise 18A. 1 (a) Compute the limit (18A.1) along the 'real' axis -that is, let $c=u+\epsilon$ where $\epsilon \in \mathbb{R}$, and show that $\lim _{\mathbb{R} \ni \epsilon \rightarrow 0} \frac{f(u+\epsilon)-f(u)}{\epsilon}=$ $\partial_{r} f_{r}(u)+\mathbf{i} \partial_{r} f_{i}(u)$.
(b) Compute the limit (18A.1) along the 'imaginary' axis -that is, let $c=u+\epsilon \mathbf{i}$ where $\epsilon \in \mathbb{R}$, and show that $\lim _{\mathbb{R} \exists \epsilon \rightarrow 0} \frac{f(u+\epsilon \mathbf{i})-f(u)}{\epsilon \mathbf{i}}=\partial_{i} f_{i}(u)-\mathbf{i} \partial_{i} f_{r}(u)$.
(c) If the limit (18A.1) is well-defined, then it must be the same no matter the direction from which c approaches u. Conclude that the results of (a) and (b) must be equal. Derive equation (18A.3).

Thus, the complex-differentiable functions are actually a very special subclass of the set of all (real-)differentiable functions on the plane. The function f is called holomorphic on \mathbb{U} if f is complex-differentiable at all $u \in \mathbb{U}$. This is actually a much stronger requirement than merely requiring a real-valued function to be (real-)differentiable everywhere in some open subset of \mathbb{R}^{2}. For example, later we will show that every holomorphic function is analytic (Theorem 18D. 1 on page (450). But one immediate indication of the special nature of holomorphic functions is their close relationship to two-dimensional harmonic functions.

Proposition 18A.2. Let $\mathbb{U} \subset \mathbb{C}$ be an open set, and also regard \mathbb{U} as a subset of \mathbb{R}^{2} in the obvious way. If $f: \mathbb{U} \longrightarrow \mathbb{C}$ is any holomorphic function, then $f_{r}: \mathbb{U} \longrightarrow \mathbb{R}$ and $f_{i}: \mathbb{U} \longrightarrow \mathbb{R}$ are both harmonic functions.

Proof. Exercise 18A. 2 Hint: apply the Cauchy-Riemann differential equations (18A.3) twice to get Laplace's equation.

So, we can convert any holomorphic map into a pair of harmonic functions. Conversely, we can convert any harmonic function into a holomorphic map. To see this, suppose $h: \mathbb{U} \longrightarrow \mathbb{R}$ is a harmonic function. A harmonic conjugate for h is a function $g: \mathbb{U} \longrightarrow \mathbb{R}$ which satisfies the differential equation:

$$
\begin{equation*}
\partial_{2} g(u)=\partial_{1} h(u) \quad \text { and } \quad \partial_{1} g(u)=-\partial_{2} h(u), \quad \text { for all } u \in \mathbb{U} . \tag{18A.4}
\end{equation*}
$$

Proposition 18A.3. Let $\mathbb{U} \subset \mathbb{R}^{2}$ be a convex open set (e.g. a disk or a rectangle). Let $h: \mathbb{U} \longrightarrow \mathbb{R}$ be any harmonic function.
(a) There exist harmonic conjugates for h on \mathbb{U}-that is, the equations (18A.4) have solutions.
(b) Any two harmonic conjugates for h differ by a constant.
(c) If g is a harmonic conjugate to h, and we define $f: \mathbb{U} \longrightarrow \mathbb{C}$ by $f(u)=$ $h(u)+g(u) \mathbf{i}$, then f is holomorphic.

Proof. Exercise 18A. 3 Hint: (a) Define $g(0)$ arbitrarily, and then for any $u=\left(u_{1}, u_{2}\right) \in \mathbb{U}$, define $g(u)=-\int_{0}^{u_{1}} \partial_{2} h(0, x) d x+\int_{0}^{u_{2}} \partial_{1} h\left(u_{1}, y\right) d y$. Show that g is differentiable and satisfies eqn.(18A.4).
For (b), suppose g_{1} and g_{2} both satisfy eqn.(18A.4); show that $g_{1}-g_{2}$ is a constant by showing that $\partial_{1}\left(g_{1}-g_{2}\right)=0=\partial_{2}\left(g_{1}-g_{2}\right)$.

For (c), derive the CRDEs (18A.3) from the harmonic conjugacy equation (18A.4).

Remark. (a) If h satisfies a Dirichlet boundary condition on $\partial \mathbb{U}$, then its harmonic conjugate satisfies an associated Neumann boundary condition on $\partial \mathbb{U}$, and vice versa; see Exercise 18A.7 on page 421. Thus, harmonic conjugation can be used to convert a Dirichlet BVP into a Neumann BVP, and vice versa.
(b) The 'convexity' requirement in Proposition 18A.2 can be weakened to 'simply connected'. However, Proposition 18 A .2 is not true if the domain \mathbb{U} is not simply connected (i.e. has a 'hole'); see Exercise 18C.16(e) on page 448. \diamond

Holomorphic functions have a rich and beautiful geometric structure, with many surprising properties. The study of such functions is called complex analysis. Propositions 18A. 2 and 18A. 3 imply that every fact about harmonic functions in \mathbb{R}^{2} is also a fact about complex analysis, and vice versa.

Complex analysis also has important applications to fluid dynamics and electrostatics, because any holomorphic function can be interpreted as sourceless, irrotational flow, as we now explain. Let $\mathbb{U} \subset \mathbb{R}^{2}$ and let $\overrightarrow{\mathbf{V}}: \mathbb{U} \longrightarrow \mathbb{R}^{2}$ be a two-dimensional vector field. Recall that the divergence of $\overrightarrow{\mathbf{V}}$ is the scalar field $\operatorname{div} \overrightarrow{\mathbf{V}}: \mathbb{U} \longrightarrow \mathbb{R}$ defined by $\operatorname{div} \overrightarrow{\mathbf{V}}(\mathbf{u}):=\partial_{1} V_{1}(\mathbf{u})+\partial_{2} V_{2}(\mathbf{u})$ for all $\mathbf{u} \in \mathbb{U}$ (see $\S 0 \mathrm{E}(\mathrm{ii})$ on page 558). We say $\overrightarrow{\mathbf{V}}$ is locally sourceless if $\operatorname{div} \overrightarrow{\mathbf{V}} \equiv 0$. If $\overrightarrow{\mathbf{V}}$ represents the two-dimensional flow of an incompressible fluid (e.g. water) in \mathbb{U}, then $\operatorname{div} \overrightarrow{\mathbf{V}} \equiv 0$ means there are no sources or sinks in \mathbb{U}. If $\overrightarrow{\mathbf{V}}$ represents a two-dimensional electric (or gravitational) field, then $\operatorname{div} \overrightarrow{\mathbf{V}} \equiv 0$ means there are no charges (or masses) inside \mathbb{U}.

The curl of $\overrightarrow{\mathbf{V}}$ is the scalar field curl $\overrightarrow{\mathbf{V}}: \mathbb{U} \longrightarrow \mathbb{R}$ defined by curl $\overrightarrow{\mathbf{V}}(\mathbf{u}):=$ $\partial_{1} V_{2}(\mathbf{u})-\partial_{2} V_{1}(\mathbf{u})$ for all $\mathbf{u} \in \mathbb{U}$. We say $\overrightarrow{\mathbf{V}}$ is locally irrotational if curl $\overrightarrow{\mathbf{V}} \equiv$ 0 . If $\overrightarrow{\mathbf{V}}$ represents a force field, then curl $\overrightarrow{\mathbf{V}} \equiv 0$ means that the net energy absorbed by a particle moving around a closed path in $\overrightarrow{\mathbf{V}}$ is zero (i.e. the field is 'conservative'). If $\overrightarrow{\mathbf{V}}$ represents the flow of a fluid, then curl $\overrightarrow{\mathbf{V}} \equiv 0$ means there are no 'vortices' in \mathbb{U}. (Note that this does not mean the fluid must move in straight lines without turning. It simply means that the fluid turns in a uniform manner, without turbulence).

Regard \mathbb{U} as a subset of \mathbb{C}, and let $f: \mathbb{U} \longrightarrow \mathbb{C}$ be some function, with real and imaginary parts $f_{r}: \mathbb{U} \longrightarrow \mathbb{R}$ and $f_{i}: \mathbb{U} \longrightarrow \mathbb{R}$. The complex conjugate of f is the function $\bar{f}: \mathbb{U} \longrightarrow \mathbb{C}$ defined by $\bar{f}(u)=f_{r}(u)-\mathbf{i} f_{i}(u)$. We can treat \bar{f} as vector field $\overrightarrow{\mathbf{V}}: \mathbb{U} \longrightarrow \mathbb{R}^{2}$, where $V_{1} \equiv f_{r}$ and $V_{2} \equiv-f_{i}$.

Proposition 18A.4. (Holomorphic \Longleftrightarrow sourceless irrotational flow)
The function f is holomorphic on \mathbb{U} if and only if $\overrightarrow{\mathbf{V}}$ is locally sourceless and irrotational on \mathbb{U}.

Proof. Exercise 18A. 4

In $\S[8 \mathrm{~B}$, we shall see that Proposition 18 A .4 yields a powerful technique for studying fluids (or electric fields) confined to a subset of the plane (see Proposition 18B. 6 on page 430). In $\S 18 \mathrm{C}$, we shall see that Proposition 18 A .4 is also the key to understanding complex contour integration, through its role in the proof of Cauchy's Theorem 18C.5 on page 438.

To begin our study of complex analysis, we will verify that all the standard facts about the differentiation of real-valued functions carry over to complex differentiation, pretty much verbatim.

Proposition 18A.5. (Closure properties of holomorphic functions)
Let $\mathbb{U} \subset \mathbb{C}$ be an open set. Let $f, g: \mathbb{U} \longrightarrow \mathbb{C}$ be holomorphic functions.
(a) The function $h(u):=f(u)+g(u)$ is also holomorphic on \mathbb{U}, and $h^{\prime}(u)=$ $f^{\prime}(u)+g^{\prime}(u)$ for all $u \in \mathbb{U}$.
(b) (Leibniz rule) The function $h(u):=f(u) \cdot g(u)$ is also holomorphic on \mathbb{U}, and $h^{\prime}(u)=f^{\prime}(u) g(u)+g^{\prime}(u) f(u)$ for all $u \in \mathbb{U}$.
(c) (Quotient rule) Let $\mathbb{U}^{*}:=\{u \in \mathbb{U} ; g(u) \neq 0\}$. The function $h(u):=$ $f(u) / g(u)$ is also holomorphic on \mathbb{U}^{*}, and $h^{\prime}(u)=\left[g(u) f^{\prime}(u)-f(u) g^{\prime}(u)\right] / g(u)^{2}$ for all $u \in \mathbb{U}^{*}$.
(d) For any $n \in \mathbb{N}$, the function $h(u):=f^{n}(u)$ is holomorphic on \mathbb{U}, and $h^{\prime}(u)=n f^{n-1}(u) \cdot f^{\prime}(u)$ for all $u \in \mathbb{U}$.
(e) Thus, for any $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{C}$, the polynomial function $h(z):=c_{n} z^{n}+$ $\cdots+c_{1} z+c_{0}$ is holomorphic on \mathbb{C}.
(f) For any $n \in \mathbb{N}$, the function $h(u):=1 / g^{n}(u)$ is holomorphic on $\mathbb{U}^{*}:=$ $\{u \in \mathbb{U} ; g(u) \neq 0\}$ and $h^{\prime}(u)=-n g^{\prime}(u) / g^{n+1}(u)$ for all $u \in \mathbb{U}^{*}$.
(g) For all $n \in \mathbb{N}$, let $f_{n}: \mathbb{U} \longrightarrow \mathbb{C}$ be a holomorphic function. Let $f, F: \mathbb{U} \longrightarrow$ \mathbb{C} be two other functions. If unif $-\lim _{n \rightarrow \infty} f_{n}=f$ and unif $-\lim _{n \rightarrow \infty} f_{n}^{\prime}=F$, then f is holomorphic on \mathbb{U}, and $f^{\prime}=F$.
(h) Let $\left\{c_{n}\right\}_{n=0}^{\infty}$ be any sequence of complex numbers, and consider the power series

$$
\sum_{n=0}^{\infty} c_{n} z^{n}=c_{0}+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+c_{4} z^{4}+\cdots
$$

Suppose this series converges on \mathbb{U} to define a function $f: \mathbb{U} \longrightarrow \mathbb{C}$. Then f is holomorphic on \mathbb{U}. Furthermore, f ' is given by the 'formal derivative' of the power series. That is:

$$
f^{\prime}(u)=\sum_{n=1}^{\infty} n c_{n} z^{n-1}=c_{1}+2 c_{2} z+3 c_{3} z^{2}+4 c_{4} z^{3}+\cdots
$$

(i) Let $\mathbb{X} \subset \mathbb{R}$ be open, let $f: \mathbb{X} \longrightarrow \mathbb{R}$, and suppose f is analytic at $x \in \mathbb{X}$, with a Taylor series $T_{x} f$ which converges in the interval $(x-R, x+R)$ for some $R>0$. Let $\mathbb{D}:=\{c \in \mathbb{C} ;|c-x|<R\}$ be the open disk of radius R around x in the complex plane. Then the Taylor series $T_{x} f$ converges uniformly on \mathbb{D}, and defines a holomorphic function $F: \mathbb{D} \longrightarrow \mathbb{C}$ which extends f (i.e. $F(r)=f(r)$ for all $r \in(x-R, x+R) \subset \mathbb{R})$.

[^71](j) (Chain rule) Let $\mathbb{U}, \mathbb{V} \subset \mathbb{C}$ be open sets. Let $g: \mathbb{U} \longrightarrow \mathbb{V}$ and $f: \mathbb{V} \longrightarrow \mathbb{C}$ be holomorphic functions. Then the function $h(u)=f \circ g(u)=f[g(u)]$ is holomorphic on \mathbb{U}, and $h^{\prime}(u)=f^{\prime}[g(u)] \cdot g^{\prime}(u)$ for all $u \in \mathbb{U}$.
(\mathbf{k}) (Inverse function rule) Let $\mathbb{U}, \mathbb{V} \subset \mathbb{C}$ be open sets. Let $g: \mathbb{U} \longrightarrow \mathbb{V}$ be a holomorphic function. Let $f: \mathbb{V} \longrightarrow \mathbb{U}$ be be an inverse for g-that is, $f[g(u)]=u$ for all $u \in \mathbb{U}$. Let $u \in \mathbb{U}$ and $v=g(u) \in \mathbb{V}$. If $g^{\prime}(u) \neq 0$, then f is holomorphic in a neighbourhood of v, and $f^{\prime}(v)=1 / g^{\prime}(u)$.

Proof. Exercise 18A. 5 Hint: For each part, the proof from single-variable (real) differential calculus generally translates verbatim to complex numbers.

Theorem 18A.5(i) implies that all the standard real-analytic functions have natural extensions to the complex plane, obtained by evaluating their Taylor series on \mathbb{C}.

Example 18A.6. (a) We define $\exp : \mathbb{C} \longrightarrow \mathbb{C}$ by $\exp (z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$ for all $z \in \mathbb{C}$.
The function defined by this power series is the same as the exponential function defined by Euler's formula (0G) on page 551 in Appendix 0C. It satisfies the same properties as the real exponential function - that is, $\exp ^{\prime}(z)=$ $\exp (z), \exp \left(z_{1}+z_{2}\right)=\exp \left(z_{1}\right) \cdot \exp \left(z_{2}\right)$, etc. (See Exercise 18A.8 on the next page.)
(b) We define $\sin : \mathbb{C} \longrightarrow \mathbb{C}$ by $\sin (z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1}}{(2 n+1)!}$ for all $z \in \mathbb{C}$.
(c) We define $\cos : \mathbb{C} \longrightarrow \mathbb{C}$ by $\cos (z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n}}{(2 n)!}$ for all $z \in \mathbb{C}$.
(d) We define $\sinh : \mathbb{C} \longrightarrow \mathbb{C}$ by $\sinh (z)=\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+1)!}$ for all $z \in \mathbb{C}$.
(e) We define $\cosh : \mathbb{C} \longrightarrow \mathbb{C}$ by $\cosh (z)=\sum_{n=0}^{\infty} \frac{z^{2 n}}{(2 n)!}$ for all $z \in \mathbb{C}$.

The complex trigonometric functions satisfy the same algebraic relations and differentiation rules as the real trigonometric functions (see Exercise 18A.9 on page (422). We will later show that any analytic function on \mathbb{R} has a unique extension to a holomorphic function on some open subset of \mathbb{C} (see Corollary 18D.4 on page 453).

Exercise 18A.6. Proposition $18 \mathrm{A.2}$ says that the real and imaginary parts of any holomorphic function will be harmonic functions.
(a) Let $r_{0}, r_{1}, \ldots, r_{n} \in \mathbb{R}$, and consider the real-valued polynomial $f(x)=r_{n} x^{n}+$ $\cdots+r_{1} x+r_{0}$. Proposition 18A.5(e) says that f extends to a holomorphic function $f: \mathbb{C} \longrightarrow \mathbb{C}$. Express the real and imaginary parts of f in terms of the polar harmonic functions $\left\{\phi_{n}\right\}_{n=0}^{\infty}$ and $\left\{\psi_{n}\right\}_{n=0}^{\infty}$ introduced in $\S 14 \mathrm{~B}$ on page 274 .
(b) Express the real and imaginary parts of each of the holomorphic functions sin, cos, sinh and cosh (from Example 18A.6) in terms of the harmonic functions introduced in $\S 12 \mathrm{~A}$ on page 240 .

Exercise 18A.7. (Harmonic conjugation of boundary conditions)
Let $\mathbb{U} \subset \mathbb{R}^{2}$ be an open subset whose boundary $\partial \mathbb{U}$ is a smooth curve. Let γ : $[0, S] \longrightarrow \partial \mathbb{U}$ be a clockwise, arc-length parameterization of $\partial \mathbb{U}$. That is: γ is a differentiable bijection from $[0, S)$ into $\partial \mathbb{U}$ with $\gamma(0)=\gamma(S)$, and $|\dot{\gamma}(s)|=1$ for all $s \in[0, S]$. Let $b: \partial \mathbb{U} \longrightarrow \mathbb{R}$ be a continuous function describing a Dirichlet boundary condition on \mathbb{U}, and define $B:=b \circ \gamma:[0, S] \longrightarrow \mathbb{R}$. Suppose B is differentiable; let $B^{\prime}:[0, S] \longrightarrow \mathbb{R}$ be its derivative, and then define the function $b^{\prime}: \partial \mathbb{U} \longrightarrow \mathbb{R}$ by $b^{\prime}(\gamma(s))=B^{\prime}(s)$ for all $s \in[0, S)$ (this defines b^{\prime} on $\partial \mathbb{U}$ because γ is a bijection). Thus, we can regard b^{\prime} as the derivative of b 'along' the boundary of \mathbb{U}.

Let $h: \mathbb{U} \longrightarrow \mathbb{R}$ be a harmonic function, and let $g: \mathbb{U} \longrightarrow \mathbb{R}$ be a harmonic conjugate for h. Show that h satisfies the Dirichlet boundary condition $h(x)=b(x)+C$ for all $x \in \partial \mathbb{U}$ (where C is some constant) if and only if g satisfies the Neumann boundary condition $\partial_{\perp} g(x)=b^{\prime}(x)$ for all $x \in \partial \mathbb{U}$.

Hint: For all $s \in[0, S]$, let $\overrightarrow{\mathbf{N}}(s)$ denote the outward unit normal vector of $\partial \mathbb{U}$ at $\gamma(s)$. Let $\mathbf{R}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ (thus, left-multiplying the matrix \mathbf{R} rotates a vector clockwise by 90°).
(a) Show that $(\nabla g) \cdot \mathbf{R}=\nabla h$. (Here we regard ∇h and ∇g as 2×1 'row matrices').
(b) Show that $\mathbf{R} \cdot \dot{\gamma}(s)=\overrightarrow{\mathbf{N}}(s)$ for all $s \in[0, S]$ (Here we regard $\dot{\gamma}$ and $\overrightarrow{\mathbf{N}}$ as a 1×2 'column matrices'. Hint: recall that γ is a clockwise parameterization).
(c) Show that $(h \circ \gamma)^{\prime}(s)=\nabla h[\gamma(s)] \cdot \dot{\gamma}(s)$, for all $s \in[0, S]$. (To make sense of this, recall that ∇h is 2×1 matrix, while $\dot{\gamma}$ is a 1×2 matrix. Hint: use the chain rule).
(d) Show that $\left(\partial_{\perp} g\right)[\gamma(s)]=(h \circ \gamma)^{\prime}(s)$ for all $s \in[0, S]$. (Hint: Recall that $\left.\left(\partial_{\perp} g\right)[\gamma(s)]=(\nabla g)[\gamma(s)] \cdot \overrightarrow{\mathbf{N}}(s)\right)$.
(e) Conclude that $\partial_{\perp} g[\gamma(s)]=b^{\prime}[\gamma(s)]$ for all $s \in[0, S]$ if and only if $h[\gamma(s)]=b(s)+C$ for all $s \in[0, S]$ (where C is some constant).

Exercise 18A.8. (a) Show that $\exp ^{\prime}(z)=\exp (z)$ for all $z \in \mathbb{C}$.
(b) Fix $x \in \mathbb{R}$, and consider the smooth path $\gamma: \mathbb{R} \longrightarrow \mathbb{R}^{2}$ defined by

$$
\gamma(t) \quad:=\quad\left[\exp _{r}(x+\mathbf{i} t), \exp _{i}(x+\mathbf{i} t)\right]
$$

where $\exp _{r}(z)$ and $\exp _{i}(z)$ denote the real and imaginary parts of $\exp (z)$. Let $R:=e^{x}$; note that $\gamma(0)=(R, 0)$. Use (a) to show that γ satisfies the ordinary differential equation

$$
\left[\begin{array}{c}
\dot{\gamma}_{1}(t) \\
\dot{\gamma}_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\gamma_{2}(t) \\
\gamma_{1}(t)
\end{array}\right]
$$

[^72]Conclude that $\gamma(t)=[R \cos (t), R \sin (t)]$ for all $t \in \mathbb{R}$.
(c) For any $x, y \in \mathbb{R}$, use (b) to show that $\exp (x+\mathbf{i} y)=e^{x}(\cos (y)+\mathbf{i} \sin (y))$.
(d) Deduce that $\exp \left(c_{1}+c_{2}\right)=\exp \left(c_{1}\right) \cdot \exp \left(c_{2}\right)$ for all $c_{1}, c_{2} \in \mathbb{C}$.

Exercise 18A.9. (a) Show that $\sin ^{\prime}(z)=\cos (z), \cos ^{\prime}(z)=-\sin (z), \sinh ^{\prime}(z)=$ $\cos (z)$, and $\cosh ^{\prime}(z)=-\sinh (z)$, for all $z \in \mathbb{C}$.
(b) For all $z \in \mathbb{C}$, verify the Euler Identities:

$$
\begin{aligned}
\sin (z) & =\frac{\exp (z \mathbf{i})-\exp (-z \mathbf{i})}{2 \mathbf{i}} & \cos (z) & =\frac{\exp (-z \mathbf{i})+\exp (z \mathbf{i})}{2} \\
\sinh (z) & =\frac{\exp (z)-\exp (-z)}{2} & \cosh (z) & =\frac{\exp (z)+\exp (-z)}{2}
\end{aligned}
$$

(c) Deduce that $\sinh (z)=\mathbf{i} \sin (\mathbf{i} z)$ and $\cosh (z)=\cos (\mathbf{i} z)$.
(d) For all $x, y \in \mathbb{R}$, prove the following identities:

$$
\begin{aligned}
\cos (x+y \mathbf{i}) & =\cos (x) \cosh (y)-\mathbf{i} \sin (x) \sinh (y) \\
\sin (x+y \mathbf{i}) & =\sin (x) \cosh (y)+\mathbf{i} \cos (x) \sinh (y)
\end{aligned}
$$

(e) For all $z \in \mathbb{C}$, verify the Pythagorean Identities:

$$
\cos (z)^{2}+\sin (z)^{2}=1 \quad \text { and } \quad \cosh (z)^{2}-\sinh (z)^{2}=1
$$

(Later we will show that pretty much every 'trigonometric identity' which is true on \mathbb{R} will also be true over all of \mathbb{C}; see Exercise 18D.4 on page 454.)

18B Conformal maps

Prerequisites: $\S[B, \S[\square, \S[8 A$.
A linear map $f: \mathbb{R}^{D} \longrightarrow \mathbb{R}^{D}$ is called conformal if it preserves the angles between vectors. Thus, for example, rotations, reflections, and dilations are all conformal maps.

Let $\mathbb{U}, \mathbb{V} \subset \mathbb{R}^{D}$ be open subsets of \mathbb{R}^{D}. A differentiable map $f: \mathbb{U} \longrightarrow \mathbb{V}$ is called conformal if its derivative $\mathrm{D} f(\mathbf{x})$ is a conformal linear map, for every $\mathbf{x} \in \mathbb{U}$. One way to interpret this is depicted in Figure 18B.1. Suppose two smooth paths γ_{1} and γ_{2} cross at \mathbf{x}, and their velocity vectors $\dot{\gamma}_{1}$ and $\dot{\gamma}_{2}$ form an angle θ at \mathbf{x}. Let $\alpha_{1}=f \circ \gamma_{1}$ and $\alpha_{2}=f \circ \gamma_{2}$, and let $\mathbf{y}=f(\mathbf{x})$. Then α_{1} and α_{2} are smooth paths, and cross at \mathbf{y}, forming an angle ϕ. The map f is conformal if, for every \mathbf{x}, γ_{1}, and γ_{2}, the angles θ and ϕ are equal.

Complex analysis could be redefined as 'the study of two-dimensional conformal maps', because of the next result.

Figure 18B.1: A conformal map preserves the angle of intersection between two paths.
Proposition 18B.1. (Holomorphic \Longleftrightarrow conformal)
Let $\mathbb{U} \subset \mathbb{R}^{2}$ be an open subset, and let $f: \mathbb{U} \longrightarrow \mathbb{R}^{2}$ be a differentiable function, with $f(\mathbf{u})=\left(f_{1}(\mathbf{u}), f_{2}(\mathbf{u})\right)$ for all $\mathbf{u} \in \mathbb{U}$. Identify \mathbb{U} with a subset $\widetilde{\mathbb{U}}$ of the plane \mathbb{C} in the obvious way, and define $\widetilde{f}: \widetilde{\mathbb{U}} \longrightarrow \mathbb{C}$ by $\widetilde{f}(x+y \mathbf{i})=f_{1}(x, y)+f_{2}(x, y) \mathbf{i}$ -that is, \tilde{f} is just the representation of f as a complex-valued function on \mathbb{C}. Then $(f$ is conformal $) \Longleftrightarrow(\widetilde{f}$ is holomorphic $)$.

Proof. Exercise 18B. 1 (Hint: The derivative $\mathbf{D} f$ is a linear map on \mathbb{R}^{2}. Show that D f is conformal if and only if \tilde{f} satisfies the Cauchy-Riemann differential equations (18A.3) on page 416.).

If $\mathbb{U} \subset \mathbb{C}$ is open, then Proposition 18B. 1 means that every holomorphic map $f: \mathbb{U} \longrightarrow \mathbb{C}$ can be treated as a conformal transformation of \mathbb{U}. In particular we can often conformally identify \mathbb{U} with some other domain in the complex plane via a suitable holomorphic map. A function $f: \mathbb{U} \longrightarrow \mathbb{V}$ is a conformal isomorphism if f is conformal, invertible, and $f^{-1}: \mathbb{V} \longrightarrow \mathbb{U}$ is also conformal. Proposition 18B.1 says that this is equivalent to requiring f and f^{-1} to be holomorphic.

Example 18B.2. (a) In Figure 18B.2, $\mathbb{U}=\{x+y \mathbf{i} ; x \in \mathbb{R}, 0<y<\pi\}$ is a biinfinite horizontal strip, and $\mathbb{C}_{+}=\{x+y \mathbf{i} ; x \in \mathbb{R}, y>0\}$ is the open upper half-plane, and $f(z)=\exp (z)$. Then $f: \mathbb{U} \longrightarrow \mathbb{C}_{+}$is a conformal isomorphism from \mathbb{U} to \mathbb{C}_{+}.
(b) In Figure 18B.3, $\mathbb{U}=\{x+y \mathbf{i} ; x>0, y \in \mathbb{R}\}$ is the open right half of the complex plane, and $\mathbb{Q D}^{\complement}=\left\{x+y \mathbf{i} ; x^{2}+y^{2}>1\right\}$ is the complement of the

Figure 18B.2: Example 18B.2(a). The map $f(z)=\exp (z)$ conformally identifies a bi-infinite horizontal strip with the upper half-plane.

Figure 18B.3: Example 18B.2(b). The map $f(z)=\exp (z)$ conformally projects the right half-plane onto the complement of the unit disk.
closed unit disk, and $f(z)=\exp (z)$. Then $f: \mathbb{U} \longrightarrow \mathbb{D}^{\complement}$ is not a conformal isomorphism (because it is many-to-one). However, f is a conformal covering map. This means that f is locally one-to-one: for any point $u \in \mathbb{U}$, with $v=f(u) \in \mathbb{D}^{\complement}$, there is a neighbourhood $\mathcal{V} \subset \mathbb{D}^{\complement}$ of v and a neighbourhood $\mathcal{U} \subset \mathbb{U}$ of u such that $f_{\mid}: \mathcal{U} \longrightarrow \mathcal{V}$ is one-to-one. (Note that f is not globally one-to-one because it is periodic in the imaginary coordinate).
(c) In Figure 18B.4, $\mathbb{U}=\{x+y \mathbf{i} ; x<0,0<y<\pi\}$ is a left half-infinite rectangle, and $\mathbb{V}=\left\{x+y \mathbf{i} ; y>1, x^{2}+y^{2}<1\right\}$ is the open half-disk, and $f(z)=\exp (z)$. Then $f: \mathbb{U} \longrightarrow \mathbb{V}$ is a conformal isomorphism from \mathbb{U} to \mathbb{V}.
(d) In Figure 18B.5, $\mathbb{U}=\{x+y \mathbf{i} ; x>0,0<y<\pi\}$ is a right half-infinite rectangle, and $\mathbb{V}=\left\{x+y \mathbf{i} ; y>1, x^{2}+y^{2}>1\right\}$ is the "amphitheatre", and $f(z)=\exp (z)$. Then $f: \mathbb{U} \longrightarrow \mathbb{V}$ is a conformal isomorphism from \mathbb{U} to \mathbb{V}.

Figure 18B.4: Example 18B.2(c). The map $f(z)=\exp (z)$ conformally identifies a left half-infinite rectangle with the half-disk.
(e) In Figure 18B.6(A,B), $\mathbb{U}=\{x+y \mathbf{i} ; x, y>0\}$ is the open upper right quarter-plane, and $\mathbb{C}_{+}=\{x+y \mathbf{i} ; y>0\}$ is the open upper half-plane, and $f(z)=z^{2}$. Then f is a conformal isomorphism from \mathbb{U} to \mathbb{C}_{+}.
(f) Let $\mathbb{C}_{+}:=\{x+y \mathbf{i} ; y>0\}$ be the upper half-plane, and $\mathbb{U}:=\mathbb{C}_{+} \backslash$ $\{y \mathbf{i} ; 0<y<1\} ;$ that is, \mathbb{U} is is the upper half-plane with a vertical linesegment of length 1 removed above the origin. Let $f(z)=\left(z^{2}+1\right)^{1 / 2}$; then f is a conformal isomorphism from \mathbb{U} to \mathbb{C}_{+}, as shown in Figure 18B.7(a).
(g) Let $\mathbb{U}:=\{x+y \mathbf{i} ;$ either $y \neq 0$ or $-1<x<1\}$, and let $\mathbb{V}:=\left\{x+y \mathbf{i} ; \frac{-\pi}{2}<y<\frac{\pi}{2}\right\}$ be a bi-infinite horizontal strip of width π. Let $f(z):=\mathbf{i} \cdot \arcsin (z)$; then f is a conformal isomorphism from \mathbb{U} to \mathbb{V}, as shown in Figure 18B.7(b).
Exercise 18B. 2 Verify each of examples (a)-(g).
Conformal maps are very useful for solving boundary value problems, because of the following result:

Proposition 18B.3. Let $\mathbb{X}, \mathbb{Y} \subset \mathbb{R}^{2}$ be open domains with closures $\overline{\mathbb{X}}$ and $\overline{\mathbb{Y}}$. Let $f: \overline{\mathbb{X}} \longrightarrow \overline{\mathbb{Y}}$ be a continuous surjection which conformally maps \mathbb{X} into \mathbb{Y}. Let $h: \overline{\mathbb{Y}} \longrightarrow \mathbb{R}$ be some smooth function, and define $H=h \circ f: \overline{\mathbb{X}} \longrightarrow \mathbb{R}$.
(a) h is harmonic on \mathbb{X} if and only if H is harmonic on \mathbb{Y}.
(b) Let $b: \partial \mathbb{Y} \longrightarrow \mathbb{R}$ be some function on the boundary of \mathbb{Y}. Then $B=b \circ f$: $\partial \mathbb{X} \longrightarrow \mathbb{R}$ is a function on the boundary of \mathbb{X}. The function h satisfies the nonhomogeneous Dirichlet boundary condition " $h(\mathbf{y})=b(\mathbf{y})$ for all

[^73]

Figure 18B.5: Example 18B.2(d). The map $f(z)=\exp (z)$ conformally identifies a right half-infinite rectangle with the "amphitheatre"
$\mathbf{y} \in \partial \mathbb{Y} "$ if and only if H satisfies the nonhomogeneous Dirichlet boundary condition " $H(\mathbf{x})=B(\mathbf{x})$ " for all $\mathbf{x} \in \partial \mathbb{X}$ ".
(c) For all $\mathbf{x} \in \partial \mathbb{X}$, let $\overrightarrow{\mathbf{N}}_{\mathbb{X}}(\mathbf{x})$ be the outward unit normal vector to $\partial \mathbb{X}$ at \mathbf{x}, let $\overrightarrow{\mathbf{N}}_{\mathbb{Y}}(\mathbf{x})$ be the outward unit normal vector to $\partial \mathbb{Y}$ at $f(\mathbf{x})$, and let $\mathrm{D} f(\mathbf{x})$ be the derivative of f at \mathbf{x} (a linear transformation of \mathbb{R}^{D}). Then $\mathrm{D} f(\mathbf{x})\left[\overrightarrow{\mathbf{N}}_{\mathbb{X}}(\mathbf{x})\right]=\phi(\mathbf{x}) \cdot \overrightarrow{\mathbf{N}}_{\mathbb{Y}}(\mathbf{x})$ for some scalar $\phi(\mathbf{x})>0$.
(d) Let $b: \partial \mathbb{Y} \longrightarrow \mathbb{R}$ be some function on the boundary of \mathbb{Y}, and define $B: \partial \mathbb{X} \longrightarrow \mathbb{R}$ by $B(\mathbf{x}):=\phi(\mathbf{x}) \cdot b[f(\mathbf{x})]$ for all $\mathbf{x} \in \partial \mathbb{X}$. Then h satisfies the nonhomogeneous Neumann boundary condition ${ }^{\nmid}$ " $\partial_{\perp} h(\mathbf{y})=b(\mathbf{y})$ for all $\mathbf{y} \in \partial \mathbb{Y}$ " if and only if H satisfies the nonhomogeneous Neumann boundary condition " $\partial_{\perp} H(\mathbf{x})=B(\mathbf{x})$ " for all $\mathbf{x} \in \partial \mathbb{X}$ ".

Proof. Exercise 18B. 3 Hint: (a) Combine Propositions 18A.2, 18A.3, and 18B.1. For (c), use the fact that f is a conformal map, so $\mathrm{D} f(\mathbf{x})$ is a conformal linear transformation; thus, if $\overrightarrow{\mathbf{N}}_{\mathbb{X}}(\mathbf{x})$ is normal to $\partial \mathbb{X}$, then $\mathrm{D} f(\mathbf{x})\left[\overrightarrow{\mathbf{N}}_{\mathbb{X}}(\mathbf{x})\right]$ must be normal to $\partial \mathbb{Y}$. To prove (d), use (c) and the chain rule.

We can apply Proposition 18B.3 as follows: given a boundary value problem on some "nasty" domain \mathbb{X}, find a "nice" domain \mathbb{Y} (e.g. a box, a disk, or a half-plane), and a conformal isomorphism $f: \mathbb{X} \longrightarrow \mathbb{Y}$. Solve the boundary value problem in \mathbb{Y} (e.g. using the methods from Chapters 12-17), to get a solution function $h: \mathbb{Y} \longrightarrow \mathbb{R}$. Finally, "pull back" this solution to get a solution $H=h \circ f: \mathbb{X} \longrightarrow \mathbb{R}$ to the original BVP on \mathbb{X}. We can obtain a suitable

[^74]

Figure 18B.6: (A,B): Example 18B.2(e). The map $f(z)=z^{2}$ conformally identifies the quarter-plane (A) and the half-plane (B). The mesh of curves in (A) is the preimage of the Cartesian grid in (B). Note that these curves always intersect at right angles; this is because f is a conformal map. The solid curves are the streamlines: the preimages of horizontal grid lines. The streamlines describe a sourceless, irrotational flow confined to the quarter-plane (see Proposition 18B.6 on page 430). The dashed curves are the equipotential contours: the preimages of vertical grid lines. The streamlines and equipotentials can be interpreted as the level curves of two harmonic functions (by Proposition 18A.2). They can also be interpreted as the voltage contours and field lines of an electric field in a quarter-plane bounded by perfect conductors on the x and y axes.
(C,D): Example 18 B .4 on the following page. The map $f(z)=z^{2}$ can be used to 'pull back' solutions to BVPs from the half-plane to the quarter-plane. Figure (C) shows a greyscale plot of the harmonic function H defined on the quarter-plane by eqn.(18B.2). Figure (D) shows a greyscale plot of the harmonic function

Figure 18B.7: (A) Example 18B.2(f). The map $f(z)=\left(z^{2}+1\right)^{1 / 2}$ is a conformal isomorphism from the set $\mathbb{C}_{+} \backslash\{y \mathbf{i} ; 0<y<1\}$ to the upper half-plane $\mathbb{C}_{+} . \quad$ (B) Example 18B.2(g). The map $f(z):=\mathbf{i} \cdot \arcsin (z)$ is a conformal isomorphism from the domain $\mathbb{U}:=\{x+y \mathbf{i}$; either $y \neq 0$ or $-1<x<1\}$ to a bi-infinite horizontal strip. In these figures, as in Figure 18B.6(A,B), the mesh is the preimage of a Cartesian grid on the image domain; the solid lines are streamlines, and the dashed lines are equipotential contours. In Figure (A), we can interpret these streamlines as the flow of fluid over an obstacle; in Figure (B); they represent the flow of fluid through a narrow aperature between two compartments. Alternately, we can interpret these curves as the voltage contours and field lines of an electric field, where the domain boundaries are perfect conductors.
conformal isomorphism from \mathbb{X} to \mathbb{Y} using holomorphic mappings, by Proposition 18B.7.

Example 18B.4. Let $\mathbb{X}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} ; x_{1}, x_{2}>0\right\}$ be the open upper right quarter-plane. Suppose we want to find a harmonic function $H: \mathbb{X} \longrightarrow \mathbb{R}$ satisfying the nonhomogeneous Dirichlet boundary conditions $H(\mathbf{x})=B(\mathbf{x})$ for all $\mathbf{x} \in \partial \mathbb{X}$, where $B: \partial \mathbb{X} \longrightarrow \mathbb{R}$ is defined:
$B\left(x_{1}, 0\right)=\left\{\begin{array}{ll}3 & \text { if } 1 \leq x_{1} \leq 2 ; \\ 0 & \text { otherwise. }\end{array} \quad\right.$ and $\quad B\left(0, x_{2}\right)=\left\{\begin{aligned}-1 & \text { if } 3 \leq x_{2} \leq 4 \\ 0 & \text { otherwise }\end{aligned}\right.$
Identify \mathbb{X} with the complex right quarter-plane \mathbb{U} from Example 18B.2(e). Let $f(z):=z^{2}$; then f is a conformal isomorphism from \mathbb{U} to the upper half-plane \mathbb{C}^{+}. If we identify \mathbb{C}^{+}with the real upper half-plane $\mathbb{Y}:=\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2} ; y_{2}>0\right\}$, then we can treat f as a function $f: \mathbb{X} \longrightarrow \mathbb{Y}$, given by the formula $f\left(x_{1}, x_{2}\right)=$ $\left(x_{1}^{2}-x_{2}^{2}, 2 x_{1} x_{2}\right)$.
Since f is bijective, the inverse $f^{-1}: \mathbb{Y} \longrightarrow \mathbb{X}$ is well-defined. Thus, we can
define a function $b:=B \circ f^{-1}: \partial \mathbb{Y} \longrightarrow \mathbb{R}$. To be concrete:

$$
b\left(y_{1}, 0\right)=\left\{\begin{aligned}
3 & \text { if } 1 \leq y_{1} \leq 4 \\
-1 & \text { if }-16 \leq y_{1} \leq-9 \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Now we must find a harmonic function $h: \mathbb{Y} \longrightarrow \mathbb{R}$ satisfying the Dirichlet boundary conditions $h\left(y_{1}, 0\right)=b\left(y_{1}, 0\right)$ for all $y_{1} \in \mathbb{R}$. By adding together two copies of the solution from Example 17E.2 on page 405, we deduce that

$$
\begin{align*}
h\left(y_{1}, y_{2}\right)=\frac{3}{\pi}[& \left.\arcsin \left(\frac{4-y_{1}}{y_{2}}\right)-\arcsin \left(\frac{1-y_{1}}{y_{2}}\right)\right] \tag{18B.1}\\
& -\frac{1}{\pi}\left[\arcsin \left(\frac{-9-y_{1}}{y_{2}}\right)-\arcsin \left(\frac{-16-y_{1}}{y_{2}}\right)\right]
\end{align*}
$$

for all $\left(y_{1}, y_{2}\right) \in \mathbb{Y}$; see Figure 18B.6(D). Finally, define $H:=h \circ f: \mathbb{X} \longrightarrow \mathbb{R}$. That is,

$$
\begin{align*}
H\left(x_{1}, x_{2}\right)=\frac{3}{\pi}[& \left.\arcsin \left(\frac{4-x_{1}^{2}+x_{2}^{2}}{2 x_{1} x_{2}}\right)-\arcsin \left(\frac{1-x_{1}^{2}+x_{2}^{2}}{2 x_{1} x_{2}}\right)\right] \tag{18B.2}\\
& -\frac{1}{\pi}\left[\arcsin \left(\frac{-9-x_{1}^{2}+x_{2}^{2}}{2 x_{1} x_{2}}\right)-\arcsin \left(\frac{-16-x_{1}^{2}+x_{2}^{2}}{2 x_{1} x_{2}}\right)\right]
\end{align*}
$$

for all $\left(x_{1}, x_{2}\right) \in \mathbb{X}$; see Figure 18B.6(C). Proposition 18B.3(a) says that H is harmonic on \mathbb{X}, because h is harmonic on \mathbb{Y}. Finally, h satisfies the Dirichlet boundary conditions specified by b, and $B=b \circ f$; thus Proposition 18B.3(b) says that H satisfies the Dirichlet boundary conditions specified by B, as desired.

For Proposition 18B.3 to be useful, we must find a conformal map from our original domain \mathbb{X} to some 'nice' domain \mathbb{Y} where we are able to easily solve BVPs. For example, ideally, \mathbb{Y} should be a disk or a half-plane, so that we can apply the Fourier techniques of Section 14B, or the Poisson kernel methods from Sections $14 \mathrm{~B}(\mathrm{v}), 17 \mathrm{~F}$ and 17 E . If \mathbb{X} is a simply connected open subset of the plane, then a deep result in complex analysis says that it is always possible to find such a conformal map. An open subset $\mathbb{U} \subset \mathbb{C}$ is simply connected if any closed loop in \mathbb{U} can be continuously shrunk down to a point without ever leaving \mathbb{U}. Heuristically speaking, this means that \mathbb{U} has no 'holes'. (For example, the open disk is simply connected, and so is the upper half-plane. However, the open annulus is not simply connected.)

Theorem 18B.5. Riemann Mapping Theorem

Let $\mathbb{U}, \mathbb{V} \subset \mathbb{C}$ be two open, simply connected regions of the complex plane. Then there is always a holomorphic bijection $f: \mathbb{U} \longrightarrow \mathbb{V}$.

Proof. See [Lan85, Chapter XIV, pp.340-358].

In particular, this means that any simply connected open subset of \mathbb{C} is conformally isomorphic to the disk, and also conformally isomorphic to the upper half-plane. Thus, in theory, a technique like Example 18B.4 can be applied to any such region.

Unfortunately, the Riemann Mapping Theorem does not tell you how to construct the conformal isomorphism - it merely tells you that such an isomorphism exists. This is not very useful when we want to solve a specific boundary value problem on a specific domain. If \mathbb{V} is a region bounded by a polygon, and \mathbb{U} is the upper half-plane, then it is possible to construct an explicit conformal isomorphism from \mathbb{U} to \mathbb{V} using Schwarz-Christoffel transformations; see [Fis.9.9, $\S 3.5, \mathrm{p} .227$] or [$\mathrm{Asm05}, \S 12.6$]. For further information about conformal maps in general, see [Fis99, §3.4], [Lan8.5, Chapter VII], or the innovatively visual [Nee.97, Chapter 12]. Older, but still highly respected references are [Neh75], [Bie53] and [Sch79].

Application to fluid dynamics. Let $\mathbb{U} \subset \mathbb{C}$ be an open connected set, and let $\overrightarrow{\mathbf{V}}: \mathbb{U} \longrightarrow \mathbb{R}^{2}$ be a two-dimensional vector field (describing a flow). Define $f: \mathbb{U} \longrightarrow \mathbb{C}$ by $f(u)=V_{1}(u)-\mathbf{i} V_{2}(u)$. Recall that Proposition 18A.4 on page 418 says that $\overrightarrow{\mathbf{V}}$ is sourceless and irrotational (e.g. describing a nonturbulent, incompressible fluid) if and only if f is holomorphic. Suppose F is a complex antiderivative \exists^{5} of f on \mathbb{U}-that is $F: \mathbb{U} \longrightarrow \mathbb{C}$ is a holomorphic map such that $F^{\prime} \equiv f$. Then F is called a complex potential for $\overrightarrow{\mathbf{V}}$. The function $\phi(u)=\operatorname{Re}[F(u)]$ is called the (real) potential of the flow. An equipotential contour of F is a level curve of ϕ. That is, it is a set $\mathcal{E}_{x}=\{u \in \mathbb{U} ; \operatorname{Re}[F(u)]=x\}$ for some fixed $x \in \mathbb{R}$. For example, in Figures 18B.6(A) and 18B.7(A,B), the equipotential contours are the dashed curves. A streamline of F is a level curve of the imaginary part of F. That is, it is a set $\mathcal{S}_{y}=\{u \in \mathbb{U} ; \operatorname{Im}[F(u)]=y\}$ for some fixed $y \in \mathbb{R}$. For example, in Figures 18B.6(A) and 18B.7(A,B), the streamlines are the solid curves.

A trajectory of $\overrightarrow{\mathbf{V}}$ is the path followed by a particle carried in the flow —that is, it is a smooth path $\alpha:(-T, T) \longrightarrow \mathbb{U}$ (for some $T \in(0, \infty])$ such that $\dot{\alpha}(t)=\overrightarrow{\mathbf{V}}[\alpha(t)]$ for all $t \in(-T, T)$. The flow $\overrightarrow{\mathbf{V}}$ is confined to \mathbb{U} if no trajectories of $\overrightarrow{\mathbf{V}}$ ever pass through the boundary $\partial \mathbb{U}$. (Physically, $\partial \mathbb{U}$ represents an 'impermeable barrier'). The equipotentials and streamlines of F are important for understanding the flow defined by $\overrightarrow{\mathbf{V}}$, because the following result:

Proposition 18B.6. Let $\overrightarrow{\mathbf{V}}: \mathbb{U} \longrightarrow \mathbb{R}^{2}$ be a sourceless, irrotational flow, and let $F: \mathbb{U} \longrightarrow \mathbb{C}$ be a complex potential for $\overrightarrow{\mathbf{V}}$.

[^75](a) If $\phi=\operatorname{Re}[F]$, then $\nabla \phi=\overrightarrow{\mathbf{V}}$. Thus, particles in the flow can be thought of as descending the 'potential energy landscape' determined by ϕ. In particular, every trajectory of the flow cuts orthogonally through every equipotential contour of F.
(b) Every streamline of F also cuts orthogonally through every equipotential contour.
(c) Every trajectory of $\overrightarrow{\mathbf{V}}$ parameterizes a streamline of F, and every streamline can be parameterized by a trajectory. (Thus, by plotting the streamlines of F, we can visualize the flow $\overrightarrow{\mathbf{V}}$).
(d) $\overrightarrow{\mathbf{V}}$ is confined to \mathbb{U} if and only if F conformally maps \mathbb{U} to a bi-infinite horizontal strip $\mathbb{V} \subset \mathbb{C}$, and maps each connected component of $\partial \mathbb{U}$ to a horizontal line in \mathbb{V}.

Proof. Exercise 18B. 4 Hint: (a) Follows from the definitions of F and $\overrightarrow{\mathbf{V}}$. To prove (b) use the fact that F is a conformal map. (c) follows by combining (a) and (b), and then (d) follows from (c).

Thus, the set of conformal mappings from \mathbb{U} onto such horizontal strips describes all possible sourceless, irrotational flows confined to \mathbb{U}. If $\partial \mathbb{U}$ is simply connected, then we can assume F maps \mathbb{U} to the upper half-plane and maps $\partial \mathbb{U}$ to \mathbb{R} (as in Example 18B.2(e)). Or, if we are willing to allow one 'point source' (or sink) p in $\partial \mathbb{U}$, we can find a mapping from \mathbb{U} to a bi-infinite horizontal strip, which maps the half of the boundary on one side of p to the top edge of strip, maps the other half of the boundary to the bottom edge, and maps p itself to ∞ (as in Example 18B.2(a); in this case, the 'point source' is at 0).

Application to electrostatics. Proposition 18 B .6 has another important physical interpretation. The function $\phi=\operatorname{Im}[f]$ is harmonic (by Proposition 18A. 2 on page 417). Thus, it can be interpreted as an electrostatic potential (see Example 1D. 2 on page 14). In this case, we can regard the streamlines of F as the voltage contours of the resulting electric field; then the 'equipotentials' F of are the field lines (note the reversal of roles here). If $\partial \mathbb{U}$ is a perfect conductor (e.g. a metal), then the field lines must always intersect $\partial \mathbb{U}$ orthogonally, and the voltage contours (i.e. the 'streamlines') can never intersect $\partial \mathbb{U}$-thus, in terms of our fluid dynamical model, the 'flow' is confined to \mathbb{U}. Thus, the streamlines and equipotentials in Figures 18B.6(A) and 18B.7(A,B) portray the (two-dimensional) electric field generated by charged metal plates.

For more about the applications of complex analysis to fluid dynamics and electrostatics, see [Fis.99, §4.2, pp.261-278] or [Nee.97, §12.V, pp.527-540].

Figure 18B.8: Exercise 18B.5.

Exercise 18B.5. (a) Let $\Theta \in(0,2 \pi]$, and consider the 'pie-wedge' domain $\mathbb{V}:=$ (®) $\{r \operatorname{cis} \theta ; 0<r<1,0<\theta<\Theta\}$ (in polar coordinates); see Figure 18B.8(a). Find a conformal isomorphism from \mathbb{V} to the left half-infinite rectangle $\mathbb{U}=\{x+y \mathbf{i} ; x>0,0<y<\pi\}$.
(b) Let $\mathbb{U}:=\{x+y \mathbf{i} ;-\pi<y<\pi\}$ be a bi-infinite horizontal strip of width 2π, and let $\mathbb{V}:=\{x+y \mathbf{i}$; either $y \neq \pm \mathbf{i}$ or $x>-1\}$, as shown in Figure 18B.8(b). Show that $f(z):=z+\exp (z)$ is a conformal isomorphism from \mathbb{U} to \mathbb{V}.
(c) Let $\mathbb{C}_{+}:=\{x+y \mathbf{i} ; y>0\}$ be the upper half-plane. Let $\mathbb{U}:=\{x+y \mathbf{i}$; either $y>0$ or $-1<x<1\}$. That is, \mathbb{U} is the complex plane with two lower quarter-planes removed, leaving a narrow 'chasm' in between them, as shown in Figure 18B.8(c). Show that $f(z)=\frac{2}{\pi}\left(\sqrt{z^{2}-1}+\arcsin (1 / z)\right)$ is a conformal isomorphism from \mathbb{C}_{+}to \mathbb{U}.
(d) Let $\mathbb{C}_{+}:=\{x+y \mathbf{i} ; y>0\}$ be the upper half-plane. Let $\mathbb{U}:=\{x+y \mathbf{i}$; either $y>0$ or $x<1$ or $1<x\}$. That is, \mathbb{U} is the complex plane with a vertical half-infinite rectangle removed, as shown in Figure 18B.8(d). Show that $f(z)=\frac{2}{\pi}\left(z\left(1-z^{2}\right)^{1 / 2}+\arcsin (z)\right)$ is a conformal isomorphism from \mathbb{C}_{+}to \mathbb{U}.
(e) Let $c>0$, let $0<r<1$, and let $\mathbb{U}:=\left\{x+y \mathbf{i} ; x^{2}+y^{2}<1\right.$ and $\left.(x-c)^{2}+y^{2}<r^{2}\right\}$. That is, \mathbb{U} is the 'off-centre annulus', obtained by removing from the unit disk a smaller smaller disk of radius r centered at $(c, 0)$, as shown in Figure 18B.8(e). Let $a:=c-r$ and $b:=c+r$, and define

$$
\lambda \quad:=\frac{1+a b-\sqrt{\left(1-a^{2}\right)\left(1-b^{2}\right)}}{a+b} \quad \text { and } \quad R \quad:=\frac{1-a b-\sqrt{\left(1-a^{2}\right)\left(1-b^{2}\right)}}{b-a} .
$$

Let $\mathbb{A}:=\left\{x+y \mathbf{i} ; R<x^{2}+y^{2}<1\right\}$ be an annulus with inner radius R and outer radius 1 , and let $f(z):=\frac{z-\lambda}{1-\lambda z}$. Show that f is a conformal isomorphism from \mathbb{U} into \mathbb{A}.
(f) Let \mathbb{U} be the upper half-disk shown on the right side of Figure 18B.4, and let \mathbb{D} be the unit disk. Show that the function $f(z)=-\mathbf{i} \frac{z^{2}+2 \mathbf{i} z+1}{z^{2}-2 \mathbf{i} z+1}$ is a conformal isomorphism from \mathbb{U} into \mathbb{D}.
(g) Let $\mathbb{D}=\left\{x+y \mathbf{i} ; x^{2}+y^{2}<1\right\}$ be the open unit disk and let $\mathbb{C}_{+}=\{x+y \mathbf{i} ; y>0\}$ be the open upper half-plane. Define $f: \mathbb{D} \longrightarrow \mathbb{C}_{+}$by $f(z)=\mathbf{i} \frac{1+z}{1-z}$. Show that f is a conformal isomorphism from \mathbb{D} into \mathbb{C}_{+}.

Exercise 18B.6. (a) Combine Example 18B.2(a) with Proposition 17 E .1 on page 404 (or Proposition 20C.1 on page 538) to propose a general method for solving the Dirichlet problem on the bi-infinite strip $\mathbb{U}=\{x+y \mathbf{i} ; x \in \mathbb{R}, 0<y<\pi\}$.
(b) Now combine Exercise (a) with Exercise 18B.5(b) to propose a general method for solving the Dirichlet problem on the domain portrayed in Figure 18B.8(b). (Note: despite the fact that the horizontal barriers are lines of zero thickness, your method allows you to assign different 'boundary conditions' to the two sides of these barriers.) Use your method to find the equilibrium heat distribution when the two barriers are each a different constant temperature. Reinterpret this solution as the electric field between two charged electrodes.
(c) Combine Exercise 18B.5(c) with Proposition 17E. 1 on page 404 (or Proposition 20C.1 on page 538) to propose a general method for solving the Dirichlet problem on the 'chasm' domain portrayed in Figure 18B.8(c). Use your method to find the equilibrium heat distribution when the boundaries on either side of the chasm are two different constant temperatures. Reinterpret this solution as the electric field near the edge of a narrow gap between two large, oppositely charged parallel plates.
(d) Combine Exercise 18B.5(d) with Proposition 17E. 1 on page 404 (or Proposition 20C.1 on page 538) to propose a general method for solving the Dirichlet problem on the domain portrayed in Figure 18B.8(d). Use your method to find the equilibrium heat distribution when the left side of the rectangle has temperature -1 , the right side has temperature +1 , and the top has temperature 0 .
(e) Combine Exercise 18B.5(e) with Proposition 14 B .10 on page 287 to propose a general method for solving the Dirichlet problem on the off-centre annulus portrayed in Figure 18B.8(e). Use your method to find the equilibrium heat distribution when the inner and outer circles are two different constant temperatures. Reinterpret this solution as an electric field between two concentric, oppositely charged cylinders.
(f) Combine Exercise 18B.5(f) with the methods of Sections 14B, 14B(v), and/or 17F to propose a general method for solving the Dirichlet and Neumann problems on the halfdisk portrayed in Figure 18B.4. Use your method to find the equilibrium temperature distribution when the semicircular top of the half-disk is one constant temperature, and the base is another constant temperature.
(g) Combine Exercise 18B.5 (g) with the Poisson Integral Formula on a disk (Proposition 14B. 11 on page 290 or Proposition 17F. 1 on page 407) to obtain another solution to the Dirichlet problem on a half-plane. Show that this is actually equivalent to the Poisson Integral Formula on a half-plane (Proposition 17E.1 on page 404).
(h) Combine Example 18B.2(f) with Proposition 17E. 1 on page 404 (or Proposition 20C.1 on page 538) to propose a general method for solving the Dirichlet problem on the domain portrayed in Figure 18B.7(a). (Note: despite the fact that the vertical obstacle is a line of zero thickness, your method allows you to assign different 'boundary conditions' to the two sides of this line.) Use your method to find the equilibrium temperature distribution when the 'obstacle' has one constant temperature and the the real line has another constant temperature. Reinterpret this as the electric field generated by a charged electrode protruding but insulated from a horizontal, neutrally charged conducting barrier.
(i) Combine Exercise (a) with Example 18B.2(g) to propose a general method for solving the Dirichlet problem on the domain portrayed in Figure 18B.7(b). (Note: despite the fact that the horizontal barriers are lines of zero thickness, your method allows you to assign different 'boundary conditions' to the two sides of these barriers.) Use your method to find the equilibrium temperature distribution when the two horizontal barriers have different constant temperatures. Reinterpret this as the electric field between two charged electrodes.

Exercise 18B.7. (a) Figure 18B.6(A) portrays the map $f(z)=z^{2}$ from Example 18B.2(e). Show that in this case, the equipotential contours are all curves of the form $\left\{x+\mathbf{i} y ; y=\sqrt{x^{2}-c}\right\}$ for some fixed $c>0$. Show that the streamlines are all curves of the form $\{x+\mathbf{i} y ; y=c / x\}$ for some fixed $c>0$.
(b) Figure 18B.7(B) portrays the map $f(z)=\mathbf{i} \arcsin (z)$ from Example 18B.2(f). Show that in this case, the equipotential contours are all ellipses of the form

$$
\left\{x+\mathbf{i} y ; \frac{x^{2}}{\cosh (r)^{2}}+\frac{y^{2}}{\sinh (r)^{2}}=1\right\}
$$

for some fixed $r \in \mathbb{R}$. Likewise, show that the streamlines are all hyperbolas

$$
\left\{x+\mathbf{i} y ; \frac{x^{2}}{\sin (r)^{2}}-\frac{y^{2}}{\cos (r)^{2}}=1\right\}
$$

for some fixed $r \in \mathbb{R}$. Hint: Use Exercises 18A.9(d,e) on page 422.
(c) Find an equation describing all streamlines and equipotentials of the conformal map in Example 18B.2(a). Sketch the streamlines. (This describes a flow into a large body of water, from a point source on the boundary).
(d) Fix $\Theta \in(-\pi, \pi)$, and consider the infinite wedge-shaped region $\mathbb{U}=\{r \operatorname{cis} \theta$; $r \geq 0,0<\theta<2 \pi-\Theta\}$. Find a conformal isomorphism from \mathbb{U} to the upper half-plane. Sketch the streamlines of this map. (This describes the flow near the bank of a wide river, at a corner where the river bends by angle of Θ).
(e) Suppose $\Theta=2 \pi / 3$. Find an exact equation to describe the streamlines and equipotentials from question (d) (analogous to the equations " $y=\sqrt{x^{2}-c}$ " and " $y=$ $c / x "$ from question (a)).
(f) Sketch the streamlines and equipotentials defined by the conformal map in Exercise 18B.5(b). (This describes the flow out of a long pipe or channel into a large body of water).
(g) Sketch the streamlines and equipotentials defined by the inverse of the conformal map f in Exercise 18B.5(c). (In other words, sketch the f-images of vertical and horizontal lines in \mathbb{C}_{+}). This describes the flow over a deep 'chasm' in the streambed.
(h) Sketch the streamlines and equipotentials defined by the inverse of the conformal map f in Exercise 18B.5(d). (In other words, sketch the f-images of vertical and horizontal lines in \mathbb{C}_{+}). This describes the flow around a long rectangular peninsula in an ocean.

18C Contour integrals and Cauchy's Theorem

Prerequisites: §18A.

A contour in \mathbb{C} is a continuous function $\gamma:[0, S] \longrightarrow \mathbb{C}$ (for some $S>0$) such that $\gamma(0)=\gamma(S)$, and such that γ does not 'self-intersect' - that is, γ : $[0, S) \longrightarrow \mathbb{C}$ is injective. ${ }^{\square}$. Let $\gamma_{r}, \gamma_{i}:[0, S] \longrightarrow \mathbb{R}$ be the real and imaginary parts of $\gamma\left(\right.$ so $\gamma(s)=\gamma_{r}(s)+\gamma_{i}(s) \mathbf{i}$, for all $\left.s \in \mathbb{R}\right)$. For any $s \in(0, S)$, we

[^76]

Figure 18C.1: (A) The counterclockwise unit circle contour from Example 18C.1.
The 'D' contour from Example 18C.3
define the (complex) velocity vector if γ at s by $\dot{\gamma}(s):=\gamma_{r}^{\prime}(s)+\gamma_{i}^{\prime}(s) \mathbf{i}$ (if these derivatives exist). We say that γ is smooth if $\dot{\gamma}(s)$ exists for all $s \in(0, S)$.

Example 18C.1. Define $\gamma:[0,2 \pi] \longrightarrow \mathbb{C}$ by $\gamma(s)=\exp (\mathbf{i} s) ;$ then γ is a counterclockwise parameterization of the unit circle in the complex plane, as shown in Figure 18C.1(A). For any $s \in[0,2 \pi]$, we have $\gamma(s)=\cos (s)+\mathbf{i} \sin (s)$, so that $\dot{\gamma}(s)=\cos ^{\prime}(s)+\mathbf{i} \sin ^{\prime}(s)=-\sin (s)+\mathbf{i} \cos (s)=\mathbf{i} \gamma(s)$.

Let $\mathbb{U} \subseteq \mathbb{C}$ be an open subset, let $f: \mathbb{U} \longrightarrow \mathbb{C}$ be a complex function, and let $\gamma:[0, S] \longrightarrow \mathbb{U}$ be a smooth contour. The contour integral of f along γ is defined:

$$
\oint_{\gamma} f:=\int_{0}^{S} f[\gamma(s)] \cdot \dot{\gamma}(s) d s
$$

(Recall that $\dot{\gamma}(s)$ is a complex number, so $f[\gamma(s)] \cdot \dot{\gamma}(s)$ is a product of two complex numbers). Another notation we will sometimes use is $\oint_{\gamma} f(z) d z$.

Example 18C.2. Let $\gamma:[0,2 \pi] \longrightarrow \mathbb{C}$ be the unit circle contour from Example 18 C .1.
(a) Let $\mathbb{U}:=\mathbb{C}$ and let $f(z):=1$, a constant function. Then

$$
\begin{aligned}
\oint_{\gamma} f & =\int_{0}^{2 \pi} 1 \cdot \dot{\gamma}(s) d s=\int_{0}^{2 \pi}-\sin (s)+\mathbf{i} \cos (s) d s \\
& =-\int_{0}^{2 \pi} \sin (s) d s+\mathbf{i} \int_{0}^{2 \pi} \cos (s) d s=-0+\mathbf{i} 0=0 .
\end{aligned}
$$

(b) Let $\mathbb{U}:=\mathbb{C}$ and let $f(z):=z^{2}$. Then

$$
\begin{aligned}
\oint_{\gamma} f & =\int_{0}^{2 \pi} \gamma(s)^{2} \cdot \dot{\gamma}(s) d s=\int_{0}^{2 \pi} \exp (\mathbf{i} s)^{2} \cdot \mathbf{i} \exp (\mathbf{i} s) d s \\
& =\mathbf{i} \int_{0}^{2 \pi} \exp (\mathbf{i} s)^{3} d s=\mathbf{i} \int_{0}^{2 \pi} \exp (3 \mathbf{i} s) d s \\
& =\mathbf{i} \int_{0}^{2 \pi} \cos (3 s)+\mathbf{i} \sin (3 s) d s=\mathbf{i} \int_{0}^{2 \pi} \cos (3 s) d s-\int_{0}^{2 \pi} \sin (3 s) d s \\
& =\mathbf{i} 0-0=0
\end{aligned}
$$

(c) More generally, for any $n \in \mathbb{Z}$ except $n=-1$, we have $\oint_{\gamma} z^{n} d z=0$ (Exercise 18C.1).
(What happens if $n=-1$? See Example 18C.6 below).
(d) It follows that, if $c_{n}, \ldots, c_{2}, c_{1}, c_{0} \in \mathbb{C}$, and $f(z)=c_{n} z^{n}+\cdots+c_{2} z^{2}+c_{1} z+c_{0}$ is a complex polynomial function, then $\oint_{\gamma} f=0$.

A contour $\gamma:[0, S] \longrightarrow \mathbb{U} \subseteq \mathbb{C}$ is piecewise smooth if $\dot{\gamma}(s)$ exists for all $s \in$ $[0, S]$, except for perhaps finitely many points $0=s_{0} \leq s_{1} \leq s_{2} \leq \ldots \leq s_{N}=S$. If $f: \mathbb{U} \longrightarrow \mathbb{C}$ is a complex function, we define the contour integral

$$
\oint_{\gamma} f:=\sum_{n=1}^{N} \int_{s_{n-1}}^{s_{n}} f[\gamma(s)] \cdot \dot{\gamma}(s) d s
$$

Example 18C.3. Fix $R>0$, and define $\gamma_{R}:[0, \pi+2 R] \longrightarrow \mathbb{C}$ as follows:

$$
\gamma_{R}(s) \quad:=\left\{\begin{array}{rll}
R \cdot \exp (\mathbf{i} s) & \text { if } & 0 \leq s \leq \pi \tag{18C.1}\\
s-\pi-R & \text { if } & \pi \leq s \leq \pi+2 R
\end{array}\right.
$$

This contour looks like a ' D ' turned on its side; see Figure 18C.1(B). The first half of the contour parameterizes the upper half of the circle from R to $-R$. The second half parameterizes a straight horizontal line segment from $-R$ back to R. It follows that

$$
\dot{\gamma}_{R}(s) \quad:=\left\{\begin{array}{rll}
R \mathbf{i} \cdot \exp (\mathbf{i} s) & \text { if } & 0 \leq s \leq \pi \tag{18C.2}\\
1 & \text { if } & \pi \leq s \leq \pi+2 R
\end{array}\right.
$$

(a) Let $\mathbb{U}:=\mathbb{C}$ and let $f(z):=z$. Then

$$
\begin{aligned}
\oint_{\gamma_{R}} f & =\int_{0}^{\pi} \gamma(s) \cdot \dot{\gamma}(s) d s+\int_{\pi}^{\pi+2 R} \gamma(s) \cdot \dot{\gamma}(s) d s \\
& \overline{\overline{(*)}} \int_{0}^{\pi} R \exp (\mathbf{i} s) \cdot R \mathbf{i} \exp (\mathbf{i} s) d s+\int_{\pi}^{\pi+2 R}(s-\pi-R) d s
\end{aligned}
$$

$$
\begin{aligned}
& =R^{2} \mathbf{i} \int_{0}^{\pi} \exp (\mathbf{i} s)^{2} d s+\int_{-R}^{R} t d t \\
& =R^{2} \mathbf{i} \int_{0}^{\pi} \cos (2 s)+\mathbf{i} \sin (2 s) d s+\left.\frac{t^{2}}{2}\right|_{t=-R} ^{t=R} \\
& =\frac{R^{2} \mathbf{i}}{2}(\sin (2 s)-\mathbf{i} \cos (2 s))_{s=0}^{s=\pi}+\frac{1}{2}\left(R^{2}-(-R)^{2}\right) \\
& =\frac{R^{2} \mathbf{i}}{2}((0-0)-\mathbf{i}(1-1))+0 \\
& =0+0=0
\end{aligned}
$$

Here, $(*)$ is by equations (18C.1) and (18C.2).
(b) For generally, for any $n \in \mathbb{Z}$, if $n \neq-1$, then $\oint_{\gamma_{R}} z^{n} d z=0$ (Exercise 18C.2).(®)

Thus, if f is any complex polynomial, then $\oint_{\gamma_{R}} f=0$.
Any contour $\gamma:[0, S] \longrightarrow \mathbb{C}$ cuts the complex plane into exactly two pieces. Formally the set $\mathbb{C} \backslash \gamma[0, S]$ has exactly two connected components, and exactly one of these components (the one 'inside' γ) is bounded. \downarrow The bounded component is called the purview of γ; see Figure 18C.2(A). For example, the purview of the unit circle is the unit disk. If \mathbb{G} is the purview of γ, then clearly $\partial \mathbb{G}=\gamma[0, S]$. We say that γ is counterclockwise if the outward normal vector of \mathbb{G} is always on the righthand side of the vector $\dot{\gamma}$. We say γ is clockwise if the outward normal vector of \mathbb{G} is always on the lefthand side of the vector $\dot{\gamma}$; see Figure 18C.2(C).

The contour γ is called nullhomotopic in \mathbb{U} if the purview of γ is entirely contained in \mathbb{U}; see Figure 18C.2(B). Equivalently: it is possible to continuously 'shrink' γ down to a point without the any part of the contour leaving \mathbb{U}; this is called a nullhomotopy of γ, and is portrayed in see Figure 18C.2(D). Heuristically speaking, γ is nullhomotopic in \mathbb{U} if and only if γ does not encircle any 'holes' in the domain \mathbb{U}.

Example 18C.4. (a) The unit circle from Examples 18C. 1 and the 'D' contour from Example 18C.3 are both counterclockwise, and both are nullhomotopic in the domain $\mathbb{U}=\mathbb{C}$.
(b) The unit circle is not nullhomotopic on the domain $\mathbb{C}^{*}:=\mathbb{C} \backslash\{0\}$. The purview of γ (the unit disk) is not entirely contained in \mathbb{C}^{*}, because the point 0 is missing. Equivalently, it is not possible to shrink γ down to a point without passing the curve through 0 at some moment; at this moment the curve would not be contained in \mathbb{U}.

The 'zero' outcomes of Examples 18C.2 and 18C.3 not accidents; they are consequences of one of the fundamental results of complex analysis.

[^77]

Figure 18C.2: (A) Three contours and their purviews.
(B) Contour γ is nullhomotopic in \mathbb{U}, but contours α and β are not nullhomotopic in \mathbb{U}. (C) Contour α is clockwise; contours β and γ are counterclockwise. (D) A nullhomotopy of γ.

Theorem 18C.5. (Cauchy's Theorem)
Let $\mathbb{U} \subseteq \mathbb{C}$ be an open subset, and let $f: \mathbb{U} \longrightarrow \mathbb{C}$ be holomorphic on \mathbb{U}. If $\gamma:[0, S] \longrightarrow \mathbb{U}$ is a contour which is nullhomotopic in \mathbb{U}, then $\oint_{\gamma} f=0$.

Proof. Let \mathbb{G} be the purview of γ. If γ is nullhomotopic in \mathbb{U}, then $\mathbb{G} \subseteq \mathbb{U}$ and γ parameterizes the boundary $\partial \mathbb{G}$. Treat \mathbb{U} as a subset of \mathbb{R}^{2}. Let $f_{r}: \mathbb{U} \longrightarrow \mathbb{R}$ and $f_{i}: \mathbb{U} \longrightarrow \mathbb{R}$ be the real and imaginary parts of f. The function f can be expressed as a vector field $\overrightarrow{\mathbf{V}}: \mathbb{U} \longrightarrow \mathbb{R}^{2}$ defined by $V_{1}(u):=f_{r}(u)$ and $V_{2}(u):=-f_{i}(u)$. For any $\mathbf{b} \in \partial \mathbb{G}$, let $\overrightarrow{\mathbf{N}}[\mathbf{b}]$ denote the outward unit normal vector to $\partial \mathbb{G}$ at \mathbf{b}. We define
$\operatorname{Flux}(\overrightarrow{\mathbf{V}}, \gamma):=\int_{0}^{S} \overrightarrow{\mathbf{V}}[\gamma(s)] \bullet \overrightarrow{\mathbf{N}}[\gamma(s)] d s, \quad$ and $\left.\quad \operatorname{Work}(\overrightarrow{\mathbf{V}}, \gamma):=\int_{0}^{S} \overrightarrow{\mathbf{V}}[\gamma(s)] \bullet \dot{\gamma}(s)\right] d s$.

