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xii— DRAFT Preface

Preface

This is a textbook for an introductory course on linear partial differential equa-
tions (PDEs) and initial/boundary value problems (I/BVPs). It also provides a
mathematically rigorous introduction to Fourier analysis (Chapters 7, 8, 9, 10,
and 19), which is the main tool used to solve linear PDEs in Cartesian coordi-
nates. Finally, it introduces basic functional analysis (Chapter 6) and complex
analysis (Chapter 18). The first is necessary to rigorously characterize the con-
vergence of Fourier series, and also to discuss eigenfunctions for linear differential
operators. The second provides powerful techniques to transform domains and
compute integrals, and also offers additional insight into Fourier series.

This book is not intended to be comprehensive or encyclopaedic. It is de-
signed for a one-semester course (i.e. 36-40 hours of lectures), and it is therefore
strictly limited in scope. First, it deals mainly with linear PDEs with con-
stant coefficients. Thus, there is no discussion of characteristics, conservation
laws, shocks, variational techniques, or perturbation methods, which would be
germane to other types of PDEs. Second, the book focus mainly on concrete
solution methods to specific PDEs (e.g. the Laplace, Poisson, Heat, Wave, and
Schrödinger equations) on specific domains (e.g. line segments, boxes, disks, an-
nuli, spheres), and spends rather little time on qualitative results about entire
classes of PDEs (e.g elliptic, parabolic, hyperbolic) on general domains. Only
after a thorough exposition of these special cases does the book sketch the gen-
eral theory; experience shows that this is far more pedagogically effective then
presenting the general theory first. Finally, the book does not deal at all with
numerical solutions or Galerkin methods.

One slightly unusual feature of this book is that, from the very beginnning,
it emphasizes the central role of eigenfunctions (of the Laplacian) in the solu-
tion methods for linear PDEs. Fourier series and Fourier-Bessel expansions are
introduced as the orthogonal eigenfunction expansions which are most suitable
in certain domains or coordinate systems. Separation of variables appears rela-
tively late in the exposition (Chapter 16), as a convenient device to obtain such
eigenfunctions. The only techniques in the book which are not either implicitly
or explicitly based on eigenfunction expansions are impulse-response functions
and Green’s functions (Chapter 17) and complex-analytic methods (Chapter 18).

Prerequisites and intended audience. This book is written for third-year
undergraduate students in mathematics, physics, engineering, and other math-
ematical sciences. The only prererequisites are (1) multivariate calculus (i.e.
partial derivatives, multivariate integration, changes of coordinate system) and
(2) linear algebra (i.e. linear operators and their eigenvectors).

It might also be helpful for students to be familiar with: (1) the basic the-
ory of ordinary differential equations (specifically: Laplace transforms, Frobe-
nius method); (2) some elementary vector calculus (specifically: divergence and
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gradient operators); and (3) elementary physics (to understand the physical mo-
tivation behind many of the problems). However, none of these three things are
really required.

In addition to this background knowledge, the book requires some ability at
abstract mathematical reasoning. Unlike some ‘applied math’ texts, we do not
suppress or handwave the mathematical theory behind the solution methods.
At suitable moments, the exposition introduces concepts like ‘orthogonal basis’,
‘uniform convergence’ vs. ‘L2-convergence’, ‘eigenfunction expansion’, and ‘self-
adjoint operator’; thus, students must be intellectually capable of understanding
abstract mathematical concepts of this nature. Likewise, the exposition is mainly
organized in a ‘definition → theorem → proof → example’ format, rather than
a ‘problem → solution’ format. Students must be able to understand abstract
descriptions of general solution techniques, rather than simply learn by imitating
worked solutions to special cases.

Acknowledgements. I would like to thank Xiaorang Li of Trent University,
who read through an early draft of this book and made many helpful suggestions
and corrections, and who also provided questions #6 and #7 on page 101, and
also question # 8 on page 135. I also thank Peter Nalitolela, who proofread
a penultimate draft and spotted many mistakes. I would like to thank several
anonymous reviewers who made many useful suggestions, and I would also like
to thank Peter Thompson of Cambridge University Press for recruiting these
referees. I also thank Diana Gillooly of Cambridge University Press, who was
very supportive and helpful throughout the entire publication process, especially
concerning my desire to provide a free online version of the book, and to release
the figures and problem sets under a Creative Commons license. I also thank
the many students who used the early versions of this book, especially those who
found mistakes or made good suggestions. Finally, I thank George Peschke of
the University of Alberta, for being an inspiring example of good mathematical
pedagogy.

None of these people are responsible for any remaining errors, omissions, or
other flaws in the book (of which there are no doubt many). If you find an error
or some other deficiency in the book, please contact me at

marcuspivato@trentu.ca
This book would not have been possible without open source software. The

book was prepared entirely on the Linux operating system (initially RedHat1,
and later Ubuntu2). All the text is written in Leslie Lamport’s LATEX2e typeset-
ting language3, and was authored using Richard Stallman’s Emacs editor4. The
illustrations were hand-drawn using William Chia-Wei Cheng’s excellent TGIF
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2http://www.ubuntu.com
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object-oriented drawing program5. Additional image manipulation and post-
processing was done with GNU Image Manipulation Program (GIMP)6.
Many of the plots were created using GnuPlot7.8 I would like to take this
opportunity to thank the many people in the open source community who have
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Finally and most importantly, I would like to thank my beloved wife and
partner, Reem Yassawi, and our wonderful children, Leila and Aziza, for their
support and for their patience with my many long absences.
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What’s good about this book?

This text has many advantages over most other introductions to partial differ-
ential equations.

Illustrations. PDEs are physically motivated and geometrical objects; they
describe curves, surfaces and scalar fields with special geometric properties, and
the way these entities evolve over time under endogenous dynamics. To under-
stand PDEs and their solutions, it is necessary to visualize them. Algebraic
formulae are just a language used to communicate such visual ideas in lieu of
pictures, and they generally make a poor substitute. This book has over 300
high-quality illustrations, many of which are rendered in three dimensions. In
the online version of the book, most of these illustrations appear in full colour.
Also, the website contains many animations which do not appear in the printed
book.

Most importantly, on the book website, all illustrations are freely available
under a Creative Commons Attribution Noncommercial Share-Alike License9.
This means that you are free to download, modify, and utilize the illustrations
to prepare your own course materials (e.g. printed lecture notes or beamer
presentations), as long as you attribute the original author. Please visit

<http://xaravve.trentu.ca/pde>

Physical motivation. Connecting the math to physical reality is critical: it
keeps students motivated, and helps them interpret the mathematical formalism
in terms of their physical intuitions about diffusion, vibration, electrostatics,
etc. Chapter 1 of this book discusses the physics behind the Heat, Laplace,
and Poisson equations, and Chapter 2 discusses the wave equation. An unusual
addition to this text is Chapter 3, which discusses quantum mechanics and the
Schrödinger equation (one of the major applications of PDE theory in modern
physics).

Detailed syllabus. Difficult choices must be made when turning a 600+ page
textbook into a feasible twelve-week lesson plan. It is easy to run out of time
or inadvertently miss something important. To facilitate this task, this book
provides a lecture-by-lecture breakdown of how the author covers the material
(page xxi). Of course, each instructor can diverge from this syllabus to suit the
interests/background of her students, a longer/shorter teaching semester, or her
personal taste. But the prefabricated syllabus provides a base to work from, and
will save most instructors a lot of time and aggravation.

9See http://creativecommons.org/licenses/by-nc-sa/3.0.
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Explicit prerequisites for each chapter and section. To save time, an instructor
might want to skip a certain chapter or section, but she worries that it may end
up being important later. We resolve this problem in two ways. First, page
(iv) provides a Chapter Dependency Lattice, which summarises the large-scale
structure of logical dependencies between the chapters of the book. Second,
every section of every chapter begins with an explicit list of ‘required’ and ‘rec-
ommended’ prerequisite sections; this provides more detailed information about
the small-scale structure of logical dependencies between sections. By tracing
backward through this ‘lattice of dependencies’, you can figure out exactly what
background material you must cover to reach a particular goal. This makes the
book especially suitable for self-study.

Flat dependency lattice. There are many ‘paths’ through the twenty-chapter
Dependency Lattice on page (iv), every one of which is only seven chapters or
less in length. Thus, an instructor (or an autodidact) can design many possible
syllabi, depending on her interests, and can quickly move to advanced mate-
rial. The ‘Recommended Syllabus’ on page (xxi) describes a gentle progression
through the material, covering most of the ‘core’ topics in a 12 week semester,
emphasizing concrete examples and gradually escalating the abstraction level.
The Chapter Dependency Lattice suggests some other possibilities for ‘acceler-
ated’ syllabi focusing on different themes:

• Solving PDEs with impulse response functions. Chapters 1, 2, 5 and 17
only.

• Solving PDEs with Fourier transforms. Chapters 1, 2, 5, 19, and 20 only.

(Pedagogically speaking, Chapters 8 and 9 will help the student understand Chap-
ter 19, and Chapters 11-13 will help the student understand Chapter 20. Also, it
is interesting to see how the ‘impulse-response’ methods of Chapter 17 yield the
same solutions as the ‘Fourier methods’ of Chapter 20, using a totally different
approach. However, strictly speaking, none of Chapters 8-13 or 17 is logically
necessary.)

• Solving PDEs with separation of variables. Chapters 1, 2 and 16 only.

(However, without at least Chapters 12 and 14, the ideas of Chapter 16 will seem
somewhat artificial and pointless.)

• Solving I/BVPs using eigenfunction expansions. Chapters 1, 2, 4, 5, 6,
and 15.

(It would be pedagogically better to also cover Chapters 9 and 12, and probably
Chapter 14. But strictly speaking, none of these is logically necessary.)

• Tools for quantum mechanics. Section 1B, then Chapters 3, 4, 6, 9, 13,
19, and 20 (skipping material on Laplace, Poisson, and wave equations in
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Chapters 13 and 20, and adapting the solutions to the heat equation into
solutions to the Schrödinger equation.)

• Fourier theory. Section 4A, then Chapters 6, 7, 8, 9, 10, and 19. Finally,
Sections 18A, 18C, 18E and 18F provide a ‘complex’ perspective. (Section
18H also contains some useful computational tools).

• Crash course in complex analysis. Chapter 18 is logically independent of
the rest of the book, and rigorously develops the main ideas in complex
analysis from first principles. (However, the emphasis is on applications
to PDEs and Fourier theory, so some of the material may seem esoteric or
unmotivated if read in isolation from other chapters.)

Highly structured exposition, with clear motivation up front. The exposition
is broken into small, semi-independent logical units, each of which is clearly
labelled, and which has a clear purpose or meaning which is made immediately
apparent. This simplifies the instructor’s task; she doesn’t need to spend time
restructuring and summarizing the text material, because it is already structured
in a manner which self-summarizes. Instead, instructors can focus more on
explanation, motivation, and clarification.

Many ‘practice problems’ (with complete solutions and source code available on-
line). Frequent evaluation is critical to reinforce material taught in class. This
book provides an extensive supply of (generally simple) computational ‘Practice
Problems’ at the end of each chapter. Completely worked solutions to virtually
all of these problems are available on the book website. Also on the book web-
site, the LATEX source code for all problems and solutions is freely available under
a Creative Commons Attribution Noncommercial Share-Alike License10. Thus,
an instructor can download and edit this source code, and easily create quizzes,
assignments, and matching solutions for her students.

Challenging exercises without solutions. Complex theoretical concepts can-
not really be tested in quizzes, and do not lend themselves to canned ‘practice
problems’. For a more theoretical course with more mathematically sophisti-
cated students, the instructor will want to assign some proof-related exercises
for homework. This book has more than 420 such exercises scattered through-
out the exposition; these are flagged by an “ E©” symbol in the margin, as shown E©
here. Many of these exercises ask the student to prove a major result from the
text (or a component thereof). This is the best kind of exercise, because it rein-
forces the material taught in class, and gives students a sense of ownership of the
mathematics. Also, students find it more fun and exciting to prove important
theorems, rather than solving esoteric make-work problems.

10See http://creativecommons.org/licenses/by-nc-sa/3.0.
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Appropriate rigour. The solutions of PDEs unfortunately involve many tech-
nicalities (e.g. different forms of convergence; derivatives of infinite function
series, etc.). It is tempting to handwave and gloss over these technicalities, to
avoid confusing students. But this kind of pedagogical dishonesty actually makes
students more confused; they know something is fishy, but they can’t tell quite
what. Smarter students know they are being misled, and may lose respect for
the book, the instructor, or even the whole subject.

In contrast, this book provides a rigorous mathematical foundation for all its
solution methods. For example, Chapter 6 contains a careful explanation of L2

spaces, the various forms of convergence for Fourier series, and the differences
between them —including the ‘pathologies’ which can arise when one is careless
about these issues. I adopt a ‘triage’ approach to proofs: The simplest proofs are
left as exercises for the motivated student (often with a step-by-step breakdown
of the best strategy). The most complex proofs I have omitted, but I provide
multiple references to other recent texts. In between are those proofs which are
challenging but still accessible; I provide detailed expositions of these proofs.
Often, when the text contains several variants of the same theorem, I prove one
variant in detail, and leave the other proofs as exercises.

Appropriate Abstraction. It is tempting to avoid abstractions (e.g. linear
differential operators, eigenfunctions), and simply present ad hoc solutions to
special cases. This cheats the student. The right abstractions provide simple yet
powerful tools which help students understand a myriad of seemingly disparate
special cases within a single unifying framework. This book provides students
with the opportunity to learn an abstract perspective once they are ready for it.
Some abstractions are introduced in the main exposition, others are in optional
sections, or in the philosophical preambles which begin each major part of the
book.

Gradual abstraction. Learning proceeds from the concrete to the abstract.
Thus, the book begins each topic with a specific example or a low-dimensional
formulation, and only later proceed to a more general/abstract idea. This intro-
duces a lot of “redundancy” into the text, in the sense that later formulations
subsume the earlier ones. So the exposition is not as “efficient” as it could be.
This is a good thing. Efficiency makes for good reference books, but lousy texts.

For example, when introducing the heat equation, Laplace equation, and
wave equation in Chapters 1 and 2, I first derive and explain the one-dimensional
version of each equation, then the two-dimensional version, and finally, the gen-
eral, D-dimensional version. Likewise, when developing the solution methods for
BVPs in Cartesian coordinates (Chapters 11-13), I confine the exposition to the
interval [0, π], the square [0, π]2 and the cube [0, π]3, and assume all the coeffi-
cients in the differential equations are unity. Then the exercises ask the student
to state and prove the appropriate generalization of each solution method for an
Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009
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interval/rectangle/box of arbitrary dimensions, and for equations with arbitrary
coefficients. The general method for solving I/BVPs using eigenfunction expan-
sions only appears in Chapter 15, after many special cases of this method have
been thoroughly exposited in Cartesian and polar coordinates (Chapters 11-14).

Likewise, the development of Fourier theory proceeds in gradually escalating
levels of abstraction. First we encounter Fourier (co)sine series on the interval
[0, π] (§7A); then on the interval [0, L] for arbitrary L > 0 (§7B). Then Chapter
8 introduces ‘real’ Fourier series (i.e. with both sine and cosine terms) and
then complex Fourier series (§8D). Then, in Chapter 9 introduce 2-dimensional
(co)sine series, and finally, D-dimensional (co)sine series.

Expositional clarity. Computer scientists have long known that it is easy to
write software that works, but it is much more difficult (and important) to write
working software that other people can understand. Similarly, it is relatively easy
to write formally correct mathematics; the real challenge is to make the math-
ematics easy to read. To achieve this, I use several techniques. I divide proofs
into semi-independent modules (“claims”), each of which performs a simple,
clearly-defined task. I integrate these modules together in an explicit hierar-
chical structure (with “subclaims” inside of “claims”), so that their functional
interdependence is clear from visual inspection. I also explain formal steps with
parenthetical heuristic remarks. For example, in a long string of (in)equalities,
I often attach footnotes to each step, as follows:
“A

(∗)
B ≤

(†)
C <

(‡)
D. Here, (∗) is because [...]; (†) follows from [...], and (‡) is because [...].”

Finally, I use letters from the same ‘lexicographical family’ to denote objects
which ‘belong’ together. For example: If S and T are sets, then elements of S
should be s1, s2, s3, . . ., while elements of T are t1, t2, t3, . . .. If v is a vector,
then its entries should be v1, . . . , vN . If A is a matrix, then its entries should
be a11, . . . , aNM . I reserve upper-case letters (e.g. J,K,L,M,N, . . .) for the
bounds of intervals or indexing sets, and then use the corresponding lower-case
letters (e.g. j, k, l,m, n, . . .) as indexes. For example, ∀n ∈ {1, 2, . . . , N}, An :=
∑J

j=1

∑K
k=1 a

n
jk.

Clear and explicit statements of solution techniques. Many PDEs text con-
tain very few theorems; instead they try to develop the theory through a long
sequence of worked examples, hoping that students will ‘learn by imitation’, and
somehow absorb the important ideas ‘by osmosis’. However, less gifted students
often just imitate these worked examples in a slavish and uncomprehending way.
Meanwhile, the more gifted students do not want to learn ‘by osmosis’; they
want clear and precise statements of the main ideas.

The problem is that most solution methods in PDEs, if stated as theorems
in full generality, are incomprehensible to many students (especially the non-
math majors). My solution is this: I provide explicit and precise statements of
the solution-method for almost every possible combination of (1) several major
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PDEs, (2) several kinds of boundary conditions, and (3) several different do-
mains. I state these solutions as theorems, not as ‘worked examples’. I follow
each of these theorems with several completely worked examples. Some theo-
rems I prove, but most of the proofs are left as exercises (often with step-by-step
hints).

Of course, this approach is highly redundant, because I end up stating more
than twenty theorems which are all really special cases of three or four gen-
eral results (for example, the general method for solving the heat equation on a
compact domain with Dirichlet boundary conditions, using an eigenfunction ex-
pansion). However, this sort of redundancy is good in an elementary exposition.
Highly ‘efficient’ expositions are pleasing to our aesthetic sensibilities, but they
are dreadful for pedagogical purposes.

However, one must not leave the students with the impression that the the-
ory of PDEs is a disjointed collection of special cases. To link together all the
‘homogeneous Dirichlet heat equation’ theorems, for example, I explicitly point
out that they all utilize the same underlying strategy. Also, when a proof of
one variant is left as an exercise, I encourage students to imitate the (provided)
proofs of previous variants. When the students understand the underlying simi-
larity between the various special cases, then it is appropriate to state the general
solution. The students will almost feel they have figured it out for themselves,
which is the best way to learn something.
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Suggested Twelve-Week Syllabus

Week 1: Heat and Diffusion-related PDEs

Lecture 1: §0A-§0E Review of multivariate calculus; intro. to complex numbers

Lecture 2: §1A-§1B Fourier’s Law; The heat equation

Lecture 3: §1C-§1D Laplace Equation; Poisson’s Equation

Week 2: Wave-related PDEs; Quantum Mechanics

Lecture 1: §1E; §2A Properties of harmonic functions; Spherical Means

Lecture 2: §2B-§2C wave equation; telegraph equation

Lecture 3: Chap.3 The Schrödinger equation in quantum mechanics

Week 3: General Theory

Lecture 1: §4A - §4C Linear PDEs: homogeneous vs. nonhomogeneous

Lecture 2: §5A; §5B, Evolution equations & Initial Value Problems

Lecture 3: §5C Boundary conditions and boundary value problems

Week 4: Background to Fourier Theory

Lecture 1: §5D Uniqueness of solutions to BVPs; §6A Inner products

Lecture 2: §6B-§6D L2 space; Orthogonality

Lecture 3: §6E(a,b,c) L2 convergence; Pointwise convergence; Uniform Con-
vergence

Week 5: One-dimensional Fourier Series

Lecture 1: §6E(d) Infinite Series; §6F Orthogonal bases
§7A Fourier (co/sine) Series: Definition and examples

Lecture 2: §7C(a,b,c,d,e) Computing Fourier series of polynomials, piecewise
linear and step functions

Lecture 3: §11A-§11C Solution to heat equation & Poisson equation on line
segment.

Week 6: Fourier Solutions for BVPs in One and Two dimensions

Lecture 1: §11B- §12A; wave equation on line segment & Laplace equation on
a square.

Lecture 2: §9A-§9B Multidimensional Fourier Series.

Lecture 3: §12B- §12C(i) Solution to heat equation & Poisson equation on a
square

Week 7: Fourier solutions for 2-dimensional BVPs in Cartesian & Polar Coordinates

Lecture 1: §12C(ii), §12D Solution to Poisson equation & wave equation on a
square

Lecture 2: §5C(iv); §8A-§8B Periodic Boundary Conditions; Real Fourier Se-
ries.
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Lecture 3: §14A; §14B(a,b,c,d) Laplacian in Polar coordinates; Laplace Equa-
tion on (co)Disk.

Week 8: BVP’s in Polar Coordinates; Bessel functions

Lecture 1: §14C Bessel Functions.

Lecture 2: §14D-§14F Heat, Poisson, and wave equations in Polar coordinates.

Lecture 3: §14G Solving Bessel’s equation with the Method of Frobenius.

Week 9: Eigenbases; Separation of variables.

Lecture 1: §15A-§15B Eigenfunction solutions to BVPs

Lecture 2: §15B; §16A-§16B Harmonic bases. Separation of Variables in Carte-
sian coordinates.

Lecture 3: §16C-§16D Separation of variables in polar and spherical coordi-
nates. Legendre Polynomials.

Week 10: Impulse Response Methods.

Lecture 1: §17A - §17C Impulse response functions; convolution. Approxima-
tions of identity. Gaussian Convolution Solution for heat equation.

Lecture 2: §17C-§17F, Gaussian convolutions continued. Poisson’s Solutions to
Dirichlet problem on a half-plane and a disk.

Lecture 3: §14B(v); §17D Poisson solution on disk via polar coordinates; d’Alembert
Solution to wave equation.

Week 11: Fourier Transforms.

Lecture 1: §19A One-dimensional Fourier Transforms.

Lecture 2: §19B Properties of one-dimensional Fourier transform.

Lecture 3: §20A ; §20C Fourier transform solution to heat equation; Dirchlet
problem on Half-plane.

Week 12: Fourier Transform Solutions to PDEs.

Lecture 1: §19D, §20B(i) Multidimensional Fourier transforms; Solution to
wave equation.

Lecture 2: §20B(ii); §20E Poisson’s Spherical Mean Solution; Huygen’s Prin-
ciple. The General Method.

Lecture 3: (Time permitting) §19G or §19H (Heisenberg Uncertainty or Laplace
transforms).

In a longer semester or a faster paced course, one could also cover parts of Chapter 10
(Proofs of Fourier Convergence) and/or Chapter 18 (Applications of Complex Analysis)
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I Motivating examples and
major applications

A dynamical system is a mathematical model of a system evolving in time.
Most models in mathematical physics are dynamical systems. If the system has
only a finite number of ‘state variables’, then its dynamics can be encoded in
an ordinary differential equation (ODE), which expresses the time derivative of
each state variable (i.e. its rate of change over time) as a function of the other
state variables. For example, celestial mechanics concerns the evolution of a
system of gravitationally interacting objects (e.g. stars and planets). In this
case, the ‘state variables’ are vectors encoding the position and momentum of
each object, and the ODE describe how the objects move and accelerate as they
gravitationally interact.

However, if the system has a very large number of state variables, then it
is no longer feasible to represent it with an ODE. For example, consider the
flow of heat or the propagation of compression waves through a steel bar con-
taining 1024 iron atoms. We could model this using a 1024-dimensional ODE,
where we explicitly track the vibrational motion of each iron atom. However,
such a ‘microscopic’ model would be totally intractable. Furthermore, it isn’t
necessary. The iron atoms are (mostly) immobile, and interact only with their
immediate neighbours. Furthermore, nearby atoms generally have roughly the
same temperature, and move in synchrony. Thus, it suffices to consider the
macroscopic temperature distribution of the steel bar, or study the fluctuation
of a macroscopic density field. This temperature distribution or density field
can be mathematically represented as a smooth, real-valued function over some
three-dimensional domain. The flow of heat or the propagation of sound can
then be described as the evolution of this function over time.

We now have a dynamical system where the ‘state variable’ is not a finite sys-
tem of vectors (as in celestial mechanics), but is instead a multivariate function.
The evolution of this function is determined by its spatial geometry —e.g. the
local ‘steepness’ and variation of the temperature gradients between warmer and
cooler regions in the bar. In other words, the time derivative of the function (its
rate of change over time) is determined by its spatial derivatives (which describe
its slope and curvature at each point in space). An equation which relates the
different derivatives of a multivariate function in this way is a partial differen-
tial equation (PDE). In particular, a PDE which describes a dynamical system
is called an evolution equation. For example, the evolution equation which de-
scribes the flow of heat through a solid is called the heat equation. The equation
which describes compression waves is the wave equation.

An equilibrium of a dynamical system is a state which is unchanging over time;
mathematically, this means that the time-derivative is equal to zero. An equlib-
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rium of an N -dimensional evolution equation satisfies an (N − 1)-dimensional
PDE called an equilibrium equation. For example, the equilibrium equations
corresponding to the heat equation are the Laplace equation and the Poisson
equation (depending on whether or not the system is subjected to external heat
input).

PDEs are thus of central importance in the thermodynamics and acoustics
of continuous media (e.g. steel bars). The heat equation also describes chemical
diffusion in fluids, and also the evolving probability distribution of a particle
performing a random walk called Brownian motion. It thus finds applications
everywhere from mathematical biology to mathematical finance. When diffusion
or Brownian motion is combined with deterministic drift (e.g. due to prevailing
wind or ocean currents) it becomes a PDE called the Fokker-Planck equation.

The Laplace and Poisson equations describe the equilibria of such diffusion
processes. They also arise in electrostatics, where they describe the shape of
an electric field in a vacuum. Finally, solutions of the two-dimensional Laplace
equation are good approximations of surfaces trying to minimize their elastic
potential energy —that is, soap films.

The wave equation describes the resonance of a musical instrument, the
spread of ripples on a pond, seismic waves propagating through the earth’s crust,
and shockwaves in solar plasma. (The motion of fluids themselves is described by
yet another PDE, the Navier-Stokes equation). A version of the wave equation
arises as a special case of Maxwell’s equations of electrodynamics; this led to
Maxwell’s prediction of electromagnetic waves, which include radio, microwaves,
X-rays, and visible light. When combined with a ‘diffusion’ term reminiscent
of the heat equation, the wave equation becomes the telegraph equation, which
describes the propagation and degradation of electrical signals travelling through
a wire.

Finally, an odd-looking ‘complex’ version of the heat equation induces wave-
like evolution in the complex-valued probability fields which describe the position
and momentum of subatomic particles. This Schrödinger equation is the starting
point of quantum mechanics, one of the two most revolutionary developments
in physics in the twentieth century. The other revolutionary development was
relativity theory. General relativity represents spacetime as a four-dimensional
manifold, whose curvature interacts with the spatiotemporal flow of mass/energy
through yet another PDE: the Einstein equation.

Except for the Einstein and Navier-Stokes equations, all the equations we
have mentioned are linear PDEs. This means that a sum of two or more solutions
to the PDE will also be a solution. This allows us to solve linear PDEs through
the method of superposition: we build complex solutions by adding together
many simple solutions. A particularly convenient class of simple solutions are
eigenfunctions. Thus, an enormously powerful and general method for linear
PDEs is to represent the solutions using eigenfunction expansions. The most
natural eigenfunction expansion (in Cartesian coordinates) is the Fourier series.
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Chapter 1

Heat and diffusion

“The differential equations of the propagation of heat express the most general conditions,

and reduce the physical questions to problems of pure analysis, and this is the proper object of

theory.” —Jean Joseph Fourier

1A Fourier’s law

Prerequisites: §0A. Recommended: §0E.

1A(i) ...in one dimension

Figure 1A.1 depicts a material diffusing through a one-dimensional domain X
(for example, X = R or X = [0, L]). Let u(x, t) be the density of the material at
the point x ∈ X at time t > 0. Intuitively, we expect the material to flow from
regions of greater to lesser concentration. In other words, we expect the flow of
the material at any point in space to be proportional to the slope of the curve
u(x, t) at that point. Thus, if F (x, t) is the flow at the point x at time t, then
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Figure 1A.1: Fourier’s Law of Heat Flow in one dimension
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Figure 1A.2: Fourier’s Law of Heat Flow in two dimensions

we expect:
F (x, t) = −κ · ∂x u(x, t)

where κ > 0 is a constant measuring the rate of diffusion. This is an example of
Fourier’s Law.

1A(ii) ...in many dimensions

Prerequisites: §0E.

Figure 1A.2 depicts a material diffusing through a two-dimensional domain
X ⊂ R2 (e.g. heat spreading through a region, ink diffusing in a bucket of water,
etc.). We could just as easily suppose that X ⊂ RD is a D-dimensional domain.
If x ∈ X is a point in space, and t ≥ 0 is a moment in time, let u(x, t) denote
the concentration at x at time t. (This determines a function u : X×R 6− −→ R,
called a time-varying scalar field.)

Now let ~F(x, t) be a D-dimensional vector describing the flow of the material
at the point x ∈ X. (This determines a time-varying vector field ~F : RD×R 6− −→
RD.)

Again, we expect the material to flow from regions of high concentration to
low concentration. In other words, material should flow down the concentration
gradient. This is expressed by Fourier’s Law of Heat Flow , which says:

~F = −κ · ∇u,

where κ > 0 is is a constant measuring the rate of diffusion.
One can imagine u as describing a distribution of highly antisocial people;

each person is always fleeing everyone around them and moving in the direction
with the fewest people. The constant κ measures the average walking speed of
these misanthropes.
Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009
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Figure 1B.1: The heat equation as “erosion”.

1B The heat equation

Recommended: §1A.

1B(i) ...in one dimension

Prerequisites: §1A(i).

Consider a material diffusing through a one-dimensional domain X (for ex-
ample, X = R or X = [0, L]). Let u(x, t) be the density of the material at the
location x ∈ X at time t ∈ R 6−, and let F (x, t) be the flux of the material at the
location x and time t. Consider the derivative ∂x F (x, t). If ∂x F (x, t) > 0, this
means that the flow is diverging1 at this point in space, so the material there
is spreading farther apart. Hence, we expect the concentration at this point to
decrease. Conversely, if ∂x F (x, t) < 0, then the flow is converging at this point
in space, so the material there is crowding closer together, and we expect the
concentration to increase. To be succinct: the concentration of material will
increase in regions where F converges, and decrease in regions where F diverges.
The equation describing this is:

∂t u(x, t) = −∂x F (x, t).

If we combine this with Fourier’s Law, however, we get:

∂t u(x, t) = κ · ∂x ∂x u(x, t),

which yields the one-dimensional heat equation:

∂t u(x, t) = κ · ∂2
x u(x, t).

1See § 0E(ii) on page 558 for an explanation of why we say the flow is ‘diverging’ here.
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Heuristically speaking, if we imagine u(x, t) as the height of some one-dimensional
“landscape”, then the heat equation causes this landscape to be “eroded”, as if
it were subjected to thousands of years of wind and rain (see Figure 1B.1).

A) Low Frequency: 
     Slow decay

B) High Frequency:
      Fast decay

Tim
e

Figure 1B.2: Under the heat equation, the exponential decay of a periodic func-
tion is proportional to the square of its frequency.

Example 1B.1. For simplicity we suppose κ = 1.

(a) Let u(x, t) = e−9t ·sin(3x). Thus, u describes a spatially sinusoidal function
(with spatial frequency 3) whose magnitude decays exponentially over time.

(b) The dissipating wave: More generally, let u(x, t) = e−ω
2·t · sin(ω · x).

Then u is a solution to the one-dimensional heat equation, and looks like a
standing wave whose amplitude decays exponentially over time (see Figure
1B.2). Notice that the decay rate of the function u is proportional to the
square of its frequency.

(c) The (one-dimensional) Gauss-Weierstrass Kernel: Let

G(x; t) :=
1

2
√
πt

exp
(

−x2

4t

)

.

Then G is a solution to the one-dimensional heat equation, and looks like
a “bell curve”, which starts out tall and narrow, and over time becomes
broader and flatter (Figure 1B.3). ♦

Exercise 1B.1. Verify that the functions in Examples 1B.1(a,b,c) all satisfy theE©
heat equation. �
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Tim
e

Figure 1B.3: The Gauss-Weierstrass kernel under the heat equation.

All three functions in Examples 1B.1 starts out very tall, narrow, and pointy,
and gradually become shorter, broader, and flatter. This is generally what the
heat equation does; it tends to flatten things out. If u describes a physical
landscape, then the heat equation describes “erosion”.

1B(ii) ...in many dimensions

Prerequisites: §1A(ii).

More generally, if u : RD × R 6− −→ R is the time-varying density of some
material, and ~F : RD × R 6− −→ R is the flux of this material, then we would
expect the material to increase in regions where ~F converges, and to decrease in
regions where ~F diverges.2 In other words, we have:

∂t u = −div ~F.

If u is the density of some diffusing material (or heat), then ~F is determined by
Fourier’s Law, so we get the heat equation

∂tu = κ · div∇u = κ4 u.

Here, 4 is the Laplacian operator3, defined:

4u = ∂2
1 u+ ∂2

2 u+ . . . ∂2
D u

Exercise 1B.2. (a) If D = 1, and u : R −→ R, verify that div∇u(x) = u′′(x) = E©
4u(x), for all x ∈ R.

2See § 0E(ii) on page 558 for a review of the ‘divergence’ of a vector field.
3Sometimes the Laplacian is written as “ ∇2 ”.
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(b) If D = 2, and u : R2 −→ R, verify that div∇u(x, y) = ∂2
xu(x, y) + ∂2

yu(x, y) =
4u(x, y), for all (x, y) ∈ R2.

(c) For any D ≥ 2 and u : RD −→ R, verify that div∇u(x) = 4u(x), for all x ∈ RD.
�

By changing to the appropriate time units, we can assume κ = 1, so the heat
equation becomes:

∂t u = 4u .
For example,

• If X ⊂ R, and x ∈ X, then 4u(x; t) = ∂2
x u(x; t).

• If X ⊂ R2, and (x, y) ∈ X, then 4u(x, y; t) = ∂2
x u(x, y; t) + ∂2

y u(x, y; t).

Thus, as we’ve already seen, the one-dimensional heat equation is

∂t u = ∂2
x u

and the the two dimensional heat equation is:

∂t u(x, y; t) = ∂2
x u(x, y; t) + ∂2

y u(x, y; t)

Example 1B.2.

(a) Let u(x, y; t) = e−25 t · sin(3x) sin(4y). Then u is a solution to the two-
dimensional heat equation, and looks like a two-dimensional ‘grid’ of si-
nusoidal hills and valleys with horizontal spacing 1/3 and vertical spacing
1/4. As shown in Figure 1B.4, these hills rapidly subside into a gently un-
dulating meadow, and then gradually sink into a perfectly flat landscape.

(b) The (two-dimensional) Gauss-Weierstrass Kernel: Let

G(x, y; t) :=
1

4πt
exp

(

−x2 − y2

4t

)

.

Then G is a solution to the two-dimensional heat equation, and looks like
a mountain, which begins steep and pointy, and gradually “erodes” into a
broad, flat, hill.

(c) The D-dimensional Gauss-Weierstrass Kernel is the function G :
RD × R+ −→ R defined

G(x; t) =
1

(4πt)D/2
exp

(

−‖x‖2

4t

)

Technically speaking, G(x; t) is a D-dimensional symmetric normal proba-
bility distribution with variance σ = 2t. ♦
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Figure 1B.4: Five snapshots of the function u(x, y; t) = e−25 t · sin(3x) sin(4y)
from Example 1B.2.

Exercise 1B.3. Verify that the functions in Examples 1B.2(a,b,c) all satisfy theE©
heat equation. �

Exercise 1B.4. Prove the Leibniz rule for Laplacians: if f, g : RD −→ R are two E©
scalar fields, and (f · g) : RD −→ R is their product, then for all x ∈ RD,

4(f · g)(x) = g(x) ·
(

4 f(x)
)

+ 2
(

∇f(x)
)

•
(

∇g(x)
)

+ f(x) ·
(

4 g(x)
)

.

Hint: Combine the Leibniz rules for gradients and divergences (Propositions 0E.1(b)
and 0E.2(b) on pages 558 and 560). �

1C Laplace’s equation

Prerequisites: §1B.

If the heat equation describes the erosion/diffusion of some system, then an
equilibrium or steady-state of the heat equation is a scalar field h : RD −→ R
satisfying Laplace’s Equation:

4h ≡ 0.
Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009
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Figure 1C.1: Three harmonic functions: (A) h(x, y) = log(x2 + y2). (B)
h(x, y) = x2 − y2. (C) h(x, y) = sin(x) · sinh(y). In all cases, note the telltale
“saddle” shape.

A scalar field satisfying the Laplace equation is called a harmonic function.

Example 1C.1.

(a) If D = 1, then 4h(x) = ∂2
x h(x) = h′′(x); thus, the one-dimensional

Laplace equation is just
h′′(x) = 0

Suppose h(x) = 3x+ 4. Then h′(x) = 3, and h′′(x) = 0, so h is harmonic.
More generally: the one-dimensional harmonic functions are just the linear
functions of the form: h(x) = ax+ b for some constants a, b ∈ R.

(b) If D = 2, then 4h(x, y) = ∂2
x h(x, y)+∂2

y h(x, y), so the two-dimensional
Laplace equation reads:

∂2
x h+ ∂2

y h = 0,

or, equivalently, ∂2
x h = −∂2

y h. For example:

• Figure 1C.1(B) shows the harmonic function h(x, y) = x2 − y2.

• Figure 1C.1(C) shows the harmonic function h(x, y) = sin(x) ·sinh(y).

Exercise 1C.1 Verify that these two functions are harmonic. ♦E©

The surfaces in Figure 1C.1 have a “saddle” shape, and this is typical of
harmonic functions; in a sense, a harmonic function is one which is “saddle-
shaped” at every point in space. In particular, notice that h(x, y) has no maxima
or minima anywhere; this is a universal property of harmonic functions (see
Corollary 1E.2 on page 17). The next example seems to contradict this assertion,
but in fact it doesn’t...
Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009
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Example 1C.2. Figure 1C.1(A) shows the harmonic function h(x, y) = log(x2+
y2) for all (x, y) 6= (0, 0). This function is well-defined everywhere except at
(0, 0); hence, contrary to appearances, (0, 0) is not an extremal point. [Verifying

that h is harmonic is problem # 3 on page 20]. ♦

When D ≥ 3, harmonic functions no longer define nice saddle-shaped sur-
faces, but they still have similar mathematical properties.

Example 1C.3.

(a) If D = 3, then 4h(x, y, z) = ∂2
x h(x, y, z) + ∂2

y h(x, y, z) + ∂2
z h(x, y, z).

Thus, the three-dimensional Laplace equation reads:

∂2
x h+ ∂2

y h+ ∂2
z h = 0,

For example, let h(x, y, z) =
1

‖(x, y, z)‖
=

1
√

x2 + y2 + z2
for all

(x, y, z) 6= (0, 0, 0). Then h is harmonic everywhere except at (0, 0, 0).

[Verifying that h is harmonic is problem # 4 on page 21.]

(b) For any D ≥ 3, the D-dimensional Laplace equation reads:

∂2
1 h+ . . .+ ∂2

D h = 0.

For example, let h(x) =
1

‖x‖D−2
=

1
(

x2
1 + · · ·+ x2

D

)D−2
2

for all x 6= 0.

Then h is harmonic everywhere everywhere in RD \ {0} (Exercise 1C.2 E©
Verify that h is harmonic on RD \ {0}.) ♦

Harmonic functions have the convenient property that we can multiply to-
gether two lower-dimensional harmonic functions to get a higher dimensional
one. For example:

• h(x, y) = x · y is a two-dimensional harmonic function (Exercise 1C.3 E©
Verify this).

• h(x, y, z) = x·(y2−z2) is a three-dimensional harmonic function (Exercise 1C.4
Verify this). E©

In general, we have the following:
Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009
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Proposition 1C.4. Suppose u : Rn −→ R is harmonic and v : Rm −→ R is
harmonic, and define w : Rn+m −→ R by w(x,y) = u(x) · v(y) for x ∈ Rn and
y ∈ Rm. Then w is also harmonic

Proof. Exercise 1C.5 Hint: First prove that w obeys a kind of Leibniz rule: E©
4w(x,y) = v(y) · 4u(x) + u(x) · 4v(y). 2

The function w(x,y) = u(x) · v(y) is called a separated solution, and this
theorem illustrates a technique called separation of variables. The next exercise
also explores separation of variables. A full exposition of this technique appears
in Chapter 16 on page 353.

Exercise 1C.6. (a) Let µ, ν ∈ R be constants, and let f(x, y) = eµx ·eνy. SupposeE©
f is harmonic; what can you conclude about the relationship between µ and ν? (Justify
your assertion).

(b) Suppose f(x, y) = X(x) · Y (y), where X : R −→ R and Y : R −→ R are two
smooth functions. Suppose f(x, y) is harmonic

[i] Prove that
X ′′(x)
X(x)

=
−Y ′′(y)
Y (y)

for all x, y ∈ R.

[ii] Conclude that the function
X ′′(x)
X(x)

must equal a constant c independent of x.

Hence X(x) satisfies the ordinary differential equation X ′′(x) = c ·X(x).

Likewise, the function
Y ′′(y)
Y (y)

must equal −c, independent of y. Hence Y (y) satisfies

the ordinary differential equation Y ′′(y) = −c · Y (y).
[iii] Using this information, deduce the general form for the functions X(x) and Y (y),

and use this to obtain a general form for f(x, y). �

1D The Poisson equation

Prerequisites: §1C.

Imagine p(x) is the concentration of a chemical at the point x in space.
Suppose this chemical is being generated (or depleted) at different rates at dif-
ferent regions in space. Thus, in the absence of diffusion, we would have the
generation equation

∂t p(x, t) = q(x),

where q(x) is the rate at which the chemical is being created/destroyed at x (we
assume that q is constant in time).

If we now included the effects of diffusion, we get the generation-diffusion
equation:

∂t p = κ4 p + q.
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(A) (B)

Figure 1D.1: Two one-dimensional potentials.