The first integral is the flux of $\overrightarrow{\mathbf{V}}$ across the boundary of \mathbb{G}; this is just a reformulation of equation (0E.1) on page 562 (see Figure 0E.1(B) on page 561). The second integral is the work of $\overrightarrow{\mathbf{V}}$ along the contour γ.

Claim 1: (a) $\operatorname{Re}\left[\oint_{\gamma} f\right]=\operatorname{Work}(\overrightarrow{\mathbf{V}}, \gamma)$ and $\operatorname{Im}\left[\oint_{\gamma} f\right]=\operatorname{Flux}(\overrightarrow{\mathbf{V}}, \gamma)$.
(b) If $\operatorname{div}(\overrightarrow{\mathbf{V}}) \equiv 0$, then $\operatorname{Flux}(\overrightarrow{\mathbf{V}}, \gamma)=0$.
(c) If $\operatorname{curl}(\overrightarrow{\mathbf{V}}) \equiv 0$, then $\operatorname{Work}(\overrightarrow{\mathbf{V}}, \gamma)=0$.

Proof. (a) is Exercise 18C.3. (b) is Green's Theorem (Theorem 0E. 3 on page 562). (c) is Exercise 18C. 4 (Hint: it's a variant of Green's Theorem).
$\diamond_{\text {Claim } 1}$
Now, if f is holomorphic on \mathbb{U}, then Proposition 18A.4 on page 418 says that $\operatorname{div}(\overrightarrow{\mathbf{V}}) \equiv 0$ and $\operatorname{curl}(\overrightarrow{\mathbf{V}}) \equiv 0$. Then Claim 1 implies $\oint_{\gamma} f=0$.
(For other proofs, see [Fis99, Theorem 1, §2.3, p.107], [Lan85], §IV.3, p.137], or [Nee97, §8.X, p.410]).

At this point you are wondering: what are complex contour integrals good for, if they are always equal to zero? The answer is that $\oint_{\gamma} f$ is only zero if the function f is holomorphic in the purview of γ. If f has a singularity inside this purview (i.e. a point where f is not complex-differentiable, or perhaps not even defined), then $\oint_{\gamma} f$ might be nonzero.

Example 18C.6. Let $\gamma:[0,2 \pi] \longrightarrow \mathbb{C}$ be the unit circle contour from Example 18C.1. Let $\mathbb{C}^{*}:=\mathbb{C} \backslash\{0\}$, and define $f: \mathbb{C}^{*} \longrightarrow \mathbb{C}$ by $f(z):=1 / z$. Then

$$
\oint_{\gamma} f=\int_{0}^{2 \pi} \frac{\dot{\gamma}(s)}{\gamma(s)} d s=\int_{0}^{2 \pi} \frac{\mathbf{i} \exp (\mathbf{i} s)}{\exp (\mathbf{i} s)} d s=\int_{0}^{2 \pi} \mathbf{i} d s=2 \pi \mathbf{i} .
$$

Notice that γ is not nullhomotopic on \mathbb{C}^{*}. Of course, we could extend f to all of \mathbb{C} by defining $f(0)$ in some arbitrary way. But no matter how we do this, f will never be complex-differentiable at zero - in other words, 0 is a singularity of f.

If the purview of γ contains one or more singularities of f, then the value of $\oint_{\gamma} f$ reveals important information about these singularities. Indeed, the value of $\oint_{\gamma} f$ depends only on the singularities within the purview of γ, and not on the shape of γ itself. This is a consequence of the homotopy-invariance of contour integration.

Let $\mathbb{U} \subseteq \mathbb{C}$ be an open subset, and let $\gamma_{0}, \gamma_{1}:[0, S] \longrightarrow \mathbb{U}$ be two contours. We say that γ_{0} is homotopic to γ_{1} in \mathbb{U} if γ_{0} can be 'continuously deformed' into γ_{1} without ever moving outside of \mathbb{U}; see Figure 18C.3. (In particular, γ is

Figure 18C.3: Homotopy
nullhomotopic if γ is homotopic to a constant path in \mathbb{U}.) Formally, this means there is a continuous function $\Gamma:[0,1] \times[0, S] \longrightarrow \mathbb{U}$ such that:

- For all $s \in[0, S], \Gamma(0, s)=\gamma_{0}(s)$.
- For all $s \in[0, S], \Gamma(1, s)=\gamma_{1}(s)$.
- For all $t \in[0,1]$, if we fix t and define $\gamma_{t}:[0, S] \longrightarrow \mathbb{U}$ by $\gamma_{t}(s):=\Gamma(t, s)$ for all $s \in[0, S]$, then γ_{t} is a contour in \mathbb{U}.

The function Γ is called a homotopy of γ_{0} into γ_{1}. See Figure 18C.4(A).

Proposition 18C.7. (Homotopy invariance of contour integration)
Let $\mathbb{U} \subseteq \mathbb{C}$ be an open subset, and let $f: \mathbb{U} \longrightarrow \mathbb{C}$ be a holomorphic function. Let $\gamma_{0}, \gamma_{1}:[0, S] \longrightarrow \mathbb{U}$ be two contours. If γ_{0} is homotopic to γ_{1} in \mathbb{U}, then $\oint_{\gamma_{0}} f=\oint_{\gamma_{1}} f$.

Before proving this result, it will be useful to somewhat extend our definition of contour integration. A chain is a piecewise-continuous, piecewise differentiable function $\alpha:[0, S] \longrightarrow \mathbb{C}$ (for some $S>0$). (Thus, a chain α is a contour if α is continuous, $\alpha(S)=\alpha(0)$, and α is not self-intersecting). If $\alpha:[0, S] \longrightarrow \mathbb{U} \subseteq \mathbb{C}$ is a chain, and $f: \mathbb{U} \longrightarrow \mathbb{C}$ is a complex-valued function, then the integral of f along α is defined

$$
\begin{equation*}
f_{\alpha} f=\int_{0}^{S} f[\alpha(s)] \cdot \dot{\alpha}(s) d s . \tag{18C.3}
\end{equation*}
$$

Linear Partial Differential Equations and Fourier Theory

Figure 18C.4: (A) Γ is a homotopy from γ_{0} to γ_{1}
(B) The reversal $\overleftarrow{\alpha}$ of α.
(C)

The linking $\alpha \diamond \beta$. (D) The contour γ^{*} defined by the 'boundary' of the homotopy map Γ from Figure (A).

Here we define $\dot{\alpha}(s)=0$ whenever s is one of the (finitely many) points where α is nondifferentiable or discontinuous. (Thus, if α is a contour, then (18C.3) is just the contour integral $\oint_{\alpha} f$).

The reversal of chain α is the chain $\overleftarrow{\alpha}:[0, S] \longrightarrow \mathbb{C}$ defined by $\overleftarrow{\alpha}(s):=$ $\alpha(S-s)$; see Figure 18C.4(B). If $\alpha:[0, S] \longrightarrow \mathbb{C}$ and $\beta:[0, T] \longrightarrow \mathbb{C}$ are two chains, then the linking of α and β is the chain $\alpha \diamond \beta:[0, S+T] \longrightarrow \mathbb{C}$ defined

$$
\alpha \diamond \beta(s) \quad:=\left\{\begin{array}{rll}
\alpha(s) & \text { if } & 0 \leq s \leq S ; \\
\beta(s-S) & \text { if } & S \leq s \leq S+T .
\end{array} \quad\right. \text { (Figure 18C.4(C)) }
$$

Lemma 18C.8. Let $\mathbb{U} \subseteq \mathbb{C}$ be an open set and let $f: \mathbb{U} \longrightarrow \mathbb{C}$ be a complexvalued function. Let $\alpha:[0, S] \longrightarrow \mathbb{U}$ be a chain.
(a) $f_{\alpha} f=-f_{\alpha} f$.
(b) If $\beta:[0, T] \longrightarrow \mathbb{C}$ is another chain, then $f_{\alpha \diamond \beta} f=f_{\alpha} f+f_{\beta} f$.
(c) $\alpha \diamond \beta$ is continuous if and only if α and β are both continuous, and $\beta(0)=$ $\alpha(S)$.
(d) The linking operation is associative: that is, if γ is another chain, then $(\alpha \diamond \beta) \diamond \gamma=\alpha \diamond(\beta \diamond \gamma)$.
(Thus, we normally drop the brackets and just write $\alpha \diamond \beta \diamond \gamma$).
Proof. Exercise 18C. 5

Proof of Proposition 18C.7. \quad Define the continuous path $\delta:[0,1] \longrightarrow \mathbb{C}$ by

$$
\delta(t) \quad:=\Gamma(0, t) \quad=\Gamma(S, t), \quad \text { for all } t \in[0,1] .
$$

Figure 18C.4(A) shows how δ traces the path defined by the homotopy Γ from $\gamma_{0}(S)\left(=\gamma_{0}(0)\right)$ to $\gamma_{1}(S)\left(=\gamma_{1}(0)\right)$. We assert (without proof) that the homotopy Γ can always be chosen such that δ is piecewise smooth; thus we regard δ as a chain. Figure 18C.4(D) portrays the contour $\gamma^{*}:=\gamma_{0} \diamond \delta \diamond \overleftarrow{\gamma_{1}}$ $\diamond \overleftarrow{\delta}$, which traces the Γ-image of the four sides of the rectangle $[0,1] \times[0,2 \pi]$.
Claim 1: $\quad \gamma^{*}$ is nullhomotopic in \mathbb{U}.
Proof. The purview of γ^{*} is simply the image of the open rectangle $(0,1) \times$ $(0,2 \pi)$ under the function Γ. But by definition, Γ maps $(0,1) \times(0,2 \pi)$ into \mathbb{U}; thus the purview of γ^{*} is contained in \mathbb{U}, so γ^{*} is nullhomotopic in \mathbb{U}.
$\diamond_{\text {Claim } 1}$

$$
\text { Thus, } \begin{aligned}
0 & \overline{\overline{(\mathrm{C})}} \oint_{\gamma^{*}} f \overline{\overline{(*)}} \oint_{\gamma_{0} \diamond \delta \diamond \overleftarrow{\gamma_{1}} \diamond \delta} f \\
& \overline{\overline{(\uparrow)}} \oint_{\gamma_{0}} f+\oint_{\delta} f-\oint_{\gamma_{1}} f-\oint_{\delta} f=\oint_{\gamma_{0}} f-\oint_{\gamma_{1}} f .
\end{aligned}
$$

Here (C) is by Cauchy's Theorem and Claim 1, (*) is by definition of γ, and (\dagger) is by Lemma 18C.8(a,b).
Thus, we have $\oint_{\gamma_{0}} f-\oint_{\gamma_{1}} f=0$, which means $\oint_{\gamma_{0}} f=\oint_{\gamma_{1}} f$, as claimed.

Example 18C.6 is a special case of the following important result:

Theorem 18C.9. (Cauchy's Integral Formula)

Let $\mathbb{U} \subseteq \mathbb{C}$ be an open subset, let $f: \mathbb{U} \longrightarrow \mathbb{C}$ be holomorphic, let $u \in \mathbb{U}$, and let $\gamma:[0, S] \longrightarrow \mathbb{U}$ be any counterclockwise contour whose purview contains u and is contained in \mathbb{U}. Then $f(u)=\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{f(z)}{z-u} d z$.

In other words: if $\mathbb{U}^{*}:=\mathbb{U} \backslash\{u\}$, and we define $F_{u}: \mathbb{U}^{*} \longrightarrow \mathbb{C}$ by $F_{u}(z):=$ $\frac{f(z)}{z-u}$ for all $z \in \mathbb{U}^{*}$, then $f(u)=\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} F_{u}$.

Proof. For simplicity, we will prove this in the case $u=0$. We must show that $\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{f(z)}{z} d z=f(0)$.
Let $\mathbb{G} \subset \mathbb{U}$ be the purview of γ. For any $r>0$, let \mathbb{D}_{r} be the disk of radius r around 0 , and let β_{r} be a counterclockwise parameterization of $\partial \mathbb{D}_{r}$ (e.g. $\beta_{r}(s):=r e^{\text {is }}$ for all $\left.s \in[0,2 \pi]\right)$. Let $\mathbb{U}^{*}:=\mathbb{U} \backslash\{0\}$.

Claim 1: If $r>0$ is small enough, then $\mathbb{D}_{r} \subset \mathbb{G}$. In this case, γ is homotopic to β_{r} in \mathbb{U}^{*}.

Proof. Exercise 18C. 6

$\diamond_{\text {Claim } 1}$
(a)

Now, define $\phi: \mathbb{U} \longrightarrow \mathbb{C}$ as follows.

$$
\phi(u) \quad:=\frac{f(z)-f(0)}{z} \quad \text { for all } z \in \mathbb{U}^{*}, \text { and } \quad \phi(0) \quad:=f^{\prime}(0) .
$$

Then ϕ is holomorphic on \mathbb{U}^{*}. Observe that

$$
\begin{equation*}
1 \overline{\overline{(*)}} \frac{1}{2 \pi \mathbf{i}} \oint_{\beta_{r}} \frac{1}{z} d z \overline{\overline{(\dagger)}} \frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{1}{z} d z . \tag{18C.4}
\end{equation*}
$$

where $(*)$ is by Example 18C.6 on page 439, and (\dagger) is by Claim 1 and Proposition 18C.7. Thus,

$$
\text { Thus, } \begin{aligned}
& f(0) \overline{\overline{(*)}} \frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{f(0)}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{1}{z} d z=\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{f(0)}{z} d z-f(0) \\
&=\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{f(z)}{z} d z-\frac{1}{2 \pi \mathbf{i}} \int_{\gamma} \frac{f(0)}{z} d z \\
&=\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{f(z)}{z}-\frac{f(0)}{z} d z \\
&=\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{f(z)-f(0)}{z} d z=\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \phi \\
&=\frac{1}{(\overline{(\dagger)}} \oint_{\beta_{r}} \phi, \quad \text { for any } r>0 .
\end{aligned}
$$

Here, $(*)$ is by eqn. (18C.4), and (\dagger) is again by Claim 1 and Proposition 18C.7. Thus, we have

$$
\begin{equation*}
\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{f(z)}{z} d z-f(0)=\lim _{r \rightarrow 0} \frac{1}{2 \pi \mathbf{i}} \oint_{\beta_{r}} \phi \tag{18C.5}
\end{equation*}
$$

Thus, it suffices to show that $\lim _{r \rightarrow 0} \oint_{\beta_{r}} \phi=0$. To see this, first note that ϕ is continuous at 0 (because $\lim _{z \rightarrow 0} \phi(z)=f^{\prime}(0)$ by definition of the derivative), and ϕ is also continuous on the rest of \mathbb{U} (where ϕ is just another holomorphic function). Thus, ϕ is bounded on \mathbb{G} (because \mathbb{G} is a bounded set whose closure is inside $\mathbb{U})$. Thus, if $M:=\sup _{z \in \mathbb{G}}|\phi(z)|$, then $M<\infty$. But then

$$
\left|\oint_{\beta_{r}} \phi\right| \underset{(*)}{\leq} M \cdot \text { length }\left(\beta_{r}\right) \quad=\quad M \cdot 2 \pi r \quad \underset{r \rightarrow 0}{ } \quad 0,
$$

where $(*)$ is by Lemma 18C.10 (below).
Thus, $\lim _{r \rightarrow 0} \oint_{\beta_{r}} \phi=0$, so eqn. (18C.5) implies that $\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{f(z)}{z} d z=f(0)$, as desired.

If $\gamma:[0, S] \longrightarrow \mathbb{C}$ is a chain, then we define length $(\gamma):=\int_{0}^{S}|\dot{\gamma}(s)| d s$. The proof of Theorem 18 C .9 invoked the following useful lemma.

Lemma 18C.10. Let $f: \mathbb{U} \longrightarrow \mathbb{C}$ and let γ be a chain in \mathbb{U}. If $M:=$ $\sup _{u \in \mathbb{U}}|f(u)|$, then $\left|\oint_{\gamma} f\right| \leq M \cdot$ length (γ).

Proof. Exercise 18C. 7

Exercise 18C.8. Prove the general case of Theorem 18C.9, for an arbitrary $u \in \mathbb{C}$. -

Corollary 18C.11. (Mean Value Theorem for holomorphic functions)

Let $\mathbb{U} \subseteq \mathbb{C}$ be an open set and let $f: \mathbb{U} \longrightarrow \mathbb{C}$ be holomorphic. Let $r>0$ be small enough that the circle $\mathbb{S}(r)$ of radius r around u is contained in \mathbb{U}. Then

$$
f(u)=\frac{1}{2 \pi} \int_{\mathbb{S}(r)} f(s) d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(u+r e^{\mathbf{i} \theta}\right) d \theta
$$

Proof. Define $\gamma:[0,2 \pi] \longrightarrow \mathbb{U}$ by $\gamma(s):=u+r e^{\text {is }}$ for all $s \in[0,2 \pi]$; thus, γ is a counterclockwise parameterization of $\mathbb{S}(r)$, and $\dot{\gamma}(s)=\mathbf{i} r e^{\text {is }}$ for all $s \in[0,2 \pi]$. Then

$$
\begin{aligned}
f(u) & \overline{\overline{(*)}} \frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{f(z)}{z-u} d z=\frac{1}{2 \pi \mathbf{i}} \int_{0}^{2 \pi} \frac{f[\gamma(\theta)]}{\gamma(\theta)-u} \dot{\gamma}(\theta) d \theta \\
& =\frac{1}{2 \pi \mathbf{i}} \int_{0}^{2 \pi} \frac{f\left(u+r e^{\mathbf{i} \theta}\right)}{r e^{\mathbf{i} \theta}} \mathbf{i} r e^{\mathbf{i} \theta} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(u+r e^{\mathbf{i} \theta}\right) d \theta
\end{aligned}
$$

as desired. Here $(*)$ is by Cauchy's Integral Formula.

Exercise 18C.9. Using Proposition 18C.11, derive another proof of the Mean Value Theorem for harmonic functions on \mathbb{U} (Theorem [E.1 on page 16). (Hint: Use Proposition 18 A .3 on page 417).

Corollary 18C.12. (Maximum Modulus Principle)

Let $\mathbb{U} \subseteq \mathbb{C}$ be an open set and let $f: \mathbb{U} \longrightarrow \mathbb{C}$ be holomorphic. Then the function $m(z):=|f(z)|$ has no local maxima inside \mathbb{U}.

Proof. Exercise 18C. 10 Hint: Use the Mean Value Theorem.

Exercise 18C.11. Let $f: \mathbb{U} \longrightarrow \mathbb{C}$ be holomorphic. Show that the functions $R(z):=\operatorname{Re}[f(z)]$ and $I(z):=\operatorname{Im}[f(z)]$ have no local maxima or minima inside \mathbb{U}.

Let $\mathbb{D}:=\{z \in \mathbb{C} ;|z|<1\}$ be the open unit disk in the complex plane, and let $\mathbb{S}:=\partial \mathbb{D}$ be the unit circle. The Poisson kernel for \mathbb{D} is the function $\mathcal{P}: \mathbb{S} \times \mathbb{D} \longrightarrow \mathbb{R}$ defined by

$$
\mathcal{P}(s, u) \quad:=\frac{1-|u|^{2}}{|s-u|^{2}}, \quad \text { for all } s \in \mathbb{S} \text { and } u \in \mathbb{D} .
$$

Corollary 18C.13. (Poisson Integral Formula for holomorphic functions)
Let $\mathbb{U} \subseteq \mathbb{C}$ be an open subset containing the unit disk ${ }^{\mathbb{D}}$, and let $f: \mathbb{U} \longrightarrow \mathbb{C}$ be holomorphic. Then for all $u \in \mathbb{D}$,

$$
f(u)=\frac{1}{2 \pi} \int_{\mathbb{S}} f(s) \mathcal{P}(s, u) d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{\mathbf{i} \theta}\right) \mathcal{P}\left(e^{\mathbf{i} \theta}, u\right) d \theta
$$

Proof. If $u \in \mathbb{D}$, then \bar{u}^{-1} is outside \mathbb{D} (because $\left|\bar{u}^{-1}\right|=|\bar{u}|^{-1}=|u|^{-1}>1$ if $|u|<1)$. Thus, the set $\mathbb{C}_{u}:=\mathbb{C} \backslash\left\{\bar{u}^{-1}\right\}$ contains \mathbb{D}. Fix $u \in \mathbb{D}$ and define the function $g_{u}: \mathbb{C}_{u} \longrightarrow \mathbb{C}$ by

$$
g_{u}(z):=\frac{f(z) \cdot \bar{u}}{1-\bar{u} z} .
$$

Claim 1: g_{u} is holomorphic on \mathbb{C}_{u}.

Proof. Exercise 18C. 12

$\diamond_{\text {Claim } 1}$
Now, define $F_{u}: \mathbb{U} \longrightarrow \mathbb{C}$ by $F_{u}(z):=\frac{f(z)}{z-u}$, and let $\gamma:[0,2 \pi] \longrightarrow \mathbb{S}$ be the unit circle contour from Example 18C.1 (i.e. $\gamma(s)=e^{\text {is }}$ for all $s \in[0,2 \pi]$). Then

$$
f(u)=\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} F_{u} \quad \text { by Cauchy's Integral Formula (Theorem 18C.9), }
$$ and $\quad 0=\frac{1}{2 \pi \mathrm{i}} \oint_{\gamma} g_{u} \quad$ by Cauchy's Theorem (Theorem 18C.5),

Thus, $f(u)=\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma}\left(F_{u}+g_{u}\right)=\frac{1}{2 \pi \mathbf{i}} \int_{0}^{2 \pi}\left(F_{u}[\gamma(\theta)]+g_{u}[\gamma(\theta)]\right) \dot{\gamma}(\theta) d \theta$

$$
=\frac{1}{2 \pi \mathbf{i}} \int_{0}^{2 \pi}\left(\frac{f\left(e^{\mathbf{i} \theta}\right)}{e^{i \theta}-u}+\frac{f\left(e^{\mathbf{i} \theta}\right) \cdot \bar{u}}{1-\bar{u} e^{\mathbf{i} \theta}}\right) \mathbf{i} e^{\mathbf{i} \theta} d \theta
$$

$$
=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{\mathbf{i} \theta}\right) \cdot\left(\frac{e^{\mathbf{i} \theta}}{e^{\mathbf{i} \theta}-u}+\frac{e^{\mathbf{i} \theta} \bar{u}}{1-\bar{u} e^{\mathbf{i} \theta}}\right) d \theta
$$

$$
\overline{\overline{(*)}} \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{\mathbf{i} \theta}\right) \cdot \frac{1-|u|^{2}}{\left|e^{\mathbf{i} \theta}-\bar{u}\right|^{2}} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{\mathbf{i} \theta}\right) \mathcal{P}\left(e^{\mathbf{i} \theta}, u\right) d \theta
$$

as desired. Here, $(*)$ uses the fact that, for any $s \in \mathbb{S}$ and $u \in \mathbb{C}$,

$$
\begin{aligned}
\frac{s}{s-u}+\frac{s \bar{u}}{1-\bar{u} s} & =\frac{s}{s-u}+\frac{\bar{s} s \bar{u}}{\bar{s}-\overline{u s} s}=\frac{s}{s-u}+\frac{|s|^{2} \bar{u}}{\bar{s}-\bar{u}|s|^{2}} \\
& \overline{\overline{(*)}} \frac{s}{s-u}+\frac{\bar{u}}{\bar{s}-\bar{u}}=\frac{s \cdot(\bar{s}-\bar{u})+\bar{u} \cdot(s-u)}{(s-u) \cdot(\bar{s}-\bar{u})} \\
& =\frac{|s|^{2}-s \bar{u}+\bar{u} s-|u|^{2}}{(s-u) \cdot \overline{(s-u)}}=\frac{|s|^{2}-|u|^{2}}{|s-u|^{2}} \overline{\overline{(*)}} \frac{1-|u|^{2}}{|s-u|^{2}}
\end{aligned}
$$

where both $(*)$ are because $|s|=1$.

Exercise 18C.13. Using Corollary 18C.13, derive yet another proof of the Poisson Integral Formula for harmonic functions on \mathbb{D}. (See Proposition 14B.11 on page 290, and also Proposition 17F. 1 on page 407.) Hint: Use Proposition 18 A .3 on page 417.

At this point, we have proved the Poisson Integral Formula three entirely different ways: using Fourier series (Proposition 14B.11), using impulse-response methods (Proposition 17F.1), and now, using complex analysis (Corollary 18C.13). In $\S 18 \mathrm{~F}$ on page 461 below, we will encounter the Poisson Integral Formula yet again, while studying the Abel mean of a Fourier series.

An equation which expresses the solution to a boundary value problem in terms of an integral over the boundary of the domain is called an integral representation formula. For example, Poisson Integral Formula is such a formula, as is Poisson's solution to the Dirichlet problem on a half-space (Proposition 17E.1 on page (404). Cauchy's Integral Formula provides an integral representation formula for any holomorphic function on any domain in \mathbb{C} which is bounded by a contour. Our proof of Corollary 18C.13 shows how this can be used to obtain integral representation formulae for harmonic functions on planar domains.

Exercise 18C.14. (Liouville's Theorem)

Suppose $f: \mathbb{C} \longrightarrow \mathbb{C}$ is holomorphic and bounded -i.e. there is some $M>0$ such that $|f(z)|<M$ for all $z \in \mathbb{C}$. Show that f must be a constant function.

Hint. Define $g(z):=\frac{f(z)-f(0)}{z}$.
(a) Show that g is holomorphic on \mathbb{C}.
(b) Show that $|g(z)|<2 M /|z|$ for all $z \in \mathbb{C}$.
(c) Let $z \in \mathbb{C}$. Let γ be a circle of radius $R>0$ around 0 , where R is large enough that z is in the purview of γ. Use Cauchy's Integral Formula and Lemma 18C.10 on page 444 (below) to show that $|g(z)|<\frac{1}{2 \pi} \frac{2 M}{R} \frac{2 \pi R}{R-|z|}$. Now let $R \rightarrow \infty$.

Exercise 18C.15. (Complex antiderivatives)
Let $\mathbb{U} \subset \mathbb{C}$ be an open connected set. We say that \mathbb{U} is simply connected if every contour in \mathbb{U} is nullhomotopic. Heuristically speaking, this means \mathbb{U} doesn't have any 'holes'. For any $u_{0}, u_{1} \in \mathbb{U}$, a path in \mathbb{U} from u_{0} to u_{1} is a continuous function $\gamma:[0, S] \longrightarrow \mathbb{U}$ such that $\gamma(0)=u_{0}$ and $\gamma(S)=u_{1}$.

Let $f: \mathbb{U} \longrightarrow \mathbb{C}$ be holomorphic. Pick a 'basepoint' $b \in \mathbb{U}$, and define a function $F: \mathbb{U} \longrightarrow \mathbb{C}$ as follows.

For all $u \in \mathbb{U}, F(u):=\oint_{\gamma} f, \quad$ where γ is any path in \mathbb{U} from b to $u . \quad$ (18C.6)
(a) Show that $F(u)$ is well-defined by expression (18C.6), independent of the path γ you use to get from b to u.
(Hint. If γ_{1} and γ_{2} are two paths from b to u, show that $\gamma_{1} \diamond \overleftarrow{\gamma_{2}}$ is a contour. Then apply Cauchy's Theorem).
(b) For any $u_{1}, u_{2} \in \mathbb{U}$, show that $F\left(u_{2}\right)-F\left(u_{1}\right)=\int_{\gamma} f$, where γ is any path in \mathbb{U} from u_{1} to u_{2}.

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DrAFT January 31, 2009
(c) Show that F is a holomorphic function, and $F^{\prime}(u)=f(u)$ for all $u \in \mathbb{U}$.
(Hint. Write $F^{\prime}(u)$ as the limit (18A.1) on page 415. For any c close to u let $\gamma:[0,1] \longrightarrow \mathbb{U}$ be the straight-line path linking u to c (i.e. $\gamma(s)=s c+(1-s) u$.). Deduce from part (b) that $\frac{F(c)-F(u)}{c-u}=\frac{1}{c-u} \int_{\gamma} f$. Now take the limit as $c \rightarrow u$.
The function F is called a complex antiderivative of f, based at b. Part (c) is the complex version of the Fundamental Theorem of Calculus.
(d) Let $\mathbb{U}=\mathbb{C}$, and let $b \in \mathbb{U}$, and let $f(u)=\exp (u)$. Let F be the complex antiderivative of f based at b. Show that $F(u)=\exp (u)-\exp (b)$ for all $u \in \mathbb{C}$.
(e) Let $\mathbb{U}=\mathbb{C}$, and let $b \in \mathbb{U}$, and let $f(u)=u^{n}$ for some $n \in \mathbb{N}$. Let F be the complex antiderivative of f based at b. Show that $F(u)=\frac{1}{n+1}\left(u^{n+1}-b^{n+1}\right)$, for all $u \in \mathbb{C}$.

We already encountered one application of complex antiderivatives in Proposition 18B.6 on page 430. The next two exercises describe another important application.

Exercise 18C.16. Complex logarithms (follows Exercise 18C.15).
(a) Let $\mathbb{U} \subset \mathbb{C}$ be an open, simply connected set which does not contain 0 . Define a 'complex logarithm function' $\log : \mathbb{U} \longrightarrow \mathbb{C}$ as the complex antiderivative of $1 / z$ based at 1 . That is, $\log (u):=\oint_{\gamma} 1 / z d z$, where γ is any path in \mathbb{U} from 1 to z. Show that \log is a right-inverse of the exponential function - that is, $\exp (\log (u))=u$ for all $u \in \mathbb{U}$.
(b) What goes wrong with part (a) if $0 \in \mathbb{U}$? What goes wrong if $0 \notin \mathbb{U}$, but \mathbb{U} contains an annulus which encircles 0? (Hint. Consider Example 18C.6)
Remark: This is the reason why we required \mathbb{U} to be simply connected in Exercise 18C.15.
(c) Suppose our definition of 'complex logarithm' is 'any right-inverse of the complex exponential function' - that is, any holomorphic function $L: \mathbb{U} \longrightarrow \mathbb{C}$ such that $\exp (L(u))=u$ for all $u \in \mathbb{U}$. Suppose $L_{0}: \mathbb{U} \longrightarrow \mathbb{C}$ is one such 'logarithm' function (defined as in part (a), for example). Define $L_{1}: \mathbb{U} \longrightarrow \mathbb{C}$ by $L_{1}(u)=L_{0}(u)+2 \pi \mathbf{i}$. Show that L_{1} is also a 'logarithm'. Relate this to the problem you found in part (b).
(d) Indeed, for any $n \in \mathbb{Z}$, define $L_{n}: \mathbb{U} \longrightarrow \mathbb{C}$ by $L_{n}(u)=L_{0}(u)+2 n \pi \mathbf{i}$. Show that L_{n} is also a 'logarithm' in the sense of part (c). Make a sketch of the surface described by the functions $\operatorname{Im}\left[L_{n}\right]: \mathbb{C} \longrightarrow \mathbb{R}$, for all $n \in \mathbb{Z}$ at once.
(e) Proposition 18 A .2 on page 417 asserted that any harmonic function on a convex domain $\mathbb{U} \subset \mathbb{R}^{2}$ can be represented as the real part of a holomorphic function on \mathbb{U}, treated as a subset of \mathbb{C}. The Remark following Proposition 18 A.2 said that \mathbb{U} actually doesn't need to be convex, but it does need to be simply connected. We will not prove that simple-connectedness is sufficient, but we can now show that it is necessary.

Consider the harmonic function $h(x, y)=\log \left(x^{2}+y^{2}\right)$ defined on $\mathbb{R}^{2} \backslash\{0\}$. Show that, on any simply connected subset $\mathbb{U} \subset \mathbb{C}^{*}$, there is a holomorphic function $L: \mathbb{U} \longrightarrow \mathbb{C}$ with $h=\operatorname{Re}[L]$. However, show that there is no holomorphic function $L: \mathbb{C}^{*} \longrightarrow \mathbb{C}$ with $h=\operatorname{Re}[L]$.

The functions $L_{n}($ for $n \in \mathbb{Z})$ are called the branches of the complex logarithm . This exercise shows that the 'complex logarithm' is a much more complicated object than the real logarithm -indeed, the complex log is best understood as a holomorphic 'multifunction' which takes countably many distinct values at each point in \mathbb{C}^{*}. The surface in part (d) is an abstract representation of the 'graph' of this multifunction -it is called a Riemann surface .

Exercise 18C.17. Complex root functions (follows Exercise 18C.16).

(a) Let $\mathbb{U} \subset \mathbb{C}$ be an open, simply connected set which does not contain 0 , and let $\log : \mathbb{U} \longrightarrow \mathbb{C}$ be any complex logarithm function, as defined in Exercise 18C.16. Fix $n \in \mathbb{N}$. Show that $\exp (n \cdot \log (u))=u^{n}$ for all $u \in \mathbb{N}$.
(b) Fix $n \in \mathbb{N}$ and now define $\sqrt[n]{\bullet}: \mathbb{U} \longrightarrow \mathbb{C}$ by $\sqrt[n]{u}=\exp (\log (u) / n)$ for all $u \in \mathbb{N}$. Show that $\sqrt[n]{\bullet}$ is a complex ' nth root' function. That is, $(\sqrt[n]{u})^{n}=u$ for all $u \in \mathbb{U}$.

Different branches of logarithm define different 'branches' of the nth root function. However, while there are infinitely many distinct branches of logarithm, there are exactly n distinct branches of the nth root function.
(c) Fix $n \in \mathbb{N}$, and consider the equation $z^{n}=1$. Show that the set of all solutions to this equation is $\mathcal{Z}_{n}:=\left\{1, e^{2 \pi \mathbf{i} / n}, e^{4 \pi \mathbf{i} / n}, e^{6 \pi \mathbf{i} / n}, \ldots e^{2(n-1) \pi \mathbf{i} / n}\right\}$. (These numbers are called the $n \mathbf{t h}$ roots of unity). For example, $\mathcal{Z}_{2}=\{ \pm 1\}$ and $\mathcal{Z}_{4}=\{ \pm 1, \pm \mathbf{i}\}$.
(d) Suppose $r_{1}: \mathbb{U} \longrightarrow \mathbb{C}$ and $r_{2}: \mathbb{U} \longrightarrow \mathbb{C}$ are two branches of the square root function (defined by applying the definition in part (b) to different branches of the logarithm). Show that $r_{1}(u)=-r_{2}(u)$ for all $u \in \mathbb{U}$.

Sketch the Riemann surface for the complex square root function.
(e) More generally, let $n \geq 2$, and suppose $r_{1}: \mathbb{U} \longrightarrow \mathbb{C}$ and $r_{2}: \mathbb{U} \longrightarrow \mathbb{C}$ are two branches of the nth root function (defined by applying the definition in part (b) to different branches of the logarithm). Show that there is some $\zeta \in \mathcal{Z}_{n}$ (the set of nth roots of unity from part (c)) such that $r_{1}(u)=\zeta \cdot r_{2}(u)$ for all $u \in \mathbb{U}$.

Bonus: Sketch the Riemann surface for the complex nth root function. (Note that it is not possible to embed this surface in three dimensions without some self-intersection).

18D Analyticity of holomorphic maps

Prerequisites: $\S 18 \mathrm{q}, ~ \S(0 \mathrm{H}(\mathrm{ii)}$.

[^78]In $\S 18 \mathrm{~A}$, we said that the holomorphic functions formed a very special subclass within the set of all (real)-differentiable functions on the plane. One indication of this was Proposition 18A.2 on page 417. Another indication is the following surprising and important result.

Theorem 18D.1. (Holomorphic \Rightarrow Analytic)
Let $\mathbb{U} \subset \mathbb{C}$ be an open subset. If $f: \mathbb{U} \longrightarrow \mathbb{C}$ is holomorphic on \mathbb{U}, then f is infinitely (complex-)differentiable everywhere in \mathbb{U}. Thus, the functions $f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}, \ldots$ are also holomorphic on \mathbb{U}. Finally, for all $u \in \mathbb{U}$, the (complex) Taylor series of f at u converges uniformly to f in open disk around u.
Proof. Since any analytic function is \mathcal{C}^{∞}, it suffices to prove the last sentence, and the rest of the theorem follows. Suppose $0 \in \mathbb{U}$; we will prove that f is analytic at $u=0$ (the general case $u \neq 0$ is similar).
Let γ be a counterclockwise circular contour in \mathbb{U} centered at 0 (e.g. define $\gamma:[0,2 \pi] \longrightarrow \mathbb{U}$ by $\gamma(s)=r e^{\text {is }}$ for some $\left.r>0\right)$. Let $\mathbb{W} \subset \mathbb{U}$ be the purview of γ (an open disk centered at 0). For all $n \in \mathbb{N}$, let

$$
c_{n}:=\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{f(z)}{z^{n+1}} d z .
$$

We will show that the power series $\sum_{n=0}^{\infty} c_{n} w^{n}$ converges to f for all $w \in \mathbb{W}$. For any $w \in \mathbb{W}$, we have

$$
\begin{aligned}
f(w) & \overline{\overline{(*)}} \frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{f(z)}{z-w} d z \overline{\overline{(\dagger)}} \frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{f(z)}{z} \cdot \sum_{n=0}^{\infty}\left(\frac{w}{z}\right)^{n} d z \\
& =\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \sum_{n=0}^{\infty} \frac{f(z)}{z^{n+1}} \cdot w^{n} d z \overline{\overline{(\overline{)}}} \sum_{n=0}^{\infty}\left(\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{f(z)}{z^{n+1}} d z\right) w^{n} \overline{\overline{(\not))}} \sum_{n=0}^{\infty} c_{n} w^{n},
\end{aligned}
$$

as desired. Here, $(*)$ is Cauchy's Integral Formula (Theorem 18C.9 on page 443), and (\ddagger) is by the definition of c_{n}. Step (\dagger) is because

$$
\begin{equation*}
\frac{1}{z-w}=\left(\frac{1}{z}\right) \cdot\left(\frac{1}{1-\frac{w}{z}}\right)=\frac{1}{z} \cdot \sum_{n=0}^{\infty}\left(\frac{w}{z}\right)^{n} . \tag{18D.1}
\end{equation*}
$$

Here, the last step is the geometric series expansion $\frac{1}{1-x}=\sum_{n=1}^{\infty} x^{n}$ (with $x:=w / z)$, which is valid because $|w / z|<1$ because $|w|<|z|$ because w is inside the disk \mathbb{W} and z is a point on the boundary of \mathbb{W}.
It remains to justify step (\diamond). For any $N \in \mathbb{N}$, observe that

$$
\begin{equation*}
\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \sum_{n=0}^{\infty} \frac{f(z)}{z^{n+1}} \cdot w^{n} d z=\sum_{n=0}^{N}\left(\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{f(z)}{z^{n+1}} d z\right) w^{n}+\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \sum_{n=N+1}^{\infty} \frac{f(z)}{z^{n+1}} \cdot w^{n} d z \tag{18D.2}
\end{equation*}
$$

Thus, to justify (\diamond), it suffices to show that the second term on the right hand side of (18D.2) tends to zero as $N \rightarrow \infty$. Let L be the length of γ (i.e. $L=2 \pi r$ if γ describes a circle of radius r). The function $z \mapsto f(z) / z$ is continuous on the boundary of \mathbb{W}, so it is bounded. Let $M:=\sup _{z \in \partial \mathbb{W}}\left|\frac{f(z)}{z}\right|$. Fix $\epsilon>0$ and find some $N \in \mathbb{N}$ such that $\left|\sum_{n=N}^{\infty}\left(\frac{w}{z}\right)^{n}\right|<\frac{\epsilon}{L M}$. (Such an N exists because the geometric series (18D.1) converges because $|w / z|<1$.) It follows that:

$$
\begin{equation*}
\text { For all } z \in \partial \mathbb{W}, \quad\left|\frac{f(z)}{z} \cdot \sum_{n=N}^{\infty}\left(\frac{w}{z}\right)^{n}\right|<M \cdot \frac{\epsilon}{L M}=\frac{\epsilon}{L} \tag{18D.3}
\end{equation*}
$$

Thus

$$
\left|\oint_{\gamma} \sum_{n=N+1}^{\infty} \frac{f(z)}{z^{n+1}} \cdot w^{n} d z\right|=\left|\oint_{\gamma} \frac{f(z)}{z} \cdot \sum_{n=N+1}^{\infty}\left(\frac{w}{z}\right)^{n} d z\right| \underset{(*)}{\leq} \frac{\epsilon}{L} \cdot L=\epsilon
$$

Here, $(*)$ is by equation (18D.3) above and Lemma 18 C .10 on page 444. This works for any $\epsilon>0$, so we conclude that the second term on the right side of (18D.2) tends to zero as $N \rightarrow \infty$. This justifies step (\diamond), which completes the proof.

Corollary 18D.2. (Case $D=2$ of Proposition 1E.5 on page 18)
Let $\mathbb{U} \subseteq \mathbb{R}^{2}$ be open. If $h: \mathbb{U} \longrightarrow \mathbb{R}$ is a harmonic function, then h is analytic on \mathbb{U}.

Proof. Exercise 18D. 1 Hint. Combine Theorem 18D.1 with Proposition 18A. 3 on page 417. Note that this is not quite as trivial as it sounds: you must show how to translate the (complex) Taylor series of a holomorphic function on \mathbb{C} into the (real) Taylor series of a real-valued function on \mathbb{R}^{2}.

Because of Theorem 18D.1 and Proposition 18A.5(h), holomorphic functions are also called complex-analytic functions (or even simply analytic functions) in some books. Analytic functions are extremely 'rigid': for any $u \in \mathbb{U}$, the behaviour of f in a tiny neighbourhood around u determines the structure of f everywhere on \mathbb{U}, as we now explain. Recall that a subset $\mathbb{U} \subset \mathbb{C}$ is connected if it is not possible to write \mathbb{U} as a union of two nonempty disjoint open subsets. A subset $\mathbb{X} \subset \mathbb{C}$ is perfect if, for every $x \in \mathbb{X}$, every open neighbourhood around x contains other points in \mathbb{X} besides x. (Equivalently: every point in \mathbb{X} is a cluster point of $\mathbb{X})$. In particular, any open subset of \mathbb{C} is perfect. Also, \mathbb{R} and \mathbb{Q} are a perfect subsets of \mathbb{C}. Any disk, annulus, line segment, or unbroken curve in \mathbb{C} is both connected and perfect.

Theorem 18D.3. (Identity Theorem)
Let $\mathbb{U} \subset \mathbb{C}$ be a connected open set, and let $f: \mathbb{U} \longrightarrow \mathbb{C}$ and $g: \mathbb{U} \longrightarrow \mathbb{C}$ be two holomorphic functions.
(a) Suppose there is some $a \in \mathbb{U}$ such that $f(a)=g(a), f^{\prime}(a)=g^{\prime}(a), f^{\prime \prime}(a)=$ $g^{\prime \prime}(a)$, and in general, $f^{(n)}(a)=g^{(n)}(a)$ for all $n \in \mathbb{N}$. Then $f(u)=g(u)$ for all $u \in \mathbb{U}$.
(b) Suppose there is a perfect subset $\mathbb{X} \subset \mathbb{U}$ such that $f(x)=g(x)$ for all $x \in \mathbb{X}$. Then $f(u)=g(u)$ for all $u \in \mathbb{U}$.

Proof. (a) Let $h:=f-g$. It suffices to show that $h \equiv 0$. Let

$$
\mathbb{W}:=\quad\left\{u \in \mathbb{U} ; h(u)=0, \text { and } h^{(n)}(u)=0 \text { for all } n \in \mathbb{N}\right\} .
$$

The set \mathbb{W} is nonempty, because $a \in \mathbb{W}$ by hypothesis. We will show that $\mathbb{W}=\mathbb{U}$; it follows that $h \equiv 0$.
Claim 1: \mathbb{W} is an open subset of \mathbb{U}.
Proof. Let $w \in \mathbb{W}$; we must show that there is a nonempty open disk around w that is also in \mathbb{W}. Now, h is analytic at w because f and g are analytic at w. Thus, there is some nonempty open disk \mathbb{D} centered at w such that the Taylor expansion of h converges to $h(z)$ for all $z \in \mathbb{D}$. The Taylor expansion of h at w is $c_{0}+c_{1}(z-u)+c_{2}(z-u)^{2}+c_{3}(z-u)^{3}+\cdots$, where $c_{n}:=h^{(n)}(w) / n!$, for all $n \in \mathbb{N}$. But for all $n \in \mathbb{N}, c_{n}=0$ because $h^{(n)}(w)=0$ because $w \in \mathbb{W}$. Thus, the Taylor expansion is $0+0(z-w)+0(z-w)^{2}+\cdots$; hence it converges to zero. Thus, h is equal to the constant zero function on \mathbb{D}. Thus, $\mathbb{D} \subset \mathbb{W}$. This holds for any $w \in \mathbb{W}$; hence \mathbb{W} is an open subset of \mathbb{C}.
$\diamond_{\text {Claim } 1}$
Claim 2: \mathbb{W} is a closed subset of \mathbb{U}.
Proof. For all $n \in \mathbb{N}$, the function $h^{(n)}: \mathbb{U} \longrightarrow \mathbb{C}$ is continuous (because $f^{(n)}$ and $g^{(n)}$ are continuous, since they are differentiable). Thus, the set $\mathbb{W}_{n}:=\left\{u \in \mathbb{U} ; h^{(n)}(u)=0\right\}$ is a closed subset of \mathbb{U} (because $\{0\}$ is a closed subset of \mathbb{C}). But clearly $\mathbb{W}=\mathbb{W}_{0} \cap \mathbb{W}_{1} \cap \mathbb{W}_{2} \cap \cdots$. Thus, \mathbb{W} is also closed (because it is an intersection of closed sets).

$$
\diamond_{\text {Claim } 2}
$$

Thus, \mathbb{W} nonempty, and is both open and closed in \mathbb{U}. Thus, the set $\mathbb{V}:=\mathbb{U} \backslash \mathbb{W}$ is also open and closed in \mathbb{U}, and $\mathbb{U}=\mathbb{V} \sqcup \mathbb{W}$. If $\mathbb{V} \neq \emptyset$, then we have expressed \mathbb{U} as a union of two nonempty disjoint open sets, which contradicts the hypothesis that \mathbb{U} is connected. Thus, $\mathbb{V}=\emptyset$, which means $\mathbb{W}=\mathbb{U}$. Thus, $h \equiv 0$. Thus, $f \equiv g$.
(b) Fix $x \in \mathbb{X}$, and let $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{X}$ be a sequence converging to x (which exists because \mathbb{X} is perfect).
Claim 3: $\quad f^{\prime}(x)=g^{\prime}(x)$.

Proof. Exercise 18D. 2 Hint: Compute the limit (18A.1) on page 415 along the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$. $\diamond_{\text {Claim 3 }}$

This argument works for any $x \in \mathbb{X}$; thus $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in \mathbb{X}$. Repeating the same argument, we get $f^{\prime \prime}(x)=g^{\prime \prime}(x)$ for all $x \in \mathbb{X}$. By induction, $f^{(n)}(x)=g^{(n)}(x)$ for all $n \in \mathbb{N}$ and all $x \in \mathbb{X}$. But then part (a) implies that $f \equiv g$.

Remark. The Identity Theorem is true (with pretty much the same proof) for any \mathbb{R}^{M}-valued, analytic function on any connected open subset $\mathbb{U} \subset \mathbb{R}^{N}$, for any $N, M \in \mathbb{N}$. (Exercise 18D. 3 Verify this.) In particular, the Identity Theorem holds for any harmonic functions defined on a connected open subset of \mathbb{R}^{N} (for any $N \in \mathbb{N}$). This result nicely complements Corollary 5D.4 on page 87, which established the uniqueness of the harmonic function which satisfies specified boundary conditions. (Note that neither Corollary 5D. 4 nor the Identity Theorem for harmonic functions is a special case of the other; they apply to distinct situations.)

In Proposition 18A.5(i) and Example 18A.6 on pages 419 and 420, we showed how the 'standard' real-analytic functions on \mathbb{R} can be extended to holomorphic functions on \mathbb{C} in a natural way. We now show that these are the only holomorphic extensions of these functions. In other words, there is a one-to-one relationship between real-analytic functions and their holomorphic extensions.

Corollary 18D.4. (Analytic extension)

Let $\mathbb{X} \subseteq \mathbb{R}$ be an open subset, and let $f: \mathbb{X} \longrightarrow \mathbb{R}$ be an analytic function. There exists some open subset $\mathbb{U} \subseteq \mathbb{C}$ containing \mathbb{X}, and a unique holomorphic function $F: \mathbb{U} \longrightarrow \mathbb{C}$ such that $F(x)=f(x)$ for all $x \in \mathbb{X}$.

Proof. For any $x \in \mathbb{X}$, Proposition 18A.5(i) says that the (real) Taylor series of f around x can be extended to define a holomorphic function $F_{x}: \mathbb{D}_{x} \longrightarrow \mathbb{C}$, where $\mathbb{D}_{x} \subset \mathbb{C}$ is an open disk centered at x. Let $\mathbb{U}:=\bigcup_{x \in \mathbb{X}} \mathbb{D}_{x} ;$ then \mathbb{U} is an open subset of \mathbb{C} containing \mathbb{X}. We would like to define $F: \mathbb{U} \longrightarrow \mathbb{C}$ as follows:

$$
\begin{equation*}
F(u):=F_{x}(u), \quad \text { for any } x \in \mathbb{X} \text { and } u \in \mathbb{D}_{x} . \tag{18D.4}
\end{equation*}
$$

But there's a problem: what if $u \in \mathbb{D}_{x}$ and also $u \in \mathbb{D}_{y}$ for some $x, y \in \mathbb{X}$. We must make sure that $F_{x}(u)=F_{y}(u)$-otherwise F will not be well-defined by equation (18D.4).

So, let $x, y \in \mathbb{X}$, and suppose the disks \mathbb{D}_{x} and \mathbb{D}_{y} overlap. Then $\mathbb{P}:=\mathbb{X} \cap$ $\mathbb{D}_{x} \cap \mathbb{D}_{y}$ is a nonempty open subset of \mathbb{R} (hence perfect). The functions F_{x}

[^79]and F_{y} both agree with f on \mathbb{P}; thus, they agree with each other on \mathbb{P}. Thus, the Identity Theorem says that F_{x} and F_{y} agree everywhere on $\mathbb{D}_{x} \cap \mathbb{D}_{y}$.
Thus, F is well-defined by equation (18D.4). By construction, F is a holomorphic function on \mathbb{U} which extends f. Furthermore, F is the only holomorphic extension of f, by the Identity Theorem.

Exercise 18D.4. Let $I: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ be any real-analytic function, and suppose $I(\sin (r), \cos (r))=0$ for all $r \in \mathbb{R}$. Use the Identity Theorem to show that $I(\sin (c), \cos (c))=0$ for all $c \in \mathbb{C}$.

Conclude that any algebraic relation between sin and cos (i.e. any 'trigonometric identity') which is true on \mathbb{R} will also be true over all of \mathbb{C}.

18E Fourier series as Laurent series

Prerequisites: § $18 \mathrm{D}, ~ \S 8 \mathrm{D}$. Recommended: § 10 D (ii).
For any $r \geq 0$, let $\mathbb{D}(r):=\{z \in \mathbb{C} ;|z|<r\}$ be the open disk of radius r around 0 , and let $\mathbb{D}^{\complement}(r):=\{z \in \mathbb{C} ;|z|>r\}$ be the open codisk of 'coradius' r. Let $\mathbb{S}(r):=\{z \in \mathbb{C} ;|z|=r\}$ be the circle of radius r; then $\partial \mathbb{D}(r)=\mathbb{S}(r)=$ $\partial \mathbb{D}^{\complement}(r)$. Finally, for any $R>r \geq 0$, let ${ }^{\circ} \mathbb{A}(r, R):=\{z \in \mathbb{C} ; r<|z|<R\}$ be the open annulus of inner radius r and outer radius R.

Let $c_{0}, c_{1}, c_{2}, \ldots$ be complex numbers, and consider the complex-valued power series:

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n} z^{n}=c_{0}+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+c_{4} z^{4}+\cdots \tag{18E.1}
\end{equation*}
$$

For any coefficients $\left\{c_{n}\right\}_{n=0}^{\infty}$, there is some radius of convergence $R \geq 0$ (possibly zero) such that the power series (18E.1) converges uniformly on the open disk $\mathscr{C}^{D}(R)$ and diverges for all $z \in \mathbb{C}^{\complement}(R)$. (The series (18E.1) may or may not converge on the boundary circle $\mathbb{S}(R)$). The series (18E.1) then defines a holomorphic function on $\mathbb{D}(R)$. (Exercise 18E. 1 Prove the preceding three sentences.) Conversely, if $\mathbb{U} \subseteq \mathbb{C}$ is any open set containing 0 , and $f: \mathbb{U} \longrightarrow \mathbb{C}$ is holomorphic, then Theorem 18D.1 on page 450 says that f has a power series expansion like (18E.1) which converges to f in a disk of nonzero radius around 0 .

Next, let $c_{0}, c_{-1}, c_{-2}, c_{-3} \ldots$ be complex numbers, and consider the complexvalued inverse power series

$$
\begin{equation*}
\sum_{n=-\infty}^{0} c_{n} z^{n}=c_{0}+\frac{c_{-1}}{z}+\frac{c_{-2}}{z^{2}}+\frac{c_{-3}}{z^{3}}+\frac{c_{-4}}{z^{4}}+\cdots \tag{18E.2}
\end{equation*}
$$

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

For any coefficients $\left\{c_{n}\right\}_{n=-\infty}^{0}$, there is some coradius of convergence $r \geq 0$ (possibly infinity) such that the inverse power series (18E.2) converges uniformly on the open codisk $\mathbb{Q}^{\complement}(r)$ and diverges for all $z \in \mathbb{D}(r)$. (The series (18E.2) may or may not converge on the boundary circle $\mathbb{S}(r)$). The series (18E.2) then defines a holomorphic function on $\mathbb{D}^{\complement}(r)$. Conversely, if $\mathbb{U} \subseteq \mathbb{C}$ is any open set, then we say that \mathbb{U} is a neighbourhood of infinity if \mathbb{U} contains $\mathbb{D}^{\complement}(r)$ for some $r<\infty$. If $f: \mathbb{U} \longrightarrow \mathbb{C}$ is holomorphic, and $\lim _{z \rightarrow \infty} f(z)$ exists and is finite, then f has a inverse power series expansion like (18E.2) which converges to f in a codisk of finite coradius (i.e. a nonempty 'open disk around infinity'). 母

Exercise 18E.2. Prove all statements in the paragraph above. Hint: Consider the change of variables $w:=1 / z$. Now use the results about power series from the paragraph between equations (18E.1) and (18E.2).

Finally, let $\ldots, c_{-2}, c_{-1}, c_{0}, c_{1}, c_{2}, \ldots$ be complex numbers, and consider the complex-valued Laurent series:

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} c_{n} z^{n}=\cdots+\frac{c_{-2}}{z^{2}}+\frac{c_{-1}}{z}+c_{0}+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots \tag{18E.3}
\end{equation*}
$$

For any coefficients $\left\{c_{n}\right\}_{n=-\infty}^{\infty}$, there exist $0 \leq r \leq R \leq \infty$ such that the Laurent series (18E.3) converges uniformly on the open annulus ${ }^{9}{ }^{\circ} \mathbb{A}(r, R)$ and diverges for all $z \in \mathbb{D}(r)$ and all $z \in \mathbb{D}^{\complement}(R)$. (The series (18E.3) may or may not converge on the boundary circles $\mathbb{S}(r)$ and $\mathbb{S}(R)$.) The series (18E.3) then defines a holomorphic function on ${ }^{\circ} \mathbb{A}(r, R)$.

Exercise 18E.3. Prove all statements in the paragraph above. Hint: Combine the results about power series and inverse power series from the from the paragraphs between equations (18E.1) and (18E.3).

Proposition 18E.1. Let $0 \leq r<R \leq \infty$, and suppose the Laurent series (18E.3) converges on ${ }^{\circ} \mathbb{A}(r, R)$ to define the function $f:{ }^{\wedge} \mathbb{A}(r, R) \longrightarrow \mathbb{C}$. Let γ be a counterclockwise contour in ${ }^{\circ} \mathbb{A}(r, R)$ which encircles the origin (for example, γ could be a counterclockwise circle of radius r_{0}, where $r<r_{0}<R$). Then for all $n \in \mathbb{Z}$,

$$
c_{n}=\frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{f(z)}{z^{n+1}} d z
$$

[^80]Proof. For all $z \in{ }^{\circ} \mathbb{A}(r, R)$, we have $f(z)=\sum_{k=-\infty}^{\infty} c_{k} z^{k}$. Thus, for any $n \in \mathbb{Z}$,

$$
\frac{f(z)}{z^{n+1}}=\frac{1}{z^{n+1}} \sum_{k=-\infty}^{\infty} c_{k} z^{k}=\sum_{k=-\infty}^{\infty} c_{k} z^{k-n-1} \overline{\overline{(*)}} \sum_{m=-\infty}^{\infty} c_{m+n+1} z^{m}
$$

where $(*)$ is the change of variables $m:=k-n-1$, so that $k=m+n+1$. In other words,

$$
\begin{equation*}
\frac{f(z)}{z^{n+1}}=\cdots+\frac{c_{n-1}}{z^{2}}+\frac{c_{n}}{z}+c_{n+1}+c_{n+2} z+c_{n+3} z^{2}+\cdots \tag{18E.4}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
\oint_{\gamma} \frac{f(z)}{z^{n+1}} & \overline{\overline{(*)}} \cdots+\oint_{\gamma} \frac{c_{n-1}}{z^{2}}+\oint_{\gamma} \frac{c_{n}}{z}+\oint_{\gamma} c_{n+1}+\oint_{\gamma} c_{n+2} z+\oint_{\gamma} c_{n+3} z^{2}+\cdots \\
& \overline{\overline{(+)}} \cdots+0 \quad 2 \pi \mathbf{i} c_{n}, \quad \text { as desired. }
\end{aligned}
$$

Here, $(*)$ is because the series (18E.4) converges uniformly on ${ }^{\circ} \mathbb{A}(r, R)$ (because the Laurent series (18E.3) converges uniformly on ${ }^{\circ} \mathbb{A}(r, R)$); thus, Proposition 6E.10(b) on page 127 implies we can compute the contour integral of series (18E.4) term-by-term. Next, (\dagger) is by Examples 18C.2(c) and 18C. 6 (pages 435 and 439).

Laurent series are closely related to Fourier series.
Proposition 18E.2. Suppose $0 \leq r<1<R$ and suppose the Laurent series (18E.3) converges to the function $f:{ }^{\circ} \mathbb{A}(r, R) \longrightarrow \mathbb{C}$. Define $g:[-\pi, \pi] \longrightarrow \mathbb{C}$ by $g(x):=f\left(e^{\mathbf{i} x}\right)$ for all $x \in[-\pi, \pi]$. For all $n \in \mathbb{Z}$, let

$$
\begin{equation*}
\widehat{g}_{n}:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(x) \exp (-n \mathbf{i} x) d x \tag{18E.5}
\end{equation*}
$$

be the nth complex Fourier coefficient of g (see $\S 8 \mathrm{D}$ on page 172). Then:
(a) $\widehat{g}_{n}=c_{n}$ for all $n \in \mathbb{Z}$.
(b) For any $x \in[-\pi, \pi]$, if $z=e^{\mathbf{i} x} \in \mathbb{S}(1)$, then for all $N \in \mathbb{N}$, the N th partial Fourier sum of $g(x)$ equals the N th partial Laurent sum of $f(z)$; that is:

$$
\sum_{n=-N}^{N} \widehat{g}_{n} \exp (n \mathbf{i} x)=\sum_{n=-N}^{N} c_{n} z^{n}
$$

Thus, the Fourier Series for g converges on $[-\pi, \pi]$ in exactly the same ways (i.e. uniformly, in L^{2}, etc.), and at exactly the same speed, as the Laurent series for f converges on $\mathbb{S}(1)$.

Proof. (a) As in Example 18C. 1 on page 435, define the 'unit circle' contour $\gamma:[0,2 \pi] \longrightarrow \mathbb{C}$ by $\gamma(s):=\exp (\mathbf{i} s)$ for all $s \in[0,2 \pi]$. Then

$$
\begin{aligned}
& c_{n} \overline{\overline{(*)}} \frac{1}{2 \pi \mathbf{i}} \oint_{\gamma} \frac{f(z)}{z^{n+1}}=\frac{1}{2 \pi \mathbf{i}} \int_{0}^{2 \pi} \frac{f[\gamma(s)])}{\gamma(s)^{n+1}} \cdot \dot{\gamma}(s) d s \\
&=\frac{1}{2 \pi \mathbf{i}} \int_{0}^{2 \pi} \frac{f\left(e^{\mathbf{i} s}\right)}{e^{\mathbf{i s}(n+1)}} \cdot \mathbf{i} e^{\mathbf{i} s} d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{\mathbf{i} s}\right) \cdot e^{-n \mathbf{i} s} d s \\
& \overline{(\dagger)} \\
& \frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(e^{\mathbf{i} x}\right) \cdot e^{-n \mathbf{i} x} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(x) \cdot e^{-n \mathbf{i} x} d x \overline{\overline{(\ddagger)}} \widehat{g}_{n} .
\end{aligned}
$$

Here, $(*)$ is by Proposition 18E.1, and (\dagger) is because the function $s \mapsto e^{\mathrm{i} s}$ is 2π-periodic. Finally, (\ddagger) is by equation (18E.5).
(b) follows immediately from (a), because if $z=e^{\mathbf{i} x}$, then for all $n \in \mathbb{Z}$ we have $z^{n}=\exp (n \mathbf{i} x)$.

We can also reverse this logic: given the Fourier series for a function g : $[-\pi, \pi] \longrightarrow \mathbb{C}$, we can interpret it as the Laurent series of some hypothetical function f defined on an open annulus in \mathbb{C} (which may or may not contain $\mathbb{S}(1)$); then by studying f and its Laurent series, we can draw conclusions about g and its Fourier series.

Let $g:[-\pi, \pi] \longrightarrow \mathbb{C}$ be some function, let $\left\{\widehat{g}_{n}\right\}_{n=-\infty}^{\infty}$ be its Fourier coefficients, as defined by equation (18E.5), and consider the complex Fourier series ${ }^{10} \sum_{n=-\infty}^{\infty} \widehat{g}_{n} \mathbf{E}_{n}$. If $g \in \mathbf{L}^{2}[-\pi, \pi]$, then the Riemann-Lebesgue Lemma (Corollary 10A.3 on page 197) says that $\lim _{n \rightarrow \pm \infty} \widehat{g}_{n}=0$; however, the sequence $\left\{\widehat{g}_{n}\right\}_{n=-\infty}^{\infty}$ might converge to zero very slowly, if g is nondifferentiable and/or discontinuous. We would like the sequence $\left\{\widehat{g}_{n}\right\}_{n=-\infty}^{\infty}$ to converges to zero as quickly as possible, for two reasons:

1. The faster the sequence $\left\{\widehat{g}_{n}\right\}_{n=-\infty}^{\infty}$ converges to zero, the easier it will be to approximate the function g using a 'partial sum' of the form $\sum_{n=-N}^{N} \widehat{g}_{n} \mathbf{E}_{n}$, for some $N \in \mathbb{N}$. (This is important for numerical computations.)
2. The faster the sequence $\left\{\widehat{g}_{n}\right\}_{n=-\infty}^{\infty}$ converges to zero, the more computations we can perform with g by 'formally manipulating' its Fourier series. For example, if $\left\{\widehat{g}_{n}\right\}_{n=-\infty}^{\infty}$ converges to zero faster than $\frac{1}{n^{k}}$, then we can compute the derivatives $g^{\prime}, g^{\prime \prime}, g^{\prime \prime \prime}, \ldots, g^{(k-1)}$ by 'formally differentiating' the Fourier series for g (see § $8 \mathrm{~B}(\mathrm{iv})$ on page 168). This is necessary to verify the 'Fourier series' solutions to I/BVPs which we constructed in Chapters 11-14.
[^81]We say the sequence $\left\{\widehat{g}_{n}\right\}_{n=-\infty}^{\infty}$ has exponential decay if there is some $a>1$ such that

$$
\lim _{n \rightarrow \infty} a^{n}\left|\widehat{g}_{n}\right|=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} a^{n}\left|\widehat{g}_{-n}\right|=0
$$

This is an extremely rapid decay rate, which causes the partial sum $\sum_{n=-N}^{N} \widehat{g}_{n} \mathbf{E}_{n}$ to uniformly converge to g very quickly as $N \rightarrow \infty$. This means we can 'formally differentiate' the Fourier series of g as many times as we want. In particular, any 'formal solution to an I/BVP which we obtain through such formal differentiation will converge to the correct solution.

Suppose $g:[-\pi, \pi] \longrightarrow \mathbb{C}$ has real and imaginary parts $g_{r}, g_{i}:[-\pi, \pi] \longrightarrow \mathbb{R}$ (so that $g(x)=g_{r}(x)+g_{i}(x) \mathbf{i}$ for all $\left.x \in[-\pi, \pi]\right)$. We say that g is analytic and periodic if the functions g_{r} and g_{i} are (real)-analytic everywhere on $[-\pi, \pi]$, and if we have $g(-\pi)=g(\pi), \quad g^{\prime}(-\pi)=g^{\prime}(\pi), \quad g^{\prime \prime}(-\pi)=g^{\prime \prime}(\pi)$, etc. (where $g^{\prime}(x)=g_{r}^{\prime}(x)+g_{i}^{\prime}(x) \mathbf{i}$, etc. $)$.

Proposition 18E.3. Let $g:[-\pi, \pi] \longrightarrow \mathbb{C}$ have complex Fourier coefficients $\left\{\widehat{g}_{n}\right\}_{n=-\infty}^{\infty}$. Then
(g is analytic and periodic $) \Longleftrightarrow\left(\right.$ The sequence $\left\{\widehat{g}_{n}\right\}_{n=-\infty}^{\infty}$ decays exponentially $)$.
Proof. " \Longrightarrow " Define the function $f: \mathbb{S}(1) \longrightarrow \mathbb{C}$ by $f\left(e^{\mathbf{i} x}\right):=g(x)$ for all $x \in[-\pi, \pi]$.
Claim 1: f can be extended to a holomorphic function $F: \mathbb{A}(r, R) \longrightarrow \mathbb{C}$, for some $0 \leq r<1<R \leq \infty$.

Proof. Let $\widetilde{g}: \mathbb{R} \longrightarrow \mathbb{C}$ be the 2π-periodic extension of g (i.e. $\widetilde{g}(x+2 n \pi):=$ $g(x)$ for all $x \in[-\pi, \pi]$ and $n \in \mathbb{Z})$. Then \widetilde{g} is analytic on \mathbb{R}, so Corollary 18D. 4 on page 453 says that there is an open subset $\mathbb{U} \subset \mathbb{C}$ containing \mathbb{R} and a holomorphic function $G: \mathbb{U} \longrightarrow \mathbb{C}$ which agrees with g on \mathbb{R}. Without loss of generality, we can assume that \mathbb{U} is a horizontal strip of width 2 W around \mathbb{R}, for some $W>0$-that is, $\mathbb{U}=\{x+y \mathbf{i} ; x \in \mathbb{R}, y \in(-W, W)\}$.
Claim 1.1: $\quad G$ is horizontally 2π-periodic (i.e. $G(u+2 \pi)=E(u)$ for all $u \in \mathbb{U})$.
Proof. Exercise 18E. 4 Hint: Use the Identity Theorem 18 D .3 on page 452 , and the fact that g is 2π-periodic. $\triangle_{\text {Claim 1.1 }}$ Define $E: \mathbb{C} \longrightarrow \mathbb{C}$ by $E(z):=\exp (\mathbf{i} z)$; thus, E maps \mathbb{R} to the unit circle $\mathbb{S}(1)$. Let $r:=e^{-W}$ and $R:=e^{W}$; then $r<1<R$. Then E maps the strip \mathbb{U} to the open annulus $\mathbb{A}(r, R) \subseteq \mathbb{C}$. Note that E is horizontally 2π periodic (i.e. $E(u+2 \pi)=E(u)$ for all $u \in \mathbb{U}$). Define $F: \mathbb{A} \longrightarrow \mathbb{C}$ by $F(E(u)):=G(u)$ for all $u \in \mathbb{U}$.
Claim 1.2: $\quad F$ is well-defined on $\mathbb{A}(r, R)$.

Proof. Exercise 18E. 5 Hint: use the fact that both G and E are 2π-periodic.
$\diamond_{\text {Claim } 1}$
Claim 1.3: $\quad F$ is holomorphic on $\mathbb{A}(r, R)$.
Proof. Let $a \in \mathbb{A}(r, R)$; we must show that F is differentiable at a. Suppose $a=G(u)$ for some $u \in \mathbb{U}$. There are open sets $\mathbb{V} \subset \mathbb{U}$ (containing $u)$ and $\mathbb{B} \subset \mathbb{A}(r, R)$ (containing $a)$ such that $E: \mathbb{V} \longrightarrow \mathbb{B}$ is bijective. Let $L: \mathbb{B} \longrightarrow \mathbb{V}$ be a local inverse of E. Then L is holomorphic on \mathbb{V} by Proposition 18A.5(k) on page 419 (because $E^{\prime}(v) \neq 0$ for all $v \in \mathbb{V}$). But by definition, $F(b)=G(L(b))$ for all $b \in \mathbb{B}$; Thus, F is holomorphic on \mathbb{B} by Proposition 18A.5(j) (the chain rule).
This argument works for any $a \in \mathbb{A}(r, R)$; thus, F is holomorphic on $\mathbb{A}(r, R)$.
$\triangle_{\text {Claim } 1.3}$
It remains to show that F is an extension of f. But by definition, $f(E(x))=$ $g(x)$ for all $x \in[-\pi, \pi]$. Since G is an extension of g, and $F \circ E=G$, it follows that F is an extension of f. $\diamond_{\text {Claim } 1}$

Let $\left\{c_{n}\right\}_{n=-\infty}^{\infty}$ be the Laurent coefficients of F. Then Proposition 18E. 2 on page 456 says that $c_{n}=\widehat{g}_{n}$ for all $n \in \mathbb{Z}$. However, the Laurent series (18E.3) of F (on page 455) converges on $\mathbb{A}(r, R)$. Thus, if $|z|<R$, then the power series (18E.1) on page 454 converges absolutely at z. This means that, if $1<a<R$, then $\sum_{n=0}^{\infty} a^{n}\left|\widehat{g}_{n}\right|$ is finite. Thus, $\lim _{n \rightarrow \infty} a^{n}\left|\widehat{g}_{n}\right|=0$.

Likewise, if $r<|z|$, then the inverse power series (18E.2) on page 454 converges absolutely at z. This means that, if $1<a<1 / r$, then $\sum_{n=0}^{\infty} a^{n}\left|\widehat{g}_{-n}\right|$ is finite. Thus, $\lim _{n \rightarrow \infty} a^{n}\left|\widehat{g}_{-n}\right|=0$.
$" \Longleftarrow "$ Define $c_{n}:=\widehat{g}_{n}$ for all $n \in \mathbb{Z}$, and consider the resulting Laurent series (18E.3). Suppose there is some $a>1$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a^{n}\left|c_{n}\right|=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} a^{n}\left|c_{-n}\right|=0 \tag{18E.6}
\end{equation*}
$$

Claim 2: Let $r:=1 / a$ and $R:=a$. For all $z \in \mathbb{A}(r, R)$, the Laurent series (18E.3) converges absolutely at z.

Proof. Let $z_{+}:=z / a$; then $\left|z_{+}\right|<1$ because $|z|<R:=a$. Also, let $z_{-}:=1 / a z ;$ then $\left|z_{-}\right|<1$, because $|z|>r:=1 / a$. Thus,

$$
\begin{align*}
& \qquad \sum_{n=1}^{\infty}\left|z_{-}\right|^{n}<\infty \quad \text { and } \sum_{n=0}^{\infty}\left|z_{+}\right|^{n}<\infty \tag{18E.7}\\
& \text { Linear Partial Differential Equations and Fourier Theory } \quad \infty \quad \text { Marcus Pivato } \quad \text { DRAFT }
\end{align*}
$$

Evaluating the Laurent series (18E.3) at z, we see that

$$
\begin{aligned}
& \text { } \begin{aligned}
& \sum_{n=-\infty}^{\infty} c_{n} z^{n}=\sum_{n=1}^{\infty} \frac{c_{-n}}{z^{n}}+\sum_{n=0}^{\infty} c_{n} z^{n}=\sum_{n=1}^{\infty} \frac{a^{n} c_{-n}}{(a z)^{n}}+\sum_{n=0}^{\infty} a^{n} c_{n}(z / a)^{n} \\
&=\sum_{n=1}^{\infty}\left(a^{n} c_{-n}\right) z_{-}^{n}+\sum_{n=0}^{\infty} a^{n} c_{n} z_{+}^{n} . \\
& \text { Thus, } \quad \sum_{n=-\infty}^{\infty}\left|c_{n} z^{n}\right| \leq \sum_{n=1}^{\infty} a^{n}\left|c_{-n}\right|\left|z_{-}\right|^{n}+\sum_{n=0}^{\infty} a^{n}\left|c_{n}\right|\left|z_{+}\right|^{n} \quad<\quad \infty, \\
& \text { where (*) is by equations (18E.6) and (18E.7). }
\end{aligned} \quad \diamond_{\text {Claim 2 }}
\end{aligned}
$$

Claim 2 implies that the Laurent series (18E.3) converges to some holomorphic function $f: \mathbb{A}(r, R) \longrightarrow \mathbb{C}$. But $g(x)=f\left(e^{\text {ix }}\right)$ for all $x \in[-\pi, \pi]$; thus, g is (real)-analytic on $[-\pi, \pi]$, because f is (complex-)analytic on $\mathbb{A}(r, R)$, by Theorem 18D. 1 on page 450 .

Exercise 18E.6. Let $f:[-\pi, \pi] \longrightarrow \mathbb{R}$, and consider the real Fourier series for f (see $\S 8 \mathrm{~A}$ on page 161). Show that the real Fourier coefficients $\left\{A_{n}\right\}_{n=0}^{\infty}$ and $\left\{B_{n}\right\}_{n=0}^{\infty}$ have exponential decay if and only if f is analytic and periodic on $[-\pi, \pi]$. (Hint: Use Proposition 8D.2 on page 174.)

Exercise 18E.7. Let $f:[0, \pi] \longrightarrow \mathbb{R}$, and consider the Fourier sine series and cosine series for f (see $\S 7 \mathrm{~A}(\mathrm{i})$ on page 137 and $\S 7 \mathrm{~A}(\mathrm{ii)}$ on page 141).
(a) Show that the Fourier cosine coefficients $\left\{A_{n}\right\}_{n=0}^{\infty}$ have exponential decay if and only if f is analytic on $[0, \pi]$ and $f^{\prime}(0)=0=f^{\prime}(\pi)$, and $f^{(n)}(0)=0=f^{(n)}(\pi)$ for all odd $n \in \mathbb{N}$.
(b) Show that the Fourier sine coefficients $\left\{B_{n}\right\}_{n=1}^{\infty}$ have exponential decay if and only if f is analytic on $[0, \pi]$ and $f(0)=0=f(\pi)$, and $f^{(n)}(0)=0=f^{(n)}(\pi)$ for all even $n \in \mathbb{N}$.
(c) Conclude that if both the sine and cosine series have exponential decay, then $f \equiv 0$.
(Hint. Use the previous exercise and Proposition 8C.5 on page 171.)

Exercise 18E.8. Let $\mathbb{X}=[0, L]$ be an interval, let $f \in \mathbf{L}^{2}(\mathbb{X})$ be some initial temperature distribution, and let $F: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ be the solution to the one-dimensional heat equation ($\partial_{t} F=\partial_{x}^{2} F$) with initial conditions $F(x ; 0)=f(x)$ for all $x \in \mathbb{X}$, and satisfying either homogeneous Dirichlet boundary conditions, or homogeneous Neumann boundary conditions, or periodic boundary conditions on \mathbb{X}, for all $t>0$. Show that, for any fixed $t>0$, the function $F_{t}(x):=F(x, t)$ is analytic on \mathbb{X}. (Hint: Apply Propositions 11A. 1 and 11A. 3 on pages 225 and 227.)

This shows how the action of the heat equation can rapidly 'smooth' even a highly irregular initial condition.

Exercise 18E.9. Compute the complex Fourier series of $f:[-\pi, \pi] \longrightarrow \mathbb{C}$ when f is defined as follows:
(a) $f(x)=\sin \left(e^{\mathbf{i x}}\right)$.
(b) $f(x)=\cos \left(e^{-3 \mathbf{i} x}\right)$.
(c) $f(x)=e^{2 \mathbf{i} x} \cdot \cos \left(e^{-3 \mathbf{i} x}\right)$.
(d) $f(x)=\left(5+e^{2 \mathbf{i} x}\right) \cdot \cos \left(e^{-3 \mathbf{i} x}\right)$.
(e) $f(x)=\frac{1}{e^{2 \mathbf{i} x}-4}$.
(f) $f(x)=\frac{e^{\mathbf{i} x}}{e^{2 \mathbf{i} x}-4}$.

Exercise 18E.10. (a) Show that the Laurent series (18E.3) can be written in the form $P_{+}(z)+P_{-}(1 / z)$, where P_{+}and P_{-}are both power series.
(b) Suppose P_{+}has radius of convergence R_{+}, and P_{-}has radius of convergence R_{-}. Let $R:=R_{+}$and $r:=1 / R_{-}$, and show that the Laurent series (18E.3) converges on $\mathbb{A}(r, R)$.

18F* Abel means and Poisson kernels

Prerequisites: § 18 E . Prerequisites (for proofs): § $10 \mathrm{D}(\mathrm{ii)}$.
Theorem 18E.3 showed that, if $g:[-\pi, \pi] \longrightarrow \mathbb{C}$ is analytic, then its Fourier series $\sum_{n=-\infty}^{\infty} \widehat{g}_{n} \mathbf{E}_{n}$ will converge uniformly and extremely quickly to g. At the opposite extreme, if g is not even differentiable, then $\sum_{n=-\infty}^{\infty} \widehat{g}_{n} \mathbf{E}_{n}$ might not converge uniformly, or even pointwise, to g. To address this problem, we introduce the Abel mean. For any $r<1$, the r th Abel mean of the Fourier series $\sum_{n=-\infty}^{\infty} \widehat{g}_{n} \mathbf{E}_{n}$ is defined:

$$
\mathbf{A}_{r}[g]:=\sum_{n=-\infty}^{\infty} r^{|n|} \widehat{g}_{n} \mathbf{E}_{n}
$$

As $r \nearrow 1$, each summand $r^{|n|} \widehat{g}_{n} \mathbf{E}_{n}$ in the Abel mean converges to the corresponding summand $\widehat{g}_{n} \mathbf{E}_{n}$ in the Fourier series for g. Thus, we expect that $\mathbf{A}_{r}[g]$ should converge to g as $r \nearrow 1$. The goal of this section is to verify this intuition.

For any $r \in[0,1)$, we define the Poisson kernel $\mathbf{P}_{r}:[-2 \pi, 2 \pi] \longrightarrow \mathbb{R}$ by

$$
\mathbf{P}_{r}(x) \quad:=\quad \frac{1-r^{2}}{1-2 r \cos (x)+r^{2}}, \quad \text { for all } x \in[-2 \pi, 2 \pi]
$$

(See Figure 18F.1). Note that \mathbf{P}_{r} is 2π-periodic (i.e. $\mathbf{P}_{r}(x+2 \pi)=\mathbf{P}_{r}(x)$ for all $x \in[-2 \pi, 0])$. For any function $g:[-\pi, \pi] \longrightarrow \mathbb{C}$, the convolution of \mathbf{P}_{r} and g

Figure 18F.1: The Poisson kernels $\mathbf{P}_{0.7}, \mathbf{P}_{0.8}$, and $\mathbf{P}_{0.9}$, plotted on interval $[-\pi, \pi]$. Note the increasing concentration of \mathbf{P}_{r} near $x=0$ as $r \nearrow 1$. (In the terminology of Section 10D(ii), the system $\left\{\mathbf{P}_{r}\right\}_{0<r<1}$ is like an approximation of the identity.)
is the function $\mathbf{P}_{r} * g:[-\pi, \pi] \longrightarrow \mathbb{C}$ defined by

$$
\mathbf{P}_{r} * g(x):=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(y) \mathbf{P}_{r}(x-y) d y, \quad \text { for all } x \in[-\pi, \pi] .
$$

The next result tells us that $\lim _{r / 1} \mathbf{A}_{r}[g](x)=g(x)$, whenever the function g is continuous at x. Furthermore, for all $r<1$, the functions $\mathbf{A}_{r}[g]:[-\pi, \pi] \longrightarrow \mathbb{C}$ are extremely smooth, and two-variable function $G(x, r):=\mathbf{A}_{r}[g](x)$ is also extremely smooth.

Proposition 18F.1. Let $g \in \mathbf{L}^{2}[-\pi, \pi]$.
(a) For any $r \in[0,1)$ and $x \in[-\pi, \pi], \mathbf{P}_{r} * g(x)=\mathbf{A}_{r}[g](x)$.
(b) For any $x \in(-\pi, \pi)$, if g is continuous at x, then $\lim _{r \neq 1} \mathbf{A}_{r}[g](x)=g(x)$.
(c) Let \mathbb{D} be the closed unit disk, and define $f: \mathbb{D} \longrightarrow \mathbb{C}$ by

$$
f\left(r e^{\mathbf{i} \theta}\right):=\left\{\begin{aligned}
& \mathbf{P}_{r} * g(\theta) \text { if } \\
& g(\theta) \text { if } \\
& r=1,
\end{aligned} \quad \text { for all } \theta \in[-\pi, \pi] \text { and } r \in[0,1] .\right.
$$

Then f is holomorphic on \mathbb{D}.
(d) Thus, for any fixed $r<1$, the function $\mathbf{A}_{r}[g]:[-\pi, \pi] \longrightarrow \mathbb{C}$ is analytic.
(e) Let $\theta \in(-\pi, \pi)$ and let $s=e^{\mathbf{i} \theta} \in \mathbb{S}$. If g is continuous in a neighbourhood of θ, then f is continuous at s-i.e. $\lim _{\substack{u \rightarrow s \\ u \in \mathbb{D}}} f(u)=f(s)$.
(f) If g is continuous on $[-\pi, \pi]$ and $g(-\pi)=g(\pi)$, then f is continuous on \mathbb{D}.
(®) Proof. (a) Exercise 18F. 1 (Hint: Use Lemmas 18 F .2 and 18 F .3 below).
(b) is Exercise 18F. 2 (Hint: Use Lemma 18F. 4 below, and Proposition 10D.9(b) on page 219).
(e) and (f) follow immediately from (b), while (d) follows from (c).
(c) is Exercise 18F. 3 Hint: (i) Let $\mathcal{P}: \mathbb{S} \times \mathscr{D} \longrightarrow \mathbb{R}$ be the Poisson kernel defined on page 445. For any $s \in \mathbb{S}$ and $u \in \mathbb{D}$, if $s=e^{\mathbf{i} y}$ and $u=r \cdot e^{\mathbf{i} x}$, show that $\mathcal{P}(s, u)=\mathbf{P}_{r}(x-y)$.
(ii) Use this to show that $\mathbf{P}_{r} * g(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} g(y) \mathcal{P}\left(e^{\mathbf{i} y}, u\right) d y$.
(ii) Now apply the Poisson Integral Formula for holomorphic functions (Corollary 18C.13).

To prove parts (a) and (b) of Proposition 18F.1, we require the following three lemmas.

Lemma 18F.2. Fix $r \in[0,1)$. Then

$$
\mathbf{P}_{r}(x)=1+2 \sum_{n=1}^{\infty} r^{n} \cos (n x)=\sum_{n=-\infty}^{\infty} r^{|n|} \exp (\mathbf{i} n x) .
$$

Thus, if $\left\{\widehat{\mathbf{P}}_{r}^{n}\right\}_{n=-\infty}^{\infty}$ are the complex Fourier coefficients of the Poisson kernel \mathbf{P}_{r}, then $\widehat{\mathbf{P}}_{r}^{n}=r^{|n|}$ for all $n \in \mathbb{Z}$.

Proof. Exercise 18F. 4

For any $f, g:[-\pi, \pi] \longrightarrow \mathbb{C}$, recall the definition of the convolution $f * g$ from $\S 10 \mathrm{D}(\mathrm{ii}]$ on page 214. The passage from a function to its Fourier coefficients converts the convolution operator into multiplication, as follows: \square

Lemma 18F.3. Let $f, g \in \mathbf{L}^{2}[-\pi, \pi]$ and suppose $h=f * g \in \mathbf{L}^{2}[-\pi, \pi]$ also. Then for all $n \in \mathbb{Z}$, we have $\widehat{h}_{n}=\widehat{f}_{n} \cdot \widehat{g}_{n}$.

Proof. Exercise 18F. 5

[^82]Lemma 18F.4. The set of Poisson kernels $\left\{\mathbf{P}_{r}\right\}_{0 \leq r<1}$ is an approximation of identity, in the following sense:
(AI1) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathbf{P}_{r}(x) d x=1$ for all $r \in[0,1)$.
(AI2) For any $\epsilon>0, \quad \lim _{r \nearrow 1} \frac{1}{2 \pi} \int_{-\epsilon}^{\epsilon} \mathbf{P}_{r}(x) d x=1$. (See Figure 10D.2 on page 218).

Proof. Exercise 18F. 6

Exercise 18F.7. For all $N \in \mathbb{N}$, the N th Dirichlet kernel is the function \mathbf{D}_{N} : $[-\pi, \pi] \longrightarrow \mathbb{R}$ defined by

$$
\mathbf{D}_{N}(x):=1+2 \sum_{n=1}^{N} \cos (n x) \quad \text { (see Figure 10B.1 on page 198). }
$$

(a) Show that $\mathbf{D}_{N}(x)=\sum_{n=-N}^{N} \exp (n x \mathbf{i})$.
(b) Let $g:[-\pi, \pi] \longrightarrow \mathbb{C}$ have complex Fourier series $\sum_{n=-\infty}^{\infty} \widehat{g}_{n} \mathbf{E}_{n}$. Use Lemma 18 F .3 to show that $\mathbf{D}_{N} * g=\sum_{n=-N}^{N} \widehat{g}_{n} \mathbf{E}_{n}$. (Compare this with Lemma 10B.1).

18G Poles and the residue theorem

Prerequisites: $\$ 18 \mathrm{D}$

Let $\mathbb{U} \subset \mathbb{C}$ be an open subset, let $p \in \mathbb{U}$, and let $\mathbb{U}^{*}:=\mathbb{U} \backslash\{p\}$. Let f : $\mathbb{U}^{*} \longrightarrow \mathbb{C}$ be a holomorphic function. We say that p is an isolated singularity of f, because f is well-defined and holomorphic for all points near p, but not at p itself.

Now, it might be possible to 'extend' f to a holomorphic function $f: \mathbb{U} \longrightarrow \mathbb{C}$ by defining $f(p)$ in some suitable way. In this case, we say that p is a removable singularity of f; it is merely a point we 'forgot' when defining f on \mathbb{U}^{*}. However, sometimes there is no way to define $f(p)$ such that the resulting function f : $\mathbb{U} \longrightarrow \mathbb{C}$ is complex-differentiable (or even continuous) at p; in this case, we say that p is an indelible singularity. In this section, we will be concerned with a particularly 'nice' class of indelible singularities, called poles.

Define $F_{1}: \mathbb{U}^{*} \longrightarrow \mathbb{C}$ by $F_{1}(u)=(p-u) \cdot f(u)$. We say that p is a simple pole of f if p is a removable singularity of F_{1}-i.e. if $F_{1}(p)$ can be defined
such that F_{1} is complex-differentiable at p. Now, F_{1} is already holomorphic on \mathbb{U}^{*} (because it is a product of two holomorphic functions f and $z \mapsto(z-u)$). Thus, if F_{1} is differentiable at p, then F_{1} is holomorphic on all of \mathbb{U}. Then Theorem 18D. 1 on page 450 says that F_{1} is analytic at p-i.e. F_{1} has a Taylor expansion near p :

$$
F_{1}(z)=a_{0}+a_{1}(z-p)+a_{2}(z-p)^{2}+a_{3}(z-p)^{3}+a_{4}(z-p)^{4}+\cdots
$$

Thus,

$$
\begin{aligned}
f(z) & =\frac{F_{1}(z)}{z \overline{a_{0}}} \\
& =\frac{a_{1}}{z-p}+a_{2}(z-p)+a_{3}(z-p)^{2}+a_{4}(z-p)^{3}+\cdots
\end{aligned}
$$

This expression is called a Laurent expansion (of order 1) for f at the pole p. The coefficient a_{0} is called the residue of f at the pole p, and denoted $\operatorname{res}_{p}(f)$.

But suppose p is not a simple pole (i.e. it is not a removable singularity for $\left.F_{1}\right)$. Let $n \in \mathbb{N}$, and define $F_{n}: \mathbb{U}^{*} \longrightarrow \mathbb{C}$ by $F_{n}(u)=(p-u)^{n} \cdot f(u)$. We say that p is a pole if there is some $n \in \mathbb{N}$ such that p is a removable singularity of F_{n}-i.e. if $F_{n}(p)$ can be defined such that F_{n} is complex-differentiable at p. The smallest value of n for which this is true is called the order of the pole p.

Now, F_{n} is already holomorphic on \mathbb{U}^{*}. Thus, if F_{n} is differentiable at p, then F_{n} is holomorphic on all of \mathbb{U}. Again, Theorem 18D.1 says that F_{n} is analytic at p, with Taylor expansion

$$
\begin{aligned}
F_{n}(z) & = \\
a_{0} & +a_{1}(z-p)+\cdots+a_{n-1}(z-p)^{n-1}+a_{n}(z-p)^{n}+a_{n+1}(z-p)^{n+1}+\cdots
\end{aligned}
$$

Thus,

$$
\begin{aligned}
f(z) & =\frac{F_{n}(z)}{\left(z \bar{a}_{1}\right)^{n}} \\
\frac{a_{0}}{(z-p)^{n}} & +\frac{}{(z-p)^{n-1}}+\cdots+\frac{a_{n-1}}{(z-p)} \quad+\quad a_{n} \quad+a_{n+1}(z-p) \quad+\cdots
\end{aligned}
$$

This expression is called a Laurent expansion (of order n) for f at the pole p. The coefficient a_{n-1} is called the residue of f at the pole p, and denoted $\operatorname{res}_{p}(f)$.

Let $\widehat{\mathbb{C}}:=\mathbb{C} \sqcup\{\infty\}$, where the symbol " ∞ " represents a 'point at infinity'. If $f: \mathbb{U}^{*} \longrightarrow \mathbb{C}$ has a pole at p, then it is easy to check that $\lim _{z \rightarrow p}|f(z)|=\infty$
(Exercise 18G.1). Thus, it is natural and convenient to extend f to a function $f: \mathbb{U} \longrightarrow \widehat{\mathbb{C}}$ by defining $f(p)=\infty$. (Later, in Remark 18G.4 on page 469, we will explain why this is not merely a cute notational device, but is actually the 'correct' thing to do). The extended function $f: \mathbb{U} \longrightarrow \widehat{\mathbb{C}}$ is called a meromorphic function.

Formally, if $\mathbb{U} \subset \mathbb{C}$ is an open set, then a function $f: \mathbb{U} \longrightarrow \widehat{\mathbb{C}}$ is meromorphic if there is a discrete subset $\mathbb{P} \subset \mathbb{U}$ (possibly empty) such that, if $\mathbb{U}^{*}:=\mathbb{U} \backslash \mathbb{P}$, then:

1. $f: \mathbb{U}^{*} \longrightarrow \mathbb{C}$ is holomorphic.
2. Every $p \in \mathbb{P}$ is a pole of f (hence $\lim _{z \rightarrow p}|f(z)|=\infty$).
3. $f(p)=\infty$ for all $p \in \mathbb{P}$.

Example 18G.1. (a) Any holomorphic function is meromorphic, since it has no poles.
(b) Let $f: \mathbb{U} \longrightarrow \mathbb{C}$ be holomorphic, let $p \in \mathbb{U}$, and define $F: \mathbb{U} \longrightarrow \widehat{\mathbb{C}}$ by $F(z)=f(z) /(z-p)$. Then F is meromorphic on \mathbb{U}, with a single pole at p, and $\operatorname{res}_{p}(F)=f(p)$.
(c) Fix $y>0$, and define $\mathcal{K}_{y}: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}$ by

$$
\mathcal{K}_{y}(z)=\frac{y}{\pi\left(z^{2}+y^{2}\right)}=\frac{y}{\pi(z+y \mathbf{i})(z-y \mathbf{i})}, \quad \text { for all } z \in \mathbb{C}
$$

Then \mathcal{K}_{y} is meromorphic on \mathbb{C}, with simple poles at $z= \pm y \mathbf{i}$. Observe that

$$
\mathcal{K}_{y}(z)=\frac{f_{+}(z)}{(z-y \mathbf{i})}, \quad \text { where } \quad f_{+}(z):=\frac{y}{\pi(z+y \mathbf{i})}, \quad \text { for all } z \in \mathbb{C} .
$$

Note that f_{+}is holomorphic near $y \mathbf{i}$, so Example (b) says that $\operatorname{res}_{y \mathrm{i}}\left(\mathcal{K}_{y}\right)=$ $f_{+}(y \mathbf{i})=\frac{y}{\pi(2 y \mathbf{i})}=\frac{1}{2 \pi \mathbf{i}}$. Likewise,

$$
\mathcal{K}_{y}(z)=\frac{f_{-}(z)}{(z+y \mathbf{i})}, \quad \text { where } \quad f_{-}(z):=\frac{y}{\pi(z-y \mathbf{i})}, \quad \text { for all } z \in \mathbb{C} .
$$

Note that f_{-}is holomorphic near $-y \mathbf{i}$, so Example (b) says that res ${ }_{-y \mathbf{i}}\left(\mathcal{K}_{y}\right)=$ $f_{-}(-y \mathbf{i})=\frac{y}{\pi(-2 y \mathbf{i})}=\frac{-1}{2 \pi \mathbf{i}}$.
(d) More generally, let $P(z)=\left(z-p_{1}\right)^{n_{1}}\left(z-p_{2}\right)^{n_{2}} \cdots\left(z-p_{J}\right)^{n_{J}}$ be any complex polynomial with roots $p_{1}, \ldots, p_{n} \in \mathbb{C}$. Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be any other holomorphic function (e.g. another polynomial), and define $F: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}$ by $F(z)=f(z) / P(z)$ for all $z \in \mathbb{C}$. Then F is a meromorphic function, whose poles are located at $\left\{p_{1}, p_{2}, \ldots, p_{J}\right\}$. For any $j \in[1 \ldots J]$, define $F_{j}(z):=$ $f(z) /\left(z-p_{1}\right)^{n_{1}} \cdots\left(z-p_{j-1}\right)^{n_{j-1}}\left(z-p_{j+1}\right)^{n_{j+1}} \cdots\left(z-p_{J}\right)^{n_{J}}$. Then

$$
\operatorname{res}_{p_{j}}(F)=\frac{F_{j}^{\left(n_{j}-1\right)}\left(p_{j}\right)}{\left(n_{j}-1\right)!}
$$

(i.e. the $\left(n_{j}-1\right)$ th term in the Taylor expansion of F_{j} at $\left.p_{j}\right)$. In particular, if $n_{j}=1$ (i.e. p_{j} is a simple pole), then $\operatorname{res}_{p_{j}}(F)=F_{j}\left(p_{j}\right)$.
(e) Let $g: \mathbb{U} \longrightarrow \widehat{\mathbb{C}}$ be meromorphic and let $p \in \mathbb{U}$. Suppose g has a simple pole at p. If $f: \mathbb{U} \longrightarrow \mathbb{C}$ is holomorphic, and $f(p) \neq 0$, then the function $f \cdot g$ is meromorphic, with a pole at p, and $\operatorname{res}_{p}(f \cdot g)=f(p) \cdot \operatorname{res}_{p}(g)$.
Exercise 18G. 2 Verify Examples (d) and (e).
We now come to one of the most important results in complex analysis.

Figure 18G.1: (A) The hypotheses of the Residue Theorem. (B) For all $j \in[0 \ldots J], \gamma_{j}$ is a small, counterclockwise circular contour around the pole p_{j}. (C) The paths $\alpha_{0}, \ldots, \alpha_{J}$, $\beta_{0}, \ldots, \beta_{J}$, and $\delta_{1}, \ldots, \delta_{J}$. (D) The chain χ is a contour homotopic to γ

Theorem 18G.2. (Residue Theorem)
Let $\mathbb{U} \subseteq \mathbb{C}$ be an open, simply-connected subset of the plane. Let $f: \mathbb{U} \longrightarrow \widehat{\mathbb{C}}$ be meromorphic on \mathbb{U}. Let $\gamma:[0, S] \longrightarrow \mathbb{U}$ be a counterclockwise contour which is nullhomotopic in \mathbb{U}, and suppose the purview of γ contains the poles $p_{0}, p_{1}, \ldots, p_{J} \in \mathbb{U}$, and no other poles, as shown in Figure 18G.1(A). Then

$$
\oint_{\gamma} f=2 \pi \mathbf{i} \sum_{j=0}^{J} \operatorname{res}_{p_{j}}(f)
$$

Proof. For all $j \in[0 \ldots J]$, let $\gamma_{j}:[0,2 \pi] \longrightarrow \mathbb{U}$ be a small, counterclockwise circular contour around the pole p_{j}, as shown in Figure 18G.1(B).
Claim 1: For all $j \in[0 \ldots J], \quad \oint_{\gamma_{j}} f=\operatorname{res}_{p_{j}}(f)$.
Proof. Suppose f has the following Laurent expansion around p_{j} :

$$
f(z)=\frac{a_{-n}}{\left(z-p_{j}\right)^{n}}+\frac{a_{1-n}}{\left(z-p_{j}\right)^{n-1}}+\cdots+\frac{a_{-1}}{\left(z-p_{j}\right)} \quad+\quad a_{0} \quad+a_{1}\left(z-p_{j}\right) \quad+\cdots
$$

This series converges uniformly, so $\oint_{\gamma_{j}} f$ can integrated term-by-term to get:

$$
\begin{aligned}
& \oint_{\gamma_{j}} \frac{a_{-n}}{\left(z-p_{j}\right)^{n}}+\oint_{\gamma_{j}} \frac{a_{1-n}}{\left(z-p_{j}\right)^{n-1}}+\cdots+\oint_{\gamma_{j}} \frac{a_{-1}}{\left(z-p_{j}\right)}+\oint_{\gamma_{j}} a_{0}+\oint_{\gamma_{j}} a_{1}\left(z-p_{j}\right) \\
& +\cdots \\
\overline{\overline{(\uparrow)}} \quad 0 \quad+\quad 0 & +\cdots+a_{-1} \cdot 2 \pi \mathbf{i} \\
= & 2 \pi \mathbf{i} a_{-1} \overline{\overline{(\dagger)}} \\
& 2 \pi \mathbf{i} \cdot \operatorname{res}_{p_{j}}(f) .
\end{aligned}
$$

Here, (\dagger) is by Examples 18C.2(c) and 18C.6 on pages 435 and 439. Meanwhile, (\ddagger) is because $a_{-1}=\operatorname{res}_{p_{j}}(f)$ by definition. $\diamond_{\text {Claim } 1}$

Figure 18G.1(C) portrays the smooth paths $\alpha_{j}:[0, \pi] \longrightarrow \mathbb{U}$ and $\beta_{j}:[0, \pi] \longrightarrow$ \mathbb{U} defined by

$$
\alpha_{j}(s):=\gamma_{j}(s) \quad \text { and } \quad \beta_{j}(s) \quad:=\gamma_{j}(s+\pi), \quad \text { for all } s \in[0, \pi] .
$$

That is: α_{j} and β_{j} parameterize the 'first half' and the 'second half' of γ_{j}, respectively, so that

$$
\begin{equation*}
\gamma_{j}=\alpha_{j} \diamond \beta_{j} \tag{18G.1}
\end{equation*}
$$

For all $j \in[0 \ldots J]$, let $x_{j}:=\alpha_{j}(0)=\beta_{j}(\pi)$. and let $y_{j}:=\alpha_{j}(\pi)=\beta_{j}(0)$. For all $j \in[1 \ldots J]$, let $\delta_{j}:[0,1] \longrightarrow \mathbb{U}$ be a smooth path from y_{j-1} to x_{j}. For all $i \in[0 \ldots J]$, we can assume that δ_{j} is drawn so as not to intersect α_{i} or β_{i}, and for all $i \in[1 \ldots J], i \neq j$, we can likewise assume that δ_{j} does not intersect δ_{i}. Figure 18G.1(D) portrays the chain
$\chi:=\alpha_{0} \diamond \delta_{1} \diamond \alpha_{1} \diamond \delta_{2} \diamond \cdots \diamond \delta_{J} \diamond \gamma_{J} \diamond \overleftarrow{\delta}_{J} \diamond \beta_{J-1} \diamond \overleftarrow{\delta}_{J-1} \diamond \cdots \diamond \overleftarrow{\delta}_{3} \diamond \beta_{2} \diamond \overleftarrow{\delta}_{2} \diamond \beta_{1} \diamond \overleftarrow{\delta}_{1} \diamond \beta_{0}$
The chain χ is actually a contour, by Lemma 18C.8(c) on page 441.
Claim 2: $\quad \gamma$ is homotopic to χ in \mathbb{U}.
Proof. Exercise 18G. 3 (Not as easy as it looks)

Thus,

$$
\begin{aligned}
& \oint_{\gamma} f \overline{\overline{(*)}} \oint_{\chi} f \\
& \overline{\overline{(\dagger)}} \oint_{\alpha_{0}} f+\oint_{\delta_{1}} f+\oint_{\alpha_{1}} f+\oint_{\delta_{2}} f+\cdots+\oint_{\delta_{J}} f+\oint_{\gamma_{J}} f-\oint_{\delta_{J}} f+\oint_{\beta_{J-1}} f \\
& -\oint_{\delta_{J-1}} f+\cdots-\oint_{\delta_{3}} f+\oint_{\beta_{2}} f-\oint_{\delta_{2}} f+\oint_{\beta_{1}} f-\oint_{\delta_{1}} f+\oint_{\beta_{0}} f . \\
& =\oint_{\alpha_{0}} f+\oint_{\alpha_{1}} f+\cdots+\oint_{\alpha_{J-1}} f+\oint_{\gamma_{J}} f+\oint_{\beta_{J-1}} f+\cdots+\oint_{\beta_{1}} f+\oint_{\beta_{0}} f \text {. } \\
& \overline{\overline{(@)}} \oint_{\alpha_{0} \diamond \beta_{0}} f+\oint_{\alpha_{1} \diamond \beta_{1}} f+\cdots+\oint_{\alpha_{J-1} \diamond \beta_{J-1}} f+\oint_{\gamma_{J}} f \\
& \overline{\overline{(\ddagger)}} \oint_{\gamma_{0}} f+\oint_{\gamma_{1}} f+\cdots+\oint_{\gamma_{J-1}} f+\oint_{\gamma_{J}} f \\
& \overline{\overline{(\diamond)}} 2 \pi \mathbf{i} \cdot \operatorname{res}_{p_{0}}(f)+2 \pi \mathbf{i} \cdot \operatorname{res}_{p_{1}}(f)+\cdots+2 \pi \mathbf{i} \cdot \operatorname{res}_{p_{J-1}}(f)+2 \pi \mathbf{i} \cdot \operatorname{res}_{p_{J}}(f),
\end{aligned}
$$

as desired. Here, $(*)$ is by Claim 2 and Proposition 18C.7 on page 440. (\dagger) is by eqn. (18G.2) and Lemma 18C.8(a,b) on page 441, and (@) is again by Lemma 18C.8(b). Finally, (\ddagger) is by eqn. (18G.1), and (\diamond) is by Claim 1.

Example 18G.3. (a) Suppose f is holomorphic inside the purview of γ. Then it has no poles, so the residue-sum in the Residue Theorem is zero. Thus, we get $\oint_{\gamma} f=0$, in agreement with Cauchy's Theorem (Theorem 18C.5 on page 438).
(b) Suppose $f(z)=1 / z$, and γ encircles 0 . Then f has exactly one pole in the purview of γ (namely, at 0), and $\operatorname{res}_{0}(f)=1$ (because the Laurent expansion of f is just $1 / z)$. Thus, we get $\oint_{\gamma} f=2 \pi \mathbf{i}$, in agreement with Example 18 C .6 on page 439.
(c) Suppose f is holomorphic inside the purview of γ. Let p be in the purview of γ and define $F(z):=\frac{f(z)}{z-p}$. Then F has exactly one pole in the purview of γ (namely, at p), and $\operatorname{res}_{p}(F)=f(z)$, by Example 18G.1(b). Thus, we get $\oint_{\gamma} F=2 \pi \mathbf{i} f(z)$, in agreement with Cauchy's Integral Formula (Theorem 18C.9 on page 443).

Remark 18G.4: (The Riemann Sphere) Earlier we introduced the notational convention of defining $f(p)=\infty$ whenever p was a pole of a holomorphic function

Figure 18G.2: The identification of the complex plane \mathbb{C} with the Riemann sphere $\widehat{\mathbb{C}}$.
$f: \mathbb{U} \backslash\{p\} \longrightarrow \mathbb{C}$, thereby extending f to a 'meromorphic' function $f: \mathbb{U} \longrightarrow \widehat{\mathbb{C}}$, where $\widehat{\mathbb{C}}=\mathbb{C} \sqcup\{\infty\}$. We will now explain how this cute notation is actually quite sensible. The Riemann sphere is the topological space $\widehat{\mathbb{C}}$ constructed by taking the complex plane \mathbb{C} and adding a 'point at infinity', denoted by " ∞ ". An open set $\mathbb{U} \subset \mathbb{C}$ is considered a 'neighbourhood of ∞ ' if there is some $r>0$ such that \mathbb{U} contains the codisk $\mathbb{D}^{\complement}(r):=\{c \in \mathbb{C} ;|c|>r\}$. See Figure 18G.2.

Now, let $\mathbb{U}^{*}:=\mathbb{U} \backslash\{p\}$ and suppose $f: \mathbb{U}^{*} \longrightarrow \mathbb{C}$ is a continuous function with a singularity at p. Suppose we define $f(p)=\infty$, thereby extending f to a function $f: \mathbb{U} \longrightarrow \widehat{\mathbb{C}}$. If $\lim _{z \rightarrow p}|f(p)|=\infty$ (e.g. if p is a pole of f), then this extended function will be continuous at p, with respect to the topology of the Riemann sphere. In particular, any meromorphic function $f: \mathbb{U} \longrightarrow \widehat{\mathbb{C}}$ is is a continuous mapping from \mathbb{U} into $\widehat{\mathbb{C}}$.

If $f: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}$ is meromorphic, and $L:=\lim _{c \rightarrow \infty} f(c)$ is well-defined, then we can extend f to a continuous function $f: \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ by defining $f(\infty):=$ L. We can then even define the complex derivatives of f at $\infty ; f$ effectively becomes a complex-differentiable transformation of the entire Riemann sphere.

Many of ideas in complex analysis are best understood by regarding meromorphic functions in this way.

Remark. Not all indelible singularities are poles. Suppose p is a singularity of f, and the Laurent expansion of f at p has an infinite number of negative-power terms (i.e. it looks like the Laurent series (18E.3) on page 455). Then p is called a essential singularity of f. The Casorati-Weierstrass Theorem says that, if \mathbb{B} is any open neighbourhood of p, however tiny, then the image $f[\mathbb{B}]$ is dense in \mathbb{C}. In other words, the value of $f(z)$ wildly oscillates all over the complex plane infinitely often as $z \rightarrow p$. This is a much more pathological behaviour than a pole, where we simply have $f(z) \rightarrow \infty$ as $z \rightarrow p$.

Exercise 18G.4. Let $f(z)=\exp (1 / z)$.
(a) Show that f has an essential singularity at 0 .
(b) Verify the conclusion of the Casorati-Weierstrass Theorem for this function. In fact, show that, for any $\epsilon>0$, if $\mathbb{D}(\epsilon)$ is the disk of radius ϵ around 0 , then $f[\mathbb{D}(\epsilon)]=$ $\mathbb{C} \backslash\{0\}$.

Exercise 18G.5. For each of the following functions, find all poles and compute the residue at each pole. Then use the Residue Theorem to compute the contour integral along a counterclockwise circle of radius 1.8 around the origin.
(a) $f(z)=\frac{1}{z^{4}+1} . \quad\left(\right.$ Hint: $\left.z^{4}+1=\left(z-e^{\pi \mathbf{i} / 4}\right)\left(z-e^{3 \pi \mathbf{i} / 4}\right)\left(z-e^{5 \pi \mathbf{i} / 4}\right)\left(z-e^{7 \pi \mathbf{i} / 4}\right).\right)$
(b) $f(z)=\frac{z^{3}-1}{z^{4}+5 z^{2}+4} . \quad\left(\right.$ Hint: $\left.z^{4}+5 z^{2}+4=\left(z^{2}+1\right)\left(z^{2}+4\right).\right)$
(c) $f(z)=\frac{z^{4}}{z^{6}+14 z^{4}+49 z^{2}+36} . \quad\left(\right.$ Hint: $z^{6}+14 z^{4}+49 z^{2}+36=\left(z^{2}+1\right)\left(z^{2}+\right.$ 4) $\left(z^{2}+9\right)$.
(d) $f(z)=\frac{z+\mathbf{i}}{z^{4}+5 z^{2}+4} . \quad$ (Careful!)
(e) $f(z)=\tan (z)=\sin (z) / \cos (z)$.
(f) $f(z)=\tanh (z)=\sinh (z) / \cosh (z)$.

Exercise 18G.6. (For algebraists)
(a) Let \mathfrak{H} be the set of all holomorphic functions $f: \mathbb{C} \longrightarrow \mathbb{C}$. (These are sometimes called entire functions). Show that \mathfrak{H} is an integral domain under the operations of pointwise addition and multiplication. That is: if $f, g \in \mathfrak{H}$, then the functions $(f+g)$ and $(f \cdot g)$ are in \mathfrak{H}. (Hint: Use Proposition 18A.5(a,b) on page 18A.5). Also, if $f \neq 0 \neq g$, then $f \cdot g \neq 0$. (Hint: Use the Identity Theorem 18D.3 on page 4521).
(b) Let \mathfrak{M} be the set of all meromorphic functions $f: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}$. Show that \mathfrak{M} is a field under the operations of pointwise addition and multiplication. That is: if $f, g \in \mathfrak{M}$, then the functions $(f+g)$ and $(f \cdot g)$ are in \mathfrak{M}, and if $g \not \equiv 0$, then the function (f / g) is also in \mathfrak{M}.
(c) Suppose $f \in \mathfrak{M}$ has only a finite number of poles. Show that f can be expressed in the form $f=g / h$, where $g, h \in \mathfrak{H}$. (Hint: you can make h a polynomial).
(d) (hard) Show that any function $f \in \mathfrak{M}$ can be expressed in the form $f=g / h$, where $g, h \in \mathfrak{H}$. (Thus, \mathfrak{M} is related to \mathfrak{H} the same way the field of rational functions is related to the ring of polynomials, and the same way that the field of rational numbers is related to the ring of integers. Technically, \mathfrak{M} is the field of fractions of \mathfrak{H}.).

18H Improper integrals and Fourier transforms

Prerequisites: § $18 \mathrm{G} . \quad$ Recommended: § $17 \mathrm{~A}, ~ \S 19 \mathrm{~A}$.
The Residue Theorem is a powerful tool for evaluating contour integrals in the complex plane. We shall now see that it is also useful for computing improper integrals over the real line, such as convolutions and Fourier transforms. First some notation. Let $\mathbb{C}_{+}:=\{c \in \mathbb{C} ; \operatorname{Im}[c]>0\}$ and $\mathbb{C}_{-}:=\{c \in \mathbb{C} ; \operatorname{Im}[c]<0\}$ be the upper and lower halves of the complex plane. If $F: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}$ is some meromorphic function, then we say that F uniformly decays at infinity on \mathbb{C}_{+}with order $o(1 / z)$ if, ${ }^{[7]}$ for any $\epsilon>0$, there is some $r>0$ such that:

$$
\begin{equation*}
\text { For all } z \in \mathbb{C}_{+}, \quad(|z|>r) \Longrightarrow(|z| \cdot|F(z)|<\epsilon) \tag{18H.1}
\end{equation*}
$$

In other words, $\lim _{\mathbb{C}_{+} \ni z \rightarrow \infty}|z| \cdot|F(z)|=0$, and this convergence is 'uniform' as $z \rightarrow \infty$ in any direction in \mathbb{C}_{+}. We define uniform decay on \mathbb{C}_{-}in the same fashion.

Example 18H.1. (a) The function $f(z)=1 / z^{2}$ uniformly decays at infinity on both \mathbb{C}_{+}and \mathbb{C}_{-}with order $o(1 / z)$.
(b) However, the function $f(z)=1 / z$ does not uniformly decays at infinity with order $o(1 / z)$ (it decays just a little bit too slowly).
(c) The function $f(z)=\exp (-\mathbf{i} z) / z^{2}$ uniformly decays at infinity with order $o(1 / z)$ on \mathbb{C}_{+}, but does not decay on \mathbb{C}_{-}.
(d) If $P_{1}, P_{2}: \mathbb{C} \longrightarrow \mathbb{C}$ are two complex polynomials of degree N_{1} and N_{2} respectively, and $N_{2} \geq N_{1}+2$, then the rational function $f(z)=P_{1}(z) / P_{2}(z)$ uniformly decays with order $o(1 / z)$ on both \mathbb{C}_{+}and \mathbb{C}_{-}.

Exercise 18H.1. Verify Examples 18H.1(a-d).

[^83]Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

Proposition 18H.2. (Improper integrals of analytic functions)

Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be an analytic function, and let $F: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}$ be an extension of f to a meromorphic function on \mathbb{C}.
(a) Suppose that F uniformly decays with order $o(1 / z)$ on \mathbb{C}_{+}. If $p_{1}, p_{2}, \ldots, p_{J} \in$ \mathbb{C}_{+}are all the poles of F in \mathbb{C}_{+}, then

$$
\int_{-\infty}^{\infty} f(x) d x=2 \pi \mathbf{i} \sum_{j=1}^{J} \operatorname{res}_{p_{j}}(F)
$$

(b) Suppose that F uniformly decays with order $o(1 / z)$ on \mathbb{C}_{-}. If $p_{1}, p_{2}, \ldots, p_{J} \in$ \mathbb{C}_{-}are all the poles of F in \mathbb{C}_{-}, then

$$
\int_{-\infty}^{\infty} f(x) d x=-2 \pi \mathbf{i} \sum_{j=1}^{J} \operatorname{res}_{p_{j}}(F)
$$

Proof. (a) Note that F has no poles on the real line \mathbb{R}, because f is analytic on \mathbb{R}. For any $R>0$, let γ_{R} be the ' D '-shaped contour of radius R from Example 18C.3 on page 436. If R is made large enough, then γ_{R} encircles all of $p_{1}, p_{2}, \ldots, p_{J}$. Thus, the Residue Theorem 18 G .2 on page 467 says that

$$
\begin{equation*}
\oint_{\gamma_{R}} F=2 \pi \mathrm{i} \sum_{j=1}^{J} \operatorname{res}_{p_{j}}(F) . \tag{18H.2}
\end{equation*}
$$

But by definition,

$$
\oint_{\gamma_{R}} F=\int_{0}^{\pi+R} F\left[\gamma_{R}(s)\right] \dot{\gamma}_{R}(s) \overline{\overline{(*)}} \int_{0}^{\pi} F\left(R e^{\mathbf{i} s}\right) \cdot R \mathbf{i} e^{\mathbf{i} s} d s+\int_{-R}^{R} f(x) d x
$$

where $(*)$ is by equations (18C.1) and (18C.2) on page 436. Thus,

$$
\begin{align*}
\lim _{R \rightarrow \infty} \oint_{\gamma_{R}} F & =\lim _{R \rightarrow \infty} \int_{0}^{\pi} F\left(R e^{\mathbf{i} s}\right) \cdot R \mathbf{i} e^{\mathbf{i} s} d s+\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x \\
& \overline{(*)} \int_{-\infty}^{\infty} f(x) d x \tag{18H.3}
\end{align*}
$$

Now combine equations (18H.2) and (18H.3) to prove part (a).
In equation (18H.3), step $(*)$ is because

$$
\begin{align*}
\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x & =\int_{-\infty}^{\infty} f(x) d x \tag{18H.4}\\
\text { while } \lim _{R \rightarrow \infty}\left|\int_{0}^{\pi} F\left(R e^{\mathbf{i} s}\right) \cdot R \mathbf{i} e^{\mathbf{i} s} d s\right| & =0 \tag{18H.5}
\end{align*}
$$

[^84]Equation (18H.4) is just the definition of an improper integral. To see equation (18H.5), note that

$$
\begin{equation*}
\left|\int_{0}^{\pi} F\left(R e^{\mathbf{i} s}\right) R \mathbf{i}^{\mathbf{i} s} d s\right| \underset{(\Delta)}{\leq} \int_{0}^{\pi}\left|F\left(R e^{\mathbf{i} s}\right) R \mathbf{i} e^{\mathrm{i} s}\right| d s=\int_{0}^{\pi} R\left|F\left(R e^{\mathrm{i} s}\right)\right| d s \tag{18H.6}
\end{equation*}
$$

where (\triangle) is just the triangle inequality for integrals. But for any $\epsilon>0$, we can find some $r>0$ satisfying equation (18H.1). Then for all $R>r$, and all $s \in[0, \pi]$, we have $R \cdot\left|F\left(R e^{\mathrm{i} s}\right)\right|<\epsilon$, which means

$$
\begin{equation*}
\int_{0}^{\pi} R \cdot\left|F\left(R e^{\mathrm{i} s}\right)\right| d s \leq \int_{0}^{\pi} \epsilon=\pi \epsilon \tag{18H.7}
\end{equation*}
$$

Since $\epsilon>0$ can be made arbitrarily small, equations (18H.6) and (18H.7) imply (18H.5).
Exercise 18H. 2 Prove part (b) of the theorem.

If $f, g: \mathbb{R} \longrightarrow \mathbb{C}$ are integrable functions, recall that their convolution is the function $f * g: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f * g(r):=\int_{-\infty}^{\infty} f(x) g(r-x) d x$, for any $r \in \mathbb{R}$. Chapter 17 showed how to solve I/BVPs by convolving with 'impulse-response' functions like the Poisson kernel.

Corollary 18H.3. (Convolutions of analytic functions)

Let $f, g: \mathbb{R} \longrightarrow \mathbb{C}$ be analytic functions, with meromorphic extensions F, G : $\mathbb{C} \longrightarrow \widehat{\mathbb{C}}$. Suppose the function $z \mapsto F(z) \cdot G(-z)$ uniformly decays with order $o(1 / z)$ on \mathbb{C}_{+}. Suppose F has simple poles $p_{1}, p_{2}, \ldots, p_{J} \in \mathbb{C}_{+}$, and no other poles in \mathbb{C}_{+}. Suppose G has simple poles $q_{1}, q_{2}, \ldots, q_{K} \in \mathbb{C}_{-}$, and no other poles in \mathbb{C}_{-}. Then for all $r \in \mathbb{R}$,

$$
f * g(r)=2 \pi \mathbf{i} \sum_{j=1}^{J} G\left(r-p_{j}\right) \cdot \operatorname{res}_{p_{j}}(F)-2 \pi \mathbf{i} \sum_{k=1}^{K} F\left(r-q_{k}\right) \cdot \operatorname{res}_{q_{j}}(G) .
$$

Proof. Fix $r \in \mathbb{R}$, and consider the function $H(z):=F(z) G(r-z)$. For all $j \in[1 \ldots J]$, Example 18G.1(e) on page 466 says that H has a simple pole at $p_{j} \in \mathbb{C}_{+}$, with residue $G\left(r-p_{j}\right) \cdot \operatorname{res}_{p_{j}}(F)$. For all $k \in[1 \ldots K]$, the function $z \mapsto G(r-z)$ has a simple pole at $r-q_{k}$, with residue $-\operatorname{res}_{q_{k}}(G)$. Thus, Example 18G.1(e) says that H has a simple pole at $r-q_{k}$, with residue $-F(r-$ $\left.q_{k}\right) \cdot \operatorname{res}_{q_{k}}(G)$. Note that $\left(r-q_{k}\right) \in \mathbb{C}_{+}$, because $q_{k} \in \mathbb{C}_{-}$and $r \in \mathbb{R}$. Now apply Proposition 18H.2.

Example 18H.4. For any $y>0$, recall the half-plane Poisson kernel $\mathcal{K}_{y}: \mathbb{R} \longrightarrow$ \mathbb{R} from $\S[7 \mathrm{E}$, defined by

$$
\mathcal{K}_{y}(x) \quad:=\frac{y}{\pi\left(x^{2}+y^{2}\right)}, \quad \text { for all } x \in \mathbb{R}
$$

Let $\mathbb{H}:=\left\{(x, y) \in \mathbb{R}^{2} ; y \geq 0\right\}$ (the upper half-plane). If $b: \mathbb{R} \longrightarrow \mathbb{R}$ is bounded and continuous, then Proposition 17E.1] on page 404 says that the function $h(x, y):=\mathcal{K}_{y} * b(x)$ is the unique continuous harmonic function on \mathbb{H} which satisfies the Dirichlet boundary condition $h(x, 0)=b(x)$ for all $x \in \mathbb{R}$. Suppose $b: \mathbb{R} \longrightarrow \mathbb{R}$ is analytic, with a meromorphic extension $B: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}$ which is asymptotically bounded near infinity in \mathbb{C}_{-}- that is, there exist $K, R>0$ such that $|B(z)|<K$ for all $z \in \mathbb{C}_{-}$with $|z|>R$. Then the function $\mathcal{K}_{y} \cdot B$ asymptotically decays near infinity with order $o(1 / z)$ on \mathbb{C}_{+}, so Corollary 18 H .3 is applicable.
In Example 18G.1(c) on page 466, we saw that \mathcal{K}_{y} has a simple pole at $y \mathbf{i}$, with $\operatorname{res}_{y \mathbf{i}}\left(\mathcal{K}_{y}\right)=1 / 2 \pi \mathbf{i}$, and no other poles in \mathbb{C}_{+}. Suppose B has simple poles $q_{1}, q_{2}, \ldots, q_{K} \in \mathbb{C}_{-}$, and no other poles in \mathbb{C}_{-}. Then setting $f:=\mathcal{K}_{y}, g:=b$, $J:=1$ and $p_{1}:=y \mathbf{i}$ in Corollary 18H.3, we get for any $(x, y) \in \mathbb{H}$,

$$
\begin{align*}
& h(x, y)=2 \pi \mathbf{i} B(x-y \mathbf{i}) \cdot \underbrace{\operatorname{res}_{y \mathbf{i}}\left(\mathcal{K}_{y}\right)}_{=1 / 2 \pi \mathbf{i}}-2 \pi \mathbf{i} \sum_{k=1}^{K} \mathcal{K}_{y}\left(x-q_{k}\right) \cdot \operatorname{res}_{q_{k}}(B) \\
& =B(x-y \mathbf{i})-2 y \mathbf{i} \sum_{k=1}^{k} \frac{\operatorname{res}_{q_{k}}(B)}{\left(x-q_{k}\right)^{2}+y^{2}} . \tag{®}
\end{align*}
$$

Exercise 18H.3. (a) Show that, in fact, $h(x, y)=\operatorname{Re}[B(x-y \mathbf{i})]$. (Thus, if we could compute B, then the BVP would already be solved, and we actually wouldn't need to apply Proposition 17E.1).
(b) Deduce that $\operatorname{Im}[B(x-y \mathbf{i})]=2 y \sum_{k=1}^{K} \frac{\operatorname{res}_{q_{k}}(B)}{\left(x-q_{k}\right)^{2}+y^{2}}$.

Exercise 18H.4. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a bounded analytic function, with meromorphic extension $F: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}$. Let $u: \mathbb{R} \times \mathbb{R}_{\not} \longrightarrow \mathbb{R}$ be the unique solution to the one-dimensional heat equation ($\partial_{t} u=\partial_{x}^{2} u$) with initial conditions $u(x ; 0)=f(x)$ for all $x \in \mathbb{R}$. Combine Proposition 18H.3 with Proposition 17 C .1 on page 385 to find a formula for $u(x ; t)$ in terms of the residues of F.

Exercise 18H.5. For any $t \geq 0$, let $\Gamma_{t}: \mathbb{R} \longrightarrow \mathbb{R}$ be the d'Alembert kernel:

$$
\Gamma_{t}(x)=\left\{\begin{array}{ccc}
\frac{1}{2} \quad \text { if } & -t<x<t \tag{2}\\
0 & & \text { otherwise }
\end{array}\right.
$$

Let $f_{1}: \mathbb{R} \longrightarrow \mathbb{R}$ be an analytic function. Lemma 17 D .3 on page 395 says that we can solve the initial velocity problem for the one-dimensional wave equation by defining $v(x ; t):=\Gamma_{t} * f_{1}(x)$. Explain why Proposition 18H.3 is not suitable for computing $\Gamma_{t} * f_{1}$.

If $f: \mathbb{R} \longrightarrow \mathbb{C}$ is an integrable function, then its Fourier transform is the function $\widehat{f}: \mathbb{R} \longrightarrow \mathbb{C}$ defined by

$$
\widehat{f}(\mu) \quad:=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp (-\mu x \mathbf{i}) f(x) d x, \quad \text { for all } \mu \in \mathbb{R}
$$

(See $\S 19 \mathrm{~A}$ for more information). Proposition 18 H .2 can also be used to compute Fourier transforms, but it is not quite the strongest result for this purpose. If $F: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}$ is some meromorphic function, then we say that F uniformly decays at infinity with order $\mathcal{O}(1 / z)$ if ${ }^{[3]}$ there exists some $M>0$ and some $r>0$ such that:

$$
\begin{equation*}
\text { For all } z \in \mathbb{C}, \quad(|z|>r) \Longrightarrow(|F(z)|<M /|z|) \tag{18H.8}
\end{equation*}
$$

In other words, the function $|z \cdot F(z)|$ is uniformly bounded (by M) as $z \rightarrow \infty$ in any direction in \mathbb{C}.

Example 18H.5. (a) The function $f(z)=1 / z$ uniformly decays at infinity with order $\mathcal{O}(1 / z)$.
(b) If f uniformly decays at infinity on $\mathbb{C}_{ \pm}$with order $o(1 / z)$, then it also uniformly decays at infinity with order $\mathcal{O}(1 / z)$. (Exercise 18H.6 Verify this).
(c) In particular, if $P_{1}, P_{2}: \mathbb{C} \longrightarrow \mathbb{C}$ are two complex polynomials of degree N_{1} and N_{2} respectively, and $N_{2} \geq N_{1}+1$, then the rational function $f(z)=$ $P_{1}(z) / P_{2}(z)$ uniformly decays at infinity with order $\mathcal{O}(1 / z)$.
Thus, decay with order $\mathcal{O}(1 / z)$ is a slightly weaker requirement than decay with order $o(1 / z)$.

Proposition 18H.6. (Fourier transforms of analytic functions)
Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be an analytic function. Let $F: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}$ be an extension of f to a meromorphic function on \mathbb{C} which uniformly decays with order $\mathcal{O}(1 / z)$. Let $p_{-K}, \ldots, p_{-2}, p_{-1}, p_{0}, p_{1}, \ldots, p_{J}$ be all the poles of F in \mathbb{C}, where $p_{-K}, \ldots, p_{-2}, p_{-1} \in \mathbb{C}_{-}$and $p_{0}, p_{1}, \ldots, p_{J} \in \mathbb{C}_{+}$. Then:

$$
\begin{align*}
\widehat{f}(\mu) & =\mathbf{i} \sum_{j=0}^{J} \operatorname{res}_{p_{j}}\left(\mathcal{E}_{\mu} \cdot F\right), \quad \text { for all } \mu<0, \tag{18H.9}\\
\text { and } \quad \widehat{f}(\mu) & =-\mathbf{i} \sum_{k=-1}^{-K} \operatorname{res}_{p_{k}}\left(\mathcal{E}_{\mu} \cdot F\right), \quad \text { for all } \mu>0,
\end{align*}
$$

[^85]

Figure 18H.1: (A) The square contour in the proof of Proposition 18H.6.
(B) The contour in Exercise 18 H .12 on page 480
where $\mathcal{E}_{\mu}: \mathbb{C} \longrightarrow \mathbb{C}$ is the holomorphic function defined $\mathcal{E}_{\mu}(z):=\exp (-\mu \cdot z \cdot \mathbf{i})$ for all $z \in \mathbb{C}$. In particular, if all the poles of F are simple, then

$$
\begin{align*}
\widehat{f}(\mu) & =\mathbf{i} \sum_{j=0}^{J} \exp \left(-\mu p_{j} \mathbf{i}\right) \cdot \operatorname{res}_{p_{j}}(F), \quad \text { for all } \mu<0,(18) \\
\text { and } \quad \widehat{f}(\mu) & =-\mathbf{i} \sum_{k=-1}^{-K} \exp \left(-\mu p_{k} \mathbf{i}\right) \cdot \operatorname{res}_{p_{k}}(F), \quad \text { for all } \mu>0 .
\end{align*}
$$

Proof. We will prove the theorem for $\mu<0$. Fix $\mu<0$ and define $G: \mathbb{C} \longrightarrow \mathbb{C}$ by $G(z):=\exp (-\mu z \mathbf{i}) \cdot F(z)$. For any $R>0$, define the chains $\beta_{R}, \rho_{R}, \tau_{r}$, and λ_{R} as shown in Figure 18H.1(A):

$$
\begin{array}{rllll}
\text { For all } s \in[-R, R], & \beta_{R}(s) & :=s & \text { so that } & \dot{\beta}_{R}(s)=1 . \\
\text { For all } s \in[0,2 R], & \rho_{R}(s) & :=R+s \mathbf{i} & \text { so that } & \dot{\rho}_{R}(s)=\mathbf{i} . \\
\text { For all } s \in[-R, R], & \tau_{R}(s) & :=s+2 R \mathbf{i} & \text { so that } & \dot{\tau}_{R}(s)=1 . \\
\text { For all } s \in[0,2 R], & \lambda_{R}(s) & :=-R+s \mathbf{i} & \text { so that } & \dot{\lambda}_{R}(s)=\mathbf{i} \tag{18H.11}
\end{array}
$$

(Mnemonic: β ottom, ρ ight, τ op, λ eft.) Thus, if $\gamma=\beta \diamond \rho \diamond \overleftarrow{\tau} \diamond \overleftarrow{\lambda}$, then γ_{R} traces a square in \mathbb{C}_{+}of sidelength $2 R$. If R is made large enough, then γ_{R} encloses all of $p_{0}, p_{2}, \ldots, p_{J}$. Thus, for any large enough $R>0$,

$$
\begin{equation*}
2 \pi \mathrm{i} \sum_{j=0}^{J} \operatorname{res}_{p_{j}}(G) \underset{(*)}{\overline{(*)}} \oint_{\gamma_{R}} G \underset{\overline{(\dagger)}}{\overline{(1)}} f_{\beta_{R}} G+f_{\rho_{R}} G-f_{\tau_{R}} G-f_{\lambda_{R}} G \tag{18H.12}
\end{equation*}
$$

where $(*)$ is by the Residue Theorem 18G.2 on page 467, and where (\dagger) is by Lemma 18C.8(a,b) on page 441.
Claim 1: $\quad \lim _{R \rightarrow \infty} f_{\beta_{R}} G=2 \pi \widehat{f}(\mu)$.

Claim 2: (a) $\lim _{R \rightarrow \infty} f_{\rho_{R}} G=0$ and (b) $\lim _{R \rightarrow \infty} f_{\lambda_{R}} G=0$.
Proof. (a) By hypothesis, f decays with order $\mathcal{O}(1 / z)$. Thus, we can find some $r>0$ and $M>0$ satisfying eqn.(18H.8). If $R>r$, then for all $s \in[0,2 R]$,

$$
\begin{align*}
|G(R+s \mathbf{i})| & =|\exp [-\mu \mathbf{i}(R+s \mathbf{i})]| \cdot|F(R+s \mathbf{i})| \\
& \underset{(*)}{\leq}|\exp (\mu s-\mu R \mathbf{i})| \cdot \frac{M}{|R+s \mathbf{i}|} \leq e^{\mu s} \cdot \frac{M}{R}, \tag{18H.13}
\end{align*}
$$

where $(*)$ is by equation (18H.8). Thus,

$$
\begin{aligned}
\left|f_{\rho_{R}} G\right| & \overline{\overline{(\Delta)}}\left|\int_{0}^{2 R} G(R+s \mathbf{i}) \mathbf{i} d s\right| \leq \int_{0}^{2 R}|G(R+s \mathbf{i})| d s \quad \underset{(*)}{\leq} \frac{M}{R} \int_{0}^{2 R} e^{\mu s} d s \\
& =\left.\frac{M}{\mu R} e^{\mu s}\right|_{s=0} ^{s=2 R}=\frac{M}{-\mu R}\left(1-e^{2 \mu R}\right) \underset{(\dagger)}{\leq} \frac{M}{-\mu R} \underset{ }{\stackrel{R}{R \rightarrow \infty}} 0,
\end{aligned}
$$

as desired. Here, (\diamond) is by eqn. (18H.11), $(*)$ is by eqn. (18H.13), and (\dagger) is because $\mu<0$. This proves (a). The proof of (b) is similar. $\diamond_{\text {Claim 2 }}$
Claim 3: $\quad \lim _{R \rightarrow \infty} f_{\tau_{R}} G=0$.
Proof. Again find $r>0$ and $M>0$ satisfying eqn.(18H.8). If $R>r$, then for all $s \in[-R, R]$,

$$
\begin{align*}
|G(s+2 R \mathbf{i})| & =|\exp [-\mu \mathbf{i}(s+2 R \mathbf{i})]| \cdot|F(s+2 R \mathbf{i})| \\
& \underset{(*)}{\leq}|\exp (2 R \mu-s \mu \mathbf{i})| \cdot \frac{M}{|s+2 R \mathbf{i}|} \\
& \leq e^{2 R \mu} \cdot \frac{M}{2 R} \tag{18H.14}
\end{align*}
$$

where $(*)$ is by equation (18H.8). Thus,

$$
\left|f_{\tau_{R}} G\right| \underset{(*)}{\leq} e^{2 R \mu} \cdot \frac{M}{2 R} \cdot \operatorname{length}\left(\tau_{R}\right)=e^{2 R \mu} \cdot \frac{M}{2 R} \cdot 2 R=M e^{2 R \mu} \underset{R \rightarrow \infty}{(t)} 0
$$

as desired. Here, $(*)$ is by eqn. (18H.14) and Lemma 18 C .10 on page 444 , while (\dagger) is because $\mu<0$. $\diamond_{\text {Claim 3 }}$

Now we put it all together:

$$
\begin{aligned}
2 \pi \mathrm{i} \sum_{j=0}^{J} \operatorname{res}_{p_{j}}(G) & \overline{\overline{(*)}} \lim _{R \rightarrow \infty}\left(f_{\beta_{R}} G+f_{\rho_{R}} G-f_{\tau_{R}} G-f_{\lambda_{R}} G\right) \\
& \overline{\overline{(\dagger)}} 2 \pi \widehat{f}(\mu)+0+0+0=2 \pi \hat{f}(\mu) .
\end{aligned}
$$

Now divide both sides by 2π to get eqn.(18H.9). Here, $(*)$ is by eqn.(18H.12), and (\dagger) is by Claims 1-3.

Finally, to see eqn. (18 H .10) , suppose all the poles p_{0}, \ldots, p_{J} are simple. Then $\operatorname{res}_{p_{j}}(G)=\exp \left(-\mathbf{i} \mu p_{j}\right) \cdot \operatorname{res}_{p_{j}}(F)$ for all $j \in[0 \ldots J]$, by Example 18G.1(e) on page 466. Thus,

$$
\mathbf{i} \sum_{j=0}^{J} \operatorname{res}_{p_{j}}(G)=\mathbf{i} \sum_{j=0}^{J} \exp \left(-\mu p_{j} \mathbf{i}\right) \cdot \operatorname{res}_{p_{j}}(F)
$$

so eqn. (18H.10) follows from (18H.9).

Exercise 18H.8. Prove Proposition 18 H .6 in the case $\mu>0$.

Example 18H.7. Define $f: \mathbb{R} \longrightarrow \mathbb{R}$ by $f(x):=1 /\left(x^{2}+1\right)$ for all $x \in \mathbb{R}$. The meromorphic extension of f is simply the complex polynomial $F: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}$ defined

$$
F(z) \quad:=\frac{1}{z^{2}+1}=\frac{1}{(z+\mathbf{i})(z-\mathbf{i})}, \quad \text { for all } z \in \mathbb{C} .
$$

Clearly F has simple poles at $\pm \mathbf{i}$, with $\operatorname{res}_{\mathbf{i}}(F)=\frac{1}{2 \mathbf{i}}$ and $\operatorname{res}_{-\mathbf{i}}(F)=\frac{-1}{2 \mathbf{i}}$. Thus, Proposition 18H.6 says

If $\mu<0$, then $\quad \widehat{f}(\mu)=\mathbf{i} \exp (-\mu \mathbf{i} \cdot \mathbf{i}) \frac{1}{2 \mathbf{i}}=\frac{e^{\mu}}{2}=\frac{e^{-|\mu|}}{2}$.
If $\mu>0$, then $\quad \widehat{f}(\mu)=-\mathbf{i} \exp (-\mu \mathbf{i} \cdot(-\mathbf{i})) \frac{-1}{2 \mathbf{i}}=\frac{e^{-\mu}}{2}=\frac{e^{-|\mu|}}{2}$.
We conclude that $\widehat{g}(\mu)=\frac{e^{-|\mu|}}{2}$ for all $\mu \in \mathbb{R}$.

Exercise 18H.9. Compute the Fourier transforms of the following rational functions
(a) $f(x)=\frac{1}{x^{4}+1} . \quad\left(\right.$ Hint: $\left.x^{4}+1=\left(x-e^{\pi \mathbf{i} / 4}\right)\left(x-e^{3 \pi \mathbf{i} / 4}\right)\left(x-e^{5 \pi \mathbf{i} / 4}\right)\left(x-e^{7 \pi \mathbf{i} / 4}\right).\right)$
(b) $f(x)=\frac{x^{3}-1}{x^{4}+5 x^{2}+4} . \quad$ (Hint: $x^{4}+5 x^{2}+4=\left(x^{2}+1\right)\left(x^{2}+4\right)$.)
(c) $f(x)=\frac{x^{4}}{x^{6}+14 x^{4}+49 x^{2}+36}$. (Hint: $x^{6}+14 x^{4}+49 x^{2}+36=\left(x^{2}+1\right)\left(x^{2}+\right.$ 4) $\left(x^{2}+9\right)$.)
(d) $f(x)=\frac{x+\mathbf{i}}{x^{4}+5 x^{2}+4} . \quad$ (Careful!)

Exercise 18H.10. Why is Proposition 18 H .6 not suitable to compute the Fourier transforms of the following functions?
(a) $f(x)=\frac{1}{x^{3}+1}$.
(b) $f(x)=\frac{\sin (x)}{x^{4}+1}$.
(c) $f(x)=\frac{1}{|x|^{3}+1}$.
(d) $f(x)=\frac{\sqrt[3]{x}}{x^{3}+1}$.

Exercise 18H.11. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be an analytic function whose meromorphic extension $F: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}$ decays with order $\mathcal{O}(1 / z)$.
(a) State and prove a general formula for 'trigonometric integrals' of the form

$$
\int_{-\infty}^{\infty} \cos (n x) f(x) d x \quad \text { and } \quad \int_{-\infty}^{\infty} \sin (n x) f(x) d x
$$

(Hint: Use Proposition 18H.6 and the formula $\exp (\mu x)=\cos (\mu x)+\mathbf{i} \sin (\mu x)$).
Use your method to compute the following integrals:
(b) $\int_{-\infty}^{\infty} \frac{\sin (x)}{x^{2}+1} d x$.
(c) $\int_{-\infty}^{\infty} \frac{\cos (x)}{x^{4}+1} d x$.
(d) $\int_{-\infty}^{\infty} \frac{\sin (x)^{2}}{x^{2}+1} d x . \quad$ (Hint: $2 \sin (x)^{2}=1-\cos (2 x)$.)

Exercise 18H.12. Proposition 18 H .2 requires the function f to have no poles on the real line \mathbb{R}. However, this is not really necessary.
(a) Let $\mathcal{R}:=\left\{r_{1}, \ldots, r_{N}\right\} \subset \mathbb{R}$. Let $f: \mathbb{R} \backslash \mathcal{R} \longrightarrow \mathbb{R}$ be an analytic function whose meromorphic extension $F: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}$ decays with order $o(1 / z)$ on \mathbb{C}_{+}, and has poles $p_{1}, \ldots, p_{J} \in \mathbb{C}_{+}$, and also has simple poles at r_{1}, \ldots, r_{N}. Show that

$$
\int_{-\infty}^{\infty} f(x) d x=2 \pi \mathbf{i} \sum_{j=1}^{J} \operatorname{res}_{p_{j}}(F)+\pi \mathbf{i} \sum_{n=1}^{N} \operatorname{res}_{r_{n}}(F)
$$

Hint: For all $\epsilon>0$ and $R>0$, let $\gamma_{R, \epsilon}$ be the contour shown in Figure 18H.1(B) on page 477. This is like the ' D ' contour in the proof of Propositions 18H.2, except that it makes a little semicircular 'detour' of radius ϵ around each of the poles $r_{1}, \ldots, r_{N} \in \mathbb{R}$. Show that the integral along each of these ϵ-detours tends to $-\pi \mathbf{i} \cdot \operatorname{res}_{r_{n}}(F)$ as $\epsilon \rightarrow 0$, while the integral over the remainder of the real line tends to $\int_{-\infty}^{\infty} f(x) d x$ as $\epsilon \rightarrow 0$ and $R \rightarrow \infty$.
(b) Use your method to compute $\int_{-\infty}^{\infty} \frac{\exp (\mathbf{i} \mu x)}{x^{2}} d x$.

Exercise 18H.13. (a) Let $\mathcal{R}:=\left\{r_{1}, \ldots, r_{N}\right\} \subset \mathbb{R}$. Let $f: \mathbb{R} \backslash \mathcal{R} \longrightarrow \mathbb{R}$ be an analytic function whose meromorphic extension $F: \mathbb{C} \longrightarrow \widehat{\mathbb{C}}$ decays with order $\mathcal{O}(1 / z)$ and has poles $p_{1}, \ldots, p_{J} \in \mathbb{C}_{+}$and also has a simple poles at r_{1}, \ldots, r_{N}. Show that, for any $\mu<0$,

$$
\widehat{f}(\mu)=\mathbf{i} \sum_{j=1}^{J} \exp \left(-\mu p_{j} \mathbf{i}\right) \cdot \operatorname{res}_{p_{j}}(F)+\frac{\mathbf{i}}{2} \sum_{n=1}^{N} \exp \left(-\mu r_{j} \mathbf{i}\right) \cdot \operatorname{res}_{r_{n}}(F)
$$

(If $\mu>0$, it's a similar formula, only summing over the residues in \mathbb{C}_{-}and multiplying by -1). Hint. Combine the method from Exercise 18 H .12 with the proof technique from Proposition 18H.6.
(b) Use your method to compute $\widehat{f}(\mu)$ when $f(x)=\frac{1}{x\left(x^{2}+1\right)}$.

Exercise 18H.14. The Laplace inversion integral is defined by equation (19H.3) on page 518. State and prove a formula similar to Theorem $18 \mathrm{H.6}$ for the computation of Laplace inversion integrals.

18I* Homological extension of Cauchy's theorem

Prerequisites: $\S 18 \mathrm{C}$.
We have defined 'contours' to be non-self-intersecting curves only so as to simplify the exposition in Section 18C. ${ }^{[4]}$ All of the results of Section 18 C are true for any piecewise smooth closed curve in \mathbb{C}. Indeed, the results of Section 18 C can be even extended to integrals on chains, as we now discuss.

Let $\mathbb{U} \subseteq \mathbb{C}$ be a connected open set, and let $\mathbb{G}_{1}, \mathbb{G}_{2}, \ldots, \mathbb{G}_{N}$ be the connected components of the boundary $\partial \mathbb{U}$. Suppose each \mathbb{G}_{n} can be parameterized by a piecewise smooth contour γ_{n}, such that the outward normal vector field of \mathbb{G}_{n} is always on the right-hand side of $\dot{\gamma}_{n}$. The chain $\gamma:=\gamma_{1} \diamond \gamma_{2} \diamond \cdots \diamond \gamma_{n}$ is called the positive boundary of \mathbb{U}. Its reversal $\overleftarrow{\gamma}$ is called the negative boundary of \mathbb{U}. Both the negative and positive boundaries of a set are called

[^86]oriented boundaries. For example, any contour γ is the oriented boundary of the purview of γ. Theorem 18C.5 on page 438 now extends to the following theorem.

Theorem 18I.1. Cauchy's Theorem on oriented boundaries

Let $\mathbb{U} \subseteq \mathbb{C}$ be any open set, and let $f: \mathbb{U} \longrightarrow \mathbb{C}$ be holomorphic on \mathbb{U}. If α is an oriented boundary of \mathbb{U}, then $f_{\alpha} f=0$.

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}:[0,1] \longrightarrow \mathbb{C}$ be continuous, piecewise smooth curves in \mathbb{C} (not necessarily closed), and consider the chain $\alpha=\alpha_{1} \diamond \alpha_{2} \diamond \cdots \alpha_{N}$ (note that any chain can be expressed in this way). Let's refer to the paths $\alpha_{1}, \ldots, \alpha_{N}$ as the the 'links' of the chain α. We say that α is a cycle if the endpoint of each link is the starting point of exactly one other link, and the starting point of each link is the endpoint of exactly one other link. In other words, for all $m \in[1 . . N]$, there exists a unique $\ell, n \in[1 \ldots C]$ such that $\alpha_{\ell}(1)=\alpha_{m}(0)$ and $\alpha_{m}(1)=\alpha_{n}(0)$.

Example 18I.2. (a) Any contour is a cycle.
(b) If α and β are two cycles, then $\alpha \diamond \beta$ is also a cycle.
(c) Thus, if $\gamma_{1}, \ldots, \gamma_{N}$ are contours, then $\gamma_{1} \diamond \cdots \diamond \gamma_{N}$ is a cycle.
(d) In particular, the oriented boundary of an open set is a cycle.
(e) If α is a cycle, then $\overleftarrow{\alpha}$ is a cycle.