A steady state of this equation is a scalar field p satisfying Poisson’s Equation:

4p = Q.

where Q(x) =
−q(x)
κ

.

Example 1D.1: One-Dimensional Poisson Equation

If D = 1, then4p(x) = ∂2
x p(x) = p′′(x); thus, the one-dimensional Poisson

equation is just
p′′(x) = Q(x).

We can solve this equation by twice-integrating the function Q(x). If p(x) =
∫ ∫

Q(x) is some double-antiderivative of G, then p clearly satisfies the Poisson
equation. For example:

(a) Suppose Q(x) =
{

1 if 0 < x < 1;
0 otherwise.

. Then define

p(x) =
∫ x

0

∫ y

0
q(z) dz dy =







0 if x < 0;
x2/2 if 0 < x < 1;
x− 1

2 if 1 < x.
(Figure 1D.1A)

(b) If Q(x) = 1/x2 (for x 6= 0), then p(x) =
∫ ∫

Q(x) = − log |x|+ ax+ b
(for x 6= 0), where a, b ∈ R are arbitrary constants. (see Figure 1D.1B) ♦
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Figure 1D.2: The two-dimensional potential field generated by a concentration
of charge at the origin.

Exercise 1D.1. Verify that the functions p(x) in Examples (a) and (b) are bothE©
solutions to their respective Poisson equations. �

Example 1D.2: Electrical/Gravitational Fields

Poisson’s equation also arises in classical field theory4. Suppose, for any point
x = (x1, x2, x3) in three-dimensional space, that q(x) is charge density at x,
and that p(x) is the the electric potential field at x. Then we have:

4 p(x) = κ q(x) (κ some constant) (1D.1)

If q(x) were the mass density at x, and p(x) were the gravitational potential
energy, then we would get the same equation. (See Figure 1D.2 for an example
of such a potential in two dimensions).

In particular, in a region where there is no charge/mass (i.e. where q ≡ 0),
equation (1D.1) reduces to the Laplace equation 4p ≡ 0. Because of this,
solutions to the Poisson equation (and especially the Laplace equation) are
sometimes called potentials. ♦

Example 1D.3: The Coulomb Potential

Let D = 3, and let p(x, y, z) =
1

‖(x, y, z)‖
=

1
√

x2 + y2 + z2
. In Example

1C.3(a), we asserted that p(x, y, z) was harmonic everywhere except at (0, 0, 0),
where it is not well-defined. For physical reasons, it is ‘reasonable’ to write
the equation:

4 p(0, 0, 0) = δ0, (1D.2)
4For a quick yet lucid introduction to electrostatics, see [Ste95, Chap.3].
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where δ0 is the ‘Dirac delta function’ (representing an infinite concentration
of charge at zero)5. Then p(x, y, z) describes the electric potential generated
by a point charge. ♦

Exercise 1D.2. Check that ∇ p(x, y, z) =
−(x, y, z)
‖(x, y, z)‖3

. This is the electric field E©

generated by a point charge, as given by Coulomb’s Law from classical electrostatics. �

Exercise 1D.3. (a) Let q : R3 −→ R be a scalar field describing a charge density E©
distribution. If ~E : R3 −→ R3 is the electric field generated by q, then Gauss’s law
saws div ~E = κ q, where κ is a constant. If p : R3 −→ R is the electric potential field
associated with ~E, then by definition, ~E = ∇p. Use these facts to derive equation (1D.1).

(b) Suppose q is independent of the x3 coordinate; that is, q(x1, x2, x3) = Q(x1, x2)
for some function Q : R2 −→ R. Show that p is also is independent of the x3 coordinate;
that is, p(x1, x2, x3) = P (x1, x2) for some function P : R2 −→ R. Show P and Q satisfy
the two-dimensional version of the Poisson equation —that is that 4P = κQ.

(This is significant because many physical problems have (approximate) translational
symmetry along one dimension (e.g. an electric field generated by a long, uniformly
charged wire or plate). Thus, we can reduce the problem to two dimensions, where
powerful methods from complex analysis can be applied; see Section 18B on page 422.)
�

Notice that the electric/gravitational potential field is not uniquely defined
by equation (1D.1). If p(x) solves the Poisson equation (1D.1), then so does
p̃(x) = p(x) + a for any constant a ∈ R. Thus, we say that the potential field
is well-defined up to addition of a constant; this is similar to the way in which
the antiderivative

∫

Q(x) of a function is only well-defined up to some constant.6

This is an example of a more general phenomenon:

Proposition 1D.4. Let X ⊂ RD be some domain, and let p : X −→ R and
h : X −→ R be two functions on X. Let p̃(x) := p(x) + h(x) for all x ∈ X.
Suppose that h is harmonic —i.e. 4h ≡ 0. If p satisfies the Poisson Equation
“4p ≡ q”, then p̃ also satisfies this Poisson equation.

Proof. Exercise 1D.4 Hint: Notice that 4p̃(x) = 4p(x) +4h(x). 2
E©

For example, if Q(x) = 1/x2, as in Example 1D.1(b), then p(x) = − log(x) is
a solution to the Poisson equation “p′′(x) = 1/x2”. If h(x) is a one-dimensional

5Equation (1D.2) seems mathematically nonsensical, but it can be made mathematically
meaningful, using distribution theory. However, this is far beyond the scope of this book, so for
our purposes, we will interpret eqn. (1D.2) as purely metaphorical.

6For the purposes of the physical theory, this constant does not matter, because the field
p is physically interpreted only by computing the potential difference between two points, and
the constant a will always cancel out in this computation. Thus, the two potential fields p(x)
and p̃(x) = p(x) + a will generate identical physical predictions.
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harmonic function, then h(x) = ax+ b for some constants a and b (see Example
1C.1(a) on page 10). Thus p̃(x) = − log(x) +ax+ b, and we’ve already seen that
these are also valid solutions to this Poisson equation.

1E Properties of harmonic functions

Prerequisites: §1C, §0H(ii). Prerequisites (for proofs): §2A, §17G, §0E(iii).

Recall that a function h : RD −→ R is harmonic if 4h ≡ 0. Harmonic
functions have nice geometric properties, which can be loosely summarized as
‘smooth and gently curving’.

Theorem 1E.1. Mean Value Theorem

Let f : RD −→ R be a scalar field. Then f is harmonic if and only if f is
integrable, and:

For any x ∈ RD, and any R > 0, f(x) =
1

A(R)

∫

S(x;R)
f(s) ds. (1E.1)

Here, S(x;R) :=
{

s ∈ RD ; ‖s− x‖ = R
}

is the (D−1)-dimensional sphere of
radius R around x, and A(R) is the (D−1)-dimensional surface area of S(x;R).

Proof. Exercise 1E.1 (a) Suppose f is integrable and statement (1E.1) is true.E©
Use the Spherical Means formula for the Laplacian (Theorem 2A.1) to show that
f is harmonic.

(b) Now, suppose f is harmonic. Define φ : R 6− −→ R by: φ(R) :=
1

A(R)

∫

S(x;R)

f(s) ds.

Show that φ′(R) =
K

A(R)

∫

S(x;R)

∂⊥f(s) ds, for some constant K > 0.

Here, ∂⊥f(s) is the outward normal derivative of f at the point s on the sphere (see
page 564 for an abstract definition; see §5C(ii) on page 76 for more information).

(c) Let B (x;R) :=
{

b ∈ RD ; ‖b− x‖ ≤ R
}

be the ball of radius R around x. Apply
Green’s Formula (Theorem 0E.5(a) on page 564) to show that

φ′(R) =
K

A(R)

∫

B(x;R)

4f(b) db.

(d) Deduce that, if f is harmonic, then φ must be constant.

(e) Use the fact that f is continuous to show that lim
r→0

φ(r) = f(x). Deduce that

φ(r) = f(x) for all r ≥ 0. Conclude that, if f is harmonic, then statement (1E.1)
must be true. 2
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Corollary 1E.2. Maximum Principle for harmonic functions
Let X ⊂ RD be a domain, and let u : X −→ R be a nonconstant harmonic

function. Then u has no local maximal or minimal points anywhere in the interior
of X.

If X is bounded (hence compact), then u does obtain a maximum and mini-
mum, but only on the boundary of X.

Proof. (by contradiction). Suppose x was a local maximum of u somewhere in
the interior of X. Let R > 0 be small enough that S(x;R) ⊂ X, and such that

u(x) ≥ u(s) for all s ∈ S(x;R), (1E.2)

where this inequality is strict for at least one s0 ∈ S(x;R).

Claim 1: There is a nonempty open subset Y ⊂ S(x;R) such that u(x) >
u(y) for all y in Y.

Proof. We know that u(x) > u(s0). But u is continuous, so there must be
some open neighbourhood Y around s0 such that u(x) > u(y) for all y in
Y. �

Claim 1

Equation (1E.2) and Claim 1 imply that

f(x) >
1

A(R)

∫

S(x;R)
f(s) ds.

But this contradicts the Mean Value Theorem. By contradiction, x cannot be
a local maximum. (The proof for local minima is analogous). 2

A function F : RD −→ R is spherically symmetric if F (x) depends only
on the norm ‖x‖ (i.e. F (x) = f (‖x‖) for some function f : R 6− −→ R). For
example, the function F (x) := exp(−‖x‖2) is spherically symmetric.

If h, F : RD −→ R are two integrable functions, then their convolution is
the function h ∗ F : RD −→ R defined by

h ∗ F (x) :=
∫

RD
h(y) · F (x− y) dy, for all x ∈ RD

(if this integral converges). We will encounter convolutions in § 10D(ii) on
page 214 (where they will be used to prove the L2 convergence of a Fourier series)
and again in Chapter 17 (where they will be used to construct ‘impulse-response’
solutions for PDEs). For now, we state the following simple consequence of the
Mean Value Theorem:

Lemma 1E.3. If h : RD −→ R is harmonic and F : RD −→ R is integrable
and spherically symmetric, then h ∗ F = K · h, where K ∈ R is some constant.

Proof. Exercise 1E.2 2
E©
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Proposition 1E.4. Smoothness of harmonic functions
If h : RD −→ R is a harmonic function, then h is infinitely differentiable.

Proof. Let F : RD −→ R be some infinitely differentiable, spherically sym-
metric, integrable function. For example, we could take F (x) := exp(−‖x‖2).
Then Proposition 17G.2(f) on page 410 says that h ∗ F is infinitely differen-
tiable. But Lemma 1E.3 implies that h ∗ F = Kh for some constant K ∈ R;
thus, h is also infinitely differentiable.

(For another proof, see Theorem 6 on p. 28 of [Eva91, §2.2].) 2

Actually, we can go even further than this. A function h : X −→ R is
analytic if, for every x ∈ X, there is a multivariate Taylor series expansion for
h around x with a nonzero radius of convergence.7

Proposition 1E.5. Harmonic functions are analytic
Let X ⊆ RD be an open set. If h : X −→ R is a harmonic function, then h is

analytic on X.

Proof. For the case D = 2, see Corollary 18D.2 on page 451. For the general
case D ≥ 2, see Theorem 10 on p. 31 of [Eva91, §2.2]. 2

1F ∗ Transport and diffusion
Prerequisites: §1B, §6A.

If u : RD −→ R is a “mountain”, then recall that ∇u(x) points in the
direction of most rapid ascent at x. If ~v ∈ RD is a vector, then the dot product
~v•∇u(x) measures how rapidly you would be ascending if you walked in direction
~v.

Suppose u : RD −→ R describes a pile of leafs, and there is a steady wind
blowing in the direction ~v ∈ RD. We would expect the pile to slowly move in
the direction ~v. Suppose you were an observer fixed at location x. The pile is
moving past you in direction ~v, which is the same as you walking along the pile
in direction −~v; thus, you would expect the height of the pile at your location
to increase/decrease at rate −~v • ∇u(x). The pile thus satisfies the Transport
Equation:

∂t u = −~v • ∇u.

Now, suppose that the wind does not blow in a constant direction, but instead
has some complex spatial pattern. The wind velocity is therefore determined
by a vector field ~V : RD −→ RD. As the wind picks up leafs and carries them
around, the flux of leafs at a point x ∈ X is then the vector ~F(x) = u(x) · ~V(x).

7See Appendices 0H(ii) and 0H(v) on pages 569 and 576.
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But the rate at which leafs are piling up at each location is the divergence of the
flux. This results in Liouville’s Equation:

∂t u = −div ~F = −div (u · ~V)
(∗)

− ~V • ∇u − u · div ~V.

Here, (∗) is by the Leibniz rule for divergence (Proposition 0E.2(b) on page 560).
Liouville’s equation describes the rate at which u-material accumulates when

it is being pushed around by the ~V-vector field. Another example: ~V(x) de-
scribes the flow of water at x, and u(x) is the buildup of some sediment at
x.

Now suppose that, in addition to the deterministic force ~V acting on the
leafs, there is also a “random” component. In other words, while being blown
around by the wind, the leafs are also subject to some random diffusion. To
describe this, we combine Liouville’s Equation with the heat equation, to obtain
the Fokker-Plank equation:

∂t u = κ4 u − ~V • ∇u − u · div ~V.

1G ∗ Reaction and diffusion

Prerequisites: §1B.

Suppose A,B and C are three chemicals, satisfying the chemical reaction:

2A+B =⇒ C

As this reaction proceeds, the A and B species are consumed, and C is produced.
Thus, if a, b, c are the concentrations of the three chemicals, we have:

∂t c = R(t) = −∂t b = −1
2
∂t a,

where R(t) is the rate of the reaction at time t. The rate R(t) is determined by
the concentrations of A and B, and by a rate constant ρ. Each chemical reaction
requires 2 molecules of A and one of B; thus, the reaction rate is given by

R(t) = ρ · a(t)2 · b(t)

Hence, we get three ordinary differential equations, called the reaction kinetic
equations of the system:

∂t a(t) = −2ρ · a(t)2 · b(t)
∂t b(t) = −ρ · a(t)2 · b(t)
∂t c(t) = ρ · a(t)2 · b(t)







(1G.1)

Now, suppose that the chemicals A,B and C are in solution, but are not uni-
formly mixed. At any location x ∈ X and time t > 0, let a(x, t) be the con-
centration of chemical A at location x at time t; likewise, let b(x, t) be the
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concentration of B and c(x, t) be the concentration of C. (This determines three
time-varying scalar fields, a, b, c : R3 × R −→ R.) As the chemicals react, their
concentrations at each point in space may change. Thus, the functions a, b, c will
obey the equations (1G.1) at each point in space. That is, for every x ∈ R3 and
t ∈ R, we have

∂t a(x; t) ≈ −2ρ · a(x; t)2 · b(x; t)

etc. However, the dissolved chemicals are also subject to diffusion forces. In other
words, each of the functions a, b and c will also be obeying the heat equation.
Thus, we get the system:

∂t a = κa · 4a(x; t) − 2ρ · a(x; t)2 · b(x; t)
∂t b = κb · 4b(x; t) − ρ · a(x; t)2 · b(x; t)
∂t c = κc · 4c(x; t) + ρ · a(x; t)2 · b(x; t)

where κa, κb, κc > 0 are three different diffusivity constants.
This is an example of a reaction-diffusion system. In general, in a

reaction-diffusion system involving N distinct chemicals, the concentrations of
the different species is described by a concentration vector field u : R3×R −→
RN , and the chemical reaction is described by a rate function F : RN −→ RN .
For example, in the previous example, u(x, t) =

(

a(x, t), b(x, t), c(x, t)
)

, and

F (a, b, c) =
[

−2ρa2b, −ρa2b, ρa2b
]

.

The reaction-diffusion equations for the system then take the form

∂t un = κn 4 un + Fn(u),

for n = 1, ..., N

1H Practice problems

1. Let f : R4 −→ R be a differentiable scalar field. Show that div∇f(x1, x2, x3, x4) =
4f(x1, x2, x3, x4).

2. Let f(x, y; t) = exp(−34t) · sin(3x+ 5y). Show that f(x, y; t) satisfies the
two-dimensional heat equation: ∂t f(x, y; t) = 4f(x, y; t).

3. Let u(x, y) = log(x2+y2). Show that u(x, y) satisfies the (two-dimensional)
Laplace Equation, everywhere except at (x, y) = (0, 0).

Remark: If (x, y) ∈ R2, recall that ‖(x, y)‖ :=
√

x2 + y2. Thus, log(x2 +
y2) = 2 log ‖(x, y)‖. This function is sometimes called the logarithmic
potential.
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4. If (x, y, z) ∈ R3, recall that ‖(x, y, z)‖ :=
√

x2 + y2 + z2. Define

u(x, y, z) =
1

‖(x, y, z)‖
=

1
√

x2 + y2 + z2

Show that u satisfies the (three-dimensional) Laplace equation, everywhere
except at (x, y, z) = (0, 0, 0).

Remark: Observe that ∇u(x, y, z) =
−(x, y, z)
‖(x, y, z)‖3

. What force field does

this remind you of? Hint: u(x, y, z) is sometimes called the Coulomb
potential.

5. Let u(x, y; t) =
1

4πt
exp

(

−‖(x, y)‖2

4t

)

=
1

4πt
exp

(

−x2 − y2

4t

)

be the

(two-dimensional) Gauss-Weierstrass Kernel. Show that u satisfies the
(two-dimensional) heat equation, ∂t u = 4u.

6. Let α and β be real numbers, and let h(x, y) = sinh(αx) · sin(βy).

(a) Compute 4 h(x, y).

(b) Suppose h is harmonic. Write an equation describing the relation-
ship between α and β.

Further reading

An analogy of the Laplacian can be defined on any Riemannian manifold, where
it is sometimes called the Laplace-Beltrami operator. The study of harmonic
functions on manifolds yields important geometric insights [War83, Cha93].

The reaction diffusion systems from §1G play an important role in modern
mathematical biology [Mur93].

The heat equation also arises frequently in the theory of Brownian motion
and other Gaussian stochastic processes on RD [Str93].
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Chapter 2

Waves and signals

“There is geometry in the humming of the strings.” —Pythagoras

2A The Laplacian and spherical means
Prerequisites: §0A, §0B, §0H(v). Recommended: §1B.

Let u : RD −→ R be a function of D variables. Recall that the Laplacian
of u is defined:

4u = ∂2
1 u+ ∂2

2 u+ . . . ∂2
D u.

In this section, we will show that 4u(x) measures the discrepancy between u(x)
and the ‘average’ of u in a small neighbourhood around x.

Let S(ε) be the D-dimensional “sphere” of radius ε around 0. For example:

• If D = 1, then S(ε) is just a set with two points: S(ε) = {−ε,+ε}.

• IfD = 2, then S(ε) is the circle of radius ε: S(ε) =
{

(x, y) ∈ R2 ; x2 + y2 = ε2
}

• If D = 3, then S(ε) is the 3-dimensional spherical shell of radius ε:

S(ε) =
{

(x, y, z) ∈ R3 ; x2 + y2 + z2 = ε2
}

.

• More generally, for any dimension D,

S(ε) =
{

(x1, x2, . . . , xD) ∈ RD ; x2
1 + x2

2 + . . .+ x2
D = ε2

}

.

Let Aε be the “surface area” of the sphere. For example:

• If D = 1, then S(ε) = {−ε,+ε} is a finite set, with two points, so we say
Aε = 2.

• If D = 2, then S(ε) is the circle of radius ε; the perimeter of this circle is
2πε, so we say Aε = 2πε.
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x x+εx-ε

f(x)

f(x+ ε)

f(x- ε)

ε ε

f(x+ε)f(x-ε) +
2

Mε f(x) =

Mε f(x)

f(x)

Mε f(x) - f(x)

Figure 2A.1: Local averages: f(x) vs. Mε f(x) := f(x−ε)+f(x+ε)
2 .

• If D = 3, then S(ε) is the sphere of radius ε, which has surface area 4πε2.

Let Mε f(0) :=
1
Aε

∫

S(ε)
f(s) ds; then Mε f(0) is the average value of f(s) over all

s on the surface of the ε-radius sphere around 0, which is called the spherical
mean of f at 0. The interpretation of the integral sign “

∫

” depends on the
dimension D of the space. For example,“

∫

” represents a surface integral if D = 3,
a line integral if D = 2, and simple two-point sum if D = 1. Thus:

• If D = 1, then S(ε) = {−ε,+ε}, so that
∫

S(ε)
f(s) ds = f(ε) + f(−ε);

thus,

Mε f =
f(ε) + f(−ε)

2
.

• If D = 2, then any point on the circle has the form
(

ε cos(θ), ε sin(θ)
)

for

some angle θ ∈ [0, 2π). Thus,
∫

S(ε)
f(s) ds =

∫ 2π

0
f
(

ε cos(θ), ε sin(θ)
)

ε dθ,

so that

Mε f =
1

2πε

∫ 2π

0
f
(

ε cos(θ), ε sin(θ)
)

ε dθ =
1

2π

∫ 2π

0
f
(

ε cos(θ), ε sin(θ)
)

dθ,

Likewise, for any x ∈ RD, we define Mε f(x) :=
1
Aε

∫

S(ε)
f(x + s) ds to be

the average value of f over an ε-radius sphere around x. Suppose f : RD −→ R
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is a smooth scalar field, and x ∈ RD. One interpretation of the Laplacian is this:
4f(x) measures the disparity between f(x) and the average value of f in the
immediate vicinity of x. This is the meaning of the next theorem:

Theorem 2A.1.

(a) If f : R −→ R is a smooth scalar field, then (as shown in Figure 2A.1), for
any x ∈ R,

4f(x) = lim
ε→0

2
ε2

[

Mε f(x) − f(x)
]

= lim
ε→0

2
ε2

[

f(x− ε) + f(x+ ε)
2

− f(x)
]

.

(b) 1 If f : RD −→ R is a smooth scalar field, then for any x ∈ RD,

4f(x) = lim
ε→0

C

ε2

[

Mε f(x) − f(x)
]

= lim
ε→0

C

ε2

[

1
Aε

∫

S(ε)
f(x + s) ds − f(x)

]

(Here C is a constant determined by the dimension D).

Proof. (a) Using Taylor’s theorem (see § 0H(i) on page 568), we have:

f(x+ ε) = f(x) + εf ′(x) +
ε2

2
f ′′(x) + O(ε3)

and f(x− ε) = f(x)− εf ′(x) +
ε2

2
f ′′(x) + O(ε3).

Here, f ′(x) = ∂x f(x) and f ′′(x) = ∂2
x f(x). The expression “O(ε)” means

“some function (we don’t care which one) such that lim
ε→0

O(ε) = 0”.2 Like-

wise, “O(ε3)” means “some function (we don’t care which one) such that

lim
ε→0

O(ε3)
ε2

= 0.” Summing these two equations, we get

f(x+ ε) + f(x− ε) = 2f(x) + ε2 · f ′′(x) + O(ε3).

Thus,
f(x− ε)− 2f(x) + f(x+ ε)

ε2
= f ′′(x) +O(ε).

[because O(ε3)/ε2 = O(ε).] Now take the limit as ε→ 0, to get

lim
ε→0

f(x− ε)− 2f(x) + f(x+ ε)
ε2

= lim
ε→0

f ′′(x)+O(ε) = f ′′(x) = 4f(x),

1Part (b) of Theorem 2A.1 is not necessary for the physical derivation of the wave equation
which appears later in this chapter. However, part (b) is required for to prove the Mean Value
Theorem for harmonic functions (Theorem 1E.1 on page 16).

2Actually, “O(ε)” means slightly more than this —see §0H(i). However, for our purposes,
this will be sufficient.
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as desired.

(b) Define the Hessian derivative matrix of f at x:

D2f(x) =











∂2
1f ∂1∂2f . . . ∂1∂Df

∂2∂1f ∂2
2f . . . ∂2∂Df

...
...

. . .
...

∂D∂1f ∂D∂2f . . . ∂2
Df











Then, for any s ∈ S(ε), the Multivariate Taylor’s theorem (see § 0H(v) on
page 576) says:

f(x + s) = f(x) + s • ∇f(x) +
1
2
s • D2f(x) · s + O(ε3).

Now, if s = (s1, s2, . . . , sD), then s•D2f(x) ·s =
D
∑

c,d=1

sc ·sd ·∂c∂d f(x). Thus,

for any ε > 0, we have

Aε ·Mε f(x) =
∫

S(ε)
f(x + s) ds

=
∫

S(ε)
f(x) ds +

∫

S(ε)
s • ∇f(x) ds

+
1
2

∫

S(ε)
s • D2f(x) · s +

∫

S(ε)
O(ε3) ds

= Aεf(x) + ∇f(x) •
∫

S(ε)
s ds

+
1
2

∫

S(ε)





D
∑

c,d=1

scsd · ∂c∂d f(x)



 ds + O(εD+2)

= Aεf(x) + ∇f(x) • 0
︸ ︷︷ ︸

(∗)

+
1
2

D
∑

c,d=1

(

∂c ∂d f(x) ·

(

∫

S(ε)
scsd ds

))

+ O(εD+2)

= Aεf(x) +
1
2

D
∑

d=1

(

∂2
d f(x) ·

(

∫

S(ε)
s2
d ds

))

︸ ︷︷ ︸

(†)

+ O(εD+2)

= Aεf(x) +
1
2
4 f(x) · εD+1K + O(εD+2),

where K :=
∫

S(1)
s2

1 ds. Here, (∗) is because
∫

S(ε)
s ds = 0, because the centre-

of-mass of a sphere is at its centre, namely 0. (†) is because, if c, d ∈ [1...D],
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Fixed
endpoint

Fixed
endpoint

mass  m

-T cos(θ)

T
 sin(θ)

T

T cos(θ)

T
 s

in
(θ

)

T2 
T

 s
in

(θ
)

θ θ

ε

y

ε

y

Figure 2B.1: A bead on a string

and c 6= d, then
∫

S(ε)
scsd ds = 0 (Exercise 2A.1 Hint: Use symmetry). Thus, E©

Aε ·Mε f(x) − Aε f(x) =
εD+1K

2
4 f(x) + O(εD+2),

so Mε f(x) − f(x) =
εD+1K

2Aε
4 f(x) +

1
Aε
O(εD+2)

(∗)

εD+1K

2A1 · εD−1
4 f(x) + O

(

εD+2

εD−1

)

=
ε2K

2A1
4 f(x) +O(ε3),

where (∗) is because Aε = A1 · εD−1. Thus,

2A1

K ε2

(

Mε f(x) − f(x)
)

= 4f(x) +O(ε).

Now take the limit as ε→ 0, and set C :=
2A1

K
, to prove part (b). 2

Exercise 2A.2. Let f : RD −→ R be a smooth scalar field, such that Mε f(x) = E©
f(x) for all x ∈ RD. Show that f is harmonic. �

2B The wave equation

Prerequisites: §2A.
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2B(i) ...in one dimension: the string

We want to mathematically describe vibrations propagating through a stretched
elastic cord. We will represent the cord with a one-dimensional domain X; either
X = [0, L] or X = R. We will make several simplifying assumptions:

(W1) The cord has uniform thickness and density. Thus, there is a constant
linear density ρ > 0, so that a cord-segment of length ` has mass ρ`.

(W2) The cord is perfectly elastic; meaning that it is infinitely flexible and does
not resist bending in any way. Likewise, there is no air friction to resist
the motion of the cord.

(W3) The only force acting on the cord is tension, which is force of magnitude
T pulling the cord to the right, balanced by an equal but opposite force
of magnitude −T pulling the cord to the left. These two forces are in
balance, so the cord exhibits no horizontal motion. The tension T must be
constant along the whole length of the cord. Thus, the equilibrium state
for the cord is to be perfectly straight. Vibrations are deviations from this
straight position.3

(W4) The vibrational motion of the cord is entirely vertical; there is no horizon-
tal component to the vibration. Thus, we can describe the motion using a
scalar-valued function u(x, t), where u(x, t) is the vertical displacement of
the cord (from its flat equilibrium) at point x at time t. We assume that
u(x, t) is relatively small relative to the length of the cord, so that the cord
is not significantly stretched by the vibrations4.

For simplicity, let’s first imagine a single bead of mass m suspended at the mid-
point of a (massless) elastic cord of length 2ε, stretched between two endpoints.
Suppose we displace the bead by a distance y from its equilibrium, as shown in
Figure 2B.1. The tension force T now pulls the bead diagonally towards each
endpoint with force T . The horizontal components of the two tension forces are
equal and opposite, so they cancel, so the bead experiences no net horizontal
force. Suppose the cord makes an angle θ with the horizontal; then the vertical
component of each tension force is T sin(θ), so the total vertical force acting on
the bead is 2T sin(θ). But θ = arctan(ε/y) by the geometry of the triangles in

3 We could also incorporate the force of gravity as a constant downward force. In this case,
the equilibrium position for the cord is to sag downwards in a ‘catenary’ curve. Vibrations are
then deviations from this curve. This doesn’t change the mathematics of this derivation, so we
will assume for simplicity that gravity is absent and the cord is straight.

4If u(x, t) was large, then the vibrations stretch the cord, and a restoring force acts against
this stretching, as described by Hooke’s Law. By assuming that the vibrations are small, we
are assuming we can neglect Hooke’s Law.
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Figure 2B.2: Each bead feels a negative force proportional to its deviation from the local

average.

Figure 2B.1, so sin(θ) =
y

√

y2 + ε2
. Thus, the vertical force acting on the bead

is

F = 2T sin(θ) =
2Ty

√

y2 + ε2
(2B.1)

Now we return to our original problem of the vibrating string. Imagine
that we replace the string with a ‘necklace’ made up of small beads of mass
m separated by massless elastic strings of length ε. Each of these beads, in
isolation, behaves like the ‘bead on a string’ in Figure 2B.1. However, now, the
vertical displacement of each bead is not computed relative to the horizontal,
but instead relative to the average height of the two neighbouring beads. Thus,
in eqn.(2B.1), we set y := u(x) −Mε u(x), where u(x) is the height of bead
x, and where Mε u := 1

2 [u(x − ε) + u(x + ε)] is the average of its neighbours.
Substituting this into eqn.(2B.1), we get

Fε(x) =
2T [u(x)−Mε u(x)]

√

[u(x)−Mε u(x)]2 + ε2
(2B.2)

(Here, the “ε” subscript in “Fε” is to remind us that this is just an ε-bead
approximation of the real string). Each bead represents a length-ε segment of
the original string, so if the string has linear density ρ, then each bead must have
mass mε := ρε. Thus, by Newton’s law, the vertical acceleration of bead x must
be

aε(x) =
Fε(x)
mε

=
2T [u(x)−Mε u(x)]

ρ ε
√

[u(x)−Mε u(x)]2 + ε2

=
2T [u(x)−Mε u(x)]

ρ ε2
√

[u(x)−Mε u(x)]2/ε2 + 1
(2B.3)
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Now, we take the limit as ε→ 0, to get the vertical acceleration of the string at
x:

a(x) = lim
ε→0

aε(x) =
T

ρ
lim
ε→0

2
ε2

[

u(x)−Mε u(x)
]

· lim
ε→0

1
√

[u(x)−Mε u(x)]2/ε2 + 1

(∗)

T

ρ
∂2
x u(x)

1
limε→0

√

ε2 · ∂2
x u(x)2 + 1 (†)

T

ρ
∂2
x u(x). (2B.4)

Here, (∗) is because Theorem 2A.1(a) on page 25 says that lim
ε→0

2
ε2

[u(x)−Mε u(x)] =

∂2
x u(x). Finally, (†) is because, for any value of u′′ ∈ R, we have lim

ε→0

√

ε2u′′ + 1 =
1. We conclude that

a(x) =
T

ρ
∂2
x u(x) = λ2 ∂2

x u(x),

where λ :=
√

T/ρ. Now, the position (and hence, velocity and acceleration) of
the cord is changing in time. Thus, a and u are functions of t as well as x. And
of course, the acceleration a(x, t) is nothing more than the second derivative of
u with respect to t. Hence we have the one-dimensional Wave Equation:

∂2
t u(x, t) = λ2 · ∂2

x u(x, t).

This equation describes the propagation of a transverse wave along an idealized
string, or electrical pulses propagating in a wire.

T=0

T=1

T=2

T=3 T=7

T=6

T=5

T=4

Figure 2B.3: A one-dimensional standing wave.

Example 2B.1. Standing Waves

(a) Suppose λ2 = 4, and let u(x; t) = sin(3x) · cos(6t). Then u satisfies the
Wave Equation and describes a standing wave with a temporal frequency
of 6 and a wave number (or spatial frequency) of 3. (See Figure 2B.3)
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(b) More generally, fix ω > 0; if u(x; t) = sin(ω ·x)·cos(λ·ω ·t), Then u satisfies
the wave equation and describes a standing wave of temporal frequency λ ·ω
and wave number ω. ♦

Exercise 2B.1. Verify examples (a) and (b) above. � E©

T=0

T=1

T=2

(A)
T=0

T=1

T=2

(B)

T=3

Figure 2B.4: (A) A one-dimensional sinusoidal travelling wave. (B) A general
one-dimensional travelling wave.

Example 2B.2. Travelling Waves

(a) Suppose λ2 = 4, and let u(x; t) = sin(3x − 6t). Then u satisfies the
Wave Equation and describes a sinusoidal travelling wave with temporal
frequency 6 and wave number 3. The wave crests move rightwards along
the cord with velocity 2. (Figure 2B.4A).

(b) More generally, fix ω ∈ R and let u(x; t) = sin(ω · x − λ · ω · t). Then
u satisfies the wave equation and describes a sinusoidal travelling wave of
wave number ω. The wave crests move rightwards along the cord with
velocity λ.

(c) More generally, suppose that f is any function of one variable, and define
u(x; t) = f (x− λ · t). Then u satisfies the wave equation and describes a
travelling wave, whose shape is given by f , and which moves rightwards
along the cord with velocity λ (see Figure 2B.4B). ♦

Exercise 2B.2. Verify examples 2B.2(a,b,c) above. � E©

Exercise 2B.3. According to Example 2B.2(c), you can turn any function into a E©
travelling wave. Can you turn any function into a standing wave? Why or why not? �
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2B(ii) ...in two dimensions: the drum

Now, suppose D = 2, and imagine a two-dimensional “rubber sheet”. Suppose
u(x, y; t) is the the vertical displacement of the rubber sheet at the point (x, y) ∈
R2 at time t. To derive the two-dimensional wave equation, we approximate this
rubber sheet as a two-dimensional ‘mesh’ of tiny beads connected by massless,
tense elastic strings of length ε. Each bead (x, y) feels a net vertical force F =
Fx+Fy, where Fx is the vertical force arising from the tension in the x direction,
and Fy is the vertical force from the tension in the y direction. Both of these
are expressed by a formula similar to eqn.(2B.2). Thus, if bead (x, y) has mass
mε, then it experiences acceleration a = F/mε = Fx/mε + Fy/mε = ax + ay,
where ax := Fx/mε and ay := Fy/mε, and each of these is expressed by a formula
similar to eqn.(2B.3). Taking the limit as ε→ 0 as in eqn.(2B.4), we deduce that

a(x, y) = lim
ε→0

ax,ε(x, y) + lim
ε→0

ay,ε(x, y) = λ2 ∂2
x u(x, y) + λ2 ∂2

y u(x, y),

where λ is a constant determined by the density and tension of the rubber
membrane. Again, we recall that u and a are also functions of time, and that
a(x, y; t) = ∂2

t u(x, y; t). Thus, we have the two-dimensional Wave Equation:

∂2
t u(x, y; t) = λ2 · ∂2

x u(x, y; t) + λ2 · ∂2
y u(x, y; t) (2B.5)

or, more abstractly:
∂2
t u = λ2 · 4u.

This equation describes the propagation of wave energy through any medium
with a linear restoring force. For example:

• Transverse waves on an idealized rubber sheet.

• Ripples on the surface of a pool of water.

• Acoustic vibrations on a drumskin.

Example 2B.3. Two-dimensional Standing Waves

(a) Suppose λ2 = 9, and let u(x, y; t) = sin(3x)·sin(4y)·cos(15t). This describes
a two-dimensional standing wave with temporal frequency 15.

(b) More generally, fix ω = (ω1, ω2) ∈ R2 and let Ω = ‖ω‖2 =
√

ω2
1 + ω2

2.
Then the function

u(x; t) := sin (ω1x) · sin (ω2y) · cos (λ · Ωt)

satisfies the 2-dimensional wave equation and describes a standing wave
with temporal frequency λ · Ω.
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Figure 2B.5: A two-dimensional travelling wave.

(c) Even more generally, fix ω = (ω1, ω2) ∈ R2 and let Ω = ‖ω‖2 =
√

ω2
1 + ω2

2,
as before.

Let SC1(x) = either sin(x) or cos(x);
let SC2(y) = either sin(y) or cos(y);

and let SCt(t) = either sin(t) or cos(t).

Then
u(x; t) = SC1 (ω1x) · SC2 (ω2y) · SCt (λ · Ωt)

satisfies the 2-dimensional wave equation and describes a standing wave
with temporal frequency λ · Ω. ♦

Exercise 2B.4. Check examples (a), (b) and (c) above. � E©

Example 2B.4. Two-dimensional Travelling Waves

(a) Suppose λ2 = 9, and let u(x, y; t) = sin(3x + 4y + 15t). Then u satisfies
the two-dimensional wave equation, and describes a sinusoidal travelling
wave with wave vector ω = (3, 4) and temporal frequency 15. (see Figure
2B.5).

(b) More generally, fix ω = (ω1, ω2) ∈ R2 and let Ω = ‖ω‖2 =
√

ω2
1 + ω2

2.
Then

u(x; t) = sin
(

ω1x+ ω2y + λ · Ωt
)

and v(x; t) = cos
(

ω1x+ ω2y + λ · Ωt
)

both satisfy the two-dimensional wave equation, and describe sinusoidal
travelling waves with wave vector ω and temporal frequency λ · Ω. ♦

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



34— DRAFT Chapter 2. Waves and signals

Exercise 2B.5. Check examples (a) and (b) above. � E©

2B(iii) ...in higher dimensions:

The same reasoning applies for D ≥ 3. For example, the 3-dimensional wave
equation describes the propagation of (small amplitude5) sound-waves in air or
water. In general, the wave equation takes the form

∂2
t u = λ2 4 u,

where λ is some constant (determined by the density, elasticity, pressure, etc. of
the medium) which describes the speed-of-propagation of the waves.

By a suitable choice of time units, we can always assume that λ = 1. Hence,
from now on, we will consider the simplest form of the wave equation:

∂2
t u = 4u.

For example, fix ω = (ω1, . . . , ωD) ∈ RD and let Ω = ‖ω‖2 =
√

ω2
1 + . . .+ ω2

D.
Then

u(x; t) = sin
(

ω1x1 + ω2x2 + . . .+ ωDxD + Ωt
)

= sin
(

ω • x + λ · Ω · t
)

satisfies the D-dimensional wave equation and describes a transverse wave of
with wave vector ω propagating across D-dimensional space. (Exercise 2B.6
Check this.)E©

2C The telegraph equation

Recommended: §2B(i), §1B(i).

Imagine a signal propagating through a medium with a linear restoring force
(e.g. an electrical pulse in a wire, a vibration on a string). In an ideal universe,
the signal obeys the Wave Equation. However, in the real universe, damping
effects interfere. First, energy might “leak” out of the system. For example, if a
wire is imperfectly insulated, then current can leak out into surrounding space.
Also, the signal may get blurred by noise or frictional effects. For example, an
electric wire will pick up radio waves (“crosstalk”) from other nearby wires, while
losing energy to electrical resistance. A guitar string will pick up vibrations from
the air, while losing energy to friction.

Thus, intuitively, we expect the signal to propagate like a wave, but to be
gradually smeared out and attenuated by noise and leakage (Figure 2C.6). The
model for such a system is the telegraph equation:

κ2∂
2
t u+ κ1∂t u+ κ0u = λ4 u

5At large amplitudes, nonlinear effects become important and invalidate the physical argu-
ment used here.
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T=1

T=2

T=3

T=4

Figure 2C.6: A solution to the telegraph equation propagates like a wave, but it also diffuses

over time due to noise, and decays exponentially in magnitude due to ‘leakage’.

(where κ2, κ1, κ0, λ > 0 are constants).
Heuristically speaking, this equation is a “sum” of two equations. The first,

κ2∂
2
t u = λ1 4 u

is a version of the wave equation, and describes the “ideal” signal, while the
second,

κ1∂t u = −κ0u+ λ2 4 u

describes energy lost due to leakage and frictional forces.

2D Practice problems

1. By explicitly computing derivatives, show that the following functions sat-
isfy the (one-dimensional) wave equation ∂2

t u = ∂2
x u.

(a) u(x, t) = sin(7x) cos(7t).
(b) u(x, t) = sin(3x) cos(3t).
(c) u(x, t) = 1

(x−t)2 (for x 6= t).

(d) u(x, t) = (x− t)2 − 3(x− t) + 2.
(e) v(x, t) = (x− t)2.

2. Let f : R −→ R be any twice-differentiable function. Define u : R×R −→ R
by u(x, t) := f(x− t), for all (x, t) ∈ R× R.

Does u satisfies the (one-dimensional) wave equation ∂2
t u = 4u? Justify

your answer.

3. Let u(x, t) be as in 1(a) and let v(x, t) be as in 1(e), and suppose w(x, t) =
3u(x, t)−2v(x, t). Conclude that w also satisfies the wave equation, without
explicitly computing any derivatives of w.
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4. Suppose u(x, t) and v(x, t) are both solutions to the wave equation, and
w(x, t) = 5u(x, t) + 2v(x, t). Conclude that w also satisfies the wave
equation.

5. Let u(x, t) =
∫ x+t

x−t
cos(y) dy = sin(x + t) − sin(x − t). Show that u

satisfies the (one-dimensional) wave equation ∂2
t u = 4u.

6. By explicitly computing derivatives, show that the following functions sat-
isfy the (two-dimensional) wave equation ∂2

t u = 4u.

(a) u(x, y; t) = sinh(3x) · cos(5y) · cos(4t).

(b) u(x, y; t) = sin(x) cos(2y) sin(
√

5t).

(c) u(x, y; t) = sin(3x− 4y) cos(5t).
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Chapter 3

Quantum mechanics

“[M]odern physics has definitely decided in favor of Plato. In fact the smallest units

of matter are not physical objects in the ordinary sense; they are forms, ideas which can be

expressed unambiguously only in mathematical language.” —Werner Heisenberg

3A Basic framework
Prerequisites: §0C, §1B(ii).