Not all cycles are oriented boundaries. For example, let γ_{1} and γ_{2} be two concentric counterclockwise circles around the origin; then $\gamma_{1} \diamond \gamma_{2}$ is not an oriented boundary. (Although $\gamma_{1} \diamond \overleftarrow{\gamma_{2}}$ is.)

Let $\mathbb{U} \subseteq \mathbb{C}$ be an open set. Let α and β be two cycles in \mathbb{U}. We say that α is homologous to β in \mathbb{U} if the cycle $\alpha \diamond \overleftarrow{\beta}$ is the oriented boundary of some open subset $\mathbb{V} \subseteq \mathbb{U}$. We then write " $\alpha \widetilde{\mathbb{U}} \beta$ "

Example 18I.3. (a) Let α be a clockwise circle of radius 1 around the origin, and let β be a clockwise circle of radius 2 around the origin. Then α is homologous to β in \mathbb{C}^{*}, because $\alpha \diamond \overleftarrow{\beta}$ is the positive boundary of the annulus $\mathbb{A}:=\{c \in \mathbb{C} ; 1<|c|<2\} \subseteq \mathbb{C}^{*}$.
(b) If γ_{0} and γ_{1} are contours, then they are cycles. If γ_{0} is homotopic to γ_{1} in \mathbb{U}, then γ_{0} is also homologous to γ_{1} in \mathbb{U}. To see this, let $\Gamma:[0,1] \times[0, S] \longrightarrow \mathbb{C}$ be a homotopy from γ_{0} to γ_{1}, and let $\mathbb{V}:=\Gamma((0,1) \times[0, S])$. Then \mathbb{V} is an open subset of \mathbb{U}, and $\gamma_{1} \diamond \overleftarrow{\gamma_{2}}$ is an oriented boundary of \mathbb{V}.

Thus, homology can be seen as a generalization of homotopy. Proposition 18 C .7 on page 440 can be extended as follows:

Proposition 18I.4. (Homology invariance of chain integrals)
Let $\mathbb{U} \subseteq \mathbb{C}$ be any open set, and let $f: \mathbb{U} \longrightarrow \mathbb{C}$ be holomorphic on \mathbb{U}. If α and β are two cycles which are homologous in \mathbb{U}, then $\oint_{\alpha} f=\oint_{\beta} f$.

Proof. Exercise 18I.1 Hint: Use Theorem 18I.1.

The relation " $\widetilde{\mathbb{U}}$ " is an equivalence relation. That is, for all cycles α, β, and γ,

- $\alpha \underset{\mathbb{U}}{ } \alpha ;$.
- If $\alpha \underset{\mathbb{U}}{ } \beta$, then $\beta \underset{\mathbb{U}}{ } \alpha$;
- If $\alpha \widetilde{\mathbb{U}} \beta$, and $\beta \widetilde{\mathbb{U}} \gamma$, then $\alpha \widetilde{\mathbb{U}} \gamma$.
(Exercise 18I.2 Verify these three properties.)
For any cycle α, let $[\alpha]_{\mathbb{U}}$ denote its equivalence class under " $\widetilde{\mathbb{U}}$ " (this is called a homology class). Let $\mathcal{H}^{1}(\mathbb{U})$ denote the set of all homology classes of cycles. In particular, let $[\emptyset]_{\mathbb{U}}$ denote the homology class of the empty cycle -then $[\emptyset]_{\mathbb{U}}$ contains all cycles which are oriented boundaries of subsets of \mathbb{U}.

Corollary 18I.5. Let $\mathbb{U} \subseteq \mathbb{C}$ be any open set.
(a) If $\alpha_{1} \underset{\mathbb{U}}{ } \alpha_{2}$ and $\beta_{1} \underset{\mathbb{U}}{ } \beta_{2}$, then $\left(\alpha_{1} \diamond \beta_{1}\right) \underset{\mathbb{U}}{ }\left(\alpha_{2} \diamond \beta_{2}\right)$. Thus, we can define an operation \oplus on $\mathcal{H}^{1}(\mathbb{U})$ by $[\alpha]_{\mathbb{U}} \oplus[\beta]_{\mathbb{U}}:=[\alpha \diamond \beta]_{\mathbb{U}}$.
(b) $\mathcal{H}^{1}(\mathbb{U})$ is an abelian group under the operation \oplus.
(c) If $f: \mathbb{U} \longrightarrow \mathbb{C}$ is holomorphic, then the function $[\alpha]_{\mathbb{U}} \mapsto \int_{\alpha} f$ is a group homomorphism from $\left(\mathcal{H}^{1}(\mathbb{U}), \oplus\right)$ to the group $(\mathbb{C},+)$ of complex numbers under addition.

Proof. (a) is Exercise 18I.3. Verify the following:
(i) The operation \oplus is commutative. That is, for any cycles α and β, we have $\alpha \diamond \beta \underset{\mathbb{U}}{ } \beta \diamond \alpha ;$ thus, $[\alpha]_{\mathbb{U}} \oplus[\beta]_{\mathbb{U}}=[\beta]_{\mathbb{U}} \oplus[\alpha]_{\mathbb{U}}$.
(ii) The operation \oplus is associative. That is, for any cycles α, β, and γ, we have $\alpha \diamond(\beta \diamond \gamma) \underset{\mathbb{U}}{ }(\alpha \diamond \beta) \diamond \gamma ;$ thus, $[\alpha]_{\mathbb{U}} \oplus\left([\beta]_{\mathbb{U}} \oplus[\gamma]_{\mathbb{U}}\right)=\left([\alpha]_{\mathbb{U}} \oplus[\beta]_{\mathbb{U}}\right) \oplus[\gamma]_{\mathbb{U}}$.
(iii) The cycle $[\emptyset]_{\mathbb{U}}$ is an identity element. For any cycle α, we have $[\alpha]_{\mathbb{U}} \oplus$ $[\emptyset]_{\mathbb{U}}=[\alpha]_{\mathbb{U}}$.
(iv) For any cycle α, the class $[\overleftarrow{\alpha}]_{\mathbb{U}}$ is an additive inverse for $[\alpha]_{\mathbb{U}}$. That is: $[\alpha]_{\mathbb{U}} \oplus[\boxed{\alpha}]_{\mathbb{U}}=[\emptyset]_{\mathbb{U}}$.
(b) follows immediately from (a). (c) follows from Proposition 181.4 and Lemma 18C.8(a,b).

The group $\mathcal{H}^{1}(\mathbb{U})$ is called the first homology group of \mathbb{U}. In general, $\mathcal{H}^{1}(\mathbb{U})$ is a free abelian group of rank R, where R is the number of 'holes' in \mathbb{U}. One can similarly define homology groups for any subset $\mathbb{U} \subseteq \mathbb{R}^{N}$ for any $N \in \mathbb{N}$ (e.g. a surface or a manifold), or even for more abstract spaces. The algebraic properties of the homology groups of \mathbb{U} encode the 'large-scale' topological properties of \mathbb{U} (e.g. the presence of 'holes' or 'twists'). The study of homology groups is one aspect of a vast and beautiful area in mathematics called algebraic topology. Surprisingly, the algebraic topology of a differentiable manifold indirectly influences the behaviour of partial differential equations defined on this manifold; this is content of deep results such as the Atiyah-Singer Index Theorem. For an elementary introduction to algebraic topology, see [Hen94]. For a comprehensive text, see the beautiful book [Hat02].

VI Fourier transforms on unbounded domains

In Part III, we saw that trigonometric functions like \sin and \cos formed orthogonal bases of $\mathbf{L}^{2}(\mathbb{X})$, where \mathbb{X} was one of several bounded subsets of \mathbb{R}^{D}. Thus, any function in $\mathbf{L}^{2}(\mathbb{X})$ could be expressed using a Fourier series. In Part IV] we used these Fourier series to solve initial/boundary value problems on \mathbb{X}.

A Fourier transform is similar to a Fourier series, except that now \mathbb{X} is an unbounded set (e.g. $\mathbb{X}=\mathbb{R}$ or \mathbb{R}^{D}). This introduces considerable technical complications. Nevertheless, the underlying philosophy is the same; we will construct something analogous to an orthogonal basis for $\mathbf{L}^{2}(\mathbb{X})$, and use this to solve partial differential equations on \mathbb{X}.

It is technically convenient (although not strictly necessary) to replace \sin and cos with the complex exponential functions like $\exp (x \mathbf{i})=\cos (x)+\mathbf{i} \sin (x)$. The material on Fourier series in Part חI could have also been developed using these complex exponentials, but in that context, this would have been a needless complication. In the context of Fourier transforms, however, it is actually a simplification.

Chapter 19

Fourier transforms

"There is no branch of mathematics, however abstract, which may not someday be applied to the phenomena of the real world."
-Nicolai Lobachevsky

19A One-dimensional Fourier transforms

Prerequisites: $\S 0 \mathrm{O}$. Recommended: $\S 6 \mathrm{C}(\mathrm{i}), \S[\mathrm{D}$.
Fourier series help us to represent functions on a bounded domain, like $\mathbb{X}=[0,1]$ or $\mathbb{X}=[0,1] \times[0,1]$. But what if the domain is unbounded, like $\mathbb{X}=\mathbb{R}$? Now, instead of using a discrete collection of Fourier coefficients like $\left\{A_{0}, A_{1}, B_{1}, A_{2}, B_{2}, \ldots\right\}$ or $\left\{\widehat{f}_{-1}, \widehat{f}_{0}, \widehat{f}_{1}, \widehat{f}_{2}, \ldots\right\}$, we must use a continuously parameterized family.

For every $\mu \in \mathbb{R}$, we define the function $\mathcal{E}_{\mu}: \mathbb{R} \longrightarrow \mathbb{C}$ by $\mathcal{E}_{\mu}(x):=\exp (\mu \mathbf{i} x)$. You can visualize this function as a helix which spirals with frequency μ around the unit circle in the complex plane (see Figure 19A.1). Indeed, using Euler's Formula (see page 551), it is not hard to check that $\mathcal{E}_{\mu}(x)=\cos (\mu x)+\mathbf{i} \sin (\mu x)$ (Exercise 19A.1). In other words, the real and imaginary parts of $\mathcal{E}_{\mu}(x)$ act like a cosine wave and a sine wave, respectively, both of frequency μ.

Heuristically speaking, the (continuously parameterized) family of functions $\left\{\mathcal{E}_{\mu}\right\}_{\mu \in \mathbb{R}}$ acts as a kind of 'orthogonal basis' for a certain space of functions

Figure 19A.1: $\mathcal{E}_{\mu}(x):=\exp (-\mu \cdot x \cdot \mathbf{i})$ as a function of x.
from \mathbb{R} into \mathbb{C} (although making this rigorous is very complicated). This is the motivating idea behind the Fourier transform.

Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be some function. The Fourier transform of f is the function $\widehat{f}: \mathbb{R} \longrightarrow \mathbb{C}$ defined:

$$
\widehat{f}(\mu):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) \overline{\mathcal{E}_{\mu}(x)} d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) \cdot \exp (-\mu \cdot x \cdot \mathbf{i}) d x
$$

for any $\mu \in \mathbb{R}$. (In other words, $\widehat{f}(\mu):=\frac{1}{2 \pi}\left\langle f, \mathcal{E}_{\mu}\right\rangle$, in the notation of $\oint 6 \mathrm{C}(\mathrm{i})$ on page 109). Notice that this integral may not converge, in general. We need $f(x)$ to "decay fast enough" as x goes to $\pm \infty$. To be precise, we need f to be an absolutely integrable function, meaning that

$$
\int_{-\infty}^{\infty}|f(x)| d x<\infty
$$

We indicate this by writing: " $f \in \mathbf{L}^{1}(\mathbb{R})$ ".
The Fourier transform $\widehat{f}(\mu)$ plays the same role that the complex Fourier coefficients $\left\{\ldots \widehat{f}_{-1}, \widehat{f_{0}}, \widehat{f_{1}}, \widehat{f_{2}}, \ldots\right\}$ play for a function on an interval (see $\S 8 \mathrm{D}$ on page 172). In particular, we can express $f(x)$ as a sort of generalized "Fourier series". We would like to write something like:

$$
" f(x)=\sum_{\mu \in \mathbb{R}} \widehat{f}(\mu) \mathcal{E}_{\mu}(x) . "
$$

However, this expression makes no mathematical sense, because you can't sum over all real numbers (there are too many). Instead of summing over all Fourier coefficients, we must integrate. For this to work, we need a technical condition. We say that f is piecewise smooth if there is a finite set of points $r_{1}<r_{2}<$ $\cdots<r_{N}$ in \mathbb{R} such that f is continuously differentiable on the open intervals $\left(-\infty, r_{1}\right),\left(r_{1}, r_{2}\right),\left(r_{1}, r_{2}\right), \ldots,\left(r_{N-1}, r_{N}\right)$, and $\left(r_{N}, \infty\right)$, and furthermore, the left-hand and right-hand limits \square of f and f^{\prime} exist at each of the points r_{1}, \ldots, r_{N}.

Theorem 19A.1. Fourier Inversion Formula
Suppose that $f \in \mathbf{L}^{1}(\mathbb{R})$ is piecewise smooth. For any $x \in \mathbb{R}$, if f is continuous at x, then

$$
\begin{equation*}
f(x)=\lim _{M \rightarrow \infty} \int_{-M}^{M} \widehat{f}(\mu) \cdot \mathcal{E}_{\mu}(x) d \mu=\lim _{M \rightarrow \infty} \int_{-M}^{M} \widehat{f}(\mu) \cdot \exp (\mu \cdot x \cdot \mathbf{i}) d \mu \tag{19A.1}
\end{equation*}
$$

If f is discontinuous at x, then we have

$$
\lim _{M \rightarrow \infty} \int_{-M}^{M} \widehat{f}(\mu) \cdot \mathcal{E}_{\mu}(x) d \mu=\frac{1}{2}\left(\lim _{y \searrow x} f(y)+\lim _{y \nearrow x} f(y)\right)
$$

[^87]Proof. See [Wal88, Theorem 5.17, p.244], [Kör88, Theorem 61.1, p.300], or [Fis99, §5.2, p.335-342].

It follows that, under mild conditions, a function can be uniquely identified from its Fourier transform:

Proposition 19A.2. Suppose $f, g \in \mathcal{C}(\mathbb{R}) \cap \mathbf{L}^{1}(\mathbb{R})$ are continuous and integrable. Then $(\widehat{f}=\widehat{g}) \Longleftrightarrow(f=g)$.

Proof. " \Longleftarrow " is obvious. The proof of " \Longrightarrow " is Exercise 19A. 2 (Hint. (a) If f and g are piecewise smooth, then show that this follows immediately from Theorem [9A.].
(b) In the general case (where f and g might not be piecewise smooth), proceed as follows. Let $h \in \mathcal{C}(\mathbb{R}) \cap \mathbf{L}^{1}(\mathbb{R})$. Suppose $\widehat{h} \equiv 0$; show that we must have $h \equiv 0$. Now let $h:=f-g$; then $\widehat{h}=\widehat{f}-\widehat{g} \equiv 0$ (because $\widehat{f}=\widehat{g}$). Thus $h=0$; thus, $f=g$.)

Figure 19A.2: (A) Example 19A.3. $\frac{\sin (\mu)}{\pi \mu}$ from Example 19A.3.

Example 19A.3. Suppose $f(x)=\left\{\begin{array}{ll}1 & \text { if }-1<x<1 ; \\ 0 & \text { otherwise }\end{array}\right.$ [see Figure 19A.2(A)]. Then

$$
\begin{aligned}
& \text { For all } \mu \in \mathbb{R}, \quad \begin{aligned}
\widehat{f}(\mu) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) \exp (-\mu \cdot x \cdot \mathbf{i}) d x=\frac{1}{2 \pi} \int_{-1}^{1} \exp (-\mu \cdot x \cdot \mathbf{i}) d x \\
& =\frac{1}{-2 \pi \mu \mathbf{i}} \exp (-\mu \cdot x \cdot \mathbf{i})_{x=-1}^{x=1}=\frac{1}{-2 \pi \mu \mathbf{i}}\left(e^{-\mu \mathbf{i}}-e^{\mu \mathbf{i}}\right) \\
& =\frac{1}{\pi \mu}\left(\frac{e^{\mu \mathbf{i}}-e^{-\mu \mathbf{i}}}{2 \mathbf{i}}\right) \overline{\overline{(E u)}} \frac{1}{\pi \mu} \sin (\mu) \quad \text { [see Fig.[19A.2(B)] }
\end{aligned} \\
& \text { Linear Partial Differential Equations and Fourier Theory }
\end{aligned}
$$

where ($\mathbf{E u}$) is Euler's Formula (see page 551).
Thus, the Fourier Inversion Formula says, that, if $-1<x<1$, then

$$
\lim _{M \rightarrow \infty} \int_{-M}^{M} \frac{\sin (\mu)}{\pi \mu} \exp (\mu \cdot x \cdot \mathbf{i}) d \mu=1
$$

while, if $x<-1$ or $x>1$, then $\lim _{M \rightarrow \infty} \int_{-M}^{M} \frac{\sin (\mu)}{\pi \mu} \exp (\mu \cdot x \cdot \mathbf{i}) d \mu=0$. If $x= \pm 1$, then the Fourier inversion integral will converge to $\frac{1}{2}$.

Figure 19A.3: (A) Example 19A.4. (B) The real and imaginary parts of the Fourier transform $\widehat{f}(x)=\frac{1-e^{-\mu \mathrm{i}}}{2 \pi \mu \mathrm{i}}$ from Example 19A.4.

Example 19A.4. Suppose $f(x)=\left\{\begin{array}{cc}1 & \text { if } 0<x<1 ; \\ 0 & \text { otherwise }\end{array}\right.$ [see Figure 19A.3(A)]. Then $\widehat{f}(\mu)=\frac{1-e^{-\mu \mathrm{i}}}{2 \pi \mu \mathrm{i}}$ [see Figure 19A.3(B)]; the verification of this is practice problem \# [1] on page 523 of $\S[99$. Thus, the Fourier inversion formula says, that, if $0<x<1$, then

$$
\lim _{M \rightarrow \infty} \int_{-M}^{M} \frac{1-e^{-\mu \mathbf{i}}}{2 \pi \mu \mathbf{i}} \exp (\mu \cdot x \cdot \mathbf{i}) d \mu=1
$$

while, if $x<0$ or $x>1$, then $\lim _{M \rightarrow \infty} \int_{-M}^{M} \frac{1-e^{-\mu \mathbf{i}}}{2 \pi \mu \mathbf{i}} \exp (\mu \cdot x \cdot \mathbf{i}) d \mu=0$. If $x=0$ or $x=1$, then the Fourier inversion integral will converge to $\frac{1}{2}$. \diamond

(B)

Figure 19A.4: (A) The symmetric exponential tail function $f(x)=e^{-\alpha \cdot|x|}$ from Example 19A.7. (B) The Fourier transform $\widehat{f}(x)=\frac{a}{\pi\left(x^{2}+a^{2}\right)}$ of the symmetric exponential tail function from Example 19A.7.

In the Fourier Inversion Formula, it is important that the positive and negative bounds of the integral go to infinity at the same rate in the limit (19A.1). In particular, it is not the case that $f(x)=\lim _{N, M \rightarrow \infty} \int_{-N}^{M} \widehat{f}(\mu) \exp (\mu \cdot x \cdot \mathbf{i}) d \mu$; in general, this integral may not converge. The reason is this: even if f is absolutely integrable, its Fourier transform \widehat{f} may not be. If we assume that \widehat{f} is also absolutely integrable, then things become easier.

Theorem 19A.5. Strong Fourier Inversion Formula
Suppose that $f \in \mathbf{L}^{1}(\mathbb{R})$, and that \widehat{f} is also in $\mathbf{L}^{1}(\mathbb{R})$. If $x \in \mathbb{R}$, and f is continuous at x, then $f(x)=\int_{-\infty}^{\infty} \widehat{f}(\mu) \cdot \exp (\mu \cdot x \cdot \mathbf{i}) d \mu$.
Proof. See [Kör88, Theorem 60.1, p.296], [Wal88, Theorem 4.11, p.236], [Fol84, Theorem 8.26, p. 243], or [Kat76, §VI.1.12, p.126].

Corollary 19A.6. Suppose $f \in \mathbf{L}^{1}(\mathbb{R})$, and there exists some $g \in \mathbf{L}^{1}(\mathbb{R})$ such that $f=\widehat{g}$. Then $\widehat{f}(\mu)=\frac{1}{2 \pi} g(-\mu)$ for all $\mu \in \mathbb{R}$.

Proof. Exercise 19A. 3

Example 19A.7. Let $\alpha>0$ be a constant, and suppose $f(x)=e^{-\alpha \cdot|x|}$. [see Figure 19A.4(A)]. Then

$$
\begin{aligned}
& 2 \pi \widehat{f}(\mu)=\int_{-\infty}^{\infty} e^{-\alpha \cdot|x|} \exp (-\mu x \mathbf{i}) d x \\
&=\int_{0}^{\infty} e^{-\alpha \cdot x} \exp (-\mu x \mathbf{i}) d x+\int_{-\infty}^{0} e^{\alpha \cdot x} \exp (-\mu x \mathbf{i}) d x \\
&=\int_{0}^{\infty} \exp (-\alpha x-\mu x \mathbf{i}) d x+\int_{-\infty}^{0} \exp (\alpha x-\mu x \mathbf{i}) d x \\
& \text { Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT } \quad \text { January 31, 2009 }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{-(\alpha+\mu \mathbf{i})} \exp (-(\alpha+\mu \mathbf{i}) \cdot x)_{x=0}^{x=\infty}+\frac{1}{\alpha-\mu \mathbf{i}} \exp ((\alpha-\mu \mathbf{i}) \cdot x)_{x=-\infty}^{x=0} \\
& \overline{\overline{(*)}} \frac{-1}{\alpha+\mu \mathbf{i}}(0-1)+\frac{1}{\alpha-\mu \mathbf{i}}(1-0)=\frac{1}{\alpha+\mu \mathbf{i}}+\frac{1}{\alpha-\mu \mathbf{i}}=\frac{\alpha-\mu \mathbf{i}+\alpha+\mu \mathbf{i}}{(\alpha+\mu \mathbf{i})(\alpha-\mu \mathbf{i})} \\
& =\frac{2 \alpha}{\alpha^{2}+\mu^{2}}
\end{aligned}
$$

Thus, we conclude: $\widehat{f}(\mu)=\frac{\alpha}{\pi\left(\alpha^{2}+\mu^{2}\right)}$. [see Figure 19A.4(B)].
To see equality $(*)$, recall that $|\exp (-(\alpha+\mu \mathbf{i}) \cdot x)|=e^{-\alpha \cdot x}$. Thus,

$$
\lim _{\mu \rightarrow \infty}|\exp (-(\alpha+\mu \mathbf{i}) \cdot x)|=\lim _{\mu \rightarrow \infty} e^{-\alpha \cdot x}=0
$$

Likewise, $\lim _{\mu \rightarrow-\infty}|\exp ((\alpha-\mu \mathbf{i}) \cdot x)|=\lim _{\mu \rightarrow-\infty} e^{\alpha \cdot x}=0$.

Example 19A.8. Conversely, suppose $\alpha>0$, and $g(x)=\frac{1}{\left(\alpha^{2}+x^{2}\right)}$. Then $\widehat{g}(\mu)=\frac{1}{2 \alpha} e^{-\alpha \cdot|\mu|}$; the verification of this is practice problem \# 6 on page 523
of $\S[9]$.

Remark. Proposition 18H.6 on page 476 provides a powerful technique for computing the Fourier transform of any analytic function $f: \mathbb{R} \longrightarrow \mathbb{C}$, using residue calculus.

19B Properties of the (one-dimensional) Fourier transform

Prerequisites: §19A, §OG.

Theorem 19B.1. Riemann-Lebesgue Lemma
Let $f \in \mathbf{L}^{1}(\mathbb{R})$.
(a) The function \widehat{f} is continuous and bounded. To be precise: If $B:=\int_{-\infty}^{\infty}|f(x)| d x$, then, for all $\mu \in \mathbb{R}$, we have $|\widehat{f}(\mu)|<B$.
(b) \widehat{f} asymptotically decays near infinity. That is, $\lim _{\mu \rightarrow \pm \infty}|\widehat{f}(\mu)|=0$.

Proof. (a) Exercise 19B. 1 Hint: Boundedness follows from applying the triangle inequality to the integral defining $\widehat{f}(\mu)$. For continuity, fix $\mu_{1}, \mu_{2} \in \mathbb{R}$, and define $E: \mathbb{R} \longrightarrow \mathbb{R}$ by $E(x):=\exp \left(-\mu_{1} x \mathbf{i}\right)-\exp \left(-\mu_{2} x \mathbf{i}\right)$. For any $X>0$, we can write
$\widehat{f}\left(\mu_{1}\right)-\widehat{f}\left(\mu_{2}\right)=\frac{1}{2 \pi}(\underbrace{\int_{-\infty}^{-X} f(x) \cdot E(x) d x}_{(A)}+\underbrace{\int_{-X}^{X} f(x) \cdot E(x) d x}_{(B)}+\underbrace{\int_{X}^{\infty} f(x) \cdot E(x) d x}_{(C)})$.
(i) Show that, if X is large enough, then the integrals (A) and (C) can be made arbitrarily small, independent of the values of μ_{1} and μ_{2}. (Hint. Recall that $f \in$ $\mathbf{L}^{1}(\mathbb{R})$. Observe that $|E(x)| \leq 2$ for all $x \in \mathbb{R}$.)
(ii) Fix $X>0$. Show that, if μ_{1} and μ_{2} are close enough, then integral (B) can also be made arbitrarily small (Hint: if μ_{1} and μ_{2} are 'close', then $|E(x)|$ is 'small' for all $x \in \mathbb{R}$.)
(iii) Show that, if μ_{1} and μ_{2} are close enough, then $\left|\widehat{f}\left(\mu_{1}\right)-\widehat{f}\left(\mu_{2}\right)\right|$ can be made arbitrarily small. (Hint: Combine (i) and (ii), using the triangle inequality). Hence, \widehat{f} is continuous.
(b) (if f is continuous) Exercise 19B. 2 Hint. For any $X>0$, we can write
$\widehat{f}(\mu)=\frac{1}{2 \pi}(\underbrace{\int_{-\infty}^{-X} f(x) \cdot \mathcal{E}_{\mu}(x) d x}_{(A)}+\underbrace{\int_{-X}^{X} f(x) \cdot \mathcal{E}_{\mu}(x) d x}_{(B)}+\underbrace{\int_{X}^{\infty} f(x) \cdot \mathcal{E}_{\mu}(x) d x}_{(C)})$.
(i) Show that, if X is large enough, then the integrals (A) and (C) can be made arbitrarily small, independent of the value of μ. (Hint. Recall that $f \in \mathbf{L}^{1}(\mathbb{R})$. Observe that $\left|\mathcal{E}_{\mu}(x)\right|=1$ for all $x \in \mathbb{R}$.)
(ii) Fix $X>0$. Show that, if μ is large enough, then integral (B) can also be made arbitrarily small (Hint: f is uniformly continuous on the interval $[-X, X]$ (why?). Thus, for any $\epsilon>0$, there is some M such that, for all $\mu>M$, and all $x \in[-X, X]$, we have $|f(x)-f(x+\pi / \mu)|<\epsilon$. But $\left.\mathcal{E}_{\mu}(x+\pi / \mu)=-\mathcal{E}_{\mu}(x)\right)$.
(iii) Show that, if μ is large enough, then $|\widehat{f}(\mu)|$ can be made arbitrarily small. (Hint: Combine (i) and (ii), using the triangle inequality).
For the proof of (b) when f is an arbitrary (discontinuous) element of $\mathbf{L}^{1}(\mathbb{R})$, see [Fol84, Theorem 8.22(f), p.241] or [Fis99, Exercise 15, §5.2, p.343] or [Kat76, Theorem 1.7, p.123].

Recall that, if $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ are two functions, then their convolution is the function $(f * g): \mathbb{R} \longrightarrow \mathbb{R}$ defined:

$$
(f * g)(x) \quad:=\quad \int_{-\infty}^{\infty} f(y) \cdot g(x-y) d y
$$

(see $\S 17 \mathrm{~A}$ on page 375 for a discussion of convolutions). Similarly, if f has Fourier transform \widehat{f} and g has Fourier transform \widehat{g}, we can convolve \widehat{f} and \widehat{g} to
get a function $(\widehat{f} * \widehat{g}): \mathbb{R} \longrightarrow \mathbb{R}$ defined:

$$
(\widehat{f} * \widehat{g})(\mu) \quad:=\quad \int_{-\infty}^{\infty} \widehat{f}(\nu) \cdot \widehat{g}(\mu-\nu) d \nu
$$

Theorem 19B.2. Algebraic Properties of the Fourier Transform

Suppose $f, g \in \mathbf{L}^{1}(\mathbb{R})$ are two functions.
(a) If $h:=f+g$, then for all $\mu \in \mathbb{R}$, we have $\widehat{h}(\mu)=\widehat{f}(\mu)+\widehat{g}(\mu)$.
(b) If $h:=f * g$, then for all $\mu \in \mathbb{R}$, we have $\widehat{h}(\mu)=2 \pi \cdot \widehat{f}(\mu) \cdot \widehat{g}(\mu)$.
(c) Conversely, suppose $h:=f \cdot g$. If \widehat{f}, \widehat{g} and \widehat{h} are in $\mathbf{L}^{1}(\mathbb{R})$, then for all $\mu \in \mathbb{R}$, we have $\widehat{h}(\mu)=(\widehat{f} * \widehat{g})(\mu)$.

Proof. See practice problems \# [1] to \# [3] on page 524.

This theorem allows us to compute the Fourier transform of a complicated function by breaking it into a sum/product of simpler pieces.

Theorem 19B.3. Translation and Phase Shift
Suppose $f \in \mathbf{L}^{1}(\mathbb{R})$.
(a) If $\tau \in \mathbb{R}$ is fixed, and $g \in \mathbf{L}^{1}(\mathbb{R})$ is defined by: $g(x):=f(x+\tau)$, then for all $\mu \in \mathbb{R}$, we have $\widehat{g}(\mu)=e^{\tau \mu \mathrm{i}} \cdot \widehat{f}(\mu)$.
(b) Conversely, if $\nu \in \mathbb{R}$ is fixed, and $g \in \mathbf{L}^{1}(\mathbb{R})$ is defined: $g(x):=e^{\nu x \mathbf{i}} f(x)$, then for all $\mu \in \mathbb{R}$, we have $\widehat{g}(\mu)=\widehat{f}(\mu-\nu)$.

Proof. See practice problems \# 14 and \# 15 on page 524.

Thus, translating a function by τ in physical space corresponds to phaseshifting its Fourier transform by $e^{\tau \mu \mathrm{i}}$, and vice versa. This means that, via a suitable translation, we can put the "center" of our coordinate system wherever it is most convenient to do so.

Example 19B.4. Suppose $g(x)=\left\{\begin{array}{ll}1 & \text { if }-1-\tau<x<1-\tau ; \\ 0 & \text { otherwise }\end{array}\right.$. Thus, $g(x)=f(x+\tau)$, where $f(x)$ is as in Example 19A.3 on page 489. We know that $\widehat{f}(\mu)=\frac{\sin (\mu)}{\pi \mu}$; thus, it follows from Theorem 19B.3 that $\widehat{g}(\mu)=$ $e^{\tau \mu \mathbf{i}} \cdot \frac{\sin (\mu)}{\pi \mu}$.

Figure 19B.1: Plot of \widehat{f} (black) and \widehat{g} (grey) in Example 19B.6, where $g(x)=$ $f(x / 3)$.

Theorem 19B.5. Rescaling Relation
Suppose $f \in \mathbf{L}^{1}(\mathbb{R})$. If $\alpha>0$ is fixed, and g is defined by: $g(x)=f\left(\frac{x}{\alpha}\right)$, then for all $\mu \in \mathbb{R}, \quad \widehat{g}(\mu)=\alpha \cdot \widehat{f}(\alpha \cdot \mu)$.
Proof. See practice problem \# 16 on page 525 .
In Theorem 19B.5, the function g is the same as function f, but expressed in a coordinate system "rescaled" by a factor of α.
Example 19B.6. Suppose $g(x)=\left\{\begin{array}{ll}1 & \text { if }-3<x<3 ; \\ 0 & \text { otherwise }\end{array}\right.$. Thus, $g(x)=$ $f(x / 3)$, where $f(x)$ is as in Example 19A.3 on page 489. We know that $\widehat{f}(\mu)=$ $\frac{\sin (\mu)}{\mu \pi}$; thus, it follows from Theorem 19B.5 that $\widehat{g}(\mu)=3 \cdot \frac{\sin (3 \mu)}{3 \mu \pi}=$ $\frac{\sin (3 \mu)}{\mu \pi}$. See Figure 19B.1.

A function $f: \mathbb{R} \longrightarrow \mathbb{C}$ is continuously differentiable if $f^{\prime}(x)$ exists for all $x \in \mathbb{R}$, and the function $f^{\prime}: \mathbb{R} \longrightarrow \mathbb{C}$ is itself continuous. Let $\mathcal{C}^{1}(\mathbb{R})$ be the set of all continuously differentiable functions from \mathbb{R} to \mathbb{C}. For any $n \in \mathbb{N}$ let $f^{(n)}(x):=\frac{d^{n}}{d x^{n}} f(x)$. The function f is n times continuously differentiable if $f^{(n)}(x)$ exists for all $x \in \mathbb{R}$, and the function $f^{(n)}: \mathbb{R} \longrightarrow \mathbb{C}$ is itself continuous. Let $\mathcal{C}^{n}(\mathbb{R})$ be the set of all n-times continuously differentiable functions from \mathbb{R} to \mathbb{C}.

Figure 19B.2: Smoothness vs. asymptotic decay in the Fourier Transform.
Theorem 19B.7. Differentiation and Multiplication
Suppose $f \in \mathbf{L}^{1}(\mathbb{R})$.
(a) Suppose $f \in \mathcal{C}^{1}(\mathbb{R})$ and $\lim _{x \rightarrow \pm \infty}|f(x)|=0$. Let $g(x):=f^{\prime}(x)$. If $g \in \mathbf{L}^{1}(\mathbb{R})$, then for all $\mu \in \mathbb{R}$, we have $\widehat{g}(\mu)=\mathbf{i} \mu \cdot \widehat{f}(\mu)$.
(b) More generally, suppose $f \in \mathcal{C}^{n}(\mathbb{R})$ and $\lim _{x \rightarrow \pm \infty}\left|f^{(n-1)}(x)\right|=0$. Let $g(x):=$ $f^{(n)}(x)$. If $g \in \mathbf{L}^{1}(\mathbb{R})$, then for all $\mu \in \mathbb{R}$, we have $\widehat{g}(\mu)=(\mathbf{i} \mu)^{n} \cdot \widehat{f}(\mu)$. Thus, $\widehat{f}(\mu)$ asymptotically decays faster than $\frac{1}{\mu^{n}}$ as $\mu \rightarrow \pm \infty$. That is, $\lim _{\mu \rightarrow \pm \infty} \mu^{n} \widehat{f}(\mu)=0$.
(c) Conversely, let $g(x):=x^{n} \cdot f(x)$, and suppose that f decays "quickly enough" that g is also in $\mathbf{L}^{1}(\mathbb{R})$ [for example, this happens if $\lim _{x \rightarrow \pm \infty} x^{n+1} f(x)=$ 0]. Then the function \widehat{f} is n times differentiable, and, for all $\mu \in \mathbb{R}$,

$$
\widehat{g}(\mu)=\quad \mathbf{i}^{n} \cdot \frac{d^{n}}{d \mu^{n}} \widehat{f}(\mu) .
$$

Proof. (a) is practice problem \# 17 on page 525 of $\S 191$.
(b) is just the result of iterating (a) n times.
(c) is Exercise 19B. 3 (Hint: either 'reverse' the result of (a) using the Fourier Inversion Formula (Theorem 19A.1 on page 488), or use Proposition 0G. 1 on page 567 to directly differentiate the integral defining $\widehat{f}(\mu)$.)

This theorem says that the Fourier transform converts differentiation-byx into multiplication-by- $\mu \mathbf{i}$. This implies that the smoothness of a function f is closely related to the asymptotic decay rate of its Fourier transform. The
"smoother" f is (i.e. the more times we can differentiate it), the more rapidly $\widehat{f}(\mu)$ decays as $\mu \rightarrow \infty$ (see Figure 19B.2).

Physically, we can interpret this as follows. If we think of f as a "signal", then $\widehat{f}(\mu)$ is the amount of "energy" at the "frequency" μ in the spectral decomposition of this signal. Thus, the magnitude of $\widehat{f}(\mu)$ for extremely large μ is the amount of "very high frequency" energy in f, which corresponds to very finely featured, "jaggy" structure in the shape of f. If f is "smooth", then we expect there will be very little of this "jagginess"; hence the high frequency part of the energy spectrum will be very small.

Conversely, the asymptotic decay rate of f determines the smoothness of its Fourier transform. This makes sense, because the Fourier inversion formula can be (loosely) intepreted as saying that f is itself a sort of "backwards" Fourier transform of \widehat{f}.

One very important Fourier transform is the following:

Theorem 19B.8. Fourier Transform of a Gaussian

(a) If $f(x)=\exp \left(-x^{2}\right)$, then $\widehat{f}(\mu)=\frac{1}{2 \sqrt{\pi}} \cdot f\left(\frac{\mu}{2}\right)=\frac{1}{2 \sqrt{\pi}} \cdot \exp \left(\frac{-\mu^{2}}{4}\right)$.
(b) Fix $\sigma>0$. If $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(\frac{-x^{2}}{2 \sigma^{2}}\right)$ is a Gaussian probability distribution with mean 0 and variance σ^{2}, then

$$
\widehat{f}(\mu)=\frac{1}{2 \pi} \exp \left(\frac{-\sigma^{2} \mu^{2}}{2}\right) .
$$

(c) Fix $\sigma>0$ and $\tau \in \mathbb{R}$. If $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(\frac{-|x-\tau|^{2}}{2 \sigma^{2}}\right)$ is a Gaussian probability distribution with mean τ and variance σ^{2}, then

$$
\widehat{f}(\mu)=\frac{e^{-\mathbf{i} \tau \mu}}{2 \pi} \exp \left(\frac{-\sigma^{2} \mu^{2}}{2}\right) .
$$

Proof. We'll start with part (a). Let $g(x)=f^{\prime}(x)$. Then by Theorem 19B.7(a),

$$
\begin{equation*}
\widehat{g}(\mu)=\mathbf{i} \mu \cdot \widehat{f}(\mu) \tag{19B.1}
\end{equation*}
$$

However direct computation says $g(x)=-2 x \cdot f(x)$, so $\frac{-1}{2} g(x)=x \cdot f(x)$, so Theorem 19B.7(c) implies

$$
\begin{equation*}
\frac{\mathbf{i}}{2} \widehat{g}(\mu)=(\widehat{f})^{\prime}(\mu) \tag{19B.2}
\end{equation*}
$$

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

Combining (19B.2) with (19B.1), we conclude:

$$
\begin{equation*}
(\widehat{f})^{\prime}(\mu) \underset{\overline{(\underline{19 B .2)}}}{ } \quad \frac{\mathbf{i}}{2} \widehat{g}(\mu) \quad \overline{\overline{(19 B \cdot 1]}} \quad \frac{\mathbf{i}}{2} \cdot \mathbf{i} \mu \cdot \widehat{f}(\mu) \quad=\quad \frac{-\mu}{2} \widehat{f}(\mu) \tag{19B.3}
\end{equation*}
$$

Define $h(\mu)=\widehat{f}(\mu) \cdot \exp \left(\frac{\mu^{2}}{4}\right)$. If we differentiate $h(\mu)$, we get:

$$
h^{\prime}(\mu) \overline{\overline{(\mathrm{dL})}} \widehat{f}(\mu) \cdot \frac{\mu}{2} \exp \left(\frac{\mu^{2}}{4}\right) \underbrace{-\frac{\mu}{2} \widehat{f}(\mu)}_{(*)} \cdot \exp \left(\frac{\mu^{2}}{4}\right)=0
$$

Here, $(\mathbf{d L})$ is differentiating using the Leibniz rule, and $(*)$ is by eqn.(19B.3).
In other words, $h(\mu)=H$ is a constant. Thus,

$$
\widehat{f}(\mu)=\frac{h(\mu)}{\exp \left(\mu^{2} / 4\right)}=H \cdot \exp \left(\frac{-\mu^{2}}{4}\right)=H \cdot f\left(\frac{\mu}{2}\right)
$$

To evaluate H, set $\mu=0$, to get

$$
\begin{aligned}
H & =H \cdot \exp \left(\frac{-0^{2}}{4}\right)=\widehat{f}(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp \left(-x^{2}\right) \\
& =\frac{1}{2 \sqrt{\pi}}
\end{aligned}
$$

(where the last step is Exercise 19B.4). Thus, we conclude: $\widehat{f}(\mu)=\frac{1}{2 \sqrt{\pi}}$. $f\left(\frac{\mu}{2}\right)$.
Part (b) follows by setting $\alpha:=\sqrt{2} \sigma$ in Theorem 19B.5 on page 495.
Part (c) is Exercise 19B. 5 (Hint: Apply Theorem 19B.3 on page 494).

Loosely speaking, Theorem 19B.8 says, "The Fourier transform of a Gaussian is another Gaussian" $]$. However, notice that, in Part (b) of the theorem, as the variance of the Gaussian (that is, σ^{2}) gets bigger, the "variance" of it's Fourier transform (which is effectively $\frac{1}{\sigma^{2}}$) gets smaller (see Figure 19B.3). If we think of the Gaussian as the probability distribution of some unknown piece of information, then the variance measures the degree of "uncertainty". Hence, we conclude: the greater the uncertainty embodied in the Gaussian f, the less the uncertainty embodied in \widehat{f}, and vice versa. This is a manifestation of the so-called Heisenberg Uncertainty Principle (see Theorem 19G. 2 on 513).

[^88]

Figure 19B.3: The Uncertainty Principle.
Proposition 19B.9. Inversion and Conjugation
For any $z \in \mathbb{C}$, let \bar{z} denote the complex conjugate of z. Let $f \in \mathbf{L}^{1}(\mathbb{R})$.
(a) For all $\mu \in \mathbb{R}$, we have $\hat{\bar{f}}(\mu)=\overline{\widehat{f}(-\mu)}$. In particular, $(f$ purely real-valued $) \Longleftrightarrow($ for all $\mu \in \mathbb{R}$, we have $\widehat{f}(-\mu)=\overline{\hat{f}(\mu)})$.
(b) Suppose $g(x)=f(-x)$ for all $x \in \mathbb{R}$. Then for all $\mu \in \mathbb{R}, \quad \widehat{g}(\mu)=\widehat{f}(-\mu)$. In particular, if f purely real-valued, then $\widehat{g}(\mu)=\overline{\hat{f}(\mu)}$. for all $\mu \in \mathbb{R}$.
(c) If f is real-valued and even (i.e. $f(-x)=f(x)$), then \widehat{f} is purely realvalued.
(d) If f is real-valued and odd (i.e. $f(-x)=-f(x)$), then \widehat{f} is purely imaginaryvalued.

Proof. Exercise 19B. 6

Example 19B.10: Autocorrelation and Power Spectrum

If $f: \mathbb{R} \longrightarrow \mathbb{R}$, then the autocorrelation function of f is defined by

$$
\mathbf{A} f(x):=\quad \int_{-\infty}^{\infty} f(y) \cdot f(x+y) d y .
$$

Heuristically, if we think of $f(x)$ as a "random signal", then $\mathbf{A} f(x)$ measures the degree of correlation in the signal across time intervals of length x-i.e. it provides a crude measure of how well you can predict the value of $f(y+x)$ given information about $f(x)$. In particular, if f has some sort of " T-periodic" component, then we expect $\mathbf{A} f(x)$ to be large when $x=n T$ for any $n \in \mathbb{Z}$.
If we define $g(x)=f(-x)$, then we can see that $\mathbf{A} f(x)=(f * g)(-x)$ (Exercise 19B.7). Thus,

$$
\begin{aligned}
\widehat{\mathbf{A} f}(\mu) & \overline{\overline{(*)}} \\
& \overline{\overline{f * g}(\mu)} \overline{\overline{(+)}} \overline{\hat{f}(\mu) \cdot \widehat{g}(\mu)} \\
& \overline{\overline{(*)}} \overline{\widehat{f}(\mu) \cdot \overline{\hat{f}(\mu)}}=\overline{\hat{f}(\mu)} \cdot \widehat{f}(\mu) \quad=|\widehat{f}(\mu)|^{2} .
\end{aligned}
$$

Here, both $(*)$ are by Proposition 19B.9(b), while (\dagger) is by Theorem 19B.2(b). The function $|\widehat{f}(\mu)|^{2}$ measures the absolute magnitude of the Fourier transform of \widehat{f}, and is sometimes called the power spectrum of \widehat{f}.

Evil twins of the Fourier transform. Unfortunately, the mathematics literature contains at least four different definitions of the Fourier transform. In this book, the Fourier transform and its inversion are defined with the integrals

$$
\widehat{f}(\mu):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) \exp (-\mathbf{i} x \mu) d \mu \quad \text { and } \quad f(x)=\int_{-\infty}^{\infty} \widehat{f}(x) \exp (\mathbf{i} x \mu) d \mu
$$

Some books (e.g. [Kat76, KKör88, Fis99, Hab87]) instead use what we will call the opposite Fourier transform:

$$
\check{f}(\mu) \quad:=\quad \int_{-\infty}^{\infty} f(x) \exp (-\mathbf{i} x \mu) d x,
$$

with inverse transform

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \check{f}(\mu) \exp (\mathbf{i} x \mu) d \mu .
$$

Other books (e.g. [Asm05]) instead use what we will call the symmetric Fourier transform:

$$
\overparen{f}(\mu):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) \exp (-\mathbf{i} x \mu) d x
$$

with inverse transform

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \overparen{f}(\mu) \exp (\mathbf{i} x \mu) d \mu
$$

Finally, some books (e.g. [Fol84, Wal88]) use what we will call the canonical Fourier transform:

$$
\widetilde{f}(\mu):=\int_{-\infty}^{\infty} f(x) \exp (-2 \pi \mathbf{i} x \mu) d x,
$$

with inverse transform

$$
f(x)=\int_{-\infty}^{\infty} \widetilde{f}(\mu) \exp (2 \pi \mathbf{i} x \mu) d \mu
$$

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

All books use the symbol " \widehat{f} " to denote the Fourier transform of f-we are using four different 'accents' simply to avoid confusing the four definitions. It is easy to translate the Fourier transform in this book into its evil twins. For any $f \in \mathbf{L}^{1}(\mathbb{R})$ and any $\mu \in \mathbb{R}$, we have:

$$
\begin{array}{ll}
\check{f}(\mu)=2 \pi \widehat{f}(\mu) \quad \text { and } \quad \widehat{f}(\mu) & =\frac{1}{2 \pi} \check{f}(\mu) ; \\
\overparen{f}(\mu)=\sqrt{2 \pi} \widehat{f}(\mu) \quad \text { and } \quad \widehat{f}(\mu) & =\frac{1}{\sqrt{2 \pi}} \overparen{f}(\mu) \tag{19B.4}\\
\widetilde{f}(\mu)=2 \pi \widehat{f}(2 \pi \mu) \quad \text { and } \quad \widehat{f}(\mu)=\frac{1}{2 \pi} \widetilde{f}\left(\frac{\mu}{2 \pi}\right) .
\end{array}
$$

(Exercise 19B. 8 Check this.) All of the formulae and theorems we have derived in this section are still true under these alternate definitions, except that one must multiply or divide by 2π or $\sqrt{2 \pi}$ at certain key points, and replace $e^{\mathbf{i}}$ with $e^{2 \pi \mathbf{i}}$ (or vice versa) at others.

Exercise 19B.9. (Annoying) Use the identities (19B.4) to reformulate all the formulae and theorems in this chapter in terms of (a) The opposite Fourier transform \check{f}; or (b) The symmetric Fourier transform \overparen{f}; or (c) The canonical Fourier transform \widetilde{f}.

Each of the four definitions has advantages and disadvantages; some formulae become simpler, others become more complex. Clearly, both the 'symmetric' and 'canonical' versions of the Fourier transform have some appeal because the Fourier transform and its inverse have 'symmetrical' formulae using these definitions. Furthermore, in both of these versions, the ' 2π ' factor disappears from Parseval's and Plancherel's Theorems (see $\S 19 \mathrm{C}$ below) -in other words, the Fourier transform becomes an isometry of $\mathbf{L}^{2}(\mathbb{R})$. The symmetric Fourier transform has the added advantage that it maps a Gaussian distribution into another Gaussian (no scalar multiplication required). The canonical Fourier transform has the added advantage that $\widetilde{f * g}=\widetilde{f} \cdot \widetilde{g}$ (without the 2π factor required in Theorem 19B.2(a)), while simultaneously, $\widetilde{f \cdot g}=\tilde{f} * \widetilde{g}$ (unlike the symmetric Fourier transform).

The definition used in this book (and also in [Pin98, CB87, Pow99, Bro89, McW72], among others) has none of these advantages. Its major advantage is that it will yield simpler expressions for the abstract solutions to partial differential equations in Chapter 20. If one uses the 'symmetric' Fourier transform, then every one of the solution formulae in Chapter 20 must be multiplied by some power of $\frac{1}{\sqrt{2 \pi}}$. If one uses the 'canonical' Fourier transform, then every spacetime variable (i.e. x, y, z, t) in every formula must by multiplied by 2π or sometimes by $4 \pi^{2}$, which makes all the formulae look much more complicated. ${ }^{\text {. }}$

[^89]We end with a warning. When comparing or combining formulae from two or more books, make sure to first compare their definitions of the Fourier transform, and make the appropriate conversions using formulae (19B.4), if necessary.

Further reading. Almost any book on PDEs contains a discussion of Fourier transforms, but for greater depth (and rigour) it is better to seek a text dedicated to Fourier analysis. Good introductions to Fourier transforms and their applications can be found in [Wal88, Chapter 6-7] and [Kör88, Part IV]. (In addition to a lot of serious mathematical content, Körner's book contains interesting and wide-ranging discussions about the history of Fourier theory and its many scientific applications, and is written in a delightfully informal style).

19C* Parseval and Plancherel

Prerequisites: $\S[9 \mathrm{~A} . \quad$ Recommended: $\S 6 \mathrm{C}(\mathrm{i}), \S 6 \mathrm{~F}$.
Let $\mathbf{L}^{2}(\mathbb{R})$ be the set of all square-integrable complex-valued functions on \mathbb{R} -that is, all integrable functions $f: \mathbb{R} \longrightarrow \mathbb{C}$ such that $\|f\|_{2}<\infty$, where we define

$$
\|f\|_{2}:=\quad\left(\int_{-\infty}^{\infty}|f(x)|^{2} d x\right)^{1 / 2} \quad \text { (see } \S \overline{6 \mathrm{C}(\mathrm{i})} \text { for more information). }
$$

Note that $\mathbf{L}^{2}(\mathbb{R})$ is neither a subset nor a superset of $\mathbf{L}^{1}(\mathbb{R})$; however, the two spaces do overlap. If $f, g \in \mathbf{L}^{2}(\mathbb{R})$, then we define

$$
\langle f, g\rangle \quad:=\int_{-\infty}^{\infty} f(x) \bar{g}(x) d x
$$

The following identity is useful in many applications of Fourier theory, especially quantum mechanics. It can be seen as the 'continuum' analog of Parseval's equality for an orthonormal basis (Theorem 6F.1 on page 132).

Theorem 19C.1. Parseval's Equality for Fourier Transforms
If $f, g \in \mathbf{L}^{1}(\mathbb{R}) \cap \mathbf{L}^{2}(\mathbb{R})$, then $\langle f, g\rangle=2 \pi\langle\widehat{f}, \widehat{g}\rangle$.
Proof. Define $h: \mathbb{R} \longrightarrow \mathbb{R}$ by $h(x):=f(x) \bar{g}(x)$. Then $h \in \mathbf{L}^{1}(\mathbb{R})$ because $f, g \in \mathbf{L}^{2}(\mathbb{R})$. We have

$$
\begin{align*}
\widehat{h}(0) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) \cdot \bar{g}(x) \cdot \exp (-\mathbf{i} 0 x) d x \\
& \overline{(*)} \frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) \cdot \bar{g}(x) d x=\frac{\langle f, g\rangle}{2 \pi}, \tag{19C.1}
\end{align*}
$$

up with exactly the same solution no matter which version of the Fourier transform you use -why?

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009
where $(*)$ is because $\exp (-\mathbf{i} 0 x)=\exp (0)=1$ for all $x \in \mathbb{R}$. But we also have

$$
\begin{align*}
& \widehat{h}(0) \overline{((*)} \\
& f
\end{aligned} \widehat{\bar{g}}(0)=\int_{-\infty}^{\infty} \widehat{f}(\nu) \cdot \widehat{\bar{g}}(-\nu) d \nu \quad \begin{aligned}
& \overline{(\dagger)} \tag{19C.2}\\
& \quad \int_{-\infty}^{\infty} \widehat{f}(\nu) \cdot \overline{\widehat{g}(\nu)} d \nu=\langle\widehat{f}, \widehat{g}\rangle
\end{align*}
$$

Here, $(*)$ is by Theorem 19B.2(c), because $h=f \cdot \bar{g}$ so $\widehat{h}=\widehat{f} * \widehat{\bar{g}}$. Meanwhile, (\dagger) is by Proposition 19B.9(a).
Combining (19C.1) and (19C.2) yields $\langle\widehat{f}, \widehat{g}\rangle=\widehat{h}(0)=\langle f, g\rangle / 2 \pi$. The result follows.

Corollary 19C.2. Plancherel's Theorem

Suppose $f \in \mathbf{L}^{1}(\mathbb{R}) \cap \mathbf{L}^{2}(\mathbb{R})$. Then $\widehat{f} \in \mathbf{L}^{1}(\mathbb{R}) \cap \mathbf{L}^{2}(\mathbb{R})$ also, and $\|f\|_{2}=$ $\sqrt{2 \pi}\|\widehat{f}\|_{2}$.

Proof. Set $f=g$ in the Parseval equality. Recall that $\|f\|_{2}=\sqrt{\langle f, f\rangle}$.

In fact, the Plancherel Theorem says much more than this. Define the linear operator $\mathbf{F}_{1}: \mathbf{L}^{1}(\mathbb{R}) \longrightarrow \mathbf{L}^{1}(\mathbb{R})$ by $\mathbf{F}_{1}(f):=\sqrt{2 \pi} \widehat{f}$ for all $f \in \mathbf{L}^{1}(\mathbb{R})$; then the full Plancherel Theorem says that F_{1} extends uniquely to a unitary isomorphism $F_{2}: \mathbf{L}^{2}(\mathbb{R}) \longrightarrow \mathbf{L}^{2}(\mathbb{R})$ - that is, a bijective linear transformation from $\mathbf{L}^{2}(\mathbb{R})$ to itself such that $\left\|\mathrm{F}_{2}(f)\right\|_{2}=\|f\|_{2}$ for all $f \in \mathbf{L}^{2}(\mathbb{R})$. For any $p \in[1, \infty)$, let $\mathbf{L}^{p}(\mathbb{R})$ be the set of all integrable functions $f: \mathbb{R} \longrightarrow \mathbb{C}$ such that $\|f\|_{p}<\infty$, where

$$
\|f\|_{p}:=\left(\int_{-\infty}^{\infty}|f(x)|^{p} d x\right)^{1 / p}
$$

For any $p \in[1,2]$, let $\widehat{p} \in[2, \infty]$ be the unique number such that $\frac{1}{p}+\frac{1}{\widehat{p}}=1$ (for example, if $p=3 / 2$, then $\widehat{p}=3$). Then, through a process called Riesz-Thorin interpolation, it is possible to extend the Fourier transform even further, to get a linear transformation $\mathrm{F}_{p}: \mathbf{L}^{p}(\mathbb{R}) \longrightarrow \mathbf{L}^{\widehat{p}}(\mathbb{R})$. For example, one can define a Fourier transform $F_{3 / 2}: \mathbf{L}^{3 / 2}(\mathbb{R}) \longrightarrow \mathbf{L}^{3}(\mathbb{R})$. All these transformations agree on the overlaps of their domains, and satisfy the Hausdorff- Young inequality:

$$
\left\|\mathrm{F}_{p}(f)\right\|_{\widehat{p}} \leq\|f\|_{p}, \quad \text { for any } p \in[1,2] \text { and } f \in \mathbf{L}^{p}(\mathbb{R})
$$

However, the details are well beyond the scope of this text. For more information, see [Fol84, Chapter 8] or [Kat76, Chapter VI].

19D Two-dimensional Fourier transforms

Prerequisites: $\S 19 \mathrm{~A} . \quad$ Recommended: §9A.
Let $\mathbf{L}^{1}\left(\mathbb{R}^{2}\right)$ be the set of all functions $f: \mathbb{R}^{2} \longrightarrow \mathbb{C}$ which are absolutely integrable on \mathbb{R}^{2}, meaning that

$$
\int_{\mathbb{R}^{2}}|f(x, y)| d x d y<\infty
$$

If $f \in \mathbf{L}^{1}\left(\mathbb{R}^{2}\right)$, then the Fourier transform of f is the function $\widehat{f}: \mathbb{R}^{2} \longrightarrow \mathbb{C}$ defined:

$$
\widehat{f}(\mu, \nu):=\frac{1}{4 \pi^{2}} \int_{\mathbb{R}^{2}} f(x, y) \cdot \exp (-(\mu x+\nu y) \cdot \mathbf{i}) d x d y
$$

for all $(\mu, \nu) \in \mathbb{R}^{2}$.
Theorem 19D.1. Strong Fourier Inversion Formula
Suppose that $f \in \mathbf{L}^{1}\left(\mathbb{R}^{2}\right)$, and that \widehat{f} is also in $\mathbf{L}^{1}\left(\mathbb{R}^{2}\right)$. For any $(x, y) \in \mathbb{R}^{2}$, if f is continuous at (x, y), then

$$
f(x, y)=\int_{\mathbb{R}^{2}} \widehat{f}(\mu, \nu) \cdot \exp ((\mu x+\nu y) \cdot \mathbf{i}) d \mu d \nu
$$

Proof. [Fol84, Theorem 8.26, p. 243] or [Kat76, §VI.1.12, p.126].
Unfortunately, not all the functions one encounters have the property that their Fourier transform is in $\mathbf{L}^{1}\left(\mathbb{R}^{2}\right)$. In particular, $\widehat{f} \in \mathbf{L}^{1}\left(\mathbb{R}^{2}\right)$ only if f agrees 'almost everywhere' with a continuous function (thus, Theorem 19D. 1 is inapplicable to step functions, for example). We want a result analogous to the 'weak' Fourier Inversion Theorem 19A.1 on page 488. It is surprisingly difficult to find clean, simple 'inversion theorems' of this nature for multidimensional Fourier transforms. The result given here is far from the most general one in this category, but it has the advantage of being easy to state and prove. First, we must define an appropriate class of functions. Let $\widehat{\mathbf{L}}^{1}\left(\mathbb{R}^{2}\right):=$ $\left\{f \in \mathbf{L}^{1}\left(\mathbb{R}^{2}\right) ; \widehat{f} \in \mathbf{L}^{1}\left(\mathbb{R}^{2}\right)\right\}$; this is the class considered by Theorem 19D.1. Let $\widetilde{\mathbf{L}}^{1}(\mathbb{R})$ be the set of all piecewise smooth functions in $\mathbf{L}^{1}(\mathbb{R})$ (the class considered by Theorem 19A.1). Let $\mathcal{F}\left(\mathbb{R}^{2}\right)$ be the set of all functions $f \in \mathbf{L}^{1}\left(\mathbb{R}^{2}\right)$ such that there exist $f_{1}, f_{2} \in \widetilde{\mathbf{L}}^{1}(\mathbb{R})$ with $f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) \cdot f_{2}\left(x_{2}\right)$ for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Let $\mathcal{H}\left(\mathbb{R}^{2}\right)$ denote the set of all functions in $\mathbf{L}^{1}\left(\mathbb{R}^{2}\right)$ which can be written as a finite sum of elements in $\mathcal{F}\left(\mathbb{R}^{2}\right)$. Finally, we define
$\widetilde{\mathbf{L}}^{1}\left(\mathbb{R}^{2}\right) \quad:=\left\{f \in \mathbf{L}^{1}\left(\mathbb{R}^{2}\right) ; f=g+h\right.$ for some $g \in \widehat{\mathbf{L}}^{1}\left(\mathbb{R}^{2}\right)$ and $\left.h \in \mathcal{H}\left(\mathbb{R}^{2}\right)\right\}$.

Figure 19D.1: Example 19D. 4
Theorem 19D.2. 2-dimensional Fourier Inversion Formula
Suppose $f \in \widetilde{\mathbf{L}}^{1}\left(\mathbb{R}^{2}\right)$. If $(x, y) \in \mathbb{R}^{2}$ and f is is continuous at (x, y), then

$$
\begin{equation*}
f(x, y)=\lim _{M \rightarrow \infty} \int_{-M}^{M} \int_{-M}^{M} \widehat{f}(\mu, \nu) \cdot \exp ((\mu x+\nu y) \cdot \mathbf{i}) d \mu d \nu \tag{19D.1}
\end{equation*}
$$

Proof. Exercise 19D. 1 (a) First show that eqn. (19D.1) holds for any element of $\mathcal{F}\left(\mathbb{R}^{2}\right)$. (Hint. If $f_{1}, f_{2} \in \widetilde{\mathbf{L}}^{1}(\mathbb{R})$, and $f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) \cdot f_{2}\left(x_{2}\right)$ for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, then show that $\widehat{f}\left(\mu_{1}, \mu_{2}\right)=\widehat{f}_{1}\left(\mu_{1}\right) \cdot \widehat{f}_{2}\left(\mu_{2}\right)$. Substitute this expression into the right hand side of eqn.(19D.1); factor the integral into two one-dimensional Fourier inversion integrals, and then apply Theorem 19A.1 on page 488.)
(b) Deduce that eqn. (19D.1) holds for any element of $\mathcal{H}\left(\mathbb{R}^{2}\right)$. (Hint. The Fourier transform is linear.)
(c) Now combine (b) with Theorem 19D.1 to conclude that eqn.(19D.1) holds for any element of $\widetilde{\mathbf{L}}^{1}\left(\mathbb{R}^{2}\right)$.

Proposition 19D.3. If $f, g \in \mathcal{C}\left(\mathbb{R}^{2}\right) \cap \mathbf{L}^{1}\left(\mathbb{R}^{2}\right)$ are continuous, integrable functions, then $(\hat{f}=\widehat{g}) \Longleftrightarrow(f=g)$.

Example 19D.4. Let $X, Y>0$, and let $f(x, y)=\left\{\begin{array}{lll}1 & \text { if } \quad & \quad-X \leq x \leq X \\ & & \begin{array}{l}\text { and }-Y \leq y \leq Y ; \\ \text { otherwise. }\end{array}\end{array}\right.$
(Figure 19D.1) Then:

$$
\begin{aligned}
\widehat{f}(\mu, \nu) & =\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \cdot \exp (-(\mu x+\nu y) \cdot \mathbf{i}) d x d y \\
& =\frac{1}{4 \pi^{2}} \int_{-X}^{X} \int_{-Y}^{Y} \exp (-\mu x \mathbf{i}) \cdot \exp (-\nu y \mathbf{i}) d x d y
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4 \pi^{2}}\left(\int_{-X}^{X} \exp (-\mu x \mathbf{i}) d x\right) \cdot\left(\int_{-Y}^{Y} \exp (-\nu y \mathbf{i}) d y\right) \\
& =\frac{1}{4 \pi^{2}} \cdot\left(\frac{-1}{\mu \mathbf{i}} \exp (-\mu x \mathbf{i})_{x=-X}^{x=X}\right) \cdot\left(\frac{1}{\nu \mathbf{i}} \exp (-\nu y \mathbf{i})_{y=-Y}^{y=Y}\right) \\
& =\frac{1}{4 \pi^{2}}\left(\frac{e^{\mu X \mathbf{i}}-e^{-\mu X \mathbf{i}}}{\mu \mathbf{i}}\right)\left(\frac{e^{\nu Y \mathbf{i}}-e^{-\nu Y \mathbf{i}}}{\nu \mathbf{i}}\right) \\
& =\frac{1}{\pi^{2} \mu \nu}\left(\frac{e^{\mu X \mathbf{i}}-e^{-\mu X \mathbf{i}}}{2 \mathbf{i}}\right)\left(\frac{e^{\nu Y \mathbf{i}}-e^{-\nu Y \mathbf{i}}}{2 \mathbf{i}}\right) \\
& \overline{\overline{(\mathrm{Eu})}} \frac{1}{\pi^{2} \mu \nu} \sin (\mu X) \cdot \sin (\nu Y),
\end{aligned}
$$

where ($\mathbf{E u}$) is by double application of Euler's formula (see page 551). Note that f is in $\mathcal{F}\left(\mathbb{R}^{2}\right)$ (why?), and thus, in $\widetilde{\mathbf{L}}^{1}\left(\mathbb{R}^{2}\right)$. Thus, Theorem 19D.2 says, that, if $-X<x<X$ and $-Y<y<Y$, then

$$
\lim _{M \rightarrow \infty} \int_{-M}^{M} \int_{-M}^{M} \frac{\sin (\mu X) \cdot \sin (\nu Y)}{\pi^{2} \cdot \mu \cdot \nu} \exp ((\mu x+\nu y) \cdot \mathbf{i}) d \mu d \nu=1
$$

while, if $(x, y) \notin[-X, X] \times[-Y, Y]$, then

$$
\lim _{M \rightarrow \infty} \int_{-M}^{M} \int_{-M}^{M} \frac{\sin (\mu X) \cdot \sin (\nu Y)}{\pi^{2} \cdot \mu \cdot \nu} \exp ((\mu x+\nu y) \cdot \mathbf{i}) d \mu d \nu=0
$$

At points on the boundary of the box $[0, X] \times[0, Y]$, however, the Fourier inversion integral will converge to neither of these values.

Example 19D.5. If $f(x, y)=\frac{1}{2 \sigma^{2} \pi} \exp \left(\frac{-x^{2}-y^{2}}{2 \sigma^{2}}\right)$ is a two-dimensional Gaussian distribution, then $\widehat{f}(\mu, \nu)=\frac{1}{4 \pi^{2}} \exp \left(\frac{-\sigma^{2}}{2}\left(\mu^{2}+\nu^{2}\right)\right)$.
(Exercise 19D.2)
Exercise 19D.3. State and prove 2-dimensional versions of all results in $\S 9 B$.

19E Three-dimensional Fourier transforms

Prerequisites: §19A. Recommended: §9B, §19D.
In three or more dimensions, it is cumbersome to write vectors as an explicit list of coordinates. We will adopt a more compact notation. Bold-face letters will indicate vectors, and italic letters, their components. For example:

$$
\begin{array}{lll}
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right), & \mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right), & \boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \mu_{3}\right),
\end{array} \quad \text { and } \quad \boldsymbol{\nu}=\left(\nu_{1}, \nu_{2}, \nu_{3}\right)
$$

We define the inner product $\mathbf{x} \bullet \mathbf{y}:=x_{1} \cdot y_{1}+x_{2} \cdot y_{2}+x_{3} \cdot y_{3}$. Let $\mathbf{L}^{1}\left(\mathbb{R}^{3}\right)$ be the set of all functions $f: \mathbb{R}^{3} \longrightarrow \mathbb{C}$ which are absolutely integrable on \mathbb{R}^{3}, meaning that

$$
\int_{\mathbb{R}^{3}}|f(\mathbf{x})| d \mathbf{x}<\infty
$$

If $f \in \mathbf{L}^{1}\left(\mathbb{R}^{3}\right)$, then we can define

$$
\int_{\mathbb{R}^{3}} f(\mathbf{x}) d \mathbf{x}:=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(x_{1}, x_{2}, x_{3}\right) d x_{1} d x_{2} d x_{3}
$$

where this integral is understood to be absolutely convergent. In particular if $f \in \mathbf{L}^{1}\left(\mathbb{R}^{3}\right)$, then the Fourier transform of f is the function $\widehat{f}: \mathbb{R}^{3} \longrightarrow \mathbb{C}$ defined:

$$
\widehat{f}(\boldsymbol{\mu}):=\frac{1}{8 \pi^{3}} \int_{\mathbb{R}^{3}} f(\mathbf{x}) \cdot \exp (-\mathbf{x} \bullet \boldsymbol{\mu} \cdot \mathbf{i}) d \mathbf{x},
$$

for all $\boldsymbol{\mu} \in \mathbb{R}^{3}$. Define $\widetilde{\mathbf{L}}^{1}\left(\mathbb{R}^{3}\right)$ in a manner analogous to the definition of $\widetilde{\mathbf{L}}^{1}\left(\mathbb{R}^{2}\right)$ on page 505.

Theorem 19E.1. 3-dimensional Fourier Inversion Formula
(a) Suppose $f \in \widetilde{\mathbf{L}}^{1}\left(\mathbb{R}^{3}\right)$. For any $\mathbf{x} \in \mathbb{R}^{3}$, if f is continuous at \mathbf{x}, then $f(\mathbf{x})=\lim _{M \rightarrow \infty} \int_{-M}^{M} \int_{-M}^{M} \int_{-M}^{M} \widehat{f}(\boldsymbol{\mu}) \cdot \exp (\boldsymbol{\mu} \bullet \mathbf{x} \cdot \mathbf{i}) d \boldsymbol{\mu}$.
(b) Suppose $f \in \mathbf{L}^{1}\left(\mathbb{R}^{3}\right)$, and \widehat{f} is also in $\mathbf{L}^{1}\left(\mathbb{R}^{3}\right)$. For any $\mathbf{x} \in \mathbb{R}^{3}$, if f is continuous at \mathbf{x}, then $f(\mathbf{x})=\int_{\mathbb{R}^{3}} \widehat{f}(\boldsymbol{\mu}) \cdot \exp (\boldsymbol{\mu} \bullet \mathbf{x} \cdot \mathbf{i}) d \mu$.
Proof. (a) Exercise 19E. 1 (Hint: Generalize the proof of Theorem 19D. 2 on page 505. You may assume (b) is true.)
(b) See [Fol84, Thm 8.26, p. 243] or [Kat76, §VI.1.12, p.126].

Proposition 19E.2. If $f, g \in \mathcal{C}\left(\mathbb{R}^{3}\right) \cap \mathbf{L}^{1}\left(\mathbb{R}^{3}\right)$ are continuous, integrable functions, then $(\widehat{f}=\widehat{g}) \Longleftrightarrow(f=g)$.

Example 19E.3: A Ball

For any $\mathbf{x} \in \mathbb{R}^{3}$, let $f(\mathbf{x})=\left\{\begin{array}{cc}1 & \text { if }\|\mathbf{x}\| \leq R ; \\ 0 & \text { otherwise. }\end{array}\right.$. Thus, $f(\mathbf{x})$ is nonzero on a ball of radius R around zero. Then

$$
\widehat{f}(\boldsymbol{\mu})=\frac{1}{2 \pi^{2}}\left(\frac{\sin (\mu R)}{\mu^{3}}-\frac{R \cos (\mu R)}{\mu^{2}}\right)
$$

where $\mu:=\|\boldsymbol{\mu}\|$.

Exercise 19E.2. Verify Example 19E.3. Hint: Argue that, by spherical symmetry, we can rotate $\boldsymbol{\mu}$ without changing the integral, so we can assume that $\boldsymbol{\mu}=(\mu, 0,0)$.
Switch to the spherical coordinate system $\left(x_{1}, x_{2}, x_{3}\right)=(r \cdot \cos (\phi), r \cdot \sin (\phi) \sin (\theta), r \cdot \sin (\phi) \cos (\theta))$, to express the Fourier integral as

$$
\frac{1}{8 \pi^{3}} \int_{0}^{R} \int_{0}^{\pi} \int_{-\pi}^{\pi} \exp (\mu \cdot r \cdot \cos (\phi) \cdot \mathbf{i}) \cdot r \sin (\phi) d \theta d \phi d r
$$

Use Claim 1 from Theorem 20B.6 on page 534 to simplify this to $\frac{1}{2 \pi^{2} \mu} \int_{0}^{R} r \cdot \sin (\mu \cdot r) d r$.
Now apply integration by parts.
Exercise 19E. 3 The Fourier transform of Example 19E. 3 contains the terms $\frac{\sin (\mu R)}{\mu^{3}}$ and $\frac{\cos (\mu R)}{\mu^{2}}$, both of which go to infinity as $\mu \rightarrow 0$. However, these two infinities "cancel out". Use l'Hôpital's rule to show that $\lim _{\boldsymbol{\mu} \rightarrow 0} \widehat{f}(\boldsymbol{\mu})=\frac{1}{24 \pi^{3}}$.

Example 19E.4: A spherically symmetric function
Suppose $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ was a spherically symmetric function; in other words, $f(\mathbf{x})=\phi(\|\mathbf{x}\|)$ for some function $\phi: \mathbb{R}_{+} \longrightarrow \mathbb{R}$. Then for any $\boldsymbol{\mu} \in \mathbb{R}^{3}$,

$$
\widehat{f}(\boldsymbol{\mu})=\frac{1}{2 \pi^{2}} \int_{0}^{\infty} \phi(r) \cdot r \cdot \sin (\|\boldsymbol{\mu}\| \cdot r) d r .
$$

(Exercise 19E.4)

D-dimensional Fourier transforms. Fourier transforms can be defined in an analogous way in higher dimensions. Let $\mathbf{L}^{1}\left(\mathbb{R}^{D}\right)$ be the set of all functions $f: \mathbb{R}^{D} \longrightarrow \mathbb{C}$ such that $\int_{\mathbb{R}^{D}}|f(\mathbf{x})| d \mathbf{x}<\infty$. If $f \in \mathbf{L}^{1}\left(\mathbb{R}^{D}\right)$, then the Fourier transform of f is the function $\widehat{f}: \mathbb{R}^{D} \longrightarrow \mathbb{C}$ defined:

$$
\widehat{f}(\boldsymbol{\mu}):=\frac{1}{(2 \pi)^{D}} \int_{\mathbb{R}^{D}} f(\mathbf{x}) \cdot \exp (-\mathbf{x} \bullet \boldsymbol{\mu} \cdot \mathbf{i}) d \mathbf{x},
$$

for all $\boldsymbol{\mu} \in \mathbb{R}^{D}$. Define $\widetilde{\mathbf{L}}^{1}\left(\mathbb{R}^{D}\right)$ in a manner analogous to the definition of $\widetilde{\mathbf{L}}^{1}\left(\mathbb{R}^{2}\right)$ on page 505 .

Theorem 19E.5. D-dimensional Fourier Inversion Formula
(a) Suppose $f \in \widetilde{\mathbf{L}}^{1}\left(\mathbb{R}^{D}\right)$. For any $\mathbf{x} \in \mathbb{R}^{D}$, if f is continuous at \mathbf{x}, then $f(\mathbf{x})=\lim _{M \rightarrow \infty} \int_{-M}^{M} \int_{-M}^{M} \cdots \int_{-M}^{M} \widehat{f}(\boldsymbol{\mu}) \cdot \exp (\boldsymbol{\mu} \bullet \mathbf{x} \cdot \mathbf{i}) d \boldsymbol{\mu}$.
Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009
(b) Suppose $f \in \mathbf{L}^{1}\left(\mathbb{R}^{D}\right)$, and \widehat{f} is also in $\mathbf{L}^{1}\left(\mathbb{R}^{D}\right)$. For any $\mathbf{x} \in \mathbb{R}^{D}$, if f is continuous at \mathbf{x}, then $f(\mathbf{x})=\int_{\mathbb{R}^{D}} \widehat{f}(\boldsymbol{\mu}) \cdot \exp (\boldsymbol{\mu} \bullet \mathbf{x} \cdot \mathbf{i}) d \mu$.

Proof. (a) Exercise 19E. 5

(b) See [FoI84, Thm 8.26, p. 243] or [Kat76, §VI.1.12, p.126].

Exercise 19E.6. State and prove D-dimensional versions of all results in \S 19B.

Evil twins of multidimensional Fourier transform. Just as with the onedimensional Fourier transform, the mathematics literature contains at least four different definitions of multidimensional Fourier transform. Instead of the transform we have defined here, some books use what we will call the opposite Fourier transform:

$$
\check{f}(\boldsymbol{\mu}):=\int_{\mathbb{R}^{D}} f(\mathbf{x}) \exp (-\mathbf{i} \mathbf{x} \bullet \boldsymbol{\mu}) d \mathbf{x},
$$

with inverse transform

$$
f(\mathbf{x})=\frac{1}{(2 \pi)^{D}} \int_{\mathbb{R}^{D}} \check{f}(\boldsymbol{\mu}) \exp (\mathbf{i} \mathbf{x} \bullet \boldsymbol{\mu}) d \boldsymbol{\mu}
$$

Other books instead use the symmetric Fourier transform:

$$
\overparen{f}(\boldsymbol{\mu}):=\frac{1}{(2 \pi)^{D / 2}} \int_{\mathbb{R}^{D}} f(\mathbf{x}) \exp (-\mathbf{i} \mathbf{x} \bullet \boldsymbol{\mu}) d \mathbf{x}
$$

with inverse transform

$$
f(\mathbf{x})=\frac{1}{(2 \pi)^{D / 2}} \int_{\mathbb{R}^{D}} \overparen{f}(\boldsymbol{\mu}) \exp (\mathbf{i} \mathbf{x} \bullet \boldsymbol{\mu}) d \boldsymbol{\mu}
$$

Finally, some books use the canonical Fourier transform:

$$
\tilde{f}(\boldsymbol{\mu}):=\int_{\mathbb{R}^{D}} f(\mathbf{x}) \exp (-2 \pi \mathbf{i} \mathbf{x} \bullet \boldsymbol{\mu}) d \mathbf{x},
$$

with inverse transform

$$
f(\mathbf{x})=\int_{\mathbb{R}^{D}} \tilde{f}(\boldsymbol{\mu}) \exp (2 \pi \mathbf{i x} \bullet \boldsymbol{\mu}) d \boldsymbol{\mu}
$$

For any $f \in \mathbf{L}^{1}\left(\mathbb{R}^{D}\right)$ and any $\boldsymbol{\mu} \in \mathbb{R}^{D}$, we have:

$$
\begin{array}{ll}
\check{f}(\boldsymbol{\mu})=(2 \pi)^{D} \widehat{f}(\boldsymbol{\mu}) & \text { and } \quad \widehat{f}(\boldsymbol{\mu})=\frac{1}{(2 \pi)^{D}} \check{f}(\boldsymbol{\mu}) ; \\
\overparen{f}(\boldsymbol{\mu})=(2 \pi)^{D / 2} \widehat{f}(\boldsymbol{\mu}) \quad \text { and } \quad \widehat{f}(\boldsymbol{\mu})=\frac{1}{(2 \pi)^{D / 2}} \overparen{f}(\boldsymbol{\mu}) ; \tag{19E.1}\\
\widetilde{f}(\boldsymbol{\mu})=(2 \pi)^{D} \widehat{f}(2 \pi \boldsymbol{\mu}) \quad \text { and } \quad \widehat{f}(\boldsymbol{\mu})=\frac{1}{(2 \pi)^{D}} \widetilde{f}\left(\frac{\boldsymbol{\mu}}{2 \pi}\right) .
\end{array}
$$

(Exercise 19E. 7 Check this.) When comparing or combining formulae from two or more books, always compare their definitions of the Fourier transform, and make the appropriate conversions using formulae (19E.1), if necessary.

19F Fourier (co)sine Transforms on the half-line

Prerequisites: $\S[9 \mathrm{~A} . \quad$ Recommended: $\S[7 \mathrm{~A}, \S[\boxed{A A}$.
In $\S[8 \mathrm{~A}$, to represent a function on the symmetric interval $[-\pi, \pi]$, we used a real Fourier series (with both "sine" and "cosine" terms). However, to represent a function on the interval $[0, \pi]$, we found in $\delta[7 \mathrm{~A}$ that it was only necessary to employ half as many terms, using either the Fourier sine series or the Fourier cosine series. A similar phenomenon occurs when we go from functions on the whole real line to functions on the positive half-line.

Let $\mathbb{R}_{+}:=\{x \in \mathbb{R} ; x \geq 0\}$ be the half-line: the set of all nonnegative real numbers. Let

$$
\mathbf{L}^{1}\left(\mathbb{R}_{\not}\right):=\left\{f: \mathbb{R}_{+} \longrightarrow \mathbb{R} ; \int_{0}^{\infty}|f(x)| d x<\infty\right\}
$$

be the set of absolutely integrable functions on the half-line.
The "boundary" of the half-line is just the point 0 . Thus, we will say that a function f satisfies homogeneous Dirichlet boundary conditions if $f(0)=0$. Likewise, f satisfies homogeneous Neumann boundary conditions if $f^{\prime}(0)=0$.

If $f \in \mathbf{L}^{1}\left(\mathbb{R}_{\not}\right)$, then the Fourier Cosine Transform of f is the function $\widehat{f}_{\text {cos }}: \mathbb{R}_{\not} \longrightarrow \mathbb{R}$ defined:

$$
\widehat{f}_{\mathrm{cos}}(\mu):=\frac{2}{\pi} \int_{0}^{\infty} f(x) \cdot \cos (\mu x) d x, \quad \text { for all } \mu \in \mathbb{R}_{\neq}
$$

The Fourier Sine Transform of f is the function $\widehat{f}_{\text {sin }}: \mathbb{R}_{+} \longrightarrow \mathbb{R}$ defined:

$$
\widehat{f}_{\text {sin }}(\mu):=\frac{2}{\pi} \int_{0}^{\infty} f(x) \cdot \sin (\mu x) d x, \quad \text { for all } \mu \in \mathbb{R}_{+} .
$$

In both cases, for the transform to be well-defined, we require $f \in \mathbf{L}^{1}\left(\mathbb{R}_{\not}\right)$.
Theorem 19F.1. Fourier (co)sine Inversion Formula
Suppose that $f \in \mathbf{L}^{1}\left(\mathbb{R}_{\not}\right)$ be peicewise smooth. Then for any $x \in \mathbb{R}_{+}$such that f is continuous at x,

$$
\begin{aligned}
f(x) & =\lim _{M \rightarrow \infty} \int_{0}^{M} \widehat{f}_{\cos }(\mu) \cdot \cos (\mu \cdot x) d \mu, \\
\text { and } f(x) & =\lim _{M \rightarrow \infty} \int_{0}^{M} \widehat{f}_{\sin }(\mu) \cdot \sin (\mu \cdot x) d \mu,
\end{aligned}
$$

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

The Fourier cosine series also converges at 0. If $f(0)=0$, then the Fourier sine series converges at 0 .

Proof. Exercise 19F. 1 Hint: Imitate the methods of $\S 8$ CO.

19G* Momentum representation \& Heisenberg uncertainty

"Anyone who is not shocked by quantum theory has not understood it." -Niels Bohr
Prerequisites: $\S B B, \S 6 B, \S[9 \mathrm{C}$.
Let $\omega: \mathbb{R}^{3} \times \mathbb{R} \longrightarrow \mathbb{C}$ be the wavefunction of a quantum particle (e.g. an electron). Fix $t \in \mathbb{R}$, and define the 'instantaneous wavefunction' $\omega_{t}: \mathbb{R}^{3} \longrightarrow \mathbb{C}$ by $\omega_{t}(\mathbf{x})=\omega(\mathbf{x} ; t)$ for all $\mathbf{x} \in \mathbb{R}^{3}$. Recall from $\S 3 B$ that ω_{t} encodes the probability distribution for the classical position of the particle at time t. However, ω_{t} seems to say nothing about the classical momentum of the particle. In Example 3B. 2 on page 42, we stated (without proof) the wavefunction of a particle with a particular known velocity. Now we make a more general assertion:

Suppose a particle has instantaneous wavefunction $\omega_{t}: \mathbb{R}^{3} \longrightarrow \mathbb{C}$. Let $\widehat{\omega}_{t}: \mathbb{R}^{3} \longrightarrow \mathbb{C}$ be the (3-dimensional) Fourier transform of ω_{t}, and define $\widetilde{\omega}_{t}:=\widehat{\omega}_{t}\left(\frac{\mathbf{p}}{\hbar}\right)$ for all $\mathbf{p} \in \mathbb{R}^{3}$. Then $\widetilde{\omega}_{t}$ is the wavefunction for the particle's classical momentum at time t. That is: if we define $\widetilde{\rho}_{t}(\mathbf{p}):=\left|\widetilde{\omega}_{t}\right|^{2}(\mathbf{p}) /\left\|\widetilde{\omega}_{t}\right\|_{2}^{2}$ for all $\mathbf{p} \in \mathbb{R}^{3}$, then $\widetilde{\rho}_{t}$ is the probability distribution for the particle's classical momentum at time t.

Recall that we can reconstruct ω_{t} from $\widehat{\omega}_{t}$ via the inverse Fourier transform. Hence, the (positional) wavefunction ω_{t} implicitly encodes the (momentum) wavefunction $\widetilde{\omega}_{t}$, and conversely the (momentum) wavefunction $\widetilde{\omega}_{t}$ implicitly encodes the (positional) wavefunction ω_{t}. This answers the question we posed on page 38 of $\S[3 \mathrm{~A}$. The same applies to multi-particle quantum systems:

Suppose an N-particle quantum system has instantaneous (position) wavefunction $\omega_{t}: \mathbb{R}^{3 N} \longrightarrow \mathbb{C}$. Let $\widehat{\omega}_{t}: \mathbb{R}^{3 N} \longrightarrow \mathbb{C}$ be the (3N-dimensional) Fourier transform of ω_{t}, and define $\widetilde{\omega}_{t}:=\widehat{\omega}_{t}\left(\frac{\mathbf{p}}{\hbar}\right)$ for all $\mathbf{p} \in \mathbb{R}^{3 N}$. Then $\widetilde{\omega}_{t}$ is the joint wavefunction for the classical momenta of all the particles at time t. That is: if we define $\widetilde{\rho}_{t}(\mathbf{p}):=\left|\widetilde{\omega}_{t}\right|^{2}(\mathbf{p}) /\left\|\widetilde{\omega}_{t}\right\|_{2}^{2}$ for all $\mathbf{p} \in \mathbb{R}^{3 N}$, then $\widetilde{\rho}_{t}$ is the joint probability distribution for the classical momenta of all the particles at time t.

Because the momentum wavefunction contains exactly the same information as the positional wavefunction, we can reformulate the Schrödinger equation in momentum terms. For simplicity, we will only do this in the case of a single particle. Suppose the particle is subjected to a potential energy function V : $\mathbb{R}^{3} \longrightarrow \mathbb{R}$. Let \widehat{V} be the Fourier transform of V, and define $\widetilde{V}:=\frac{1}{\hbar^{3}} \widehat{V}\left(\frac{\mathbf{p}}{\hbar}\right)$ for all $\mathbf{p} \in \mathbb{R}^{3}$. Then the momentum wavefunction $\widetilde{\omega}$ evolves according to the momentum Schrödinger Equation:

$$
\begin{equation*}
\mathbf{i} \partial_{t} \widetilde{\omega}(\mathbf{p} ; t)=\frac{\hbar^{2}}{2 m}|\mathbf{p}|^{2} \cdot \widetilde{\omega}_{t}(\mathbf{p})+\left(\widetilde{V} * \widetilde{\omega}_{t}\right)(\mathbf{p}) . \tag{19G.1}
\end{equation*}
$$

(here, if $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}\right)$, then $\left.|\mathbf{p}|^{2}:=p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)$. In particular, if the potential field is trivial, we get the free momentum Schrödinger equation:

$$
\mathbf{i} \partial_{t} \widetilde{\omega}\left(p_{1}, p_{2}, p_{3} ; t\right)=\frac{\hbar^{2}}{2 m}\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right) \cdot \widetilde{\omega}\left(p_{1}, p_{2}, p_{3} ; t\right)
$$

Exercise 19G.1. Verify eqn. (19G.1) by applying the Fourier transform to the (positional) Schrödinger equation eqn.(3B.3) on page 41. Hint: Use Theorem 19B.7 on page 496 to show that $\widehat{\Delta \omega_{t}}(\mathbf{p})=-|\mathbf{p}|^{2} \cdot \widehat{\omega}_{t}(\mathbf{p})$. Use Theorem 19B.2(c) to show that $\left(\widehat{V \cdot \omega_{t}}\right)(\mathbf{p} / \hbar)=\widetilde{V} * \widetilde{\omega}_{t}(\mathbf{p})$.

Exercise 19G.2. Formulate the momentum Schrödinger equation for an single particle confined to a 1-dimensional or 2-dimensional environment. Be careful how you define \widetilde{V}.

Exercise 19G.3. Formulate the momentum Schrödinger equation for an N-particle quantum system. Be careful how you define \widetilde{V}.

Recall that Theorem 19B. 8 said: if f is a Gaussian distribution, then \widehat{f} is also a 'Gaussian' (after multiplying by a scalar), but the variance of \widehat{f} is inversely proportional to the variance of f. This is an example of a general phenomenon, called Heisenberg's Inequality. To state this formally, we need some notation. Recall from $\S 6 \mathrm{~B}$ that $\mathbf{L}^{2}(\mathbb{R})$ is the set of all square-integrable complex-valued functions on \mathbb{R}-that is, all integrable functions $f: \mathbb{R} \longrightarrow \mathbb{C}$ such that $\|f\|_{2}<\infty$, where

$$
\|f\|_{2} \quad:=\left(\int_{-\infty}^{\infty}|f(x)|^{2} d x\right)^{1 / 2}
$$

If $f \in \mathbf{L}^{2}(\mathbb{R})$, and $x \in \mathbb{R}$, then define the uncertainty of f around x to be

$$
\boldsymbol{\Delta}_{x}(f):=\frac{1}{\|f\|_{2}^{2}} \int_{-\infty}^{\infty}|f(y)|^{2} \cdot|y-x|^{2} d y
$$

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009
(In most physics texts, the uncertainty of f is denoted by $\triangle_{x} f$; however, we will not use this symbol because it looks too much like the Laplacian operator.)

Example 19G.1. (a) If $f \in \mathbf{L}^{2}(\mathbb{R})$, then $\rho(x):=f(x)^{2} /\|f\|_{2}^{2}$ is a probability density function on \mathbb{R} (why?). If \bar{x} is the mean of the distribution ρ (i.e. $\left.\bar{x}=\int_{-\infty}^{\infty} x \rho(x) d x\right)$, then

$$
\boldsymbol{\Delta}_{\bar{x}}(f)=\int_{-\infty}^{\infty} \rho(y) \cdot|y-\bar{x}|^{2} d y
$$

is the variance of the distribution. Thus, if ρ describes the probability density of a random variable $X \in \mathbb{R}$, then \bar{x} is the expected value of X, and $\boldsymbol{\Delta}_{\bar{x}}(\omega)$ measures the degee of 'uncertainty' we have about the value of X. If $\boldsymbol{\Delta}_{\bar{x}}(\omega)$ is small, then the distribution is tightly concentrated around \bar{x}, so we can be fairly confident that X is close to \bar{x}. If $\boldsymbol{\Delta}_{\bar{x}}(\omega)$ is large, then the distribution is broadly dispersed around \bar{x}, so we really have only a vague idea where X might be.
(b) In particular, suppose $f(x)=\exp \left(\frac{-x^{2}}{4 \sigma^{2}}\right)$. Then $f^{2} /\|f\|_{2}^{2}=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(\frac{-x^{2}}{2 \sigma^{2}}\right)$ is a Gaussian distribution with mean 0 and variance σ^{2}. It follows that $\Delta_{0}(f)=\sigma^{2}$.
(c) Suppose $\omega: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{C}$ is a one-dimensional wavefunction, and fix $t \in \mathbb{R}$; thus, the function $\rho_{t}(x)=\left|\omega_{t}\right|^{2}(x) /\left\|\omega_{t}\right\|_{2}$ is the probability density for the classical position of the particle at time t in a one-dimensional environment (e.g. an electron in a thin wire). If \bar{x} is the mean of this distribution, then $\boldsymbol{\zeta}_{\bar{x}}\left(\omega_{t}\right)$ is the variance of the distribution; this reflects our degree of uncertainty about the particle's classical position at time t.

Why the subscript x in $\boldsymbol{\Delta}_{x}(f)$? Why not just measure the uncertainty around the mean of the distribution as in Example 19G.1]? Three reasons. First, because the distribution might not have a well-defined mean (i.e. the integral $\int_{-\infty}^{\infty} x \rho(x) d x$ might not converge). Second, because it is sometimes useful to measure the uncertainty around other points in \mathbb{R} besides the mean value. Third, because we do not need to use the mean value to state the next result.

Theorem 19G.2. Heisenberg's Inequality
Let $f \in \mathbf{L}^{2}(\mathbb{R})$ be a nonzero function, and let \widehat{f} be its Fourier transform. Then for any $x, \mu \in \mathbb{R}$, we have $\boldsymbol{\Delta}_{x}(f) \cdot \boldsymbol{\Delta}_{\mu}(\widehat{f}) \geq \frac{1}{4}$.

Example 19G.3. (a) If $f(x)=\exp \left(\frac{-x^{2}}{4 \sigma^{2}}\right)$, then $\widehat{f}(p)=\frac{\sigma}{\sqrt{\pi}} \exp \left(-\sigma^{2} p^{2}\right)$ $(\underline{\text { Exercise 19G.4) }})^{1 / T}$ Thus, $\widehat{f}(p)^{2} /\|\widehat{f}\|_{2}^{2}=\frac{2 \sigma}{\sqrt{2 \pi}} \exp \left(-2 \sigma^{2} p^{2}\right)$ is a Gaussian

[^90]distribution with mean 0 and variance $1 / 4 \sigma^{2}$. Thus, Example 19G.1(b) says that $\boldsymbol{\Delta}_{0}(f)=\sigma^{2}$ and $\star_{0}(\widehat{f})=1 / 4 \sigma^{2}$. Thus,
$$
\dot{\Delta}_{0}(f) \cdot \boldsymbol{\Delta}_{0}(\widehat{f})=\frac{\sigma^{2}}{4 \sigma^{2}}=\frac{1}{4}
$$
(b) Suppose $\omega_{t} \in \mathbf{L}^{2}(\mathbb{R})$ is the instantaneous wavefunction for the position of a particle at time t, so that $\widetilde{\omega}_{t}(\mathbf{p})=\widehat{\omega}_{t}(\mathbf{p} / \hbar)$ is the instantaneous wavefunction for the momentum of the particle at time t. Then Heisenberg's Inequality becomes Heisenberg's Uncertainty Principle: For any $x, p \in \mathbb{R}$,
$$
\Delta_{x}\left(\omega_{t}\right) \geq \frac{\hbar^{2}}{4 \cdot \Delta_{p}\left(\widetilde{\omega}_{t}\right)} \quad \text { and } \quad \Delta_{p}\left(\widetilde{\omega}_{t}\right) \geq \frac{\hbar^{2}}{4 \cdot \Delta_{x}\left(\omega_{t}\right)}
$$
(Exercise 19G.5). In other words: if our uncertainty $\Delta_{\mu}\left(\widetilde{\omega}_{t}\right)$ about the particle's momentum is small, then our uncertainty $\boldsymbol{\Delta}_{x}\left(\omega_{t}\right)$ about its position must be big. Conversely, if our uncertainty $\boldsymbol{\bullet}_{x}\left(\omega_{t}\right)$ about the particle's position is small, then our uncertainty $\boldsymbol{\Delta}_{\mu}\left(\widetilde{\omega}_{t}\right)$ about its momentum must be big.
In physics popularizations, the Uncertainty Principle is usually explained as a practical problem of measurement precision: any attempt to measure an electron's position (e.g. by deflecting photons off of it) will impart some unpredictable momentum into the particle. Conversely, any attempt to measure its momentum disturbs its position. However, as you can see, Heisenberg's Uncertainty Principle is actually an abstract mathematical theorem about Fourier transforms - it has nothing to do with the limitations of experimental equipment or the unpredictable consequences of photon bombardment.

Proof of Heisenberg's Inequality. For simplicity, assume $\lim _{x \rightarrow \pm \infty} x|f(x)|^{2}=0$. Case $x=\mu=0$. Define $\xi: \mathbb{R} \longrightarrow \mathbb{R}$ by $\xi(x):=x$ for all $x \in \mathbb{R}$. Thus, $\xi^{\prime}(x):=1$ for all $x \in \mathbb{R}$. Observe that

$$
\begin{align*}
\|f \cdot \xi\|_{2}^{2} & =\int_{-\infty}^{\infty}|f \cdot \xi|^{2}(x) d x=\frac{\|f\|_{2}^{2}}{\|f\|_{2}^{2}} \int_{-\infty}^{\infty}|f(x)|^{2}|x|^{2} d x \\
& =\|f\|_{2}^{2} \Delta_{0}(f) \tag{19G.2}
\end{align*}
$$

Also, Theorem 19B.7 implies that

$$
\begin{equation*}
\widehat{\left(f^{\prime}\right)}=\mathbf{i} \cdot \xi \cdot \widehat{f} \tag{19G.3}
\end{equation*}
$$

Now,
$\|f\|_{2}^{2}:=\left.\int_{-\infty}^{\infty}|f|^{2}(x) d x \overline{\overline{(\pi)}} \xi(x) \cdot|f(x)|^{2}\right|_{x=-\infty} ^{x=\infty}-\int_{-\infty}^{\infty} \xi(x) \cdot\left(|f|^{2}\right)^{\prime}(x) d x$

[^91]\[

$$
\begin{align*}
& \overline{\overline{(\uparrow)}}-\int_{-\infty}^{\infty} x \cdot\left(|f|^{2}\right)^{\prime}(x) d x \overline{\overline{(*)}} \quad-\int_{-\infty}^{\infty} x \cdot 2 \operatorname{Re}\left[f^{\prime}(x) \bar{f}(x)\right] d x \\
& =-2 \operatorname{Re}\left[\int_{-\infty}^{\infty} x \bar{f}(x) f^{\prime}(x) d x\right] \tag{19G.4}
\end{align*}
$$
\]

Here, ($\mathbb{I})$ is integration by parts, because $\xi^{\prime}(x)=1$. Next, (\dagger) is because $\lim _{x \rightarrow \pm \infty} x|f(x)|^{2}=0$. Meanwhile, $(*)$ is because $|f|^{2}(x)=f(x) \bar{f}(x)$, so that $\left(|f|^{2}\right)^{\prime}(x)=f^{\prime}(x) \bar{f}(x)+f(x) \bar{f}^{\prime}(x)=2 \operatorname{Re}\left[f^{\prime}(x) \bar{f}(x)\right]$, where the last step uses the identity $z+\bar{z}=2 \operatorname{Re}[z]$, with $z=f^{\prime}(x) \bar{f}(x)$. Thus,

$$
\begin{aligned}
& \frac{1}{4}\|f\|_{2}^{4} \underset{(\neq)}{\overline{(\mp)}} \frac{2^{2}}{4} \operatorname{Re}\left[\int_{-\infty}^{\infty} x \bar{f}(x) f^{\prime}(x) d x\right]^{2} \leq\left|\int_{-\infty}^{\infty} x \bar{f}(x) f^{\prime}(x) d x\right|^{2} \\
& =\left|\left\langle\xi \bar{f}, f^{\prime}\right\rangle\right|^{2} \underset{\text { (CBS) }}{\leq}\|\xi \bar{f}\|_{2}^{2} \cdot\left\|f^{\prime}\right\|_{2}^{2}=\|\xi f\|_{2}^{2} \cdot\left\|f^{\prime}\right\|_{2}^{2} \\
& \overline{(\overline{(*)}} \quad \boldsymbol{\Delta}_{0}(f) \cdot\|f\|_{2}^{2} \cdot\left\|f^{\prime}\right\|_{2}^{2} \quad \overline{\overline{(\mathrm{Pl})}} \quad \boldsymbol{\Delta}_{0}(f) \cdot\|f\|_{2}^{2} \cdot(2 \pi)\left\|\widehat{\left(f^{\prime}\right)}\right\|_{2}^{2} \\
& \overline{\overline{(\dagger)}} 2 \pi \boldsymbol{\Delta}_{0}(f) \cdot\|f\|_{2}^{2} \cdot\|\mathbf{i} \xi \widehat{f}\|_{2}^{2}=2 \pi \boldsymbol{\Delta}_{0}(f) \cdot\|f\|_{2}^{2} \cdot\|\xi \widehat{f}\|_{2}^{2} \\
& \overline{\overline{(*)}} 2 \pi \boldsymbol{\Delta}_{0}(f) \cdot\|f\|_{2}^{2} \cdot \boldsymbol{\Delta}_{0}(\widehat{f}) \cdot\|\hat{f}\|_{2}^{2} \overline{\overline{(\mathrm{Pl})}} \quad \boldsymbol{\Delta}_{0}(f) \cdot\|f\|_{2}^{2} \cdot \boldsymbol{\Delta}_{0}(\widehat{f}) \cdot\|f\|_{2}^{2} \\
& =\boldsymbol{\Delta}_{0}(f) \cdot \boldsymbol{\Delta}_{0}(\widehat{f}) \cdot\|f\|_{2}^{4} \text {. }
\end{aligned}
$$

Cancelling $\|f\|_{2}^{4}$ from both sides of this equation, we get $\frac{1}{4} \leq \boldsymbol{\Delta}_{0}(f) \cdot \boldsymbol{\Delta}_{0}(\widehat{f})$, as desired.

Here, (\ddagger) is by eqn.(19G.4), while (CBS) is the Cauchy-Bunyakowski-Schwarz inequality (Theorem 6 B.5 on page 108). Both $(*)$ are by eqn.(19G.2). Both (Pl) are by Plancharel's theorem (Corollary 19C. 2 on page 503) . Finally, (\dagger) is by eqn. (19G.3).

Case $x \neq 0$ and/or $\mu \neq 0$. Exercise 19G. 6 (Hint: Combine the case $x=\mu=0$ with Theorem 19B.3).

Exercise 19G.7. State and prove a form of Heisenberg's Inequality for a function $f \in \mathbf{L}^{1}\left(\mathbb{R}^{D}\right)$ for $D \geq 2$. Hint: You must compute the 'uncertainty' in one coordinate at a time. Integrate out all the other dimensions to reduce the D-dimensional problem to a one-dimensional problem, and then apply Theorem 19G.2.

19H* Laplace transforms

Recommended: \S I9A, \S I9B.

The Fourier transform \widehat{f} is only well-defined if $f \in \mathbf{L}^{1}(\mathbb{R})$, which implies that $\lim _{t \rightarrow \pm \infty}|f(t)|=0$ relatively 'quickly'. This is often inconvenient in physical models where the function $f(t)$ is bounded away from zero, or even grows without bound as $t \rightarrow \pm \infty$. In some cases, we can handle this problem using a Laplace transform, which can be thought of as a Fourier transform 'rotated by 90° in the complex plane'. The price we pay is that we must work on the half-infinite line $\mathbb{R}_{+}:=[0, \infty)$, instead of the entire real line.

Let $f: \mathbb{R}_{+} \longrightarrow \mathbb{C}$. We say that f has exponential growth if there are constants $\alpha \in \mathbb{R}$ and $K>0$ such that

$$
\begin{equation*}
|f(t)| \leq K e^{\alpha t}, \quad \text { for all } t \in \mathbb{R}_{+} . \tag{19H.1}
\end{equation*}
$$

If $\alpha>0$, then inequality (19H.1) even allows $\lim _{t \rightarrow \infty} f(t)=\infty$, as long as $f(t)$ doesn't grow 'too quickly'. (However, if $\alpha<0$, then inequality (19H.1) requires $\lim _{t \rightarrow \infty} f(t)=0$ exponentially fast). The exponential order of f is the infimum of all α satisfying inequality (19H.1). Thus, if f has exponential order α_{0}, then (19H.1) is true for all $\alpha>\alpha_{0}$ (but may or may not be true for $\alpha=\alpha_{0}$).

Example 19H.1. (a) Fix $r \geq 0$. If $f(t)=t^{r}$ for all $t \in \mathbb{R}_{+}$, then f has exponential order 0 .
(b) Fix $r<0$ and $t_{0}>0$. If $f(t)=\left(t+t_{0}\right)^{r}$ for all $t \in \mathbb{R}_{\not}$, then f has exponential order 0 . (However, if $t_{0} \leq 0$, then $f(t)$ does not have exponential growth, because in this case $\lim _{t \rightarrow-t_{0}} f(t)=\infty$, so inequality (19H.1) is always false near $-t_{0}$).
(c) Fix $\alpha \in \mathbb{R}$. If $f(t)=e^{\alpha t}$ for all $t \in \mathbb{R}_{\neq}$, then f has exponential order α.
(d) Fix $\mu \in \mathbb{R}$. If $f(t)=\sin (\mu t)$ or $f(t)=\cos (\mu t)$, then f has exponential order 0 .
(e) If $f: \mathbb{R}_{+} \longrightarrow \mathbb{C}$ has exponential order α, and $r \in \mathbb{R}$ is any constant, then $r f$ also has exponential order α. If $g: \mathbb{R}_{\not} \longrightarrow \mathbb{C}$ has exponential order β, then $f+g$ has exponential order at most max $\{\alpha, \beta\}$, and $f \cdot g$ has exponential order $\alpha+\beta$.
(f) Combining (a) and (e): any polynomial $f(t)=c_{n} t^{n}+\cdots c_{2} t^{2}+c_{1} t+c_{0}$ has exponential order 0 . Likewise, combining (d) and (e): any trigonometric polynomial has exponential order 0 .
Exercise 19H.1 Verify examples (a-f).
If $c=x+y \mathbf{i}$ is a complex number, recall that $\operatorname{Re}[c]:=x$. Let $\mathbb{H}_{\alpha}:=$ $\{c \in \mathbb{C} ; \operatorname{Re}[c]>\alpha\}$ be the half of the complex plane to the right of the vertical

[^92]line $\{c \in \mathbb{C} ; \operatorname{Re}[c]=\alpha\}$. In particular, $\mathbb{H}_{0}:=\{c \in \mathbb{C} ; \operatorname{Re}[c]>0\}$. If f has exponential order α, then the Laplace transform of f is the function $\mathcal{L}[f]$: $\mathbb{H}_{\alpha} \longrightarrow \mathbb{C}$ defined as follows:
\[

$$
\begin{equation*}
\text { For all } s \in \mathbb{H}_{\alpha}, \quad \mathcal{L}[f](s) \quad:=\quad \int_{0}^{\infty} f(t) e^{-t s} d t . \tag{19H.2}
\end{equation*}
$$

\]

Lemma 19H.2. If f has exponential order α, then the integral (19H.2) converges for all $s \in \mathbb{H}_{\alpha}$. Thus, $\mathcal{L}[f]$ is well-defined on \mathbb{H}_{α}.

Proof. Exercise 19H. 2

Example 19H.3. (a) If $f(t)=1$, then f has exponential order 0 . For all $s \in \mathbb{H}_{0}$,

$$
\mathcal{L}[f](s)=\int_{0}^{\infty} e^{-t s} d t=\left.\frac{-e^{-t s}}{s}\right|_{t=0} ^{t=\infty} \overline{\overline{(*)}} \frac{-(0-1)}{s}=\frac{1}{s} .
$$

Here (*) is because $\operatorname{Re}[s]>0$.
(b) If $\alpha \in \mathbb{R}$ and $f(t)=e^{\alpha t}$, then f has exponential order α. For all $s \in \mathbb{H}_{\alpha}$,

$$
\begin{aligned}
\mathcal{L}[f](s) & =\int_{0}^{\infty} e^{\alpha t} e^{-t s} d t=\int_{0}^{\infty} e^{t(\alpha-s)} d t \\
& ==\left.\frac{e^{t(\alpha-s)}}{\alpha-s}\right|_{t=0} ^{t=\infty} \overline{\overline{(*)}} \frac{(0-1)}{\alpha-s}=\frac{1}{s-\alpha} .
\end{aligned}
$$

Here (*) is because $\operatorname{Re}[\alpha-s]<0$ because $\operatorname{Re}[s]>\alpha$ because $s \in \mathbb{H}_{\alpha}$.
(c) If $f(t)=t$, then f has exponential order 0 . For all $s \in \mathbb{H}_{0}$,

$$
\begin{aligned}
\mathcal{L}[f](s) & =\left.\int_{0}^{\infty} t e^{-t s} d t \stackrel{\overline{\overline{(p)}}}{ } \frac{-t e^{-t s}}{s}\right|_{t=0} ^{t=\infty}-\int_{0}^{\infty} \frac{-e^{-t s}}{s} d t \\
& =\frac{(0-0)}{s}-\left.\frac{e^{-t s}}{s^{2}}\right|_{t=0} ^{t=\infty}=\frac{-(0-1)}{s^{2}}=\frac{1}{s^{2}},
\end{aligned}
$$

where (p) is integration by parts.
(d) Suppose $f: \mathbb{R}_{\not} \longrightarrow \mathbb{C}$ has exponential order $\alpha<0$. Extend f to a function $f: \mathbb{R} \longrightarrow \mathbb{C}$ by defining $f(t)=0$ for all $t<0$. Then the Fourier transform \widehat{f} of f is well-defined, and for all $\mu \in \mathbb{R}$, we have $2 \pi \widehat{f}(\mu)=\mathcal{L}[f](\mu \mathbf{i})$
(Exercise 19H.3).
(e) Fix $\mu \in \mathbb{R}$. If $f(t)=\cos (\mu t)$, then $\mathcal{L}[f]=\frac{s}{s^{2}+\mu^{2}}$. If $f(t)=\sin (\mu t)$, then $\mathcal{L}[f]=\frac{\mu}{s^{2}+\mu^{2}}$.
Exercise 19H. 4 Verify (e). Hint: recall that $\exp (\mathbf{i} \mu t)=\cos (\mu t)+\mathbf{i} \sin (\mu t)$.
Example 19H.3(d) suggests that most properties of the Fourier transform should translate into properties of the Laplace transform, and vice versa. First, like Fourier, the Laplace transform is invertible.

Theorem 19H.4. Laplace Inversion Formula

Suppose $f: \mathbb{R}_{+} \longrightarrow \mathbb{C}$ has exponential order α, and let $F:=\mathcal{L}[f]$. Then for any fixed $s_{r}>\alpha$, and any $t \in \mathbb{R}_{+}$, we have

$$
\begin{equation*}
f(t)=\frac{1}{2 \pi \mathbf{i}} \int_{-\infty}^{\infty} F\left(s_{r}+s_{i} \mathbf{i}\right) \exp \left(t s_{r}+t s_{i} \mathbf{i}\right) d s_{i} \tag{19H.3}
\end{equation*}
$$

In particular, if $g: \mathbb{R}_{\not} \longrightarrow \mathbb{C}$, and $\mathcal{L}[g]=\mathcal{L}[f]$ on any infinite vertical strip in \mathbb{C}, then we must have $g=f$.

Proof. Exercise 19H.5 (Hint: Use an argument similar to Example 19H.3(d) to represent F as a Fourier transform. Then apply the Fourier Inversion Formula.)

The integral (19H.3) is called the Laplace inversion integral, and is denoted by $\mathcal{L}^{-1}[F]$. The integral (19H.3) is sometimes written

$$
f(t)=\frac{1}{2 \pi \mathbf{i}} \int_{s_{r}-\infty \mathbf{i}}^{s_{r}+\infty \mathbf{i}} F(s) \exp (t s) d s
$$

The integral (19H.3) is can be treated as a contour integral along the vertical line $\left\{c \in \mathbb{C} ; \operatorname{Re}[c]=s_{r}\right\}$ in the complex plane, and evaluated using residue calculus ${ }^{6}$. However, in many situations, it is neither easy nor particularly necessary to explicitly compute (19H.3); instead, we can determine the inverse Laplace transform 'by inspection', by simply writing F as a sum of Laplace transforms of functions we recognize. Most books on ordinary differential equations contain an extensive table of Laplace transforms and their inverses, which is useful for this purpose.

Example 19H.5. Suppose $F(s)=\frac{3}{s}+\frac{5}{s-2}+\frac{7}{s^{2}}$. Then by inspecting Example 19H.3(a,b,c), we deduce that $f(t)=\mathcal{L}^{-1}[F](t)=3+5 e^{2 t}+7 t$. \diamond

Most of the results about Fourier transforms from Section 19B have equivalent formulations for Laplace transforms.

Theorem 19H.6. Properties of the Laplace transform
Let $f: \mathbb{R}_{+} \longrightarrow \mathbb{C}$ have exponential order α.
(a) (Linearity) Let $g: \mathbb{R}_{\not} \longrightarrow \mathbb{C}$ have exponential order β, and let $\gamma=$ $\max \{\alpha, \beta\}$. Let $b, c \in \mathbb{C}$. Then $b f+c g$ has exponential order at most γ, and for all $s \in \mathbb{H}_{\gamma}, \quad \mathcal{L}[b f+c g](s)=b \mathcal{L}[f](s)+c \mathcal{L}[g](s)$.

[^93]Linear Partial Differential Equations and Fourier Theory Marcus Pivato Danuary 31, 2009
(b) (Transform of a derivative)
(i) Suppose $f \in \mathcal{C}^{1}\left(\mathbb{R}_{\not}\right)$ (i.e. f is continuously differentiable on \mathbb{R}_{\not}) and f^{\prime} has exponential order β. Let $\gamma=\max \{\alpha, \beta\}$. Then for all $s \in \mathbb{H}_{\gamma}$,

$$
\mathcal{L}\left[f^{\prime}\right](s)=s \mathcal{L}[f](s)-f(0)
$$

(ii) Suppose $f \in \mathcal{C}^{2}\left(\mathbb{R}_{\not}\right)$, f^{\prime} has exponential order α_{1} and $f^{\prime \prime}$ has exponential order α_{2}. Let $\gamma=\max \left\{\alpha, \alpha_{1}, \alpha_{2}\right\}$. Then for all $s \in \mathbb{H}_{\gamma}$,

$$
\mathcal{L}\left[f^{\prime \prime}\right](s)=s^{2} \mathcal{L}[f](s)-f(0) s-f^{\prime}(0) .
$$

(iii) Let $N \in \mathbb{N}$, and suppose $f \in \mathcal{C}^{N}\left(\mathbb{R}_{\not}\right)$. Suppose $f^{(n)}$ has exponential order α_{n} for all $n \in[1 \ldots N]$. Let $\gamma=\max \left\{\alpha, \alpha_{1}, \ldots, \alpha_{N}\right\}$. Then for all $s \in \mathbb{H}_{\gamma}$,

$$
\mathcal{L}\left[f^{(N)}\right](s)=s^{N} \mathcal{L}[f](s)-f(0) s^{N-1}-f^{\prime}(0) s^{N-2}-f^{\prime \prime}(0) s^{N-3}-\cdots-f^{(N-2)}(0) s-f^{(N-1)}(0)
$$

(c) (Derivative of a transform) For all $n \in \mathbb{N}$, the function $g_{n}(t)=t^{n} f(t)$ also has exponential order α.
If f is piecewise continuous, then the function $F=\mathcal{L}[f]: \mathbb{H}_{\alpha} \longrightarrow \mathbb{C}$ is (complex)-differentiable, $]$ and for all $s \in \mathbb{H}_{\alpha}, F^{\prime}(s)=-\mathcal{L}\left[g_{1}\right](s), \quad F^{\prime \prime}(s)=$ $\mathcal{L}\left[g_{2}\right](s)$, and in general $F^{(n)}(s)=(-1)^{n} \mathcal{L}\left[g_{n}\right](s)$.
(d) (Translation) Fix $T \in \mathbb{R}_{+}$, and define $g: \mathbb{R}_{+} \longrightarrow \mathbb{C}$ by $g(t)=f(t-T)$ for $t \geq T$ and $g(t)=0$ for $t \in[0, T)$. Then g also has exponential order α. For all $s \in \mathbb{H}_{\alpha}, \quad \mathcal{L}[g](s)=e^{-T s} \mathcal{L}[f](s)$.
(e) (Dual translation) For all $\beta \in \mathbb{R}$, the function $g(t)=e^{\beta t} f(t)$ has exponential order $\alpha+\beta$. For all $s \in \mathbb{H}_{\alpha+\beta}, \quad \mathcal{L}[g](s)=\mathcal{L}[f](s-\beta)$.

Proof. Exercise 19H. 6 (Hint: Imitate the proofs of Theorems 19B.2(a), 19B.7 and 9B.3.)

Exercise 19H.7. Show by a counterexample that Theorem 19H.6(d) is false if $T<0$.

Corollary 19H.7. Fix $n \in \mathbb{N}$. If $f(t)=t^{n}$ for all $t \in \mathbb{R}_{+}$, then $\mathcal{L}[f](s)=\frac{n!}{s^{n+1}}$ for all $s \in \mathbb{H}_{0}$.

Proof. Exercise 19H.8 (Hint: Combine Theorem 19H.6(c) with Example © 19H.3(a).)

Exercise 19H.9. Combine Corollary 19 H .7 with Theorem 19H.6(b) to get a formula for the Laplace transform of any polynomial.

Exercise 19H.10. Combine Theorem 19H.6(c,d) with Example 19H.3(a) to get a formula for the Laplace transform of $f(t)=\frac{1}{(1+t)^{n}}$ for all $n \in \mathbb{N}$.

Corollary 19 H .7 does not help us to compute the Laplace transform of $f(t)=$ t^{r} when r is not an integer. To do this, we must introduce the gamma function $\Gamma: \mathbb{R}_{\neq} \longrightarrow \mathbb{C}$, which is defined

$$
\Gamma(r) \quad:=\quad \int_{0}^{\infty} t^{r-1} e^{-t} d t, \quad \text { for all } r \in \mathbb{R}_{\neq}
$$

This is regarded as a 'generalized factorial' because of the following properties.

Lemma 19H.8.

(a) $\Gamma(1)=1$.
(b) For any $r \in \mathbb{R}_{+}, \Gamma(r+1)=r \cdot \Gamma(r)$.
(c) Thus, for any $n \in \mathbb{N}, \Gamma(n+1)=n$!. \quad (For example, $\Gamma(5)=4$! $=24$.)

Proof. Exercise 19H. 11

Exercise 19H.12. (a) Show that $\Gamma(1 / 2)=\sqrt{\pi}$.
(b) Deduce that $\Gamma(3 / 2)=\sqrt{\pi} / 2$ and $\Gamma(5 / 2)=\frac{3}{4} \sqrt{\pi}$.

The gamma function is useful when computing Laplace transforms because of the next result.

Proposition 19H.9. Laplace transform of $f(t)=t^{r}$
Fix $r>-1$, and let $f(t):=t^{r}$ for all $t \in \mathbb{R}_{\neq}$. Then $\mathcal{L}[f](s)=\frac{\Gamma(r+1)}{s^{r+1}}$ for all $s \in \mathbb{H}_{0}$.

Proof. Exercise 19H. 13
Remark. If $r<0$, then technically, $f(t)=t^{r}$ does not have exponential growth, as noted in Example 19H.1(b). Hence Lemma 19H.2 does not apply. However, the Laplace transform integral (19H.2) converges in this case anyways,

[^94]because although $\lim _{t \searrow 0} t^{r}=\infty$, it goes to infinity 'slowly', so that the integral $\int_{0}^{1} t^{r} d t$ is still finite.

Example 19H.10. (a) If $r \in \mathbb{N}$ and $f(t)=t^{r}$, then Proposition 19 H .9 and Lemma 19H.8(c) together imply $\mathcal{L}[f](s)=\frac{r!}{s^{r+1}}$, in agreement with Corollary 19H.7.
(b) Let $r=1 / 2$. Then $f(t)=\sqrt{t}$, and Proposition 19H.9 says $\mathcal{L}[f](s)=$ $\frac{\Gamma(3 / 2)}{s^{3 / 2}}=\frac{\sqrt{\pi}}{2 s^{3 / 2}}$, where the last step is by Exercise 19 H .12 (b).
(c) Let $r=-1 / 2$. Then $f(t)=\frac{1}{\sqrt{t}}$, and Proposition 19H.9 says $\mathcal{L}[f](s)=$ $\frac{\Gamma(1 / 2)}{s^{1 / 2}}=\sqrt{\frac{\pi}{s}}$, where the last step is by Exercise 19H.12(a).

Theorems 19B.2(c) showed how the Fourier transform converts function convolution into multiplication. A similar property holds for the Laplace transform. Let $f, g: \mathbb{R}_{+} \longrightarrow \mathbb{C}$ be two functions. The convolution of f, g is the function $f * g: \mathbb{R}_{+} \longrightarrow \mathbb{C}$ defined

$$
f * g(T) \quad:=\quad \int_{0}^{T} f(T-t) g(t) d t, \quad \text { for all } T \in \mathbb{R}_{\neq}
$$

Note that $f * g(T)$ is an integral over a finite interval $[0, T]$; thus it is well-defined no matter how fast $f(t)$ and $g(t)$ grow as $t \rightarrow \infty$.

Theorem 19H.11. Let $f, g: \mathbb{R}_{+} \longrightarrow \mathbb{C}$ have exponential order. Then $\mathcal{L}[f *$ $g]=\mathcal{L}[f] \cdot \mathcal{L}[g]$ wherever all these functions are defined.

Proof. Exercise 19H. 14

Theorem 19H.6(b) makes the Laplace transform a powerful tool for solving linear ordinary differential equations.

Proposition 19H.12. Laplace solution to linear ODE
Let $f, g: \mathbb{R}_{+} \longrightarrow \mathbb{C}$ have exponential order α and β respectively, and let $\gamma=\max \{\alpha, \beta\}$. Let $F:=\mathcal{L}[f]$ and $G:=\mathcal{L}[g]$. Let $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{C}$ be constants. Then f and g satisfies the linear ODE

$$
\begin{equation*}
g=c_{0} f+c_{1} f^{\prime}+c_{2} f^{\prime \prime}+\cdots+c_{n} f^{(n)} \tag{19H.4}
\end{equation*}
$$

if and only if F and G satisfy the algebraic equation

$$
\begin{array}{rll}
G(s)=\left(c_{0}+c_{1} s+c_{2} s^{2}+c_{3} s^{3}+\cdots+c_{n} s^{n}\right) & F(s) \\
-\left(c_{1}+c_{2} s^{1}+c_{3} s^{2}+\cdots+c_{n} s^{n-1}\right) & f(0) \\
-\left(c_{2}+c_{3} s+\cdots+c_{n} s^{n-2}\right) & f^{\prime}(0) \\
\ddots & \vdots & \vdots \\
& -\left(c_{n-1}+c_{n} s\right) & f^{(n-2)}(0) \\
& -c_{n} & f^{(n-1)}(0) .
\end{array}
$$

for all $s \in \mathbb{H}_{\gamma}$. In particular, f satisfies ODE (19H.4) and homogeneous boundary conditions $f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=\cdots=f^{(n-1)}(0)=0$ if and only if

$$
F(s)=\frac{G(s)}{c_{0}+c_{1} s+c_{2} s^{2}++c_{3} s^{3}+\cdots+c_{n} s^{n}}
$$

for all $s \in \mathbb{H}_{\gamma}$

Proof. Exercise 19H.15 (Hint: Apply Theorem 19H.6(b), then reorder terms.)

Laplace transforms can also be used to solve partial differential equations. Let $\mathbb{X} \subseteq \mathbb{R}$ be some one-dimensional domain, let $f: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{C}$, and write $f(x ; t)$ as $f_{x}(t)$ for all $x \in \mathbb{X}$. Fix $\alpha \in \mathbb{R}$. For all $x \in \mathbb{X}$ suppose that f_{x} has exponential order α, so that $\mathcal{L}\left[f_{x}\right]$ is a function $\mathbb{H}_{\alpha} \longrightarrow \mathbb{C}$. Then we define $\mathcal{L}[f]: \mathbb{X} \times \mathbb{H}_{\alpha} \longrightarrow \mathbb{C}$ by $\mathcal{L}[f](x ; s)=\mathcal{L}\left[f_{x}\right](s)$ for all $x \in \mathbb{X}$ and $s \in \mathbb{H}_{\alpha}$.

Proposition 19H.13. Suppose $\partial_{x} f(x, t)$ is defined for all $(x, t) \in \operatorname{int}(\mathbb{X}) \times \mathbb{R}_{+}$. Then $\partial_{x} \mathcal{L}[f](x, s)$ is defined for all $(x, s) \in \operatorname{int}(\mathbb{X}) \times \mathbb{H}_{\alpha}$, and $\partial_{x} \mathcal{L}[f](x, s)=$ $\mathcal{L}\left[\partial_{x} f\right](x, s)$.
Proof. Exercise 19H. 16 (Hint: Apply Theorem 0G.1 (on page 567) to the Laplace transform integral (19H.2).)

By iterating Proposition 19H.13, we have $\partial_{x}^{n} \mathcal{L}[f](x, s)=\mathcal{L}\left[\partial_{x}^{n} f\right](x, s)$ for any $n \in \mathbb{N}$. Through Proposition 19 H .13 and Theorem 19H.6(b), we can convert a PDE about f into an ODE involving only the x-derivatives of $\mathcal{L}[f]$.

Example 19H.14. Let $f: \mathbb{X} \times \mathbb{R}_{+} \longrightarrow \mathbb{C}$ and let $F:=\mathcal{L}[f]: \mathbb{X} \times \mathbb{H}_{\alpha} \longrightarrow \mathbb{C}$.
(a) (heat equation) Define $f_{0}(x):=f(x, 0)$ for all $x \in \mathbb{X}$ (the 'initial temperature distribution'). Then f satisfies the one-dimensional heat equation $\partial_{t} f(x, t)=\partial_{x}^{2} f(x, t)$ if and only if, for every $s \in \mathbb{H}_{\alpha}$, the function $F_{s}(x)=$ $F(x, s)$ satisfies the second-order linear ODE

$$
\partial_{x}^{2} F_{s}(x)=s F_{s}(x)-f_{0}(x), \quad \text { for all } x \in \mathbb{X}
$$

(b) (wave equation) Define $f_{0}(x):=f(x, 0)$ and $f_{1}(x):=\partial_{t} f(x, 0)$ for all $x \in \mathbb{X}$ (the 'initial position' and 'initial velocity', respectively). Then f satisfies the one-dimensional wave equation $\partial_{t}^{2} f(x, t)=\partial_{x}^{2} f(x, t)$ if and only if, for every $s \in \mathbb{H}_{\alpha}$, the function $F_{s}(x)=F(x, s)$ satisfies the second-order linear ODE

$$
\partial_{x}^{2} F_{s}(x)=s^{2} F_{s}(x)-s f_{0}(x)-f_{1}(x), \quad \text { for all } x \in \mathbb{X}
$$

(Exercise 19H. 17 Verify examples (a) and (b).)
We can then use solution methods for ordinary differential equations to solve for F_{s} for all $s \in \mathbb{H}_{\alpha}$, obtain an expression for the function F, and then apply the Laplace Inversion Theorem [9H.4 to obtain an expression for f. We will not pursue this approach further here; however, we will develop a very similar approach in the Chapter 20 using Fourier transforms. For more information, see [Asm05, Chapt.8], [Fis999, §5.3-5.4], [Hab87, Chapt.13], or [Bro8.9, Chapt.5]

19 I Practice problems

1. Suppose $f(x)=\left\{\begin{array}{lll}1 & \text { if } & 0<x<1 ; \\ 0 & & \text { otherwise }\end{array}\right.$, as in Example 19A.4 on page 490. Check that $\widehat{f}(\mu)=\frac{1-e^{-\mu \mathbf{i}}}{2 \pi \mu \mathbf{i}}$
2. Compute the one-dimensional Fourier transforms of $g(x)$, when:
(a) $g(x)=\left\{\begin{array}{lll}1 & \text { if } & -\tau<x<1-\tau ; \\ 0 & & \text { otherwise }\end{array}\right.$,
(b) $g(x)=\left\{\begin{array}{ll}1 & \text { if } 0<x<\sigma ; \\ 0 & \text { otherwise }\end{array}\right.$.
3. Let $X, Y>0$, and let $f(x, y)=\left\{\begin{array}{lll}1 & \text { if } & 0 \leq x \leq X \text { and } 0 \leq y \leq Y \text {; } \\ 0 & \text { otherwise. }\end{array}\right.$

Compute the two-dimensional Fourier transform of $f(x, y)$. What does the Fourier Inversion formula tell us?
4. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined: $f(x)= \begin{cases}x & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}$
(Fig.191.1) Compute the Fourier Transform of f.
5. Let $f(x)=x \cdot \exp \left(\frac{-x^{2}}{2}\right)$. Compute the Fourier transform of f.
6. Let $\alpha>0$, and let $g(x)=\frac{1}{\alpha^{2}+x^{2}}$. Example 19A.8 claims that $\widehat{g}(\mu)=$ $\frac{1}{2 \alpha} e^{-\alpha|\mu|}$. Verify this. Hint: Use the Fourier Inversion Theorem.

Figure 19I.1: Problem \# ${ }^{\text {I }}$
7. Fix $y>0$, and let $\mathcal{K}_{y}(x)=\frac{y}{\pi\left(x^{2}+y^{2}\right)}$ (this is the half-space Poisson Kernel from $\oint[17 \mathrm{E}$ and $\S[20 \mathrm{C}(\mathrm{ii)})$. Compute the one-dimensional Fourier transform $\widehat{\mathcal{K}}_{y}(\mu)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathcal{K}_{y}(x) \exp (-\mu \mathbf{i} x) d \mu$.
8. Let $f(x)=\frac{2 x}{\left(1+x^{2}\right)^{2}}$. Compute the Fourier transform of f.
9. Let $f(x)=\left\{\begin{array}{lll}1 & \text { if } & -4<x<5 ; \\ 0 & & \text { otherwise. }\end{array}\right.$ Compute the Fourier transform $\widehat{f}(\mu)$.
10. Let $f(x)=\frac{x \cos (x)-\sin (x)}{x^{2}}$. Compute the Fourier transform $\widehat{f}(\mu)$.
11. Let $f, g \in \mathbf{L}^{1}(\mathbb{R})$, and let $h(x)=f(x)+g(x)$. Show that, for all $\mu \in \mathbb{R}$, $\widehat{h}(\mu)=\widehat{f}(\mu)+\widehat{g}(\mu)$.
12. Let $f, g \in \mathbf{L}^{1}(\mathbb{R})$, and let $h=f * g$. Show that for all $\mu \in \mathbb{R}, \quad \widehat{h}(\mu)=$ $2 \pi \cdot \widehat{f}(\mu) \cdot \widehat{g}(\mu)$.
Hint: $\exp (-\mathbf{i} \mu x)=\exp (-\mathbf{i} \mu y) \cdot \exp (-\mathbf{i} \mu(x-y))$.
13. Let $f, g \in \mathbf{L}^{1}(\mathbb{R})$, and let $h(x)=f(x) \cdot g(x)$. Suppose \widehat{h} is also in $\mathbf{L}^{1}(\mathbb{R})$. Show that, for all $\mu \in \mathbb{R}, \quad \widehat{h}(\mu)=(\widehat{f} * \widehat{g})(\mu)$.
Hint: Combine problem \#10 with the Strong Fourier Inversion Formula (Theorem 19A.5 on page 491).
14. Let $f \in \mathbf{L}^{1}(\mathbb{R})$. Fix $\tau \in \mathbb{R}$, and define $g: \mathbb{R} \longrightarrow \mathbb{C}$ by: $g(x)=f(x+\tau)$. Show that, for all $\mu \in \mathbb{R}, \widehat{g}(\mu)=e^{\tau \mu \mathrm{i}} \cdot \widehat{f}(\mu)$.
15. Let $f \in \mathbf{L}^{1}(\mathbb{R})$. Fix $\nu \in \mathbb{R}$ and define $g: \mathbb{R} \longrightarrow \mathbb{C}$ by $g(x)=e^{\nu x \mathbf{i}} f(x)$. Show that, for all $\mu \in \mathbb{R}, \widehat{g}(\mu)=\widehat{f}(\mu-\nu)$.
16. Suppose $f \in \mathbf{L}^{1}(\mathbb{R})$. Fix $\sigma>0$, and define $g: \mathbb{R} \longrightarrow \mathbb{C}$ by: $g(x)=f\left(\frac{x}{\sigma}\right)$. Show that, for all $\mu \in \mathbb{R}, \quad \widehat{g}(\mu)=\sigma \cdot \widehat{f}(\sigma \cdot \mu)$.
17. Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable, and that $f \in \mathbf{L}^{1}(\mathbb{R})$ and $g:=f^{\prime} \in$ $\mathbf{L}^{1}(\mathbb{R})$. Assume that $\lim _{x \rightarrow \pm \infty} f(x)=0$. Show that $\widehat{g}(\mu)=\mathbf{i} \mu \cdot \widehat{f}(\mu)$.
18. Let $\mathcal{G}_{t}(x)=\frac{1}{2 \sqrt{\pi t}} \exp \left(\frac{-x^{2}}{4 t}\right)$ be the Gauss-Weierstrass kernel. Recall that $\widehat{\mathcal{G}}_{t}(\mu)=\frac{1}{2 \pi} e^{-\mu^{2} t}$. Use this to construct a simple proof that, for any $s, t>0, \mathcal{G}_{t} * \mathcal{G}_{s}=\mathcal{G}_{t+s}$.
(Hint: Use problem \#12. Do not compute any convolution integrals, and do not use the 'solution to the heat equation' argument from Problem \# 8 on page 413.)

Remark. Because of this result, probabilists say that the set $\left\{\mathcal{G}_{t}\right\}_{t \in \mathbb{R}_{+}}$ forms a stable family of probability distributions on \mathbb{R}. Analysts say that $\left\{\mathcal{G}_{t}\right\}_{t \in \mathbb{R}_{+}}$is a one-parameter semigroup under convolution.

Chapter 20

Fourier transform solutions to PDEs

Abstract

"Mathematics compares the most diverse phenomena and discovers the secret analogies that unite them." -Jean Joseph Fourier

We will now see that the 'Fourier series' solutions to the PDEs on a bounded domain (Chapters (11-14) generalize to 'Fourier transform' solutions on the unbounded domain in a natural way.

20A The heat equation

20A(i) Fourier transform solution

Proposition 20A.1. Heat equation on an infinite rod Let $F: \mathbb{R} \longrightarrow \mathbb{R}$ be a bounded function (of $\mu \in \mathbb{R}$).
(a) Define $u: \mathbb{R} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by

$$
\begin{equation*}
u(x ; t):=\int_{-\infty}^{\infty} F(\mu) \cdot \exp (\mu x \mathbf{i}) \cdot e^{-\mu^{2} t} d \mu \tag{20A.1}
\end{equation*}
$$

for all $t>0$ and all $x \in \mathbb{R}$. Then u is a smooth function and satisfies the heat equation.
(b) In particular, suppose $f \in \mathbf{L}^{1}(\mathbb{R})$, and $\widehat{f}(\mu)=F(\mu)$. If we define $u(x ; 0):=$ $f(x)$ for all $x \in \mathbb{R}$, and define $u(x ; t)$ by eqn.(20A.1), when $t>0$, then u is continuous on $\mathbb{R} \times \mathbb{R}_{+}$, and is a solution to the heat equation with initial conditions $u(x ; 0)=f(x)$.

Proof. Exercise 20A. 1 (Hint: Use Proposition 0G.1 on page 567.)

Example 20A.2. Suppose $f(x)=\left\{\begin{array}{cc}1 & \text { if }-1<x<1 ; \\ 0 & \text { otherwise. }\end{array} \quad\right.$ We know from Example 19 A .3 on page 489 that $\widehat{f}(\mu)=\frac{\sin (\mu)}{\pi \mu}$. Thus,

$$
u(x, t)=\int_{-\infty}^{\infty} \widehat{f}(\mu) \cdot \exp (\mu x \mathbf{i}) \cdot e^{-\mu^{2} t} d \mu=\int_{-\infty}^{\infty} \frac{\sin (\mu)}{\pi \mu} \exp (\mu x \mathbf{i}) \cdot e^{-\mu^{2} t} d \mu
$$

(Exercise 20A. 2 Verify that u satisfies the one-dimensional heat equation and the specified initial conditions.)

Example 20A.3: The Gauss-Weierstrass kernel

For all $x \in \mathbb{R}$ and $t>0$, define the Gauss-Weierstrass Kernel: $\mathcal{G}_{t}(x):=$ $\frac{1}{2 \sqrt{\pi t}} \exp \left(\frac{-x^{2}}{4 t}\right)$ (see Example 1B.1 (c) on page 6). Fix $t>0$; then setting $\sigma=\sqrt{2 t}$ in Theorem 19B.8(b), we get

$$
\widehat{\mathcal{G}}_{t}(\mu)=\frac{1}{2 \pi} \exp \left(\frac{-(\sqrt{2 t})^{2} \mu^{2}}{2}\right)=\frac{1}{2 \pi} \exp \left(\frac{-2 t \mu^{2}}{2}\right)=\frac{1}{2 \pi} e^{-\mu^{2} t}
$$

Thus, applying the Fourier Inversion formula (Theorem 19A.1 on page 488), we have:

$$
\mathcal{G}(x, t)=\int_{-\infty}^{\infty} \widehat{\mathcal{G}}_{t}(\mu) \exp (\mu x \mathbf{i}) d \mu=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\mu^{2} t} \exp (\mu x \mathbf{i}) d \mu,
$$

which, according to Proposition 20A.1, is a smooth solution of the heat equation, where we take $F(\mu)$ to be the constant function: $F(\mu)=1 / 2 \pi$. Thus, F is not the Fourier transform of any function f. Hence, the Gauss-Weierstrass kernel solves the heat equation, but the "initial conditions" \mathcal{G}_{0} do not correspond to a function, but instead a define more singular object, rather like an infinitely dense concentration of mass at a single point. Sometimes \mathcal{G}_{0} is called the Dirac delta function, but this is a misnomer, since it isn't really a function. Instead, \mathcal{G}_{0} is an example of a more general class of objects called distributions.

Proposition 20A.4. Heat equation on an infinite plane

Let $F: \mathbb{R}^{2} \longrightarrow \mathbb{C}$ be some bounded function (of $(\mu, \nu) \in \mathbb{R}^{2}$).
(a) Define $u: \mathbb{R}^{2} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by

$$
\begin{equation*}
u(x, y ; t):=\int_{\mathbb{R}^{2}} F(\mu, \nu) \cdot \exp ((\mu x+\nu y) \cdot \mathbf{i}) \cdot e^{-\left(\mu^{2}+\nu^{2}\right) t} d \mu d \nu \tag{20A.2}
\end{equation*}
$$

for all $t>0$ and all $(x, y) \in \mathbb{R}^{2}$. Then u is continuous on $\mathbb{R}^{3} \times \mathbb{R}_{+}$and satisfies the two-dimensional heat equation.
(b) In particular, suppose $f \in \mathbf{L}^{1}\left(\mathbb{R}^{2}\right)$, and $\widehat{f}(\mu, \nu)=F(\mu, \nu)$. If we define $u(x, y, 0):=f(x, y)$ for all $(x, y) \in \mathbb{R}^{2}$, and define $u(x, y, t)$ by eqn.(20A.2) when $t>0$, then u is continuous on $\mathbb{R}^{2} \times \mathbb{R}_{+}$, and is a solution to the heat equation with initial conditions $u(x, y, 0)=f(x, y)$.

Proof. Exercise 20A. 3 (Hint: Use Proposition 0G.1 on page 567.)

Example 20A.5. Let $X, Y>0$ be constants, and consider the initial conditions:

$$
f(x, y)= \begin{cases}1 & \text { if }-X \leq x \leq X \text { and }-Y \leq y \leq Y ; \\ 0 & \text { otherwise. }\end{cases}
$$

From Example 19D.4 on page 505, the Fourier transform of $f(x, y)$ is given:

$$
\widehat{f}(\mu, \nu)=\frac{\sin (\mu X) \cdot \sin (\nu Y)}{\pi^{2} \cdot \mu \cdot \nu} .
$$

Thus, the corresponding solution to the two-dimensional heat equation is:

$$
\begin{aligned}
u(x, y, t) & =\int_{\mathbb{R}^{2}} \widehat{f}(\mu, \nu) \cdot \exp ((\mu x+\nu y) \cdot \mathbf{i}) \cdot e^{-\left(\mu^{2}+\nu^{2}\right) t} d \mu d \nu \\
& =\int_{\mathbb{R}^{2}} \frac{\sin (\mu X) \cdot \sin (\nu Y)}{\pi^{2} \cdot \mu \cdot \nu} \cdot \exp ((\mu x+\nu y) \cdot \mathbf{i}) \cdot e^{-\left(\mu^{2}+\nu^{2}\right) t} d \mu d \nu . \diamond
\end{aligned}
$$

Proposition 20A.6. Heat equation in infinite space
Let $F: \mathbb{R}^{3} \longrightarrow \mathbb{C}$ be some bounded function (of $\boldsymbol{\mu} \in \mathbb{R}^{3}$).
(a) Define $u: \mathbb{R}^{3} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by

$$
\begin{equation*}
u(\mathbf{x} ; t):=\int_{\mathbb{R}^{3}} F(\boldsymbol{\mu}) \cdot \exp (\boldsymbol{\mu} \bullet \mathbf{x} \cdot \mathbf{i}) \cdot e^{-\|\mu\|^{2} t} d \boldsymbol{\mu}, \tag{20A.3}
\end{equation*}
$$

for all $t>0$ and all $\mathbf{x} \in \mathbb{R}^{3}$, (where $\|\boldsymbol{\mu}\|^{2}:=\mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2}$). Then u is continuous on $\mathbb{R}^{3} \times \mathbb{R}_{+}$and satisfies the three-dimensional heat equation.
(b) In particular, suppose $f \in \mathbf{L}^{1}\left(\mathbb{R}^{3}\right)$, and $\widehat{f}(\boldsymbol{\mu})=F(\boldsymbol{\mu})$. If we define $u(\mathbf{x}, 0):=f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{3}$, and define $u(\mathbf{x}, t)$ by eqn.(20A.3) when $t>0$, then u is continuous on $\mathbb{R}^{3} \times \mathbb{R}_{+}$, and is a solution to the heat equation with initial conditions $u(\mathbf{x}, 0)=f(\mathbf{x})$.

Proof. Exercise 20A. 4 (Hint: Use Proposition 0G.1 on page 567.)

Example 20A.7: A ball of heat
Suppose the initial conditions are: $f(\mathbf{x})= \begin{cases}1 & \text { if }\|\mathbf{x}\| \leq 1 ; \\ 0 & \text { otherwise. }\end{cases}$
Setting $R=1$ in Example 19E.3 (p.507) yields the three-dimensional Fourier transform of f :

$$
\widehat{f}(\boldsymbol{\mu})=\frac{1}{2 \pi^{2}}\left(\frac{\sin \|\boldsymbol{\mu}\|}{\|\boldsymbol{\mu}\|^{3}}-\frac{\cos \|\boldsymbol{\mu}\|}{\|\boldsymbol{\mu}\|^{2}}\right) .
$$

The resulting solution to the heat equation is:

$$
\begin{aligned}
u(\mathbf{x} ; t) & =\int_{\mathbb{R}^{3}} \widehat{f}(\boldsymbol{\mu}) \cdot \exp (\boldsymbol{\mu} \bullet \mathbf{x} \cdot \mathbf{i}) \cdot e^{-\|\mu\|^{2} t} d \boldsymbol{\mu} \\
& =\frac{1}{2 \pi^{2}} \int_{\mathbb{R}^{3}}\left(\frac{\sin \|\boldsymbol{\mu}\|}{\|\boldsymbol{\mu}\|^{3}}-\frac{\cos \|\boldsymbol{\mu}\|}{\|\boldsymbol{\mu}\|^{2}}\right) \cdot \exp (\boldsymbol{\mu} \bullet \mathbf{x} \cdot \mathbf{i}) \cdot e^{-\|\mu\|^{2} t} d \boldsymbol{\mu} .
\end{aligned}
$$

20A(ii) The Gaussian convolution formula, revisited

Prerequisites: $\oint[7 \mathrm{C}(\mathrm{i})$, , $\{[93$, , $\{[0 \mathrm{~A}(\mathrm{i})$.
Recall from § $17 \mathrm{C}(\mathrm{i}$] on page 385 that the Gaussian Convolution formula solved the initial value problem for the heat equation by "locally averaging" the initial conditions. Fourier methods provide another proof that this is a solution to the heat equation.

Theorem 20A.8. Gaussian convolutions and the heat equation
Let $f \in \mathbf{L}^{1}(\mathbb{R})$, and let $\mathcal{G}_{t}(x)$ be the Gauss-Weierstrass kernel from Example 20A.3. For all $t>0$, define $U_{t}:=f * \mathcal{G}_{t}$; in other words, for all $x \in \mathbb{R}$,

$$
U_{t}(x):=\int_{-\infty}^{\infty} f(y) \cdot \mathcal{G}_{t}(x-y) d y
$$

Also, for all $x \in \mathbb{R}$, define $U_{0}(x):=f(x)$. Then U is continuous on $\mathbb{R} \times \mathbb{R}_{\not}$, and is a solution to the Heat Equation with initial conditions $U(x, 0)=f(x)$.

Proof. $U(x, 0)=f(x)$ by definition. To show that U satisfies the heat equation, we will show that it is in fact equal to the Fourier solution u described in Theorem 20A.1 on page 527. Fix $t>0$, and let $u_{t}(x)=u(x, t)$; recall that, by definition

$$
u_{t}(x)=\int_{-\infty}^{\infty} \widehat{f}(\mu) \cdot \exp (\mu x \mathbf{i}) \cdot e^{-\mu^{2} t} d \mu=\int_{-\infty}^{\infty} \widehat{f}(\mu) e^{-\mu^{2} t} \cdot \exp (\mu x \mathbf{i}) d \mu
$$

Thus, Proposition 19A.2 on page 489 says that

$$
\begin{equation*}
\widehat{u}_{t}(\mu)=\widehat{f}(\mu) \cdot e^{-t \mu^{2}} \overline{\overline{(*)}} 2 \pi \cdot \widehat{f}(\mu) \cdot \widehat{\mathcal{G}}_{t}(\mu) . \tag{20A.4}
\end{equation*}
$$

Here, $(*)$ is because Example 20A.3 on page 528 says that $e^{-t \mu^{2}}=2 \pi \cdot \widehat{\mathcal{G}}_{t}(\mu)$. But remember that $U_{t}=f * \mathcal{G}_{t}$, so, Theorem 19B.2(b) on page 494 says

$$
\begin{equation*}
\widehat{U}_{t}(\mu)=2 \pi \cdot \widehat{f}(\mu) \cdot \widehat{\mathcal{G}}_{t}(\mu) . \tag{20A.5}
\end{equation*}
$$

Thus (20A.4) and (20A.5) mean that $\widehat{U}_{t}=\widehat{u}_{t}$. But then Proposition 19 A .2 on page 489 implies that $u_{t}(x)=U_{t}(x)$.

For more discussion and examples of the Gaussian convolution approach to the heat equation, see $\S 17 \mathrm{C}(\mathrm{i})$ on page 385 .

Exercise 20A.5. State and prove a generalization of Theorem 20A.8 to solving the D-dimensional heat equation, for $D \geq 2$.