Near the beginning of the twentieth century, physicists realized that elec-
tromagnetic waves sometimes exhibited particle-like properties, as if light was
composed of discrete ‘photons’. In 1923, Louis de Broglie proposed that, con-
versely, particles of matter might have wave-like properties. This was confirmed
in 1927 by C.J. Davisson and L.H. Germer, and independently, by G.P. Thomp-
son, who showed that an electron beam exhibited an unmistakable diffraction
pattern when scattered off a metal plate, as if the beam was composed of ‘elec-
tron waves’. Systems with many interacting particles exhibit even more curious
phenomena. Quantum mechanics is a theory which explains these phenomena.

We will not attempt here to provide a physical justification for quantum
mechanics. Historically, quantum theory developed through a combination of
vaguely implausible physical analogies and wild guesses motivated by inexpli-
cable empirical phenomena. By now, these analogies and guesses have been
overwhelmingly vindicated by experimental evidence. The best justification for
quantum mechanics is that it ‘works’, by which we mean that its theoretical
predictions match all available empirical data with astonishing accuracy.

Unlike the heat equation in §1B and the Wave Equation in §2B, we cannot
derive quantum theory from ‘first principles’, because the postulates of quantum
mechanics are the first principles. Instead, we will simply state the main as-
sumptions of the theory, which are far from self-evident, but which we hope you
will accept because of the weight of empirical evidence in their favour. Quan-
tum theory describes any physical system via a probability distribution on a
certain statespace. This probability distribution evolves over time; the evolution
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is driven by a potential energy function, as described by a partial differential
equation called the Schrödinger equation. We will now examine each of these
concepts in turn.

Statespace: A system of N interacting particles moving in 3 dimensional space
can be completely described using the 3N -dimensional state space X := R3N .
An element of X consists of list of N ordered triples:

x = (x11, x12, x13; x21, x22, x23; . . . xN1, xN2, xN3) ∈ R3N ,

where (x11, x12, x13) is the spatial position of particle #1, (x21, x22, x23) is the
spatial position of particle #2, and so on.

Example 3A.1. (a) Single electron A single electron is a one-particle system,
so it would be represented using a 3-dimensional statespace X = R3. If the
electron was confined to a two-dimensional space (e.g. a conducting plate),
we would use X = R2. If the electron was confined to a one-dimensional space
(e.g. a conducting wire), we would use X = R.

(b) Hydrogen Atom: The common isotope of hydrogen contains a single proton
and a single electron, so it is a two-particle system, and would be represented
using a 6-dimensional state space X = R6. An element of X has the form
x = (xp1, x

p
2, x

p
3; xe1, x

e
2, x

e
3), where (xp1, x

p
2, x

p
3) are the coordinates of the

proton, and (xe1, x
e
2, x

e
3) are those of the electron. ♦

Readers familiar with classical mechanics may be wondering how momentum is
represented in this statespace. Why isn’t the statespace 6N -dimensional, with
3 ‘position’ and 3 momentum coordinates for each particle? The answer, as we
will see later, is that the momentum of a quantum system is implicitly encoded
in the wavefunction which describes its position (see § 19G on page 511).

Potential Energy: We define a potential energy (or voltage) function V :
X −→ R, which describes which states are ‘prefered’ by the quantum system.
Loosely speaking, the system will ‘avoid’ states of high potential energy, and
‘seek’ states of low energy. The voltage function is usually defined using reasoning
familiar from ‘classical’ physics.

Example 3A.2: Electron in ambient field

Imagine a single electron moving through an ambient electric field ~E. The
statespace for this system is X = R3, as in Example 3A.1(a). The potential
function V is just the voltage of the electric field; in other words, V is any
scalar function such that −qe · ~E = ∇V , where qe is the charge of the electron.
For example:
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(a) Null field: If ~E ≡ 0, then V will be a constant, which we can assume is
zero: V ≡ 0.

(b) Constant field: If ~E ≡ (E, 0, 0), for some constant E ∈ R, then V (x, y, z) =
−qeEx+ c, where c is an arbitrary constant, which we normally set to zero.

(c) Coulomb field: Suppose the electric field ~E is generated by a (stationary)
point charge Q at the origin. Let ε0 be the ‘permittivity of free space’. Then
Coulomb’s law says that the electric voltage is given by

V (x) :=
qe ·Q

4πε0 · |x|
, for all x ∈ R3.

In SI units, qe ≈ 1.60 × 10−19 C, and ε0 ≈ 8.85 × 10−12 C/N m2. However, for
simplicity, we will normally adopt ‘atomic units’ of charge and field strength,
where qe = 1 and 4πε0 = 1. Then the above expression becomes V (x) =
Q/|x|.
(d) Potential well: Sometimes we confine the electron to some bounded region
B ⊂ R3, by setting the voltage equal to ‘positive infinity’ outside B. For
example, a low-energy electron in a cube made of conducting metal can move
freely about the cube, but cannot leave1 the cube. If the subset B represents
the cube, then we define V : X −→ [0,∞] by

V (x) =
{

0 if x ∈ B;
+∞ if x 6∈ B.

(if ‘+∞’ makes you uncomfortable, then replace it with some ‘really big’ num-
ber). ♦

Example 3A.3: Hydrogen atom:

The system is an electron and a proton; the statespace of this system is X = R6

as in Example 3A.1(b). Assuming there is no external electric field, the voltage
function is defined

V (xp,xe) :=
q2
e

4πε0 · |xp − xe|
, for all (xp,xe) ∈ R6.

where xp is the position of the proton, xe is the position of the electron, and
qe is the charge of the electron (which is also the charge of the proton, with
reversed sign). If we adopt ‘atomic’ units where qe := 1 and 4πε0 = 1, then
this expression simplifies to

V (xp,xe) :=
1

|xp − xe|
, for all (xp,xe) ∈ R6, ♦

1‘Cannot leave’ of course really means ‘is very highly unlikely to leave’.
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Probability and Wavefunctions. Our knowledge of the classical properties
of a quantum system is inherently incomplete. All we have is a time-varying
probability distribution ρ : X × R −→ R 6− which describes where the particles
are likely or unlikely to be at a given moment in time.

As time passes, the probability distribution ρ evolves. However, ρ itself
cannot exhibit the ‘wavelike’ properties of a quantum system (e.g. destructive
interference), because ρ is a nonnegative function (and we need to add negative
to positive values to get destructive interference). So, we introduce a complex-
valued wavefunction ω : X × R −→ C. The wavefunction ω determines ρ via
the equation:

ρt(x) := |ωt(x)|2 , for all x ∈ X and t ∈ R.

(Here, as always in this book, we define ρt(x) := ρ(x; t) and ωt(x) := ω(x; t);
subscripts do not indicate derivatives). Now, ρt is supposed to be a probability
density function, so ωt must satisfy the condition

∫

X
|ωt(x)|2 dx = 1, for all t ∈ R. (3A.1)

It is acceptable (and convenient) to relax condition (3A.1), and instead simply
require

∫

X
|ωt(x)|2 dx = W < ∞, for all t ∈ R. (3A.2)

where W is some finite constant, independent of t. In this case, we define ρt(x) :=
1
W |ωt(x)|2 for all x ∈ X. It follows that any physically meaningful solution to the
Schrödinger equation must satisfy condition (3A.2). This excludes, for example,
solutions where the magnitude of the wavefunction grows exponentially in the x
or t variables.

For any fixed t ∈ R, condition (3A.2) is usually expressed by saying that ωt
is square-integrable. Let L2(X) denote the set of all square-integrable functions
on X. If ωt ∈ L2(X), then the L2-norm of ω is defined

‖ωt‖2 :=

√

∫

X
|ωt(x)|2 dx.

Thus, a fundamental postulate of quantum theory is:

Let ω : X × R −→ C be a wavefunction. To be physically mean-
ingful, we must have ωt ∈ L2(X) for all t ∈ R. Furthermore, ‖ωt‖2
must be constant in time.

We refer the reader to § 6B on page 105 for more information on L2-norms and
L2-spaces.
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3B The Schrödinger equation

Prerequisites: §3A. Recommended: §4B.

The wavefunction ω evolves over time in response to the potential field V .
Let ~ be the ‘rationalized’ Planck constant

~ :=
h

2π
≈ 1

2π
× 6.6256× 10−34 J s ≈ 1.0545× 10−34 J s.

Then the wavefunction’s evolution is described by the Schrödinger Equation:

i~ ∂t ω = Hω, (3B.1)

where H is a linear differential operator called the Hamiltonian operator,
defined by:

Hωt(x) :=
−~2

2
Nωt(x) + V (x)·ωt(x), for all x ∈ X and t ∈ R. (3B.2)

Here, Nωt is like the Laplacian of ωt, except that the components for each
particle are divided by the rest mass of that particle. The potential function V :
X −→ R encodes all the exogenous aspects of the system we are modelling (e.g.
the presence of ambient electric fields). Substituting eqn.(3B.2) into eqn.(3B.1),
we get

i~ ∂t ω =
−~2

2
Nω + V · ω, (3B.3)

In ‘atomic units’, ~ = 1, so the Schrödinger equation (3B.3) becomes

i∂t ωt(x) =
−1
2
Nωt(x) + V (x) · ωt(x), for all x ∈ X and t ∈ R.

Example 3B.1. (a) Free Electron: Let me ≈ 9.11×10−31 kg be the rest mass of
an electron. A solitary electron in a null electric field (as in Example 3A.2(a))
satisfies the free Schrödinger equation:

i~ ∂t ωt(x) =
−~2

2me
4 ωt(x). (3B.4)

(In this case N = 1
me
4, and V ≡ 0 because the ambient field is null). In

atomic units, we set me := 1 and ~ := 1, so eqn.(3B.4) becomes

i ∂t ω =
−1
2
4 ω =

−1
2
(

∂2
1ω + ∂2

2ω + ∂2
3ω
)

. (3B.5)

(b) Electron vs. point charge: Consider the Coulomb electric field, generated
by a (stationary) point charge Q at the origin, as in Example 3A.2(c). A
solitary electron in this electric field satisfies the Schrödinger equation

i~ ∂t ωt(x) =
−~2

2me
4 ωt(x) +

qe ·Q
4πε0 · |x|

ωt(x).
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In atomic units, we have me := 1, qe := 1, etc. Let ˜Q = Q/qe be the charge Q
converted in units of electron charge. Then the previous expression simplifies
to

i ∂t ωt(x) =
−1
2
4 ωt(x) +

˜Q

|x|
ωt(x).

(c) Hydrogen atom: (see Example 3A.3) An interacting proton-electron pair
(in the absence of an ambient field) satisfies the two-particle Schrödinger equa-
tion

i~ ∂t ωt(xp,xe) =
−~2

2mp
4p ωt(xp,xe) +

−~2

2me
4e ωt(xp,xe) +

q2
e · ωt(xp,xe)

4πε0 · |xp − xe|
,

(3B.6)
where 4p ω := ∂2

xp1
ω + ∂2

xp2
ω + ∂2

xp3
ω is the Laplacian in the ‘proton’ position

coordinates, and mp ≈ 1.6727×10−27 kg is the rest mass of a proton. Likewise,
4e ω := ∂2

xe1
ω + ∂2

xe2
ω + ∂2

xe3
ω is the Laplacian in the ‘electron’ position

coordinates, and me is the rest mass of the electron. In atomic units, we have
4πε0 = 1, qe = 1, and me = 1. If m̃p ≈ 1864 is the ratio of proton mass to
electron mass, then 2m̃p ≈ 3728, and eqn.(3B.6) becomes

i ∂t ωt(x
p,xe) =

−1
3728

4p ωt(xp,xe) +
−1
2
4e ωt(xp,xe) +

ωt(xp,xe)
|xp − xe|

.

♦

The major mathematical problems of quantum mechanics come down to find-
ing solutions to the Schrödinger equations for various physical systems. In gen-
eral it is very difficult to solve the Schrödinger equation for most ‘realistic’ po-
tential functions. We will confine ourselves to a few ‘toy models’ to illustrate the
essential ideas.

Example 3B.2: Free Electron with Known Velocity (Null Field)

Consider a single electron in a null electromagnetic field. Suppose an ex-
periment has precisely measured the ‘classical’ velocity of the electron, and
determined it to be v = (v1, 0, 0). Then the wavefunction of the electron is
given2

ωt(x) = exp
(

−i
~
mev

2
1

2
t

)

· exp
(

i
~
mev1 · x1

)

. (see Figure 3B.1)

(3B.7)
This ω satisfies the free Schrödinger equation (3B.4). [See practice problem
# 1 on page 54 of §3D.]
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λ

Time:  t=0

Time:  t=T/4

Time:  t=T/2

Time:  t=3T/4

Figure 3B.1: Four successive ‘snapshots’ of the wavefunction of a single electron in a zero
potential, with a precisely known velocity. Only one spatial dimension is shown. The angle of
the spiral indicates complex phase.

Exercise 3B.1. (a) Check that the spatial wavelength λ of the function ω isE©

given λ =
2π~
p1

=
h

mev
. This is the so-called de Broglie wavelength of an electron

with velocity v.

(b) Check that the temporal period of ω is T :=
2h
mev2

.

(c) Conclude the phase velocity of ω (i.e. the speed at which the wavefronts propagate
through space) is equal to v. �

More generally, suppose the electron has a precisely known velocity v =
(v1, v2, v3), with corresponding momentum vector p := me v. Then the wave-
function of the electron is given

ωt(x) = exp
(

−i
~
Ek t

)

· exp
(

i
~

p • x
)

, (3B.8)

where Ek := 1
2me|v|2 is kinetic energy, and p•x := p1x1 +p2x2 +p3x3. If we

convert to atomic units, then Ek = 1
2 |v|

2 and p = v, and this function takes
the simpler form

ωt(x) = exp
(

−i |v|2 t
2

)

· exp (i v • x) .

2We will not attempt here to justify why this is the correct wavefunction for a particle with
this velocity. It is not obvious.
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This ω satisfies the free Schrödinger equation (3B.5). [See practice problem
# 2 on page 54 of §3D.]

The wavefunction (3B.8) represent a state of maximal uncertainty about the
position of the electron. This is an extreme manifestation of the infamous
Heisenberg Uncertainty Principle; by assuming that the electron’s velocity was
‘precisely determined’, we have forced it’s position to be entirely undetermined
(see §19G for more information).

Indeed, the wavefunction (3B.8) violates our ‘fundamental postulate’ —the
function ωt is not square-integrable, because |ωt(x)| = 1 for all x ∈ R, so
∫

R3 |ωt(x)|2 dx = ∞. Thus, wavefunction (3B.8) cannot be translated into
a probability distribution, so it is not physically meaningful. This isn’t too
surprising, because wavefunction (3B.8) seems to suggest that the electron is
equally likely to be anywhere in the (infinite) ‘universe’ R3! It is well known
that the location of a quantum particle can be ‘dispersed’ over some region of
space, but this seems a bit extreme. There are two solutions to this problem.

• Let B(R) ⊂ R3 be a ball of radius R, where R is much larger than the
physical system or laboratory apparatus we are modelling (e.g. R = 1
lightyear). Define the wavefunction ω

(R)
t (x) by (3B.8) for all x ∈ B(R),

and set ω(R)
t (x) = 0 for all x 6∈ B(R). This means that the position of

the electron is still extremely dispersed (indeed, ‘infinitely’ dispersed for
the purposes of any laboratory experiment), but the function ω(R)

t is still
square-integrable. Note that the function ω

(R)
t violates the Schrodinger

equation at the boundary of B(R), but this boundary occurs very far from
the physical system we are studying, so it doesn’t matter. In a sense, the
solution (3B.8) can be seen as the ‘limit’ of ω(R) as R→∞.

• Reject the wavefunction (3B.8) as ‘physically meaningless’. Our starting
assumption —an electron with a precisely known velocity —has led to a
contradiction. Our conclusion: a free quantum particle can never have a
precisely known classical velocity. Any physically meaningful wavefunc-
tion in a vacuum must contain a ‘mixture’ of several velocities.

♦

Remark. (The meaning of phase) At any point x in space and moment t in
time, the wavefunction ωt(x) can be described by its amplitude At(x) := |ωt(x)|
and its phase φt(x) := ωt(x)/At(x). We have already discussed the physical
meaning of the amplitude: |At(x)|2 is the probability that a classical measurement
will produce the outcome x at time t. What is the meaning of phase?

The phase φt(x) is a complex number of modulus one —an element of the unit
circle in the complex plane (hence φt(x) is sometimes called the phase angle).
The ‘oscillation’ of the wavefunction ω over time can be imagined in terms of
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the ‘rotation’ of φt(x) around the circle. The ‘wavelike’ properties of quantum
systems (e.g. interference patterns) occur because wavefunctions with different
phases will partially cancel one another when they are superposed. In other
words, it is because of phase that the Schrodinger Equation yields ‘wave-like’
phenomena, instead of yielding ‘diffusive’ phenomena like the heat equation.

However, like potential energy, phase is not directly physically observable.
We can observe the phase difference between wavefunction α and wavefunction β
(by observing cancelation between α and β), just as we can observe the potential
energy difference between point A and point B (by measuring the energy released
by a particle moving from point A to point B). However, it is not physically
meaningful to speak of the ‘absolute phase’ of wavefunction α, just as it is not
physically meaningful to speak of the ‘absolute potential energy’ of point A.

Indeed, inspection of the Schrödinger equation (3B.3) on page 41 will reveal
that the speed of phase rotation of a wavefunction ω at point x is determined by
the magnitude of the potential function V at x. But we can arbitrarily increase
V by a constant, without changing its physical meaning. Thus, we can arbitrarily
‘accelerate’ the phase rotation of the wavefunction without changing the physical
meaning of the solution.

3C Stationary Schrödinger equation
Prerequisites: §3B. Recommended: §4B(iv).

A ‘stationary’ state of a quantum system is one where the probability density
does not change with time. This represents a physical system which is in some
kind of long-term equilibrium. Note that a stationary quantum state does not
mean that the particles are ‘not moving’ (whatever ‘moving’ means for quanta).
It instead means that they are moving in some kind of regular, confined pattern
(i.e. an ‘orbit’) which remains qualitatively the same over time. For example, the
orbital of an electron in a hydrogen atom should be a stationary state, because
(unless the electron absorbs or emits energy) the orbital should stay the same
over time.

Mathematically speaking, a stationary wavefunction ω yields a time-invariant
probability density function ρ : X −→ R such that, for any t ∈ R,

|ωt(x)|2 = ρ(x), for all x ∈ X.

The simplest way to achieve this is to assume that ω has the separated form

ωt(x) = φ(t) · ω0(x), (3C.1)

where ω0 : X −→ C and φ : R −→ C satisfy the conditions

|φ(t)| = 1, for all t ∈ R, and |ω0(x)| =
√

ρ(x), for all x ∈ X. (3C.2)
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Lemma 3C.1. Suppose ωt(x) = φ(t) · ω0(x) is a separated solution to
the Schrödinger equation, as in eqn.(3C.1) and eqn.(3C.2). Then there is some
constant E ∈ R so that

• φ(t) = exp(−iEt/~), for all t ∈ R.

• Hω0 = E · ω0; in other words ω0 is an eigenfunction3 of the Hamiltonian
operator H, with eigenvalue E.

• Thus, ωt(x) = e−iEt/~ · ω0(x), for all x ∈ X and t ∈ R.

Proof. Exercise 3C.1 Hint: use separation of variables.4 2
E©

Physically speaking, E corresponds to the total energy (potential + kinetic)
of the quantum system5. Thus, Lemma 3C.1 yields one of the key concepts of
quantum theory:

Eigenfunctions of the Hamiltonian correspond to stationary quantum
states. The eigenvalues of these eigenfunctions correspond to the
energy level of these states.

Thus, to get stationary states, we must solve the stationary Schrödinger
equation:

H ω0 = E · ω0,

where E ∈ R is an unknown constant (the energy eigenvalue), and ω0 : X −→ C
is an unknown wavefunction.

Example 3C.2: The Free Electron

Recall ‘free electron’ of Example 3B.2. If the electron has velocity v, then
the function ω in eqn.(3B.7) yields a solution to the stationary Schrödinger
equation, with eigenvalue E = 1

2me v
2. [See practice problem # 3 on page 54 of

§3D]. Observe that E corresponds to the classical kinetic energy of an electron
with velocity v. ♦

3See § 4B(iv) on page 63.
4See Chapter 16 on page 353.
5This is not obvious, but it’s a consequence of the fact that the Hamiltonian Hω measures

the total energy of the wavefunction ω. Loosely speaking, the term ~2
2
Nω represents the ‘kinetic

energy’ of ω, while the term V · ω represents the ‘potential energy’.
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L0

V V0

ω0

Figure 3C.1: The (stationary) wavefunction of an electron in a one-dimensional ‘square’
potential well, with finite voltage gaps.

Example 3C.3: One-dimensional square potential well; finite voltage

Consider an electron confined to a one-dimensional environment (e.g. a long
conducting wire). Thus, X := R, and the wavefunction ω0 : R×R −→ C obeys
the one-dimensional Schrödinger equation

i∂t ω0 =
−1
2
∂2
x ω0 + V · ω0,

where V : R −→ R is the potential energy function, and we have adopted
atomic units. Let V0 > 0 be some constant, and suppose that

V (x) =
{

0 if 0 ≤ x ≤ L;
V0 if x < 0 or L < x.

Physically, this means that V defines a ‘potential energy well’, which tries
to confine the electron in the interval [0, L], between two ‘walls’, which are
voltage gaps of height V0 (see Figure 3C.1). The corresponding stationary
Schrödinger equation is:

−1
2
∂2
x ω0 + V · ω0 = E · ω0, (3C.3)

where E > 0 is an (unknown) eigenvalue which corresponds to the energy of
the electron. The function V only takes two values, so we can split eqn.(3C.3)
into two equations, one inside the interval [0, L], and one outside it:

−1
2 ∂

2
x ω0(x) = E · ω0(x), for x ∈ [0, L];

−1
2 ∂

2
x ω0(x) = (E − V0) · ω0(x), for x 6∈ [0, L].

(3C.4)
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Assume that E < V0. This means that the electron’s energy is less than the
voltage gap, so the electron has insufficient energy to ‘escape’ the interval (at
least in classical theory). The (physically meaningful) solutions to eqn.(3C.4)
have the form

ω0(x) =







C exp(ε′x), if x ∈ (−∞, 0];
A sin(εx) +B cos(εx), if x ∈ [0, L];

D exp(−ε′x), if L ∈ [L,∞).
(3C.5)

(See Figure 3C.1.) Here, ε :=
√

2E and ε′ :=
√

2E − 2V0, and A,B,C,D ∈ C
are constants. The corresponding solution to the full Schrödinger equation is:

ωt(x) =







Ce−i(E−V0)t · exp(ε′x), if x ∈ (−∞, 0];
e−iEt · (A sin(εx) +B cos(εx)) , if x ∈ [0, L] ;

De−i(E−V0)t · exp(−ε′x), if L ∈ [L,∞).
for all t ∈ R.

This has two consequences:

(a) With nonzero probability, the electron might be found outside the interval
[0, L]. In other words, it is quantumly possible for the electron to ‘escape’
from the potential well, something which is classically impossible6. This
phenomenon called quantum tunnelling (because the electron can ‘tunnel’
through the wall of the well).

(b) The system has a physically meaningful solution only for certain values
of E. In other words, the electron is only ‘allowed’ to reside at certain
discrete energy levels; this phenomenon is called quantization of energy.

To see (a), recall that the electron has probability distribution

ρ(x) :=
1
W
|ω0(x)|2, where W :=

∫ ∞

−∞
|ω0(x)|2 dx.

Thus, if C 6= 0, then ρ(x) 6= 0 for x < 0, while if D 6= 0, then ρ(x) 6= 0 for
x > L. Either way, the electron has nonzero probability of ‘tunnelling’ out of
the well.

To see (b), note that we must choose A,B,C,D so that ω0 is continuously
differentiable at the boundary points x = 0 and x = L. This means we must
have

B = A sin(0) +B cos(0) = ω0(0) = C exp(0) = C
εA = Aε cos(0)−Bε sin(0) = ω′0(0) = ε′C exp(0) = ε′C

A sin(εL) +B cos(εL) = ω0(L) = D exp(−ε′L)
Aε cos(εL)−Bε sin(εL) = ω′0(L) = −ε′D exp(−ε′L)

(3C.6)

6Many older texts observe that the electron ‘can penetrate the classically forbidden region’,
which has caused mirth to generations of physics students.
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Clearly, we can satisfy the first two equations in (3C.6) by setting B := C :=
ε
ε′A. The third and fourth equations in (3C.6) then become

eε
′L·
(

sin(εL) +
ε

ε′
cos(εL)

)

·A = D =
−ε
ε′
eε
′L·
(

cos(εL)− ε

ε′
sin(εL)

)

A,

(3C.7)
Cancelling the factors eε

′L and A from both sides and substituting ε :=
√

2E
and ε′ :=

√
2E − 2V0, we see that eqn.(3C.7) is satisfiable if and only if

sin
(√

2E · L
)

+
√
E · cos(

√
2E · L)√

E − V0
=

−
√
E · cos

(√
2E · L

)

√
E − V0

+
E · sin(

√
2E · L)

E − V0
.

(3C.8)
Hence, eqn.(3C.4) has a physically meaningful solution only for those values
of E which satisfy the transcendental equation (3C.8). The set of solutions
to eqn.(3C.8) is an infinite discrete subset of R; each solution for eqn.(3C.8)
corresponds to an allowed ‘energy level’ for the physical system. ♦

L
0

V

ω0

Figure 3C.2: The (stationary) wavefunction of an electron in an infinite potential well.

Example 3C.4: One-dimensional square potential well; infinite voltage

We can further simplify the model of Example 3C.3 by setting V0 := +∞,
which physically represents a ‘huge’ voltage gap that totally confines the elec-
tron within the interval [0, L] (see Figure 3C.2). In this case, ε′ = ∞, so
exp(ε′x) = 0 for all x < 0 and exp(−ε′x) = 0 for all x > L. Hence, if ω0 is as
in eqn.(3C.5), then ω0(x) ≡ 0 for all x 6∈ [0, L], and the constants C and D
are no longer physically meaningful; we set C = 0 = D for simplicity. Also,
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we must have ω0(0) = 0 = ω0(L) to get a continuous solution; thus, we must
set B := 0 in eqn.(3C.5). Thus, the stationary solution in eqn.(3C.5) becomes

ω0(x) =
{

0 if x 6∈ [0, L];
A · sin(

√
2E x) if x ∈ [0, L],

where A is a constant, and E satisfies the equation

sin(
√

2E L) = 0. (Figure 3C.2) (3C.9)

Assume for simplicity that L := π. Then eqn.(3C.9) is true if and only if√
2E is an integer, which means 2E ∈ {0, 1, 4, 9, 16, 25, . . .}, which means

E ∈ {0, 1
2 , 2, 9

2 , 8, 25
2 , . . .}. Here we see the phenomenon of quantization of

energy in its simplest form. ♦

The set of eigenvalues of a linear operator is called the spectrum of that
operator. For example, in Example 3C.4, the spectrum of the Hamiltonian op-
erator H is the set {0, 1

2 , 2, 9
2 , 8, 25

2 , . . .}. In quantum theory, the spectrum of
the Hamiltonian is the set of allowed energy levels of the system.

Example 3C.5: Three-dimensional square potential well; infinite voltage

We can easily generalize Example 3C.4 to three dimensions. Let X := R3,
and let B := [0, π]3 be a cube with one corner at the origin, having sidelength
L = π. We use the potential function V : X −→ R defined

V (x) =
{

0 if x ∈ B;
+∞ if x 6∈ B.

Physically, this represents an electron confined within a cube of perfectly con-
ducting material with perfectly insulating boundaries7. Suppose the electron
has energy E. The corresponding stationary Schrödinger equation is

−1
2 4 ω0(x) = E · ω0(x) for x ∈ B;
−1
2 4 ω0(x) = −∞ · ω0(x) for x 6∈ B;

(3C.10)

(in atomic units). By reasoning similar Example 3C.4, we find that the phys-
ically meaningul solutions to eqn.(3C.10) have the form

ω0(x) =

{ √
2

π3/2 sin(n1x1) · sin(n2x2) · sin(n3x3) if x = (x1, x2, x3) ∈ B;
0 if x 6∈ B.

(3C.11)
where n1, n2, and n3 are arbitrary integers (called the quantum numbers of
the solution), and E = 1

2(n2
1 + n2

2 + n2
3) is the associated energy eigenvalue.

7Alternately, it could be any kind of particle, confined in a cubical cavity with impenetrable
boundaries.
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The corresponding solution to the full Schrödinger equation for all t ∈ R is

ωt(x) =

{ √
2

π3/2 e
−i(n2

1+n2
2+n2

3)t/2 · sin(n1x1) sin(n2x2) sin(n3x3) if x ∈ B;
0 if x 6∈ B.

♦

Exercise 3C.2. (a) Check that eqn.(3C.11) is a solution for eqn.(3C.10). E©
(b) Check that ρ := |ω|2 is a probability density, by confirming that

∫

X
|ω0(x)|2 dx =

2
π3

∫ π

0

∫ π

0

∫ π

0

sin(n1x1)2 · sin(n2x2)2 · sin(n3x3)2 dx1 dx2 dx3 = 1,

(this is the reason for using the constant
√

2
π3/2 ). �
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Figure 3C.3: The groundstate wavefunction for a hydrogen atom. (A) Probability density as
a function of distance from the nucleus. (B) Probability density visualized in three dimensions.

Example 3C.6: Hydrogen Atom

In Example 3A.3 on page 39, we described the hydrogen atom as a two-
particle system, with a six-dimensional state space. However, the correspond-
ing Schrödinger equation (Example 3B.1(c)) is already too complicated for us
to solve it here, so we will work with a simplified model.

Because the proton is 1864 times as massive as the electron, we can treat
the proton as remaining effectively immobile while the electron moves around
it. Thus, we can model the hydrogen atom as a one-particle system: a single
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electron moving in a Coulomb potential well, as described in Example 3B.1(b).
The electron then satisfies the Schrödinger equation

i~ ∂t ωt(x) =
−~2

2me
4 ωt(x) +

q2
e

4πε0 · |x|
· ωt(x), ∀ x ∈ R3. (3C.12)

(Recall that me is the mass of the electron, qe is the charge of both electron
and proton, ε0 is the ‘permittivity of free space’, and ~ is the rationalized
Plank constant.) Assuming the electron is in a stable orbital, we can replace
eqn.(3C.12) with the stationary Schrödinger equation

−~2

2me
4 ω0(x) +

q2
e

4πε0 · |x|
· ω0(x) = E · ω0(x), ∀ x ∈ R3, (3C.13)

where E is the ‘energy level’ of the electron. One solution to this equation is

ω(x) =
b3/2√
π

exp(−b|x|), where b :=
mq2

e

4πε0 ~2
, (3C.14)

with corresponding energy eigenvalue

E =
−~2

2m
· b2 =

−mq4
e

32π2ε20 ~2
(3C.15)

Exercise 3C.3. (a) Verify that the function ω0 in eqn.(3C.14) is a solution toE©
eqn.(3C.13), with E given by eqn.(3C.15).

(b) Verify that the function ω0 defines a probability density, by checking that
∫

X |ω|
2 =

1. �

There are many other, more complicated solutions to eqn.(3C.13). However,
eqn.(3C.14) is the simplest solution, and has the lowest energy eigenvalue E
of any solution. In other words, the solution (3C.13) describes an electron in
the ground state: the orbital of lowest potential energy, where the electron is
‘closest’ to the nucleus.

This solution immediately yields two experimentally testable predictions:

(a) The ionization potential for the hydrogen atom, which is the energy re-
quired to ‘ionize’ the atom, by stripping off the electron and removing it
to an infinite distance from the nucleus.

(b) The Bohr radius of the hydrogen atom —that is, the ‘most probable’
distance of the electron from the nucleus.
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To see (a), recall that E is the sum of potential and kinetic energy for the
electron. We assert (without proof) that there exist solutions to the stationary
Schrödinger equation (3C.13) with energy eigenvalues arbitrarily close to zero
(note that E is negative). These zero-energy solutions represent orbitals where
the electron has been removed to some very large distance from the nucleus,
and the atom is essentially ionized. Thus, the energy difference between these
‘ionized’ states and ω0 is E−0 = E, and this is the energy necessary to ‘ionize’
the atom when the electron is in the orbital described by ω0.

By substituting in numerical values qe ≈ 1.60×10−19 C, ε0 ≈ 8.85×10−12 C/N m2,
me ≈ 9.11×10−31 kg, and ~ ≈ 1.0545×10−34 J s, the reader can verify that, in
fact, E ≈ −2.1796× 10−18 J ≈ −13.605 eV, which is very close to −13.595 eV,
the experimentally determined ionization potential for a hydrogen atom.8

To see (b), observe that the probability density function for the distance r of
the electron from the nucleus is given by

P (r) = 4πr2|ω(r)|2 = 4b3r2 exp(−2b|x|).

(Exercise 3C.4). The mode of the radial probability distribution is the max- E©
imal point of P (r); if we solve the equation P ′(r) = 0, we find that the mode
occurs at

r :=
1
b

=
4πε0~2

me q2
e

≈ 5.29172× 10−11 m. ♦

The Balmer Lines. Recall that the spectrum of the Hamiltonian operator H
is the set of all eigenvalues of H. Let E = {E0 < E1 < E2 < . . .} be the spectrum
of the Hamiltonian of the hydrogen atom from Example 3C.6, with the elements
listed in increasing order. Thus, the smallest eigenvalue is E0 ≈ −13.605, the
energy eigenvalue of the aforementioned ground state ω0. The other, larger
eigenvalues correspond to electron orbitals with higher potential energy.

When the electron ‘falls’ from a high energy orbital (with eigenvalue En,
for some n ∈ N) to a low energy orbital (with eigenvalue Em, where m < n),
it releases the energy difference, and emits a photon with energy (En − Em).
Conversely, to ‘jump’ from a low Em-energy orbital to a higher En-energy orbital,
the electron must absorb a photon, and this photon must have exactly energy
(En − Em).

Thus, the hydrogen atom can only emit or absorb photons of energy |En −
Em|, for some n,m ∈ N. Let E ′ := {|En − Em| ; n,m ∈ N}. We call E ′ the
energy spectrum of the hydrogen atom.

Planck’s law says that a photon with energy E has frequency f = E/h, where
h ≈ 6.626× 10−34 J s is Planck’s constant. Thus, if F = {E/h ; E ∈ E ′}, then a
hydrogen atom can only emit/absorb a photon whose frequency is in F ; we say
F is the frequency spectrum of the hydrogen atom.

8The error of 0.01 eV is mainly due to our simplifying assumption of an ‘immobile’ proton.
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Here lies the explanation for the empirical observations of 19th century physi-
cists such as Balmer, Lyman, Rydberg, and Paschen, who found that an ener-
gized hydrogen gas has a distinct emission spectrum of frequencies at which it
emits light, and an identical absorption spectrum of frequencies which the gas
can absorb. Indeed, every chemical element has its own distinct spectrum; as-
tronomers use these ‘spectral signatures’ to measure the concentrations of chem-
ical elements in the stars of distant galaxies. Now we see that

The (frequency) spectrum of an atom is determined by the (eigen-
value) spectrum of the corresponding Hamiltonian.

Further reading

Unfortunately, most other texts on partial differential equations do not discuss
the Schrödinger equation; one of the few exceptions is the excellent text [Asm05].
For an lucid, fast, yet precise introduction to quantum mechanics in general, see
[McW72]. For a more comprehensive textbook on quantum theory, see [Boh79].
A completely different approach to quantum theory uses Feynman’s path in-
tegrals; for a good introduction to this approach, see [Ste95], which also con-
tains excellent introductions to classical mechanics, electromagnetism, statistical
physics, and special relativity. For a rigorous mathematical approach to quantum
theory, an excellent introduction is [Pru81]; another source is [BEH94].

3D Practice problems

1. Let v1 ∈ R be a constant. Consider the function ω : R3×R −→ C defined:

ωt(x1, x2, x3) = exp
(

−i
~
mev

2
1

2
t

)

· exp
(

i
~
mev1 · x1

)

.

Show that ω satisfies the (free) Schrödinger equation: i~ ∂t ωt(x) =
−~2

2me
4

ωt(x).

2. Let v := (v1, v2, v3) be a three-dimensional velocity vector, and let |v|2 =
v2

1 + v2
2 + v2

3. Consider the function ω : R3 × R −→ C defined:

ωt(x1, x2, x3) = exp
(

−i |v|2 t/2
)

· exp (i v • x) .

Show that ω satisfies the (free) Schrödinger equation: i ∂t ω =
−1
2
4ω.

3. Consider the stationary Schrödinger equation for a null potential:

H ω0 = E · ω0, where H =
−~2

2me
4 .

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



3D. Practice problems 55

Let v ∈ R be a constant. Consider the function ω0 : R3 −→ C defined:

ω0(x1, x2, x3) = exp
(

i
~
mev1 · x1

)

.

Show that ω0 is a solution to the above stationary Schrödinger equation,
with eigenvalue E = 1

2me v
2.

4. Exercise 3C.2(a) (page 51).

5. Exercise 3C.3(a) (page 52).
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Chapter 4

Linear partial differential
equations

“The Universe is a grand book which cannot be read until one first learns the language in

which it is composed. It is written in the language of mathematics.” —Galileo Galilei

4A Functions and vectors

Prerequisites: §0A.

Vectors: If v =




2
7
−3



 and w =




−1.5
3
1



, then we can add these two vectors

componentwise:

v + w =





2− 1.5
7 + 3
−3 + 1



 =





0.5
10
−2



 .

4

2
1

-1

2

-3

0

4
2

2.
9

1.
2

3.
81

3.
25

1.
1

0.
7

0
-1

.8
-3

.1
-3

.8
-0

.6
8

1.
1

3.
0

(4, 2, 2.9, 1.2, 3.81, 3.25, 1.1, 0.7,
       0, -1.8, -3.1, -3.8, -0.68, 1.1, 3.0)

(4, 2, 1, 0, -1,-3, 2)

N=7 N=15 N=oo

Figure 4A.1: We can think of a function as an “infinite-dimensional vector”
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u    =    (4, 2, 1, 0, 1, 3, 2)

4
2

1
2

0
1

3

v   =   (1, 4, 3, 1, 2, 3, 1)

4

1
2

1
3 3

1

w   =   u + v    =    (5, 6, 4, 1, 3, 6, 3)

6
4

3
1

3

65

f(x) = x 

g(x)  =  x    - 3x + 2

h(x)  =   f(x) + g(x)   =   x    - 2x +2

2

2

(A) (B)

Figure 4A.2: (A) We add vectors componentwise: If u = (4, 2, 1, 0, 1, 3, 2)
and v = (1, 4, 3, 1, 2, 3, 1), then the equation “w = v + w” means that
w = (5, 6, 4, 1, 3, 6, 3). (B) We add two functions pointwise: If f(x) = x, and
g(x) = x2−3x+2, then the equation “h = f+g” means that h(x) = f(x)+g(x) =
x2 − 2x+ 2 for every x.

In general, if v,w ∈ R3, then u = v + w is defined by:

un = vn + wn, for n = 1, 2, 3 (4A.1)

(see Figure 4A.2A) Think of v as a function v : {1, 2, 3} −→ R, where v(1) = 2,
v(2) = 7, and v(3) = −3. If we likewise represent w with w : {1, 2, 3} −→ R
and u with u : {1, 2, 3} −→ R, then we can rewrite eqn.(4A.1) as “u(n) =
v(n) + w(n) for n = 1, 2, 3”. In a similar fashion, any N -dimensional vector
u = (u1, u2, . . . , uN ) can be thought of as a function u : [1...N ] −→ R.

Functions as Vectors: Letting N go to infinity, we can imagine any function
f : R −→ R as a sort of “infinite-dimensional vector” (see Figure 4A.1). Indeed,
if f and g are two functions, we can add them pointwise, to get a new function
h = f + g, where

h(x) = f(x) + g(x), for all x ∈ R (4A.2)

(see Figure 4A.2B) Notice the similarity between formulae (4A.2) and (4A.1),
and the similarity between Figures 4A.2A and 4A.2B.

One of the most important ideas in the theory of PDEs is that functions
are infinite-dimensional vectors. Just as with finite vectors, we can add them
together, act on them with linear operators, or represent them in different co-
ordinate systems on infinite-dimensional space. Also, the vector space RD has
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a natural geometric structure; we can identify a similar geometry in infinite
dimensions.

Let X ⊆ RD be some domain. The vector space of all continuous functions
from X into Rm is denoted C(X;Rm). That is:

C(X;Rm) := {f : X −→ Rm ; f is continuous} .

When X and Rm are obvious from context, we may just write “C”.

Exercise 4A.1. Show that C(X;Rm) is a vector space. � E©

A scalar field f : X −→ R is infinitely differentiable (or smooth) if, for ev-
ery N > 0 and every i1, i2, . . . , iN ∈ [1...D], the Nth derivative ∂i1∂i2 · · · ∂iN f(x)
exists at each x ∈ X. A vector field f : X −→ Rm is infinitely differen-
tiable (or smooth) if f(x) := (f1(x), . . . , fm(x)), where each of the scalar fields
f1, . . . , fm : X −→ R is infinitely differentiable. The vector space of all smooth
functions from X into Rm is denoted C∞(X;Rm). That is:

C∞(X;Rm) := {f : X −→ Rm ; f is infinitely differentiable} .

When X and Rm are obvious from context, we may just write “C∞”.

Example 4A.1.

(a) C∞(R2;R) is the space of all smooth scalar fields on the plane (i.e. all
functions u : R2 −→ R).

(b) C∞(R;R3) is the space of all smooth curves in three-dimensional space. ♦

Exercise 4A.2. Show that C∞(X;Rm) is a vector space, and thus, a linear subspace E©
of C(X;Rm). �

4B Linear operators

Prerequisites: §4A.