20B The wave equation

20B(i) Fourier transform solution

Prerequisites: $\S 2 \mathrm{~B}, \S(19 \mathrm{~A}, ~ \S 5 \mathrm{~B}, \S 0 \mathrm{G} . \quad$ Recommended: $\S 11 \mathrm{~B}, ~ \S 12 \mathrm{D}, ~ \S 19 \mathrm{D}, ~ \S 19 \mathrm{E}, ~ \S 20 \mathrm{~A}(\mathrm{i})$.

Proposition 20B.1. Wave equation on an infinite wire
Let $f_{0}, f_{1} \in \mathbf{L}^{1}(\mathbb{R})$ be twice-differentiable, and suppose f_{0} and f_{1} have Fourier transforms $\widehat{f_{0}}$ and $\widehat{f_{1}}$, respectively. Define $u: \mathbb{R} \times \mathbb{R}_{\not} \longrightarrow \mathbb{R}$ by

$$
u(x, t)=\int_{-\infty}^{\infty}\left(\widehat{f}_{0}(\mu) \cos (\mu t)+\frac{\widehat{f}_{1}(\mu)}{\mu} \sin (\mu t)\right) \cdot \exp (\mu x \mathbf{i}) d \mu
$$

Then u is a solution to the one-dimensional wave equation with initial position $u(x, 0)=f_{0}(x)$, and initial velocity $\partial_{t} u(x, 0)=f_{1}(x)$, for all $x \in \mathbb{R}$.

Proof. Exercise 20B. 1 (Hint: Show that this solution is equivalant to the d'Alembert solution of Proposition 17D.5 on page 398.)

Example 20B.2. Fix $\alpha>0$, and suppose we have initial position $f_{0}(x):=e^{-\alpha|x|}$ for all $x \in \mathbb{R}$, and initial velocity $f_{1} \equiv 0$. From Example [19A.7 on page 49], we know that $\widehat{f}_{0}(\mu)=\frac{2 \alpha}{\left(\alpha^{2}+\mu^{2}\right)}$. Thus, Proposition 20B.1 says:

$$
\begin{aligned}
u(x, t) & =\int_{-\infty}^{\infty} \widehat{f_{0}}(\mu) \cdot \exp (\mu x \mathbf{i}) \cdot \cos (\mu t) d \mu \\
& =\int_{-\infty}^{\infty} \frac{2 \alpha}{\left(\alpha^{2}+\mu^{2}\right)} \cdot \exp (\mu x \mathbf{i}) \cdot \cos (\mu t) d \mu
\end{aligned}
$$

(Exercise 20B. 2 Verify that u satisfies the one-dimensional wave equation and the specified initial conditions.)

Proposition 20B.3. Wave equation on an infinite plane
Let $f_{0}, f_{1} \in \mathbf{L}^{1}\left(\mathbb{R}^{2}\right)$ be twice differentiable functions, whose Fourier transforms \widehat{f}_{0} and \widehat{f}_{1} decay fast enough that

$$
\begin{align*}
& \int_{\mathbb{R}^{2}}\left(\mu^{2}+\nu^{2}\right) \cdot\left|\widehat{f_{0}}(\mu, \nu)\right| d \mu d \nu \tag{20B.6}\\
\text { and } & \int_{\mathbb{R}^{2}} \sqrt{\mu^{2}+\nu^{2}} \cdot\left|\widehat{f_{1}}(\mu, \nu)\right| d \mu d \nu
\end{align*}
$$

Define $u: \mathbb{R}^{2} \times \mathbb{R}_{\not} \longrightarrow \mathbb{R}$ by

$$
\begin{aligned}
u(x, y, t)= & \int_{\mathbb{R}^{2}} \widehat{f}_{0}(\mu, \nu) \cos \left(\sqrt{\mu^{2}+\nu^{2}} \cdot t\right) \cdot \exp ((\mu x+\nu y) \cdot \mathbf{i}) d \mu d \nu \\
& +\int_{\mathbb{R}^{2}} \frac{\widehat{f}_{1}(\mu, \nu)}{\sqrt{\mu^{2}+\nu^{2}}} \sin \left(\sqrt{\mu^{2}+\nu^{2}} \cdot t\right) \cdot \exp ((\mu x+\nu y) \cdot \mathbf{i}) d \mu d \nu
\end{aligned}
$$

Then u is a solution to the two-dimensional wave equation with initial position $u(x, y, 0)=f_{0}(x, y)$, and initial velocity $\partial_{t} u(x, y, 0)=f_{1}(x, y)$, for all $(x, y) \in$ \mathbb{R}^{2}.

Proof. Exercise 20B. 3 (Hint: Equation (20B.6) makes the integral absolutely convergent, and also enables you to apply Proposition 0G.1 on page 567 to compute the relevant derivatives of u.)

Example 20B.4. Let $\alpha, \beta>0$ be constants, and suppose we have initial position $f_{0} \equiv 0$, and initial velocity $f_{1}(x, y)=\frac{1}{\left(\alpha^{2}+x^{2}\right)\left(\beta^{2}+y^{2}\right)}$ for all $(x, y) \in \mathbb{R}^{2}$. By adapting Example 19 A .8 on page 492, one can check that

$$
\widehat{f}_{1}(\mu, \nu)=\frac{1}{4 \alpha \beta} \exp (-\alpha \cdot|\mu|-\beta \cdot|\nu|)
$$

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

Thus, Proposition 20B.3 says

$$
\begin{align*}
u(x, y, t) & =\int_{\mathbb{R}^{2}} \frac{\widehat{f}_{1}(\mu, \nu)}{\sqrt{\mu^{2}+\nu^{2}}} \sin \left(\sqrt{\mu^{2}+\nu^{2}} \cdot t\right) \cdot \exp ((\mu x+\nu y) \cdot \mathbf{i}) d \mu d \nu \\
& =\int_{\mathbb{R}^{2}} \frac{\sin \left(\sqrt{\mu^{2}+\nu^{2}} \cdot t\right) \cdot \exp ((\mu x+\nu y) \cdot \mathbf{i}-\alpha \cdot|\mu|-\beta \cdot|\nu|)}{4 \alpha \beta \sqrt{\mu^{2}+\nu^{2}}} d \mu d \nu \tag{ㄹ}
\end{align*}
$$

(Exercise 20B. 4 Verify that u satisfies the two-dimensional wave equation and the specified initial conditions.)

Proposition 20B.5. Wave equation in infinite space

Let $f_{0}, f_{1} \in \mathbf{L}^{1}\left(\mathbb{R}^{3}\right)$ be twice differentiable functions whose Fourier transforms \widehat{f}_{0} and \widehat{f}_{1} decay fast enough that

$$
\begin{align*}
& \int_{\mathbb{R}^{3}}\|\boldsymbol{\mu}\|^{2} \cdot\left|\widehat{f}_{0}(\boldsymbol{\mu})\right| d \boldsymbol{\mu} \tag{20B.7}
\end{align*}
$$

Define $u: \mathbb{R}^{3} \times \mathbb{R}_{\not} \longrightarrow \mathbb{R}$ by

$$
u(\mathbf{x}, t):=\int_{\mathbb{R}^{3}}\left(\widehat{f_{0}}(\boldsymbol{\mu}) \cos (\|\boldsymbol{\mu}\| \cdot t)+\frac{\widehat{f_{1}}(\boldsymbol{\mu})}{\|\boldsymbol{\mu}\|} \sin (\|\boldsymbol{\mu}\| \cdot t)\right) \cdot \exp (\boldsymbol{\mu} \bullet \mathbf{x i}) \cdot d \boldsymbol{\mu}
$$

Then u is a solution to the three-dimensional wave equation with initial position $u(\mathbf{x}, 0)=f_{0}(\mathbf{x})$ and initial velocity $\partial_{t} u(\mathbf{x}, 0)=f_{1}(\mathbf{x})$, for all $\mathbf{x} \in \mathbb{R}^{3}$.

Proof. Exercise 20B.5 (Hint: Equation (20B.7) makes the integral absolutely convergent, and also enables you to apply Proposition 0G.1 on page 567 to compute the relevant derivatives of u.)

Exercise 20B.6. Show that the decay conditions (20B.6) or (20B.7) are satisfied if
 f_{0} and f_{1} are asymptotically flat in the sense that $\lim _{|\mathbf{x}| \rightarrow \infty}|f(\mathbf{x})|=0$ and $\lim _{|\mathbf{x}| \rightarrow \infty}|\nabla f(\mathbf{x})|=$ 0 , while $\left(\partial_{i} \partial_{j} f\right) \in \mathbf{L}^{1}\left(\mathbb{R}^{2}\right)$ for all $i, j \in\{1, \ldots, D\}$ (where $D=2$ or 3).

Hint. Apply Theorem 19B.7 on page 496 to compute the Fourier transforms of the derivative functions $\partial_{i} \partial_{j} f$; conclude that the function \widehat{f} must itself decay at a certain speed.

20B(ii) Poisson's spherical mean solution; Huygen's principle

Prerequisites: $\S[7 \mathrm{~A}, \S[19 \mathrm{E}, \S 20 \mathrm{~B}(\mathrm{i})$. Recommended: $\S 17 \mathrm{D}, ~ \S 20 \mathrm{~A}(\mathrm{ii})$.
The Gaussian Convolution formula of $\S 20 \mathrm{~A}$ (ii) solves the initial value problem for the heat equation in terms of a kind of "local averaging" of the initial conditions. Similarly, d'Alembert's formula ($\S 17 \mathrm{D}$) solves the initial value problem for the one-dimensional wave equation in terms of a local average.

There is an analogous result for higher-dimensional wave equations. To explain it, we must introduce the concept of spherical averages. Let $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ be some integrable function. If $\mathbf{x} \in \mathbb{R}^{3}$ is a point in space, and $R>0$, then the spherical average of f at \mathbf{x}, of radius R, is defined:

$$
\mathbf{M}_{R} f(\mathbf{x}):=\frac{1}{4 \pi R^{2}} \int_{\mathbb{S}(R)} f(\mathbf{x}+\mathbf{s}) d \mathbf{s} .
$$

Here, $\mathbb{S}(R):=\left\{\mathbf{s} \in \mathbb{R}^{3} ;\|\mathbf{s}\|=R\right\}$ is the sphere around 0 of radius R. The total surface area of the sphere is $4 \pi R^{2}$; we divide by this quantity to obtain an average. We adopt the notational convention that $\mathbf{M}_{0} f(\mathbf{x}):=f(\mathbf{x})$. This is justified by the next exercise.

Exercise 20B.7. Suppose f is continuous at \mathbf{x}. Show that $\lim _{R \rightarrow 0} \mathbf{M}_{R} f(\mathbf{x})=f(\mathbf{x})$.

Theorem 20B.6. Poisson's Spherical Mean Solution to wave equation

(a) Let $f_{1} \in \mathbf{L}^{1}\left(\mathbb{R}^{3}\right)$ be twice-differentiable, and such that \widehat{f}_{1} satisfies eqn.(20B.7) on page 533. Define $v: \mathbb{R}^{3} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by

$$
v(\mathbf{x} ; t):=\quad t \cdot \mathbf{M}_{t} f_{1}(\mathbf{x}), \quad \text { for all } \mathbf{x} \in \mathbb{R}^{3} \text { and } t \geq 0
$$

Then v is a solution to the wave equation with
Initial Position: $\quad v(\mathbf{x}, 0)=0 ; \quad$ Initial Velocity: $\partial_{t} v(\mathbf{x}, 0)=f_{1}(\mathbf{x})$.
(b) Let $f_{0} \in \mathbf{L}^{1}\left(\mathbb{R}^{3}\right)$ be twice-differentiable and such that \widehat{f}_{0} satisfies eqn.(20B.7) on page 533. For all $\mathbf{x} \in \mathbb{R}^{3}$ and $t>0$, define $W(\mathbf{x} ; t):=t \cdot \mathbf{M}_{t} f_{0}(\mathbf{x})$, and then define $w: \mathbb{R}^{3} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by

$$
w(\mathbf{x} ; t) \quad:=\quad \partial_{t} W(\mathbf{x} ; t), \quad \text { for all } \mathbf{x} \in \mathbb{R}^{3} \text { and } t \geq 0
$$

Then w is a solution to the wave equation with
Initial Position: $w(\mathbf{x}, 0)=f_{0}(\mathbf{x}) ; \quad$ Initial Velocity: $\partial_{t} w(\mathbf{x}, 0)=0$.
(c) Let $f_{0}, f_{1} \in \mathbf{L}^{1}\left(\mathbb{R}^{3}\right)$ be as in (a) and (b), and define $u: \mathbb{R}^{3} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by

$$
u(\mathbf{x} ; t) \quad:=w(\mathbf{x} ; t)+v(\mathbf{x} ; t), \quad \text { for all } \mathbf{x} \in \mathbb{R}^{3} \text { and } t \geq 0,
$$

where w is as in Part (b) and v is as in Part (a). Then u is the unique solution to the wave equation with

Initial Position: $u(\mathbf{x}, 0)=f_{0}(\mathbf{x}) ; \quad$ Initial Velocity: $\partial_{t} u(\mathbf{x}, 0)=f_{1}(\mathbf{x})$.
Proof. We will prove Part (a). First we will need a certain calculation.
Claim 1: For any $R>0$, and any $\boldsymbol{\mu} \in \mathbb{R}^{3}$,

$$
\int_{\mathbb{S}(R)} \exp (\boldsymbol{\mu} \bullet \mathbf{s i}) d \mathbf{s}=\frac{4 \pi R \cdot \sin (\|\boldsymbol{\mu}\| \cdot R)}{\|\boldsymbol{\mu}\|}
$$

Proof. By spherical symmetry, we can rotate the vector $\boldsymbol{\mu}$ without affecting the value of the integral, so rotate $\boldsymbol{\mu}$ until it becomes $\boldsymbol{\mu}=(\mu, 0,0)$, with $\mu>0$. Thus, $\|\boldsymbol{\mu}\|=\mu$, and, if a point $\mathbf{s} \in \mathbb{S}(R)$ has coordinates $\left(s_{1}, s_{2}, s_{3}\right)$ in \mathbb{R}^{3}, then $\boldsymbol{\mu} \bullet \mathbf{s}=\mu \cdot s_{1}$. Thus, the integral simplifies to:

$$
\int_{\mathbb{S}(R)} \exp (\boldsymbol{\mu} \bullet \mathbf{s i}) d \mathbf{s}=\int_{\mathbb{S}(R)} \exp \left(\mu \cdot s_{1} \cdot \mathbf{i}\right) d \mathbf{s}
$$

We will integrate using a spherical coordinate system (ϕ, θ) on the sphere, where $0<\phi<\pi$ and $-\pi<\theta<\pi$, and where

$$
\left(s_{1}, s_{2}, s_{3}\right)=R \cdot(\cos (\phi), \quad \sin (\phi) \sin (\theta), \quad \sin (\phi) \cos (\theta)) .
$$

On the sphere of radius R, the surface area element is $d \mathbf{s}=R^{2} \sin (\phi) d \theta d \phi$. Thus,

$$
\begin{aligned}
\int_{\mathbb{S}(R)} \exp \left(\mu \cdot s_{1} \cdot \mathbf{i}\right) d \mathbf{s} & =\int_{0}^{\pi} \int_{-\pi}^{\pi} \exp (\mu \cdot R \cdot \cos (\phi) \cdot \mathbf{i}) \cdot R^{2} \sin (\phi) d \theta d \phi \\
& \overline{\overline{(*)}} 2 \pi \int_{0}^{\pi} \exp (\mu \cdot R \cdot \cos (\phi) \cdot \mathbf{i}) \cdot R^{2} \sin (\phi) d \phi \\
& \overline{\overline{(\otimes)}} 2 \pi \int_{-R}^{R} \exp \left(\mu \cdot s_{1} \cdot \mathbf{i}\right) \cdot R d s_{1} \\
& =\frac{2 \pi R}{\mu \mathbf{i}} \exp \left(\mu \cdot s_{1} \cdot \mathbf{i}\right)_{s_{1}=-R}^{s_{1}=R} \\
& =2 \frac{2 \pi R}{\mu} \cdot\left(\frac{e^{\mu R \mathbf{i}}-e^{-\mu R \mathbf{i}}}{2 \mathbf{i}}\right) \overline{\overline{(\dagger)}} \frac{4 \pi R}{\mu} \sin (\mu R) .
\end{aligned}
$$

(*) The integrand is constant in the θ coordinate. (\diamond) Making substitution $s_{1}=R \cos (\phi)$, so $d s_{1}=-R \sin (\phi) d \phi$. (\dagger) By Euler's Formula (see page 551).

$$
\diamond_{\text {Claim } 1}
$$

Now, by Proposition 20B.5 on page 533, a solution to the three-dimensional wave equation with zero initial position and initial velocity f_{1} is given by:

$$
\begin{equation*}
u(\mathbf{x}, t)=\int_{\mathbb{R}^{3}} \widehat{f}_{1}(\boldsymbol{\mu}) \frac{\sin (\|\boldsymbol{\mu}\| \cdot t)}{\|\boldsymbol{\mu}\|} \exp (\boldsymbol{\mu} \bullet \mathbf{x i}) d \boldsymbol{\mu} \tag{20B.8}
\end{equation*}
$$

However, if we set $R=t$ in Claim 1, we have:

$$
\frac{\sin (\|\boldsymbol{\mu}\| \cdot t)}{\|\boldsymbol{\mu}\|}=\frac{1}{4 \pi t} \int_{\mathbb{S}(t)} \exp (\boldsymbol{\mu} \bullet \mathbf{s i}) d \mathbf{s}
$$

Thus,

$$
\begin{aligned}
\frac{\sin (\|\boldsymbol{\mu}\| \cdot t)}{\|\boldsymbol{\mu}\|} \cdot \exp (\boldsymbol{\mu} \bullet \mathbf{x i}) & =\exp (\boldsymbol{\mu} \bullet \mathbf{x i}) \cdot \frac{1}{4 \pi t} \int_{\mathbb{S}(t)} \exp (\boldsymbol{\mu} \bullet \mathbf{s i}) d \mathbf{s} \\
& =\frac{1}{4 \pi t} \int_{\mathbb{S}(t)} \exp (\boldsymbol{\mu} \bullet \mathbf{x i}+\boldsymbol{\mu} \bullet \mathbf{s i}) d \mathbf{s} \\
& =\frac{1}{4 \pi t} \int_{\mathbb{S}(t)} \exp (\boldsymbol{\mu} \bullet(\mathbf{x}+\mathbf{s}) \mathbf{i}) d \mathbf{s}
\end{aligned}
$$

Substituting this into (20B.8), we get:

$$
\begin{aligned}
u(\mathbf{x}, t) & =\int_{\mathbb{R}^{3}} \frac{\widehat{f}_{1}(\boldsymbol{\mu})}{4 \pi t} \cdot\left(\int_{\mathbb{S}(t)} \exp (\boldsymbol{\mu} \bullet(\mathbf{x}+\mathbf{s}) \mathbf{i}) d \mathbf{s}\right) d \boldsymbol{\mu} \\
& \overline{\overline{(*)}} \frac{1}{4 \pi t} \int_{\mathbb{S}(t)} \int_{\mathbb{R}^{3}} \widehat{f}_{1}(\boldsymbol{\mu}) \cdot \exp (\boldsymbol{\mu} \bullet(\mathbf{x}+\mathbf{s}) \mathbf{i}) d \boldsymbol{\mu} d \mathbf{s} \\
& \overline{(\overline{(\otimes)}} \frac{1}{4 \pi t} \int_{\mathbb{S}(t)} f_{1}(\mathbf{x}+\mathbf{s}) d \mathbf{s}=t \cdot \frac{1}{4 \pi t^{2}} \int_{\mathbb{S}(t)} f_{1}(\mathbf{x}+\mathbf{s}) d \mathbf{s} \\
& =t \cdot \mathbf{M}_{t} f_{1}(\mathbf{x}) .
\end{aligned}
$$

(*) We simply interchange the two integrals $\square_{\text {. (}}(\diamond)$ This is just the Fourier Inversion Theorem 19E. 1 on page 507.
Part (b) is Exercise 20B.8 . Part (c) follows by combining Part (a) and Part (b).

Corollary 20B.7. Huygen's principle

Let f_{0}, $f_{1} \in \mathbf{L}^{1}\left(\mathbb{R}^{3}\right)$, and suppose there is some bounded region $\mathbb{K} \subset \mathbb{R}^{3}$ such that f_{0} and f_{1} are zero outside of \mathbb{K}-that is: $f_{0}(\mathbf{y})=0$ and $f_{1}(\mathbf{y})=0$ for all $\mathbf{y} \notin \mathbb{K}$ (see Figure 20B.1 A). Let $u: \mathbb{R}^{3} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ be the solution to the wave equation with initial position f_{0} and initial velocity f_{1}, and let $\mathbf{x} \in \mathbb{R}^{3}$.

[^95]

Figure 20B.1: Huygen's principle.
(a) Let R be the distance from \mathbb{K} to \mathbf{x}. If $t<R$ then $u(\mathbf{x} ; t)=0$ (Figure 20B.1B).
(b) If t is large enough that \mathbb{K} is entirely contained in a ball of radius t around \mathbf{x}, then $u(\mathbf{x} ; t)=0$ (Figure 20B.1D).

Proof. Exercise 20B. 9

Part (a) of Huygen's Principle says that, if a sound wave originates in the region \mathbb{K} at time 0 , and \mathbf{x} is of distance R then it does not reach the point \mathbf{x} before time R. This is not surprising; it takes time for sound to travel through space. Part (b) says that the soundwave propagates through the point \mathbf{x} in a finite amount of time, and leaves no wake behind it. This is somewhat more surprising, but corresponds to our experience; sounds travelling through open spaces do not "reverberate" (except due to echo effects). It turns out, however, that Part (b) of the theorem is not true for waves travelling in two dimensions (e.g. ripples on the surface of a pond).

20C The Dirichlet problem on a half-plane

In $\S[2 \mathrm{~A}$ and $\S[3 B$, we saw how to solve Laplace's equation on a bounded domain such as a rectangle or a cube, in the context of Dirichlet boundary conditions. Now consider the half-plane domain $\mathbb{H}:=\left\{(x, y) \in \mathbb{R}^{2} ; y \geq 0\right\}$. The boundary of this domain is just the x axis: $\partial \mathbb{H}=\{(x, 0) ; x \in \mathbb{R}\}$; thus, boundary conditions are imposed by choosing some function $b: \mathbb{R} \longrightarrow \mathbb{R}$. Figure 17 E .1 on page 403 illustrates the corresponding Dirichlet problem: find a continuous function $u: \mathbb{H} \longrightarrow \mathbb{R}$ such that

1. u satisfies the Laplace equation: $\triangle u(x, y)=0$ for all $x \in \mathbb{R}$ and $y>0$.
2. u satisfies the nonhomogeneous Dirichlet boundary condition: $u(x, 0)=$ $b(x)$ for all $x \in \mathbb{R}$.

20C(i) Fourier solution

Heuristically speaking, we will solve the problem by defining $u(x, y)$ as a continuous sequence of horizontal "fibres", parallel to the x axis, and ranging over all values of $y>0$. Each fibre is a function only of x, and thus, has a onedimensional Fourier transform. The problem then becomes determining these Fourier transforms from the Fourier transform of the boundary function b.

Proposition 20C.1. Fourier Solution to Half-Plane Dirichlet problem

Let $b \in \mathbf{L}^{1}(\mathbb{R})$. Suppose that b has Fourier transform \widehat{b}, and define $u: \mathbb{H} \longrightarrow \mathbb{R}$ by

$$
u(x, y):=\quad \int_{-\infty}^{\infty} \widehat{b}(\mu) \cdot e^{-|\mu| \cdot y} \cdot \exp (\mu \mathbf{i} x) d \mu, \quad \text { for all } x \in \mathbb{R} \text { and } y \geq 0
$$

Then u is the solution to the Laplace equation $(\Delta u=0)$ which is bounded at infinity and which satisfies the nonhomogeneous Dirichlet boundary condition $u(x, 0)=b(x)$, for all $x \in \mathbb{R}$.

Proof. For any fixed $\mu \in \mathbb{R}$, the function $f_{\mu}(x, y)=\exp (-|\mu| \cdot y) \exp (-\mu \mathbf{i} x)$ is harmonic (see practice problem \# 10 on page 543). Thus, Proposition 0G. 1 on page 567 implies that the function $u(x, y)$ is also harmonic. Finally, notice that, when $y=0$, the expression for $u(x, 0)$ is just the Fourier inversion integral for $b(x)$.

Example 20C.2. Suppose $b(x)=\left\{\begin{array}{ll}1 & \text { if }-1<x<1 ; \\ 0 & \text { otherwise. }\end{array} \quad\right.$ We already know from Example 19 A .3 on page 489 that $\widehat{b}(\mu)=\frac{\sin (\mu)}{\pi \mu}$.
Thus, $u(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin (\mu)}{\mu} \cdot e^{-|\mu| \cdot y} \cdot \exp (\mu \mathbf{i} x) d \mu$.

Exercise 20C.1. Note the 'boundedness' condition in Proposition 20C.1. Find another solution to the Dirichlet problem on \mathbb{H} which is unbounded at infinity.

20C(ii) Impulse-response solution

Prerequisites: $\S 20 \mathrm{C}(\mathrm{i})$. Recommended: $\S[17 \mathrm{E}$.
For any $y>0$, define the Poisson kernel $\mathcal{K}_{y}: \mathbb{R} \longrightarrow \mathbb{R}$ by:

$$
\begin{equation*}
\mathcal{K}_{y}(x):=\frac{y}{\pi\left(x^{2}+y^{2}\right)} . \quad(\text { see Figure } 17 \mathrm{E} .2 \text { on page 404) } \tag{20C.9}
\end{equation*}
$$

In $\S\left[\begin{array}{l}\text { 7E } \\ \text {, we }\end{array}\right.$ used the Poisson kernel to solve the half-plane Dirichlet problem using impulse-response methods (Proposition 17E. 1 on page 404). We can now use the 'Fourier' solution to provide another proof Proposition 17E.1.

Proposition 20C.3. Poisson Kernel Solution to Half-Plane Dirichlet problem Let $b \in \mathbf{L}^{1}(\mathbb{R})$. Define $u: \mathbb{H} \longrightarrow \mathbb{R}$ by

$$
\begin{equation*}
U(x, y)=b * \mathcal{K}_{y}(x)=\frac{y}{\pi} \int_{-\infty}^{\infty} \frac{b(z)}{(x-z)^{2}+y^{2}} d z \tag{20C.10}
\end{equation*}
$$

for all $y>0$ and $x \in \mathbb{R}$. Then U is the solution to the Laplace equation ($\triangle U=0$) which is bounded at infinity and which can be continuously extended to satisfy the nonhomogeneous Dirichlet boundary condition $U(x, 0)=b(x)$ for all $x \in \mathbb{R}$.

Proof. We'll show that the solution U in eqn. (20C.10) is actually equal to the 'Fourier' solution u from Proposition 20C.1.
Fix $y>0$, and define $U_{y}(x)=U(x, y)$ for all $x \in \mathbb{R}$. Equation (20C.10) says $U_{y}=b * \mathcal{K}_{y}$; hence Theorem 19B.2(b) (p.494) says:

$$
\begin{equation*}
\widehat{U}_{y}=2 \pi \cdot \widehat{b} \cdot \widehat{\mathcal{K}}_{y} . \tag{20C.11}
\end{equation*}
$$

Now, by practice problem \# 7 on page 524 of \S [91], we have:

$$
\begin{equation*}
\widehat{\mathcal{K}}_{y}(\mu)=\frac{e^{-y|\mu|}}{2 \pi} \tag{20C.12}
\end{equation*}
$$

Combine (20C.11) and (20C.12) to get:

$$
\begin{equation*}
\widehat{U}_{y}(\mu)=e^{-y|\mu|} \cdot \widehat{b}(\mu) \tag{20C.13}
\end{equation*}
$$

Now apply the Fourier inversion formula (Theorem 19A.1 on page 488) to eqn (20C.13) to obtain:

$$
\begin{aligned}
U_{y}(x) & =\int_{-\infty}^{\infty} \widehat{U}(\mu) \cdot \exp (\mu \cdot x \cdot \mathbf{i}) d \mu=\int_{-\infty}^{\infty} e^{-y|\mu|} \cdot \widehat{b}(\mu) \exp (\mu \cdot x \cdot \mathbf{i}) d \mu \\
& =u(x, y)
\end{aligned}
$$

where $u(x, y)$ is the solution from Proposition 20C.1.

20D PDEs on the half-line

Using the Fourier (co)sine transform, we can solve PDEs on the half-line.

Theorem 20D.1. The heat equation; Dirichlet boundary conditions
Let $f \in \mathbf{L}^{1}\left(\mathbb{R}_{\not}\right)$ have Fourier sine transform $\widehat{f}_{\text {sin }}$, and define $u: \mathbb{R}_{+} \times \mathbb{R}_{\not} \longrightarrow \mathbb{R}$ by:

$$
u(x, t) \quad:=\int_{0}^{\infty} \widehat{f}_{\sin }(\mu) \cdot \sin (\mu \cdot x) \cdot e^{-\mu^{2} t} d \mu
$$

Then $u(x, t)$ is a solution to the heat equation, with initial conditions $u(x, 0)=$ $f(x)$, and satisfies the homogeneous Dirichlet boundary condition: $u(0, t)=0$.

Proof. Exercise 20D. 1 (Hint: Use Proposition 0G.1 on page 567.)

Theorem 20D.2. The heat equation; Neumann boundary conditions
Let $f \in \mathbf{L}^{1}\left(\mathbb{R}_{+}\right)$have Fourier cosine transform $\widehat{f}_{\text {cos }}$, and define $u: \mathbb{R}_{+} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ by:

$$
u(x, t) \quad:=\int_{0}^{\infty} \widehat{f}_{\cos }(\mu) \cdot \cos (\mu \cdot x) \cdot e^{-\mu^{2} t} d \mu
$$

Then $u(x, t)$ is a solution to the heat equation, with initial conditions $u(x, 0)=$ $f(x)$, and the homogeneous Neumann boundary condition: $\partial_{x} u(0, t)=0$.

Proof. Exercise 20D. 2 (Hint: Use Proposition 0G.1 on page 567.)

20E General solution to PDEs using Fourier transforms

Recommended: $\{20 \mathrm{~A}(\mathrm{i}), ~\{20 \mathrm{~B}(\mathrm{i})$, , $\{20 \mathrm{O}, ~\{[20 \mathrm{D}$.
Most of the results of this chapter can be subsumed into a single abstraction, which makes use of the polynomial formalism developed in $\S 16 \mathrm{H}$ on page 369 .

Theorem 20E.1. Fix $D \in \mathbb{N}$, and let L be a linear differential operator on $\mathcal{C}^{\infty}\left(\mathbb{R}^{D} ; \mathbb{R}\right)$ with constant coefficients. Suppose L has polynomial symbol \mathcal{P}.
(a) If $f \in \mathbf{L}^{1}\left(\mathbb{R}^{D}\right)$ has Fourier Transform $\widehat{f}: \mathbb{R}^{D} \longrightarrow \mathbb{R}$, and $g=\mathrm{L} f$, then g has Fourier transform: $\widehat{g}(\boldsymbol{\mu})=\mathcal{P}(\mathbf{i} \boldsymbol{\mu}) \cdot \widehat{f}(\boldsymbol{\mu})$, for all $\boldsymbol{\mu} \in \mathbb{R}^{D}$.
(b) If $q \in \mathbf{L}^{1}\left(\mathbb{R}^{D}\right)$ has Fourier transform $\widehat{q} \in \mathbf{L}^{1}\left(\mathbb{R}^{D}\right)$, and $f \in \mathbf{L}^{1}\left(\mathbb{R}^{D}\right)$ has Fourier transform

$$
\widehat{f}(\boldsymbol{\mu})=\frac{\widehat{q}(\boldsymbol{\mu})}{\mathcal{P}(\mathbf{i} \boldsymbol{\mu})}, \quad \text { for all } \boldsymbol{\mu} \in \mathbb{R}^{D}
$$

then f is a solution to the Poisson-type nonhomogeneous equation " $\mathrm{L} f=$ q."

Let $u: \mathbb{R}^{D} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ be another function, and, for all $t \geq 0$, define $u_{t}: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ by $u_{t}(\mathbf{x}):=u(\mathbf{x}, t)$ for all $\mathbf{x} \in \mathbb{R}^{D}$. Suppose $u_{t} \in \mathbf{L}^{1}\left(\mathbb{R}^{D}\right)$, and let u_{t} have Fourier transform \widehat{u}_{t}.
(c) Let $f \in \mathbf{L}^{1}\left(\mathbb{R}^{D}\right)$, and suppose $\widehat{u}_{t}(\boldsymbol{\mu})=\exp (\mathcal{P}(\mathbf{i} \boldsymbol{\mu}) \cdot t) \cdot \widehat{f}(\boldsymbol{\mu})$, for all $\boldsymbol{\mu} \in \mathbb{R}^{D}$ and $t \geq 0$. Then u is a solution to the first-order evolution equation

$$
\partial_{t} u(\mathbf{x}, t)=\mathrm{L} u(\mathbf{x}, t), \quad \text { for all } \mathbf{x} \in \mathbb{R}^{D} \text { and } t>0
$$

with initial conditions $u(\mathbf{x}, 0)=f(\mathbf{x})$, for all $\mathbf{x} \in \mathbb{R}^{D}$.
(d) Suppose $f \in \mathbf{L}^{1}\left(\mathbb{R}^{D}\right)$ has Fourier transform \widehat{f} which decays fast enough that $\int_{\mathbb{R}^{D}}|\mathcal{P}(\mathbf{i} \boldsymbol{\mu}) \cdot \cos (\sqrt{-\mathcal{P}(\mathbf{i} \boldsymbol{\mu})} \cdot t) \cdot \widehat{f}(\boldsymbol{\mu})| d \boldsymbol{\mu}<\infty$, for all $\left.t \geq 0 .{ }^{2}\right]$
Suppose $\widehat{u}_{t}(\boldsymbol{\mu})=\cos (\sqrt{-\mathcal{P}(\mathbf{i} \boldsymbol{\mu})} \cdot t) \cdot \widehat{f}(\boldsymbol{\mu})$, for all $\boldsymbol{\mu} \in \mathbb{R}^{D}$ and $t \geq 0$. Then u is a solution to the second-order evolution equation

$$
\partial_{t}^{2} u(\mathbf{x}, t)=\mathrm{L} u(\mathbf{x}, t), \quad \text { for all } \mathbf{x} \in \mathbb{R}^{D} \text { and } t>0
$$

with initial position $u(\mathbf{x}, 0)=f(\mathbf{x})$ and initial velocity $\partial_{t} u(\mathbf{x}, 0)=0$, for all $\mathrm{x} \in \mathbb{R}^{D}$.
(e) Suppose $f \in \mathbf{L}^{1}\left(\mathbb{R}^{D}\right)$ has Fourier transform \widehat{f} which decays fast enough that $\int_{\mathbb{R}^{D}}|\sqrt{\mathcal{P}(\mathbf{i} \boldsymbol{\mu})} \cdot \sin (\sqrt{-\mathcal{P}(\mathbf{i} \boldsymbol{\mu})} \cdot t) \cdot \widehat{f}(\boldsymbol{\mu})| d \boldsymbol{\mu}<\infty$, for all $t \geq 0$.
Suppose $\widehat{u}_{t}(\boldsymbol{\mu})=\frac{\sin (\sqrt{-\mathcal{P}(\mathbf{i} \boldsymbol{\mu})} \cdot t)}{\sqrt{-\mathcal{P}(\mathbf{i} \boldsymbol{\mu})}} \cdot \widehat{f}(\boldsymbol{\mu})$, for all $\boldsymbol{\mu} \in \mathbb{R}^{D}$ and $t \geq 0$. Then the function $u(\mathrm{x}, t)$ is a solution to the second-order evolution equation

$$
\partial_{t}^{2} u(\mathbf{x}, t)=\mathrm{L} u(\mathbf{x}, t), \quad \text { for all } \mathbf{x} \in \mathbb{R}^{D} \text { and } t>0
$$

with initial position $u(\mathbf{x}, 0)=0$ and initial velocity $\partial_{t} u(\mathbf{x}, 0)=f(\mathbf{x})$, for all $\mathrm{x} \in \mathbb{R}^{D}$.

Proof. Exercise 20E. 1 (Hint: Use Proposition 0G.1 on page 567. In each case, be sure to verify that convergence conditions of Proposition 0G. 1 are satisfied.)

[^96]Exercise 20E.2. Go back through this chapter and see how all of the different solution theorems for the heat equation ($\$ 20 \mathrm{~A}(\mathrm{i})]$ wave equation ($(20 \mathrm{~B}(\mathrm{i}])$, and Poisson equation ($\S 20 \mathrm{C})$ are special cases of this result. What about the solution for the Dirichlet problem on a half-space in §20D? How does it fit into this formalism?

Exercise 20E.3. State and prove a theorem analogous to Theorem 20E. 1 for solving a D-dimensional Schrödinger equation using Fourier transforms.

$20 F$ Practice problems

1. Let $f(x)=\left\{\begin{array}{ll}1 & \text { if } 0<x<1 ; \\ 0 & \text { otherwise. }\end{array}\right.$, as in Example 19A.4 on page 490
(a) Use the Fourier method to solve the Dirichlet problem on a half-space, with boundary condition $u(x, 0)=f(x)$.
(b) Use the Fourier method to solve the heat equation on a line, with initial condition $u_{0}(x)=f(x)$.
2. Solve the two-dimensional heat equation, with initial conditions

$$
f(x, y)= \begin{cases}1 & \text { if } 0 \leq x \leq X \text { and } 0 \leq y \leq Y \\ 0 & \text { otherwise }\end{cases}
$$

where $X, Y>0$ are constants. (Hint: See problem \# 3 on page 523 of §191)
3. Solve the two-dimensional wave equation, with

Initial Position: $u(x, y, 0)=0$,
Initial Velocity: $\partial_{t} u(x, y, 0)=f_{1}(x, y)=\left\{\begin{array}{ll}1 & \text { if } 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 ; \\ 0 & \text { otherwise } .\end{array}\right.$.
(Hint: See problem \# 3 on page 523 of §191)
4. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined: $f(x)= \begin{cases}x & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}$ (see Figure 191.1 on page 524). Solve the heat equation on the real line, with initial conditions $u(x ; 0)=f(x)$. (Use the Fourier method; see problem \# \# on page 523 of §191)
5. Let $f(x)=x \cdot \exp \left(\frac{-x^{2}}{2}\right)$. (See problem \# 5 on page 523 of $\S 191$.)
(a) Solve the heat equation on the real line, with initial conditions $u(x ; 0)=f(x)$. (Use the Fourier method.)
(b) Solve the wave equation on the real line, with initial position $u(x ; 0)=$ $f(x)$ and initial velocity $\partial_{t} u(x, 0)=0$. (Use the Fourier method.)
6. Let $f(x)=\frac{2 x}{\left(1+x^{2}\right)^{2}}$. (See problem \#8 on page 524 of $\S 19 \mathrm{I}$.)
(a) Solve the heat equation on the real line, with initial conditions $u(x ; 0)=f(x)$. (Use the Fourier method.)
(b) Solve the wave equation on the real line, with initial position $u(x, 0)=$ 0 and initial velocity $\partial_{t} u(x, 0)=f(x)$. (Use the Fourier method.)
7. Let $f(x)=\left\{\begin{array}{lll}1 & \text { if } & -4<x<5 ; \\ 0 & & \text { otherwise. }\end{array}\right.$ (See problem \# 9 on page 524 of §191.) Use the 'Fourier Method' to solve the one-dimensional heat equation $\left(\partial_{t} u(x ; t)=\triangle u(x ; t)\right)$ on the domain $\mathbb{X}=\mathbb{R}$, with initial conditions $u(x ; 0)=f(x)$.
8. Let $f(x)=\frac{x \cos (x)-\sin (x)}{x^{2}}$. (See problem \# 10 on page 524 of §191.) Use the 'Fourier Method' to solve the one-dimensional heat equation $\left(\partial_{t} u(x ; t)=\triangle u(x ; t)\right)$ on the domain $\mathbb{X}=\mathbb{R}$, with initial conditions $u(x ; 0)=f(x)$.
9. Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ had Fourier transform $\widehat{f}(\mu)=\frac{\mu}{\mu^{4}+1}$.
(a) Find the solution to the one-dimensional heat equation $\partial_{t} u=\Delta u$, with initial conditions $u(x ; 0)=f(x)$ for all $x \in \mathbb{R}$.
(b) Find the solution to the one-dimensional wave equation $\partial_{t}^{2} u=\Delta u$, with

$$
\begin{aligned}
\text { Initial position } u(x ; 0) & =0, \quad \text { for all } x \in \mathbb{R} . \\
\text { Initial velocity } \partial_{t} u(x ; 0) & =f(x), \quad \text { for all } x \in \mathbb{R} .
\end{aligned}
$$

(c) Find the solution to the two-dimensional Laplace Equation $\triangle u(x, y)=$ 0 on the half-space $\mathbb{H}=\{(x, y) ; x \in \mathbb{R}, y \geq 0\}$, with boundary condition: $u(x, 0)=f(x)$ for all $x \in \mathbb{R}$.
(d) Verify your solution to question (c). That is: check that your solution satisfies the Laplace equation and the desired boundary conditions.
10. Fix $\mu \in \mathbb{R}$, and define $f_{\mu}: \mathbb{R}^{2} \longrightarrow \mathbb{C}$ by $f_{\mu}(x, y):=\exp (-|\mu| \cdot y) \exp (-\mu \mathbf{i} x)$. Show that f is harmonic on \mathbb{R}^{2}.
(This function appears in the Fourier solution to the half-plane Dirichlet problem; see Proposition 20C.1 on page 538.)

Chapter 0

Appendices

0 A Sets and functions

Sets: A set is a collection of objects. If \mathcal{S} is a set, then the objects in \mathcal{S} are called elements of \mathcal{S}; if s is an element of \mathcal{S}, we write " $s \in \mathcal{S}$. A subset of \mathcal{S} is a smaller set \mathcal{R} such that every element of \mathcal{R} is also an element of \mathcal{S}. We indicate this by writing " $\mathcal{R} \subset \mathcal{S}$ ".

Sometimes we can explicitly list the elements in a set; we write " $\mathcal{S}=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$ ".

Example 0A.1.

(a) In Figure 0A.1(A), \mathcal{S} is the set of all cities in the world, so Toronto $\in \mathcal{S}$. We might write $\mathcal{S}=\{$ Toronto, Beijing, London, Kuala Lampur, Nairobi, Santiago, Pisa, Sidney, ...\}. If \mathcal{R} is the set of all cities in Canada, then $\mathcal{R} \subset \mathcal{S}$.
(b) In Figure 0A.1(B), the set of natural numbers is $\mathbb{N}:=\{0,1,2,3,4, \ldots\}$. The set of positive natural numbers is $\mathbb{N}_{+}:=\{1,2,3,4, \ldots\}$.
Thus, $5 \in \mathbb{N}$, but $\pi \notin \mathbb{N}$ and $-2 \notin \mathbb{N}$.
(c) In Figure 0A.1(B), the set of integers is $\mathbb{Z}:=\{\ldots,-3,-2,-1,0,1,2,3,4, \ldots\}$. Thus, $5 \in \mathbb{Z}$ and $-2 \in \mathbb{Z}$, but $\pi \notin \mathbb{Z}$ and $\frac{1}{2} \notin \mathbb{Z}$. Observe that $\mathbb{N}_{+} \subset \mathbb{N} \subset \mathbb{Z}$.
(d) In Figure 0A.1(B), the set of real numbers is denoted by \mathbb{R}. It is best visualised as an infinite line. Thus, $5 \in \mathbb{R},-2 \in \mathbb{R}, \pi \in \mathbb{R}$ and $\frac{1}{2} \in \mathbb{R}$. Observe that $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{R}$.
(e) In Figure 0A.1(B), the set of nonnegative real numbers is denoted by $[0, \infty)$ or \mathbb{R}_{+}. It is best visualised as a half-infinite line, including zero. Observe that $[0, \infty) \subset \mathbb{R}$.
(f) In Figure 0A.1(B), the set of positive real numbers is denoted by $(0, \infty)$ or \mathbb{R}_{+}. It is best visualised as a half-infinite line, excluding zero. Observe that $\mathbb{R}_{+} \subset \mathbb{R}_{+} \subset \mathbb{R}$.

Figure 0A.1: (A) \mathcal{R} is a subset of \mathcal{S} (B) Important Sets: $\mathbb{N}_{+}, \mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{R}_{+}:=$ $[0, \infty)$ and $\mathbb{R}_{+}:=(0, \infty) . \quad$ (C) \mathbb{R}^{2} is two-dimensional space. \quad (D) \mathbb{R}^{3} is three-dimensional space.
(g) Figure 0A.1(C) depicts two-dimensional space: the set of all coordinate pairs (x, y), where x and y are real numbers. This set is denoted by \mathbb{R}^{2}, and is best visualised as an infinite plane.
(h) Figure 0A.1(D) depicts three-dimensional space: the set of all coordinate triples $\left(x_{1}, x_{2}, x_{3}\right)$, where x_{1}, x_{2}, and x_{3} are real numbers. This set is denoted by \mathbb{R}^{3}, and is best visualised as an infinite void.
(i) If D is any natural number, then D-dimensional space is the set of all coordinate triples $\left(x_{1}, x_{2}, \ldots, x_{D}\right)$, where x_{1}, \ldots, x_{D} are all real numbers. This set is denoted by \mathbb{R}^{D}. It is hard to visualize when D is bigger than 3.

Cartesian Products: If \mathcal{S} and \mathcal{T} are two sets, then their Cartesian product is the set of all pairs (s, t), where s is an element of \mathcal{S}, and t is an element of \mathcal{T}. We denote this set by $\mathcal{S} \times \mathcal{T}$.

Example 0A.2.

(a) $\mathbb{R} \times \mathbb{R}$ is the set of all pairs (x, y), where x and y are real numbers. In other words, $\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}$.

Figure 0A.2: (A) $f(C)$ is the first letter of city C. (B) $\mathbf{p}(t)$ is the position of the fly at time t.
(b) $\mathbb{R}^{2} \times \mathbb{R}$ is the set of all pairs (\mathbf{w}, z), where $\mathbf{w} \in \mathbb{R}^{2}$ and $z \in \mathbb{R}$. But if \mathbf{w} is an element of \mathbb{R}^{2}, then $\mathbf{w}=(x, y)$ for some $x \in \mathbb{R}$ and $y \in \mathbb{R}$. Thus, any element of $\mathbb{R}^{2} \times \mathbb{R}$ is an object $((x, y), z)$. By suppressing the inner pair of brackets, we can write this as (x, y, z). In this way, we see that $\mathbb{R}^{2} \times \mathbb{R}$ is the same as \mathbb{R}^{3}.
(c) In the same way, $\mathbb{R}^{3} \times \mathbb{R}$ is the same as \mathbb{R}^{4}, once we write $((x, y, z), t)$ as (x, y, z, t). More generally, $\mathbb{R}^{D} \times \mathbb{R}$ is mathematically the same as \mathbb{R}^{D+1}.

Often, we use the final coordinate to store a 'time' variable, so it is useful to distinguish it, by writing $((x, y, z), t)$ as $(x, y, z ; t)$.

Functions: If \mathcal{S} and \mathcal{T} are sets, then a function from \mathcal{S} to \mathcal{T} is a rule which assigns a specific element of \mathcal{T} to every element of \mathcal{S}. We indicate this by writing $" f: \mathcal{S} \longrightarrow \mathcal{T}$ ".

Example 0A.3.

(a) In Figure 0A.2(A), \mathcal{S} is the cities in the world, and $\mathcal{T}=\{A, B, C, \ldots, Z\}$ is the letters of the alphabet, and f is the function which is the first letter in the name of each city. Thus $f(\underline{\text { Peterborough }})=P, \quad f(\underline{\text { Santiago }})=S$, etc.
(b) if \mathbb{R} is the set of real numbers, then $\sin : \mathbb{R} \longrightarrow \mathbb{R}$ is a function: $\sin (0)=0$, $\sin (\pi / 2)=1$, etc.

Two important classes of functions are paths and fields.

(A)

(B)

Figure 0A.3: (A) A height function describes a landscape. (B) A density distribution in \mathbb{R}^{2}.

Paths: Imagine a fly buzzing around a room. Suppose you try to represent its trajectory as a curve through space. This defines a a function \mathbf{p} from \mathbb{R} into \mathbb{R}^{3}, where \mathbb{R} represents time, and \mathbb{R}^{3} represents the (three-dimensional) room, as shown in Figure 0A.2(B). If $t \in \mathbb{R}$ is some moment in time, then $\mathbf{p}(t)$ is the position of the fly at time t. Since this \mathbf{p} describes the path of the fly, we call \mathbf{p} a path.

More generally, a path (or trajectory or curve) is a function $\mathbf{p}: \mathbb{R} \longrightarrow \mathbb{R}^{D}$, where D is any natural number. It describes the motion of an object through D-dimensional space. Thus, if $t \in \mathbb{R}$, then $\mathbf{p}(t)$ is the position of the object at time t.

Scalar Fields: Imagine a three-dimensional topographic map of Antarctica. The rugged surface of the map is obtained by assigning an altitude to every location on the continent. In other words, the map implicitly defines a function \mathbf{h} from \mathbb{R}^{2} (the Antarctic continent) to \mathbb{R} (the set of altitudes, in metres above sea level). If $(x, y) \in \mathbb{R}^{2}$ is a location in Antarctica, then $\mathbf{h}(x, y)$ is the altitude at this location (and $\mathbf{h}(x, y)=0$ means (x, y) is at sea level).

This is an example of a scalar field. A scalar field is a function $u: \mathbb{R}^{D} \longrightarrow \mathbb{R}$; it assigns a numerical quantity to every point in D-dimensional space.

Example 0A.4.

(a) In Figure 0A.3(A), a landscape is represented by a height function \mathbf{h} : $\mathbb{R}^{2} \longrightarrow \mathbb{R}$.
(b) Figure 0A.3(B) depicts a concentration function on a two-dimensional plane (e.g. the concentration of bacteria on a petri dish). This is a function $\rho: \mathbb{R}^{2} \longrightarrow \mathbb{R}_{+}($where $\rho(x, y)=0$ indicates zero bacteria at $(x, y))$.

DRAFT January 31, 2009
(c) The mass density of a three-dimensional object is a function $\rho: \mathbb{R}^{3} \longrightarrow$ \mathbb{R}_{+}(where $\rho\left(x_{1}, x_{2}, x_{3}\right)=0$ indicates vacuum).
(d) The charge density is a function $\mathbf{q}: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ (where $\mathbf{q}\left(x_{1}, x_{2}, x_{3}\right)=0$ indicates electric neutrality)
(e) The electric potential (or voltage) is a function $\mathbf{V}: \mathbb{R}^{3} \longrightarrow \mathbb{R}$.
(f) The temperature distribution in space is a function $u: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ (so $u\left(x_{1}, x_{2}, x_{3}\right)$ is the "temperature at location $\left(x_{1}, x_{2}, x_{3}\right)$ ")

A time-varying scalar field is a function $u: \mathbb{R}^{D} \times \mathbb{R} \longrightarrow \mathbb{R}$, assigning a quantity to every point in space at each moment in time. Thus, for example, $u(\mathbf{x} ; t)$ is the "temperature at location \mathbf{x}, at time t "

Vector Fields: A vector field is a function $\overrightarrow{\mathbf{V}}: \mathbb{R}^{D} \longrightarrow \mathbb{R}^{D}$; it assigns a vector (i.e. an "arrow") at every point in space.

Example 0A.5.

(a) The electric field generated by a charge distribution (denoted by $\overrightarrow{\mathbf{E}}$).
(b) The flux of some material flowing through space (often denoted by $\overrightarrow{\mathbf{F}}$). \diamond Thus, for example, $\overrightarrow{\mathbf{F}}(\mathbf{x})$ is the "flux" of material at location \mathbf{x}.

0B Derivatives -notation

If $f: \mathbb{R} \longrightarrow \mathbb{R}$, then f^{\prime} is the first derivative of $f ; f^{\prime \prime}$ is the second derivative, $\ldots f^{(n)}$ the nth derivative, etc. If $\mathbf{x}: \mathbb{R} \longrightarrow \mathbb{R}^{D}$ is a path, then the velocity of \mathbf{x} at time t is the vector

$$
\dot{\mathbf{x}}(t)=\left[x_{1}^{\prime}(t), x_{2}^{\prime}(t), \ldots, x_{D}^{\prime}(t)\right]
$$

If $u: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ is a scalar field, then the following notations will be used interchangeably:

$$
\text { for all } j \in[1 \ldots D], \quad \partial_{j} u:=\frac{\partial u}{\partial x_{j}}
$$

If $u: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ (i.e. $u(x, y)$ is a function of two variables), then we will also write

$$
\partial_{x} u:=\frac{\partial u}{\partial x} \quad \text { and } \quad \partial_{y} u:=\frac{\partial u}{\partial y} .
$$

Multiple derivatives will be indicated by iterating this procedure. For example,

$$
\partial_{x}^{3} \partial_{y}^{2} u:=\frac{\partial^{3}}{\partial x^{3}} \frac{\partial^{2} u}{\partial y^{2}}
$$

Linear Partial Differential Equations and Fourier Theory Marcus Pivato Danuary 31, 2009

A useful notational convention (which we rarely use) is multiexponents. If $\gamma_{1}, \ldots, \gamma_{D}$ are positive integers, and $\gamma=\left(\gamma_{1}, \ldots, \gamma_{D}\right)$, then

$$
\mathbf{x}^{\gamma}:=x_{1}^{\gamma_{1}} x_{2}^{\gamma_{2}} \ldots, x_{D}^{\gamma_{D}}
$$

For example, if $\gamma=(3,4)$, and $\mathbf{z}=(x, y)$ then $\mathbf{z}^{\gamma}=x^{3} y^{4}$.
This generalizes to multi-index notation for derivatives. If $\gamma=\left(\gamma_{1}, \ldots, \gamma_{D}\right)$, then

$$
\partial^{\gamma} u \quad:=\quad \partial_{1}^{\gamma_{1}} \partial_{2}^{\gamma_{2}} \ldots \partial_{D}^{\gamma_{D}} u
$$

For example, if $\gamma=(1,2)$, then $\partial^{\gamma} u=\frac{\partial}{\partial x} \frac{\partial^{2} u}{\partial y^{2}}$.
Remark. Many authors use subscripts to indicate partial derivatives. For example, they would write

$$
u_{x}:=\partial_{x} u, \quad u_{x x}:=\partial_{x}^{2} u, \quad u_{x y}:=\partial_{x} \partial_{y} u, \text { etc. }
$$

This notation is very compact and intuitive, but it has two major disadvantages:

1. When dealing with an N-dimensional function $u\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ (where N is either large or indeterminate), you have only two options. You can either either use awkward 'nested subscript' expressions like

$$
u_{x_{3}}:=\partial_{3} u, \quad u_{x_{5} x_{5}}:=\partial_{5}^{2} u, \quad u_{x_{2} x_{3}}:=\partial_{2} \partial_{3} u, \text { etc. },
$$

or you must adopt the 'numerical subscript' convention that

$$
u_{3}:=\partial_{3} u, \quad u_{55}:=\partial_{5}^{2} u, \quad u_{23}:=\partial_{2} \partial_{3} u, \text { etc. }
$$

But once 'numerical' subscripts are reserved to indicate derivatives in this fashion, they can no longer be used for other purposes (e.g. indexing a sequence of functions, or indexing the coordinates of a vector-valued function). This can create further awkwardness.
2. We will often be considering functions of the form $u(x, y ; t)$, where (x, y) are 'space' coordinates and t is a 'time' coordinate. In this situation, it is often convenient to fix a value of t and consider the two-dimensional scalar field $u_{t}(x, y):=u(x, y ; t)$. Normally, when we use t as a subscript, it will be indicate a 'time-frozen' scalar field of this kind.

Thus, in this book, we will never use subscripts to indicate partial derivatives. Partial derivatives will always be indicated by the notation " $\partial_{x} u$ " or " $\frac{\partial u}{\partial x}$ " (almost always the first one). However, when consulting other texts, you should be aware of the 'subscript' notation for derivatives, because it is used quite frequently.

0C Complex numbers

Complex numbers have the form $z=x+y \mathbf{i}$, where $\mathbf{i}^{2}=-1$. We say that x is the real part of z, and y is the imaginary part; we write: $x=\operatorname{Re}[z]$ and $y=\operatorname{Im}[z]$.

If we imagine (x, y) as two real coordinates, then the complex numbers form a two-dimensional plane. Thus, we can also write a complex number in polar coordinates (see Figure 0C.1) If $r>0$ and $0 \leq \theta<2 \pi$, then we define

$$
r \operatorname{cis} \theta=r \cdot[\cos (\theta)+\mathbf{i} \sin (\theta)]
$$

Addition: If $z_{1}=x_{1}+y_{1} \mathbf{i}, z_{2}=x_{2}+y_{2} \mathbf{i}$, are two complex numbers, then $z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right) \mathbf{i}$. (see Figure 0C.2)

Multiplication: If $z_{1}=x_{1}+y_{1} \mathbf{i}, z_{2}=x_{2}+y_{2} \mathbf{i}$, are two complex numbers, then $z_{1} \cdot z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+\left(x_{1} y_{2}+x_{2} y_{1}\right) \mathbf{i}$.

Multiplication has a nice formulation in polar coordinates; If $z_{1}=r_{1} \operatorname{cis} \theta_{1}$ and $z_{2}=r_{2} \operatorname{cis} \theta_{2}$, then $z_{1} \cdot z_{2}=\left(r_{1} \cdot r_{2}\right) \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)$. In other words, multiplication by the complex number $z=r \operatorname{cis} \theta$ is equivalent to dilating the complex plane by a factor of r, and rotating the plane by an angle of θ. (see Figure 0C.3)

Exponential: If $z=x+y \mathbf{i}$, then $\exp (z)=e^{x}$ cis $y=e^{x} \cdot[\cos (y)+\mathbf{i} \sin (y)]$. (see Figure 0C.4) In particular, if $x \in \mathbb{R}$, then

- $\exp (x)=e^{x}$ is the standard real-valued exponential function.
- $\exp (y \mathbf{i})=\cos (y)+\sin (y) \mathbf{i} \quad$ is a periodic function; as y moves along the real line, $\exp (y \mathbf{i})$ moves around the unit circle. (This is Euler's formula.)

The complex exponential function shares two properties with the real exponential function:

- If $z_{1}, z_{2} \in \mathbb{C}$, then $\exp \left(z_{1}+z_{2}\right)=\exp \left(z_{1}\right) \cdot \exp \left(z_{2}\right)$.
- If $w \in \mathbb{C}$, and we define the function $f: \mathbb{C} \longrightarrow \mathbb{C}$ by $f(z)=\exp (w \cdot z)$, then $f^{\prime}(z)=w \cdot f(z)$.

Consequence: If $w_{1}, w_{2}, \ldots, w_{D} \in \mathbb{C}$, and we define $f: \mathbb{C}^{D} \longrightarrow \mathbb{C}$ by

$$
f\left(z_{1}, \ldots, z_{D}\right)=\exp \left(w_{1} z_{1}+w_{2} z_{2}+\ldots w_{D} z_{D}\right)
$$

then $\partial_{d} f(\mathbf{z})=w_{d} \cdot f(\mathbf{z})$. More generally,

$$
\begin{equation*}
\partial_{1}^{n_{1}} \partial_{2}^{n_{2}} \ldots \partial_{D}^{n_{D}} f(\mathbf{z})=w_{1}^{n_{1}} \cdot w_{2}^{n_{2}} \cdot \ldots w_{D}^{n_{D}} \cdot f(\mathbf{z}) \tag{0C.1}
\end{equation*}
$$

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

Figure 0C.1: $z=x+y \mathbf{i} ; r=\sqrt{x^{2}+y^{2}}, \theta=\tan (y / x)$.

Figure 0C.2: The addition of complex numbers $z_{1}=x_{1}+y_{1} \mathbf{i}$ and $z_{2}=x_{2}+y_{2} \mathbf{i}$.

Figure 0C.3: The multiplication of complex numbers $z_{1}=r_{1} \operatorname{cis} \theta_{1}$ and $z_{2}=$ $r_{2} \operatorname{cis} \theta_{2}$.

Figure 0C.4: The exponential of complex number $z=x+y \mathbf{i}$.

Figure 0D.1: Some domains in \mathbb{R}^{3}.

For example, if $f(x, y)=\exp (3 x+5 \mathbf{i} y)$, then

$$
f_{x x y}(x, y)=\partial_{x}^{2} \partial_{y} f(x, y)=45 \mathbf{i} \cdot \exp (3 x+5 \mathbf{i} y) .
$$

If $\mathbf{w}=\left(w_{1}, \ldots, w_{D}\right)$ and $\mathbf{z}=\left(z_{1}, \ldots, z_{D}\right)$, then we will sometimes write:

$$
\exp \left(w_{1} z_{1}+w_{2} z_{2}+\ldots w_{D} z_{D}\right)=\exp \langle\mathbf{w}, \mathbf{z}\rangle .
$$

Conjugation and Norm: If $z=x+y \mathbf{i}$, then the complex conjugate of z is $\bar{z}=x-y \mathbf{i}$. In polar coordinates, if $z=r \operatorname{cis} \theta$, then $\bar{z}=r \operatorname{cis}(-\theta)$.

The norm of z is $|z|=\sqrt{x^{2}+y^{2}}$. We have the formula:

$$
|z|^{2}=z \cdot \bar{z}
$$

0D Coordinate systems and domains

Prerequisites: §0A.
Boundary Value Problems are usually posed on some "domain" -some region of space. To solve the problem, it helps to have a convenient way of mathematically representing these domains, which can sometimes be simplified by adopting a suitable coordinate system. We will first give a variety of examples of 'domains' in different coordinate systems in $\S 0 \mathrm{D}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$. Then in $\S 0 \mathrm{D}(\mathrm{e})$ we will give a formal definition of the word 'domain'.

0D(i) Rectangular coordinates

Rectangular coordinates in \mathbb{R}^{3} are normally denoted (x, y, z). Three common domains in rectangular coordinates:

- The slab $\mathbb{X}=\left\{(x, y, z) \in \mathbb{R}^{3} ; 0 \leq z \leq L\right\}$, where L is the thickness of the slab (see Figure 0D.1D).
- The unit cube: $\mathbb{X}=\left\{(x, y, z) \in \mathbb{R}^{3} ; 0 \leq x \leq 1, \quad 0 \leq y \leq 1, \quad\right.$ and $0 \leq$ $z \leq 1\}$ (see Figure 0D.1C).
- The box: $\mathbb{X}=\left\{(x, y, z) \in \mathbb{R}^{3} ; 0 \leq x \leq L_{1}, \quad 0 \leq y \leq L_{2}, \quad\right.$ and $0 \leq z \leq$ $\left.L_{3}\right\}$, where L_{1}, L_{2}, and L_{3} are the sidelengths (see Figure 0D.11A).
- The rectangular column: $\mathbb{X}=\left\{(x, y, z) \in \mathbb{R}^{3} ; 0 \leq x \leq L_{1}\right.$ and $\left.0 \leq y \leq L_{2}\right\}$ (see Figure 0D.1E).

0D(ii) Polar coordinates on \mathbb{R}^{2}

Figure 0D.2: Polar coordinates
Polar coordinates (r, θ) on \mathbb{R}^{2} are defined by the transformation:

$$
x=r \cdot \cos (\theta) \text { and } y=r \cdot \sin (\theta) .
$$

with reverse transformation:

$$
r=\sqrt{x^{2}+y^{2}} \quad \text { and } \quad \theta=\operatorname{Arctan}(y, x) .
$$

Here, the coordinate r ranges over \mathbb{R}_{\not}, while the variable θ ranges over $[-\pi, \pi)$. Finally we define

$$
\operatorname{Arctan}(y, x) \quad:=\left\{\begin{array}{rll}
\arctan (y / x) & \text { if } & x>0 ; \\
\arctan (y / x)+\pi & \text { if } & x<0 \text { and } y>0 ; \\
\arctan (y / x)-\pi & \text { if } & x<0 \text { and } y<0 .
\end{array}\right.
$$

Three common domains in polar coordinates are:

- $\mathbb{D}=\{(r, \theta) ; r \leq R\}$ is the disk of radius R (see Figure 0D.3A).

Figure 0D.3: Some domains in polar and cylindrical coordinates.

- $\mathbb{D}^{\complement}=\{(r, \theta) ; R \leq r\}$ is the codisk of inner radius R.
- $\mathbb{A}=\left\{(r, \theta) ; R_{\text {min }} \leq r \leq R_{\max }\right\}$ is the annulus, of inner radius $R_{\text {min }}$ and outer radius $R_{\max }$ (see Figure 0D.3B).

0D(iii) Cylindrical coordinates on \mathbb{R}^{3}

Cylindrical coordinates (r, θ, z) on \mathbb{R}^{3}, are defined by the transformation:

$$
x=r \cdot \cos (\theta), \quad y=r \cdot \sin (\theta) \quad \text { and } \quad z=z
$$

with reverse transformation:

$$
r=\sqrt{x^{2}+y^{2}}, \quad \theta=\operatorname{Arctan}(y, x) \quad \text { and } \quad z=z .
$$

Five common domains in cylindrical coordinates are:

- $\mathbb{X}=\{(r, \theta, z) ; r \leq R\}$ is the (infinite) cylinder of radius R (see Figure 0D.3E).
- $\mathbb{X}=\left\{(r, \theta, z) ; R_{\text {min }} \leq r \leq R_{\text {max }}\right\}$ is the (infinite) pipe of inner radius $R_{\text {min }}$ and outer radius $R_{\text {max }}$ (see Figure 0D.3D).
- $\mathbb{X}=\{(r, \theta, z) ; r>R\}$ is the wellshaft of radius R.

Figure 0D.4: Spherical coordinates

- $\mathbb{X}=\{(r, \theta, z) ; r \leq R$ and $0 \leq z \leq L\}$ is the finite cylinder of radius R and length L (see Figure 0D.3C).
- In cylindrical coordinates on \mathbb{R}^{3}, we can write the slab as $\{(r, \theta, z) ; 0 \leq z \leq L\}$.

0D(iv) Spherical coordinates on \mathbb{R}^{3}

Spherical coordinates (r, θ, ϕ) on \mathbb{R}^{3} are defined by the transformation:

$$
\begin{aligned}
x & =r \cdot \sin (\phi) \cdot \cos (\theta), \quad y=r \cdot \sin (\phi) \cdot \sin (\theta) \\
\text { and } z & =r \cdot \cos (\phi) .
\end{aligned}
$$

with reverse transformation:

$$
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}+z^{2}}, \quad \theta=\operatorname{Arctan}(y, x) \\
\text { and } \phi & =\operatorname{Arctan}\left(\sqrt{x^{2}+y^{2}}, z\right) .
\end{aligned}
$$

In spherical coordinates, the set $\mathbb{B}=\{(r, \theta, \phi) ; r \leq R\}$ is the ball of radius R (see Figure 0D.1B).

$0 \mathrm{D}(\mathrm{v}) \quad$ What is a 'domain'?

Formally, a domain is a subset $\mathbb{X} \subseteq \mathbb{R}^{D}$ which satisfies three conditions:
(a) \mathbb{X} is closed. That is, \mathbb{X} must contain all its boundary points.
(b) \mathbb{X} has a dense interior. That is, every point in \mathbb{X} is a limit point of a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of interior points of \mathbb{X}. (A point $x \in \mathbb{X}$ is an interior point if $\mathbb{B}(x, \epsilon) \subset \mathbb{X}$ for some $\epsilon>0)$.
(c) \mathbb{X} is connected. That is, we cannot find two disjoint closed subsets \mathbb{X}_{1} and \mathbb{X}_{2} such that $\mathbb{X}=\mathbb{X}_{1} \sqcup \mathbb{X}_{2}$.

Observe that all of the examples in $\S 0 \mathrm{D}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$ satisfy these three conditions.
Why conditions (a), (b), and (c)? We are normally interested in finding a function $f: \mathbb{X} \longrightarrow \mathbb{R}$ which satisfies a certain partial differential equation on \mathbb{X}. However, such a PDE only makes sense on the interior of \mathbb{X} (because the derivatives of f at x are only well-defined if x is an interior point of \mathbb{X}). Thus, first \mathbb{X} must have a nonempty interior, and second, this interior must fill 'most' of \mathbb{X}. This is the reason for condition (b). We often represent certain physical constraints by requiring f to satisfy certain boundary conditions on the boundary of \mathbb{X}. (That's what a 'boundary value problem' means). But this cannot make sense unless \mathbb{X} satisfies condition (a). Finally, we don't actually need condition (c). But if \mathbb{X} is disconnected, then we could split \mathbb{X} into two or more disconnected pieces and solve the equations separately on each piece. Thus, we can always assume without loss of generality that \mathbb{X} is connected.

0E Vector calculus

Prerequisites: $\S[\mathrm{DA}$, § BB .

0E(i) Gradient

....in two dimensions:

Suppose $\mathbb{X} \subset \mathbb{R}^{2}$ was a two-dimensional region. To define the topography of a "landscape" on this region, it suffices] to specify the height of the land at each point. Let $u(x, y)$ be the height of the land at the point $(x, y) \in \mathbb{X}$. (Technically, we say: " $u: \mathbb{X} \longrightarrow \mathbb{R}$ is a two-dimensional scalar field.")

The gradient of the landscape measures the slope at each point in space. To be precise, we want the gradient to be an arrow pointing in the direction of most rapid ascent. The length of this arrow should then measure the rate of ascent. Mathematically, we define the two-dimensional gradient of u by:

$$
\nabla u(x, y)=\left[\frac{\partial u}{\partial x}(x, y), \quad \frac{\partial u}{\partial y}(x, y)\right]
$$

The gradient arrow points in the direction where u is increasing the most rapidly. If $u(x, y)$ was the height of a mountain at location (x, y), and you were trying to climb the mountain, then your (naive) strategy would be to always walk in the direction $\nabla u(x, y)$. Notice that, for any $(x, y) \in \mathbb{X}$, the gradient $\nabla u(x, y)$ is a two-dimensional vector - that is, $\nabla u(x, y) \in \mathbb{R}^{2}$. (Technically, we say " ∇u : $\mathbb{X} \longrightarrow \mathbb{R}^{2}$ is a two-dimensional vector field'.)

[^97]
....in many dimensions:

This idea generalizes to any dimension. If $u: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ is a scalar field, then the gradient of u is the associated vector field $\nabla u: \mathbb{R}^{D} \longrightarrow \mathbb{R}^{D}$, where, for any $\mathrm{x} \in \mathbb{R}^{D}$,

$$
\nabla u(\mathbf{x})=\left[\partial_{1} u, \partial_{2} u, \ldots, \partial_{D} u\right](\mathbf{x})
$$

Proposition 0E.1. Algebra of gradients

Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a domain. Let $f, g: \mathbb{X} \longrightarrow \mathbb{R}$ be differentiable scalar fields, and let $(f+g): \mathbb{X} \longrightarrow \mathbb{R}$ and $(f \cdot g): \mathbb{X} \longrightarrow \mathbb{R}$ denote the sum and product of f and g.
(a) (Linearity) For all $\mathbf{x} \in \mathbb{X}$, and any $r \in \mathbb{R}$,

$$
\nabla(r f+g)(\mathbf{x})=r \nabla f(\mathbf{x})+\nabla g(\mathbf{x})
$$

(b) (Leibniz rule) For all $\mathbf{x} \in \mathbb{X}$,

$$
\nabla(f \cdot g)(\mathbf{x})=f(\mathbf{x}) \cdot(\nabla g(\mathbf{x}))+g(\mathbf{x}) \cdot(\nabla f(\mathbf{x}))
$$

Proof. Exercise 0E. 1

0E(ii) Divergence

....in one dimension:
Imagine a current of 'fluid' (e.g. air, water, electricity) flowing along the real line \mathbb{R}. For each point $x \in \mathbb{R}$, let $V(x)$ describe the rate at which fluid is flowing past this point. Now, in places where the fluid slows down, we expect the derivative $V^{\prime}(x)$ to be negative. We also expect the fluid to accumulate (i.e. become 'compressed') at such locations (because fluid is entering the region more quickly than it leaves). In places where the fluid speeds up, we expect the derivative $V^{\prime}(x)$ to be positive, and we expect the fluid to be depleted (i.e. to decompress) at such locations (because fluid is leaving the region more quickly than it arrives).

If the fluid is incompressible (e.g. water), then we can assume that the quantity of fluid at each point is constant. In this case, the fluid cannot 'accumulate' or 'be depleted'. In this case, a negative value of $V^{\prime}(x)$ means that fluid is somehow being 'absorbed' (e.g. being destroyed or leaking out of the system) at x. Likewise, a positive value of $V^{\prime}(x)$ means that fluid is somehow being 'generated' (e.g. being created, or leaking into the system) at x.

In general, positive $V^{\prime}(x)$ may represent some combination of fluid depletion, decompression, or generation at x, while negative $V^{\prime}(x)$ may represent some combination of local accumulation, compression or absorption at x. Thus, if we define the divergence of the flow to be the rate at which fluid is being depleted/decompressed/generated (if positive) or being accumulated/compressed/absorbed (if positive), then mathematically speaking,

$$
\operatorname{div} V(x)=V^{\prime}(x)
$$

This physical model yields an interesting interpretation of the Fundamental Theorem of Calculus. Suppose $a<b \in \mathbb{R}$, and consider the interval $[a, b]$. If $V: \mathbb{R} \longrightarrow \mathbb{R}$ describes the flow of fluid, then $V(a)$ is the amount of fluid flowing into the left end of the interval $[a, b]$ (or flowing out, if $V(a)<0$). Likewise, $V(b)$ is the amount of fluid flowing out of the right end of the interval $[a, b]$ (or flowing in, if $V(b)<0)$. Thus, $V(b)-V(a)$ is the net amount of fluid flowing out through the endpoints of $[a, b]$ (or flowing in, if this quantity is negative). But the Fundamental Theorem of Calculus asserts that

$$
V(b)-V(a)=\int_{a}^{b} V^{\prime}(x) d x=\int_{a}^{b} \operatorname{div} V(x) d x
$$

In other words, the net amount of fluid instantaneously leaving/entering through the endpoints of $[a, b]$ is equal to the integral of the divergence over the interior. But if div $V(x)$ is the amount of fluid being instantaneously 'generated' at x (or 'absorbed' if negative) this integral can be interpreted as the saying:

The net amount of fluid instantaneously leaving the endpoints of $[a, b]$ is equal to the net quantity of fluid being instantaneously generated throughout the interior of $[a, b]$.

From a physical point of view, this makes perfect sense; it is simply 'conservation of mass'. This is the one-dimensional form of the Divergence Theorem (Theorem 0E. 4 on page 563 below).

....in two dimensions:

Let $\mathbb{X} \subset \mathbb{R}^{2}$ be some planar region, and consider a fluid flowing through \mathbb{X}. For each point $(x, y) \in \mathbb{X}$, let $\overrightarrow{\mathbf{V}}(x, y)$ be a two-dimensional vector describing the current at that point

Think of this two-dimensional current as a superposition of a horizontal current V_{1} and a vertical current V_{2}. For each of the two currents, we can reason as in the one-dimensional case. If $\partial_{x} V_{1}(x, y)>0$, then the horizontal current is accelerating at (x, y), so we expect it to deplete the fluid at (x, y) (or, if the fluid

[^98]is incompressible, we interpret this to mean that additional fluid is being generated at $(x, y))$. If $\partial_{x} V_{1}(x, y)<0$, then the horizontal current is decelarating, we expect it to deposit fluid at (x, y) (or, if the fluid is incompressible, we interpret this to mean that fluid is being absorbed or destroyed at (x, y)).

The same reasoning applies to $\partial_{y} V_{2}(x, y)$. The divergence of the twodimensional current is thus just the sum of the divergences of the horizontal and vertical currents

$$
\operatorname{div} \overrightarrow{\mathbf{V}}(x, y)=\partial_{x} V_{1}(x, y)+\partial_{y} V_{2}(x, y)
$$

Notice that, although $\overrightarrow{\mathbf{V}}(x, y)$ was a vector, the divergence div $\overrightarrow{\mathbf{V}}(x, y)$ is a scala $\|^{3}$. Just as in the one-dimensional case, we interpret $\operatorname{div} \overrightarrow{\mathbf{V}}(x, y)$ to be the the instantaneous rate at which fluid is being depleted/decompressed/generated at (x, y) (if positive) or being accumulated/compressed/absorbed at (x, y) (if negative).

For example, suppose \mathbb{R}^{2} represents the ocean, and $\overrightarrow{\mathbf{V}}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is a vector field representing ocean currents. If $\operatorname{div} \overrightarrow{\mathbf{V}}(x, y)>0$, this means that there is a net injection of water into the ocean at the point (x, y) e.g. due to rainfall or a river outflow. If $\operatorname{div} \overrightarrow{\mathbf{V}}(x, y)<0$, this means that there is a net removal of water from the ocean at the point (x, y)-e.g. due to evaporation or hole in the bottom of the sea.

....in many dimensions:

We can generalize this idea to any number of dimensions. If $\overrightarrow{\mathbf{V}}: \mathbb{R}^{D} \longrightarrow \mathbb{R}^{D}$ is a vector field, then the divergence of $\overrightarrow{\mathbf{V}}$ is the associated scalar field $\operatorname{div} \overrightarrow{\mathbf{V}}$: $\mathbb{R}^{D} \longrightarrow \mathbb{R}$, where, for any $\mathrm{x} \in \mathbb{R}^{D}$,

$$
\operatorname{div} \overrightarrow{\mathbf{V}}(\mathbf{x})=\partial_{1} V_{1}(\mathbf{x})+\partial_{2} V_{2}(\mathbf{x})+\ldots+\partial_{D} V_{D}(\mathbf{x})
$$

If $\overrightarrow{\mathbf{V}}$ represents the flow of some fluid through \mathbb{R}^{D}, then $\operatorname{div} \overrightarrow{\mathbf{V}}(\mathbf{x})$ represents the instantaneous rate at which fluid is being depleted/decompressed/generated at \mathbf{x} (if positive) or being accumulated/compressed/absorbed at \mathbf{x} (if negative). For example, if $\overrightarrow{\mathbf{E}}$ is the electric field, then $\operatorname{div} \overrightarrow{\mathbf{E}}(\mathbf{x})$ is the amount of electric field being "generated" at $\mathbf{x}-$ that is, $\operatorname{div} \overrightarrow{\mathbf{E}}(\mathbf{x})=\mathbf{q}(\mathbf{x})$ is the charge density at \mathbf{x}.

Proposition 0E.2. Algebra of Divergences

Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a domain. Let $\overrightarrow{\mathbf{V}}, \overrightarrow{\mathbf{W}}: \mathbb{X} \longrightarrow \mathbb{R}^{D}$ be differentiable vector fields, and let $f: \mathbb{X} \longrightarrow \mathbb{R}$ be a differentiable scalar field, and let $(f \cdot \overrightarrow{\mathbf{V}}): \mathbb{X} \longrightarrow \mathbb{R}^{D}$ represent the product of f and $\overrightarrow{\mathbf{V}}$.
(a) (Linearity) For all $\mathbf{x} \in \mathbb{X}$, and any $r \in \mathbb{R}$,

$$
\operatorname{div}(r \overrightarrow{\mathbf{V}}+\overrightarrow{\mathbf{W}})(\mathbf{x}) \quad=\quad r \operatorname{div} \overrightarrow{\mathbf{V}}(\mathbf{x})+\operatorname{div} \overrightarrow{\mathbf{W}} g(\mathbf{x})
$$

[^99]

Figure 0E.1: (A) Line segment \mathbb{L} is tangent to $\partial \mathbb{X}$ at \mathbf{x}. Vector $\overrightarrow{\mathbf{N}}(\mathbf{x})$ is normal to $\partial \mathbf{X}$ at \mathbf{x}. If $\overrightarrow{\mathbf{V}}(\mathbf{x})$ is another vector based at \mathbf{x}, then the dot product $\overrightarrow{\mathbf{V}}(\mathbf{x}) \bullet \overrightarrow{\mathbf{N}}(\mathbf{x})$ measures the orthogonal projection of $\overrightarrow{\mathbf{V}}(\mathbf{x})$ onto $\overrightarrow{\mathbf{N}}(\mathbf{x})$-that is, the 'part of $\overrightarrow{\mathbf{V}}(\mathbf{x})$ which is normal to $\partial \mathbb{X}$ '. (B) Here $\overrightarrow{\mathbf{V}}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is a differentiable vector field, and we portray the scalar field $\overrightarrow{\mathbf{V}} \bullet \overrightarrow{\mathbf{N}}$ along the curve $\partial \mathbb{X}$ (although we have visualized it as a 'vector field', to help your intuitions). The flux of $\overrightarrow{\mathbf{V}}$ across the boundary of \mathbb{X} is obtained by integrating $\overrightarrow{\mathbf{V}} \bullet \overrightarrow{\mathbf{N}}$ along $\partial \mathbb{X}$.
(b) (Leibniz rule) For all $\mathbf{x} \in \mathbb{X}$,

$$
\operatorname{div}(f \cdot \overrightarrow{\mathbf{V}})(\mathbf{x})=f(\mathbf{x}) \cdot(\operatorname{div} \overrightarrow{\mathbf{V}}(\mathbf{x}))+(\nabla f(\mathbf{x})) \bullet \overrightarrow{\mathbf{V}}(\mathbf{x})
$$

Proof. Exercise 0E. 2

Exercise 0E.3. Let $\overrightarrow{\mathbf{V}}, \overrightarrow{\mathbf{W}}: \mathbb{X} \longrightarrow \mathbb{R}^{D}$ be differentiable vector fields, and consider their dot product $(\overrightarrow{\mathbf{V}} \bullet \overrightarrow{\mathbf{W}}): \mathbb{X} \longrightarrow \mathbb{R}^{D}$ (a differentiable scalar field). State and prove a Leibniz-like rule for $\nabla(\overrightarrow{\mathbf{V}} \bullet \overrightarrow{\mathbf{W}}) \ldots$. (a) In the case $D=3 ; \quad \ldots .(\mathrm{b})$ In the case $D \geq 4$.

0E(iii) The Divergence Theorem.

...in two dimensions

Let $\mathbb{X} \subset \mathbb{R}^{2}$ be some domain in the plane, and let $\partial \mathbb{X}$ be the boundary of \mathbb{X}. (For example, if \mathbb{X} is the unit disk, then $\partial \mathbb{X}$ is the unit circle. If \mathbb{X} is a square domain, then $\partial \mathbb{X}$ is the four sides of the square, etc.). Let $\mathbf{x} \in \partial \mathbb{X}$. A line segment \mathbb{L} through \mathbf{x} is tangent to $\partial \mathbb{X}$ if \mathbb{L} touches $\partial \mathbb{X}$ only at \mathbf{x}; that is, $\mathbb{L} \cap \partial \mathbb{X}=\{\mathbf{x}\}$ (see Figure 0E.1(A)). A unit vector $\overrightarrow{\mathbf{N}}$ is normal to $\partial \mathbb{X}$ at \mathbf{x} if there is a line segment through \mathbf{x} which is orthogonal to $\overrightarrow{\mathbf{N}}$ and which is tangent to $\partial \mathbb{X}$. We say $\partial \mathbb{X}$ is piecewise smooth if there is a unique unit normal vector
$\overrightarrow{\mathbf{N}}(\mathbf{x})$ at every $\mathbf{x} \in \partial \mathbb{X}$, except perhaps at finitely many points (the 'corners' of the boundary). For example, the disk, the square, and any other polygonal domain have piecewise smooth boundaries. The function $\overrightarrow{\mathbf{N}}: \partial \mathbb{X} \longrightarrow \mathbb{R}^{2}$ is then called the normal vector field for $\partial \mathbb{X}$.

If $\overrightarrow{\mathbf{V}}=\left(V_{1}, V_{2}\right)$ and $\overrightarrow{\mathbf{N}}=\left(N_{1}, N_{2}\right)$ are two vectors, then define $\overrightarrow{\mathbf{V}} \bullet \overrightarrow{\mathbf{N}}:=$ $V_{1} N_{1}+V_{2} N_{2}$. If $\overrightarrow{\mathbf{V}}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is a vector field, and $\mathbb{X} \subset \mathbb{R}^{2}$ is a domain with a smooth boundary $\partial \mathbb{X}$, then we can define the flux of $\overrightarrow{\mathbf{V}}$ across $\partial \mathbb{X}$ as the integral:

$$
\begin{equation*}
\int_{\partial \mathbb{X}} \overrightarrow{\mathbf{V}}(\mathbf{s}) \bullet \overrightarrow{\mathbf{N}}(\mathbf{s}) d \mathbf{s} . \quad(\text { see Figure 0E.1(B) }) \tag{0Е.1}
\end{equation*}
$$

Here, by 'integrating over $\partial \mathbb{X}$ ', we are assuming that $\partial \mathbb{X}$ can be parameterized as a smooth curve or a union of smooth curves; this integral can then be computed (via this parameterization) as one or more one-dimensional integrals over intervals in \mathbb{R}. The value of integral (0E.1) is independent of the choice of parameterization you use. If $\overrightarrow{\mathbf{V}}$ describes the flow of some fluid, then the flux (0E.1) represents the net quantity of fluid flowing across the boundary of $\partial \mathbb{X}$.

On the other hand, if $\operatorname{div} \overrightarrow{\mathbf{V}}(\mathbf{x})$ represents the instantaneous rate at which fluid is being generated/destroyed at the point \mathbf{x}, then the two-dimensional integral

$$
\int_{\mathbb{X}} \operatorname{div} \overrightarrow{\mathbf{V}}(\mathbf{x}) d \mathbf{x}
$$

is the net rate at which fluid is being generated/destroyed throughout the interior of the region \mathbb{X}. The next result then simply says that the total 'mass' of the fluid must be conserved when we combine these two processes:

Theorem 0E.3. (Green's Theorem)
If $\mathbb{X} \subset \mathbb{R}^{2}$ is an bounded domain with a piecewise smooth boundary, and $\overrightarrow{\mathbf{V}}$: $\mathbb{X} \longrightarrow \mathbb{R}^{2}$ is a continuously differentiable vector field, then $\int_{\partial \mathbb{X}} \overrightarrow{\mathbf{V}}(\mathbf{s}) \bullet \overrightarrow{\mathbf{N}}(\mathbf{s}) d \mathbf{s}=$ $\int_{\mathbb{X}} \operatorname{div} \overrightarrow{\mathbf{V}}(\mathbf{x}) d \mathbf{x}$.
Proof. See any introduction to vector calculus; see e.g. [Ste08, §16.5, p.1067]

...in many dimensions

Let $\mathbb{X} \subset \mathbb{R}^{D}$ be some domain, and let $\partial \mathbb{X}$ be the boundary of \mathbb{X}. (For example, if \mathbb{X} is the unit ball, then $\partial \mathbb{X}$ is the unit sphere). If $D=2$, then $\partial \mathbb{X}$ will be a 1 -dimensional curve. If $D=3$, then $\partial \mathbb{X}$ will be a 2 -dimensional surface. In general, if $D \geq 4$, then $\partial \mathbb{X}$ will be a ($D-1$)-dimensional hypersurface.

Let $\mathbf{x} \in \partial \mathbb{X}$. A (hyper)plane segment \mathbb{P} through \mathbf{x} is tangent to $\partial \mathbb{X}$ if \mathbb{P} touches $\partial \mathbb{X}$ only at \mathbf{x}; that is, $\mathbb{P} \cap \partial \mathbb{X}=\{\mathbf{x}\}$. A unit vector $\overrightarrow{\mathbf{N}}$ is normal to $\partial \mathbb{X}$
at \mathbf{x} if there is a (hyper)plane segment through \mathbf{x} which is orthogonal to $\overrightarrow{\mathbf{N}}$ and which is tangent to $\partial \mathbb{X}$. We say $\partial \mathbb{X}$ is smooth if there is a unique unit normal vector $\overrightarrow{\mathbf{N}}(\mathbf{x})$ at each $\mathbf{x} \in \partial \mathbb{X} .7$ The function $\overrightarrow{\mathbf{N}}: \partial \mathbb{X} \longrightarrow \mathbb{R}^{D}$ is then called the normal vector field for $\partial \mathbb{X}$.

If $\overrightarrow{\mathbf{V}}=\left(V_{1}, \ldots, V_{D}\right)$ and $\overrightarrow{\mathbf{N}}=\left(N_{1}, \ldots, N_{D}\right)$ are two vectors, then define $\overrightarrow{\mathbf{V}} \bullet \overrightarrow{\mathbf{N}}:=V_{1} N_{1}+\cdots+V_{D} N_{D}$. If $\overrightarrow{\mathbf{V}}: \mathbb{R}^{D} \longrightarrow \mathbb{R}^{D}$ is a vector field, and $\mathbb{X} \subset \mathbb{R}^{D}$ is a domain with a smooth boundary $\partial \mathbb{X}$, then we can define the flux of $\overrightarrow{\mathbf{V}}$ across $\partial \mathbb{X}$ as the integral:

$$
\begin{equation*}
\int_{\partial \mathbb{X}} \overrightarrow{\mathbf{V}}(\mathbf{s}) \bullet \overrightarrow{\mathbf{N}}(\mathbf{s}) d \mathbf{s} . \tag{0E.2}
\end{equation*}
$$

Here, by 'integrating over $\partial \mathbb{X}$ ', we are assuming that $\partial \mathbb{X}$ can be parameterized as a smooth (hyper)surface or a union of smooth (hyper)surfaces; this integral can then be computed (via this parameterization) as one or more ($D-1$)-dimensional integrals over open subsets of \mathbb{R}^{D-1}. The value of integral (0E.2) is independent of the choice of parameterization you use. If $\overrightarrow{\mathbf{V}}$ describes the flow of some fluid, then the flux (0E.2) represents the net quantity of fluid flowing across the boundary of $\partial \mathbb{X}$.

On the other hand, if $\operatorname{div} \overrightarrow{\mathbf{V}}(\mathbf{x})$ represents the instantaneous rate at which fluid is being generated/destroyed at the point \mathbf{x}, then the D-dimensional integral

$$
\int_{\mathbb{X}} \operatorname{div} \overrightarrow{\mathbf{V}}(\mathbf{x}) d \mathbf{x}
$$

is the net rate at which fluid is being generated/destroyed throughout the interior of the region \mathbb{X}. The next result then simply says that the total 'mass' of the fluid must be conserved when we combine these two processes:

Theorem 0E.4. (Divergence Theorem)

If $\mathbb{X} \subset \mathbb{R}^{D}$ is a bounded domain with a piecewise smooth boundary, and $\overrightarrow{\mathbf{V}}: \mathbb{X} \longrightarrow \mathbb{R}^{D}$ is a continuously differentiable vector field, then $\int_{\partial \mathbb{X}} \overrightarrow{\mathbf{V}}(\mathbf{s}) \bullet$ $\overrightarrow{\mathbf{N}}(\mathbf{s}) d \mathbf{s}=\int_{\mathbb{X}} \operatorname{div} \overrightarrow{\mathbf{V}}(\mathbf{x}) d \mathbf{x}$.

Proof. If $D=1$, this just a restates the Fundamental Theorem of Calculus.
If $D=2$, this just a restates of Green's Theorem (Theorem 0E.3).
For the case $D=3$, this result can be found in any introduction to vector calculus; see e.g. [Ste088, §16.9, p.1099]. This theorem is often called Gauss's

[^100]Theorem (after C.F. Gauss) or Ostrogradsky's Theorem (after Mikhail Ostrogradsky).
For the case $D \geq 4$, this is a special case of the Generalized Stokes Theorem, one of the fundamental results of modern differential geometry, which unifies the classic (2-dimensional) Stokes theorem, Green's theorem, Gauss' theorem, and the Fundamental Theorem of Calculus. A statement and proof can be found in any introduction to differential geometry or tensor calculus. See e.g. [BG80, Theorem 4.9.2, p.196].
Some texts on partial differential equations also review the Divergence Theorem, usually in an appendix. See for example [Eva.91, Appendix C.2, p. 627].

Green's formulae. Let $u: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ be a scalar field. If \mathbb{X} is a domain, and $\mathbf{s} \in \partial \mathbb{X}$, then the outward normal derivative of u at \mathbf{s} is defined

$$
\partial_{\perp} u(\mathbf{s}) \quad:=\quad \nabla u(\mathbf{s}) \bullet \overrightarrow{\mathbf{N}}(\mathbf{s})
$$

(see $\S 5 \mathrm{C}(\mathrm{ii})$ for more information). Meanwhile, the Laplacian of u is defined by

$$
\triangle u=\operatorname{div}(\nabla(u))
$$

(see \S (B(ii) on page 7 for more information). The Divergence Theorem then has the following useful consequences.

Corollary 0E.5. (Green's Formulae)

Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a bounded domain, and let $u: \mathbb{X} \longrightarrow \mathbb{R}$ be a scalar field which is \mathcal{C}^{2} (i.e. twice continuously differentiable). Then
(a) $\int_{\partial \mathbb{X}} \partial_{\perp} u(\mathbf{s}) d \mathbf{s}=\int_{\mathbb{X}} \triangle u(\mathbf{x}) d \mathbf{x}$.
(b) $\int_{\partial \mathbb{X}} u(\mathbf{s}) \cdot \partial_{\perp} u(\mathbf{s}) d \mathbf{s}=\int_{\mathbb{X}} u(\mathbf{x}) \triangle u(\mathbf{x})+|\nabla u(\mathbf{x})|^{2} d \mathbf{x}$.
(c) For any other \mathcal{C}^{2} function $w: \mathbb{X} \longrightarrow \mathbb{R}$,

$$
\int_{\mathbb{X}}(u(\mathbf{x}) \triangle w(\mathbf{x})-w(\mathbf{x}) \triangle u(\mathbf{x})) d \mathbf{x}=\int_{\partial \mathbb{X}}\left(u(\mathbf{s}) \cdot \partial_{\perp} w(\mathbf{s})-w(\mathbf{s}) \cdot \partial_{\perp} u(\mathbf{s})\right) d \mathbf{s}
$$

Proof. (a) is Exercise 0E.4. To prove (b), note that

$$
\begin{aligned}
& 2 \int_{\partial \mathbb{X}} u(\mathbf{s}) \cdot \partial_{\perp} u(\mathbf{s}) d \mathbf{s} \overline{(\uparrow)} \\
& \int_{\partial \mathbb{X}} \partial_{\perp}\left(u^{2}\right)(\mathbf{s}) d \mathbf{s} \overline{\overline{(*)}} \int_{\mathbb{X}} \triangle\left(u^{2}\right)(\mathbf{x}) d \mathbf{x} . \\
& \overline{(\overline{)}} \\
& 2 \int_{\mathbb{X}} u(\mathbf{x}) \triangle u(\mathbf{x})+|\nabla u(\mathbf{x})|^{2} d \mathbf{x} .
\end{aligned}
$$

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

Here, (\dagger) is because $\partial_{\perp}\left(u^{2}\right)(\mathbf{s})=2 u(\mathbf{s}) \cdot \partial_{\perp} u(\mathbf{s})$, by the Leibniz rule for normal derivatives (Exercise 0E. 6 below), while (\diamond) is because $\triangle\left(u^{2}\right)(\mathbf{x})=$ $2|\nabla u(\mathbf{x})|^{2}+2 u(\mathbf{x}) \cdot \Delta u(\mathbf{x})$ by the Leibniz rule for Laplacians (Exercise 1B.4 on page 9). Finally, (*) is by part (a). The result follows.
(c) is Exercise 0E.5.

Exercise 0E.6. Prove the Leibniz rule for normal derivatives: if $f, g: \mathbb{X} \longrightarrow \mathbb{R}$ are two scalar fields, and $(f \cdot g): \mathbb{X} \longrightarrow \mathbb{R}$ is their product, then for all $\mathbf{s} \in \partial \mathbb{X}$,

$$
\partial_{\perp}(f \cdot g)(\mathbf{s})=\left(\partial_{\perp} f(\mathbf{s})\right) \cdot g(\mathbf{s})+f(\mathbf{s}) \cdot\left(\partial_{\perp} g(\mathbf{s})\right) .
$$

Hint: Use the Leibniz rules for gradients (Propositions 0E.1(b) on page 558) and the linearity of the dot product.

0F Differentiation of function series

Recommended: $\{6 \mathrm{EE}(\mathrm{iiii}),\{[\mathrm{EE}(\mathrm{iv})$.
Many of our methods for solving partial differential equations will involve expressing the solution function as an infinite series of functions (e.g. Taylor series, Fourier series, etc.). To make sense of such solutions, we must be able to differentiate them.

Proposition 0F.1. Differentiation of Series
Let $-\infty \leq a<b \leq \infty$. For all $n \in \mathbb{N}$, let $f_{n}:(a, b) \longrightarrow \mathbb{R}$ be a differentiable function, and define $F:(a, b) \longrightarrow \mathbb{R}$ by

$$
F(x)=\sum_{n=0}^{\infty} f_{n}(x), \quad \text { for all } x \in(a, b)
$$

(a) Suppose that $\sum_{n=0}^{\infty} f_{n}$ converges uniformly y^{5} to F on (a, b), and that $\sum_{n=0}^{\infty} f_{n}^{\prime}$ also converges uniformly on (a, b). Then F is differentiable, and $F^{\prime}(x)=$ $\sum_{n=0}^{\infty} f_{n}^{\prime}(x)$ for all $x \in(a, b)$.
(b) Suppose there is a sequence $\left\{B_{n}\right\}_{n=1}^{\infty}$ of positive real numbers such that

- $\sum_{n=1}^{\infty} B_{n}<\infty$.

[^101]- For all $x \in(a, b)$, and all $n \in \mathbb{N}, \quad\left|f_{n}(x)\right| \leq B_{n}$ and $\left|f_{n}^{\prime}(x)\right| \leq B_{n}$.

Then F is differentiable, and $F^{\prime}(x)=\sum_{n=0}^{\infty} f_{n}^{\prime}(x)$ for all $x \in(a, b)$.
Proof. (a) follows immediately from Proposition 6E.10(c) on page 127.
(b) follows from (a) and the Weierstras M-test (Proposition 6E. 13 on page (129).

For a direct proof, see [Asm0.5, Theorems 1 and 5, p. 87 and p. 92 of $\S 2.9$] or [Fol84, Theorem 2.27(b), p.54].

Example 0F.2. Let $a=0$ and $b=1$. For all $n \in \mathbb{N}$, let $f_{n}(x)=\frac{x^{n}}{n!}$. Thus,

$$
F(x)=\sum_{n=0}^{\infty} f_{n}(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=\exp (x)
$$

(because this is the Taylor series for the exponential function). Now let $B_{0}=1$ and let $B_{n}=\frac{1}{(n-1)!}$ for $n \geq 1$. Then for all $x \in(0,1)$, and all $n \in \mathbb{N}$, $\left|f_{n}(x)\right|=\frac{1}{n!} x^{n}<\frac{1}{n!}<\frac{1}{(n-1)!}=B_{n}$ and $\left|f_{n}^{\prime}(x)\right|=\frac{n}{n!} x^{n-1}=$ $\frac{(n-1)!}{} x^{n-1}<\frac{1}{(n-1)!}=B_{n}$. Also,

$$
\sum_{n=1}^{\infty} B_{n}=\sum_{n=1}^{\infty} \frac{1}{(n-1)!}<\infty
$$

Hence the conditions of Proposition 0F.1(b) are satisfied, so we conclude that

$$
F^{\prime}(x)=\sum_{n=0}^{\infty} f_{n}^{\prime}(x)=\sum_{n=0}^{\infty} \frac{n}{n!} x^{n-1}=\sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} \overline{\overline{(c)}} \sum_{m=0}^{\infty} \frac{x^{m}}{m!}=\exp (x),
$$

where (c) is the change of variables $m=n-1$. In this case, the conclusion is a well-known fact. But the same technique can be applied to more mysterious functions.

Remarks: (a) The series $\sum_{n=0}^{\infty} f_{n}^{\prime}(x)$ is sometimes called the formal derivative of the series $\sum_{n=0}^{\infty} f_{n}(x)$. It is 'formal' because it is obtained through a purely symbolic operation; it is not true in general that the 'formal' derivative is really the derivative of the series, or indeed, if the formal derivative series even
converges. Proposition 0F.1 essentially says that, under certain conditions, the 'formal' derivative equals the true derivative of the series.
(b) Proposition 0F. 1 is also true if the functions f_{n} involve more than one variable and/or more than one index. For example, if $f_{n, m}(x, y, z)$ is a function of three variables and two indices, and

$$
F(x, y, z)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} f_{n, m}(x, y, z), \quad \text { for all }(x, y, z) \in(a, b)^{3}
$$

then under similar hypothesis, we can conclude that $\partial_{y} F(x, y, z)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \partial_{y} f_{n, m}(x, y, z)$, for all $(x, y, z) \in(a, b)^{3}$.

0G Differentiation of integrals

Recommended: §OF.
Many of our methods for solving partial differential equations will involve expressing the solution function $F(x)$ as an integral of functions; i.e. $F(x)=$ $\int_{-\infty}^{\infty} f_{y}(x) d y$, where, for each $y \in \mathbb{R}, \quad f_{y}(x)$ is a differentiable function of the variable x. This is a natural generalization of the 'solution series' mentioned in $\S 0 \mathrm{~F}$. Instead of beginning with a discretely paramaterized family of functions $\left\{f_{n}\right\}_{n=1}^{\infty}$, we begin with a continuously paramaterized family, $\left\{f_{y}\right\}_{y \in \mathbb{R}}$. Instead of combining these functions through a summation to get $F(x)=\sum_{n=1}^{\infty} f_{n}(x)$, we combine them through integration, to get $F(x)=\int_{-\infty}^{\infty} f_{y}(x) d y$. However, to make sense of such integrals as the solutions of differential equations, we must be able to differentiate them.

Proposition 0G.1. Differentiation of Integrals
Let $-\infty \leq a<b \leq \infty$. For all $y \in \mathbb{R}$, let $f_{y}:(a, b) \longrightarrow \mathbb{R}$ be a differentiable function, and define $F:(a, b) \longrightarrow \mathbb{R}$ by

$$
F(x)=\int_{-\infty}^{\infty} f_{y}(x) d y, \quad \text { for all } x \in(a, b)
$$

Suppose there is a function $\beta: \mathbb{R} \longrightarrow \mathbb{R}_{\neq}$such that
(a) $\int_{-\infty}^{\infty} \beta(y) d y<\infty$.
(b) For all $y \in \mathbb{R}$ and for all $x \in(a, b), \quad\left|f_{y}(x)\right| \leq \beta(y)$ and $\left|f_{y}^{\prime}(x)\right| \leq \beta(y)$.

Then F is differentiable, and, for all $x \in(a, b), \quad F^{\prime}(x)=\int_{-\infty}^{\infty} f_{y}^{\prime}(x) d y$.
Proof. See [Fol84, Theorem 2.27(b), p.54].

Example 0G.2. Let $a=0$ and $b=1$. For all $y \in \mathbb{R}$ and $x \in(0,1)$, let $f_{y}(x)=\frac{x^{|y|+1}}{1+y^{4}}$. Thus,

$$
F(x)=\int_{-\infty}^{\infty} f_{y}(x) d y=\int_{-\infty}^{\infty} \frac{x^{|y|+1}}{1+y^{4}} d y
$$

Now, let $\beta(y)=\frac{1+|y|}{1+y^{4}}$. Then
(a) $\int_{-\infty}^{\infty} \beta(y) d y=\int_{-\infty}^{\infty} \frac{1+|y|}{1+y^{4}} d y<\infty$ (check this).
(b) For all $y \in \mathbb{R}$ and all $x \in(0,1), \quad\left|f_{y}(x)\right|=\frac{x^{|y|+1}}{1+y^{4}}<\frac{1}{1+y^{4}}<$ $\frac{1+|y|}{1+y^{4}}=\beta(y)$, and $\left|f_{n}^{\prime}(x)\right|=\frac{(|y|+1) \cdot x^{|y|}}{1+y^{4}}<\frac{1+|y|}{1+y^{4}}=\beta(y)$.

Hence the conditions of Proposition 0G.1 are satisfied, so we conclude that

$$
F^{\prime}(x)=\int_{-\infty}^{\infty} f_{n}^{\prime}(x) d y=\int_{-\infty}^{\infty} \frac{(|y|+1) \cdot x^{|y|}}{1+y^{4}} d y .
$$

Remarks: Proposition 0G. 1 is also true if the functions f_{y} involve more than one variable. For example, if $f_{v, w}(x, y, z)$ is a function of five variables, and

$$
F(x, y, z)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{u, v}(x, y, z) d u d v \quad \text { for all }(x, y, z) \in(a, b)^{3}
$$

then under similar hypothesis, we can conclude that $\partial_{y}^{2} F(x, y, z)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \partial_{y}^{2} f_{u, v}(x, y, z) d u d v$, for all $(x, y, z) \in(a, b)^{3}$.

0H Taylor polynomials

$0 \mathrm{H}(\mathrm{i})$ Taylor polynomials in one dimension

Let $\mathbb{X} \subset \mathbb{R}$ be an open set and let $f: \mathbb{X} \longrightarrow \mathbb{R}$ be an N-times differentiable function. Fix $a \in \mathbb{X}$. The Taylor polynomial of order N for f around a is
the function

$$
\begin{align*}
& T_{a}^{N} f(x):=f(a)+f^{\prime}(a) \cdot(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{6}(x-a)^{3} \\
&+\frac{f^{(4)}(a)}{4!}(x-a)^{4}+\cdots+\frac{f^{(N)}(a)}{N!}(x-a)^{N} \tag{0H.1}
\end{align*}
$$

Here, $f^{(n)}(a)$ denotes the nth derivative of f at $a\left[\right.$ e.g. $\left.f^{(3)}(a)=f^{\prime \prime \prime}(a)\right]$, and n ! (pronounced ' n factorial') is the product $n \cdot(n-1) \cdots 4 \cdot 3 \cdot 2 \cdot 1$. For example,

$$
\begin{array}{rlrl}
T_{a}^{0} f(x) & =f(a) & & \text { (a constant); } \\
T_{a}^{1} f(x) & =f(a)+f^{\prime}(a) \cdot(x-a) & & \text { (a linear function); } \\
T_{,}^{2} a f(x) & =f(a)+f^{\prime}(a) \cdot(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2} & \text { (a quadratic function); }
\end{array}
$$

Note that $T_{a}^{1} f(x)$ parameterizes the tangent line to the graph of $f(x)$ at the point $(a, f(a))$ - that is, the best linear approximation of f in a neighbourhood of a. Likewise, $T_{a}^{2} f(x)$ is the best quadratic approximation of f in a neighbourhood of a. In general $T_{a}^{N} f(x)$ is the polynomial of degree N which provides the best approximation of $f(x)$ if x is reasonably close to N. The formal statement of this is Taylor's theorem, which states that

$$
f(x)=T_{a}^{N} f(x)+\mathcal{O}\left(|x-a|^{N+1}\right)
$$

Here " $\mathcal{O}\left(|x-a|^{N+1}\right)$ " means some function which is smaller than a constant multiple of $|x-a|^{N+1}$. In other words, there is a constant $K>0$ such that

$$
\left|f(x)-T_{a}^{N} f(x)\right| \leq K \cdot|x-a|^{N+1}
$$

If $|x-a|$ is large, then $|x-a|^{N+1}$ is huge, so this inequality isn't particularly useful. However, as $|x-a|$ becomes small, $|x-a|^{N+1}$ becomes really, really small. For example, if $|x-a|<0.1$, then $|x-a|^{N+1}<10^{-N-1}$. In this sense, $T_{a}^{N} f(x)$ is a very good approximation of $f(x)$ if x is close enough to a.

Further reading. More information about Taylor polynomials can be found in any introduction to single-variable calculus; see e.g. [Ste08, p.253-254].

0H(ii) Taylor series and analytic functions

Prerequisites: $\S 0 \mathrm{H}(\mathrm{i}), \S(0 \mathrm{~F}$.
Let $\mathbb{X} \subset \mathbb{R}$ be an open set, let $f: \mathbb{X} \longrightarrow \mathbb{R}$, let $a \in \mathbb{X}$, and suppose f is infinitely differentiable at a. By letting $N \rightarrow \infty$ in equation (0H.1), we obtain the Taylor series (or power series) for f at a :
$T_{a}^{\infty} f(x) \quad:=\quad f(a)+f^{\prime}(a) \cdot(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\cdots \quad=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$.

Taylor's Theorem suggests that $T_{a}^{\infty} f(x)=f(x)$ if x is close enough to a. Unfortunately, this is not true for all infinitely differentiable functions; indeed, the series (0H.2) might not even converge for any $x \neq a$. However, we have the following result:

Proposition 0H.1. Suppose the series (0H.2) converges for some $x \neq a$. In that case, there is some $R>0$ such that the series (0H.2) converges uniformly to $f(x)$ on the interval $(a-R, a+R)$. Thus, $T_{a}^{\infty} f(x)=f(x)$ for all $x \in(a-R, a+R)$. On the other hand, (0H.2) diverges for all $x \in(-\infty, a-R)$ and all $x \in(a+R, \infty)$.

The $R>0$ in Proposition 0 H .1 is called the radius of convergence of the power series $(0 \mathrm{H.2})$, and the interval $(a-R, a+R)$ is the interval of convergence. (Note that Proposition 0H.1 says nothing about the convergence of (0H.2) at $a \pm R$; this varies from case to case). When the conclusion of Proposition 0H.1 is true, we say that f is analytic at a.

Example 0H.2. (a) All the 'basic' functions of calculus are analytic everywhere on their domain: all polynomials, all rational functions, all trigonometric functions, the exponential function, the logarithm, and any sum, product, or quotient of these functions.
(b) More generally, if f and g are analytic at a, then $(f+g)$ and $(f \cdot g)$ are analytic at a. If $g(a) \neq 0$, then f / g is analytic at a.
(c) If g is analytic at a, and $g(a)=b$, and f is analytic at b, then $f \circ g$ is analytic at a.

If f is infinitely differentiable at $a=0$, then we can compute the Taylor series

$$
\begin{equation*}
T_{0}^{\infty} f(x):=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots=\sum_{n=0}^{\infty} c_{n} x^{n} . \tag{0H.3}
\end{equation*}
$$

where $c_{n}:=\frac{f^{(n)}(0)}{n!}$, for all $n \in \mathbb{N}$. This special case of the Taylor series (with $a=0$) is sometimes called a Maclaurin series.

Differentiating a Maclaurin series. If f is analytic at $a=0$, then there is some $R>0$ such that $f(x)=T_{0}^{\infty} f(x)$ for all $x \in(-R, R)$. It follows that $f^{\prime}(x)=\left(T_{0}^{\infty} f\right)^{\prime}(x)$, and $f^{\prime \prime}(x)=\left(T_{0}^{\infty} f\right)^{\prime \prime}(x)$, and so on, for all $x \in(-R, R)$. Proposition 0F. 1 says that we can compute $\left(T_{0}^{\infty} f\right)^{\prime}(x),\left(T_{0}^{\infty} f\right)^{\prime \prime}(x)$ etc. by
'formally differentiating' the Maclaurin series (0H.3). Thus, we get:

$$
\begin{align*}
& f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+\cdots=\sum_{n=0}^{\infty} c_{n} x^{n} ; \\
& f^{\prime}(x)=\quad c_{1}+2 c_{2} x+3 c_{3} x^{2}+4 c_{4} x^{3}+\cdots=\sum_{n=1}^{\infty} n c_{n} x^{n-1} ; \\
& f^{\prime \prime}(x)=\quad 2 c_{2}+6 c_{3} x+12 c_{4} x^{2}+\cdots=\sum_{\substack{n=1 \\
\infty}}^{\infty} n(n-1) c_{n} x^{n-2} ; \\
& f^{\prime \prime \prime}(x)= \\
& 6 c_{3}+24 c_{4} x+\cdots=\sum_{n=1}^{\infty} n(n-1)(n-2) c_{n} x^{n-3} ; \tag{0H.4}
\end{align*}
$$

etc.
Further reading. More information about Taylor series can be found in any introduction to single-variable calculus; see e.g. [Ste088, §11.10, p.734].

0H(iii) Taylor series to solve ordinary differential equations

Prerequisites: $\S 0 \mathrm{H}(\mathrm{ii})$.
Suppose f is an unknown analytic function (so the coefficients $\left\{c_{0}, c_{1}, c_{2}, \ldots\right\}$ are unknown). An ordinary differential equation in f can be reformulated in terms of the Maclaurin series in (0H.4); this yields a set of equations involving the coefficients $\left\{c_{0}, c_{1}, c_{2}, \ldots\right\}$. For example, let $A, B, C \in \mathbb{R}$ be constants. The second-order linear ODE

$$
\begin{equation*}
A f(x)+B f^{\prime}(x)+C f^{\prime \prime}(x)=0 \tag{0H.5}
\end{equation*}
$$

can be reformulated as a power-series equation

$$
\begin{align*}
0=A c_{0} & +A c_{1} x
\end{align*}+A c_{2} x^{2}+A c_{3} x^{3}+A c_{4} x^{4}+\cdots .
$$

When we collect like terms in the x variable, this becomes:

$$
\begin{equation*}
0=\left(A c_{0}+B c_{1}+2 C c_{2}\right)+\left(A c_{1}+2 B c_{2}+6 C c_{3}\right) x+\left(A c_{2}+3 B c_{3}+12 C c_{4}\right) x^{2}+\cdots \tag{0H.7}
\end{equation*}
$$

This yields an (infinite) system of linear equations

$$
\begin{array}{llllllll}
0 & = & c_{0}+B c_{1}+2 C c_{2} ; & & & & & \\
0 & = & c_{1}+2 B c_{2} & + & 6 C c_{3} ; & & & \\
0 & = & & A c_{2} & + & 3 B c_{3} & + & 12 C c_{4} ; \\
\vdots & \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots
\end{array}
$$

If we define $\widetilde{c}_{n}:=n!c_{n}$ for all $n \in \mathbb{N}$, then the system (0H.8) reduces to the simple linear recurrence relation:

$$
\begin{equation*}
A \widetilde{c}_{n}+B \widetilde{c}_{n+1}+C \widetilde{c}_{n+2}=0, \quad \text { for all } n \in \mathbb{N} \tag{0H.9}
\end{equation*}
$$

[Note the relationship between (0 H .9) and (0H.5); this is because, if f is analytic and has Maclaurin series $(0 \mathrm{H} .3)$, then $\widetilde{c}_{n}=f^{(n)}(0)$ for all $n \in \mathbb{N}$.]

We can then solve the linear recurrence relation (0H.9) using standard methods (e.g. characteristic polynomials), and obtain the coefficients $\left\{c_{0}, c_{1}, c_{2}, \ldots\right\}$. If the resulting power series converges, then it is a solution of the ODE (0H.5) which is analytic in a neighbourhood of zero.

This technique for solving an ordinary differential equation is called the Power Series Method. It is not necessary to work in a neighbourhood of zero to apply this method; we assumed $a=0$ only to simplify the exposition. The Power Series Method can be applied to a Taylor expansion around any point in \mathbb{R}.

We used the constant-coefficient linear ODE (0H.5) just to provide a simple example. In fact, there are much easier ways to solve these sorts of ODEs (e.g. characteristic polynomials, matrix exponentials). However, the Power Series Method is also applicable to linear ODEs with nonconstant coefficients. For example, if the coefficients A, B, and C in equation (0 H .5) were themselves analytic functions in x, then we would simply substitute the Taylor series expansions of $A(x), B(x)$ and $C(x)$ into the power series equation (0H.6). This would make the simplification into equation (0H.7) much more complicated, but we would still end up with a system of linear equations in $\left\{c_{n}\right\}_{n=0}^{\infty}$, like (0H.8). In general, this will not simplify into a neat linear recurrence relation like (0H.9). But it can still be solved one term at a time.

Indeed, the Power Series Method is also applicable to nonlinear ODEs. In this case, we may end up with a system of nonlinear equations in $\left\{c_{n}\right\}_{n=0}^{\infty}$ instead of the linear system (0H.8). For example, if the ODE (0H.5) contained a term like $f(x) \cdot f^{\prime \prime}(x)$, then the system of equations (0 H .8) would contain quadratic terms like $c_{0} c_{2}, c_{1} c_{3}, c_{2} c_{4}$, etc.

Our analysis is actually incomplete, because we didn't check that the power series (0 H .3) had a nonzero radius of convergence when we obtained the sequence $\left\{\widetilde{c}_{n}\right\}_{n=0}^{\infty}$ as solutions to (0H.9). If (0H.9) is a linear recurrence relation (as in the example here), then the sequence $\left\{c_{n}\right\}_{n=0}^{\infty}$ will grow subexponentially, and it is easy to show that the radius of convergence for (0H.3) will always be nonzero. However, in the case of nonconstant coefficients or a nonlinear ODE, the power series (0 H .3) may not converge; this needs to be checked. For most of the secondorder linear ODEs we will encounter in this book, convergence is assured by the following result.

Theorem 0H.3. (Fuchs)

Let $a \in \mathbb{R}$, let $R>0$, and let $\mathbb{I}:=(a-R, a+R)$. Let $p, q, r: \mathbb{I} \longrightarrow \mathbb{R}$ be analytic functions whose Taylor series at a all converges everywhere in \mathbb{I}. Then every solution of the $O D E$

$$
\begin{equation*}
f^{\prime \prime}(x)+p(x) f^{\prime}(x)+q(x) f(x)=r(x) \tag{0H.10}
\end{equation*}
$$

is an analytic function, whose Taylor series at a converges on \mathbb{I}. The coefficients of this Taylor series can be found using the Power Series Method.

Proof. See [RB69, Chapter 3].

If the conditions for Fuchs' theorem are satisfied (i.e. if p, q, r are all analytic at a), then a is called an ordinary point for the ODE (0H.10). Otherwise, if one of p, q, r is not analytic at a, then a is called a singular point for ODE (0H.10). In this case, we can sometimes use a modification of the Power Series Method: the Method of Frobenius. For simplicity, we will discuss this method in the case $a=0$. Consider the homogeneous linear ODE

$$
\begin{equation*}
f^{\prime \prime}(x)+p(x) f^{\prime}(x)+q(x) f(x)=0 . \tag{0H.11}
\end{equation*}
$$

Suppose that $a=0$ is a singular point -i.e. either p or q is not analytic at 0 . Indeed, perhaps p and/or q are not even defined at zero (e.g. $p(x)=1 / x$). We say that 0 is a regular singular point if there are functions $P(x)$ and $Q(x)$ which are analytic at 0 , such that $p(x)=P(x) / x$ and $q(x)=Q(x) / x^{2}$ for all $x \neq 0$. Let $p_{0}:=P(0)$ and $q_{0}:=Q(0)$ (the zeroth terms in the Maclaurin series of P and Q), and consider the indicial polynomial

$$
x(x-1)+p_{0} x+q_{0} .
$$

The roots $r_{1} \geq r_{2}$ of the indicial polynomial are called the indicial roots of the ODE (0H.11).

Theorem 0H.4. (Frobenius)
Suppose $x=0$ is a regular singular point of the ODE (0H.11), and let \mathbb{I} be the largest open interval of 0 where the Taylor series of both $P(x)$ and $Q(x)$ converge. Let $\mathbb{I}^{*}:=\mathbb{I} \backslash\{0\}$. Then there are two linearly independent functions $f_{1}, f_{2}: \mathbb{I}^{*} \longrightarrow \mathbb{R}$ which satisfy the ODE (0H.11), and which depend on the indicial roots $r_{1} \geq r_{2}$ as follows:
(a) If $r_{1}-r_{2}$ is not an integer, then $f_{1}(x)=|x|^{r_{1}} \sum_{n=0}^{\infty} b_{n} x^{n}$ and $f_{2}(x)=$

$$
|x|^{r_{2}} \sum_{n=0}^{\infty} c_{n} x^{n}
$$

(b) If $r_{1}=r_{2}=r$, then $f_{1}(x)=|x|^{r} \sum_{n=0}^{\infty} b_{n} x^{n}$ and $f_{2}(x)=f_{1}(x) \ln |x|+$ $|x|^{r} \sum_{n=0}^{\infty} c_{n} x^{n}$.
(c) If $r_{1}-r_{2} \in \mathbb{N}$, then $f_{1}(x)=|x|^{r} \sum_{n=0}^{\infty} b_{n} x^{n}$ and $f_{2}(x)=k \cdot f_{1}(x) \ln |x|+$ $|x|^{r_{2}} \sum_{n=0}^{\infty} c_{n} x^{n}$, for some $k \in \mathbb{R}$.
In all three cases, to obtain explicit solutions, substitute the expansions for f_{1} and f_{2} into the ODE (0H.11), along with the power series for $P(x)$ and $Q(x)$, to obtain recurrence relations characterizing the coefficients $\left\{b_{n}\right\}_{n=0}^{\infty},\left\{c_{n}\right\}_{n=0}^{\infty}$.
Proof. See (Asm05, Appendex A.6].

Example 0H.5: (Bessel's equation)

For any $n \in \mathbb{N}$, the (2-dimensional) Bessel equation of order n is the ordinary differential equation

$$
\begin{equation*}
x^{2} f^{\prime \prime}(x)+x f^{\prime}(x)+\left(x^{2}-n^{2}\right) f(x)=0 . \tag{0H.12}
\end{equation*}
$$

To put this in the form of ODE (0H.11), we divide by x^{2}, to get

$$
f^{\prime \prime}(x)+\frac{1}{x} f^{\prime}(x)+\left(1-\frac{n^{2}}{x^{2}}\right) f(x)=0 .
$$

Thus, we have $p(x)=\frac{1}{x}$ and $q(x)=\left(1-\frac{n^{2}}{x^{2}}\right)$; hence 0 is a singular point of ODE (0H.12), because p and q are not defined (and hence not analytic) at zero. However, clearly $p(x)=P(x) / x$ and $q(x)=Q(x) / x^{2}$, where $P(x)=1$ and $Q(x)=\left(x^{2}-n^{2}\right)$ are analytic at zero; thus 0 is a regular singular point of ODE (0H.12). We have $p_{0}=1$ and $q_{0}=-n^{2}$, so the indicial polynomial is $x(x-1)+1 x-n^{2}=x^{2}-n^{2}$, which has roots $r_{1}=n$ and $r_{2}=-n$. Since $r_{1}-r_{2}=2 n \in \mathbb{N}$, we apply Case (c) of Frobenius' Theorem, and look for solutions of the form

$$
\begin{equation*}
f_{1}(x)=|x|^{n} \sum_{n=0}^{\infty} b_{n} x^{n} \quad \text { and } \quad f_{2}(x)=k \cdot f_{1}(x) \ln |x|+|x|^{-n} \sum_{n=0}^{\infty} c_{n} x^{n} \tag{0H.13}
\end{equation*}
$$

To identify the coefficients $\left\{b_{n}\right\}_{n=0}^{\infty},\left\{c_{n}\right\}_{n=0}^{\infty}$, we substitute the power series (0H.13) into ODE (0 H .12) and simplify. The resulting solutions are called the Bessel functions of types 1 and 2, respectively. The details can be found in the proof of Proposition 14G. 1 on page 305 of $\S[4 \mathrm{G}$.

Finally, we remark that a multivariate version of the Power Series Method can be applied to a multivariate Taylor series, to obtain solutions to partial differential equations. (However, this book provides many other, much nicer methods for solving linear PDEs with constant coefficients).

Further reading. More information about the power series method and the method of Frobenius can be found in any introduction to ordinary differential equations. See e.g. [Cod89, $\S 3.9$, p. 138 and $\S 4.6$, p.162]. Some books on partial differential equations also contain this information (usually in an appendix); see e.g. [Asm0.5, Appendix A.5-A.6].

0H(iv) Taylor polynomials in two dimensions

Prerequisites: $\S 0 \mathrm{OB}$. Recommended: $\S 0 \mathrm{H}(\mathrm{i})$.
Let $\mathbb{X} \subset \mathbb{R}^{2}$ be an open set and let $f: \mathbb{X} \longrightarrow \mathbb{R}$ be an N-times differentiable function. Fix $\mathbf{a}=\left(a_{1}, a_{2}\right) \in \mathbb{X}$. The Taylor polynomial of order N for f around \mathbf{a} is the function

$$
\begin{aligned}
& T_{\mathbf{a}}^{N} f\left(x_{1}, x_{2}\right) \quad:=f(\mathbf{a})+\partial_{1} f(\mathbf{a}) \cdot\left(x_{1}-a_{1}\right)+\partial_{2} f(\mathbf{a}) \cdot\left(x_{2}-a_{2}\right) \\
& + \\
& +\frac{1}{2}\left(\partial_{1}^{2} f(\mathbf{a}) \cdot\left(x_{1}-a_{1}\right)^{2}+2 \partial_{1} \partial_{2} f(\mathbf{a}) \cdot\left(x_{1}-a_{1}\right)\left(x_{2}-a_{2}\right)+\partial_{2}^{2} f(\mathbf{a}) \cdot\left(x_{2}-a_{2}\right)^{2}\right) \\
& + \\
& \frac{1}{6}\left(\partial_{1}^{3} f(\mathbf{a}) \cdot\left(x_{1}-a_{1}\right)^{3}+3 \partial_{1}^{2} \partial_{2} f(\mathbf{a}) \cdot\left(x_{1}-a_{1}\right)^{2}\left(x_{2}-a_{2}\right)\right. \\
& \\
& \left.\quad+3 \partial_{1} \partial_{2}^{2} f(\mathbf{a}) \cdot\left(x_{1}-a_{1}\right)\left(x_{2}-a_{2}\right)^{2}+\partial_{2}^{3} f(\mathbf{a}) \cdot\left(x_{1}-a_{1}\right)^{3}\right) \\
& +\frac{1}{4!}\left(\partial_{1}^{4} f(\mathbf{a}) \cdot\left(x_{1}-a_{1}\right)^{4}+4 \partial_{1}^{3} \partial_{2} f(\mathbf{a}) \cdot\left(x_{1}-a_{1}\right)^{3}\left(x_{2}-a_{2}\right)\right. \\
& \\
& \quad+6 \partial_{1}^{2} \partial_{2}^{2} f(\mathbf{a}) \cdot\left(x_{1}-a_{1}\right)^{2}\left(x_{2}-a_{2}\right)^{2} \\
& \\
& \left.\quad+4 \partial_{1} \partial_{2}^{3} f(\mathbf{a}) \cdot\left(x_{1}-a_{1}\right)\left(x_{2}-a_{2}\right)^{2}+\partial_{2}^{4} f(\mathbf{a}) \cdot\left(x_{1}-a_{1}\right)^{4}\right)+\cdots \cdots
\end{aligned}
$$

For example, $T_{\mathbf{a}}^{0} f\left(x_{1}, x_{2}\right)=f(\mathbf{a})$ is just a constant, while

$$
T_{\mathbf{a}}^{1} f\left(x_{1}, x_{2}\right)=f(\mathbf{a})+\partial_{1} f(\mathbf{a}) \cdot\left(x_{1}-a_{1}\right)+\partial_{2} f(\mathbf{a}) \cdot\left(x_{2}-a_{2}\right)
$$

is an affine function which parameterizes the tangent plane to the surface graph of $f(x)$ at the point $(\mathbf{a}, f(\mathbf{a}))$ - that is, the best linear approximation of f in a neighbourhood of a. In general, $T_{a}^{N} f(\mathbf{x})$ is the 2-variable polynomial of degree N which provides the best approximation of $f(\mathbf{x})$ if \mathbf{x} is reasonably close to N. The formal statement of this is multivariate Taylor's theorem, which states that

$$
f(\mathbf{x})=T_{\mathbf{a}}^{N} f(\mathbf{x})+\mathcal{O}\left(|\mathbf{x}-\mathbf{a}|^{N+1}\right)
$$

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

For example, if we set $N=1$, we get:

$$
f\left(x_{1}, x_{2}\right)=f(\mathbf{a})+\partial_{1} f(\mathbf{a}) \cdot\left(x_{1}-a_{1}\right)+\partial_{2} f(\mathbf{a}) \cdot\left(x_{2}-a_{2}\right)+\mathcal{O}\left(|\mathbf{x}-\mathbf{a}|^{2}\right)
$$

$\mathbf{0 H}(\mathrm{v})$ Taylor polynomials in many dimensions

Prerequisites: $\S(\mathrm{OE}(\mathrm{i})$ Recommended: $\oint O H(\mathrm{iv})$.
Let $\mathbb{X} \subset \mathbb{R}^{D}$ be an open set and let $f: \mathbb{X} \longrightarrow \mathbb{R}$ be an N-times differentiable function. Fix $\mathbf{a}=\left(a_{1}, \ldots, a_{D}\right) \in \mathbb{X}$. The Taylor polynomial of order N for f around \mathbf{a} is the function

$$
\begin{aligned}
& T_{\mathbf{a}}^{N} f(\mathbf{x}) \quad:=f(\mathbf{a})+\nabla f(\mathbf{a})^{\dagger} \cdot(\mathbf{x}-\mathbf{a})+\frac{1}{2}(\mathbf{x}-\mathbf{a})^{\dagger} \cdot \mathrm{D}^{2} f(\mathbf{a}) \cdot(\mathbf{x}-\mathbf{a})+\cdots \\
& \cdots+\frac{1}{N!} \sum_{n_{1}+\cdots+n_{D}=N}\binom{N}{n_{1} \ldots n_{D}} \partial_{1}^{n_{1}} \partial_{2}^{n_{2}} \cdots \partial_{D}^{n_{D}} f(\mathbf{a}) \cdot\left(x_{1}-a_{1}\right)^{n_{1}}\left(x_{2}-a_{2}\right)^{n_{2}} \cdots\left(x_{D}-a_{D}\right)^{n_{D}} .
\end{aligned}
$$

Here, we regard \mathbf{x} and \mathbf{a} as column vectors, and the transposes $\mathbf{x}^{\dagger}, \mathbf{a}^{\dagger}$ etc. as row vectors. $\nabla f(\mathbf{a})^{\dagger}:=\left[\partial_{1} f(\mathbf{a}), \partial_{2} f(\mathbf{a}), \ldots, \partial_{D} f(\mathbf{a})\right]$ is the (transposed) gradient vector of f at \mathbf{a}, and

$$
\mathrm{D}^{2} f:=\left[\begin{array}{cccc}
\partial_{1}^{2} f & \partial_{1} \partial_{2} f & \ldots & \partial_{1} \partial_{D} f \\
\partial_{2} \partial_{1} f & \partial_{2}^{2} f & \ldots & \partial_{2} \partial_{D} f \\
\vdots & \vdots & \ddots & \vdots \\
\partial_{D} \partial_{1} f & \partial_{D} \partial_{2} f & \ldots & \partial_{D}^{2} f
\end{array}\right]
$$

is the Hessian derivative matrix of f. For example, $T_{\mathbf{a}}^{0} f(\mathbf{x})=f(\mathbf{a})$ is just a constant, while

$$
T_{\mathbf{a}}^{1} f(x)=f(\mathbf{a})+\nabla f(\mathbf{a})^{\dagger} \cdot(\mathbf{x}-\mathbf{a})
$$

is an affine function which paramaterizes the tangent hyperplane to the hypersurface graph of $f(x)$ at the point $(\mathbf{a}, f(\mathbf{a}))$-that is, the best linear approximation of f in a neighbourhood of \mathbf{a}. In general $T_{a}^{N} f(\mathbf{x})$ is the multivariate polynomial of degree N which provides the best approximation of $f(\mathbf{x})$ if \mathbf{x} is reasonably close to N. The formal statement of this is multivariate Taylor's theorem, which states that

$$
f(\mathbf{x})=T_{\mathbf{a}}^{N} f(\mathbf{x})+\mathcal{O}\left(|\mathbf{x}-\mathbf{a}|^{N+1}\right)
$$

For example, if we set $N=2$, we get
$f(\mathbf{x})=f(\mathbf{a})+\nabla f(\mathbf{a})^{\dagger} \cdot(\mathbf{x}-\mathbf{a})+\frac{1}{2}(\mathbf{x}-\mathbf{a})^{\dagger} \cdot \mathrm{D}^{2} f(\mathbf{a}) \cdot(\mathbf{x}-\mathbf{a})+\mathcal{O}\left(|\mathbf{x}-\mathbf{a}|^{3}\right)$.

Bibliography

[Asm02] Nakhlé H. Asmar. Applied Complex Analysis with Partial Differential Equations. Prentice-Hall, Upper Saddle River, NJ, 1st edition, 2002.
[Asm05] Nakhlé H. Asmar. Partial differential equations, with Fourier series and boundary value problems. Prentice-Hall, Upper Saddle River, NJ, 2nd edition, 2005.
[BEH94] Jiri Blank, Pavel Exner, and Miloslav Havlicek. Hilbert Space Operators in Quantum Physics. AIP series in computational and applied mathematical science. American Institute of Physics, New York, 1994.
[BG80] Richard L. Bishop and Samuel I. Goldberg. Tensor analysis on manifolds. Dover, Mineola, NY, 1980.
[Bie53] L. Bieberbach. Conformal mapping. Chelsea Publishing Co., New York, 1953. Translated by F. Steinhardt.
[Boh79] David Bohm. Quantum Theory. Dover, Mineola, NY, 1979.
[Bro89] Arne Broman. Introduction to partial differential equations. Dover Books on Advanced Mathematics. Dover Publications Inc., New York, second edition, 1989. From Fourier series to boundary value problems.
[CB87] Ruel V. Churchill and James Ward Brown. Fourier series and boundary value problems. McGraw-Hill Book Co., New York, fourth edition, 1987.
[CB03] Ruel V. Churchill and James Ward Brown. Complex Variables and Applications. McGraw-Hill Book Co., New York, 7th edition, 2003.
[Cha93] Isaac Chavel. Riemannian Geometry: A modern introduction. Cambridge UP, Cambridge, MA, 1993.
[Cod89] Earl A. Coddington. An introduction to ordinary differential equations. Dover, Mineola, NY, 1989.
[Con90] John B. Conway. A Course in Functional Analysis. Springer-Verlag, New York, second edition, 1990.
[CW68] R. R. Coifman and G. Wiess. Representations of compact groups and spherical harmonics. L'enseignment Math., 14:123-173, 1968.
[dZ86] Paul duChateau and David W. Zachmann. Partial Differential Equations. Schaum's Outlines. McGraw-Hill, New York, 1986.
[Eva91] Lawrence C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island, 1991.
[Fis99] Stephen D. Fisher. Complex variables. Dover Publications Inc., Mineola, NY, 1999. Corrected reprint of the second (1990) edition.
[Fol84] Gerald B. Folland. Real Analysis. John Wiley and Sons, New York, 1984.
[Hab87] Richard Haberman. Elementary applied partial differential equations. Prentice Hall Inc., Englewood Cliffs, NJ, second edition, 1987. With Fourier series and boundary value problems.
[Hat02] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
[Hel81] Sigurdur Helgason. Topics in Harmonic Analysis on Homogeneous Spaces. Birkhäuser, Boston, Massachusetts, 1981.
[Hen94] Michael Henle. A combinatorial introduction to topology. Dover, Mineola, NY, 1994.
[Kat76] Yitzhak Katznelson. An Introduction to Harmonic Analysis. Dover, New York, second edition, 1976.
[KF75] A. N. Kolmogorov and S. V. Fomīn. Introductory real analysis. Dover Publications Inc., New York, 1975. Translated from the second Russian edition and edited by Richard A. Silverman, Corrected reprinting.
[Kör88] T. W. Körner. Fourier Analysis. Cambridge University Press, Cambridge, UK, 1988.
[Lan85] Serge Lang. Complex Analysis. Springer-Verlag, New York, second edition, 1985.
[McW72] Roy McWeeny. Quantum Mechanics: Principles and Formalism. Dover, Mineola, NY, 1972.
[Mül66] C. Müller. Spherical Harmonics. Number 17 in Lecture Notes in Mathematics. Springer-Verlag, New York, 1966.
[Mur93] James D. Murray. Mathematical Biology, volume 19 of Biomathematics. SpringerVerlag, New York, second edition, 1993.
[Nee97] Tristan Needham. Visual complex analysis. The Clarendon Press Oxford University Press, New York, 1997.
[Neh75] Zeev Nehari. Conformal mapping. Dover Publications Inc., New York, 1975. Reprinting of the 1952 edition.
[Pin98] Mark A. Pinsky. Partial Differential Equations and Boundary-Value Problems with Applications. International Series in Pure and Applied Mathematics. McGraw-Hill, Boston, third edition, 1998.
[Pow99] David L. Powers. Boundary value problems. Harcourt/Academic Press, San Diego, CA, fourth edition, 1999.
[Pru81] Eduard Prugovecki. Quantum Mechanicss in Hilbert Space. Academic Press, New York, second edition, 1981.
[RB69] Gian-Carlo Rota and Garret Birkhoff. Ordinary Differential Equations. Wiley, 2nd edition, 1969.
[Roy88] H. L. Royden. Real analysis. Macmillan Publishing Company, New York, third edition, 1988.
[Rud87] Walter Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third edition, 1987.
[Sch79] Hans Schwerdtfeger. Geometry of complex numbers. Dover Publications Inc., New York, 1979. Circle geometry, Moebius transformation, non-Euclidean geometry, A corrected reprinting of the 1962 edition, Dover Books on Advanced Mathematics.
[Ste95] Charles F. Stevens. The six core theories of modern physics. A Bradford Book. MIT Press, Cambridge, MA, 1995.
[Ste08] James Stewart. Calculus, Early Transcendentals. Thomson Brooks/Cole, Belmont, CA, 6e edition, 2008.
[Str93] Daniel W. Strook. Probability Theory: An analytic view. Cambridge University Press, Cambridge, UK, revised edition, 1993.
[Sug75] M. Sugiura. Unitary Representations and Harmonic Analysis. Wiley, New York, 1975.

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009
[Tak94] Masaru Takeuchi. Modern Spherical Functions, volume 135 of Translations of Mathematical Monographs. American Mathematical Society, Providence, Rhode Island, 1994.
[Tay86] Michael Eugene Taylor. Noncommutative Harmonic Analysis. American Mathematical Society, Providence, Rhode Island, 1986.
[Ter85] Audrey Terras. Harmonic Analysis on Symmetric Spaces and Applications, volume I. Springer-Verlag, New York, 1985.
[Tit62] E.C. Titchmarsh. Eigenfunction expansions associated with second-order differential equations, Part I. Oxford University Press, London, 2nd edition, 1962.
[Wal88] James S. Walker. Fourier Analysis. Oxford UP, Oxford, UK, 1988.
[War83] Frank M. Warner. Foundations of Differentiable Manifolds and Lie Groups. SpringerVerlag, New York, 1983.
[WZ77] Richard L. Wheeden and Antoni Zygmund. Measure and integral. Marcel Dekker Inc., New York, 1977. An introduction to real analysis, Pure and Applied Mathematics, Vol. 43.