4B(i) ...on finite dimensional vector spaces

Let v :=
[

2
7

]

and w :=
[−1.5

3

]

, and let u := v +w =
[

0.5
10

]

. If A :=
[

1 −1
4 0

]

, then
A · u = A · v + A ·w. That is:
[

1 − 1
4 0

]

·
[

0.5
10

]

=
[

−9.5
2

]

=
[

−5
8

]

+
[

−4.5
−6

]

=
[

1 − 1
4 0

]

·
[

2
7

]

+
[

1 − 1
4 0

]

·
[

−1.5
3

]

;
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Also, if x = 3v =
[

6
21

]

, then Ax = 3Av. That is:

[

1 − 1
4 0

]

·
[

6
21

]

=
[

−15
24

]

= 3
[

−5
8

]

= 3
[

1 − 1
4 0

]

·
[

2
7

]

.

In other words, multiplication by the matrix A is a linear operator on the
vector space R2. In general, a function L : RN −→ RM is linear if:

• For all v,w ∈ RN , we have L(v + w) = L(v) + L(w)

• For all v ∈ RN and r ∈ R, we have L(r · v) = r · L(v).

Every linear function from RN to RM corresponds to multiplication by some
N ×M matrix.

Example 4B.1.

(a) Difference Operator: Suppose D : R5 −→ R4 is the function:

D













x0

x1

x2

x3

x4













=









x1 − x0

x2 − x1

x3 − x2

x4 − x3









.

ThenD corresponds to multiplication by the matrix









−1 1
−1 1

−1 1
−1 1









.

(b) Summation operator: Suppose S : R4 −→ R5 is the function:

S









x1

x2

x3

x4









=













0
x1

x1 + x2

x1 + x2 + x3

x1 + x2 + x3 + x4













Then S corresponds to multiplication by the matrix













0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1













.
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(c) Multiplication operator: Suppose M : R5 −→ R5 is the function

M













x1

x2

x3

x4

x5













=













3 · x1

2 · x2

−5 · x3
3
4 · x4√
2 · x5













ThenM corresponds to multiplication by the matrix













3
2
−5

3
4 √

2













.

♦

Remark Notice that the transformation D is a left-inverse to the transforma-
tion S. That is, D ◦ S = Id. (However, D is not a right-inverse to S, because if
x = (x0, x1, . . . , x4), then S ◦D(x) = x− (x0, x0, . . . , x0). ♦

4B(ii) ...on C∞

Recommended: §1B, §1C, §2B.

A transformation L : C∞ −→ C∞ is called a linear operator if, for any two
differentiable functions f, g ∈ C∞, we have L(f + g) = L(f) + L(g), and, for any
real number r ∈ R, we have L(r · f) = r · L(f).

Example 4B.2.

(a) Differentiation: If f, g : R −→ R are differentiable functions, and h =
f + g, then we know that, for any x ∈ R,

h′(x) = f ′(x) + g′(x).

Also, if h = r · f , then h′(x) = r · f ′(x). Thus, if we define the operation
D : C∞(R;R) −→ C∞(R;R) by D[f ] = f ′, then D is a linear transformation
of C∞(R;R). For example, sin and cos are elements of C∞(R;R), and we
have

D[sin] = cos, and D[cos] = − sin .

More generally, if f, g : RD −→ R and h = f + g, then for any i ∈ [1..D],

∂j h = ∂j f + ∂j g.

Also, if h = r · f , then ∂j h = r · ∂j f . In other words, the transformation
∂j : C∞(RD;R) −→ C∞(RD;R) is a linear operator.
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(b) Integration: If f, g : R −→ R are integrable functions, and h = f + g,
then we know that, for any x ∈ R,

∫ x

0
h(y) dy =

∫ x

0
f(y) dy +

∫ x

0
g(y) dy.

Also, if h = r · f , then
∫ x

0
h(y) dy = r ·

∫ x

0
f(y) dy.

Thus, if we define the operation S : C∞(R;R) −→ C∞(R;R) by

S[f ](x) =
∫ x

0
f(y) dy, for all x ∈ R.

then S is a linear transformation. For example, sin and cos are elements of
C∞(R;R), and we have

S[sin] = 1− cos, and S[cos] = sin .

(c) Multiplication: If γ : RD −→ R is a scalar field, then define the operator
Γ : C∞ −→ C∞ by: Γ[f ] = γ · f . In other words, for all x ∈ RD, Γ[f ](x) =
γ(x) · f(x). Then Γ is a linear function, because, for any f, g ∈ C∞,
Γ[f + g] = γ · [f + g] = γ · f + γ · g = Γ[f ] + Γ[g]. ♦

Remark. Notice that the transformation D is a left-inverse for the transfor-
mation S, because the Fundamental Theorem of Calculus says that D ◦S(f) = f
for any f ∈ C∞(R). However, D is not a right-inverse for S, because in general
S ◦ D(f) = f − c, where c = f(0) is a constant. ♦

Exercise 4B.1. Compare the three linear transformations in Example 4B.2 withE©
those from Example 4B.1. Do you notice any similarities? �

Remark. Unlike linear transformations on RN , there is in general no way
to express a linear transformation on C∞ in terms of multiplication by some
matrix. To convince yourself of this, try to express the three transformations
from example 4B.2 in terms of “matrix multiplication”. ♦

Any combination of linear operations is also a linear operation. In particular,
any combination of differentiation and multiplication operations is linear. Thus,
for example, the second-derivative operator D2[f ] = ∂2

x f is linear, and the
Laplacian operator

4f = ∂2
1f + . . .+ ∂2

Df

is also linear; in other words, 4[f + g] = 4f +4g.
A linear transformation that is formed by adding and/or composing multi-

plications and differentiations is called a linear differential operator . For
example, the Laplacian 4 is a linear differential operator.
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4B(iii) Kernels

If L is a linear function, then the kernel of L is the set of all vectors v such that
L(v) = 0.

Example 4B.3.

(a) Consider the differentiation operator ∂x on the space C∞(R;R). The kernel
of ∂x is the set of all functions u : R −→ R such that ∂x u ≡ 0 —in other
words, the set of all constant functions.

(b) The kernel of ∂2
x is the set of all functions u : R −→ R such that ∂2

x u ≡ 0
—in other words the set of all flat functions of the form u(x) = ax+ b. ♦

Many partial differential equations are really equations for the kernel of some
differential operator.

Example 4B.4.

(a) Laplace’s equation “4u ≡ 0” really just says: “u is in the kernel of
4.”

(b) The heat equation “∂t u = 4u” really just says: “u is in the kernel of
the operator L = ∂t −4.” ♦

4B(iv) Eigenvalues, eigenvectors, and eigenfunctions

If L is a linear operator on some vector space, then an eigenvector of L is a
vector v such that

L(v) = λ · v,

for some constant λ ∈ C, called the associated eigenvalue.

Example 4B.5. If L : R2 −→ R2 is defined by the matrix
[

0 1
1 0

]

and v =
[−1

1

]

,

then L(v) =
[

1
−1

]

= −v, so v is an eigenvector for L, with eigenvalue
λ = −1. ♦

If L is a linear operator on C∞, then an eigenvector of L is sometimes called an
eigenfunction.

Example 4B.6. Let n,m ∈ N. Define u(x, y) = sin(n · x) · sin(m · y). Then

4u(x, y) = −(n2 +m2) · sin(n · x) · sin(m · y) = λ · u(x, y),

where λ = −(n2 +m2). Thus, u is an eigenfunction of the linear operator 4,
with eigenvalue λ. (Exercise 4B.2 Verify the these claims.) ♦ E©
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Eigenfunctions of linear differential operators (particularly, eigenfunctions of 4)
play a central role in the solution of linear PDEs. This is implicit in Chapters
11-14 and 20, and is made explicit in Chapter 15.

4C Homogeneous vs. nonhomogeneous
Prerequisites: §4B.

If L : C∞ −→ C∞ is a linear differential operator, then the equation “Lu ≡ 0”
is called a homogeneous linear partial differential equation.

Example 4C.1. The following are linear homogeneous PDEs. Here X ⊂ RD
is some domain.

(a) Laplace’s Equation1: Here, C∞ = C∞(X; R), and L = 4.

(b) heat equation2: C∞ = C∞(X× R; R), and L = ∂t −4.

(c) wave equation3: C∞ = C∞(X× R; R), and L = ∂2
t −4.

(d) Schrödinger Equation4: C∞ = C∞(R3N × R; C), and, for any ω ∈ C∞

and (x; t) ∈ R3N × R, Lω(x; t) :=
−~2

2
Nω(x; t) + V (x) · ω(x; t) −

i~ ∂t ω(x; t). (Here, V : R3N −→ R is some potential function, and N is
like a Laplacian operator, except that the components for each particle are
divided by the rest mass of that particle.)

(e) Fokker-Plank5: C∞ = C∞(X× R; R), and, for any u ∈ C∞,

L(u) = ∂t u − 4u + ~V • ∇u + u · div ~V. ♦

Linear homogeneous PDEs are nice because we can combine two solutions
together to obtain a third solution.

Example 4C.2.

(a) Let u(x; t) = 7 sin [2t+ 2x] and v(x; t) = 3 sin [17t+ 17x] be two travelling
wave solutions to the wave equation. Then w(x; t) = u(x; t) + v(x; t) =
7 sin(2t+ 2x) + 3 sin(17t+ 17x) is also a solution (see Figure 4C.1). To use
a musical analogy: if we think of u and v as two “pure tones”, then we can
think of w as a “chord”.

1See § 1C on page 9.
2See § 1B on page 5.
3See § 2B on page 27.
4See § 3B on page 41.
5See § 1F on page 18.
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1

0.5

0

-0.5

-1

x

3210-1-2-3 +

1

0.5

0

-0.5

-1

x

3210-1-2-3 =

1

0.5

0

-0.5

-1

x

3210-1-2-3

u(x, t) = 7 sin(2t+ 2x) v(x; t) = 3 sin(17t+ 17x) w(x, t) = u(x; t) + v(x; t)

Figure 4C.1: Example 4C.2(a).

(b) Let f(x; t) =
1

2
√
πt

exp
[

−x2

4t

]

, g(x; t) =
1

2
√
πt

exp
[

−(x− 3)2

4t

]

,

and h(x; t) =
1

2
√
πt

exp
[

−(x− 5)2

4t

]

be one-dimensional Gauss-Weierstrass

kernels, centered at 0, 3, and 5, respectively. Thus, f , g, and h are all so-
lutions to the heat equation. Then, F (x) = f(x) + 7 · g(x) + h(x) is also
a solution to the heat equation. If a Gauss-Weierstrass kernel models the
erosion of a single “mountain”, then the function F models the erosion of
a little “mountain range”, with peaks at 0, 3, and 5, and where the middle
peak is seven times higher than the other two. ♦

These examples illustrate a general principle:

Theorem 4C.3. Superposition Principle for homogeneous Linear PDEs

Suppose L is a linear differential operator, and u1, u2 ∈ C∞ are solutions to the
homogeneous linear PDE “Lu = 0.” Then, for any c1, c2 ∈ R, u = c1 ·u1 +c2 ·u2

is also a solution.

Proof. Exercise 4C.1 2
E©

If q ∈ C∞ is some fixed nonzero function, then the equation “Lp ≡ q” is
called a nonhomogeneous linear partial differential equation.

Example 4C.4. The following are linear nonhomogeneous PDEs

(a) The antidifferentiation equation p′ = q is familiar from first year
calculus. The Fundamental Theorem of Calculus says that one solution to

this equation is the integral function p(x) =
∫ x

0
q(y) dy.
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(b) The Poisson Equation6, “4p = q”, is a nonhomogeneous linear PDE.
♦

Recall Examples 1D.1 and 1D.2 on page 14, where we obtained new solutions
to a nonhomogeneous equation by taking a single solution, and adding solutions
of the homogeneous equation to this solution. These examples illustrates a gen-
eral principle:

Theorem 4C.5. Subtraction Principle for nonhomogeneous linear PDEs

Suppose L is a linear differential operator, and q ∈ C∞. Let p1 ∈ C∞ be a
solution to the nonhomogeneous linear PDE “Lp1 = q.” If h ∈ C∞ is any solution
to the homogeneous equation (i.e. Lh = 0), then p2 = p1 +h is another solution
to the nonhomogeneous equation. In summary:

(

Lp1 = q; Lh = 0; and p2 = p1 + h.
)

=⇒
(

Lp2 = q
)

.

Proof. Exercise 4C.2 2
E©

If P : C∞ −→ C∞ is not a linear operator, then a PDE of the form “Pu ≡ 0”
or “Pu ≡ g” is called a nonlinear PDE. For example, if F : RD −→ RD is
some nonlinear ‘rate function’ describing chemical reactions, then the reaction-
diffusion equation7

∂t u = 4u + F (u),

is a nonlinear PDE, corresponding to the nonlinear differential operator P(u) :=
∂t u−4u − F (u).

The theory of linear partial differential equations is relatively simple, because
solutions to linear PDEs interact in very nice ways, as shown by Theorems 4C.3
and 4C.5. The theory of nonlinear PDEs is much more complicated; furthermore,
many of the methods which do exist for solving nonlinear PDEs involve somehow
‘approximating’ them with linear ones. In this book we shall concern ourselves
only with linear PDEs.

4D Practice problems

1. For each of the following equations: u is an unknown function; q is always
some fixed, predetermined function; and λ is always a constant.

In each case, is the equation linear? If it is linear, is it homogeneous?
Justify your answers.

6See § 1D on page 12
7See § 1G on page 19
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(a) heat equation: ∂tu(x) = 4u(x).

(b) Poisson Equation: 4u(x) = q(x).

(c) Laplace Equation: 4u(x) = 0.

(d) Monge-Ampère Equation: q(x, y) = det
[

∂2
x u(x, y) ∂x∂y u(x, y)

∂x ∂yu(x, y) ∂2
y u(x, y)

]

.

(e) Reaction-Diffusion ∂t u(x; t) = 4u(x; t) + q
(

u(x; t)
)

.

(f) Scalar conservation Law ∂t u(x; t) = −∂x (q ◦ u)(x; t).

(g) Helmholtz Equation: 4u(x) = λ · u(x).

(h) Airy’s Equation: ∂t u(x; t) = −∂3
x u(x; t).

(i) Beam Equation: ∂t u(x; t) = −∂4
x u(x; t).

(j) Schrödinger Equation: ∂t u(x; t) = i4 u(x; t) + q(x; t) · u(x; t).

(k) Burger’s Equation: ∂t u(x; t) = −u(x; t) · ∂x u(x; t).

(l) Eikonal Equation: |∂x u(x)| = 1.

2. Which of the following are eigenfunctions for the 2-dimensional Laplacian
4 = ∂2

x+∂2
y? In each case, if u is an eigenfunction, what is the eigenvalue?

(a) u(x, y) = sin(x) sin(y) (Figure 5F.1(A) on page 100)

(b) u(x, y) = sin(x) + sin(y) (Figure 5F.1(B) on page 100)

(c) u(x, y) = cos(2x) + cos(y) (Figure 5F.1(C) on page 100)

(d) u(x, y) = sin(3x) · cos(4y).

(e) u(x, y) = sin(3x) + cos(4y).

(f) u(x, y) = sin(3x) + cos(3y).

(g) u(x, y) = sin(3x) · cosh(4y).

(h) u(x, y) = sinh(3x) · cosh(4y).

(i) u(x, y) = sinh(3x) + cosh(4y).

(j) u(x, y) = sinh(3x) + cosh(3y).

(k) u(x, y) = sin(3x+ 4y).

(l) u(x, y) = sinh(3x+ 4y).

(m) u(x, y) = sin3(x) · cos4(y).

(n) u(x, y) = e3x · e4y.

(o) u(x, y) = e3x + e4y.

(p) u(x, y) = e3x + e3y.
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Chapter 5

Classification of PDEs and
problem types

“If one looks at the different problems of the integral calculus which arise naturally when

one wishes to go deep into the different parts of physics, it is impossible not to be struck by

the analogies existing. Whether it be electrostatics or electrodynamics, the propogation of heat,

optics, elasticity, or hydrodynamics, we are led always to differential equations of the same

family.” —Henri Poincaré

5A Evolution vs. nonevolution equations

Recommended: §1B, §1C, §2B, §4B.

An evolution equation is a PDE with a distinguished “time” coordinate,
t. In other words, it describes functions of the form u(x; t), and the equation
has the form:

Dt u = Dx u

where Dt is some differential operator involving only derivatives in the t variable
(e.g. ∂t, ∂2

t , etc.), while Dx is some differential operator involving only derivatives
in the x variables (e.g. ∂x, ∂2

y , 4, etc.)

Example 5A.1. The following are evolution equations:

(a) The heat equation “∂t u = 4u” of §1B.

(b) The wave equation “∂2
t u = 4u” of §2B.

(c) The telegraph equation “κ2∂
2
t u + κ1∂t u = −κ0u + 4u” of §2C.

(d) The Schrödinger equation “∂t ω = 1
i~Hω” of §3B (here H is a Hamiltonian

operator).
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(e) Liouville’s Equation, the Fokker-Plank equation, and Reaction-Diffusion
Equations. ♦

Nonexample 5A.2. The following are not evolution equations:

(a) The Laplace Equation “4u = 0” of §1C.

(b) The Poisson Equation “4u = q” of §1D.

(c) The Helmholtz Equation “4u = λu” (where λ ∈ C is a constant —i.e. an
eigenvalue of 4).

(d) The Stationary Schrödinger equation H ω0 = E · ω0 (where E ∈ C is a
constant eigenvalue). ♦

In mathematical models of physical phenomena, most PDEs are evolution equa-
tions. Nonevolutionary PDEs generally arise as stationary state equations for
evolution PDEs (e.g. Laplace’s equation) or as resonance states (e.g. Sturm-
Liouville, Helmholtz).

Order: The order of the differential operator ∂2
x∂

3
y is 2+3 = 5. More generally,

the order of the differential operator ∂k1
1 ∂k2

2 . . . ∂kDD is the sum k1 + . . . + kD.
The order of a general differential operator is the highest order of any of its
terms. For example, the Laplacian is second order. The order of a PDE is the
highest order of the differential operator that appears in it. Thus, the Transport
Equation, Liouville’s Equation, and the (nondiffusive) Reaction Equation is first
order, but all the other equations we have looked at (the heat equation, the wave
equation, etc.) are of second order.

5B Initial value problems

Prerequisites: §5A.

Let X ⊂ RD be some domain, and let L be a differential operator on C∞(X;R).
Consider evolution equation

∂t u = Lu, (5B.1)

for an unknown function u : X × R 6− −→ R. An initial value problem (IVP)
for equation (5B.1) is the following problem:

Given some function f0 : X −→ R (the initial conditions), find
a continuous function u : X × R 6− −→ R which satisfies (5B.1) and
also satisfies u(x, 0) = f0(x), for all x ∈ X.
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For example, suppose the domain X is an iron pan being heated on a gas
flame stove. You turn off the flame (so there is no further heat entering the
system) and then throw some vegetables into the pan. Thus, (5B.1) is the Heat
Equation, and f0 describes the initial distribution of heat: cold vegetables in a
hot pan. The initial value problem asks: “How fast do the vegetables cook? How
fast does the pan cool?”

Next, consider the second order-evolution equation

∂2
t u = Lu, (5B.2)

for a unknown function u : X×R 6− −→ R. An initial value problem (or IVP,
or Cauchy problem) for (5B.2) is as follows:

Given a function f0 : X −→ R (the initial position), and/or
another function f1 : X −→ R (the initial velocity), find a con-
tinuously differentiable function u : X × R 6− −→ R which satisfies
(5B.2) and also satisfies u(x, 0) = f0(x) and ∂t u(x, 0) = f1(x), for
all x ∈ X.

For example, suppose (5B.1) is the wave equation on X = [0, L]. Imagine
[0, L] as a vibrating string. Thus, f0 describes the initial displacement of the
string, and f1 its initial momentum.

If f0 6≡ 0, and f1 ≡ 0, then the string is initially at rest, but is released from
a displaced state —in other words, it is plucked (e.g. in a guitar or a harp).
Hence, the initial value problem asks: “How does a guitar string sound when it
is plucked?”

On the other hand, if f0 ≡ 0, and f1 6≡ 0, then the string is initially flat, but
is imparted with nonzero momentum —in other words, it is struck (e.g. by the
hammer in the piano). Hence, the initial value problem asks: “How does a piano
string sound when it is struck?”

5C Boundary value problems

Prerequisites: §0D, §1C. Recommended: §5B.

If X ⊂ RD is a finite domain, then ∂X denotes its boundary. The interior
of X is the set int (X) of all points in X not on the boundary.

Example 5C.1.

(a) If I = [0, 1] ⊂ R is the unit interval, then ∂I = {0, 1} is a two-point set,
and int (I) = (0, 1).
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(b) If X = [0, 1]2 ⊂ R2 is the unit square, then int (X) = (0, 1)2. and

∂X = {(x, y) ∈ X ; x = 0 or x = 1 or y = 0 or y = 1} .

(c) In polar coordinates on R2, let D = {(r, θ) ; r ≤ 1, θ ∈ [−π, π)} be the
unit disk. Then ∂D = {(1, θ) ; θ ∈ [−π, π)} is the unit circle, and
int (D) = {(r, θ) ; r < 1, θ ∈ [−π, π)}.

(d) In spherical coordinates on R3, let B =
{

x ∈ R3 ; ‖x‖ ≤ 1
}

be the 3-
dimensional unit ball in R3. Then ∂B = S := {

{

x ∈ RD ; ‖x‖ = 1
}

is
the unit sphere, and int (B) =

{

x ∈ RD ; ‖x‖ < 1
}

.

(e) In cylindrical coordinates on R3, let X = {(r, θ, z) ; r ≤ R, −π ≤ θ ≤ π, 0 ≤ z ≤ L}
be the finite cylinder in R3. Then ∂X = {(r, θ, z) ; r = R or z = 0 or z = L}.
♦

A boundary value problem (BVP) is a problem of the following kind:

Find a continuous function u : X −→ R such that

1. u satisfies some PDE at all x in the interior of X.

2. u also satisfies some other equation (maybe a differential equa-
tion) for all s on the boundary of X.

The condition u must satisfy on the boundary of X is called a boundary
condition. Note that there is no ‘time variable’ in our formulation of a BVP;
thus, typically the PDE in question is an ‘equilibrium’ equation, like the Laplace
equation or the Poisson equation.

If we try to solve an evolution equation with specified initial conditions and
specified boundary conditions, then we are confronted with an ‘initial/boundary
value problem’. Formally, an initial/boundary value problem (I/BVP) is a
problem of the following kind:

Find a continuous function u : X× R 6− −→ R such that

1. u satisfies some (evolution) PDE at all x in the interior of
X× R 6−.

2. u satisfies some boundary condition for all (s; t) in (∂X)× R 6−.

3. u(x; 0) also satisfies some initial condition (as described in §5B)
for all x ∈ X.

We will consider four kinds of boundary conditions: Dirichlet, Neumann,
Mixed, and Periodic. Each of these boundary conditions has a particular physical
interpretation, and yields particular kinds of solutions for a partial differential
equation.
Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



5C. Boundary value problems 73

0

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1
x

Figure 5C.1: f(x) = x(1 − x) satisfies homogeneous Dirichlet boundary condi-
tions on the interval [0, 1].

5C(i) Dirichlet boundary conditions

Let X be a domain, and let u : X −→ R be a function. We say that u satisfies
homogeneous Dirichlet boundary conditions (HDBC) on X if:

For all s ∈ ∂X, u(s) ≡ 0.

Physical interpretation.

Thermodynamic. (Heat equation, Laplace Equation, or Poisson Equation) In
this case, u represents a temperature distribution. We imagine that the
domain X represents some physical object, whose boundary ∂X is made
out of metal or some other material which conducts heat almost perfectly.
Hence, we can assume that the temperature on the boundary is always equal
to the temperature of the surrounding environment.

We further assume that this environment has a constant temperature TE
(for example, X is immersed in a ‘bath’ of some uniformly mixed fluid),
which remains constant during the experiment (for example, the fluid is
present in large enough quantities that the heat flowing into/out of X
does not measurably change it). We can then assume that the ambient
temperature is TE ≡ 0, by simply subtracting a constant temperature of
TE off the inside and the outside. (This is like changing from measuring
temperature in degrees Kelvin to measuring in degrees Celsius; you’re just
adding 273o to both sides, which makes no mathematical difference.)

Electrostatic. (Laplace equation or Poisson Equation) In this case, u repre-
sents an electrostatic potential. The domain X represents some compart-
ment or region in space, whose boundary ∂X is made out of metal or some
other perfect electrical conductor. Thus, the electrostatic potential within
the metal boundary is a constant, which we can normalize to be zero.

Acoustic. (Wave equation) In this case, u represents the vibrations of some vi-
brating medium (e.g. a violin string or a drum skin). Homogeneous Dirich-
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Figure 5C.2: (A) f(r, θ) = 1− r satisfies homogeneous Dirichlet boundary con-
ditions on the disk D = {(r, θ) ; r ≤ 1}, but is not smooth at zero. (B)
f(r, θ) = 1− r2 satisfies homogeneous Dirichlet boundary conditions on the disk
D = {(r, θ) ; r ≤ 1}, and is smooth everywhere.

let boundary conditions mean that the medium is fixed on the boundary
∂X (e.g. a violin string is clamped at its endpoints; a drumskin is pulled
down tightly around the rim of the drum).

The set of infinitely differentiable functions from X to R which satisfy homoge-
neous Dirichlet Boundary Conditions will be denoted C∞0 (X;R) or C∞0 (X). Thus,
for example

C∞0 [0, L] =
{

f : [0, L] −→ R; f is smooth, and f(0) = 0 = f(L)
}

The set of continuous functions from X to R which satisfy homogeneous Dirichlet
Boundary Conditions will be denoted C0(X;R) or C0(X).

Example 5C.2.

(a) Suppose X = [0, 1], and f : X −→ R is defined by f(x) = x(1 − x). Then
f(0) = 0 = f(1), and f is smooth, so f ∈ C∞0 [0, 1]. (See Figure 5C.1).

(b) Let X = [0, π].

1. For any n ∈ N, let Sn(x) = sin (n · x) (see Figure 6D.1 on page 113).
Then Sn ∈ C∞0 [0, π].

2. If f(x) = 5 sin(x) − 3 sin(2x) + 7 sin(3x), then f ∈ C∞0 [0, π]. More

generally, any finite sum
N
∑

n=1

BnSn(x) (for some constants Bn) is in

C∞0 [0, π].
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3. If f(x) =
∞
∑

n=1

BnSn(x) is a uniformly convergent Fourier sine series1,

then f ∈ C∞0 [0, π].

(c) Let D = {(r, θ) ; r ≤ 1} be the unit disk. Let f : D −→ R be the ‘cone’ in
Figure 5C.2(A), defined: f(r, θ) = (1−r). Then f is continuous, and f ≡ 0
on the boundary of the disk, so f satisfies Dirichlet boundary conditions.
Thus, f ∈ C0(D). However, f is not smooth (it is nondifferentiable at zero),
so f 6∈ C∞0 (D).

(d) Let f : D −→ R be the ‘dome’ in Figure 5C.2(B), defined f(r, θ) = 1− r2.
Then f ∈ C∞0 (D).

(e) Let X = [0, π]× [0, π] be the square of sidelength π.

1. For any (n,m) ∈ N2, let Sn,m(x, y) = sin (n · x) · sin (m · y). Then
Sn,m ∈ C∞0 (X). (see Figure 9A.2 on page 181).

2. If f(x) = 5 sin(x) sin(2y) − 3 sin(2x) sin(7y) + 7 sin(3x) sin(y), then

f ∈ C∞0 (X). More generally, any finite sum
N
∑

n=1

M
∑

m=1

Bn,mSn,m(x) is in

C∞0 (X).

3. If f =
∞
∑

n,m=1

Bn,mSn,m is a uniformly convergent two dimensional

Fourier sine series2, then f ∈ C∞0 (X).

♦

Exercise 5C.1. (i) Verify examples (b) to (e) above E©
(ii) Show that C∞0 (X) is a vector space.
(iii) Show that C0(X) is a vector space. �

Arbitrary nonhomogeneous Dirichlet boundary conditions are im-
posed by fixing some function b : ∂X −→ R, and then requiring:

u(s) = b(s), for all s ∈ ∂X. (5C.3)

For example, the classical Dirichlet Problem is to find a continuous function
u : X −→ R satisfying the Dirichlet condition (5C.3), such that u also satisfies
Laplace’s Equation: 4u(x) = 0 for all x ∈ int (X).

1See § 7B on page 144.
2See § 9A on page 179.
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Physical interpretations.

Thermodynamic. u describes a stationary temperature distribution on X,
where the temperature is fixed on the boundary. Different parts of the
boundary may have different temperatures, so heat may be flowing through
the region X from warmer boundary regions to cooler boundary regions.
But the actual temperature distribution within X is in equilibrium.

Electrostatic. u describes an electrostatic potential field within the region X.
The voltage level on the boundaries is fixed (e.g. boundaries of X are wired
up to batteries which maintain a constant voltage). However different parts
of the boundary may have different voltages (the boundary is not a perfect
conductor).

Minimal surface. u describes a minimal-energy surface (e.g. a soap film).
The boundary of the surface is clamped in some position (e.g. the wire
frame around the soap film); the interior of the surface must adapt to
find the minimal energy configuration compatible with these boundary
conditions. Minimal surfaces of low curvature are well-approximated by
harmonic functions.

For example, if X = [0, L], and b(0) and b(L) are two constants, then the
Dirichlet Problem is to find u : [0, L] −→ R such that

u(0) = b(0), u(L) = b(L), and ∂2
x u(x) = 0, for 0 < x < L. (5C.4)

That is, the temperature at the left-hand endpoint is fixed at b(0), and at the
right-hand endpoint is fixed at b(L). The unique solution to this problem is the
function u(x) =

(

b(L)− b(0)
)

x/L+ b(0). (Exercise 5C.2).E©

5C(ii) Neumann boundary conditions

Suppose X is a domain with boundary ∂X, and u : X −→ R is some function.
Then for any boundary point s ∈ ∂X, we use “∂⊥u(s)” to denote the outward
normal derivative3 of u on the boundary. Physically, ∂⊥u(s) is the rate of change
in u as you leave X by passing through ∂X in a perpendicular direction.

Example 5C.3.

(a) If X = [0, 1], then ∂⊥u(0) = −∂x u(0) and ∂⊥u(1) = ∂x u(1).

(b) Suppose X = [0, 1]2 ⊂ R2 is the unit square, and (x, y) ∈ ∂X. There are
four cases:

3This is sometimes indicated as
∂u

∂n
or

∂u

∂ν
, or as “∇u • ~N”, or as “∇u • ~n”.
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• If x = 0 (left edge), then ∂⊥u(0, y) = −∂x u(0, y).

• If x = 1 (right edge), then ∂⊥u(1, y) = ∂x u(1, y).

• If y = 0 (top edge), then ∂⊥u(x, 0) = −∂y u(x, 0).

• If y = 1 (bottom edge), then ∂⊥u(x, 1) = ∂y u(x, 1).

(If more than one of these conditions is true —for example, at (0, 0) —then
(x, y) is a corner, and ∂⊥u(x, y) is not well-defined).

(c) Let D = {(r, θ) ; r < 1} be the unit disk in the plane. Then ∂D is the set
{(1, θ) ; θ ∈ [−π, π)}, and for any (1, θ) ∈ ∂D, ∂⊥u(1, θ) = ∂r u(1, θ).

(d) Let D = {(r, θ) ; r < R} be the disk of radiusR. Then ∂D = {(R, θ) ; θ ∈ [−π, π)},
and for any (R, θ) ∈ ∂D, ∂⊥u(R, θ) = ∂r u(R, θ).

(e) Let B = {(r, φ, θ) ; r < 1} be the unit ball in R3. Then ∂B = {(r, φ, θ) ; r = 1}
is the unit sphere. If u(r, φ, θ) is a function in polar coordinates, then for
any boundary point s = (1, φ, θ), ∂⊥u(s) = ∂r u(s).

(f) Suppose X = {(r, θ, z) ; r ≤ R, 0 ≤ z ≤ L, −π ≤ θ < π}, is the finite cylin-
der, and (r, θ, z) ∈ ∂X. There are three cases:

• If r = R (sides), then ∂⊥u(R, θ, z) = ∂r u(R, θ, z).

• If z = 0 (bottom disk), then ∂⊥u(r, θ, 0) = −∂z u(r, θ, 0).

• If z = L (top disk), then ∂⊥u(r, θ, L) = ∂z u(r, θ, L).

♦

We say that u satisfies homogeneous Neumann boundary conditions
if

∂⊥u(s) = 0 for all s ∈ ∂X. (5C.5)

Physical Interpretations.

Thermodynamic. (Heat, Laplace, or Poisson equation) Suppose u represents
a temperature distribution. Recall that Fourier’s Law of Heat Flow (§ 1A
on page 3) says that ∇u(s) is the speed and direction in which heat is
flowing at s. Recall that ∂⊥u(s) is the component of ∇u(s) which is per-
pendicular to ∂X. Thus, homogeneous Neumann BC means that ∇u(s) is
parallel to the boundary for all s ∈ ∂X. In other words no heat is crossing
the boundary. This means that the boundary is a perfect insulator.

If u represents the concentration of a diffusing substance, then ∇u(s) is the
flux of this substance at s. Homogeneous Neumann Boundary conditions
mean that the boundary is an impermeable barrier to this substance.
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Electrostatic. (Laplace or Poisson equation) Suppose u represents an electric
potential. Thus ∇u(s) is the electric field at s. Homogeneous Neumann
BC means that ∇u(s) is parallel to the boundary for all s ∈ ∂X; i.e. no
field lines penetrate the boundary.

The set of continuous functions from X to R which satisfy homogeneous Neumann
boundary conditions will be denoted C⊥(X). The set of infinitely differentiable
functions from X to R which satisfy homogeneous Neumann boundary conditions
will be denoted C∞

⊥
(X). Thus, for example

C∞
⊥

[0, L] =
{

f : [0, L] −→ R; f is smooth, and f ′(0) = 0 = f ′(L)
}
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Figure 5C.3: (A) f(x) = 1
2
x2 − 1

3
x3 satsfies homogeneous Neumann boundary conditions

on the interval [0, 1]. (B) f(r, θ) = (1 − r)2 satisfies homogeneous Neumann boundary

conditions on the disk D = {(r, θ) ; r ≤ 1}, but is not differentiable at zero.

Example 5C.4.

(a) Let X = [0, 1], and let f : [0, 1] −→ R be defined by f(x) = 1
2x

2− 1
3x

3 (See
Figure 5C.3(A)). Then f ′(0) = 0 = f ′(1), and f is smooth, so f ∈ C∞

⊥
[0, 1].

(b) Let X = [0, π].

1. For any n ∈ N, let Cn(x) = cos (n · x) (see Figure 6D.1 on page 113).
Then Cn ∈ C∞⊥ [0, π].

2. If f(x) = 5 cos(x) − 3 cos(2x) + 7 cos(3x), then f ∈ C∞
⊥

[0, π]. More

generally, any finite sum
N
∑

n=1

AnCn(x) (for some constants An) is in

C∞
⊥

[0, π].
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3. If f(x) =
∞
∑

n=1

AnCn(x) is a uniformly convergent Fourier cosine se-

ries4, and the derivative series f ′(x) = −
∞
∑

n=1

nAnSn(x) is also uni-

formly convergent, then f ∈ C∞
⊥

[0, π].

(c) Let D = {(r, θ) ; r ≤ 1} be the unit disk.

1. Let f : D −→ R be the “witch’s hat” of Figure 5C.3(B), defined:
f(r, θ) := (1 − r)2. Then ∂⊥f ≡ 0 on the boundary of the disk, so f
satisfies Neumann boundary conditions. Also, f is continuous on D;
hence f ∈ C⊥(D). However, f is not smooth (it is nondifferentiable at
zero), so f 6∈ C∞

⊥
(D).
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Figure 5C.4: (A) f(r, θ) = (1 − r2)2 satisfies homogeneous Neumann boundary conditions

on the disk, and is smooth everywhere. (B) f(r, θ) = (1 + cos(θ)2) · (1 − (1 − r2)4) does

not satisfy homogeneous Neumann boundary conditions on the disk, and is not constant on the

boundary.

2. Let f : D −→ R be the “bell” of Figure 5C.4(A), defined: f(r, θ) :=
(1−r2)2. Then ∂⊥f ≡ 0 on the boundary of the disk, and f is smooth
everywhere on D, so f ∈ C∞

⊥
(D).

3. Let f : D −→ R be the “flower vase” of Figure 5C.4(B), defined
f(r, θ) := (1 + cos(θ)2) · (1− (1− r2)4). Then ∂⊥f ≡ 0 on the bound-
ary of the disk, and f is smooth everywhere on D, so f ∈ C∞

⊥
(D).

Note that, in this case, the angular derivative is nonzero, so f is not
constant on the boundary of the disk.

(d) Let X = [0, π]× [0, π] be the square of sidelength π.

1. For any (n,m) ∈ N2, let Cn,m(x, y) = cos(nx) · cos(my) (see Fig-
ure 9A.2 on page 181). Then Cn,m ∈ C∞⊥ (X).

4See § 7B on page 144.
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2. If f(x) = 5 cos(x) cos(2y) − 3 cos(2x) cos(7y) + 7 cos(3x) cos(y), then

f ∈ C∞
⊥

(X). More generally, any finite sum
N
∑

n=1

M
∑

m=1

An,mCn,m(x) (for

some constants An,m) is in C∞
⊥

(X).

3. More generally, if f =
∞
∑

n,m=0

An,mCn,m is a uniformly convergent two

dimensional Fourier cosine series5, and the derivative series

∂x f(x, y) = −
∞
∑

n,m=0

nAn,m sin(nx) · cos(my)

∂y f(x, y) = −
∞
∑

n,m=0

mAn,m cos(nx) · sin(my)

are also uniformly convergent, then f ∈ C∞
⊥

(X).

Exercise 5C.3 Verify examples (b) to (d) ♦E©

Arbitrary nonhomogeneous Neumann Boundary conditions are imposed
by fixing a function b : ∂X −→ R, and then requiring

∂⊥u(s) = b(s) for all s ∈ ∂X. (5C.6)

For example, the classical Neumann Problem is to find a continuously dif-
ferentiable function u : X −→ R satisfying the Neumann condition (5C.6), such
that u also satisfies Laplace’s Equation: 4u(x) = 0 for all x ∈ int (X).

Physical Interpretations.

Thermodynamic. Here u represents a temperature distribution, or the con-
centration of some diffusing material. Recall that Fourier’s Law (§ 1A
on page 3) says that ∇u(s) is the flux of heat (or material) at s. Thus,
for any s ∈ ∂X, the derivative ∂⊥u(s) is the flux of heat/material across
the boundary at s. The nonhomogeneous Neumann Boundary condition
∂⊥u(s) = b(s) means that heat (or material) is being ‘pumped’ across the
boundary at a constant rate described by the function b(s).

Electrostatic. Here, u represents an electric potential. Thus ∇u(s) is the elec-
tric field at s. Nonhomogeneous Neumann boundary conditions mean that
the field vector perpendicular to the boundary is determined by the func-
tion b(s).

5See § 9A on page 179.
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5C(iii) Mixed (or Robin) boundary conditions

These are a combination of Dirichlet and Neumann-type conditions obtained as
follows: Fix functions b : ∂X −→ R, and h, h⊥ : ∂X −→ R. Then (h, h⊥ , b)-
mixed boundary conditions are given:

h(s) · u(s) + h⊥(s) · ∂⊥u(s) = b(x) for all s ∈ ∂X. (5C.7)

For example:

• Dirichlet Conditions corresponds to h ≡ 1 and h⊥ ≡ 0.

• Neumann Conditions corresponds to h ≡ 0 and h⊥ ≡ 1.

• No boundary conditions corresponds to h ≡ h⊥ ≡ 0.

• Newton’s Law of Cooling reads:

∂⊥u = c · (u− TE) (5C.8)

This describes a situation where the boundary is an imperfect conductor
(with conductivity constant c), and is immersed in a bath with ambient
temperature TE . Thus, heat leaks in or out of the boundary at a rate
proportional to c times the difference between the internal temperature u
and the external temperature TE . Equation (5C.8) can be rewritten:

c · u − ∂⊥u = b,

where b = c · TE . This is the mixed boundary equation (5C.7), with h ≡ c
and h⊥ ≡ −1.

• Homogeneous mixed boundary conditions take the form:

h · u + h⊥ · ∂⊥u ≡ 0.

The set of functions in C∞(X) satisfying this property will be denoted
C∞h,h⊥ (X). Thus, for example, if X = [0, L], and h(0), h⊥(0), h(L) and
h⊥(L) are four constants, then

C∞h,h⊥ [0, L] =
{

f : [0, L] −→ R; f is differentiable, h(0)f(0) − h⊥(0)f ′(0) = 0
and h(L)f(L) + h⊥(L)f ′(L) = 0.

}

Remarks. (a) Note that there is some redundancy in this formulation. Equa-
tion (5C.7) is equivalent to

k · h(s) · u(s) + k · h⊥(s) · ∂⊥u(s) = k · b(s),

for any constant k 6= 0. Normally we chose k so that at least one of the coefficients
h or h⊥ is equal to 1.
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(b) Some authors (e.g. [Pin98]) call this general boundary conditions,
and, for mathematical convenience, write this as

cos(α)u + L · sin(α)∂⊥u = T. (5C.9)

where and α and T are parameters. Here, the “cos(α), sin(α)” coefficients
of (5C.9) are just a mathematical “gadget” to concisely express any weighted
combination of Dirichlet and Neumann conditions. An expression of type (5C.7)

can be transformed into one of type (5C.9) as follows: Let α := arctan
(

h⊥
L · h

)

(if h = 0, then set α =
π

2
) and let T := b

cos(α) + L sin(α)
h+ h⊥

. Going the other way

is easier; simply define h := cos(α), h⊥ := L · sin(α), and T := b.

5C(iv) Periodic boundary conditions

Periodic boundary conditions means that function u “looks the same” on oppo-
site edges of the domain. For example, if we are solving a PDE on the interval
[−π, π], then periodic boundary conditions are imposed by requiring

u(−π) = u(π) and u′(−π) = u′(π).

Interpretation #1: Pretend that u is actually a small piece of an infinitely
extended, periodic function ũ : R −→ R, where, for any x ∈ R and n ∈ Z, we
have:

ũ(x+ 2nπ) = u(x).

Thus u must have the same value —and the same derivative —at x and x+2nπ,
for any x ∈ R. In particular, u must have the same value and derivative at −π
and π. This explains the name “periodic boundary conditions”.