Index

d'Alembert
ripple solution (initial velocity), 395
solution to wave equation, 398, 401, 531
travelling wave solution (initial position), 393]
Abel mean, 461
Abel sum, 176
Abel's test, 130
Abelian group, 177
Absolute convergence
of Fourier series, $\boxed{174}$
Absolutely integrable function
on half-line $\mathbb{R}_{+}=[0, \infty), 510$
on the real line $\mathbb{R}, 488$
on the two-dimensional plane $\mathbb{R}^{2}, 504$
on the two-dimensional plane $\mathbb{R}^{3}, 507$
Airy's equation, 67, 99
Algebraic topology, 484
Analytic
harmonic functions are, 18
Analytic extension, 453
Analytic function
definition, 570
Fourier coefficient decay rate, 207
Analytic functions
convolutions of, 474
Fourier transform of, 476 improper integral of, 473
Annulus, 274
Antiderivative, complex, 448
Approximation of identity
definition (on \mathbb{R}), 379
definition (on \mathbb{R}^{D}), 383
Gauss-Weierstrass Kernel
many-dimensional, 393
one-dimensional, 387
on $[-\pi, \pi]$, 199, 218
Poisson kernel (on disk), 409
Poisson kernel (on half-plane), 405
use for smooth approximation, 411
Atiyah-Singer Index Theorem, 484
Autocorrelation Function, 499
Baguette example, 252

Balmer, J.J, 54
BC, see Boundary conditions
Beam equation, 67, 99
Bernstein's theorem, 175
Bessel functions, 574
and eigenfunctions of Laplacian, 292
definition, 292
roots, 296
Bessel's Equation, 292
Bessel's equation, 574
Bessel's inequality, 195
Big ' O ' notation, see Order $\mathcal{O}(1 / z)$
Bilinearity, 107
Binary expansion, 115
Borel-measurable set, 110
Borel-measurable subset, 211
Boundary
definition of, 71
examples (for various domains), 71
$\partial \mathbb{X}$, see Boundary
Boundary Conditions
definition, 72
Homogeneous Dirichlet, see Dirichlet Boundary Conditions, Homogeneous
Homogeneous Mixed, see Mixed Boundary Conditions, Homogeneous
Homogeneous Neumann, see Neumann Boundary Conditions, Homogeneous
Homogeneous Robin, see Mixed Boundary Conditions, Homogeneous
Nonhomogeneous Dirichlet, see Dirichlet Boundary Conditions, Nonhomogeneous
Nonhomogeneous Mixed, see Mixed Boundary Conditions, Nonhomogeneous
Nonhomogeneous Neumann, see Neumann Boundary Conditions, Nonhomogeneous
Nonhomogeneous Robin, see Mixed Boundary Conditions, Nonhomogeneous
Periodic, see Periodic Boundary Conditions
Boundary conditions
and harmonic conjugacy, 421
Boundary value problem, 72
Bounded variation, 175
Branches
of complex logarithm, 449
of complex roots, 449
Brownian Motion, 21
Burger's equation, 67, 99
BVP, see Boundary value problem
$\mathcal{C}^{1}[0, L], 145$
$\mathcal{C}^{1}[0, \pi], 137$
\mathcal{C}^{1} interval, 138, 145
Casorati-Weierstrass Theorem, 471
Cauchy problem, see Initial value problem
Cauchy Residue Theorem, see Residue Theorem
Cauchy's Criterion, 130
Cauchy's integral formula, 443
Cauchy's Theorem
on contours, 438
on oriented boundaries, 482
Cauchy-Bunyakowski-Schwarz Inequality for complex functions, 109
for sequences in $l^{2}(\mathbb{N}), 204$
in $L^{2}, 108$
Cauchy-Euler Equation
as Sturm-Liouville equation, 344
polar eigenfunctions of \triangle (2 dimensions), [14]
zonal eigenfunctions of \triangle (3 dimensions), [6]
Cauchy-Riemann differential equations, 416
multiplication, 551
norm, 553
polar coordinates, 551
Complex potentials, 430
Complex-analytic, see Holomorphic function
Complex-differentiable, 415
Componentwise addition, 57
Conformal
\Leftrightarrow holomorphic, 423
Conformal isomorphism, 423
Conformal map
definition, 422
Riemann Mapping Theorem, 429
Connected definition, 451
Conservation of energy
in wave equation, 92
Continuously differentiable, [137, 144
Contour, 434
piecewise smooth, 436
purview of, 437
smooth, 435
Contour integral, 435, 436
Convergence
as "approximation", 117
in $L^{2}, 118$
of complex Fourier series, 173
of Fourier cosine series, $142, ~ 146$
of Fourier series; Bernstein's Theorem, 175
of Fourier sine series, 138, 145
of function series, 129
of multidimensional Fourier series, 187
of real Fourier series, 162

Cauchy-Schwarz inequality, see Cauchy-Bunyakowski-of two-dimensional Fourier (co)sine series, Schwarz Inequality
CBS inequality, see Cauchy-Bunyakowski-Schwarz of two-dimensional mixed Fourier series, Inequality
Cesáro sum, 176
Character (of a group), 177
Chasm in streambed (flow), 434
Chebyshev polynomial, 278
Codisk, 273
Compact abelian topological group, 177
Complex nth root, 449
Complex antiderivative, 448
as complex potential, 430
Complex derivative, 415
Complex logarithm, 449
Complex numbers
addition, 551
conjugate, 553
exponential, 551
derivative of, 551 18.
pointwise, 120
pointwise $\Longrightarrow L^{2}, 120$
semiuniform, 128
uniform, 125
Uniform \Longrightarrow pointwise, 127
Uniform $\Longrightarrow L^{2}, 127$
Convolution
\Longrightarrow multiplication of Fourier coefficients, 463
of 2π-periodic functions, 214
of analytic functions, 474
with the Dirichlet kernel, 197, 464
with the Poisson kernel, 462
convolution
continuity of, 410
definition of $(f * g)$, 17, 378
differentiation of, 410
Fourier transform of, 494
is associative $(f *(g * h)=(f * g) * h)$, 409
is commutative $(f * g=g * f)$, 378, 409 is distributive $(f *(g+h)=(f * g)+$ $(f * h)), 409$
use for smooth approximation, 411
Convolution ring, 217
Coordinates
cylindrical, 555
polar, 554
rectangular, 554
spherical, 556
Cosine series, see Fourier series, cosine
Coulomb potential (electrostatics), 14
Coulomb's Law (electrostatics), 15
Countour integral
is homotopy-invariant, 440
Curl, 418
Cycle (in homology), 482
Cylindrical coordinates, 555
\triangle, see Laplacian
d'Alembert
ripple solution (initial velocity), 395
solution to wave equation, [398, 401, 531
travelling wave solution (initial position), [393]
Davisson, C.J., 37
de Broglie, Louis
'matter wave' hypothesis, 37
de Broglie wavelength, 43
Decay at ∞ of order $\mathcal{O}(1 / z)$, see Order $\mathcal{O}(1 / z)$
Decay at ∞ of order $o(1 / z)$, see Order $o(1 / z)$
Decaying gradient condition, 283
Dense subspace of $\mathbf{L}^{2}[-\pi, \pi], 207$
$\partial \mathbb{X}$, see Boundary
$\partial_{\perp} u$, see Outward normal derivative
Difference operator, 60
Differentiation as linear operator, 61
Diffraction of 'matter waves', 37
Dirac delta function δ_{0}, 379, 404
Dirac delta function $\delta_{0}, 528$
Dirichlet Boundary Conditions
Homogeneous
2-dim. Fourier sine series, 183
definition, 73
Fourier sine series, 138
multidim. Fourier sine series, 187
physical interpretation, 73
Nonhomogeneous
definition, 75

Dirichlet kernel, 197, 464
Dirichlet problem
around chasm, 433
definition, 75
on a half-disk, 433
on annulus
Fourier solution, 287
on bi-infinite strip, 432
on codisk
Fourier solution, 284
on cube
nonconstant, nonhomog. Dirichlet BC, [70
one constant nonhomog. Dirichlet BC, [70]
on disk
definition, 406
Fourier solution, 278
Poisson (impulse-response) solution, 290, 407
on half-plane
definition, 403, 537
Fourier solution, 538
physical interpretation, 403
Poisson (impulse-response) solution, 404, 539
on half-plane with vertical obstacle, 433
on interval $[0, L]$, 76
on off-centre annulus, 433
on quarter-plane conformal mapping solution, 428
on square
four constant nonhomog. Dirichlet BC, [243]
nonconstant nonhomog. Dirichlet BC, [44]
one constant nonhomog. Dirichlet BC, [21]
two compartments separated by aperture, 4.33]
unique solution of, 87
Dirichlet test, 130
Distance
$L^{2}, 117$
$L^{\infty}, 124$
uniform, 124
Divergence $(\operatorname{div} V)$
in many dimensions, 560
in one dimension, 558
in two dimensions, 559
Divergence theorem, 563
Dot product, 103
Drumskin
round, 302
square, 259, 261
ϵ-tube, 124
Eigenfunction
definition, 63]
of differentiation operator, 158, 168
of Laplacian, 63, 67
polar-separated, 292
polar-separated; homog. Dirichlet BC, 296
Eigenfunctions
of $\partial_{x}^{2}, 345$
of self-adjoint operators, 345
of the Laplacian, 347
Eigenvalue
definition, 63
of Hamiltonian as energy levels, 46
Eigenvector
definition, 63
of Hamiltonian as stationary quantum states

46

Eikonal equation, 67, 99
Electric field, 15
Electric field lines, 431
Electrostatic potential, 14, 431
Elliptic differential equation, 98
motivation: polynomial formalism, 371
two-dimensional, 96
Elliptic differential operator
definition, 96, 98
divergence form, 349
self-adjoint
eigenvalues of, 349
if symmetric, 349
symmetric, 349
Entire function, 471
Equipotential contour, 430
Error function $\Phi, 390$
Essential singularity, 471
Euler's formula, 551
Even extension, 170
Even function, 168
Even-odd decomposition, 169
Evolution equation, 69
Extension
even, see Even extension
odd, see Odd extension
odd periodic, see Odd Periodic Extension
Φ ('error function' or 'sigmoid function'), 390
Factorial, 569
gamma function, 520

Field of fractions, 472
Flow
along river bank, 434
around peninsula, 434
confined to domain, 430
irrotational, 418
out of pipe, 434
over chasm, 434
sourceless, 418
sourceless and irrotational, 418, 430

Fluid

incompressible and nonturbulent, 430
Fluid dynamics, 430
Flux across boundary
in $\mathbb{R}^{2}, 562$
in $\mathbb{R}^{D}, 563$
Fokker-Plank equation, 19
is homogeneous linear, 64
is parabolic $\mathrm{PDE}, 98$
Forced heat equation
unique solution of, 91
Forced wave equation
unique solution of, 94
Fourier (co)sine transform
definition, 510
inversion, 510
Fourier cosine series, see Fourier series, cosine
Fourier series
absolute convergence, 174
convergence; Bernstein's theorem, 175
failure to converge pointwise, 175
Fourier series, (co)sine
of derivative, 158
of piecewise linear function, 156
of polynomials, 148
of step function, 153
relation to real Fourier series, 171
Fourier series, complex
coefficients, 172
convergence, 173
definition, 172
relation to real Fourier series, 174
Fourier series, cosine
coefficents
on $[0, \pi]$, 141
on $[0, L]$, 146
convergence, [142, 146
definition
on $[0, \pi]$, 141
on $[0, L]$, 146
is even function, 169
of $f(x)=\cosh (\alpha x), 143$
of $f(x)=\sin (m \pi x / L), 146$
of $f(x)=\sin (m x), 143$
of $f(x)=x, 148$
of $f(x)=x^{2}, 148$
of $f(x)=x^{3}, 148$
of $f(x) \equiv 1,143$, 146
of half-interval, 154
Fourier series, multidimensional
complex, 191
convergence, 187
cosine
coefficients, 186
series, 186
Derivatives of, 192
mixed
coefficients, 187
series, 187
sine
coefficients, 186
series, 186
Fourier series, real
coefficents, 161
convergence, 162
definition, 161
of $f(x)=x, 164$
of $f(x)=x^{2}, 164$
of derivative, 168
of piecewise linear function, 167
of polynomials, 163
of step function, 165
relation to complex Fourier series, 174
relation to Fourier (co)sine series, 171
Fourier series, sine
coefficents
on $[0, \pi]$, 137
on $[0, L]$, 144
convergence, 138 , 145
definition
on $[0, \pi]$, 137
on $[0, L], 144$
is odd function, 169
of $f(x)=\cos (m \pi x / L)$, 145
of $f(x)=\cos (m x), 140$
of $f(x)=\sinh (\alpha \pi x / L)$, 145
of $f(x)=\sinh (\alpha x), 140$
of $f(x)=x, 148$
of $f(x)=x^{2}, 148$
of $f(x)=x^{3}, 148$
of $f(x) \equiv 1,140,145$
of tent function, 155, 159
Fourier series, two-dimensional
convergence, 183
cosine
coefficients, 182
definition, 182
sine
coefficients, $\boxed{\boxed{71} 9}$
definition, 179
of $f(x, y)=x \cdot y, \boxed{179}$
of $f(x, y) \equiv 1,182$
Fourier series, two-dimensional, mixed
coefficients, 185
convergence, 185
definition, 185
Fourier sine series, see Fourier series, sine
Fourier transform
D-dimensional
inversion, 508
asymptotic decay, 492
convolution, 494
D-dimensional definition, 508
derivative of, 496
evil twins of, 500
is continuous, 492
of analytic function, 476
one-dimensional
definition, 488
inversion, 488, 491
of box function, 489
of Gaussian, 497
of Poisson kernel (on half-plane), 539
of rational functions, 479
of symmetric exponential tail function, [19]
rescaling, 495
smoothness vs. asymptotic decay, 997
three-dimensional
definition, 507
inversion, 507
of ball, 507
translation vs. phase shift, 494
two-dimensional
definition, 504
inversion, 504, 505
of box function, 505
of Gaussian, 506
Fourier's Law of Heat Flow
many dimensions, ⿴ $^{-1}$
one-dimension, π^{7}
Fourier-Bessel series, 296
Frequency spectrum, 53
Frobenius, method of, 573
to solve Bessel equation, 306
Fuchs power series solution to ODE, 573
Fuel rod example, 255
Functions as vectors, 58

Fundamental solution, 385
heat equation (many-dimensional), 393
heat equation (one-dimensional), 388
Fundamental theorem of calculus, 559
as special case of Divergence Theorem, 563
∇^{2}, see Laplacian
Gamma function, 520
Gauss theorem, see Divergence theorem
Gauss's Law (electrostatics), 15
Gauss-Weierstrass Kernel
convolution with, see Gaussian Convolution
many-dimensional definition, 8
is approximation of identity, 393
one-dimensional, 385, 528
definition, 6
is approximation of identity, 387
two-dimensional, $\mathbb{\square}$
Gaussian
one-dimensional
cumulative distribution function of, 390
Fourier transform of, 497
integral of, 390
stochastic process, 21
two-dimensional
Fourier transform of, 506
Gaussian Convolution, 388, 392, 530
General Boundary Conditions, 82
Generation equation, [12
equilibrium of, 13
Generation-diffusion equation, 12
Germer, L.H, 37
Gibbs phenomenon, 140, 145, 152
Gradient ∇u
many-dimensional, 558
two-dimensional, 557
Gradient vector field
many-dimensional, 558
two-dimensional, 557
Gravitational potential, 14
Green's function, 379
Green's Theorem, 562
as special case of Divergence Theorem, 563
Guitar string, 71
Hölder continuous, 174
Haar basis, 115
Hamiltonian operator
eigenfunctions of, 46
in Schrödinger equation, 41
is self-adjoint, 343
Harmonic \Rightarrow locally holomorphic, 417
Harmonic analysis, 177
noncommutative, 350
Harmonic conjugate, 417
swaps Neumann and Dirichlet BC, 421
Harmonic function
'saddle' shape, 10
analyticity, 18
convolution against Gauss-Weierstrass, 413
definition, 10
Maximum Principle, 17
Mean value theorem, 16, 316, 413
separated (Cartesian), 356
smoothness properties, 18
two-dimensional separated (Cartesian), 354
two-dimensional, separated (polar coordinates), 274
Harp string, 231
Hausdorff-Young inequality, 503
HDBC, see Dirichlet Boundary Conditions, Homogeneous
Heat equation
definition, 8
derivation and physical interpretation many dimensions, $]^{7}$ one-dimension, 5
equilibrium of, 9
fundamental solution of, 388, 393
Initial conditions: Heaviside step function, 388
is evolution equation., 69
is homogeneous linear, 64
is parabolic PDE, 96, 98
norm decay, 89
on 2-dim. plane
Fourier transform solution, 528
on 3-dim. space
Fourier transform solution, 529
on cube; Homog. Dirichlet BC
Fourier solution, 266
on cube; Homog. Neumann BC
Fourier solution, 268
on disk; Homog. Dirichlet BC
Fourier-Bessel solution, 300
on disk; Nonhomog. Dirichlet BC
Fourier-Bessel solution, 301
on interval; Homog. Dirichlet BC
Fourier solution, 225
on interval; Homog. Neumann BC
Fourier solution, 227
on real line
Fourier transform solution, 527
Gaussian Convolution solution, 388, 530
on square; Homog. Dirichlet BC Fourier solution, 247
on square; Homog. Neumann BC Fourier solution, 249
on square; Nonhomog. Dirichlet BC
Fourier solution, 251
on unbounded domain
Gaussian Convolution solution, 392
unique solution of, 91
Heaviside step function, 388
Heisenberg Uncertainty Principle, see Uncertainty Principle
Heisenberg, Werner, 513
Helmholtz equation, 67, 99
as Sturm-Liouville equation, 344
is not evolution equation., 70
Hermitian, 109
Hessian derivative, 26
Hessian derivative matrix, 576
HNBC, see Neumann Boundary Conditions, Homogeneous
Holomorphic
\Leftrightarrow conformal, 423
\Leftrightarrow sourceless irrotational flow, 418
\Rightarrow complex-analytic, 450
\Rightarrow harmonic, 417
function, 416
Homogeneous Boundary Conditions
Dirichlet, see Dirichlet Boundary Conditions, Homogeneous
Mixed, see Mixed Boundary Conditions, Homogeneous
Neumann, see Neumann Boundary Conditions, Homogeneous
Robin, see Mixed Boundary Conditions, Homogeneous
Homogeneous linear differential equation definition, 64
superposition principle, 65
Homologous (cycles), 482
Homology group, 484
Homology invariance (of chain integrals), 483
Homotopic (contours), 439
Homotopy invariance
of contour integration, 440
Huygen's Principle, 536
Hydrogen atom
Balmer lines, 53
Bohr radius, 52
energy spectrum, 53
frequency spectrum, 53
ionization potential, 52
Schrödinger equation, 42
Stationary Schrödinger equation, 51
Hyperbolic differential equation, 98
motivation: polynomial formalism, 371
one-dimensional, 96
I/BVP, see Initial/Boundary value problem
Ice cube example, 267
Identity Theorem, 452
Imperfect Conductor (Robin BC), 81
Impermeable barrier (Homog. Neumann BC., $[7$
Improper integral of analytic functions, 473
Impulse function, 379
Impulse-response function
four properties, 375
interpretation, 375
Impulse-response solution
to Dirichlet problem on disk, 290, 407
to half-plane Dirichlet problem, 404, 539
to heat equation, 392
to heat equation (one dimensional), 388
to wave equation (one dimensional), 398
Indelible singularity, 464
indicial polynomial, 573
indicial roots, 573
∞, see Point at infinity
Initial conditions, 70
Initial position problem, 230, 259, 302, 393
Initial value problem, 70
Initial velocity problem, 232, 261, 302, 395
Initial/Boundary value problem, 72
Inner product
of complex functions, 109
of functions, 105, 107
of functions (complex-valued), 172
of vectors, 103
$\operatorname{int}(\mathbb{X})$, see Interior
Integral domain, 471
Integral representation formula, 447
Integration as linear operator, 62
Integration by parts, 147
Interior (of a domain), 71
Irrotational flow, 418
IVP, see Initial value problem
Jordan Curve Theorem, 437
Kernel
convolution, see Impulse-response function

Gauss-Weierstrass, see Gauss-Weierstrass
Kernel
Poisson
on disk, see Poisson Kernel (on disk)
on half-plane, see Poisson Kernel (on half-plane)
Kernel of linear operator, 63
L^{2} norm $\left(\|f\|_{2}\right)$, see Norm, L^{2}
L^{2}-convergence, see Convergence in L^{2}
L^{2}-distance, 117
L^{2}-norm, 118
L^{2}-space, 40, 106, 107
L^{∞}-convergence, see Convergence, uniform
L^{∞}-distance, 124
L^{∞}-norm $\left(\|f\|_{\infty}\right), 123$
$\mathbf{L}^{1}\left(\mathbb{R}_{\not}\right), 510$
$\mathbf{L}^{1}(\mathbb{R}), 488$
$\mathbf{L}^{1}\left(\mathbb{R}^{2}\right), 504$
$\mathbf{L}^{1}\left(\mathbb{R}^{3}\right), 507$
$\mathbf{L}^{1}\left(\mathbb{R}^{D}\right), 508$
$\mathbf{L}^{2}(\mathbb{X}), 40,106,107$
$\mathbf{L}_{\text {even }}^{2}[-\pi, \pi], 169$
$\mathbf{L}_{\text {odd }}^{2}[-\pi, \pi], 169$
Landau big 'O' notation, see Order $\mathcal{O}(1 / z)$
Landau small ' o ' notation, see Order $o(1 / z)$
Laplace equation
definition, 9
is elliptic PDE, 96, 98
is homogeneous linear, 64
is not evolution equation., 70
nonhomogeneous Dirichlet BC, see Dirichlet Problem
on codisk
physical interpretation, 283
on codisk; homog. Neumann BC
Fourier solution, 285
on disk; homog. Neumann BC
Fourier solution, 280
one-dimensional, 10
polynomial formalism, 370
quasiseparated solution, 369
separated solution (Cartesian), 356
separated solution of, 12
three-dimensional, $[1$
two-dimensional, 10
separated solution (Cartesian), 354, 370
separated solution (polar coordinates),
[77]
unique solution of, 86
Laplace transform, 515
Laplace-Beltrami operator, 21, 350
Laplacian, 7
eigenfunctions (polar-separated), 292
eigenfunctions (polar-separated) homog.
Dirichlet BC, 296
eigenfunctions of, 347
in polar coordinates, 274
is linear operator, 62
is self-adjoint, 342
spherical mean formula, 16, 25
Laurent expansion, 465
Lebesgue integral, 110, 211
Lebesgue's Dominated Convergence Theorem, [21]
Left-hand derivative $\left(f^{\prime}(x)\right), 201$
Left-hand limit ($\lim _{y / x} f(y)$), 201
Legendre Equation, 361
Legendre equation
as Sturm-Liouville equation, 344
Legendre polynomial, 362
Legendre series, 368
Leibniz rule
for divergence, 561
for gradients, 558
for Laplacians, 9
for normal derivatives, 565
$\lim _{y \nearrow x} f(y)$, see Left-hand limit
$\lim _{y \backslash x} f(y)$, see Right-hand limit
Linear differential operator, 62
Linear function, see Linear operator
Linear operator
definition, 60
kernel of, 63
Linear transformation, see Linear operator
Liouville's equation, 19
Liouville's theorem, 447
Logarithm, complex, 449
\mathbf{L}^{p} norm
on $[-\pi, \pi], 175$
on $\mathbb{R}, 503$
$\mathbf{L}^{p}(\mathbb{R}), 503$
$\mathbf{L}^{p}[-\pi, \pi], 175$
Maclaurin series, 570
derivatives of, 570
Maximum Principle, 17
Mean Value Theorem
for harmonic functions, 445
for holomorphic functions, 444
Mean value theorem, 316, 413]
for harmonic functions, 16
Meromorphic function, 466
Method of Frobenius, see Frobenius, method of
Minkowski's Inequality, 213

Mixed Boundary Conditions
Homogeneous definition, 81
Nonhomogeneous as Dirichlet, 81 as Neumann, 81 definition, 81
Mollifier, 220
Monge-Ampère equation, 67, 99
Multiplication operator
continuous, 62
discrete, 61
∇^{2}, see Laplacian
Negative definite matrix, 96, 98
Neumann Boundary Conditions
Homogeneous
2-dim. Fourier cosine series, 183
definition, 77
Fourier cosine series, 142
multidim. Fourier cosine series, 187
physical interpretation, $\sqrt{77}$
Nonhomogeneous
definition, 80
physical interpretation, 80
Neumann Problem
definition, 80
Neumann problem
unique solution of, 87
Newton's law of cooling, 81
Nonhomogeneous Boundary Conditions
Dirichlet, see Dirichlet Boundary Conditions, Nonhomogeneous
Mixed, see Mixed Boundary Conditions, Nonhomogeneous
Neumann, see Neumann Boundary Conditions, Nonhomogeneous
Robin, see Mixed Boundary Conditions, Nonhomogeneous
Nonhomogeneous linear differential equation
definition, 65
subtraction principle, 66
Norm
$L^{2}\left(\|f\|_{2}\right), 40,106,107,109$
of a vector, 104
uniform $\left(\|f\|_{\infty}\right), 123$
Norm decay
in heat equation, 89
Normal derivative, see Outward normal derivative
Normal vector
in $\mathbb{R}^{D}, 562$
Normal vector field
in $\mathbb{R}^{2}, 562$
Nullhomotopic, 437
$\mathcal{O}(1 / z)$, see Order $\mathcal{O}(1 / z)$
$o(1 / z)$, see Order $o(1 / z)$
Ocean pollution, 403
Odd extension, 170
Odd function, 169
Odd periodic extension, 399
One-parameter semigroup, 413, 525
Open source, Xiii
Order
of differential equation, 70
of differential operator, 70
Order $\mathcal{O}(1 / z), 476$
Order $o(1 / z), 472$
ordinary point for ODE, 573
Oriented boundary (of a subset of \mathbb{C}), 482
Orthogonal
basis, see Orthogonal basis
eigenfunctions of self-adjoint operators, 345
functions, 112
set, see Orthogonal set
set of functions, 112
trigonometric functions, 112, 113
vectors, 103
Orthogonal basis
eigenfunctions of Laplacian, 347
for $L^{2}([0, X] \times[0, Y]), 183$, 185
for $L^{2}\left(\left[0, X_{1}\right] \times \ldots \times\left[0, X_{D}\right]\right), 187$
for $L^{2}(D)$, using Fourier-Bessel functions, [.9]
for $L^{2}[-\pi, \pi]$
using (co)sine functions, 162
for $L^{2}[0, \pi]$
using cosine functions, 142
using sine functions, 138
for even functions $L_{\text {even }}[-\pi, \pi], \boxed{170}$
for odd functions $L_{o d d}[-\pi, \pi], 170$
of functions, 131
Orthogonal set
of functions, 131
Orthonormal basis
for $L^{2}[-L, L]$
using $\exp (i n x)$ functions, 173
of functions, 131
of vectors, 104
Orthonormal set of functions, 112
Ostrogradsky's Theorem, see Divergence theorem
Outward normal derivative
definition in special cases, 76
Outward normal derivative $\left(\partial_{\perp} u\right)$
examples (various domains), 76
Outward normal derivative $\left(\partial_{\perp} u\right)$
physical interpretation, 76]
Outward normal derivative $\partial_{\perp} u$) abstract definition, 564

Parabolic differential equation, 98 motivation: polynomial formalism, 371
one-dimensional, 96
Parseval's equality for Fourier transforms, 502
for orthonormal bases, 132
for vectors, 104
$\partial \mathbb{X}$, see Boundary
$\partial_{\perp} u$, see Outward normal derivative
Peninsula (flow), 434
Perfect Conductor (Homog. Dirichlet BC., 73
Perfect Insulator (Homog. Neumann BC., 77
Perfect set
definiton, 451
Periodic Boundary Conditions
complex Fourier series, 173
definition
on cube, 84
on interval, 82
on square, 83
interpretation
on interval, 82
on square, 83
real Fourier series, 162
Φ ('error function' or 'sigmoid function'), 390
Piano string, (71)
Piecewise $\mathcal{C}^{1}, 138,145$
Piecewise continuously differentiable, 138, 145
Piecewise linear function, 155, 167
Piecewise smooth boundary, 85
in $\mathbb{R}^{2}, 561$
in $\mathbb{R}^{D}, 563$
Pipe into lake (flow), 434
Plancherel's theorem, 503
Plucked string problem, 230
Point at infinity, 465
Pointwise convergence, see Convergence, pointwise
Poisson equation
definition, [13]
electrostatic potential, 14
is elliptic PDE, 98
is nonhomogeneous, 66
on cube; Homog. Dirichlet BC
Fourier solution, 272
on cube; Homog. Neumann BC
Fourier solution, 272
on disk; Homog. Dirichlet BC
Fourier-Bessel solution, 298
on disk; nonhomog. Dirichlet BC
Fourier-Bessel solution, 299
on interval; Homog. Dirichlet BC
Fourier solution, 235
on interval; Homog. Neumann BC
Fourier solution, 235
on square; Homog. Dirichlet BC
Fourier solution, 255
on square; Homog. Neumann BC
Fourier solution, 257
on square; Nonhomog. Dirichlet BC
Fourier solution, 258
one-dimensional, 13
unique solution of, 88
Poisson Integral Formula
for harmonic functions on disk, 290
for holomorphic functions on disk, 445
Poisson kernel
and Abel mean of Fourier series, 462
Fourier series of, 463
Poisson kernel (on disk)
definition, 290, 407
in complex plane, 445
in polar coordinates, 290, 407
is approximation of identity, 409, 464
picture, 407
Poisson kernel (on half-plane)
definition, 404, 539
Fourier transform of, 539
is approximation of identity, 405
picture, 404
Poisson solution
to Dirichlet problem on disk, 290, 407
to half-plane Dirichlet problem, 404, 433, 539
to three-dimensional wave equation, 534
Poisson's equation
is not evolution equation., 70
Polar coordinates, 554
Pole, 465
simple, 464
Pollution, oceanic, 403
Polynomial formalism
definition, 369
elliptic, parabolic \& hyperbolic, 371
Laplace equation, 370
telegraph equation, 371, 372
Polynomial symbol, 370
Positive definite matrix, 96, 97
Positive-definite
inner product is, 107, 109

Potential, 14
complex, 430
Coulomb, 14
electrostatic, 14, 431
gravitational, 14
of a flow, 430
Potential fields and Poisson's equation, (4)
Power series, 569
Power series method, 571
to solve Legendre equation, 364
Power spectrum, 500
Punctured plane, 273
Purview (of a contour), 437
Pythagorean formula
in $\mathbb{R}^{N}, 104$
in L^{2}, 131
Quantization of energy
hydrogen atom, 53
in finite potential well, 48
in infinite potential well, 50
Quantum numbers, 50
Quasiseparated solution, 369
of Laplace equation, 369
Reaction kinetic equation, 19
Reaction-diffusion equation, 20, 67, 99
is nonlinear, 66
Rectangular coordinates, 554
regular singular point for ODE, 573
Removable singularity, 464
Residue, 465
Residue Theorem, 467
Riemann integrable function, 209
Riemann integral
of bounded function on $[-\pi, \pi], 209$
of step function on $[-\pi, \pi]$, 208
of unbounded function on $[-\pi, \pi], 210$
Riemann Mapping Theorem, 429
Riemann Sphere, 469
Riemann surface, 449
Riemann-Lebesgue Lemma
for Fourier series, 197
for Fourier transforms, 492
Riesz-Thorin interpolation, 503
Right-hand derivative $\left(f^{\curlywedge}(x)\right), 201$
Right-hand limit $\left(\lim _{y \backslash x} f(y)\right), 200$
River bank (flow), 434
Robin Boundary Conditions
Homogeneous, see Mixed Boundary Conditions, Homogeneous
Nonhomogeneous, see Mixed Boundary Conditions, Nonhomogeneous

Rodrigues Formula, 365
Root, complex, 449
Roots of unity, 449
Rydberg, J.R, 54
Scalar conservation law, 67, 99
Schrödinger Equation
abstract, 41
is evolution equation, 99
is linear, 67
momentum representation, 512
positional, 41
Schrödinger Equation, Stationary, 46
Schrödinger Equation
abstract, 64
is evolution equation., 69
of electron in Coulomb field, 41
of free electron, 41 solution, 42
of hydrogen atom, 42
Schrödinger Equation, Stationary, 70
hydrogen atom, 51
of free electron, 46
potential well (one-dimensional)
finite voltage, 47
infinite voltage, 49
potential well (three-dimensional), 50
Sectionally smooth, see Piecewise smooth
Self-adjoint
$\partial_{x}^{2}, 341$
multiplication operators, 341
Self-adjoint operator
definition, 340
eigenfunctions are orthogonal, 345
Laplacian, 342
Sturm-Liouville operator, 343
Semidifferentiable, 201
separation constant, 354, 356]
Separation of variables
boundary conditions, 373
bounded solutions, 372
description
many dimensions, 355
two dimensions, 353
Laplace equation
many-dimensional, 356
two-dimensional, 354, 370
telegraph equation, 371, 372
Sesquilinearity, 109
Sigmoid function $\Phi, 390$
Simple closed curve, see Contour
Simple function, 211
Simple pole, 464

Simply connected, 429, 447
Sine series, see Fourier series, sine singular point for ODE, 573
Singularity
essential, 471
indelible, 464
of holomorphic function, 439
pole, 464
removable, 464
Small 'o' notation, see Order $o(1 / z)$
Smooth approximation (of function), 411
Smooth boundary, 85
in $\mathbb{R}^{D}, 563$
Smooth graph, 85
Smooth hypersurface, 85
Smoothness vs. asymptotic decay
of Fourier coefficients, 206
of Fourier transform, 497
Soap bubble example, 279
Solution kernel, 379
Sourceless flow, 418
Spectral signature, 54
Spectral theory, 350
Spherical coordinates, 556
Spherical harmonics, 350
Spherical mean
definition, 24
formula for Laplacian, 16, 25
Poisson soln. to wave equation, 534
solution to 3 -dim. wave equation, 534
spherically symmetric, 17
Stable family of probability distributions, 413, 52.5

Standing wave
one-dimensional, 30
two-dimensional, 32
Stationary Schrödinger equation as Sturm-Liouville equation, 344
Step $[-\pi, \pi]$, see Step function
Step function, 153, 164, 208
Stokes theorem, see Divergence theorem
Streamline, 430
Struck string problem, 232
Sturm-Liouville equation, 344
Sturm-Liouville operator
is self-adjoint, 343
self-adjoint
eigenvalues of, 348
Subtraction principle for nonhomogeneous linear PDE, 66
Summation operator, 60
Superposition principle for homogeneous linear PDE, 65

Tangent (hyper)plane, 562
Tangent line, 561
Taylor polynomial
many-dimensional, 576
one-dimensional, 569
two-dimensional, 575
Taylor series, 569
Taylor's theorem
many-dimensional, 576
one-dimensional, 569
two-dimensional, 575
Telegraph equation
definition, 34
is evolution equation., 69
polynomial formalism, 371, 372
separated solution, 371, 372
Tent function, 155, 159
Thompson, G.P, 37
Topological group, 177
Torus, 83
Total variation, 175
Trajectory
of flow, 430
Transport equation, 18
Travelling wave
one-dimensional, 31
two-dimensional, 33
Trigonometric orthogonality, 【12, 113
Uncertainty Principle
Examples
electron with known velocity, 44
Normal (Gaussian) distribution, 498, 513
Uniform convergence, see Convergence, uniform
Abel's test, 130
Cauchy's Criterion, 130
Dirichlet test, 130
of continuous functions, 127
of derivatives, 127
of integrals, 127
Weierstrass M-test, $[29$
Uniform distance, 124
Uniform norm $\left(\|f\|_{\infty}\right), 123$
Unique solution
of forced heat equation, 91
of forced wave equation, 94
of heat equation, 91
of Laplace equation, 86
of Poisson equation, 88
of wave equation, 94
to Dirichlet Problem, 87
to Neumann Problem, 87
Vector addition, 57
Velocity vector
of a contour in $\mathbb{C}, 435$
Vibrating string initial position, 230
initial velocity, 232
Violin string, 95
Voltage contour, 431
Wave equation
conservation of energy, 92
definition, 34
derivation and physical interpretation
one dimension, 30
two dimensions, 32
is evolution equation., 69
is homogeneous linear, 64
is hyperbolic PDE, 96, 98
on 2-dim. plane
Fourier transform solution, 532
on 3 -dim. space
Fourier transform solution, 533
Huygen's principle, 536
Poisson's (spherical mean) solution, 534
on disk
Fourier-Bessel solution, 302
on interval
d'Alembert solution, 401
on interval; Initial position
Fourier solution, 230
on interval; Initial velocity
Fourier solution, 232
on real line
d'Alembert solution, 398, 531
Fourier transform solution, 531
on real line; initial position
d'Alembert (travelling wave) solution, [393]
on real line; initial velocity d'Alembert (ripple) solution, 395
on square; Initial position
Fourier solution, 259
on square; Initial velocity
Fourier solution, 261
unique solution of, 94
Wave vector
many dimensions, 34
two dimensions, 33
Wavefunction
phase, 44
probabilistic interpretation, 40

Wavelet basis, 115
convergence in $L^{2}, 118$ pointwise convergence, $\Gamma 23$
Weierstrass M-test, 129
Wind instrument, 95
$\partial \mathbb{X}$, see Boundary
Xylophone, 233

Notation

Sets and domains:

$\mathbb{A}(r, R)$: The 2-dimensional closed annulus of inner radius r and outer radius R : the set of all $(x, y) \in \mathbb{R}^{2}$ such that $r \leq x^{2}+y^{2} \leq R$.
${ }^{\circ} \mathbb{A}(r, R)$: The 2-dimensional open annulus of inner radius r and outer radius R : the set of all $(x, y) \in \mathbb{R}^{2}$ such that $r<x^{2}+y^{2}<R$.
\mathbb{B} : A D-dimensional closed ball (often the unit ball centred at the origin).
$\mathbb{B}(\mathbf{x}, \epsilon)$: The D-dimensional closed ball; of radius ϵ around the point \mathbf{x}; the set of all $\mathbf{y} \in \mathbb{R}^{D}$ such that $\|\mathbf{x}-\mathbf{y}\|<\epsilon$.
\mathbb{C} : The set of complex numbers of the form $x+y \mathbf{i}$, where $x, y \in \mathbb{R}$, and \mathbf{i} is the square root of -1 .
\mathbb{C}_{+}: The set of complex numbers $x+y \mathbf{i}$ with $y>0$.
\mathbb{C}_{-}: The set of complex numbers $x+y \mathbf{i}$ with $y<0$.
$\widehat{\mathbb{C}}=\mathbb{C} \sqcup\{\infty\}$, the Riemann Sphere (the range of a meromorphic function).
$\mathbb{D}:$ A 2-dimensional closed disk (usually the unit disk centred at the origin).
$\mathbb{D}(R)$: A 2-dimensional closed disk of radius R, centred at the origin: the set of all $(x, y) \in \mathbb{R}^{2}$ such that $x^{2}+y^{2} \leq R$
$\mathscr{D}(R)$: A 2-dimensional open disk of radius R, centred at the origin: the set of all $(x, y) \in \mathbb{R}^{2}$ such that $x^{2}+y^{2}<R$.
$\mathbb{D}^{\complement}(R)$: A 2-dimensional closed codisk of coradius R, centred at the origin: the set of all $(x, y) \in \mathbb{R}^{2}$ such that $x^{2}+y^{2} \geq R$.
${ }^{{ }^{\mathrm{D}}}{ }^{\complement}(R)$: A 2-dimensional open codisk of coradius R, centred at the origin: the set of all $(x, y) \in \mathbb{R}^{2}$ such that $x^{2}+y^{2}>R$.
$\mathbb{H}:$ A half-plane. Usually $\mathbb{H}=\left\{(x, y) \in \mathbb{R}^{2} ; y \geq 0\right\}$ (the upper half-plane).
$\mathbb{N}:=\{0,1,2,3, \ldots\}$, the set of natural numbers.
$\mathbb{N}_{+}:=\{1,2,3, \ldots\}$, the set of positive natural numbers.
\mathbb{N}^{D} : The set of all $\mathbf{n}=\left(n_{1}, n_{2}, \ldots, n_{D}\right)$, where n_{1}, \ldots, n_{D} are natural numbers.
$\emptyset:$ The empty set, also denoted $\}$.
\mathbb{Q} : The rational numbers: the set of all fractions n / m, where $n, m \in \mathbb{Z}$, and $m \neq 0$.
\mathbb{R} : The set of real numbers (e.g. $2,-3, \sqrt{7}+\pi$, etc.)
$\mathbb{R}_{+}:=(0, \infty)=\{r \in \mathbb{R} ; r \geq 0\}$.
$\mathbb{R}_{+}:=[0, \infty)=\{r \in \mathbb{R} ; r \geq 0\}$.
\mathbb{R}^{2} : The 2-dimensional infinite plane - the set of all ordered pairs (x, y), where $x, y \in \mathbb{R}$.
\mathbb{R}^{D} : D-dimensional space - the set of all D-tuples $\left(x_{1}, x_{2}, \ldots, x_{D}\right)$, where $x_{1}, x_{2}, \ldots, x_{D} \in \mathbb{R}$. Sometimes we will treat these D-tuples as points (representing locations in physical space); normally points will be indicated in bold face, eg: $\mathbf{x}=\left(x_{1}, \ldots, x_{D}\right)$. Sometimes we will treat the D-tuples as vectors (pointing in a particular direction); then they will be indicated with arrows, eg: $\overrightarrow{\mathbf{V}}=\left(V_{1}, V_{2}, \ldots, V_{D}\right)$.
$\mathbb{R}^{D} \times \mathbb{R}$: The set of all pairs $(\mathbf{x} ; t)$, where $\mathbf{x} \in \mathbb{R}^{D}$ is a vector, and $t \in \mathbb{R}$ is a number. (Of course, mathematically, this is the same as \mathbb{R}^{D+1}, but sometimes it is useful to regard the last dimension as "time".)
$\mathbb{R} \times \mathbb{R}_{+}:$The half-space of all points $(x, y) \in \mathbb{R}^{2}$, where $y \geq 0$.
\mathbb{S} : The 2-dimensional unit circle; the set of all $(x, y) \in \mathbb{R}^{2}$ such that $x^{2}+y^{2}=1$.
$\mathbb{S}^{D-1}(\mathbf{x} ; R)$: The D-dimensional sphere; of radius R around the point \mathbf{x}; the set of all $\mathbf{y} \in \mathbb{R}^{D}$ such that $\|\mathbf{x}-\mathbf{y}\|=R$
$\mathbb{U}, \mathbb{V}, \mathbb{W}$ usually denote open subsets of \mathbb{R}^{D} or \mathbb{C}.
$\mathbb{X}, \mathbb{Y}:$ usually denote domains - closed connected subsets of \mathbb{R}^{D} with dense interiors.
\mathbb{Z} : The integers $\{\ldots,-2,-1,0,1,2,3, \ldots\}$.
\mathbb{Z}^{D} : The set of all $\mathbf{n}=\left(n_{1}, n_{2}, \ldots, n_{D}\right)$, where n_{1}, \ldots, n_{D} are integers.
$[1 \ldots D]=\{1,2,3, \ldots, D\}$.
$[0, \pi]$: The closed interval of length π; the set of all real numbers x where $0 \leq x \leq \pi$.
$(0, \pi)$: The open interval of length π; the set of all real numbers x where $0<x<\pi$.
$[0, \pi]^{2}$: The (closed) $\pi \times \pi$ square; the set of all points $(x, y) \in \mathbb{R}^{2}$ where $0 \leq x, y \leq \pi$.
$[0, \pi]^{D}$: The D-dimensional unit cube; the set of all points $\left(x_{1}, \ldots, x_{D}\right) \in \mathbb{R}^{D}$ where $0 \leq x_{d} \leq$ 1 for all $d \in[1 \ldots D]$.
$[-L, L]$: The interval of all real numbers x with $-L \leq X \leq L$.
$[-L, L]^{D}$: The D-dimensional cube of all points $\left(x_{1}, \ldots, x_{D}\right) \in \mathbb{R}^{D}$ where $-L \leq x_{d} \leq L$ for all $d \in[1 \ldots D]$.

Set operations:

$\operatorname{int}(\mathbb{X})$ The interior of the set \mathbb{X} (i.e. all points in \mathbb{X} not on the boundary of \mathbb{X}).
\cap Intersection. If \mathbb{X} and \mathbb{Y} are sets, then $\mathbb{X} \cap \mathbb{Y}:=\{z ; z \in \mathbb{X}$ and $z \in \mathbb{Y}\}$. If $\mathbb{X}_{1}, \ldots, \mathbb{X}_{N}$ are sets, then $\bigcap_{n=1}^{N} \mathbb{X}_{n}:=\mathbb{X}_{1} \cap \mathbb{X}_{2} \cap \cdots \cap \mathbb{X}_{N}$.
\cup Union. If \mathbb{X} and \mathbb{Y} are sets, then $\mathbb{X} \cup \mathbb{Y}:=\{z ; z \in \mathbb{X}$ or $z \in \mathbb{Y}\}$. If $\mathbb{X}_{1}, \ldots, \mathbb{X}_{N}$ are sets, then $\bigcup_{n=1}^{N} \mathbb{X}_{n}:=\mathbb{X}_{1} \cup \mathbb{X}_{2} \cup \cdots \cup \mathbb{X}_{N}$.
\sqcup Disjoint union. If \mathbb{X} and \mathbb{Y} are sets, then $\mathbb{X} \sqcup \mathbb{Y}$ means the same as $\mathbb{X} \cup \mathbb{Y}$, but conveys the added information that \mathbb{X} and \mathbb{Y} are disjoint -i.e. $\mathbb{X} \cap \mathbb{Y}=\emptyset$. Likewise, $\bigsqcup_{n=1}^{N} \mathbb{X}_{n}:=$ $\mathbb{X}_{1} \sqcup \mathbb{X}_{2} \sqcup \cdots \sqcup \mathbb{X}_{N}$.
\backslash Difference. If \mathbb{X} and \mathbb{Y} are sets, then $\mathbb{X} \backslash \mathbb{Y}=\{x \in \mathbb{X} ; x \notin \mathbb{Y}\}$.

Spaces of Functions:

\mathcal{C}^{∞} : A vector space of (infinitely) differentiable functions. Some examples:

- $\mathcal{C}^{\infty}\left[\mathbb{R}^{2} ; \mathbb{R}\right]$: The space of differentiable scalar fields on the plane.
- $\mathcal{C}^{\infty}\left[\mathbb{R}^{D} ; \mathbb{R}\right]$: The space of differentiable scalar fields on D-dimensional space.
- $\mathcal{C}^{\infty}\left[\mathbb{R}^{2} ; \mathbb{R}^{2}\right]$: The space of differentiable vector fields on the plane.
$\mathcal{C}_{0}^{\infty}[0,1]^{D}$: The space of differentiable scalar fields on the cube $[0,1]^{D}$ satisfying Dirichlet boundary conditions: $f(\mathbf{x})=0$ for all $\mathbf{x} \in \partial[0,1]^{D}$.
$\mathcal{C}_{\perp}^{\infty}[0,1]^{D}$: The space of differentiable scalar fields on the cube $[0,1]^{D}$ satisfying Neumann boundary conditions: $\partial_{\perp} f(\mathbf{x})=0$ for all $\mathbf{x} \in \partial[0,1]^{D}$.
$\mathcal{C}_{h}^{\infty}[0,1]^{D}$: The space of differentiable scalar fields on the cube $[0,1]^{D}$ satisfying mixed boundary conditions: $\frac{\partial_{\perp} f}{f}(\mathbf{x})=h(\mathbf{x})$ for all $\mathbf{x} \in \partial[0,1]^{D}$.
$\mathcal{C}_{\text {per }}^{\infty}[-\pi, \pi]$: The space of differentiable scalar fields on the interval $[-\pi, \pi]$ satisfying periodic boundary conditions.
$\mathbf{L}^{1}(\mathbb{R}):$ The set of all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that $\int_{-\infty}^{\infty}|f(x)| d x<\infty$.
$\mathbf{L}^{1}\left(\mathbb{R}^{2}\right)$: The set of all functions $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ such that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|f(x, y)| d x d y<\infty$.
$\mathbf{L}^{1}\left(\mathbb{R}^{3}\right)$: The set of all functions $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ such that $\int_{\mathbb{R}^{3}}|f(\mathbf{x})| d \mathbf{x}<\infty$.
$\mathbf{L}^{2}(\mathbb{X}):$ The set of all functions $f: \mathbb{X} \longrightarrow \mathbb{R}$ such that $\|f\|_{2}=\left(\int_{\mathbb{X}}|f(\mathbf{x})|^{2} d \mathbf{x}\right)^{1 / 2}<\infty$.
$\mathbf{L}^{2}(\mathbb{X} ; \mathbb{C}):$ The set of all functions $f: \mathbb{X} \longrightarrow \mathbb{C}$ such that $\|f\|_{2}=\left(\int_{\mathbb{X}}|f(\mathbf{x})|^{2} d \mathbf{x}\right)^{1 / 2}<\infty$.

Derivatives and Boundaries:

$\partial_{k} f=\frac{d f}{d x_{k}}$.
$\nabla f=\left(\partial_{1} f, \partial_{2} f, \ldots, \partial_{D} f\right)$, the gradient of scalar field f.
$\operatorname{div} f=\partial_{1} f_{1}+\partial_{2} f_{2}+\ldots+\partial_{D} f_{D}$, the divergence of vector field f.
$\partial_{\perp} f$ is the derivative of f normal to the boundary of some region. Sometimes this is written as $\frac{\partial f}{\partial \mathbf{n}}$ or $\frac{\partial f}{\partial \nu}$, or as $\nabla f \cdot \mathbf{n}$.
$\triangle f=\partial_{1}^{2} f+\partial_{2}^{2} f+\ldots+\partial_{D}^{2} f$. Sometimes this is written as $\nabla^{2} f$.
$L f$ sometimes means a general linear differential operator L being applied to the function f.
$\mathrm{SL}_{s, q}(\phi)=s \cdot \partial^{2} \phi+s^{\prime} \cdot \partial \phi+q \cdot \phi$. Here, $s, q:[0, L] \longrightarrow \mathbb{R}$ are predetermined functions, and $\phi:[0, L] \longrightarrow \mathbb{R}$ is the function we are operating on by the Sturm-Liouville operator $\mathrm{SL}_{s, q}$.
$\dot{\gamma}=\left(\gamma_{1}^{\prime}, \ldots, \gamma_{D}^{\prime}\right)$ is the velocity vector of the path $\gamma: \mathbb{R} \longrightarrow \mathbb{R}^{D}$.
$\partial \mathbb{X}:$ If $\mathbb{X} \subset \mathbb{R}^{D}$ is some region in space, then $\partial \mathbb{X}$ is the boundary of that region. For example:

- $\partial[0,1]=\{0,1\}$.
- $\partial \mathbb{B}^{2}(0 ; 1)=\mathbb{S}^{2}(0 ; 1)$.
- $\partial \mathbb{B}^{D}(\mathbf{x} ; R)=\mathbb{S}^{D}(\mathbf{x} ; R)$.
- $\partial\left(\mathbb{R} \times \mathbb{R}_{+}\right)=\mathbb{R} \times\{0\}$.

Norms and Inner products:

$\|\mathbf{x}\|:$ If $\mathbf{x} \in \mathbb{R}^{D}$ is a vector, then $\|\mathbf{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{D}^{2}}$ is the norm (or length) of \mathbf{x}.
$\|f\|_{2}:$ Let $\mathbb{X} \subset \mathbb{R}^{D}$ be a bounded domain, with volume $M=\int_{\mathbb{X}} 1 d \mathbf{x}$. If $f: \mathbb{X} \longrightarrow \mathbb{R}$ is an integrable function, then $\|f\|_{2}=\frac{1}{M}\left(\int_{\mathbb{X}}|f(\mathbf{x})| d \mathbf{x}\right)^{1 / 2}$ is the L^{2}-norm of f.
$\langle f, g\rangle:$ If $f, g: \mathbb{X} \longrightarrow \mathbb{R}$ are integrable functions, then their inner product is given by: $\langle f, g\rangle=\frac{1}{M} \int_{\mathbb{X}} f(\mathbf{x}) \cdot g(\mathbf{x}) d \mathbf{x}$.
$\|f\|_{1}:$ Let $\mathbb{X} \subseteq \mathbb{R}^{D}$ be any domain. If $f: \mathbb{X} \longrightarrow \mathbb{R}$ is an integrable function, then $\|f\|_{\infty}=$ $\int_{\mathbb{X}}|f(\mathbf{x})| d \mathbf{x}$ is the L^{1}-norm of f.
$\|f\|_{\infty}:$ Let $\mathbb{X} \subseteq \mathbb{R}^{D}$ be any domain. If $f: \mathbb{X} \longrightarrow \mathbb{R}$ is a bounded function, then $\|f\|_{\infty}=$ $\sup _{\mathbf{x} \in \mathbb{X}}|f(\mathbf{x})|$ is the L^{∞}-norm of f.

Other Operations on Functions:

A_{n} : normally denotes the nth Fourier cosine coefficient of a function f on $[0, \pi]$ or $[-\pi, \pi]$. That is, $A_{n}:=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) d x$ or $A_{n}:=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x$.
$A_{n, m}$: normally denotes a 2 -dimensional Fourier cosine coefficient, while A_{n} normally denotes a D-dimensional Fourier cosine coefficient.
B_{n} : normally denotes the nth Fourier cosine coefficient of a function f on $[0, \pi]$ or $[-\pi, \pi]$. That is, $A_{n}:=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x$ or $A_{n}:=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x$.
$B_{n, m}$: normally denotes a 2 -dimensional Fourier sine coefficient, while $B_{\mathbf{n}}$ normally denotes a D-dimensional Fourier sine coefficient.
$f * g:$ If $f, g: \mathbb{R}^{D} \longrightarrow \mathbb{R}$, then their convolution is the function $f * g: \mathbb{R}^{D} \longrightarrow \mathbb{R}$ defined by $(f * g)(\mathbf{x})=\int_{\mathbb{R}^{D}} f(\mathbf{y}) \cdot g(\mathbf{x}-\mathbf{y}) d \mathbf{y}$.
$\widehat{f}(\boldsymbol{\mu})=\frac{1}{(2 \pi)^{D}} \int_{\mathbb{R}^{D}} f(\mathbf{x}) \exp (\mathbf{i} \boldsymbol{\mu} \bullet \mathbf{x}) d \mathbf{x}$ is the Fourier transform of the function $f: \mathbb{R}^{D} \longrightarrow \mathbb{C}$. It is defined for all $\boldsymbol{\mu} \in \mathbb{R}^{D}$.
$\widehat{f}_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \exp (\mathbf{i} n x) d x$ is the nth complex Fourier coefficient of a function f : $[-\pi, \pi] \longrightarrow \mathbb{C}$ (here $n \in \mathbb{Z}$).
$\oint_{\gamma} f:=\int_{0}^{S} f[\gamma(s)] \cdot \dot{\gamma}(s) d s$ is a chain integral. Here, $f: \mathbb{U} \longrightarrow \mathbb{C}$ is some complex-valued function and $\gamma:[0, S] \longrightarrow \mathbb{U}$ is a chain (a piecewise-continuous, piecewise differentiable path).
$\oint_{\gamma} f:$ A contour integral. The same definition as the chain integral $\oint_{\gamma} f$, but γ is a contour.
$\alpha \diamond \beta$: If α and β are two chains, then $\alpha \diamond \beta$ represents the linking of the two chains.
$\mathcal{L}[f]=\int_{0}^{\infty} f(t) e^{-t s} d t$ is the Laplace transform of the function $f: \mathbb{R}_{+} \longrightarrow \mathbb{C}$; it is defined for all $s \in \mathbb{C}$ with $\operatorname{Re}[s]>\alpha$, where α is the exponential order of f.
$\mathbf{M}_{R} u(\mathbf{x})=\frac{1}{4 \pi R^{2}} \int_{\mathbb{S}(R)} f(\mathbf{x}+\mathbf{s}) d \mathbf{s}$ is the spherical average of f at \mathbf{x}, of radius R. Here, $\mathbf{x} \in \mathbb{R}^{3}$ is a point in space, $R>0$, and $\mathbb{S}(R)=\left\{\mathbf{s} \in \mathbb{R}^{3} ;\|\mathbf{s}\|=R\right\}$.

Special functions.:

$\mathbf{C}_{n}(x)=\cos (n x)$ for all $n \in \mathbb{N}$ and $x \in[-\pi, \pi]$.
$\mathbf{C}_{n, m}(\mathbf{x})=\cos (n x) \cdot \cos (m y)$ for all $n, m \in \mathbb{N}$ and $(x, y) \in[\pi, \pi]^{2}$.
$\mathbf{C}_{\mathbf{n}}(\mathbf{x})=\cos \left(n_{1} x_{1}\right) \cdots \cos \left(n_{D} x_{D}\right)$ for all $\mathbf{n} \in \mathbb{N}^{D}$ and $\mathbf{x} \in[\pi, \pi]^{D}$.
$\mathbf{D}_{N}(x)=1+2 \sum_{n=1}^{N} \cos (n x)$ is the nth Dirichlet kernel, for all $n \in \mathbb{N}$ and $x \in[-2 \pi, 2 \pi]$.
$\mathbf{E}_{n}(x)=\exp (\mathbf{i} n x)$ for all $n \in \mathbb{Z}$ and $x \in[-\pi, \pi]$.
$\mathcal{E}_{\mu}(x)=\exp (\mathbf{i} \mu x)$ for all $\mu \in \mathbb{R}$ and $x \in[-\pi, \pi]$.
$\mathcal{G}(x ; t)=\frac{1}{2 \sqrt{\pi t}} \exp \left(\frac{-x^{2}}{4 t}\right)$ is the (one-dimensional) Gauss-Weierstrass kernel.
$\mathcal{G}(x, y ; t)=\frac{1}{4 \pi t} \exp \left(\frac{-x^{2}-y^{2}}{4 t}\right)$ is the (two-dimensional) Gauss-Weierstrass kernel.
$\mathcal{G}(\mathbf{x} ; t)=\frac{1}{(4 \pi t)^{D / 2}} \exp \left(\frac{-\|\mathbf{x}\|^{2}}{4 t}\right)$ is the (D-dimensional) Gauss-Weierstrass kernel.
\mathcal{J}_{n} is the nth Bessel function of the first kind.
$\mathcal{K}_{y}(x)=\frac{y}{\pi\left(x^{2}+y^{2}\right)}$ is the half-plane Poisson kernel, for all $x \in \mathbb{R}$ and $y>0$.
$\overrightarrow{\mathbf{N}}(\mathbf{x})$ is the outward unit normal vector to a domain \mathbb{X} at a point $\mathbf{x} \in \partial \mathbb{X}$.
$\mathcal{P}(\mathbf{x}, \mathbf{s})=\frac{R^{2}-\|\mathbf{x}\|^{2}}{\|\mathbf{x}-\mathbf{s}\|^{2}}$ is the Poisson kernel on the disk, for all $\mathbf{x} \in \mathbb{D}$ and $\mathbf{s} \in \mathbb{S}$.
$\mathbf{P}_{r}(x)=\frac{1-r^{2}}{1-2 r \cos (x)+r^{2}}$ is the Poisson kernel in polar coordinates, for all $x \in[-2 \pi, 2 \pi]$ and $r<1$.
$\Phi_{n}, \phi_{n}, \Psi_{n}$ and ψ_{n} refer to the harmonic functions on the unit disk which separate in polar coordinates. $\Phi_{0}(r, \theta)=1$ and $\phi_{0}(r, \theta)=\log (r)$, while for all $n \geq 1$, we have $\Phi_{n}(r, \theta)=$ $\cos (n \theta) \cdot r^{n}, \quad \Psi_{n}(r, \theta)=\sin (n \theta) \cdot r^{n}, \quad \phi_{n}(r, \theta)=\frac{\cos (n \theta)}{r^{n}}$, and $\psi_{n}(r, \theta)=\frac{\sin (n \theta)}{r^{n}}$.
$\Phi_{n, \lambda}, \Psi_{n, \lambda}, \phi_{n, \lambda}$, and $\psi_{n, \lambda}$ refer to eigenfunctions of the Laplacian on the unit disk which separate in polar coordinates. For all $n \in \mathbb{N}$ and $\lambda>0, \Phi_{n, \lambda}(r, \theta)=\mathcal{J}_{n}(\lambda \cdot r) \cdot \cos (n \theta)$, $\Psi_{n, \lambda}(r, \theta)=\mathcal{J}_{n}(\lambda \cdot r) \cdot \sin (n \theta), \quad \phi_{n, \lambda}(r, \theta)=\mathcal{Y}_{n}(\lambda \cdot r) \cdot \cos (n \theta)$, and $\psi_{n, \lambda}(r, \theta)=$ $\mathcal{Y}_{n}(\lambda \cdot r) \cdot \sin (n \theta)$
$\mathbf{S}_{n}(x)=\sin (n x)$ for all $n \in \mathbb{N}$ and $x \in[\pi, \pi]$.
$\mathbf{S}_{n, m}(\mathbf{x})=\sin (n x) \cdot \sin (m y)$ for all $n, m \in \mathbb{N}$ and $(x, y) \in[\pi, \pi]^{2}$.
$\mathbf{S}_{\mathbf{n}}(\mathbf{x})=\sin \left(n_{1} x_{1}\right) \cdots \sin \left(n_{D} x_{D}\right)$ for all $\mathbf{n} \in \mathbb{N}^{D}$ and $\mathbf{x} \in[\pi, \pi]^{D}$.
\mathcal{Y}_{n} is the nth Bessel function of the second kind.

[^0]: ${ }^{1}$ http://www.redhat.com
 ${ }^{2}$ http://www.ubuntu.com
 ${ }^{3}$ http://www.latex-project.org
 ${ }^{4}$ http://www.gnu.org/software/emacs/emacs.html

[^1]: ${ }^{5}$ http://bourbon.usc.edu:8001/tgif
 ${ }^{6}$ http://www.gimp.org
 ${ }^{7}$ http://www.gnuplot.info
 ${ }^{8}$ Many other plots were generated using Waterloo Maple (http://www.maplesoft.com), which unfortunately is not open-source.
 Linear Partial Differential Equations and Fourier Theory Marcus Pivato Drant Jary 31, 2009

[^2]: ${ }^{9}$ See http://creativecommons.org/licenses/by-nc-sa/3.0.
 Linear Partial Differential Equations and Fourier Theory Marcus Pivato Drafuary 31, 2009

[^3]: ${ }^{10}$ See http://creativecommons.org/licenses/by-nc-sa/3.0.
 Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009
 (

[^4]: ${ }^{1}$ See $\S 0 \mathrm{E}(\mathrm{ii})$ on page 558 for an explanation of why we say the flow is 'diverging' here.

[^5]: ${ }^{2}$ See $\S 0 \mathrm{O}(\mathrm{ii})$ on page 558 for a review of the 'divergence' of a vector field.
 ${ }^{3}$ Sometimes the Laplacian is written as " ∇^{2} ".

[^6]: ${ }^{4}$ For a quick yet lucid introduction to electrostatics, see [Ste95, Chap.3].

[^7]: ${ }^{5}$ Equation (1D.2) seems mathematically nonsensical, but it can be made mathematically meaningful, using distribution theory. However, this is far beyond the scope of this book, so for our purposes, we will interpret eqn. (1D.2) as purely metaphorical.
 ${ }^{6}$ For the purposes of the physical theory, this constant does not matter, because the field p is physically interpreted only by computing the potential difference between two points, and the constant a will always cancel out in this computation. Thus, the two potential fields $p(\mathbf{x})$ and $\widetilde{p}(\mathbf{x})=p(\mathbf{x})+a$ will generate identical physical predictions.

[^8]: ${ }^{7}$ See Appendices $0 \mathrm{H}(\mathrm{ii})$ and $0 \mathrm{H}(\mathrm{v})$ on pages 569 and 576 .

[^9]: ${ }^{1}$ Part (b) of Theorem 2A.1 is not necessary for the physical derivation of the wave equation which appears later in this chapter. However, part (b) is required for to prove the Mean Value Theorem for harmonic functions (Theorem 1E.1 on page 166).
 ${ }^{2}$ Actually, "O (ϵ) " means slightly more than this - see $\S(0 \mathrm{H}(\mathrm{i})$. However, for our purposes, this will be sufficient.

[^10]: ${ }^{3}$ We could also incorporate the force of gravity as a constant downward force. In this case, the equilibrium position for the cord is to sag downwards in a 'catenary' curve. Vibrations are then deviations from this curve. This doesn't change the mathematics of this derivation, so we will assume for simplicity that gravity is absent and the cord is straight.
 ${ }^{4}$ If $u(x, t)$ was large, then the vibrations stretch the cord, and a restoring force acts against this stretching, as described by Hooke's Law. By assuming that the vibrations are small, we are assuming we can neglect Hooke's Law.

[^11]: ${ }^{5}$ At large amplitudes, nonlinear effects become important and invalidate the physical argument used here.

[^12]: ${ }^{1}$ 'Cannot leave' of course really means 'is very highly unlikely to leave'.

[^13]: ${ }^{2}$ We will not attempt here to justify $w h y$ this is the correct wavefunction for a particle with this velocity. It is not obvious.

[^14]: ${ }^{3}$ See $\S 4 \mathrm{~B}(\mathrm{iv})$ on page 63 .
 ${ }^{4}$ See Chapter 16 on page 353 .
 ${ }^{5}$ This is not obvious, but it's a consequence of the fact that the Hamiltonian $\mathrm{H} \omega$ measures the total energy of the wavefunction ω. Loosely speaking, the term $\frac{\hbar^{2}}{2} \boldsymbol{\Delta} \omega$ represents the 'kinetic energy' of ω, while the term $V \cdot \omega$ represents the 'potential energy'.

[^15]: Linear Partial Differential Equations and Fourier Theory
 Marcus Pivato DRAFT January 31, 2009

[^16]: ${ }^{6}$ Many older texts observe that the electron 'can penetrate the classically forbidden region', which has caused mirth to generations of physics students.

[^17]: Linear Partial Differential Equations and Fourier Theory

[^18]: ${ }^{7}$ Alternately, it could be any kind of particle, confined in a cubical cavity with impenetrable boundaries.

[^19]: ${ }^{8}$ The error of 0.01 eV is mainly due to our simplifying assumption of an 'immobile' proton.

[^20]: ${ }^{1}$ See $\S 1 \mathrm{C}$ on page 9 .
 ${ }^{2}$ See $\S \overline{1 B}$ on page 5 .
 ${ }^{3}$ See $\S \overline{2 B}$ on page 27 .
 ${ }^{4}$ See $\S \overline{3 B}$ on page 41 .
 ${ }^{5}$ See $\S \overline{1 F}$ on page 18 .

[^21]: ${ }^{6}$ See $\S 1 \mathrm{D}$ on page 12
 ${ }^{7}$ See $\S \overline{1 \mathrm{G}}$ on page 19

[^22]: ${ }^{1}$ See $\S 7 \mathrm{~B}$ on page 144.
 ${ }^{2}$ See $\S 9 \mathrm{~A}$ on page 179 .

[^23]: ${ }^{3}$ This is sometimes indicated as $\frac{\partial u}{\partial \mathbf{n}}$ or $\frac{\partial u}{\partial \nu}$, or as " $\nabla u \bullet \overrightarrow{\mathbf{N}}$ ", or as " $\nabla u \bullet \overrightarrow{\mathbf{n}}$ ".

[^24]: ${ }^{4}$ See $\S \longdiv { 7 B }$ on page 144 .

[^25]: ${ }^{5}$ See $\S 9 \mathrm{~A}$ on page 179 .
 Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

[^26]: ${ }^{6}$ Note that this allows different boundary points to satisfy different homogeneous boundary conditions at different times.

[^27]: ${ }^{7}$ Note that this allows different boundary points to satisfy different homogeneous boundary conditions at different times.
 ${ }^{8}$ Note that this includes nonhomogeneous Dirichlet BC (set $h_{\perp} \equiv 0$) and nonhomogeneous Neumann BC (set $h \equiv 0$) as special cases. Also note that by varying h and h_{\perp}, we can allow different boundary points to satisfy different nonhomogeneous boundary conditions at different times.

[^28]: ${ }^{9}$ This allows different boundary points to satisfy different homogeneous boundary conditions; but each particular boundary point must satisfy the same homogeneous boundary condition at all times.

[^29]: ${ }^{10}$ This allows different boundary points to satisfy different homogeneous boundary conditions; but each particular boundary point must satisfy the same homogeneous boundary condition at all times.

[^30]: Linear Partial Differential Equations and Fourier Theory
 Marcus Pivato
 DRAFT
 January 31, 2009

[^31]: ${ }^{11}$ Homogeneous means, "Looks the same everywhere in space", whereas inhomogeneous is the opposite.
 ${ }^{12}$ Isotropic means "looks the same in every direction"; anisotropic means the opposite.
 ${ }^{13}$ If the medium is homogeneous, then Γ is constant. If the medium is isotropic, then $\Gamma=\mathbf{I d}$.

[^32]: ${ }^{14}$ Here, 'Robin' B.C. means nontrivial Robin B.C. -i.e. not just homogenous Dirichlet or Neumann.

[^33]: ${ }^{1}$ This is sometimes this is called the dot product, and denoted " $\mathrm{x} \bullet \mathrm{y}$ ".

[^34]: ${ }^{2}$ Or length, if $D=1$, or area if $D=2 \ldots$.

[^35]: ${ }^{3}$ We are using $\mathbf{L}^{2}(\mathbb{X})$ to refer to only real-valued functions. In more advanced books, the notation $\mathbf{L}^{2}(\mathbb{X})$ denotes the set of complex-valued L^{2} functions; if one wants to refer only to real-valued L^{2} functions, one must use the notation $\mathbf{L}^{2}(\mathbb{X} ; \mathbb{R})$.

[^36]: ${ }^{4}$ Technically, any Cauchy sequence.

[^37]: ${ }^{5}$ See [Fol84, Thm.2.24, p.53] or [KF75, §30.1, p.303].

[^38]: ${ }^{1}$ See $\S 4 \mathrm{~B}(\mathrm{iv})$ on page 63

[^39]: ${ }^{1}$ This means that $f(x)=f_{r}(x)+\mathbf{i} f_{i}(x)$, where $f_{r}:[-L, L] \longrightarrow \mathbb{R}$ and $f_{i}:[-L, L] \longrightarrow \mathbb{R}$ are both continuously differentiable, real-valued functions.

[^40]: ${ }^{1}$ That is, $f(0, y)=0=f(X, y)$ for all $y \in[0, Y]$, and $f(x, 0)=0=f(x, Y)$ for all $x \in[0, X]$.
 Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

[^41]: ${ }^{2}$ That is, $\partial_{x} f(0, y)=0=\partial_{x} f(X, y)$ for all $y \in[0, Y]$, and $\partial_{y} f(x, 0)=0=\partial_{y} f(x, Y)$ for all $x \in[0, X]$.

[^42]: ${ }^{1}$ See page 570 of Appendix 0 H
 ${ }^{2}$ In the same way, the set \mathbb{Q} of rational numbers is dense in the set \mathbb{R} of real numbers: any real number can be approximated arbitrarily closely by rational numbers. Indeed, we exploit this fact every time we approximate a real number using a decimal expansion - e.g. $\pi \approx 3.141592653=\frac{3141592653}{100000000}$.

 Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

[^43]: ${ }^{3}$ See page 207 for the definition of $\mathcal{C}_{\text {per }}^{k}[-\pi, \pi]$.

[^44]: ${ }^{4}$ Actually, this is an equality, because of the L^{2} Pythagorean formula (equation (6F.1) on page 131)

[^45]: ${ }^{5}$ See Appendix $0 \mathrm{H}(\mathrm{i})$ on page 568 .

[^46]: ${ }^{1}$ Obtained from Proposition $\sqrt{12 \mathrm{~A} .4}$ on page 244, for example.
 ${ }^{2}$ Obtained from Proposition 12B. 1 on page 247, for example.

[^47]: ${ }^{3}$ Obtained from Proposition 12C. 1 on page 255, for example.
 ${ }^{4}$ Obtained from Proposition 12 A .4 on page 244, for example.

[^48]: ${ }^{1}$ Unrealistic, since actually the cube floats just at the surface.
 Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

[^49]: ${ }^{2}$ Actually, this is physically unrealistic for two reasons. First, as the ice melts, additional thermal energy is absorbed in the phase transition from solid to liquid. Second, once part of the ice cube has melted, its thermal properties change; liquid water has a different thermal conductivity, and in addition, transports heat through convection.

[^50]: ${ }^{1}$ See $\S \boxed{17 \mathrm{~F}}$ on page 406 for a different development of the material in this section, using impulse-response functions. For yet another approach, using complex analysis, see Corollary 18C.13 on page 445 .

[^51]: ${ }^{2}$ Computing these roots is difficult; tables of $\kappa_{n m}$ can be found in most standard references on PDEs.

[^52]: Linear Partial Differential Equations and Fourier Theory

[^53]: ${ }^{3}$ Obtained from Proposition $\overline{14 \mathrm{~B} .2}$ on page 278, for example.
 ${ }^{4}$ Obtained from Proposition 14D.1, for example.

[^54]: ${ }^{5}$ Obtained from Proposition 14B.2 on page 278, for example.

[^55]: ${ }^{6}$ Obtained from Proposition 14E.1, for example.

[^56]: ${ }^{1}$ Technically, we are here developing a theory for bounded domains, and \mathbb{D}^{\complement} is obviously not bounded. But it is interesting to note that many our techniques still apply to \mathbb{D}^{\complement}. This is because \mathbb{D}^{\complement} is conformally isomorphic to a bounded domain, once we regard \mathbb{D}^{\complement} as a subset of the Riemann sphere by including the 'point at infinity'. See $\S 18 B$ on page 422 for an introduction to conformal isomorphism. See Remark 18G.4 on page 469 for a discussion of the Riemann sphere.
 ${ }^{2}$ Note that our Neumann harmonic basis does not include the element $\phi_{0}(r, \theta):=\log (r)$. This is because $\partial_{\perp} \phi_{0}=\Xi_{1}$. Of course, the domain \mathbb{D}^{\complement} is not bounded, so Corollary 5D.4(b)[i] does not apply, and indeed ϕ_{0} is a continuous harmonic function on \mathbb{D}^{\complement}. However, unlike the elements of \mathfrak{G}, the function ϕ_{0} is not bounded, and thus does not extend to a continuous realvalued harmonic function when we embed \mathbb{D}^{\complement} in the Riemann sphere by adding the 'point at infinity'.

[^57]: ${ }^{3}$ This is an important point. Often, one of these inner products (say, the left one) will not be well-defined, because the integral $\int_{\mathbb{X}} \mathrm{L}[f] \cdot g d x$ does not converge, in which case "selfadjointness" is meaningless.

[^58]: ${ }^{4}$ See page 85 of $\S 5 \mathrm{D}$.
 ${ }^{5}$ See $\S 3$.

[^59]: ${ }^{6}$ See equation (14H.5) on page 314 , and equation (16 D .20) on page 361 .
 ${ }^{7}$ See equation (16D.19) on page 361 .

[^60]: ${ }^{1}$ This is important.

[^61]: ${ }^{2}$ But not all.

[^62]: ${ }^{3}$ See $\S 5$ F on page 95 .

[^63]: Linear Partial Differential Equations and Fourier Theory

[^64]: Linear Partial Differential Equations and Fourier Theory

[^65]: ${ }^{1}$ This is sometimes called the error function or sigmoid function. Unfortunately, no simple formula exists for $\Phi(x)$. It can be computed with arbitrary accuracy using a Taylor series, and tables of values for $\Phi(x)$ can be found in most statistics texts.

[^66]: Linear Partial Differential Equations and Fourier Theory
 Marcus Pivato DRAFT January 31, 2009

[^67]: ${ }^{2}$ See $\S 8 \mathrm{C}$ on page 168 for more information about odd functions.

[^68]: ${ }^{3}$ Of course this an unrealistic model: in a real ocean, currents, wave action, and weather transport chemicals far more quickly than mere diffusion alone.

[^69]: ${ }^{4}$ See $\S 14 \mathrm{~B}(\mathrm{v})$ on page 289 for a different development of the material in this section, using the methods of polar-separated harmonic functions. For yet another approach, using complex analysis, see Corollary 18C.13 on page 445.

[^70]: ${ }^{5}$ Indeed, in a sense, it is the same algebra, seen through the prism of the Fourier transform; see Theorem 19B.2 on page 494.

[^71]: ${ }^{1}$ See $\S 0 \mathrm{H}(\mathrm{ii})$ on page 569 .

[^72]: ${ }^{2}$ See $\S 5 \mathrm{C}(\mathrm{i})$ on page 73 and $\S 5 \mathrm{C}(\mathrm{ii})$ on page 76.

[^73]: ${ }^{3}$ See § 5C(i) on page 73 .

[^74]: ${ }^{4}$ See $\S 5$ (ii) on page 76 .

[^75]: ${ }^{5}$ We will discuss how to construct complex antiderivatives in Exercise 18C.15 on page 447; for now, just assume that F exists.

[^76]: ${ }^{6}$ What we are calling a contour is sometimes called a simple, closed curve.

[^77]: ${ }^{7}$ This seemingly innocent statement is actually the content of the Jordan Curve Theorem, which is a surprisingly difficult and deep result in planar topology.

[^78]: Linear Partial Differential Equations and Fourier Theory
 Marcus Pivato DRAFT
 January 31, 2009

[^79]: Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

[^80]: ${ }^{8}$ This is not merely fanciful terminology; see Remark 18G.4 on page 469.
 ${ }^{9}$ Note that ${ }^{\circ} \mathbb{A}(r, R)=\emptyset$ if $r=R$.

[^81]: ${ }^{10}$ For all $n \in \mathbb{Z}$, recall that $\mathbf{E}_{n}(x):=\exp (n \mathbf{i} x)$ for all $x \in[-\pi, \pi]$.

[^82]: ${ }^{11}$ For the corresponding result for Fourier transforms of functions on \mathbb{R}, see Theorem 19B.2(b) on page 494.

[^83]: ${ }^{12}$ This is pronounced, 'small oh of $1 / z$ '.

[^84]: Linear Partial Differential Equations and Fourier Theory
 Marcus Pivato DRAFT

[^85]: ${ }^{13}$ This is pronounced, 'big oh of $1 / z$ '.
 Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

[^86]: ${ }^{14}$ To be precise, it made it simpler for us to define the 'purview' of the contour, by invoking the Jordan Curve Theorem. It also made it simpler to define 'clockwise' versus 'counterclockwise' contours.

[^87]: ${ }^{1}$ See page 201 for definition.
 Linear Partial Differential Equations and Fourier Theory Marcus Pivato Drant Jary 31, 2009

[^88]: ${ }^{2}$ This is only loosely speaking, however, because a proper Gaussian contains the multiplier " $\frac{1}{\sigma \sqrt{2 \pi}}$ " to make it a probability distribution, whereas the Fourier transform does not.

[^89]: ${ }^{3}$ Of course, when you actually apply these formulae to solve specific problem, you will end Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

[^90]: Linear Partial Differential Equations and Fourier Theory
 Marcus Pivato DRAFT January 31, 2009

[^91]: ${ }^{4}$ Hint: set $\alpha:=2 \sigma$ in Theorem 19B.5 on page 495, and then apply it to Theorem 19B.8(a) on page 497 .

[^92]: ${ }^{5}$ Actually, we can define \widehat{f} if $f \in \mathbf{L}^{p}(\mathbb{R})$ for any $p \in[1,2]$, as discussed in $\S 19 \mathrm{C}$. However, this isn't really that much of an improvement; we still need $\lim _{t \rightarrow \pm \infty}|f(t)|=0$ 'quickly'.
 Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

[^93]: ${ }^{6}$ See $\S 18 \mathrm{H}$ on page 472 for a discussion of residue calculus and its application to improper integrals. See [Fis.99, §5.3] for some examples of computing Laplace inversion integrals using this method.

[^94]: ${ }^{7}$ See $\S 18 \mathrm{~A}$ on page 415 for more about complex differentiation.

[^95]: ${ }^{1}$ This actually involves some subtlety, which we will gloss over.

[^96]: ${ }^{2}$ See Example 18 A .6 (b,c) on page 420 for the definitions of complex sine and cosine functions. See Exercise 18C.17 on page 449 for a discussion of complex square roots.

[^97]: ${ }^{1}$ Assuming no overhangs!

[^98]: ${ }^{2}$ Technically, we say " $\overrightarrow{\mathbf{V}}: \mathbb{X} \longrightarrow \mathbb{R}^{2}$ is a two-dimensional vector field".
 Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

[^99]: ${ }^{3}$ Technically, we say "div $\overrightarrow{\mathbf{V}}: \mathbb{X} \longrightarrow \mathbb{R}^{2}$ is a two-dimensional scalar field".
 Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009

[^100]: ${ }^{4}$ More generally, $\partial \mathbb{X}$ is piecewise smooth if there is a unique unit normal vector $\overrightarrow{\mathbf{N}}(\mathbf{x})$ at 'almost every' $\mathbf{x} \in \partial \mathbb{X}$, except perhaps for a subset of dimension $(D-2)$. For example, a surface in \mathbb{R}^{3} is piecewise smooth if it has a normal vector field everywhere except at some union of curves, which represent the 'edges' between the smooth 'faces' the surface. In particular, a cube, a cylinder, or any other polyhedron is has a piecewise smooth boundary.

[^101]: ${ }^{5}$ See $\S 6 \mathrm{E}(\mathrm{iii})$ and $\S 6 \mathrm{E}(\mathrm{iv})$ for the definition of 'uniform convergence' of a function series.