Interpretation #2: Suppose you ‘glue together’ the left and right ends of the
interval [−π, π] (i.e. glue −π to π). Then the interval looks like a a circle (where
−π and π actually become the ‘same’ point). Thus u must have the same value
—and the same derivative —at −π and π.

Example 5C.5.

(a) u(x) = sin(x) and v(x) = cos(x) have periodic boundary conditions.

(b) For any n ∈ N, the functions Sn(x) = sin(nx) and Cn(x) = cos(nx) have
periodic boundary conditions. (See Figure 6D.1 on page 113.)

(c) sin(3x) + 2 cos(4x) has periodic boundary conditions.
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Figure 5C.5: If we ‘glue’ the opposite edges of a square together, we get a torus.

(d) If u1(x) and u2(x) have periodic boundary conditions, and c1, c2 are any
constants, then u(x) = c1u1(x) + c2u2(x) also has periodic boundary con-
ditions.

Exercise 5C.4 Verify these examples. ♦ E©

On the square [−π, π]× [−π, π], periodic boundary conditions are imposed
by requiring:

(P1) u(x,−π) = u(x, π) and ∂y u(x,−π) = ∂y u(x, π), for all x ∈ [−π, π].

(P2) u(−π, y) = u(π, y) and ∂x u(−π, y) = ∂x u(π, y) for all y ∈ [−π, π].

Interpretation #1: Pretend that u is actually a small piece of an infinitely
extended, doubly periodic function ũ : R2 −→ R, where, for every (x, y) ∈ R2,
and every n,m ∈ Z, we have:

ũ(x+ 2nπ, y + 2mπ) = u(x, y).

Exercise 5C.5. Explain how conditions (P1) and (P1) arise naturally from this E©
interpretation. �

Interpretation #2: Glue the top edge of the square to the bottom edge, and
the right edge to the left edge. In other words, pretend that the square is really
a torus (Figure 5C.5).

Example 5C.6.

(a) The functions u(x, y) = sin(x) sin(y) and v(x, y) = cos(x) cos(y) have peri-
odic boundary conditions. So do the functions w(x, y) = sin(x) cos(y) and
w(x, y) = cos(x) sin(y)

(b) For any (n,m) ∈ N2, the functions Sn,m(x) = sin(nx) sin(my) and Cn,m(x) =
cos(nx) cos(mx) have periodic boundary conditions. (See Figure 9A.2 on
page 181.)
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(c) sin(3x) sin(2y) + 2 cos(4x) cos(7y) has periodic boundary conditions.

(d) If u1(x, y) and u2(x, y) have periodic boundary conditions, and c1, c2 are
any constants, then u(x, y) = c1u1(x, y) + c2u2(x, y) also has periodic
boundary conditions.

Exercise 5C.6 Verify these examples. ♦E©

On the D-dimensional cube [−π, π]D, we require, for d = 1, 2, . . . , D and all
x1, . . . , xD ∈ [−π, π], that

u(x1, . . . , xd−1,−π, xd+1, . . . , xD) = u(x1, . . . , xd−1, π, xd+1, . . . , xD)
and ∂d u(x1, . . . , xd−1,−π, xd+1, . . . , xD) = ∂d u(x1, . . . , xd−1, π, xd+1, . . . , xD).

Again, the idea is that we are identifying [−π, π]D with the D-dimensional torus.
The space of all functions satisfying these conditions will be denoted C∞

per
[−π, π]D.

Thus, for example,

C∞
per

[−π, π] =
{

f : [−π, π] −→ R; f is differentiable,

f(−π) = f(π) and f ′(−π) = f ′(π)
}

C∞
per

[−π, π]2 =
{

f : [−π, π]×[−π, π]−→R; f is differentiable,

and satisfies (P1) and (P2) above
}

5D Uniqueness of solutions

Prerequisites: §1B, §2B, §1C, §5B, §5C.

Prerequisites (for proofs): §1E, §0E(iii), §0G.

Differential equations are interesting primarily because they can be used to
express the laws governing physical phenomena (e.g. heat flow, wave motion,
electrostatics, etc.). By specifying particular initial conditions and boundary
conditions, we try to mathematically encode the physical conditions, constraints
and external influences which are present in a particular situation. A solution
to the differential equation which satisfies these initial/boundary conditions thus
constitutes a prediction about what will occur under these physical conditions.

However, this strategy can only succeed if there is a unique solution to the
differential equation with particular initial/boundary conditions. If there are
many mathematically correct solutions, then we cannot make a clear prediction
about which of them will really occur. Sometimes we can reject some solutions as
being ‘unphysical’ (e.g. they are nondifferentiable, or discontinuous, or contain
unacceptable infinities, or predict negative values for a necessarily positive quan-
tity like density). However, these notions of ‘unphysicality’ really just represent
further mathematical constraints which we are implicitly imposing on the solu-
tion. If multiple solutions still exist, we should try to impose further constraints
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(i.e. construct a more detailed or well-specified model) until we get a unique
solution. Thus, the question of uniqueness of solutions is extremely important
in the general theory of differential equations (both ordinary and partial). In
this section, we will establish sufficient conditions for the uniqueness of solutions
to I/BVPs for the Laplace, Poisson, Heat, and wave equations.

Let S ⊂ RD. We say that S is a smooth graph if there is an open subset
U ⊂ RD−1, a function f : U −→ R, and some d ∈ [1...D], such that S ‘looks
like’ the graph of the function f , plotted over the domain U, with the value of f
plotted in the dth coordinate. In other words:

S = {(u1, . . . , ud−1, y, ud, . . . , uD−1) ; (u1, . . . , uD−1) ∈ U, y = f(u1, . . . , uD−1)} .

Intuitively, this means that S looks like a smooth surface (oriented ‘roughly
perpendicular’ to the dth dimension). More generally, if S ⊂ RD, we say that S
is a smooth hypersurface if, for each s ∈ S, there exists some ε > 0 such that
B(s, ε) ∩ S is a smooth graph.

Example 5D.1.

(a) Let P ⊂ RD be any (D − 1)-dimensional hyperplane; then P is a smooth
hypersurface.

(b) Let S1 :=
{

s ∈ R2 ; |s| = 1
}

be the unit circle in R2. Then S1 is a smooth
hypersurface in R2.

(c) Let S2 :=
{

s ∈ R3 ; |s| = 1
}

be the unit sphere in R3. Then S2 is a smooth
hypersurface in R3.

(d) Let SD−1 :=
{

s ∈ RD ; |s| = 1
}

be the unit hypersphere in RD. Then SD−1

is a smooth hypersurface in RD.

(e) Let S ⊂ RD be any smooth hypersurface, and let U ⊂ RD be an open set.
Then S ∩ U is also a smooth hypersurface (if it is nonempty).

Exercise 5D.1 Verify these examples. ♦ E©

A domain X ⊂ RD has piecewise smooth boundary if ∂X is a finite
union of smooth hypersurfaces. If u : X −→ R is some differentiable function,
then this implies that the normal derivative ∂⊥u(s) is well-defined for s ∈ ∂X,
except for those s on the (negligible) regions where two or more of these smooth
hypersurfaces intersect. This means that it is meaningful to impose Neumann
boundary conditions on u. It also means that certain methods from vector
calculus can be applied to u (see §0E(iii) on page 561).

Example 5D.2. Every domain in Example 5C.1 on page 71 has a piecewise
smooth boundary. (Exercise 5D.2 Verify this.) ♦ E©
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Indeed, every domain we will consider in this book will have a piecewise
smooth boundary, as does any domain which is likely to arise in any physically
realistic model. Hence, it suffices to obtain uniqueness results for such domains.

5D(i) Uniqueness for the Laplace and Poisson equations

Let X ⊂ RD be a domain and let u : X −→ R. We say that u is continuous
and harmonic on X if u is continuous on X and 4u(x) = 0 for all x ∈ int (X).

Lemma 5D.3. (Solution uniqueness for Laplace equation; homogeneous BC)
Let X ⊂ RD be a bounded domain, and suppose u : X −→ R is continuous and

harmonic on X. Then various homogeneous boundary conditions constrain the
solution as follows:

(a) (Homogeneous Dirichlet BC) If u(s) = 0 for all s ∈ ∂X, then u must be
the constant 0 function: i.e. u(x) = 0, for all x ∈ X.

(b) (Homogeneous Neumann BC) Suppose X has a piecewise smooth bound-
ary. If ∂⊥u(s) = 0 for all s ∈ ∂X, then u must be a constant: i.e.
u(x) = C, for all x ∈ X.

(c) (Homogeneous Robin BC) Suppose X has a piecewise smooth boundary,
and let h, h⊥ : ∂X −→ R 6− be two other continuous nonnegative functions
such that h(s) + h⊥(s) > 0 for all s ∈ ∂X. If h(s)u(s) + h⊥(s)∂⊥u(s) = 0
for all s ∈ ∂X, then u must be a constant function.

Furthermore, if h is nonzero somewhere on ∂X, then u(x) = 0, for all
x ∈ X.

Proof. (a) If u : X −→ R is harmonic, then the Maximum Principle (Corollary
1E.2 on page 17) says that any maximum/minimum of u occurs somewhere on
∂X. But u(s) = 0 for all s ∈ ∂X; thus, maxX (u) = 0 = minX (u); thus, u ≡ 0.

(If X has a piecewise smooth boundary, then another proof of (a) arises by
setting h ≡ 1 and h⊥ ≡ 0 in part (c).)

To prove (b), set h ≡ 0 and h⊥ ≡ 1 in part (c).

To prove (c), we will use Green’s Formula. We begin with the following claim.

Claim 1: For all s ∈ ∂X, we have u(s) · ∂⊥u(s) ≤ 0.

Proof. The homogeneous Robin boundary conditions say h(s)u(s)+h⊥(s)∂⊥u(s) =
0. Multiplying by u(s), we get

h(s)u2(s) + u(s)h⊥(s)∂⊥u(s) = 0. (5D.1)

If h⊥(s) = 0, then h(s) must be nonzero, and equation (5D.1) reduces to
h(s)u2(s) = 0, which means u(s) = 0, which means u(s) · ∂⊥u(s) ≤ 0, as
desired.
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If h⊥(s) 6= 0, then we can rearrange equation (5D.1) to get

u(s) · ∂⊥u(s) =
−h(s)u2(s)
h⊥(s)

≤
(∗)

0,

where (∗) is because because h(s), h⊥(s) ≥ 0 by hypothesis, and of course
u2(s) ≥ 0. The claim follows. �

Claim 1

Now, if u is harmonic, then u is infinitely differentiable, by Proposition 1E.4
on page 18. Thus, we can apply vector calculus techniques from Appendix
0E(iii). We have

0 ≥
(∗)

∫

∂X
u(s) · ∂⊥u(s) ds

(†)

∫

X
u(x)4 u(x) + |∇u(x)|2 dx

(‡)

∫

X
|∇u(x)|2 dx ≥

(�)
0. (5D.2)

Here, (∗) is by Claim 1, (†) is by Green’s Formula (Theorem 0E.5(b) on page
564), (‡) is because 4u ≡ 0, and (�) is because |∇u(x)|2 ≥ 0 for all x ∈ X.

The inequalities (5D.2) imply that
∫

X
|∇u(x)|2 dx = 0.

But this implies that |∇u(x)| = 0 for all x ∈ X, which means ∇u ≡ 0, which
means u is a constant on X, as desired.

Now, if ∇u ≡ 0, then clearly ∂⊥u(s) = 0 for all s ∈ ∂X. Thus, the Robin
boundary conditions reduce to h(s)u(s) = 0. If h(s) 6= 0 for some s ∈ ∂X,
then we get u(s) = 0. But since u is a constant, this means that u ≡ 0. 2

One of the nice things about linear differential equations is that linearity
enormously simplifies the problem of solution uniqueness. First we show that
the only solution satisfying homogeneous boundary conditions (and, if applicable,
zero initial conditions) is the constant zero function (as in Lemma 5D.3 above).
Then it is easy to deduce uniqueness for arbitrary initial/boundary conditions.

Corollary 5D.4. (Solution uniqueness: Laplace equation, nonhomogeneous BC)
Let X ⊂ RD be a bounded domain, and let b : ∂X −→ R be continuous.

(a) There exists at most one continuous, harmonic function u : X −→ R which
satisfies the nonhomogeneous Dirichlet BC u(s) = b(s) for all s ∈ ∂X.

(b) Suppose X has a piecewise smooth boundary.

[i] If
∫

∂X b(s) ds 6= 0, then there is no continuous harmonic function u :
X −→ R which satisfies the nonhomogeneous Neumann BC ∂⊥u(s) = b(s)
for all s ∈ ∂X.
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[ii] Suppose
∫

∂X b(s) ds = 0. If u1, u2 : X −→ R are two continuous
harmonic functions which both satisfy the nonhomogeneous Neumann BC
∂⊥u(s) = b(s) for all s ∈ ∂X, then u1 = u2 + C for some constant C.

(c) Suppose X has a piecewise smooth boundary, and let h, h⊥ : ∂X −→ R 6− be
two other continuous nonnegative functions such that h(s) +h⊥(s) > 0 for
all s ∈ ∂X. If u1, u2 : X −→ R are two continuous harmonic functions which
both satisfy the nonhomogeneous Robin BC h(s)u(s) + h⊥(s)∂⊥u(s) =
b(s) for all s ∈ ∂X, then u1 = u2 + C for some constant C. Furthermore,
if h is nonzero somewhere on ∂X, then u1 = u2.

Proof. Exercise 5D.3 Hint: for (a), (c), and (b)[ii], suppose that u1, u2 : X −→ RE©
are two continuous harmonic functions with the desired nonhomogeneous boundary
conditions. Then (u1−u2) is a continuous harmonic function satisfying homogeneous
boundary conditions of the same kind; now apply the appropriate part of Lemma
5D.3 to conclude that (u1 − u2) is zero or a constant.

For (b)[i], use Green’s Formula (Theorem 0E.5(a) on page 564). 2

Exercise 5D.4. Let X = D = {(r, θ) ; θ ∈ [−π, π), r ≤ 1} be the closed unit diskE©
(in polar coordinates). Consider the function h : D −→ R defined by h(r, θ) = log(r).
In Cartesian coordinates, h has the form h(x, y) = log(x2 + y2) (see Figure 1C.1(A) on
page 10). In Example 1C.2 we observed that h is harmonic. But h satisfies homogeneous
Dirichlet BC on ∂D, so it seems to be a counterexample to Lemma 5D.3(a). Also,
∂⊥h(x) = 1 for all x ∈ ∂D, so h seems to be a counterexample to Corollary 5D.4(b)[i].

Why is this function not a counterexample to Lemma 5D.3 or Corollary 5D.4(b)[i].?
�

Theorem 5D.5. (Solution uniqueness: Poisson equation, Nonhomogeneous BC)
Let X ⊂ RD be a bounded domain with a piecewise smooth boundary. Let
q : X −→ R be a continuous function (e.g. describing an electric charge or
heat source), and let b : ∂X −→ R be another continuous function (a bound-
ary condition). Then there is at most one continuous function u : X −→ R
satisfying the Poisson Equation 4u = q, and satisfying either of the following
nonhomogeneous boundary conditions:

(a) (Nonhomogeneous Dirichlet BC) u(s) = b(s) for all s ∈ ∂X.

(b) (Nonhomogeneous Robin BC) h(s))u(s) + h⊥(s)∂⊥u(s) = b(s) for all
s ∈ ∂X, where h, h⊥ : ∂X −→ R 6− are two other nonnegative functions, and
h is nontrivial.

Furthermore, if u1 and u2 are two functions satisfying 4u = q, and also satisfy-
ing:
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(c) (Nonhomogeneous Neumann BC) ∂⊥u(s) = b(s) for all s ∈ ∂X.

....then u1 = u2 + C, where C is a constant.

Proof. Suppose u1 and u2 were two continuous functions satisfying one of (a)
or (b), and such that 4u1 = q = 4u2. Let u = u1−u2. Then u is continuous,
harmonic, and satisfies one of (a) or (c) in Lemma 5D.3. Thus, u ≡ 0. But
this means that u1 ≡ u2. Hence, there can be at most one solution. The proof
for (c) is Exercise 5D.5 . 2

E©

5D(ii) Uniqueness for the heat equation

Throughout this section, if u : X× R 6− −→ R is a time-varying scalar field, and
t ∈ R 6−, then define the function ut : X −→ R by ut(x) := u(x; t), for all x ∈ X.
(Note: ut does not denote the time-derivative).

If f : X −→ R is any integrable function, then the L2-norm of f is defined

‖f‖2 :=
(∫

X
|f(x)|2 dx

)1/2

.

(See §6B for more information). We begin with a result which reinforces our
intuition that the heat equation resembles ‘melting’ or ‘erosion’.

Lemma 5D.6. (L2-norm decay for heat equation)

Let X ⊂ RD be a bounded domain with a piecewise smooth boundary. Suppose
that u : X× R 6− −→ R satisfies the following three conditions:

(a) (Regularity) u is continuous on X × R 6−, and ∂t u and ∂2
1 u, . . . , ∂

2
D u are

continuous on int (X)× R+;

(b) (Heat equation) ∂t u = 4u;

(c) (Homogeneous Dirichlet/Neumann BC) For all s ∈ ∂X and t ∈ R 6−, either
ut(s) = 0 or ∂⊥ut(s) = 0.6

Define the function E : R 6− −→ R 6− by

E(t) := ‖ut‖22 =
∫

X
|ut(x)|2 dx, for all t ∈ R 6−. (5D.3)

Then E is differentiable and nonincreasing —that is, E′(t) ≤ 0 for all t ∈ R 6−.

6Note that this allows different boundary points to satisfy different homogeneous boundary
conditions at different times.
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Proof. For any x ∈ X and t ∈ R 6−, we have

∂t |ut(x)|2
(∗)

2ut(x) · ∂t ut(x)
(†)

2ut(x) · 4ut(x), (5D.4)

where (∗) is the Leibniz rule, and (†) is because u satisfies the heat equation
by hypothesis (b). Thus,

E′(t)
(∗)

∫

X
∂t |ut(x)|2 dx

(†)
2
∫

X
ut(x) · 4ut(x) dx, (5D.5)

Here (∗) comes from differentiating the integral (5D.3) using Proposition 0G.1
on page 567. Meanwhile, (†) is by eqn.(5D.4).

Claim 1: For all t ∈ R 6−,

∫

X
ut(x) · 4ut(x) dx = −

∫

X
‖∇ut(x)‖2 dx.

Proof. For all s ∈ ∂X, either ut(s) = 0 or ∂⊥ut(s) = 0 by hypothesis (c).
But ∂⊥ut(s) = ∇ut(s) • ~N(s) (where ~N(s) is the unit normal vector at s),
so this implies that ut(s) · ∇ut(s) • ~N(s) = 0 for all s ∈ ∂X. Thus,

0 =
∫

∂X
ut(s) · ∇ut(s) • ~N(s) ds

(∗)

∫

X
div (ut · ∇ut)(x) dx

(†)

∫

X

(

ut · div∇ut + ∇ut • ∇ut
)

(x) dx

(‡)

∫

X
ut(x) · 4ut(x) dx +

∫

X
‖∇ut(x)‖2 dx.

Here, (∗) is the Divergence Theorem 0E.4 on page 563, (†) is by the Leibniz
rule for divergences (Proposition 0E.2(b) on page 560) and (‡) is because
div∇u = 4u, while ∇ut • ∇ut = ‖∇ut(x)‖2. We thus have

∫

X
ut · 4ut +

∫

X
‖∇ut‖2 = 0.

Rearranging this equation yields the claim. �
Claim 1

Applying Claim 1 to equation (5D.5), we get

E′(t) = −2
∫

X
‖∇ut(x)‖2 dx ≤ 0.

because ‖∇ut(x)‖2 ≥ 0 for all x ∈ X. 2
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Lemma 5D.7. (Solution uniqueness for heat equation; homogeneous I/BC)

Let X ⊂ RD be a bounded domain with a piecewise smooth boundary. Suppose
that u : X× R 6− −→ R satisfies the following four conditions:

(a) (Regularity) u is continuous on X × R 6−, and ∂t u and ∂2
1 u, . . . , ∂

2
D u are

continuous on int (X)× R+;

(b) (Heat equation) ∂t u = 4u;

(c) (Zero initial condition) u0(x) = 0 for all x ∈ X;

(d) (Homogeneous Dirichlet/Neumann BC) For all s ∈ ∂X and t ∈ R 6−, either
ut(s) = 0 or ∂⊥ut(s) = 0.7

Then u must be the constant 0 function: u ≡ 0.

Proof. Define E : R 6− −→ R 6− as in Lemma 5D.6. Then E is a nonincreasing
function. But E(0) = 0, because u0 ≡ 0 by hypothesis (c). Thus, E(t) = 0 for
all t ∈ R 6−. Thus, we must have ut ≡ 0 for all t ∈ R 6−. 2

Theorem 5D.8. (Uniqueness: forced heat equation, nonhomogeneous I/BC)

Let X ⊂ RD be a bounded domain with a piecewise smooth boundary. Let
I : X −→ R be a continuous function (describing an initial condition), and let
b : ∂X×R 6− −→ R, and h, h⊥ : ∂X×R 6− −→ R be three other continuous functions
(describing time-varying boundary conditions). Let f : int (X) × R 6− −→ R be
another continuous function (describing exogenous heat being ‘forced’ into or out
of the system). Then there is at most one solution function u : X × R 6− −→ R
satisfying the following four conditions:

(a) (Regularity) u is continuous on X × R 6−, and ∂t u and ∂2
1 u, . . . , ∂

2
D u are

continuous on int (X)× R+;

(b) (Heat equation with forcing) ∂t u = 4u+ f ;

(c) (Initial condition) u(x, 0) = I(x) for all x ∈ X;

(d) (Nonhomogeneous Mixed BC) h(s, t) ·ut(s) + h⊥(s, t) ·∂⊥ut(s) = b(x, t),
for all s ∈ ∂X and t ∈ R 6−.8

7Note that this allows different boundary points to satisfy different homogeneous boundary
conditions at different times.

8Note that this includes nonhomogeneous Dirichlet BC (set h⊥ ≡ 0) and nonhomogeneous
Neumann BC (set h ≡ 0) as special cases. Also note that by varying h and h⊥ , we can allow
different boundary points to satisfy different nonhomogeneous boundary conditions at different
times.
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Proof. Suppose u1 and u2 were two functions satisfying all of (a)-(d). Let
u = u1−u2. Then u satisfies all of (a)-(d) in Lemma 5D.7. Thus, u ≡ 0. But
this means that u1 ≡ u2. Hence, there can be at most one solution. 2

5D(iii) Uniqueness for the wave equation

Throughout this section, if u : X× R 6− −→ R is a time-varying scalar field, and
t ∈ R 6−, then define the function ut : X −→ R by ut(x) := u(x; t), for all x ∈ X.
(Note: ut does not denote the time-derivative). For all t ≥ 0, the energy of u is
defined:

E(t) :=
1
2

∫

X
|∂t ut(x)|2 + ‖∇ut(x)‖2 dx. (5D.6)

We begin with a result which has an appealing physical interpretation.

Lemma 5D.9. (Conservation of Energy for wave equation)

Let X ⊂ RD be a bounded domain with a piecewise smooth boundary. Suppose
u : X× R 6− −→ R satisfies the following three conditions:

(a) (Regularity) u is continuous on X× R 6−, and u ∈ C2 (int (X)× R+);

(b) (Wave equation) ∂2
t u = 4u;

(c) (Homogeneous Dirichlet/Neumann BC) For all s ∈ ∂X, either ut(s) = 0
for all t ≥ 0, or ∂⊥ut(s) = 0 for all t ≥ 0.9

Then E is constant in time —that is, ∂t E(t) = 0 for all t > 0.

Proof. The Leibniz rule says that

∂t |∂t u|2 = (∂2
t u) · (∂t u) + (∂t u) · (∂2

t u)
= 2 · (∂t u) · (∂2

t u), (5D.7)
and ∂t ‖∇u‖2 = (∂t∇u) • (∇u) + (∇u) • (∂t∇u)

= 2 · (∇u) • (∂t∇u)
= 2 · (∇u) • (∇∂t u). (5D.8)

Thus, ∂tE
(∗)

1
2

∫

X

(

∂t |∂t u|2 + ∂t ‖∇u‖2
)

(†)

∫

X

(

∂t u · ∂2
t u + (∇u) • (∇∂t u)

)

. (5D.9)

9This allows different boundary points to satisfy different homogeneous boundary conditions;
but each particular boundary point must satisfy the same homogeneous boundary condition at
all times.
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Here (∗) comes from differentiating the integral (5D.6) using Proposition 0G.1
on page 567). Meanwhile, (†) comes from substituting (5D.7) and (5D.8).

Claim 1: Fix s ∈ ∂X and let ~N(s) be the outward unit normal vector to
∂X at s. Then ∂t ut(s) · ∇ut(s) • ~N(s) = 0, for all t > 0.

Proof. By hypothesis (c), either ∂⊥ut(s) = 0 for all t > 0, or ut(s) = 0 for
all t > 0. Thus, either ∇ut(s) • ~N(s) = 0 for all t > 0, or ∂t ut(s) = 0 for all
t > 0. In either case, ∂t ut(s) · ∇ut(s) • ~N(s) = 0 for all t > 0. �

Claim 1

Claim 2: For any t ∈ R 6−,

∫

X
∇ut • ∇∂t ut = −

∫

X
∂t ut · 4ut.

Proof. Integrating Claim 1 over ∂X, we get

0 =
∫

∂X
∂t ut(s) · ∇ut(s) • ~N(s) ds

(∗)

∫

X
div (∂t ut · ∇ut) (x) dx

(†)

∫

X

(

∂t ut · div∇ut + ∇∂t ut • ∇ut
)

(x) dx

(‡)

∫

X
(∂t ut · 4ut) (x) dx +

∫

X
(∇∂t ut • ∇ut) (x) dx.

Here, (∗) is the Divergence Theorem 0E.4 on page 563, (†) is by the Leibniz
rule for divergences (Proposition 0E.2(b) on page 560) and (‡) is because
div∇ut = 4ut. We thus have

∫

X
∇ut • ∇∂t ut +

∫

X
∂t ut · 4ut = 0.

Rearranging this equation yields the claim. �
Claim 2

Putting it all together, we get:

∂tE
(†)

∫

X
∂t u · ∂2

t u +
∫

X
(∇u) • (∇∂t u)

(‡)

∫

X
∂t u · ∂2

t u −
∫

X
∂t u · 4u =

∫

X
∂t u ·

(

∂2
t u − 4u

)

(∗)

∫

X
∂t u · 0 = 0,

as desired. Here, (†) is by equation (5D.9), (‡) is by Claim 2, and (∗) is because
∂2
t u − 4u ≡ 0 because u satisfies the wave equation by hypothesis (b). 2

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



94— DRAFT Chapter 5. Classification of PDEs and problem types

Physical interpretation. E(t) can be interpreted as the total energy in the
system at time t. The first term in the integrand of (5D.6) measures the kinetic
energy of the wave motion, while the second term measures the potential energy
stored in the deformation of the medium. With this physical interpretation,
Lemma 5D.9 simply asserts the principle of Conservation of Energy: E must be
constant in time, because no energy enters or leaves the system, by hypotheses
(b) and (c).

Lemma 5D.10. (Solution uniqueness for wave equation; homogeneous I/BC)
Let X ⊂ RD be a bounded domain with a piecewise smooth boundary. Suppose
u : X× R 6− −→ R satisfies all five of the following conditions:

(a) (Regularity) u is continuous on X× R 6−, and u ∈ C2 (int (X)× R+);

(b) (Wave equation) ∂2
t u = 4u;

(c) (Zero initial position) u0(x) = 0, for all x ∈ X;

(d) (Zero initial velocity) ∂t u0(x) = 0 for all x ∈ X;

(e) (Homogeneous Dirichlet/Neumann BC) For all s ∈ ∂X, either ut(s) = 0
for all t ≥ 0, or ∂⊥ut(s) = 0 for all t ≥ 0.10

Then u must be the constant 0 function: u ≡ 0.

Proof. Let E : R 6− −→ R 6− be the energy function from Lemma 5D.9. Then E
is a constant. But E(0) = 0 because u0 ≡ 0 and ∂t u0 ≡ 0, by hypotheses (c)
and (d). Thus, E(t) = 0 for all t ≥ 0. But this implies that |∂t ut(x)|2 = 0,
and hence ∂t ut(x) = 0, for all x ∈ X and t > 0. Thus, u is constant in time.
Since u0 ≡ 0, we conclude that ut ≡ 0 for all t ≥ 0, as desired. 2

Theorem 5D.11. (Uniqueness: forced wave equation, nonhomogeneous I/BC)
Let X ⊂ RD be a bounded domain with a piecewise smooth boundary. Let
I0, I1 : X −→ R be continuous functions (describing initial position and velocity).
Let b : ∂X×R 6− −→ R be another continuous function (describing a time-varying
boundary condition). Let f : int (X)×R 6− −→ R be another continuous function
(describing exogenous vibrations being ‘forced’ into the system). Then there is
at most one solution function u : X×R 6− −→ R satisfying all five of the following
conditions:

(a) (Regularity) u is continuous on X× R 6−, and u ∈ C2 (int (X)× R+);

10This allows different boundary points to satisfy different homogeneous boundary conditions;
but each particular boundary point must satisfy the same homogeneous boundary condition at
all times.
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(b) (Wave equation with forcing) ∂2
t u = 4u+ f ;

(c) (Initial position) u(x, 0) = I0(x) for all x ∈ X.

(d) (Initial velocity) ∂t u(x, 0) = I1(x) for all x ∈ X.

(e) (Nonhomogeneous Dirichlet/Neumann BC) For all s ∈ ∂X, either u(s, t) =
b(s, t) for all t ≥ 0, or ∂⊥u(s, t) = b(s, t) for all t ≥ 0.

Proof. Suppose u1 and u2 were two functions satisfying all of (a)-(e). Let
u = u1 − u2. Then u satisfies all of (a)-(e), in Lemma 5D.10. Thus, u ≡ 0.
But this means that u1 ≡ u2. Hence, there can be at most one solution. 2

Remark. (a) Earlier, we observed that the initial position problem for the
(unforced) wave equation represents a ‘plucked string’ (e.g. in a guitar), while the
initial velocity problem represents a ‘struck string’ (e.g. in a piano). Continuing
the musical analogy, the forced wave equation represents a rubbed string (e.g. in
a violin or cello), as well as any other musical instrument driven by an exogenous
vibration (e.g. any wind instrument).

(b) Notice Theorems 5D.5, 5D.8, and 5D.11 apply under much more general
conditions than any of the solution methods we will actually develop in this book
(i.e. they work for almost any ‘reasonable’ domain, we allow for possible ‘forcing’,
and we even allow the boundary conditions to vary in time). This is a recurring
theme in differential equation theory; it is generally possible to prove ‘qualitative’
results (e.g. about existence, uniqueness, or general properties of solutions) in
much more general settings than it is possible to get ‘quantitative’ results (i.e.
explicit formulae for solutions). Indeed, for most nonlinear differential equations,
qualitative results are pretty much all you can ever get.

5E ∗ Classification of second order linear PDEs

Prerequisites: §5A. Recommended: §1B, §1C, §1F, §2B.

5E(i) ...in two dimensions, with constant coefficients

Recall that C∞(R2;R) is the space of all differentiable scalar fields on the plane
R2. In general, a second-order linear differential operator L on C∞(R2;R) with
constant coefficients looks like:

Lu = a ·∂2
x u + b ·∂x ∂y u + c ·∂2

y u + d ·∂x u + e ·∂y u + f ·u (5E.1)
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where a, b, c, d, e, f are constants. Define:

α = f, β =
[

d
e

]

and Γ =
[

a 1
2b

1
2b c

]

=
[

γ11 γ12

γ21 γ22

]

.

Then we can rewrite (5E.1) as:

Lu =
2
∑

c,d=1

γc,d · ∂c ∂d u +
2
∑

d=1

βd · ∂d u + α · u,

Any 2× 2 symmetric matrix Γ defines a quadratic form G : R2 −→ R by

G(x, y) = [x y] ·
[

γ11 γ12

γ21 γ22

]

·
[

x
y

]

= γ11 ·x2 +
(

γ12 + γ21

)

·xy + γ22 ·y2.

We say Γ is positive definite if, for all x, y ∈ R, we have:

• G(x, y) ≥ 0;

• G(x, y) = 0 if and only if x = 0 = y.

Geometrically, this means that the graph of G defines an elliptic paraboloid in
R2 × R, which curves upwards in every direction. Equivalently, Γ is positive
definite if there is a constant K > 0 such that

G(x, y) ≥ K · (x2 + y2)

for every (x, y) ∈ R2. We say Γ is negative definite if −Γ is positive definite.
The differential operator L from equation (5E.1) is called elliptic if the ma-

trix Γ is either positive definite or negative definite.

Example 5E.1. If L = 4, then Γ =
[

1
1

]

is just the identity matrix. while

β = 0 and α = 0. The identity matrix is clearly positive definite; thus, 4 is
an elliptic differential operator. ♦

Suppose that L is an elliptic differential operator. Then:

• An elliptic PDE is one of the form: Lu = 0 (or Lu = g). For example, the
Laplace equation is elliptic.

• A parabolic PDE is one of the form: ∂t = Lu. For example, the two-
dimensional heat equation is parabolic.

• A hyperbolic PDE is one of the form: ∂2
t = Lu. For example, the two-

dimensional wave equation is hyperbolic.

(See Remark 16F.4 on page 371 for a partial justification of this terminology).
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Exercise 5E.1. Show that Γ is positive definite if and only if 0 < det(Γ) = ac− 1
4b

2.E©
In other words, L is elliptic if and only if 4ac− b2 > 0. �

5E(ii) ...in general

Recall that C∞(RD;R) is the space of all differentiable scalar fields onD-dimensional
space. The general second-order linear differential operator on C∞(RD;R) has
the form

Lu =
D
∑

c,d=1

γc,d · ∂c ∂d u +
D
∑

d=1

βd · ∂d u + α · u, (5E.2)

where α : RD × R −→ R is some time-varying scalar field, (β1, . . . , βD) = β :
RD × R −→ RD is a time-varying vector field, and γc,d : RD × R −→ R are
functions such that, for any x ∈ RD and t ∈ R, the matrix

Γ(x; t) =







γ11(x; t) . . . γ1D(x; t)
...

. . .
...

γD1(x; t) . . . γDD(x; t)







is symmetric (i.e. γcd = γdc).

Example 5E.2.

(a) If L = 4, then β ≡ 0, α = 0, and Γ ≡ Id =











1 0 . . . 0
0 1 . . . 0
.
.
.

.

.

.
. . .

.

.

.
0 0 . . . 1











.

(b) The Fokker-Plank Equation (see § 1F on page 18) has the form ∂t u = Lu,
where α = −div ~V(x), β(x) = −∇~V(x), and Γ ≡ Id. (Exercise 5E.2) E©
♦

If the functions γc,d, βd and α are independent of x, then we say L is spatially
homogeneous. If they are also independent of t, we say that L has constant
coefficients.

Any symmetric matrix Γ defines a quadratic form G : RD −→ R by

G(x) = [x1...xD]







γ11 . . . γ1D
...

. . .
...

γD1 . . . γDD













x1
...
xD





 =
D
∑

c,d=1

γc,d · xc · xd

Γ is called positive definite if, for all x ∈ RD, we have:

• G(x) ≥ 0;
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• G(x) = 0 if and only if x = 0.

Equivalently, Γ is positive definite if there is a constant KΓ > 0 such that G(x) ≥
KΓ · ‖x‖2 for every x ∈ RD. On the other hand, Γ is negative definite if −Γ
is positive definite.

The differential operator L from equation (5E.2) is elliptic if the matrix
Γ(x; t) is either positive definite or negative definite for every (x; t) ∈ RD × R 6−,
and furthermore, there is some K > 0 such that KΓ(x;t) ≥ K for all (x; t) ∈
RD × R 6−. For example, the Laplacian and the Fokker-Plank operator are both
elliptic. (Exercise 5E.3)E©

Suppose that L is an elliptic differential operator. Then:

• An elliptic PDE is one of the form: Lu = 0 (or Lu = g).

• A parabolic PDE is one of the form: ∂t = Lu.

• A hyperbolic PDE is one of the form: ∂2
t = Lu.

Example 5E.3.

(a) Laplace’s Equation and Poisson’s Equation are elliptic PDEs.

(b) The heat equation and the Fokker-Plank Equation are parabolic.

(c) The wave equation is hyperbolic. ♦

Parabolic equations are “generalized heat equations”, describing diffusion
through an inhomogeneous11, anisotropic12 medium with drift. The terms in
Γ(x; t) describe the inhomogeneity and anisotropy of the diffusion13, while the
vector field β describes the drift.

Hyperbolic equations are “generalized wave equations”, describing wave prop-
agation through an inhomogeneous, anisotropic medium with drift —for exam-
ple, sound waves propagating through an air mass with variable temperature
and pressure and wind blowing.

5F Practice problems

Evolution equations and initial value problems. For each of the following
equations: u is an unknown function; q is always some fixed, predetermined
function; and λ is always a constant. In each case, determine the order of the
equation, and decide: is this an evolution equation? Why or why not?

11Homogeneous means, “Looks the same everywhere in space”, whereas inhomogeneous
is the opposite.

12Isotropic means “looks the same in every direction”; anisotropic means the opposite.
13If the medium is homogeneous, then Γ is constant. If the medium is isotropic, then Γ = Id.
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1. heat equation: ∂tu(x) = 4u(x).

2. Poisson Equation: 4u(x) = q(x).

3. Laplace Equation: 4u(x) = 0.

4. Monge-Ampère Equation: q(x, y) = det
[

∂2
x u(x, y) ∂x∂y u(x, y)

∂x ∂yu(x, y) ∂2
y u(x, y)

]

.

5. Reaction-Diffusion ∂t u(x; t) = 4u(x; t) + q
(

u(x; t)
)

.

6. Scalar conservation Law ∂t u(x; t) = −∂x (q ◦ u)(x; t).

7. Helmholtz Equation: 4u(x) = λ · u(x).

8. Airy’s Equation: ∂t u(x; t) = −∂3
x u(x; t).

9. Beam Equation: ∂t u(x; t) = −∂4
x u(x; t).

10. Schrödinger Equation: ∂t u(x; t) = i4 u(x; t) + q(x; t) · u(x; t).

11. Burger’s Equation: ∂t u(x; t) = −u(x; t) · ∂x u(x; t).

12. Eikonal Equation: |∂x u(x)| = 1.

Boundary value problems.

1. Each of the following functions is defined on the interval [0, π], in Carte-
sian coordinates. For each function, decide: Does it satisfy homogeneous
Dirichlet BC? Homogeneous Neumann BC? Homogeneous Robin14 BC?
Periodic BC? Justify your answers.

(a) u(x) = sin(3x).

(b) u(x) = sin(x) + 3 sin(2x)− 4 sin(7x).

(c) u(x) = cos(x) + 3 sin(3x)− 2 cos(6x).

(d) u(x) = 3 + cos(2x)− 4 cos(6x).

(e) u(x) = 5 + cos(2x)− 4 cos(6x).

2. Each of the following functions is defined on the interval [−π, π], in Carte-
sian coordinates. For each function, decide: Does it satisfy homogeneous
Dirichlet BC? Homogeneous Neumann BC? Homogeneous Robin14 BC?
Periodic BC? Justify your answers.

(a) u(x) = sin(x) + 5 sin(2x)− 2 sin(3x).

(b) u(x) = 3 cos(x)− 3 sin(2x)− 4 cos(2x).
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0
0
0

0.2

0.5

0.4

0.5

0.6

1

0.8

1

1

1.51.5 x2y 2 2.52.5 33

00.5
0

0
1

0.5

1

0.5

1.5

2

1.5
1

x
1.5

y

2
2

2.5
2.5 3

3

0
0.5 1

y

1.5 2 2.5
300.51

x

1.522.53

-2

-1

0

1

2

(A) f(x, y) = sin(x) sin(y) (B) g(x, y) = sin(x) + sin(y) (C) h(x, y) = cos(2x) + cos(y).

Figure 5F.1: Problems #3a, #3b and #3c

(c) u(x) = 6 + cos(x)− 3 cos(2x).

3. Each of the following functions is defined on the box [0, π]2. in Carte-
sian coordinates. For each function, decide: Does it satisfy homogeneous
Dirichlet BC? Homogeneous Neumann BC? Homogeneous Robin14 BC?
Periodic BC? Justify your answers.

(a) f(x, y) = sin(x) sin(y) (Figure 5F.1(A))

(b) g(x, y) = sin(x) + sin(y) (Figure 5F.1(B))

(c) h(x, y) = cos(2x) + cos(y) (Figure 5F.1(C))

(d) u(x, y) = sin(5x) sin(3y).

(e) u(x, y) = cos(−2x) cos(7y).

4. Each of the following functions is defined on the unit disk

D = {(r, θ) ; 0 ≤ r ≤ 1, and θ ∈ [0, 2π)}

in polar coordinates. For each function, decide: Does it satisfy homoge-
neous Dirichlet BC? Homogeneous Neumann BC? Homogeneous Robin14

BC? Justify your answers.

(a) u(r, θ) = (1− r2).

(b) u(r, θ) = 1− r3.

(c) u(r, θ) = 3 + (1− r2)2.
14 Here, ‘Robin’ B.C. means nontrivial Robin B.C. —i.e. not just homogenous Dirichlet or

Neumann.
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(d) u(r, θ) = sin(θ)(1− r2)2.

(e) u(r, θ) = cos(2θ)(e− er).

5. Each of the following functions is defined on the 3-dimensional unit ball

B =
{

(r, θ, ϕ) ; 0 ≤ r ≤ 1, θ ∈ [0, 2π), and ϕ ∈
[

−π
2
,
π

2

]}

in spherical coordinates. For each function, decide: Does it satisfy homo-
geneous Dirichlet BC? Homogeneous Neumann BC? Homogeneous Robin14

BC? Justify your answers.

(a) u(r, θ, ϕ) = (1− r)2.

(b) u(r, θ, ϕ) = (1− r)3 + 5.

6. Which Neumann BVP has solution(s) on the domain X = [0, 1]?

(a) u′′(x) = 0, u′(0) = 1, u′(1) = 1.

(b) u′′(x) = 0, u′(0) = 1, u′(1) = 2.

(c) u′′(x) = 0, u′(0) = 1, u′(1) = −1.

(d) u′′(x) = 0, u′(0) = 1, u′(1) = −2.

7. Which BVP of Laplace equation on the unit disk D has a solution? Which
BVP has more than one solution?

(a) 4u = 0, u(1, θ) = 0, for all θ ∈ [−π, π).

(b) 4u = 0, u(1, θ) = sin θ, for all θ ∈ [−π, π).

(c) 4u = 0, ∂⊥u(1, θ) = sin(θ), for all θ ∈ [−π, π).

(d) 4u = 0, ∂⊥u(1, θ) = 1 + cos(θ), for all θ ∈ [−π, π).
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III Fourier series on bounded
domains

Any complex sound is a combination of simple ‘pure tones’ of different fre-
quencies. For example, a musical chord is a superposition of three (or more)
musical notes, each with a different frequency. In fact, a musical note itself is
not really a single frequency at all; a note consists of a ‘fundamental’ frequency,
plus a cascade of higher frequency ‘harmonics’. The energy distribution of these
harmonics is part of what gives each musical instrument its distinctive sound.
The decomposition of a sound into separate frequencies is sometimes called its
power spectrum. A crude graphical representation of this power spectrum is
visible on most modern stereo systems (the little jiggling red bars).

Fourier theory is based on the idea that a real-valued function is like a sound,
which can be represented as a superposition of ‘pure tones’ (i.e. sine waves
and/or cosine waves) of distinct frequencies. This provides a ‘coordinate system’
for expressing functions, and within this coordinate system, we can express the
solutions for many partial differential equations in a simple and elegant way.
Fourier theory is also an essential tool in probability theory and signal analysis
(although we will not discuss these applications in this book).

The idea of Fourier theory is simple, but to make this idea rigorous enough
to be useful, we must deploy some formidable mathematical machinery. So we
will begin by developing the necessary background concerning inner products,
orthogonality, and the convergence of functions.
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Chapter 6

Some functional analysis

“Mathematical science is in my opinion an indivisible whole, an organism whose vitality

is conditioned upon the connection of its parts.” —David Hilbert

6A Inner products
Prerequisites: §4A.

Let x,y ∈ RD, with x = (x1, . . . , xD) and y = (y1, . . . , yD). The inner
product1 of x,y is defined:

〈x,y〉 := x1y1 + x2y2 + . . .+ xDyD.

The inner product describes the geometric relationship between x and y, via the
formula:

〈x,y〉 := ‖x‖ · ‖y‖ · cos(θ)

where ‖x‖ and ‖y‖ are the lengths of vectors x and y, and θ is the angle between
them. (Exercise 6A.1 Verify this). In particular, if x and y are perpendicular, E©
then θ = ±π

2 , and then 〈x,y〉 = 0; we then say that x and y are orthogonal.

For example, x =
[

1
1

]

and y =
[

1
−1

]

are orthogonal in R2, while

u =









1
0
0
0









, v =











0
0
1√
2

1√
2











, and w =









0
1
0
0









are all orthogonal to one another in R4. Indeed, u, v, and w also have unit norm;
we call any such collection an orthonormal set of vectors. Thus, {u,v,w} is
an orthonormal set. However, {x,y} is orthogonal but not orthonormal (because
‖x‖ = ‖y‖ =

√
2 6= 1).

1This is sometimes this is called the dot product, and denoted “x • y”.
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The norm of a vector satisfies the equation:

‖x‖ =
(

x2
1 + x2

2 + . . .+ x2
D

)1/2 = 〈x,x〉1/2 .

If x1, . . . ,xN are a collection of mutually orthogonal vectors, and x = x1 + . . .+
xN , then we have the generalized Pythagorean formula:

‖x‖2 = ‖x1‖2 + ‖x2‖2 + . . .+ ‖xN‖2 .

(Exercise 6A.2 Verify the Pythagorean formula.)E©
An orthonormal basis of RD is any collection of mutually orthogonal vec-

tors {v1, v2, . . ., vD}, all of norm 1, such that, for any w ∈ RD, if we define
ωd = 〈w,vd〉 for all d ∈ [1..D], then:

w = ω1v1 + ω2v2 + . . .+ ωDvD.

In other words, the set {v1,v2, . . . ,vD} defines a coordinate system for RD,
and in this coordinate system, the vector w has coordinates (ω1, ω2, . . . , ωD). If
x ∈ RD is another vector, and ξd = 〈x,vd〉 all d ∈ [1..D], then we also have

x = ξ1v1 + ξ2v2 + . . .+ ξDvD.

We can then compute 〈w,x〉 using Parseval’s Equality:

〈w,x〉 = ω1ξ1 + ω2ξ2 + · · ·ωDξD.

(Exercise 6A.3 Prove Parseval’s equality.) In particular, if x = w, we get theE©
the following version of the generalized Pythagorean formula:

‖w‖2 = ω2
1 + ω2

2 + . . .+ ω2
D.

Example 6A.1.

(a)





























1
0
.
.
.
0











,











0
1
.
.
.
0











, . . .











0
0
.
.
.
1





























is an orthonormal basis for RD.

(b) If v1 =
[ √

3/2
1/2

]

and v2 =
[

−1/2√
3/2

]

, then {v1,v2} is an orthonormal

basis of R2.

If w =
[

2
4

]

, then ω1 =
√

3 + 2 and ω2 = 2
√

3− 1, so that

[

2
4

]

= ω1v1 +ω2v2 =
(√

3 + 2
)

·
[ √

3/2
1/2

]

+
(

2
√

3− 1
)

·
[

−1/2√
3/2

]

.

Thus, ‖w‖22 = 22 + 42 = 20, and also, by Parseval’s equality, 20 = ω2
1 +

ω2
2 =

(√
3 + 2

)2
+
(

1− 2
√

3
)2

. (Exercise 6A.4 Verify these claims.) ♦E©
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f   (x) dx
2f      =

2

2

f (x)

f  (x)
2

f   (x)  dx
2f       =

2

Figure 6A.1: The L2 norm of f : ‖f‖2 =
√

∫

X |f(x)|2 dx

6B L2 space
The ideas of section 6A generalize to spaces of functions. Suppose X ⊂ RD

is some bounded domain, and let M :=
∫

X 1 dx be the volume2 of the domain X.
(The second column of Table 6.1 provides examples of M for various domains.)

Domain M Inner Product

Unit interval X = [0, 1] ⊂ R length M = 1 〈f, g〉 =

∫ 1

0

f(x) · g(x) dx

π interval X = [0, π] ⊂ R length M = π 〈f, g〉 =
1

π

∫ π

0

f(x) · g(x) dx

Unit square X = [0, 1]× [0, 1] ⊂ R2 area M = 1 〈f, g〉 =

∫ 1

0

∫ 1

0

f(x, y) · g(x, y) dx dy

π × π square X = [0, π]× [0, π] ⊂ R2 area M = π2 〈f, g〉 =
1

π2

∫ π

0

∫ π

0

f(x, y) · g(x, y) dx dy

Unit Disk
(polar coords) X = {(r, θ) ; r ≤ 1} ⊂ R2 area M = π 〈f, g〉 =

1

π

∫ 1

0

∫ π

−π
f(r, θ) · g(r, θ) r · dθ dr

Unit cube X = [0, 1]× [0, 1]× [0, 1] ⊂ R3 volume M = 1 〈f, g〉 =

∫ 1

0

∫ 1

0

∫ 1

0

f(x, y, z) · g(x, y, z) dx dy dz

Table 6.1: Inner products on various domains.

If f, g : X −→ R are integrable functions, then the inner product of f and
g is defined:

〈f, g〉 :=
1
M

∫

X
f(x) · g(x) dx. (6B.1)

2Or length, if D = 1, or area if D = 2....
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Example 6B.1.

(a) Suppose X = [0, 3] = {x ∈ R ; 0 ≤ x ≤ 3}. Then M = 3. If f(x) = x2 + 1
and g(x) = x for all x ∈ [0, 3], then

〈f, g〉 =
1
3

∫ 3

0
f(x)g(x) dx =

1
3

∫ 3

0
(x3 + x) dx =

27
4

+
3
2
.

(b) The third column of Table 6.1 provides examples of 〈f, g〉 for various other
domains. ♦

The L2-norm of an integrable function f : X −→ R is defined

‖f‖2 := 〈f, f〉1/2 =
(

1
M

∫

X
f2(x) dx

)1/2

. (6B.2)

(See Figure 6A.1. Of course, this integral may not converge.) The set of all
integrable functions on X with finite L2-norm is denoted L2(X), and is called
L2-space. For example, any bounded, continuous function f : X −→ R is in
L2(X).

Example 6B.2. (a) Suppose X = [0, 3], as in Example 6B.1, and let f(x) = x+1.
Then f ∈ L2[0, 3], because

‖f‖22 = 〈f, f〉 =
1
3

∫ 3

0
(x+ 1)2 dx

=
1
3

∫ 3

0
x2 + 2x+ 1 dx =

1
3

(

x3

3
+ x2 + x

)x=3

x=0

= 7,

hence ‖f‖2 =
√

7 <∞.

(b) Let X = (0, 1], and suppose f ∈ C∞(0, 1] is defined f(x) := 1/x. Then
‖f‖2 =∞, sof 6∈ L2(0, 1]. ♦

Remark. Some authors define the inner product as 〈f, g〉 :=
∫

X f(x)·g(x) dx,

and define the L2-norm as ‖f‖2 :=
(∫

X f
2(x) dx

)1/2. In other words, these
authors do not divide by the volume M of the domain. This yields a mathemati-
cally equivalent theory. The advantage of our definition is greater computational
convenience in some situations. (For example, if 11X is the constant 1-valued
function, then in our definition, ‖11X‖2 = 1.) When comparing formulae from
different books, you should always check their respective definitions of L2 norm.
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L2 space on an infinite domain. Suppose X ⊂ RD is a region of infinite
volume (or length, area, etc.). For example, maybe X = R 6− is the positive half-
line, or perhaps X = RD. In this case, M =∞, so it doesn’t make any sense to
divide by M . If f, g : X −→ R are integrable functions, then the inner product
of f and g is defined:

〈f, g〉 :=
∫

X
f(x) · g(x) dx (6B.3)

Example 6B.3. Suppose X = R. If f(x) = e−|x| and g(x) =
{

1 if 0 < x < 7
0 otherwise

,

then

〈f, g〉 =
∫ ∞

−∞
f(x)g(x) dx =

∫ 7

0
e−x dx = −(e−7 − e0) =

1− 1
e7

. ♦

The L2-norm of an integrable function f : X −→ R is defined

‖f‖2 = 〈f, f〉1/2 =
(∫

X
f2(x) dx

)1/2

. (6B.4)

Again, this integral may not converge. Indeed, even if f is bounded and contin-
uous everywhere, this integral may still equal infinity. The set of all integrable
functions on X with finite L2-norm is denoted L2(X), and called L2-space. (You
may recall that on page 40 of §3A, we discussed how L2-space arises naturally
in quantum mechanics as the space of ‘physically meaningful’ wavefunctions.)

Proposition 6B.4. Properties of the inner product

Whether it is defined using equation (6B.1) or (6B.3), the inner product has the
following properties.

Bilinearity. For any f1, f2, g1, g2 ∈ L2(X), and any constants r1, r2, s1, s2 ∈ R,

〈r1f1 + r2f2, s1g1 + s2g2〉 = r1s1 〈f1, g1〉+ r1s2 〈f1, g2〉+ r2s1 〈f2, g1〉+ r2s2 〈f2, g2〉 .

Symmetry. For any f, g ∈ L2(X), 〈f, g〉 = 〈g, f〉.

Positive-definite. For any f ∈ L2(X), 〈f, f〉 ≥ 0. Also, 〈f, f〉 = 0 if and only
if f = 0.

Proof. Exercise 6B.1 2
E©
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If v,w ∈ RD, recall that 〈v,w〉 = ‖v‖ · ‖w‖ · cos(θ), where θ is the angle
between v to w. In particular, this implies that

∣

∣

∣〈v,w〉
∣

∣

∣ ≤ ‖v‖ · ‖w‖ . (6B.5)

If f, g ∈ L2(X) are two functions, then it doesn’t make sense to talk about the
‘angle’ between f and g [as ‘vectors’ in L2(X)]. But an inequality analogous to
(6B.5) is still true.

Theorem 6B.5. (Cauchy-Bunyakowski-Schwarz Inequality)

Let f, g ∈ L2(X). Then
∣

∣

∣〈f, g〉
∣

∣

∣ ≤ ‖f‖2 · ‖g‖2.

Proof. Let A = ‖g‖22, B := 〈f, g〉, and C := ‖f‖22; thus, we are trying to show
that B ≤

√
A ·
√
C. Define q : R −→ R by q(t) := ‖f − t · g‖22. Then

q(t) = 〈f − t · g, f − t · g〉
([)
〈f, f〉 − t 〈f, g〉 − t 〈g, f〉+ t2 〈g, g〉

= ‖f‖22 + 2 〈f, g〉 t + ‖g‖22 t
2 = C + 2Bt+At2, (6B.6)

a quadratic polynomial in t. (Here, step ([) is by Proposition 6B.4(a)).

Now, q(t) = ‖f − t · g‖22 ≥ 0 for all t ∈ R; thus, q(t) has at most one root, so
the discriminant of the quadratic polynomial (6B.6) is not positive. That is
4B2 − 4AC ≤ 0. Thus, B2 ≤ AC, and thus, B ≤

√
A ·
√
C, as desired. 2

Note. The CBS inequality involves three integrals: 〈f, g〉, ‖f‖2, and ‖g‖2.
But the proof of Theorem 6B.5 does not involve any integrals at all. Instead, it
just uses simple algebraic manipulations of the inner product operator. In par-
ticular, this means the same proof works whether we define the inner product
using (6B.1) or using (6B.3). Indeed, the CBS inequality is not really about
L2 spaces, per se —it is actually a theorem about a much broader class of ab-
stract geometric structures, called inner product spaces. An enormous amount of
knowledge about L2(X) can be obtained from this abstract geometric approach,
usually through simple algebraic arguments like the proof of Theorem 6B.5 (i.e.
without lots of messy integration technicalities). This is the beginning of a beau-
tiful area of mathematics called Hilbert space theory (see [Con90] for an excellent
introduction).

6C ∗ More about L2 space

Prerequisites: §6B, §0C.

This section contains some material which is not directly germane to the
solution methods we present later in the book, but may be interesting to some
students who want a broader perspective.
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6C(i) Complex L2 space

§6B introduced the inner product for real-valued functions. The inner product
for complex-valued functions is slightly different. For any z = x + yi ∈ C, let
z := x − yi denote the complex conjugate of z. Let X ⊂ RD be some domain,
and let f, g : X −→ C be complex-valued functions. We define

〈f, g〉 :=
∫

X
f(x) · g(x) dx. (6C.1)

If g is real-valued, then g = g, and then eqn.(6C.1) is equivalent to eqn.(6B.4).
For any z ∈ C, recall that z · z = |z|2. Thus, if f is a complex-valued

function, then f(x)f(x) = |f(x)|2. It follows that we can define the L2-norm of
an integrable function f : X −→ C just as before:

‖f‖2 = 〈f, f〉1/2 =
(∫

X
|f |2(x) dx

)1/2

,

and this quantity will always be a real number (when the integral converges).
We define L2(X;C) to be the set of all integrable functions f : X −→ C such
that ‖f‖2 <∞.3

Proposition 6C.1. Properties of the complex inner product

The inner product on L2(X;C) has the following properties.

Sesquilinearity. For any f1, f2, g1, g2 ∈ L2(X;C), and any constants b1, b2, c1, c2 ∈
C,

〈b1f1 + b2f2, c1g1 + c2g2〉 = b1c1 〈f1, g1〉+ b1c2 〈f1, g2〉+ b2c1 〈f2, g1〉+ b2c2 〈f2, g2〉 .

Hermitian. For any f, g ∈ L2(X;C), 〈f, g〉 = 〈g, f〉.

Positive-definite. For any f ∈ L2(X;C), 〈f, f〉 is a real number and 〈f, f〉 ≥
0. Also, 〈f, f〉 = 0 if and only if f = 0.

CBS Inequality. For any f, g ∈ L2(X;C),
∣

∣

∣〈f, g〉
∣

∣

∣ ≤ ‖f‖2 · ‖g‖2.

Proof. Exercise 6C.1 Hint: Imitate the proofs of Proposition 6B.4 and Theorem E©
6B.5. In your proof of the CBS inequality, don’t forget that 〈f, g〉+〈f, g〉 = 2Re [〈f, g〉].
2

3We are using L2(X) to refer to only real-valued functions. In more advanced books, the
notation L2(X) denotes the set of complex-valued L2 functions; if one wants to refer only to
real-valued L2 functions, one must use the notation L2(X;R).
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6C(ii) Riemann vs. Lebesgue integrals

We have defined L2(X) to be the set of all ‘integrable’ functions on X with finite
L2-norm, but we have been somewhat vague about what we mean by ‘integrable’.
The most familiar and elementary integral is the Riemann integral. For example,
if X = [a, b], and f : X −→ R, then the Riemann integral of f is defined

∫ b

a
f(x) dx := lim

N→∞

b− a
N

N
∑

n=1

f

(

a+
n(b− a)

N

)

(6C.2)

A similar (but more complicated) definition can be given if X is an arbitrary
domain in RD. We say f is Riemann integrable if the limit (6C.2) exists and is
finite.

However, this is not what we mean here by ‘integrable’. The problem is that
the limit (6C.2) only exists if the function f is reasonably ‘nice’ (e.g. piecewise
continuous). We need an integral which works even for extremely ‘nasty’ func-
tions (e.g. functions which are discontinuous everywhere; functions which have a
‘fractal’ structure, etc.). This object is called the Lebesgue integral; its definition
is similar to (6C.2) but much more complicated.

Loosely speaking, the ‘Riemann sum’ in (6C.2) chops the interval [a, b] up into
N equal subintervals. The corresponding sum in the Lebesgue integral allows us
to chop [a, b] into any number of ‘Borel-measurable subsets’. A ‘Borel-measurable
subset’ is any open set, any closed set, any (countably infinite) union or intersec-
tion of open or closed sets, any (countably infinite) union or intersection of these
sets, etc. Clearly ‘measurable subsets’ can become very complex. The Lebesgue
integral is obtained by taking a limit over all possible ‘Riemann sums’ obtained
using such ‘measurable partitions’ of [a, b]. This is a very versatile and powerful
construction, which can integrate incredibly bizarre and pathological functions.
(See Remark 10D.3 on page 211 for further discussion of Riemann vs. Lebesgue
integration).

You might ask, ‘Why would I want to integrate bizarre and pathological
functions?’ Indeed, the sorts of functions which arise in applied mathematics
are almost always piecewise continuous, and for them, the Riemann integral
works just fine. To answer this, consider the difference between the following
two equations:

(a) x2 =
16
9

; (b) x2 = 2.

Both equations have solutions, but they are different. The solutions to (a) are
rational numbers, for which we have an exact expression x = ±4/3. The solutions
to (b) are irrational numbers, for which we have only approximate expressions:
x = ±

√
2 ≈ ±1.414213562....

Irrational numbers are ‘pathological’: they do not admit nice, simple, exact
expressions like 4/3. We might be inclined to ignore such pathological objects
in our mathematics —to pretend they don’t exist. Indeed, this was precisely
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the attitude of the ancient Greeks, whose mathematics was based entirely on
rational numbers. The problem is: in this ‘ancient Greek’ mathematical universe,
equation (b) has no solution. This is not only inconvenient, it is profoundly
counterintuitive; after all,

√
2 is simply the length of the hypotenuse of a right

angle triangle whose other sides both have length 1. And surely the sidelength
of a triangle should be a number.

Furthermore we can find rational numbers which seem to be arbitrarily good
approximations to a solution of equation (b). For example,

(

1, 414
100

)2

= 1.999396;

(

1, 414, 213
100, 000

)2

= 1.999998409;

(

141, 421, 356
10, 000, 000

)2

= 1.999999993;

...
...

...

It certainly seems like this sequence of rational numbers is converging to ‘some-
thing’. Our name for that ‘something’ is

√
2. In fact, this is the only way we can

ever specify
√

2. Since we cannot express
√

2 as a fraction or some simple deci-
mal expansion, we can only say, ‘

√
2 is the number to which the above sequence

of rational numbers seems to be converging.’
But how do we know that any such number exists? Couldn’t there just be a

‘hole’ in the real number line where we think
√

2 is supposed to be? The answer
is that the set R is complete —that is, any sequence in R which ‘looks like it
is converging’4 does, in fact, converge to some limit point in R. Because R is
complete, we are confident that

√
2 exists, even though we can never precisely

specify its value.
Now let’s return to L2(X). Like the real line R, the space L2(X) has a

geometry: a notion of ‘distance’ defined by the L2-norm ‖•‖2. This geometry
provides us with a notion of convergence in L2(X) (see §6E(i) on page 117). Like
R, we would like L2(X) to be complete, so that any sequence of functions which
‘looks like it is converging’ does, in fact, converge to some limit point in L2(X).

Unfortunately, a sequence of perfectly ‘nice’ functions in L2(X) can converge
to a totally ‘pathological’ limit function, the same way that a sequence of ‘nice’
rational numbers can converge to an irrational number. If we exclude the patho-
logical functions from L2(X), we will be like the ancient Greeks, who excluded
irrational numbers from their mathematics. We will encounter situations where
a certain equation ‘should’ have a solution, but doesn’t, just as the Greeks dis-
covered that the equation x2 = 2 had no solution in their mathematics.

4Technically, any Cauchy sequence.
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Thus our definition of L2(X) must include some pathological functions. But
if these pathological functions are in L2(X), and L2(X) is defined as the set of
elements with finite norm, and the norm ‖f‖2 is defined using an integral like
(6B.2), then we must have a way of integrating these pathological functions.
Hence the necessity of the Lebesgue integral.

Fortunately, all the functions we will encounter in this book are Riemann
integrable. For the purposes of solving PDEs, you do not need to know how to
compute the Lebesgue integral. But it is important to know that it exists, and
that somewhere in the background, its presence is making all the mathematics
work properly.

6D Orthogonality

Prerequisites: §6A.

Two functions f, g ∈ L2(X) are orthogonal if 〈f, g〉 = 0. Intuitively, this
means that f and g are ‘perpendicular’ vectors in the infinite-dimensional vector
space L2(X).

Example 6D.1. Treat sin and cos as elements of L2[−π, π]. Then they are
orthogonal:

〈sin, cos〉 =
1

2π

∫ π

−π
sin(x) cos(x) dx = 0. (Exercise 6D.1). ♦E©

An orthogonal set of functions is a set {f1, f2, f3, . . .} of elements in L2(X)
such that 〈fj , fk〉 = 0 whenever j 6= k. If, in addition, ‖fj‖2 = 1 for all j, then
we say this is an orthonormal set of functions. Fourier analysis is based on
the orthogonality of certain families of trigonometric functions. Example 6D.1
was an example of this, which generalizes as follows....

Proposition 6D.2. Trigonometric Orthogonality on [−π, π]
For every n ∈ N, define the functions Sn,Cn : [−π, π] −→ R by Sn(x) :=

sin (nx) and Cn(x) := cos (nx), for all x ∈ [−π, π]. (See Figure 6D.1). Then the
set {C0,C1,C2, . . . ; S1,S2,S3, . . .} is an orthogonal set of functions for L2[−π, π].
In other words:

(a) 〈Sn,Sm〉 =
1

2π

∫ π

−π
sin(nx) sin(mx) dx = 0 , whenever n 6= m.

(b) 〈Cn,Cm〉 =
1

2π

∫ π

−π
cos(nx) cos(mx) dx = 0, whenever n 6= m.

(c) 〈Sn,Cm〉 =
1

2π

∫ π

−π
sin(nx) cos(mx) dx = 0, for any n and m.
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Figure 6D.1: C1, C2, C3, and C4; S1, S2, S3, and S4

(d) However, these functions are not orthonormal, because they do not have
unit norm. Instead, for any n 6= 0,

‖Cn‖2 =

√

1
2π

∫ π

−π
cos(nx)2 dx =

1√
2
, and ‖Sn‖2 =

√

1
2π

∫ π

−π
sin(nx)2 dx =

1√
2
.

Proof. Exercise 6D.2 Hint: Use the trigonometric identities: 2 sin(α) cos(β) = E©
sin(α+β)+sin(α−β), 2 sin(α) sin(β) = cos(α−β)−cos(α+β), and 2 cos(α) cos(β) =
cos(α+ β) + cos(α− β). 2

Remark. Notice that C0(x) = 1 is just the constant function.

It is important to remember that the statement, “f and g are orthogonal”
depends upon the domain X which we are considering. For example, compare
the following theorem to the preceeding one...

Proposition 6D.3. Trigonometric Orthogonality on [0, L]
Let L > 0, and, for every n ∈ N, define the functions Sn,Cn : [0, L] −→ R by

Sn(x) := sin
(nπx

L

)

and Cn(x) := cos
(nπx

L

)

, for all x ∈ [0, L].
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(a) The set {C0,C1,C2, . . .} is an orthogonal set of functions for L2[0, L]. In

other words: 〈Cn,Cm〉 =
1
L

∫ L

0
cos
(nπ

L
x
)

cos
(mπ

L
x
)

dx = 0,

whenever n 6= m.

However, these functions are not orthonormal, because they do not have

unit norm. Instead, for any n 6= 0, ‖Cn‖2 =

√

1
L

∫ L

0
cos
(nπ

L
x
)2

dx =

1√
2

.

(b) The set {S1,S2,S3, . . .} is an orthogonal set of functions for L2[0, L]. In

other words: 〈Sn,Sm〉 =
1
L

∫ L

0
sin
(nπ

L
x
)

sin
(mπ

L
x
)

dx = 0,

whenever n 6= m.

However, these functions are not orthonormal, because they do not have

unit norm. Instead, for any n 6= 0, ‖Sn‖2 =

√

1
L

∫ L

0
sin
(nπ

L
x
)2

dx =

1√
2

.

(c) The functions Cn and Sm are not orthogonal to one another on [0, L].
Instead:

〈Sn,Cm〉 =
1
L

∫ L

0
sin
(nπ

L
x
)

cos
(mπ

L
x
)

dx =















0 if n+m is even

2n
π(n2 −m2)

if n+m is odd.

Proof. Exercise 6D.3 . 2
E©

Remark. The trigonometric functions are just one of several important orthog-
onal sets of functions. Different orthogonal sets are useful for different domains
or different applications. For example, in some cases, it is convenient to use
a collection of orthogonal polynomial functions. Several orthogonal polynomial
families exist, including the Legendre Polynomials (see § 16D on page 359), the
Chebyshev polynomials (see Exercise 14B.1(e) on page 278 of §14B(i)), the Her-
mite polynomials and the Laguerre polynomials. See [Bro89, Chap.3] for a good
introduction.

In the study of partial differential equations, the following fact is particularly
important:
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Figure 6D.2: Four Haar basis elements: H1,H2,H3,H4

Let X ⊂ RD be any domain. If f, g : X −→ C are two eigenfunc-
tions of the Laplacian with different eigenvalues, then f and g are
orthogonal in L2(X).

(See Proposition 15E.9 on page 345 for a precise statement of this.) Because
of this, we can get orthogonal sets whose members are eigenfunctions of the
Laplacian (see Theorem 15E.12 on page 347). These orthogonal sets are the
‘building blocks’ with which we can construct solutions to a PDE satisfying
prescribed initial conditions or boundary conditions. This is the basic strategy
behind the solution methods of Chapters 11-14.

Exercise 6D.4. Figure 6D.2 portrays the The Haar Basis. We define H0 ≡ 1, E©
and for any natural number N ∈ N, we define the Nth Haar function HN : [0, 1] −→ R
by:

HN (x) =















1 if
2n
2N
≤ x <

2n+ 1
2N

, for some n ∈
[

0...2N−1
)

;

−1 if
2n+ 1

2N
≤ x <

2n+ 2
2N

, for some n ∈
[

0...2N−1
)

.

(a) Show that the set {H0,H1,H2,H3, . . .} is an orthonormal set in L2[0, 1].
(b) There is another way to define the Haar Basis. First recall that any number x ∈ [0, 1]
has a unique binary expansion of the form

x =
x1

2
+

x2

4
+

x3

8
+

x4

16
+ · · · +

xn
2n

+ · · ·

where x1, x2, x3, x4, . . . are all either 0 or 1. Show that, for any n ≥ 1,

Hn(x) = (−1)xn =
{

1 if xn = 0;
−1 if xn = 1.

�

Exercise 6D.5 Figure 6D.3 portrays a Wavelet Basis. We define W0 ≡ 1, E©
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3;0W 3;1W

3;2W 3;3W

Figure 6D.3: Seven Wavelet basis elements: W1,0; W2,0, W2,1;
W3,0, W3,1,W3,2, W3,3

and for any N ∈ N and n ∈
[

0...2N−1
)

, we define

Wn;N (x) =



























1 if
2n
2N
≤ x <

2n+ 1
2N

;

−1 if
2n+ 1

2N
≤ x <

2n+ 2
2N

;

0 otherwise.

Show that the the set

{W0; W1,0; W2,0,W2,1; W3,0,W3,1,W3,2,W3,3; W4,0, . . . ,W4,7; W5,0, . . . ,W5,15; . . .}

is an orthogonal set in L2[0, 1], but is not orthonormal: for any N and n, we have

‖Wn;N‖2 =
1

2(N−1)/2
.

6E Convergence concepts

Prerequisites: §4A.

If {x1, x2, x3, . . .} is a sequence of numbers, we know what it means to say
“ lim
n→∞

xn = x”. We can think of convergence as a kind of “approximation”.
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Figure 6E.1: The sequence {f1, f2, f3, . . .} converges to the constant 0 function
in L2(X).

Heuristically speaking, if the sequence {xn}∞n=1 converges to x, then, for very
large n, the number xn is a good approximation of x.

If {f1, f2, f3, . . .} was a sequence of functions, and f was some other function,
then we might want to say that “ lim

n→∞
fn = f”. We again imagine convergence

as a kind of “approximation”. Heuristically speaking, if the sequence {fn}∞n=1

converges to f , then, for very large n, the function fn is a good approximation of
f .

However, there are several ways we can interpret “good approximation”, and
these in turn lead to several different notions of “convergence”. Thus, conver-
gence of functions is a much more subtle concept that convergence of numbers.
We will deal with three kinds of convergence here: L2-convergence, pointwise
convergence, and uniform convergence.

6E(i) L2 convergence

Let X ⊂ RD be some domain, and define

M :=







∫

X
1 dx if X is a finite domain;

1 if X is an infinite domain.

If f, g ∈ L2(X), then the L2-distance between f and g is just

‖f − g‖2 :=
(

1
M

∫

X
|f(x)− g(x)|2 dx

)1/2

,
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If we think of f as an “approximation” of g, then ‖f − g‖2 measures the root-
mean-squared error of this approximation.

Lemma 6E.1. ‖•‖2 is a norm. That is:

(a) For any f : X −→ R and r ∈ R, ‖r · f‖2 = |r| · ‖f‖2.

(b) (Triangle Inequality) For any f, g : X −→ R, ‖f + g‖2 ≤ ‖f‖2 + ‖g‖2.

(c) For any f : X −→ R, ‖f‖2 = 0 if and only if f ≡ 0.

Proof. Exercise 6E.1 2
E©

If {f1, f2, f3, . . .} is a sequence of successive approximations of f , then we
say the sequence converges to f in L2 if lim

n→∞
‖fn − f‖2 = 0 (sometimes

this is called convergence in mean square). See Figure 6E.1. We then write
f = L2− lim

n→∞
fn.

Example 6E.2. In each of the following examples, let X = [0, 1].

(a) Suppose fn(x) =
{

1 if 1/n < x < 2/n
0 otherwise

(Figure 6E.2A). Then ‖fn‖2 =

1√
n

(Exercise 6E.2). Hence, lim
n→∞

‖fn‖2 = lim
n→∞

1√
n

= 0, so the se-E©

quence {f1, f2, f3, . . .} converges to the constant 0 function in L2[0, 1].

(b) For all n ∈ N, let fn(x) =
{

n if 1/n < x < 2/n;
0 otherwise

(Figure 6E.2B).

Then ‖fn‖2 =
√
n (Exercise 6E.3). Hence, lim

n→∞
‖fn‖2 = lim

n→∞

√
n =E©

∞, so the sequence {f1, f2, f3, . . .} does not converge to zero in L2[0, 1].

(c) For each n ∈ N, let fn(x) =
{

1 if
∣

∣
1
2 − x

∣

∣ < 1
n ;

0 otherwise
. Then the sequence

{fn}∞n=1 converges to 0 in L2. (Exercise 6E.4 )E©

(d) For all n ∈ N, let fn(x) =
1

1 + n ·
∣

∣x− 1
2

∣

∣

. Figure 6E.3 portrays elements

f1, f10, f100, and f1000; these picture strongly suggest that the sequence
is converging to the constant 0 function in L2[0, 1]. The proof of this is
Exercise 6E.5 .E©

(e) Recall the Wavelet functions from Example 6D.4(b). For any N ∈ N
and n ∈

[

0..2N−1
)

, we had ‖WN,n‖2 =
1

2(N−1)/2
. Thus, the sequence of

wavelet basis elements converges to the constant 0 function in L2[0, 1]. ♦
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Figure 6E.2: (A) Examples 6E.2(a), 6E.5(a), and 6E.9(a); (B) Examples
6E.2(b) and 6E.5(b).
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Figure 6E.3: Examples 6E.2(c) and 6E.5(c): If fn(x) = 1
1+n·|x− 1

2 |
, then the

sequence {f1, f2, f3, . . .} converges to the constant 0 function in L2[0, 1].

Note that, if we define gn = f − fn for all n ∈ N, then
(

fn −−−−n→∞−→ f in L2
)

⇐⇒
(

gn −−−−n→∞−→ 0 in L2
)

Hence, to understand L2-convergence in general, it is sufficient to understand
L2-convergence to the constant 0 function.

Lemma 6E.3. The inner product function 〈•, •〉 is continuous with respect
to L2 convergence. That is: if {f1, f2, f3, . . .} and {g1, g2, g3, . . .} are two se-
quences of functions in L2(X), and L2− lim

n→∞
fn = f and L2− lim

n→∞
gn = g, then

lim
n→∞

〈fn, gn〉 = 〈f, g〉.

Proof. Exercise 6E.6 2
E©

6E(ii) Pointwise convergence

Convergence in L2 only means that the average approximation error gets small.
It does not mean that lim

n→∞
fn(x) = f(x) for every x ∈ X. If this equation is

true, then we say that the sequence {f1, f2, . . .} converges pointwise to f (see
Figure 6E.4). We then write f ≡ lim

n→∞
fn. Pointwise convergence is generally

considered stronger than L2 convergence because of the following result:

Theorem 6E.4. Let X ⊂ RD be a bounded domain, and let {f1, f2, . . .} be a
sequence of functions in L2(X). Suppose:

(a) All the functions are uniformly bounded —that is, there is some M > 0
such that |fn(x)| < M for all n ∈ N and all x ∈ X.
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Figure 6E.4: The sequence {f1, f2, f3, . . .} converges pointwise to the constant
0 function. Thus, if we pick some random points w, x, y, z ∈ X, then we see that
lim
n→∞

fn(w) = 0, lim
n→∞

fn(x) = 0, lim
n→∞

fn(y) = 0, and lim
n→∞

fn(z) = 0.

(b) The sequence {f1, f2, . . .} converges pointwise to some function f ∈ L2(X).

Then the sequence {f1, f2, . . .} also converges to f in L2. 2

Proof. Exercise 6E.7 Hint: You may use the following special case of Lebesgue’s E©
Dominated Convergence Theorem:5

Let {g1, g2, . . .} be a sequence of integrable functions on the domain X.
Let g : X −→ R be another such function. Suppose that

(a) There is some some L > 0 such that |gn(x)| < L for all n ∈ N and
all x ∈ X.

(b) For all x ∈ X, lim
n→∞

gn(x) = g(x).

Then lim
n→∞

∫

X
gn(x) dx =

∫

X
g(x) dx.

5See [Fol84, Thm.2.24, p.53] or [KF75, §30.1, p.303].
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Figure 6E.5: Examples 6E.5(d) and 6E.9(d): If gn(x) = 1
1+n·|x− 1

2n |
, then the

sequence {g1, g2, g3, . . .} converges pointwise to the constant 0 function on [0, 1].

Let gn := |f − fn|2 for all n ∈ N, and let g = 0. Apply the Dominated Convergence
Theorem. 2

Example 6E.5. In each of the following examples, let X = [0, 1].

(a) As in Example 6E.2(a), for each n ∈ N, let fn(x) =
{

1 if 1/n < x < 2/n;
0 otherwise

.

(Fig.6E.2A). The sequence {fn}∞n=1 converges pointwise to the constant
0 function on [0, 1]. Also, as predicted by Theorem 6E.4, the sequence
{fn}∞n=1 converges to the constant 0 function in L2 (see Example 6E.2(a)).

(b) As in Example 6E.2(b), for each n ∈ N, let fn(x) =
{

n if 1/n < x < 2/n;
0 otherwise

(Fig.6E.2B). Then this sequence converges pointwise to the constant 0
function, but does not converge to zero in L2[0, 1]. This illustrates the
importance of the boundedness hypothesis in Theorem 6E.4.

(c) As in Example 6E.2(c), for each n ∈ N, let fn(x) =
{

1 if
∣

∣
1
2 − x

∣

∣ < 1
n ;

0 otherwise
.

Then the sequence {fn}∞n=1 does not converges to 0 in pointwise, although
it does converge in L2.
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 f (x)

f (x)

f
oo

Figure 6E.6: The uniform norm of f is defined: ‖f‖∞ := supx∈X |f(x)|.

(d) Recall the functions fn(x) =
1

1 + n ·
∣

∣x− 1
2

∣

∣

from Example 6E.2(d). This

sequence of functions converges to zero in L2[0, 1], however, it does not
converge to zero pointwise (Exercise 6E.8 ). E©

(e) For all n ∈ N, let gn(x) =
1

1 + n ·
∣

∣x− 1
2n

∣

∣

. Figure 6E.5 on the facing

page portrays elements g1, g5, g10, g15, g30, and g50; These picture strongly
suggest that the sequence is converging pointwise to the constant 0 function
on [0, 1]. The proof of this is Exercise 6E.9 . E©

(f) Recall from Example 6E.2(e) that the sequence of Wavelet basis elements
{WN ;n} converges to zero in L2[0, 1]. Note, however, that it does not
converge to zero pointwise (Exercise 6E.10 ). ♦ E©

Note that, if we define gn = f − fn for all n ∈ N, then
(

fn −−−−n→∞−→ f pointwise
)

⇐⇒
(

gn −−−−n→∞−→ 0 pointwise
)

Hence, to understand pointwise convergence in general, it is sufficient to under-
stand pointwise convergence to the constant 0 function.

6E(iii) Uniform convergence

There is an even stronger form of convergence. If f : X −→ R is a function, then
the uniform norm of f is defined:

‖f‖∞ := sup
x∈X

∣

∣

∣f(x)
∣

∣

∣ .

This measures the farthest deviation of the function f from zero (see Figure
6E.6).
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Example 6E.6. Suppose X = [0, 1], and f(x) = 1
3x

3 − 1
4x (as in Figure 6E.8A).

The minimal point of f is x = 1
2 , where f ′(1

2) = 0 and f(1
2) = −1

12 . The
maximal point of f is x = 1, where f(1) = 1

12 . Thus, |f(x)| takes a maximum

value of 1
12 at either point, so that ‖f‖∞ = sup

0≤x≤1

∣

∣

∣

∣

1
3
x3 − 1

4
x

∣

∣

∣

∣

=
1
12

. ♦

Lemma 6E.7. ‖•‖∞ is a norm. That is:

(a) For any f : X −→ R and r ∈ R, ‖r · f‖∞ = |r| · ‖f‖∞.

(b) (Triangle Inequality) For any f, g : X −→ R, ‖f + g‖∞ ≤ ‖f‖∞+‖g‖∞.

(c) For any f : X −→ R, ‖f‖∞ = 0 if and only if f ≡ 0.

Proof. Exercise 6E.11 2
E©

ε

ε f(x)

g(x)

Figure 6E.7: If ‖f − g‖∞ < ε, this means that g(x) is confined within an ε-tube
around f for all x.

The uniform distance between two functions f and g is then given by:

‖f − g‖∞ = sup
x∈X

∣

∣

∣f(x)− g(x)
∣

∣

∣ .

One way to interpret this is portrayed in Figure 6E.7. Define a “tube” of width ε
around the function f . If ‖f − g‖∞ < ε, this means that g(x) is confined within
this tube for all x.

Example 6E.8. Let X = [0, 1], and suppose f(x) = x(x+ 1) and g(x) = 2x (as
in Figure 6E.8B). For any x ∈ [0, 1],

|f(x)− g(x)| =
∣

∣x2 + x− 2x
∣

∣ =
∣

∣x2 − x
∣

∣ = x− x2.
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Figure 6E.8: (A) The uniform norm of f(x) = 1
3x

3 − 1
4x (Example 6E.6). (B)

The uniform distance between f(x) = x(x + 1) and g(x) = 2x (Example 6E.8).
(C) gn(x) =

∣

∣x− 1
2

∣

∣

n, for n = 1, 2, 3, 4, 5 (Example (7b))

(because it is nonnegative). This expression takes its maximum at x = 1
2 (to

see this, solve for f ′(x) = 0), and its value at x = 1
2 is 1

4 . Thus, ‖f − g‖∞ =

sup
x∈X

∣

∣

∣x(x− 1)
∣

∣

∣ =
1
4

. ♦

Let {g1, g2, g3, . . .} be functions from X to R, and let f : X −→ R be some
other function. The sequence {g1, g2, g3, . . .} converges uniformly to f if
lim
n→∞

‖gn − f‖∞ = 0. We then write f = unif−lim
n→∞

gn. This means not

only that lim
n→∞

gn(x) = f(x) for every x ∈ X, but furthermore, that the func-
tions gn converge to f everywhere at the same “speed”. This is portrayed in
Figure 6E.9. For any ε > 0, we can define a “tube” of width ε around f , and,
no matter how small we make this tube, the sequence {g1, g2, g3, . . .} will even-
tually enter this tube and remain there. To be precise: there is some N such
that, for all n > N , the function gn is confined within the ε-tube around f —i.e.
‖f − gn‖∞ < ε.

Example 6E.9. In each of the following examples, let X = [0, 1].

(a) Suppose, as in Example 6E.5(a) on page 122, and Figure 6E.2B on page
119, that

gn(x) =
{

1 if 1
n < x < 2

n ;
0 otherwise.

Then the sequence {g1, g2, . . .} converges pointwise to the constant zero
function, but does not converge to zero uniformly on [0, 1]. (Exercise 6E.12
Verify these claims.). E©
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g1 (x)
f(x)

g2 (x)

g3 (x)

goo (x) = f(x)

f(x)

Figure 6E.9: The sequence {g1, g2, g3, . . .} converges uniformly to f .

(b) If gn(x) =
∣

∣x− 1
2

∣

∣

n (see Figure 6E.8C), then ‖gn‖∞ = 1
2n (Exercise 6E.13

). Thus, the sequence {g1, g2, . . .} converges to zero uniformly on [0, 1], be-E©

cause lim
n→∞

‖gn‖∞ = lim
n→∞

1
2n

= 0.

(c) If gn(x) = 1/n for all x ∈ [0, 1], then the sequence {g1, g2, . . .} converges to
zero uniformly on [0, 1] (Exercise 6E.14 ).E©

(d) Recall the functions gn(x) = 1
1+n·|x− 1

2n |
from Example 6E.5(e) (Figure 6E.5

on page 122). The sequence {g1, g2, . . .} converges pointwise to the con-
stant zero function, but does not converge to zero uniformly on [0, 1].
(Exercise 6E.15 Verify these claims.). ♦E©

Note that, if we define gn = f − fn for all n ∈ N, then
(

fn −−−−n→∞−→ f uniformly
)

⇐⇒
(

gn −−−−n→∞−→ 0 uniformly
)
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Hence, to understand uniform convergence in general, it is sufficient to under-
stand uniform convergence to the constant 0 function.

Uniform convergence is the ‘best’ kind of convergence. It has the most useful
consequences, but it is also the most difficult to achieve. (In many cases, we
must settle for pointwise or L2 convergence instead.) For example, the following
consequences of uniform convergence are extremely useful.

Proposition 6E.10. Let X ⊂ RD be some domain. Let {f1, f2, f3, . . .} be
functions from X to R, and let f : X −→ R be some other function. Suppose
fn −−−−n→∞−→ f uniformly.

(a) If {fn}∞n=1 are all continuous on X, then f is also continuous on X.

(b) If X is compact (that is, closed and bounded), then lim
n→∞

∫

X
fn(x) dx =

∫

X
f(x) dx.

(c) Suppose the functions {fn}∞n=1 are all differentiable on X, and suppose
f ′n −−−−n→∞−→ F uniformly. Then f is also differentiable, and f ′ = F .

Proof. (a) Exercise 6E.16 (Slightly challenging; for students with some analysis E©
background).

For (b,c) see e.g. [Asm05, Theorems 4 and 5, p.91-92 of §2.9]. 2

Note that Proposition 6E.10(a,c) are false if we replace ‘uniformly’ with
‘pointwise’ or ‘in L2.’ (Proposition 6E.10(b) is sometimes true under these con-
ditions, but only if we also add additional hypotheses.) Indeed, the next result
says that uniform convergence is logically stronger than either pointwise or L2

convergence.

Corollary 6E.11. Let {f1, f2, f3, . . .} be functions from X to R, and let
f : X −→ R be some other function.

(a) If fn −−−−n→∞−→ f uniformly, then fn −−−−n→∞−→ f pointwise.

(b) Suppose X is compact (that is, closed and bounded). If fn −−−−n→∞−→ f
uniformly, then:

[i] fn −−−−n→∞−→ f in L2.

[ii] For any g ∈ L2(X), we have lim
n→∞

〈fn, g〉 = 〈f, g〉.

Proof. Exercise 6E.17 (a) is easy. For (b), use Proposition 6E.10(b). 2
E©
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Sometimes, uniform convergence is a little too much to ask for, and we must
settle for a slightly weaker form of convergence. Let X ⊂ RD be some domain.
Let {g1, g2, g3, . . .} be functions from X to R, and let f : X −→ R be some other
function. The sequence {g1, g2, g3, . . .} converges semiuniformly to f if:

(a) {g1, g2, g3, . . .} converges pointwise to f on X; i.e. f(x) = lim
n→∞

gn(x) for
all x ∈ X.

(b) {g1, g2, g3, . . .} converges uniformly to f on any closed subset of int (X). In
other words, if Y ⊂ int (X) is any closed set, then

lim
n→∞

(

sup
y∈Y
|f(y)− gn(y)|

)

= 0.

Heuristically speaking, this means that the sequence {gn}∞n=1 is ‘trying’ to con-
verge to f uniformly on X, but it is maybe getting ‘stuck’ at some of the boundary
points of X.

Example 6E.12. Let X := (0, 1). Recall the functions gn(x) = 1
1+n·|x− 1

2n |
from Figure 6E.5 on page 122. By Example 6E.9(d) on page 126, we know
that this sequence doesn’t converge uniformly to 0 on (0, 1). However, it does
converge semiuniformly to 0. First, we know it converges pointwise on (0, 1),
by Example 6E.5(e) on page 123. Second, if 0 < a < b < 1, it is easy
to check that {gn}∞n=1 converges to f uniformly on the closed interval [a, b]
(Exercise 6E.18). It follows that {gn}∞n=1 converges to f uniformly on anyE©
closed subset of (0, 1). ♦

Summary. The various forms of convergence are logically related as follows:
(

Uniform convergence
)

⇒
(

Semiuniform convergence
)

⇒
(

Pointwise convergence
)

.

Also, if X is compact, then
(

Uniform convergence
)

=⇒
(

Convergence in L2
)

.

Finally, if the sequence of functions is uniformly bounded and X is compact, then
(

Pointwise convergence
)

=⇒
(

Convergence in L2
)

.

However, the opposite implications are not true. In general:
(

Convergence in L2
)

6=⇒
(

Pointwise convergence
)

6=⇒
(

Uniform convergence
)
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6E(iv) Convergence of function series

Let {f1, f2, f3, . . .} be functions from X to R. The function series
∞
∑

n=1

fn is the

formal infinite summation of these functions; we would like to think of this series

as defining another function from X to R. . Intuitively, the symbol “
∞
∑

n=1

fn”

should represent the function which arises as the limit lim
N→∞

FN , where, for each

N ∈ N, FN (x) :=
N
∑

n=1

fn(x) = f1(x) + f2(x) + · · · + fN (x) is the Nth partial

sum. To make this precise, we must specify the sense in which the partial sums
{F1, F2, . . .} converge. If F : X −→ R is this putative limit function, then we say

that the series
∞
∑

n=1

fn....

• ...converges in L2 to F if F = L2− lim
N→∞

N
∑

n=1

fn. We then write F
˜

L̃2

∞
∑

n=1

fn.

• ...converges pointwise to F if, for each x ∈ X, F (x) = lim
N→∞

N
∑

n=1

fn(x).

We then write F ≡
∞
∑

n=1

fn.

• ...converges uniformly to F if F = unif− lim
N→∞

N
∑

n=1

fn. We then write

F
unif

∞
∑

n=1

fn.

The next result provides a useful condition for the uniform convergence of an
infinite summation of functions; we will use this result often in our study of
Fourier series and other eigenfunction expansions in Chapters 7 to 9:

Proposition 6E.13. Weierstrass M -test
Let {f1, f2, f3, . . .} be functions from X to R. For every n ∈ N, let Mn := ‖fn‖∞.

If

∞
∑

n=1

Mn < ∞, then the series

∞
∑

n=1

fn converges uniformly on X.

Proof. Exercise 6E.19 (a) Show that the series converges pointwise to some limit E©
function f : X −→ R.

(b) For any N ∈ N, show that

∥

∥

∥

∥

∥

F −
N
∑

n=1

fn

∥

∥

∥

∥

∥

∞

≤
∞
∑

n=N+1

Mn.
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(c) Show that lim
N→∞

∞
∑

n=N+1

Mn = 0. 2

The next three sufficient conditions for convergence are also sometimes useful
(but they are not used later in this book).

Proposition 6E.14. Dirichlet Test

Let {f1, f2, f3, . . .} be functions from X to R. Let {ck}∞k=1 be a sequence of(Optional)

positive real numbers. Then the series

∞
∑

n=1

cn fn converges uniformly on X if:

• lim
n→∞

ck = 0; and

• There is some M > 0 such that, for all N ∈ N, we have

∥

∥

∥

∥

∥

N
∑

n=1

fn

∥

∥

∥

∥

∥

∞

< M .

Proof. See [Asm05, Appendix to §2.10, p.99] 2

Proposition 6E.15. Cauchy’s Criterion

Let {f1, f2, f3, . . .} be functions from X to R. For every N ∈ N, let CN :=(Optional)

sup
M>N

∥

∥

∥

∥

∥

M
∑

n=N

fn

∥

∥

∥

∥

∥

∞

.

Then

(

The series

∞
∑

n=1

fn converges uniformly on X
)

⇐⇒
(

lim
N→∞

CN = 0
)

.

Proof. See [CB87, §88]. 2

Proposition 6E.16. Abel’s Test

Let X ⊂ RN and Y ⊂ RM be two domains. Let {f1, f2, f3, . . .} be a sequence(Optional)

of functions from X to R, such that the series

∞
∑

n=1

fn converges uniformly on X.

Let {g1, g2, g3, . . .} be another sequence of functions from Y to R, and consider
the sequence {h1, h2, . . .} of functions from X × Y to R, defined by hn(x, y) :=
fn(x)gn(y). Suppose:

(a) The sequence {gn}∞n=1 is uniformly bounded; i.e. there is some M > 0 such
that |gn(y)| < M for all n ∈ N and y ∈ Y.
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(b) The sequence {gn}∞n=1 is monotonic; i.e. either g1(y) ≤ g2(y) ≤ g3(y) ≤ · · ·
for all y ∈ Y, or g1(y) ≥ g2(y) ≥ g3(y) ≥ · · · for all y ∈ Y.

Then the series

∞
∑

n=1

hn converges uniformly on X× Y.

Proof. See [CB87, §88]. 2

6F Orthogonal and orthonormal Bases

Prerequisites: §6A, §6E(i). Recommended: §6E(iv).

An orthogonal set in L2(X) is a (finite or infinite) collection of functions
{b1,b2,b3, . . .} such that 〈bk,bj〉 = 0 whenever k 6= j. Intuitively, the vectors
{b1,b2,b3, . . .} are all ‘perpendicular’ to one another in the infinite-dimensional
geometry of L2(X). One consequence is an L2-version of the Pythagorean
Formula: For any N ∈ N and any real numbers r1, r2, . . . , rN ∈ R, we have

‖r1b1 + r2b2 + · · ·+ rNbn‖22 = r2
1 ‖b1‖22 + r2

2 ‖bN‖
2
2 + · · ·+ r2

N ‖bN‖
2
2 .

(6F.1)
(Exercise 6F.1 Verify the L2 Pythagorean formula). E©

An orthogonal basis for L2(X) is an infinite collection of functions {b1,b2,b3, . . .}
such that:

• {b1,b2,b3, . . .} form an orthogonal set (i.e. 〈bk,bj〉 = 0 whenever k 6= j.)

• For any g ∈ L2(X), if we define γn =
〈g,bn〉
‖bn‖22

, for all n ∈ N, then

g
˜

L̃2

∞
∑

n=1

γnbn.

Recall that this means that lim
N→∞

∥

∥

∥

∥

∥

g −
N
∑

n=1

γnbn

∥

∥

∥

∥

∥

2

= 0. In other words, we

can approximate g as closely as we want in L2 norm with a partial sum
N
∑

n=1

γnbn,

if we make N large enough.
An orthonormal basis for L2(X) is an infinite collection of functions {b1,b2,b3, . . .}

such that:

• ‖bk‖2 = 1 for every k.
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• {b1,b2,b3, . . .} is an orthogonal basis for L2(X). In other words, 〈bk,bj〉 =
0 whenever k 6= j, and, for any g ∈ L2(X), if we define γn = 〈g,bn〉 for all

n ∈ N, then g
˜

L̃2

∞
∑

n=1

γnbn.

One consequence of this is

Theorem 6F.1. Parseval’s Equality
Let {b1,b2,b3, . . .} be an orthonormal basis for L2(X), and let f ,g ∈ L2(X).

Let ϕn := 〈f ,bn〉 and γn := 〈g,bn〉 for all n ∈ N. Then

(a) 〈f ,g〉 =
∞
∑

n=1

ϕnγn.

(b) ‖g‖22 =
∞
∑

n=1

|γn|2.

Proof. Exercise 6F.2 Hint: For all N ∈ N, let FN :=
∑N
n=1 ϕnbn and GN :=E©

∑N
n=1 γnbn.

(i) Show that 〈FN ,GN 〉 =
∑N
n=1 ϕnγn (Hint: the functions {b1, . . . ,bN} are or-

thonormal).

(ii) To prove (a), show that 〈f ,g〉 = lim
N→∞

〈FN ,GN 〉 (Hint: Use Lemma 6E.3).

(iii) To prove (b), set f = g in (a). 2

The idea of Fourier analysis is to find an orthogonal basis for an L2-space,
using familiar trigonometric functions. We will return to this in Chapter 7.

Further reading:

Most of the mathematically rigorous texts on partial differential equations (such
as [CB87], [Asm05] or [Eva91, Appendix D]) contain detailed and thorough dis-
cussions of L2 space, orthogonal basis, and the various convergence concepts
discussed in this chapter. This is because almost all solutions to partial dif-
ferential equations arise through some sort of infinite series or approximating
sequence; hence it is essential to properly understand the various forms of func-
tion convergence and their relationships.

The convergence of sequences of functions is part of a subject called real anal-
ysis, and any advanced textbook on real analysis will contain extensive material
on convergence. There are many other forms of function convergence we haven’t
even mentioned in this chapter, including Lp convergence (for any value of p
between 1 and∞), convergence in measure, convergence almost everywhere, and
weak* convergence. Different convergence modes are useful in different contexts,
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Figure 6G.1: Problems for Chapter 6

and the logical relationships between them are fairly subtle. See [Fol84, §2.4]
for a good summary. Other standard references are [WZ77, Chap.8], [KF75,
§28.4-§28.5; §37], [Rud87] or [Roy88].

The geometry of infinite-dimensional vector spaces is called functional analy-
sis, and is logically distinct from the convergence theory for functions (although
of course, most of the important infinite dimensional spaces are spaces of func-
tions). Infinite-dimensional vector spaces fall into several broad classes, depend-
ing upon the richness of the geometric and topological structure, which include
Hilbert spaces [such as L2(X)], Banach Spaces [such as C(X) or L1(X)] and locally
convex spaces. An excellent introduction to functional analysis is [Con90]. Other
standard references are [Fol84, Chap.5] and [KF75, Chap.4]. Hilbert spaces are
the mathematical foundation of quantum mechanics; see [Pru81, BEH94].

6G Practice problems

1. Let X = (0, 1]. For any n ∈ N, define the function fn : (0, 1] −→ R by
fn(x) = exp(−nx). (Fig. 6G.1A)

(a) Compute ‖fn‖2 for all n ∈ N.

(b) Does the sequence {fn}∞n=1 converge to the constant 0 function in
L2(0, 1]? Explain.

(c) Compute ‖fn‖∞ for all n ∈ N.

(d) Does the sequence {fn}∞n=1 converge to the constant 0 function uni-
formly on (0, 1]? Explain.

(e) Does the sequence {fn}∞n=1 converge to the constant 0 function point-
wise on (0, 1]? Explain.

2. Let X = [0, 1]. For any n ∈ N, define fn : [0, 1] −→ R by fn(x) =
{ √

n if 1
n ≤ x <

2
n

0 otherwise
. (Fig. 6G.1B)

(a) Does the sequence {fn}∞n=1 converge to the constant 0 function point-
wise on [0, 1]? Explain.

(b) Compute ‖fn‖2 for all n ∈ N.
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(A) (B)

1/2 1

fn

1/2 1

fn

1

Figure 6G.2: Problems for Chapter 6

(c) Does the sequence {fn}∞n=1 converge to the constant 0 function in
L2[0, 1]? Explain.

(d) Compute ‖fn‖∞ for all n ∈ N.

(e) Does the sequence {fn}∞n=1 converge to the constant 0 function uni-
formly on [0, 1]? Explain.

3. Let X = R. For any n ∈ N, define fn : R −→ R by fn(x) =

{

1√
n

if 0 ≤ x < n

0 otherwise
.

(Fig. 6G.1C)

(a) Compute ‖fn‖∞ for all n ∈ N.

(b) Does the sequence {fn}∞n=1 converge to the constant 0 function uni-
formly on R? Explain.

(c) Does the sequence {fn}∞n=1 converge to the constant 0 function point-
wise on R? Explain.

(d) Compute ‖fn‖2 for all n ∈ N.

(e) Does the sequence {fn}∞n=1 converge to the constant 0 function in
L2(R)? Explain.

4. Let X = (0, 1]. For all n ∈ N, define fn : (0, 1] −→ R by fn(x) =
1

3
√
nx

(for all x ∈ (0, 1]). (Figure 6G.2A)

(a) Does the sequence {fn}∞n=1 converge to the constant 0 function point-
wise on (0, 1]? Why or why not?

(b) Compute ‖fn‖2 for all n ∈ N.

(c) Does the sequence {fn}∞n=1 converge to the constant 0 function in
L2(0, 1]? Why or why not?
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(d) Compute ‖fn‖∞ for all n ∈ N.

(e) Does the sequence {fn}∞n=1 converge to the constant 0 function uni-
formly on (0, 1]? Explain.

5. Let X = [0, 1]. For all n ∈ N, define fn : [0, 1] −→ R by fn(x) =
1

(nx+ 1)2

(for all x ∈ [0, 1]). (Figure 6G.2B)

(a) Does the sequence {fn}∞n=1 converge to the constant 0 function point-
wise on [0, 1]? Explain.

(b) Compute ‖fn‖2 for all n ∈ N.

(c) Does the sequence {fn}∞n=1 converge to the constant 0 function in
L2[0, 1]? Explain.

(d) Compute ‖fn‖∞ for all n ∈ N.
Hint: Look at the picture. Where is the value of fn(x) largest?

(e) Does the sequence {fn}∞n=1 converge to the constant 0 function uni-
formly on [0, 1]? Explain.

6. In each of the following cases, you are given two functions f, g : [0, π] −→ R.
Compute the inner product 〈f, g〉.

(a) f(x) = sin(3x), g(x) = sin(2x).

(b) f(x) = sin(nx), g(x) = sin(mx), with n 6= m.

(c) f(x) = sin(nx) = g(x) for some n ∈ N. Question: What is ‖f‖2?

(d) f(x) = cos(3x), g(x) = cos(2x).

(e) f(x) = cos(nx), g(x) = cos(mx), with n 6= m.

(f) f(x) = sin(3x), g(x) = cos(2x).

7. In each of the following cases, you are given two functions f, g : [−π, π] −→
R. Compute the inner product 〈f, g〉.

(a) f(x) = sin(nx), g(x) = sin(mx), with n 6= m.

(b) f(x) = sin(nx) = g(x) for some n ∈ N. Question: What is ‖f‖2?

(c) f(x) = cos(nx), g(x) = cos(mx), with n 6= m.

(d) f(x) = sin(3x), g(x) = cos(2x).

8. Determine if fn converges to f pointwise, in L2(X), or uniformly.

(a) fn(x) = e−nx
2
, f(x) = 0, X = [−1, 1].

(b) fn(x) = n sin(x/n), f(x) = x, X = [−π, π].
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Chapter 7

Fourier sine series and cosine
series

“The art of doing mathematics consists in finding that special case which contains all the

germs of generality.” —David Hilbert

7A Fourier (co)sine series on [0, π]
Prerequisites: §6E(iv), §6F.

Throughout this section, for all n ∈ N, we define the functions Sn : [0, π] −→
R and Cn : [0, π] −→ R by Sn(x) := sin(nx) and Cn(x) := cos(nx), for all
x ∈ [0, π] (see Figure 6D.1 on page 113).

7A(i) Sine series on [0, π]

Recommended: §5C(i).

Suppose f ∈ L2[0, π] (i.e. f : [0, π] −→ R is a function with ‖f‖2 <∞). We
define the Fourier sine coefficients of f :

Bn :=
〈f,Sn〉
‖Sn‖22

=
2
π

∫ π

0
f(x) sin(nx) dx, for all n ≥ 1. (7A.1)

The Fourier sine series of f is then the infinite summation of functions:

∞
∑

n=1

BnSn(x). (7A.2)

A function f : [0, π] −→ R is continuously differentiable on [0, π] if f
is continuous on [0, π] (hence, bounded), f ′(x) exists for all x ∈ (0, π), and
furthermore, the function f ′ : (0, π) −→ R is itself bounded and continuous on
(0, π). Let C1[0, π] be the space of all continuously differentiable functions.
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We say f is piecewise continuously differentiable (or piecewise C1, or
sectionally smooth) if there exist points 0 = j0 < j1 < j2 < · · · < jM+1 = π
(for some M ∈ N) such that f is bounded and continuously differentiable on
each of the open intervals (jm, jm+1); these are called C1 intervals for f . In
particular, any continuously differentiable function on [0, π] is piecewise contin-
uously differentiable (in this case, M = 0 and the set {j1, . . . , jM} is empty, so
all of (0, π) is a C1 interval).

Exercise 7A.1. (a) Show that any continuously differentiable function has finiteE©
L2-norm. In other words, C1[0, π] ⊂ L2[0, π].

(b) Show that any piecewise C1 function on [0, π] is in L2[0, π]. �

Theorem 7A.1. Fourier Sine Series Convergence on [0, π]

(a) The set {S1,S2,S3, . . .} is an orthogonal basis for L2[0, π]. Thus, if f ∈

L2[0, π], then the sine series (7A.2) converges to f in L2-norm, i.e. f
˜

L̃2

∞
∑

n=1

BnSn.

Furthermore, the coefficient sequence {Bn}∞n=1 is the unique sequence of
coefficients with this property. In other words, if {B′n}∞n=1 is some other

sequence of coefficients such that f
˜

L̃2

∞
∑

n=1

B′nSn, then we must have B′n =

Bn for all n ∈ N.

(b) If f ∈ C1[0, π], then the sine series (7A.2) converges pointwise on (0, π).

More generally, if f is piecewise C1, then the sine series (7A.2) converges
to f pointwise on each C1 interval for f . In other words, if {j1, . . . , jm} is
the set of discontinuity points of f and/or f ′, and jm < x < jm+1, then

f(x) = lim
N→∞

N
∑

n=1

Bn sin(nx).

(c) If

∞
∑

n=1

|Bn| < ∞, then the sine series (7A.2) converges to f uniformly on

[0, π].

(d) [i] If f is continuous and piecewise differentiable on [0, π], and f ′ ∈ L2[0, π],
and f satisfies homogeneous Dirichlet boundary conditions (i.e. f(0) =
f(π) = 0), then the sine series (7A.2) converges to f uniformly on [0, π].

[ii] Conversely, if the sine series (7A.2) converges to f uniformly on [0, π],
then f is continuous on [0, π], and satisfies homogeneous Dirichlet boundary
conditions.
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Figure 7A.1:
4
π

N
∑

n=1
n odd

1
n

sin(nx), for N = 1, 3, 5, 7, 9, 11, 21, 41, and 2001. Notice

the Gibbs phenomenon in the plots for large N .

(e) If f is piecewise C1, and K ⊂ (jm, jm+1) is any closed subset of a C1 interval
of f , then the series (7A.2) converges uniformly to f on K.

(f) Suppose {Bn}∞n=1 is a nonnegative sequence decreasing to zero. (That is,
B1 ≥ B2 ≥ · · · ≥ 0 and lim

n→∞
Bn = 0). If 0 < a < b < π, then the series

(7A.2) converges uniformly to f on [a, b].

Proof. (c) is Exercise 7A.2 (Hint: Use the Weierstrass M -test, Proposition 6E.13 E©
on page 129.)

(a,b,e) and (d)[i] are Exercise 7A.3 (Hint: use Theorem 8A.1(a,b,d,e) on page E©
162, and Proposition 8C.5(a) and Lemma 8C.6(a) on page 171).

(d)[ii] is Exercise 7A.4 . (f) is [Asm05, Thm.2, p.97 of §2.10]. 2
E©

Example 7A.2.

(a) If f(x) = sin(5x) − 2 sin(3x), then the Fourier sine series of f is just
“sin(5x) − 2 sin(3x)”. In other words, the Fourier coefficients Bn are all
zero, except that B3 = −2 and B5 = 1.
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(b) Suppose f(x) ≡ 1. For all n ∈ N,

Bn =
2
π

∫ π

0
sin(nx) dx =

−2
nπ

cos(nx)
∣

∣

∣

x=π

x=0
=

2
nπ

[

1− (−1)n
]

=
{

4
nπ if n is odd
0 if n is even

.

Thus, the Fourier sine series is:

4
π

∞
∑

n=1
n odd

1
n

sin(nx) =
4
π

(

sin(x) +
sin(3x)

3
+

sin(5x)
5

+ · · ·
)

(7A.3)

Theorem 7A.1(a) says that 1
˜

L̃2

4
π

∞
∑

n=1
n odd

1
n

sin(nx). Figure 7A.1 displays

some partial sums of the series (7A.3). The function f ≡ 1 is clearly
continuously differentiable, so, by Theorem 7A.1(b), the Fourier sine series
converges pointwise to 1 on the interior of the interval [0, π]. However, the
series does not converge to f at the points 0 or π. This is betrayed by the
violent oscillations of the partial sums near these points; this is an example
of the Gibbs phenomenon.

Since the Fourier sine series does not converge at the endpoints 0 and
π, we know automatically that it does not converge to f uniformly on
[0, π]. However, we could have also deduced this fact by noticing that f
does not have homogeneous Dirichlet boundary conditions (because f(0) =
1 = f(π)), whereas every finite sum of sin(nx)-type functions does have
homogeneous Dirichlet BC. Thus, the series (7A.3) is ‘trying’ to converge
to f , but it is ‘stuck’ at the endpoints 0 and π. (This is the idea behind
Theorem 7A.1(d)).

(c) If f(x) = cos (mx), then the Fourier sine series of f is:
4
π

∞
∑

n=1
n+m odd

n

n2 −m2
sin(nx).

(Exercise 7A.5 Hint: Use Theorem 6D.3 on page 113). ♦E©

Example 7A.3: sinh(αx)

If α > 0, and f(x) = sinh(αx), then its Fourier sine series is given by:

sinh(αx)
˜

L̃2

2 sinh(απ)
π

∞
∑

n=1

n(−1)n+1

α2 + n2
· sin(nx)

To prove this, we must show that, for all n > 0,

Bn =
2
π

∫ π

0
sinh(αx) · sin(nx) dx =

2 sinh(απ)
π

n(−1)n+1

α2 + n2
.
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To begin with, let I :=
∫ π

0
sinh(αx) · sin(nx) dx. Then, applying integration

by parts:

I =
−1
n

[

sinh(αx) · cos(nx)
∣

∣

∣

x=π

x=0
− α ·

∫ π

0
cosh(αx) · cos(nx) dx

]

=
−1
n

[

sinh(απ) · (−1)n − α

n
·
(

cosh(αx) · sin(nx)
∣

∣

∣

x=π

x=0
− α

∫ π

0
sinh(αx) · sin(nx) dx

)]

=
−1
n

[

sinh(απ) · (−1)n − α

n
· (0 − α · I)

]

=
− sinh(απ) · (−1)n

n
− α2

n2
I.

Hence: I =
− sinh(απ) · (−1)n

n
− α2

n2
I;

thus
(

1 +
α2

n2

)

I =
− sinh(απ) · (−1)n

n
;

i.e.
(

n2 + α2

n2

)

I =
sinh(απ) · (−1)n+1

n
;

so that I =
n · sinh(απ) · (−1)n+1

n2 + α2
.

Thus, Bn =
2
π
I =

2
π

n · sinh(απ) · (−1)n+1

n2 + α2
.

The function sinh is clearly continuously differentiable, so Theorem 7A.1(b)
implies that the Fourier sine series converges to sinh(αx) pointwise on the
open interval (0, π). However, the series does not converge uniformly on [0, π]
(Exercise 7A.6 Hint: What is sinh(απ)?). ♦ E©

7A(ii) Cosine series on [0, π]

Recommended: §5C(ii).

If f ∈ L2[0, π], we define the Fourier cosine coefficients of f :

A0 := 〈f, 11〉 =
1
π

∫ π

0
f(x) dx, and

An :=
〈f,Cn〉
‖Cn‖22

=
2
π

∫ π

0
f(x) cos(nx) dx, for all n ∈ N. (7A.4)

The Fourier cosine series of f is then the infinite summation of functions:

∞
∑

n=0

AnCn(x). (7A.5)
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Theorem 7A.4. Fourier Cosine Series Convergence on [0, π]

(a) The set {C0,C1,C2, . . .} is an orthogonal basis for L2[0, π]. Thus, if f ∈
L2[0, π], then the cosine series (7A.5) converges to f in L2-norm, i.e.

f
˜

L̃2

∞
∑

n=0

AnCn.

Furthermore, the coefficient sequence {An}∞n=0 is the unique sequence of
coefficients with this property. In other words, if {A′n}∞n=1 is some other

sequence of coefficients such that f
˜

L̃2

∞
∑

n=0

A′nCn, then we must have A′n =

An for all n ∈ N.

(b) If f ∈ C1[0, π], then the cosine series (7A.5) converges pointwise on (0, π).

If f is piecewise C1 on [0, π], then the cosine series (7A.5) converges to
f pointwise on each C1 interval for f . In other words, if {j1, . . . , jm} is
the set of discontinuity points of f and/or f ′, and jm < x < jm+1, then

f(x) = lim
N→∞

N
∑

n=0

An cos(nx).

(c) If

∞
∑

n=0

|An| < ∞, then the cosine series (7A.5) converges to f uniformly on

[0, π].

(d) [i] If f is continuous and piecewise differentiable on [0, π], and f ′ ∈ L2[0, π],
then the cosine series (7A.5) converges to f uniformly on [0, π].

[ii] Conversely, if

∞
∑

n=0

n |An| < ∞, then f ∈ C1[0, π] and f satisfies

homogeneous Neumann boundary conditions (i.e. f ′(0) = f ′(π) = 0).

(e) If f is piecewise C1, and K ⊂ (jm, jm+1) is any closed subset of a C1 interval
of f , then the series (7A.5) converges uniformly to f on K.

(f) Suppose {An}∞n=0 is a nonnegative sequence decreasing to zero. (That is,
A0 ≥ A1 ≥ A2 ≥ · · · ≥ 0 and lim

n→∞
An = 0). If 0 < a < b < π, then the

series (7A.5) converges uniformly to f on [a, b].

Proof. (c) is Exercise 7A.7 (Hint: Use the Weierstrass M -test, Proposition 6E.13E©
on page 129.)

(a,b,e) and (d)[i] are Exercise 7A.8 (Hint: use Theorem 8A.1(a,b,d,e) on pageE©
162, and Proposition 8C.5(b) and Lemma 8C.6(b) on page 171).

(d)[ii] is Exercise 7A.9 (Hint: Use Theorem 7C.10(b) on page 158).E©
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(f) is [Asm05, Thm.2, p.97 of §2.10]. 2

Example 7A.5.

(a) If f(x) = cos (13x), then the Fourier cosine series of f is just “cos(13x)”. In
other words, the Fourier coefficients An are all zero, except that A13 = 1.

(b) Suppose f(x) ≡ 1. Then f = C0, so the Fourier cosine coefficients are:
A0 = 1, while A1 = A2 = A3 = . . . 0.

(c) Let f(x) = sin (mx). If m is even, then the Fourier cosine series of f is:

4
π

∞
∑

n=1
n odd

n

n2 −m2
cos(nx).

Ifm is odd, then the Fourier cosine series of f is:
2
πm

+
4
π

∞
∑

n=2
n even

n

n2 −m2
cos(nx).

(Exercise 7A.10 Hint: Use Theorem 6D.3 on page 113). ♦ E©

Example 7A.6: cosh(x)

Suppose f(x) = cosh(x). Then the Fourier cosine series of f is given by:

cosh(x)
˜

L̃2

sinh(π)
π

+
2 sinh(π)

π

∞
∑

n=1

(−1)n · cos(nx)
n2 + 1

.

To see this, first note that A0 =
1
π

∫ π

0
cosh(x) dx =

1
π

sinh(x)
∣

∣

∣

x=π

x=0
=

sinh(π)
π

(because sinh(0) = 0).

Next, let I :=
∫ π

0
cosh(x) · cos(nx) dx. Then applying integration by parts,

we get:

I =
1
n

(

cosh(x) · sin(nx)
∣

∣

∣

x=π

x=0
−
∫ π

0
sinh(x) · sin(nx) dx

)

=
−1
n

∫ π

0
sinh(x) · sin(nx) dx

=
1
n2

(

sinh(x) · cos(nx)
∣

∣

∣

x=π

x=0
−
∫ π

0
cosh(x) · cos(nx) dx

)

=
1
n2

(sinh(π) · cos(nπ) − I) =
1
n2

((−1)n sinh(π)− I) .
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Thus, I =
1
n2

(

(−1)n · sinh(π) − I
)

. Hence, (n2 + 1)I = (−1)n ·

sinh(π). Hence, I =
(−1)n · sinh(π)

n2 + 1
. Thus, An =

2
π
I =

2
π

(−1)n · sinh(π)
n2 + 1

.

♦

Remark. (a) Almost any introduction to the theory of partial differential equa-
tions will contain a discussion of the Fourier convergence theorems. For example,
see [Pow99, §1.3-1.7, pp.59-85], [dZ86, Thm.6.1, p.72] or [Hab87, §3.2, p.91].

(b) Please see Remark 8D.3 on page 174 for further technical remarks about
the (non)convergence of Fourier (co)sine series, in situations where the hypothe-
ses of Theorems 7A.1 and 7A.4 are not satisfied.

7B Fourier (co)sine series on [0, L]

Prerequisites: §6E, §6F. Recommended: §7A.

Throughout this section, let L > 0 be some positive real number. For all
n ∈ N, we define the functions Sn : [0, L] −→ R and Cn : [0, L] −→ R by
Sn(x) := sin

(nπx

L

)

and Cn(x) := cos
(nπx

L

)

, for all x ∈ [0, L] (see Figure 6D.1

on page 113). Notice that, if L = π, then Sn(x) = sin(nx) and Cn(x) = cos(nx),
as in §7A. The results in this section exactly parallel those in §7A, except that
we replace π with L to obtain slightly greater generality. In principle, every
statement in this section is equivalent to the corresponding statement in §7A,
through the change of variables y = x/π (it is a useful exercise to reflect on this
as you read this section).

7B(i) Sine series on [0, L]

Recommended: §5C(i), §7A(i).

Fix L > 0, and let [0, L] be an interval of length L. If f ∈ L2[0, L], we define
the Fourier sine coefficients of f :

Bn :=
〈f,Sn〉
‖Sn‖22

=
2
L

∫ L

0
f(x) sin

(nπx

L

)

dx, for all n ≥ 1.

The Fourier sine series of f is then the infinite summation of functions:

∞
∑

n=1

BnSn(x). (7B.1)

A function f : [0, L] −→ R is continuously differentiable on [0, L] if f is
continuous on [0, L] (hence, bounded), and f ′(x) exists for all x ∈ (0, L), and
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furthermore, the function f ′ : (0, L) −→ R is itself bounded and continuous on
(0, L). Let C1[0, L] be the space of all continuously differentiable functions.

We say f : [0, L] −→ R is piecewise continuously differentiable (or
piecewise C1, or sectionally smooth) if there exist points 0 = j0 < j1 < j2 <
· · · < jM+1 = L such that f is bounded and continuously differentiable on each
of the open intervals (jm, jm+1); these are called C1 intervals for f . In partic-
ular, any continuously differentiable function on [0, L] is piecewise continuously
differentiable (in this case, all of (0, L) is a C1 interval).

Theorem 7B.1. Fourier Sine Series Convergence on [0, L]
Parts (a-f) of Theorem 7A.1 on page 138 are all still true if you replace “π”

with “L” everywhere.

Proof. Exercise 7B.1 Hint: Use the change-of-variables y = π
Lx to pass from E©

y ∈ [0, L] to x ∈ [0, π]. 2

Example 7B.2.

(a) If f(x) = sin
(

5π
L x
)

, then the Fourier sine series of f is just “sin
(

5π
L x
)

”. In
other words, the Fourier coefficients Bn are all zero, except that B5 = 1.

(b) Suppose f(x) ≡ 1. For all n ∈ N,

Bn =
2
L

∫ L

0
sin
(nπx

L

)

dx =
−2
nπ

cos
(nπx

L

) ∣

∣

∣

x=L

x=0
=

2
nπ

[

1− (−1)n
]

=
{

4
nπ if n is odd
0 if n is even

.

Thus, the Fourier sine series is given:
4
π

∞
∑

n=1
n odd

1
n

sin
(nπ

L
x
)

. Figure 7A.1

displays some partial sums of this series (in the case L = π). The Gibbs
phenomenon is clearly evident just as in Example 7A.2(b) on page 139.

(c) If f(x) = cos
(

mπ
L x
)

, then the Fourier sine series of f is:
4
π

∞
∑

n=1
n+m odd

n

n2 −m2
sin
(nπ

L
x
)

.

(Exercise 7B.2 Hint: Use Theorem 6D.3 on page 113). E©

(d) If α > 0, and f(x) = sinh
(

απx
L

)

, then its Fourier sine coefficients are
computed:

Bn =
2
L

∫ L

0
sinh

(απx

L

)

· sin
(nπx

L

)

dx =
2 sinh(απ)

π

n(−1)n+1

α2 + n2
.

(Exercise 7B.3 ). ♦ E©
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7B(ii) Cosine series on [0, L]

Recommended: §5C(ii), §7A(ii).

If f ∈ L2[0, L], we define the Fourier cosine coefficients of f :

A0 := 〈f, 11〉 =
1
L

∫ L

0
f(x) dx,

and An :=
〈f,Cn〉
‖Cn‖22

=
2
L

∫ L

0
f(x) cos

(nπx

L

)

dx, for all n > 0.

The Fourier cosine series of f is then the infinite summation of functions:

∞
∑

n=0

AnCn(x). (7B.2)

Theorem 7B.3. Fourier Cosine Series Convergence on [0, L]
Parts (a-f) of Theorem 7A.4 on page 142 are all still true if you replace “π”

with “L” everywhere.

Proof. Exercise 7B.4 Hint: Use the change-of-variables y := π
Lx to pass fromE©

x ∈ [0, L] to y ∈ [0, π]. 2

Example 7B.4.

(a) If f(x) = cos
(

13π
L x
)

, then the Fourier cosine series of f is just “cos
(

13π
L x
)

”.
In other words, the Fourier coefficients An are all zero, except that A13 = 1.

(b) Suppose f(x) ≡ 1. Then f = C0, so the Fourier cosine coefficients are:
A0 = 1, while A1 = A2 = A3 = . . . 0.

(c) Let f(x) = sin
(

mπ
L x
)

. If m is even, then the Fourier cosine series of f is:

4
π

∞
∑

n=1
n odd

n

n2 −m2
cos
(nπ

L
x
)

.

Ifm is odd, then the Fourier cosine series of f is:
2
πm

+
4
π

∞
∑

n=2
n even

n

n2 −m2
cos(nx).

(Exercise 7B.5 Hint: Use Theorem 6D.3 on page 113). ♦E©
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7C Computing Fourier (co)sine coefficients

Prerequisites: §7B.

When computing the Fourier sine coefficient Bn =
2
L

∫ L

0
f(x)·sin

(nπ

L
x
)

dx,

it is simpler to first compute the integral
∫ L

0
f(x) · sin

(nπ

L
x
)

dx, and then

multiply the result by
2
L

. Likewise, to compute a Fourier cosine coefficients, first

compute the integral
∫ L

0
f(x) · cos

(nπ

L
x
)

dx, and then multiply the result by

2
L

. In this section, we review some useful techniques to compute these integrals.

7C(i) Integration by parts

Computing Fourier coefficients almost always involves integration by parts. Gen-
erally, if you can’t compute it with integration by parts, you can’t compute it.
When evaluating a Fourier integral by parts, one almost always ends up with
boundary terms of the form “cos(nπ)” or “sin

(

n
2π
)

”, etc. The following formulae
are useful in this regard:

sin(nπ) = 0 for any n ∈ Z. (7C.3)

For example, sin(−π) = sin(0) = sin(π) = sin(2π) = sin(3π) = 0.

cos(nπ) = (−1)n for any n ∈ Z. (7C.4)

For example, cos(−π) = −1, cos(0) = 1, cos(π) = −1, cos(2π) = 1, cos(3π) =
−1, etc.

sin
(n

2
π
)

=
{

0 if n is even
(−1)k if n is odd, and n = 2k + 1

(7C.5)

For example, sin(0) = 0, sin
(

1
2π
)

= 1, sin(π) = 0, sin
(

3
2π
)

= −1, etc.

cos
(n

2
π
)

=
{

0 if n is odd
(−1)k if n is even, and n = 2k

(7C.6)

For example, cos(0) = 1, cos
(

1
2π
)

= 0, cos(π) = −1, cos
(

3
2π
)

= 0, etc.

Exercise 7C.1. Verify equations (7C.3), (7C.4), (7C.5), and (7C.6). � E©
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7C(ii) Polynomials

Theorem 7C.1. Let n ∈ N. Then

(a)
∫ L

0
sin
(nπ

L
x
)

dx =











2L
nπ

if n is odd;

0 if n is even.

(7C.7)

(b)
∫ L

0
cos
(nπ

L
x
)

dx =
{

L if n = 0
0 if n > 0.

(7C.8)

For any k ∈ {1, 2, 3, . . .}, we have the following recurrence relations:

(c)
∫ L

0
xk · sin

(nπ

L
x
)

dx =
(−1)n+1

n
· L

k+1

π
+

k

n
· L
π

∫ L

0
xk−1 · cos

(nπ

L
x
)

, (7C.9)

(d)
∫ L

0
xk · cos

(nπ

L
x
)

dx =
−k
n
· L
π

∫ L

0
xk−1 · sin

(nπ

L
x
)

. (7C.10)

Proof. Exercise 7C.2 Hint: for (c) and (d), use integration by parts. 2
E©

Example 7C.2. In all of the following examples, let L = π.

(a)
2
π

∫ π

0
sin(nx) dx =

2
π

1− (−1)n

n
.

(b)
2
π

∫ π

0
x · sin(nx) dx = (−1)n+1 2

n
.

(c)
2
π

∫ π

0
x2 · sin(nx) dx = (−1)n+1 2π

n
+

4
πn3

(

(−1)n − 1
)

.

(d)
2
π

∫ π

0
x3 · sin(nx) dx = (−1)n

(

12
n3
− 2π2

n

)

.

(e)
2
π

∫ π

0
cos(nx) dx =

{

2 if n = 0
0 if n > 0.

(f)
2
π

∫ π

0
x · cos(nx) dx =

2
πn2

(

(−1)n − 1
)

, if n > 0.

(g)
2
π

∫ π

0
x2 · cos(nx) dx = (−1)n

4
n2

, if n > 0.

(h)
2
π

∫ π

0
x3 · cos(nx) dx = (−1)n

6π
n2
− 12
πn4

(

(−1)n − 1
)

, if n > 0. ♦
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Proof. (b): We will show this in two ways. First, by direct computation:
∫ π

0
x · sin(nx) dx =

−1
n

(

x · cos(nx)
∣

∣

∣

x=π

x=0
−
∫ π

0
cos(nx) dx

)

=
−1
n

(

π · cos(nπ)− 1
n

sin(nx)
∣

∣

∣

x=π

x=0

)

=
−1
n

(−1)nπ =
(−1)n+1π

n
.

Thus,
2
π

∫ π

0
x · sin(nx) dx =

2(−1)n+1

n
, as desired.

Next, we verify (b) using Theorem 7C.1. Setting L = π and k = 1 in (7C.9),
we have:
∫ π

0
x · sin(nx) dx =

(−1)n+1

n
· π

1+1

π
+

1
n
· π
π

∫ π

0
xk−1 · cos (nx) dx

=
(−1)n+1

n
· π +

1
n

∫ π

0
cos (nx) dx =

(−1)n+1

n
· π,

because
∫ π

0
cos (nx) dx = 0 by (7C.8). Thus,

2
π

∫ π

0
x · sin(nx) dx =

2(−1)n+1

n
, as desired.

Proof of (c):
∫ π

0
x2 · sin(nx) dx =

−1
n

(

x2 · cos(nx)
∣

∣

∣

x=π

x=0
− 2

∫ π

0
x cos(nx) dx

)

=
−1
n

[

π2 · cos(nπ)− 2
n

(

x · sin(nx)
∣

∣

∣

x=π

x=0
−
∫ π

0
sin(nx) dx

)]

=
−1
n

[

π2 · (−1)n +
2
n

(

−1
n

cos(nx)
∣

∣

∣

x=π

x=0

)]

=
−1
n

[

π2 · (−1)n − 2
n2

(

(−1)n − 1
)

]

=
2
n3

(

(−1)n − 1
)

+
(−1)n+1π2

n
.

The result follows.

Exercise 7C.3 Verify (c) using Theorem 7C.1. E©

(g) We will show this in two ways. First, by direct computation:
∫ π

0
x2 · cos(nx) dx =

1
n

[

x2 · sin(nx)
∣

∣

∣

x=π

x=0
− 2

∫ π

0
x · sin(nx) dx

]

=
−2
n

∫ π

0
x · sin(nx) dx (because sin(nx) = sin(0) = 0)
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=
2
n2

[

x · cos(nx)
∣

∣

∣

x=π

x=0
−

∫ π

0
cos(nx) dx

]

=
2
n2

[

π · (−1)n − 1
n

sin(nx)
∣

∣

∣

x=π

x=0

]

=
2π · (−1)n

n2
.

Thus,
2
π

∫ π

0
x2 · cos(nx) dx =

4 · (−1)n

n2
, as desired.

Next, we verify (g) using Theorem 7C.1. Setting L = π and k = 2 in (7C.10),
we have:
∫ π

0
x2 ·cos(nx) dx =

−k
n
·L
π

∫ p

0
ixk−1 ·sin (nx) =

−2
n
·
∫ π

0
x·sin (nx) .

(7C.11)
Next, applying (7C.9) with k = 1, we get:
∫ π

0
x·sin (nx) =

(−1)n+1

n
·π

2

π
+

1
n
·π
π

∫ π

0
cos (nx) =

(−1)n+1π

n
+

1
n

∫ π

0
cos (nx) .

Substituting this into (7C.11), we get
∫ π

0
x2 · cos(nx) dx =

−2
n
·
[

(−1)n+1π

n
+

1
n

∫ π

0
cos (nx)

]

. (7C.12)

We’re assuming n > 0. But then (7C.8) says
∫ π

0
cos (nx) = 0. Thus, we can

simplify (7C.12) to conclude:

2
π

∫ π

0
x2 · cos(nx) dx =

2
π
· −2
n
· (−1)n+1π

n
=

4(−1)n

n2
,

as desired. 2

Exercise 7C.4. Verify all of the other parts of Example 7C.2, both using TheoremE©
7C.1, and through direct integration. �

To compute the Fourier series of an arbitrary polynomial, we integrate one
term at a time.

Example 7C.3. Let L = π and let f(x) = x2 − π · x. Then the Fourier sine
series of f is:

−8
π

∞
∑

n=1
n odd

1
n3

sin(nx) =
−8
π

(

sin(x) +
sin(3x)

27
+

sin(5x)
125

+
sin(7x)

343
+ · · · · · ·

)
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π/4 π/2 3π/4 π

1

Figure 7C.1: Example 7C.4.

To see this, first, note that, by Example 7C.2(b)

∫ π

0
x · sin(nx) dx =

−1
n

(−1)nπ =
(−1)n+1π

n
.

Next, by Example 7C.2(c),

∫ π

0
x2 · sin(nx) dx =

2
n3

(

(−1)n − 1
)

+
(−1)n+1π2

n
.

Thus,
∫ π

0

(

x2 − πx
)

· sin(nx) dx =
∫ π

0
x2 · sin(nx) dx − π ·

∫ π

0
x · sin(nx) dx

=
2
n3

(

(−1)n − 1
)

+
(−1)n+1π2

n
− π · (−1)n+1π

n

=
2
n3

(

(−1)n − 1
)

.

Thus,

Bn =
2
π

∫ π

0

(

x2 − πx
)

·sin(nx) dx =
4
πn3

(

(−1)n − 1
)

=
{

−8/πn3 if n is odd;
0 if n is even.

♦

7C(iii) Step functions

Example 7C.4. Let L = π, and suppose f(x) =
{

1 if π
4 ≤ x ≤

3π
4

0 otherwise
(see

Figure 7C.1). Then the Fourier sine coefficients of f are given:

Bn =

{

0 if n is even;
2
√

2(−1)k

nπ if n is odd, and n = 4k ± 1 for some k ∈ N.
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Figure 7C.2: Partial Fourier sine series for Example 7C.4, for N =
0, 1, 2, 3, 4, 5, 10 and 100. Notice the Gibbs phenomenon in the plots for large N .

To see this, observe that
∫ π

0
f(x) sin(nx) dx =

∫ 3π
4

π
4

sin(nx) dx =
−1
n

cos(nx)
∣

∣

∣

x= 3π
4

x=π
4

=
−1
n

(

cos
(

3nπ
4

)

− cos
(nπ

4

)

)

=

{

0 if n is even;√
2(−1)k+1

n if n is odd, and n = 4k ± 1 for some k ∈ N.

(Exercise 7C.5). Thus, the Fourier sine series for f is:E©

2
√

2
π



sin(x) +
N
∑

k=1

(−1)k





sin
(

(4k − 1)x
)

4k − 1
+

sin
(

(4k + 1)x
)

4k + 1









(Exercise 7C.6).E©

Figure 7C.2 shows some of the partial sums of this series. The series converges
pointwise to f(x) in the interior of the intervals

[

0, π4
)

,
(

π
4 ,

3π
4

)

, and
(

3π
4 , π

]

.
However, it does not converge to f at the discontinuity points π

4 and 3π
4 . In

the plots, this is betrayed by the violent oscillations of the partial sums near
these discontinuity points –this is an example of the Gibbs phenomenon.
♦
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Figure 7C.3: (A) A step function. (B) A piecewise linear function.

Example 7C.4 is an example of a step function. A function F : [0, L] −→ R
is a step function (see Figure 7C.3(A)) if there are numbers 0 = x0 < x1 <
x2 < x3 < . . . < xM−1 < xM = L and constants a1, a2, . . . , aM ∈ R such that

F (x) =







































a1 if 0 ≤ x ≤ x1;
a2 if x1 < x ≤ x2;

...
...

am if xm−1 < x ≤ xm;
...

...
aM if xM−1 < x ≤ L.

(7C.13)

For instance, in Example 7C.4, M = 3; x0 = 0, x1 = π
4 , x2 = 3π

4 , and x3 = π;
a1 = 0 = a3, and a2 = 1.

To compute the Fourier coefficients of a step function, we simply break the
integral into ‘pieces’, as in Example 7C.4. The general formula is given by the
following theorem, but it is really not worth memorizing the formula. Instead,
understand the idea.

Theorem 7C.5. Suppose F : [0, L] −→ R is a step function like (7C.13).
Then the Fourier coefficients of F are given:

1
L

∫ L

0
F (x) =

1
L

M
∑

m=1

am · (xm − xm−1) ;

2
L

∫ L

0
F (x) · cos

(nπ

L
x
)

dx =
−2
πn

M−1
∑

m=1

sin
(nπ

L
· xm

)

·
(

am+1 − am
)

;
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2
L

∫ L

0
F (x) · sin

(nπ

L
x
)

dx =
2
πn

(

a1 + (−1)n+1aM

)

+
2
πn

M−1
∑

m=1

cos
(nπ

L
· xm

)

·
(

am+1 − am
)

.

Proof. Exercise 7C.7 Hint: Integrate the function piecewise. 2
E©

Remark. Note that the Fourier series of a step function f will converge uni-
formly to f on the interior of each “step”, but will not converge to f at any of
the step boundaries, because f is not continuous at these points.

π/2 π

1

π/20 π

π/2

(A) (B)

Figure 7C.4: (A) The step function g(x) in Example 7C.6. (B) The tent
function f(x) in Example 7C.7.

Example 7C.6. Suppose L = π, and g(x) =
{

1 if 0 ≤ x < π
2

0 if π
2 ≤ x

(see

Figure 7C.4A). Then the Fourier cosine series of g(x) is:

1
2

+
2
π

∞
∑

k=0

(−1)k

2k + 1
cos
(

(2k + 1)x
)

In other words, A0 = 1
2 and, for all n > 0, An =

{

2
π

(−1)k

2k+1 if n is odd and n = 2k + 1;
0 if n is even.

Exercise 7C.8 Show this in two ways: first by direct integration, and then byE©
applying the formula from Theorem 7C.5. ♦
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7C(iv) Piecewise linear functions

Example 7C.7: (The Tent Function)

Let X = [0, π] and let f(x) =







x if 0 ≤ x ≤ π
2 ;

π − x if π
2 < x ≤ π.

(see Figure

7C.4B)

The Fourier sine series of f is:
4
π

∞
∑

n=1
n odd;
n=2k+1

(−1)k

n2
sin(nx).

To prove this, we must show that, for all n > 0,

Bn =
2
π

∫ π

0
f(x) sin(nx) dx =











4
n2π

(−1)k if n is odd, n = 2k + 1;

0 if n is even.

To verify this, we observe that
∫ π

0
f(x) sin(nx) dx =

∫ π/2

0
x sin(nx) dx +

∫ π

π/2
(π − x) sin(nx) dx.

Exercise 7C.9 Complete the computation of Bn. ♦ E©

The tent function in Example 7C.7 is piecewise linear. A function F :
[0, L] −→ R is piecewise linear (see Figure 7C.3(B) on page 153) if there
are numbers 0 = x0 < x1 < x1 < x2 < . . . < xM−1 < xM = L and constants
a1, a2, . . . , aM ∈ R and b ∈ R such that

F (x) =







































a1(x− L) + b1 if 0 ≤ x ≤ x1;
a2(x− x1) + b2 if x1 < x ≤ x2;

...
...

am(x− xm) + bm+1 if xm < x ≤ xm+1;
...

...
aM (x− xM−1) + bM if xM−1 < x ≤ L.

(7C.14)

where b1 = b, and, for all m > 1, bm = am(xm − xm−1) + bm−1.
For instance, in Example 7C.7, M = 2, x1 = π

2 and x2 = π; a1 = 1 and
a2 = −1.

To compute the Fourier coefficients of a piecewise linear function, we can
break the integral into ‘pieces’, as in Example 7C.7. The general formula is
given by the following theorem, but it is really not worth memorizing the formula.
Instead, understand the idea.
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Theorem 7C.8. Suppose F : [0, L] −→ R is a piecewise-linear function like
(7C.14). Then the Fourier coefficients of F are given:

1
L

∫ L

0
F (x) =

1
L

M
∑

m=1

am
2

(xm − xm−1)2 + bm · (xm − xm−1) .

2
L

∫ L

0
F (x) · cos

(nπ

L
x
)

dx =
2L

(πn)2

M
∑

m=1

cos
(nπ

L
· xm

)

·
(

am − am+1

)

2
L

∫ L

0
F (x) · sin

(nπ

L
x
)

dx =
2L

(πn)2

M−1
∑

m=1

sin
(nπ

L
· xm

)

·
(

am − am+1

)

(where we define aM+1 := a1 for convenience).

Proof. Exercise 7C.10 Hint: invoke Theorem 7C.5 and integration by parts. 2
E©

Note that the summands in this theorem read “am − am+1”, not the other
way around.

Example 7C.9: (Cosine series of the tent function)

Let Let X = [0, π] and let f(x) =







x if 0 ≤ x ≤ π
2 ;

π − x if π
2 < x ≤ π.

as in Example

7C.7. The Fourier cosine series of f is:

π

4
− 8

π

∞
∑

n=1
n=4j+2,

for some j

1
n2

cos(nx).

In other words,

f(x) =
π

4
− 8
π

(

cos(2x)
4

+
cos(6x)

36
+

cos(10x)
100

+
cos(14x)

196
+

cos(18x)
324

+ . . .

)

To see this, first observe that

A0 =
1
π

∫ π

0
f(x) dx =

1
π

(

∫ π/2

0
x dx +

∫ π

π/2
(π − x) dx

)

=
1
π

(

[

x2

2

]π/2

0

+
π2

2
−
[

x2

2

]π

π/2

)

=
1
π

(

π2

8
+

π2

2
−
(

π2

2
− π2

8

))

=
π2

4π
=

π

4
.
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Now let’s compute An for n > 0.

First,
∫ π/2

0
x cos(nx) dx =

1
n

[

x sin(nx)
∣

∣

∣

π/2

0
−
∫ π/2

0
sin(nx) dx

]

=
1
n

[

π

2
sin
(nπ

2

)

+
1
n

cos(nx)
∣

∣

∣

π/2

0

]

=
π

2n
sin
(nπ

2

)

+
1
n2

cos
(nπ

2

)

− 1
n2
.

Next,
∫ π

π/2
x cos(nx) dx =

1
n

[

x sin(nx)
∣

∣

∣

π

π/2
−
∫ π

π/2
sin(nx) dx

]

=
1
n

[

−π
2

sin
(nπ

2

)

+
1
n

cos(nx)
∣

∣

∣

π

π/2

]

=
−π
2n

sin
(nπ

2

)

+
(−1)n

n2
− 1

n2
cos
(nπ

2

)

.

Finally,
∫ π

π/2
π cos(nx) dx =

π

n
sin(nx)

∣

∣

∣

π

π/2

=
−π
n

sin
(nπ

2

)

.

Putting it all together, we have:
∫ π

0
f(x) cos(nx) dx =

∫ π/2

0
x cos(nx) dx +

∫ π

π/2
π cos(nx) dx −

∫ π

π/2
x cos(nx) dx

=
π

2n
sin
(nπ

2

)

+
1
n2

cos
(nπ

2

)

− 1
n2
− π

n
sin
(nπ

2

)

+
π

2n
sin
(nπ

2

)

− (−1)n

n2
+

1
n2

cos
(nπ

2

)

=
2
n2

cos
(nπ

2

)

− 1 + (−1)n

n2
.

Now,

cos
(nπ

2

)

=
{

(−1)k if n is even and n = 2k;
0 if n is odd.

while 1 + (−1)n =
{

2 if n is even;
0 if n is odd.

Thus,

2 cos
(nπ

2

)

−
(

1 + (−1)n
)

=
{

−4 if n is even, n = 2k and k = 2j + 1 for some j;
0 otherwise.

=
{

−4 if n = 4j + 2 for some j;
0 otherwise.
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(for example, n = 2, 6, 10, 14, 18, . . .). Thus An =
2
π

∫ π

0
f(x) cos(nx) dx

=











−8
n2π

if n = 4j + 2 for some j;

0 otherwise.

♦

7C(v) Differentiating Fourier (co)sine series

Prerequisites: §7B, §0F.

Suppose f(x) = 3 sin(x) − 5 sin(2x) + 7 sin(3x). Then f ′(x) = 3 cos(x) −
10 cos(2x) + 21 cos(3x). Likewise, if f(x) = 3 + 2 cos(x)− 6 cos(2x) + 11 cos(3x),
then f ′(x) = −2 sin(x)+12 sin(2x)−33 sin(3x). This illustrates a general pattern.

Theorem 7C.10. Suppose f ∈ C∞[0, L]

(a) Suppose f has Fourier sine series

∞
∑

n=1

BnSn(x). If

∞
∑

n=1

n|Bn| <∞, then

f ′ has Fourier cosine series: f ′(x) =
π

L

∞
∑

n=1

nBnCn(x), and this series

converges uniformly.

(b) Suppose f has Fourier cosine series

∞
∑

n=0

AnCn(x). If

∞
∑

n=1

n|An| < ∞,

then f ′ has Fourier sine series: f ′(x) =
−π
L

∞
∑

n=1

nAnSn(x), and this

series converges uniformly.

Proof. Exercise 7C.11 Hint: Apply Proposition 0F.1 on page 565. 2
E©

Consequence: If f(x) = A cos
(nπx

L

)

+ B sin
(nπx

L

)

for some A,B ∈ R,

then f ′′(x) = −
(nπ

L

)2
· f(x). In other words, f is an eigenfunction1 for the

differentation operator ∂2
x , with eigenvalue λ = −

(

nπ
L

)2. More generally, for any
k ∈ N, we have ∂2k

x f = λk · f .

7D Practice problems

In all of these problems, the domain is X = [0, π].

1See § 4B(iv) on page 63
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1. Let α > 0 be a constant. Compute the Fourier sine series of f(x) =
exp(α · x). At which points does the series converge pointwise? Why?
Does the series converge uniformly? Why or why not?

2. Compute the Fourier cosine series of f(x) = sinh(x). At which points does
the series converge pointwise? Why? Does the series converge uniformly?
Why or why not?

3. Let α > 0 be a constant. Compute the Fourier sine series of f(x) =
cosh(αx). At which points does the series converge pointwise? Why?
Does the series converge uniformly? Why or why not?

4. Compute the Fourier cosine series of f(x) = x. At which points does the
series converge pointwise? Why? Does the series converge uniformly? Why
or why not?

5. Let g(x) =
{

1 if 0 ≤ x < π
2

0 if π
2 ≤ x

(Fig. 7C.4A on p. 154)

(a) Compute the Fourier cosine series of g(x). At which points does the
series converge pointwise? Why? Does the series converge uniformly?
Why or why not?

(b) Compute the Fourier sine series of g(x). At which points does the
series converge pointwise? Why? Does the series converge uniformly?
Why or why not?

6. Compute the Fourier cosine series of g(x) =
{

3 if 0 ≤ x < π
2

1 if π
2 ≤ x

At which points does the series converge pointwise? Why? Does the series
converge uniformly? Why or why not?

7. Compute the Fourier sine series of f(x) =







x if 0 ≤ x ≤ π
2

π − x if π
2 < x ≤ π.

(Fig. 7C.4B on p.154) At which points does the series converge pointwise?
Why? Does the series converge uniformly? Why or why not?

Hint: Note that
∫ π

0
f(x) sin(nx) dx =

∫ π/2

0
x sin(nx) dx+

∫ π

π/2
(π − x) sin(nx) dx.

8. Let f : [0, π] −→ R be defined: f(x) =
{

x if 0 ≤ x ≤ π
2

0 if π
2 < x ≤ π .

Compute the Fourier sine series for f(x). At which points does the series
converge pointwise? Why? Does the series converge uniformly? Why or
why not?
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Chapter 8

Real Fourier series and
complex Fourier series

“Ordinary language is totally unsuited for expressing what physics really asserts, since the

words of everyday life are not sufficiently abstract. Only mathematics and mathematical logic

can say as little as the physicist means to say.” —Bertrand Russell

8A Real Fourier series on [−π, π]
Prerequisites: §6E, §6F. Recommended: §7A, §5C(iv).

Throughout this section, for all n ∈ N, we define the functions Sn : [−π, π] −→
R and Cn : [−π, π] −→ R by Sn(x) := sin(nx) and Cn(x) := cos(nx), for all
x ∈ [−π, π] (see Figure 6D.1 on page 113). If f : [−π, π] −→ R is any function
with ‖f‖2 <∞, we define the (real) Fourier coefficients:

A0 := 〈f, C0〉 = 〈f, 11〉 =
1

2π

∫ π

−π
f(x) dx,

An :=
〈f,Cn〉
‖Cn‖22

=
1
π

∫ π

−π
f(x) cos (nx) dx,

and Bn :=
〈f,Sn〉
‖Sn‖22

=
1
π

∫ π

−π
f(x) sin (nx) dx, for all n ≥ 1.

The (real) Fourier series of f is then the infinite summation of functions:

A0 +
∞
∑

n=1

AnCn(x) + +
∞
∑

n=1

BnSn(x). (8A.1)

We define continuously differentiable and piecewise continuously differentiable
functions on [−π, π] in a manner exactly analogous to the definitions on [0, π]
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(page 138). Let C1[−π, π] be the set of all continuously differentiable functions
f : [−π, π] −→ R.

Exercise 8A.1. (a) Show that any continuously differentiable function has finiteE©
L2-norm. In other words, C1[−π, π] ⊂ L2[π, π].

(b) Show that any piecewise C1 function on [−π, π] is in L2[−π, π]. �

Theorem 8A.1. Fourier Convergence on [−π, π]

(a) The set {11,S1,C1,S2,C2, . . .} is an orthogonal basis for L2[−π, π]. Thus,
if f ∈ L2[−π, π], then the Fourier series (8A.1) converges to f in L2-norm.

Furthermore, the coefficient sequences {An}∞n=0 and {Bn}∞n=1 are the unique
sequences of coefficients with this property. In other words, if {A′n}∞n=0 and

{B′n}∞n=1 are two other sequences of coefficients such that f
˜

L̃2

∞
∑

n=0

A′nCn+

∞
∑

n=1

B′nSn, then we must have A′n = An and B′n = Bn for all n ∈ N.

(b) If f ∈ C1[−π, π] then the Fourier series (8A.1) converges pointwise on
(−π, π).

More generally, if f is piecewise C1, then the real Fourier series (8A.1)
converges to f pointwise on each C1 interval for f . In other words, if
{j1, . . . , jm} is the set of discontinuity points of f and/or f ′ in [−π, π], and

jm < x < jm+1, then f(x) = A0 + lim
N→∞

N
∑

n=1

(

An cos (nx) +Bn sin (nx)
)

.

(c) If

∞
∑

n=0

|An| +
∞
∑

n=1

|Bn| < ∞, then the series (8A.1) converges to f uniformly

on [−π, π].

(d) Suppose f : [−π, π] −→ R is continuous and piecewise differentiable, f ′ ∈
L2[−π, π], and f(−π) = f(π). Then the series (8A.1) converges to f
uniformly on [−π, π].

(e) If f is piecewise C1, and K ⊂ (jm, jm+1) is any closed subset of a C1 interval
of f , then the series (8A.1) converges uniformly to f on K.

Proof. For a proof of (a) see § 10D on page 207. For a proof of (b), see § 10B
on page 197. (Alternately, (b) follows immediately from (e).) For a proof of
(d) see § 10C on page 204.

(c) is Exercise 8A.2 (Hint: Use the Weierstrass M -test, Proposition 6E.13 onE©
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page 129.)

(e) is Exercise 8A.3 (Hint: use Theorem 8D.1(e) and Proposition 8D.2 on page E©
173). 2

There is nothing special about the interval [−π, π]. Real Fourier series can
be defined for functions on an interval [−L,L] for any L > 0. We chose L = π
because it makes the computations simpler. If L 6= π, then we can define a
Fourier series analogous to (8A.1) using the functions Sn(x) = sin

(nπx

L

)

and

Cn(x) = cos
(nπx

L

)

.

Exercise 8A.4. Let L > 0, and let f : [−L,L] −→ R. Generalize all parts of E©
Theorem 8A.1 to characterize the convergence of the real Fourier series of f . �

Remark. Please see Remark 8D.3 on page 174 for further technical remarks
about the (non)convergence of real Fourier series, in situations where the hy-
potheses of Theorem 8A.1 are not satisfied.

8B Computing real Fourier coefficients

Prerequisites: §8A. Recommended: §7C.

When computing the real Fourier coefficient An =
1
π

∫ π

−π
f(x) · cos (nx) dx

(or Bn =
1
π

∫ π

−π
f(x) · sin (nx) dx), it is simpler to first compute the integral

∫ π

−π
f(x) ·cos (nx) dx (or

∫ π

−π
f(x) ·sin (nx) dx), and then multiply the result by

1
π

. In this section, we review some useful techniques to compute this integral.

8B(i) Polynomials

Recommended: §7C(ii).

Theorem 8B.1.
∫ π

−π
sin(nx) dx = 0 =

∫ π

−π
cos(nx) dx.

For any k ∈ {1, 2, 3, . . .}, we have the following recurrence relations:

• If k is even, then:

∫ π

−π
xk·sin(nx) dx = 0 and

∫ π

−π
xk·cos(nx) dx =

−k
n

∫ π

−π
xk−1·sin(nx) dx.
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• If k > 0 is odd, then:
∫ π

−π
xk · sin(nx) dx =

2(−1)n+1πk

n
+

k

n

∫ π

−π
xk−1 · cos(nx) dx

and

∫ π

−π
xk · cos(nx) dx = 0.

Proof. Exercise 8B.1 Hint: use integration by parts. 2
E©

Example 8B.2.

(a) p(x) = x. Since k = 1 is odd, we have
1
π

∫ π

−π
x · cos(nx) dx = 0,

and
1
π

∫ π

−π
x · sin(nx) dx =

2(−1)n+1π0

n
+

1
nπ

∫ π

−π
cos(nx) dx

(∗)

2(−1)n+1

n
.

where equality (∗) follows from case k = 0 in Theorem 8B.1.

(b) p(x) = x2. Since k = 2 is even, we have, for all n,
1
π

∫ π

−π
x2 sin(nx) dx = 0,

1
π

∫ π

−π
x2 cos(nx) dx =

−2
nπ

∫ π

−π
x1 · sin(nx) dx

(∗)

−2
n

(

2(−1)n+1

n

)

=
4(−1)n

n2
.

where equality (∗) follows from the previous example. ♦

8B(ii) Step functions

Recommended: §7C(iii).

A function F : [−π, π] −→ R is a step function (see Figure 8B.1(A)) if there
are numbers −π = x0 < x1 < x2 < x3 < · · · < xM−1 < xM = π and constants
a1, a2, . . . , aM ∈ R such that

F (x) =







































a1 if −π ≤ x ≤ x1;
a2 if x1 < x ≤ x2;

...
...

am if xm−1 < x ≤ xm;
...

...
aM if xM−1 < x ≤ π.

(8B.1)
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x=
0

x
1 x

2 x=
3

x=
0

x
1

x
2 x=

3

b=b
1

(A)

(B)
a
2 a

3

a
3

a
2

a
1

b
2

b
3

a
1

π

π

−π

−π

Figure 8B.1: (A) A step function. (B) A piecewise linear function.

To compute the Fourier coefficients of a step function, we break the integral
into ‘pieces’. The general formula is given by the following theorem, but it is
really not worth memorizing the formula. Instead, understand the idea.

Theorem 8B.3. Suppose F : [−π, π] −→ R is a step function like (8B.1).
Then the Fourier coefficients of F are given:

1
2π

∫ π

−π
F (x) dx =

1
2π

M
∑

m=1

am · (xm − xm−1) ;

1
π

∫ π

−π
F (x) · cos(nx) dx =

−1
πn

M−1
∑

m=1

sin(n · xm) ·
(

am+1 − am
)

;

1
π

∫ π

−π
F (x) · sin(nx) dx =

(−1)n

πn

(

a1 − aM
)

+
1
πn

M−1
∑

m=1

cos(n · xm) ·
(

am+1 − am
)

.

Proof. Exercise 8B.2 Hint: Integrate the function piecewise. Use the fact that E©
∫ xm

xm−1

f(x) sin(nx) =
am
n

(

cos(n · xm−1)− cos(n · xm)
)

and
∫ xm

xm−1

f(x) cos(nx) =
am
n

(

cos(n · xm)− cos(n · xm−1)
)

.

2

Remark. Note that the Fourier series of a step function f will converge uni-
formly to f on the interior of each “step”, but will not converge to f at any of
the step boundaries, because f is not continuous at these points.
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π

−π

-3 −π/2 π/2

2
5

Figure 8B.2: The step function in Example 8B.4.

Example 8B.4. Suppose f(x) =







−3 if −π ≤ x < −π
2 ;

5 if −π
2 ≤ x <

π
2 ;

2 if π
2 ≤ x ≤ π.

(see Figure

8B.2).

In the notation of Theorem 8B.3, we have M = 3, and

x0 = −π; x1 =
−π
2

; x2 =
π

2
; x3 = π;

a1 = −3; a2 = 5; a3 = 2.

Thus, An =
−1
πn

[

8 · sin
(

n · −π
2

)

− 3 · sin
(

n · π
2

)

]

=

{

0 if n is even;

(−1)k · 11
πn

if n = 2k + 1 is odd.

and Bn =
1
πn

[

8 · cos
(

n · −π
2

)

− 3 · cos
(

n · π
2

)

− 5 · cos (n · π)
]

=











5
πn

if n is odd;
5
πn

(

(−1)k − 1
)

if n = 2k is even.

=



































5
πn

if n is odd;

0 if n is divisible by 4;

−10
πn

if n is even but not divisible by 4.

. ♦

8B(iii) Piecewise linear functions

Recommended: §7C(iv).
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A continuous function F : [−π, π] −→ R is piecewise linear (see Figure
8B.1(B)) if there are numbers −π = x0 < x1 < x1 < x2 < . . . < xM−1 < xM = π
and constants a1, a2, . . . , aM ∈ R and b ∈ R such that

F (x) =







































a1(x− π) + b1 if −π < x < x1;
a2(x− x1) + b2 if x1 < x < x2;

...
...

am(x− xm) + bm+1 if xm < x < xm+1;
...

...
aM (x− xM−1) + bM if xM−1 < x < π.

(8B.2)

where b1 = b, and, for all m > 1, bm = am(xm − xm−1) + bm−1.

Example 8B.5. If f(x) = |x|, then f is piecewise linear, with: x0 = −π, x1 = 0,
and x2 = π; a1 = −1 and a2 = 1; b1 = π, and b2 = 0. ♦

To compute the Fourier coefficients of a piecewise linear function, we break
the integral into ‘pieces’. The general formula is given by the following theorem,
but it is really not worth memorizing the formula. Instead, understand the idea.

Theorem 8B.6. Suppose F : [−π, π] −→ R is a piecewise-linear function like
(8B.2). Then the Fourier coefficients of F are given:

1
2π

∫ π

−π
F (x) dx =

1
2π

M
∑

m=1

am
2

(xm − xm−1)2 + bm · (xm − xm−1) ;

1
π

∫ π

−π
F (x) · cos(nx) dx =

1
πn2

M
∑

m=1

cos(nxm) ·
(

am − am+1

)

;

1
π

∫ π

−π
F (x) · sin(nx) dx =

1
πn2

M−1
∑

m=1

sin(nxm) ·
(

am − am+1

)

.

(Here, we define aM+1 := a1 for convenience.)

Proof. Exercise 8B.3 Hint: invoke Theorem 8B.3 and integration by parts. 2
E©

Note that the summands in this theorem read “am − am+1”, not the other
way around.

Example 8B.7. Recall f(x) = |x|, from Example 8B.5. Applying Theorem
8B.6, we have

A0 =
1

2π

[

−1
2

(0 + π)2 + π · (0 + π) +
1
2

(π − 0)2 + 0 · (π − 0)
]

=
π

2
.

An =
π

πn2
[(−1− 1) · cos (n0) (1 + 1) · cos (nπ)]

=
1
πn2

[−2 + 2(−1)n] =
−2
πn2

[1− (−1)n] ,
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while Bn = 0 for all n ∈ N, because f is an even function. ♦

8B(iv) Differentiating real Fourier series

Prerequisites: §8A, §0F.

Suppose f(x) = 3 + 2 cos(x)− 6 cos(2x) + 11 cos(3x) + 3 sin(x)− 5 sin(2x) +
7 sin(3x). Then f ′(x) = −2 sin(x)+12 sin(2x)−33 sin(3x)+3 cos(x)−10 cos(2x)+
21 cos(3x). This illustrates a general pattern.

Theorem 8B.8. Let f ∈ C∞[−π, π], and suppose f has Fourier series
∞
∑

n=0

AnCn +
∞
∑

n=1

BnSn. If

∞
∑

n=1

n|An| < ∞ and

∞
∑

n=1

n|Bn| < ∞, then f ′

has Fourier Series:

∞
∑

n=1

n
(

BnCn −AnSn
)

.

Proof. Exercise 8B.4 Hint: Apply Proposition 0F.1 on page 565. 2
E©

Consequence: If f(x) = A cos (nx) + B sin (nx) for some A,B ∈ R, then
f ′′(x) = −n2f(x). In other words, f is an eigenfunction for the differentation
operator ∂2

x, with eigenvalue −n2. Hence, for any k ∈ N, we have ∂2k
x f =

(−n)k · f .

8C Relation between (co)sine series and real series

Prerequisites: §7A, §8A.

We have seen in §8A how the collection {Cn}∞n=0∪{Sn}∞n=1 forms an orthog-
onal basis for L2[−π, π]. However, if we confine our attention to half this interval
—that is, to L2[0, π] —then the results of §7A imply that we only need half as
many basis elements; either the collection {Cn}∞n=0 or the collection {Sn}∞n=1 will
suffice. Why is this? And what is the relationship between the Fourier (co)sine
series of §7A and the Fourier series of §8A?

A function f : [−L,L] −→ R is even if f(−x) = f(x) for all x ∈ [0, L]. For
example, the following functions are even:

• f(x) = 1.

• f(x) = |x|.

• f(x) = x2.

• f(x) = xk for any even k ∈ N.

• f(x) = cos(x).
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A function f : [−L,L] −→ R is odd if f(−x) = −f(x) for all x ∈ [0, L]. For
example, the following functions are odd:

• f(x) = x.

• f(x) = x3.

• f(x) = xk for any odd k ∈ N.

• f(x) = sin(x).

Every function can be ‘split’ into an ‘even part’ and an ‘odd part’.

Proposition 8C.1. (a) For any f : [−L,L] −→ R, there is a unique even
function f̌ and a unique odd function f́ such that f = f̌ + f́ . To be specific:

f̌(x) =
f(x) + f(−x)

2
and f́(x) =

f(x)− f(−x)
2

(b) If f is even, then f = f̌ , and f́ = 0.
(c) If f is odd, then f̌ = 0, and f = f́ .

Proof. Exercise 8C.1 2
E©

The equation f = f̌ + f́ is called the even-odd decomposition of f . Next,
we define the vector spaces:

L2
even

[−π, π] := {all even elements in L2[−π, π]}.
and L2

odd
[−π, π] := {all odd elements in L2[−π, π]}.

Proposition 8C.1 implies that any f ∈ L2[−π, π] can be written (in a unique way)
as f = f̌ + f́ for some f̌ ∈ L2

even
[−π, π] and f́ ∈ L2

odd
[−π, π]. (This is sometimes

indicated by writing: L2[−π, π] = L2
even

[−π, π]⊕ L2
odd

[−π, π].)

Lemma 8C.2. Let n ∈ N.

(a) The function Cn(x) = cos(nx) is even.

(b) The function Sn(x) = sin(nx) is odd.

Let f : [−π, π] −→ R be any function.

(c) If f(x) =
∞
∑

n=0

AnCn(x), then f is even.

(d) If f(x) =
∞
∑

n=1

BnSn(x), then f is odd.

Proof. Exercise 8C.2 2
E©

In other words, cosine series are even, and sine series are odd. The converse
is also true. To be precise:
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Proposition 8C.3. Let f : [−π, π] −→ R be any function, and suppose f has

real Fourier series f(x) = A0 +
∞
∑

n=1

AnCn(x) +
∞
∑

n=1

BnSn(x). Then:

(a) If f is odd, then An = 0 for every n ∈ N.

(b) If f is even, then Bn = 0 for every n ∈ N.

Proof. Exercise 8C.3 2
E©

From this, it follows immediately:

Proposition 8C.4.

(a) The set {C0,C1,C2, . . .} is an orthogonal basis for L2
even

[−π, π] (where C0 =
11).

(b) The set {S1,S2,S3, . . .} is an orthogonal basis for L2
odd

[−π, π].

(c) Suppose f has even-odd decomposition f = f̌ + f́ , and f has real Fourier

series f(x) = A0 +
∞
∑

n=1

AnCn(x)+
∞
∑

n=1

BnSn(x). Then f̌(x) =
∞
∑

n=0

AnCn(x)

and f́(x) =
∞
∑

n=1

BnSn(x).

Proof. Exercise 8C.4 2
E©

If f : [0, π] −→ R, then we can “extend” f to a function on [−π, π] in two ways:

• The even extension of f is defined: feven(x) = f (|x|) for all x ∈ [−π, π].

• The odd extension of f is defined: f
odd

(x) =







f(x) if x > 0
0 if x = 0

−f(−x) if x < 0

Exercise 8C.5. (a) Show that feven is even and f
odd

is odd.E©
(b) For all x ∈ [0, π], show that feven(x) = f(x) = f

odd
(x). �
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Proposition 8C.5. Let f : [0, π] −→ R have even extension feven : [−π, π] −→
R and odd extension f

odd
: [−π, π] −→ R.

(a) The Fourier sine series for f is the same as the real Fourier series for
f

odd
. In other words, the nth Fourier sine coefficient is given: Bn =

1
π

∫ π

−π
f

odd
(x)Sn(x) dx.

(b) The Fourier cosine series for f is the same as the real Fourier series for
feven . In other words, the nth Fourier cosine coefficient is given: An =
1
π

∫ π

−π
feven(x)Cn(x) dx.

Proof. Exercise 8C.6 2
E©

Let f ∈ C1[0, π]. Recall that Theorem 7A.1(d) (on page 138) says that the
Fourier sine series of f converges to f uniformly on [0, π] if and only if f satisfies
homogeneous Dirichlet boundary conditions on [0, π] (i.e. f(0) = f(π) = 0). On
the other hand, Theorem 7A.4(d) (on page 142) says that the Fourier cosine series
of f always converges to f uniformly on [0, π] if f ∈ C1[0, π]; furthermore, if the
formal derivative of this cosine series converges to f ′ uniformly on [0, π], then
f satisfies homogeneous Neumann boundary conditions on [0, π] (i.e. f ′(0) =
f ′(π) = 0). Meanwhile, if F ∈ C1[−π, π], then Theorem 8A.1(d) (on page 162)
says that the (real) Fourier series of F converges to F uniformly on [−π, π] if F
satisfies periodic boundary conditions on [−π, π] (i.e. F (−π) = F (π)). The next
result explains the logical relationship between these three statements.

Lemma 8C.6. Let f : [0, π] −→ R have even extension feven : [−π, π] −→ R
and odd extension f

odd
: [−π, π] −→ R. Suppose f is right-continuous at 0 and

left-continuous at π.

(a) f
odd

is continuous at zero and satisfies periodic boundary conditions on
[−π, π], if and only if f satisfies homogeneous Dirichlet boundary conditions
on [0, π].

(b) feven is always continuous at zero and always satisfies periodic boundary
conditions on [−π, π].

However, the derivative f ′
even

is continuous at zero and satisfies periodic
boundary conditions on [−π, π] if and only if f satisfies homogeneous Neu-
mann boundary conditions on [0, π].

Proof. Exercise 8C.7 2
E©
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8D Complex Fourier series

Prerequisites: §6C(i), §6E, §6F, §0C. Recommended: §8A.

Let f, g : X −→ C be complex-valued functions. Recall from §6C(i) that we
define their inner product:

〈f, g〉 :=
1
M

∫

X
f(x) · g(x) dx,

where M is the length/area/volume of domain X. Once again,

‖f‖2 := 〈f, f〉1/2 =
(

1
M

∫

X
f(x)f(x) dx

)1/2

=
(

1
M

∫

X
|f(x)|2 dx

)1/2

.

The concepts of orthogonality, L2 distance, and L2 convergence are exactly the
same as before. Let L2([−L,L]; C) be the set of all complex-valued functions
f : [−L,L] −→ C with ‖f‖2 <∞. For all n ∈ Z, let

En(x) := exp
(

πinx
L

)

.

(thus, E0 = 11 is the constant unit function). For all n > 0, notice that Euler’s
Formula (see page 551) implies:

En(x) = Cn(x) + i · Sn(x)
and E−n(x) = Cn(x) − i · Sn(x)

(8D.1)

Also, note that 〈En,Em〉 = 0 if n 6= m, and ‖En‖2 = 1 (Exercise 8D.1 ), soE©
these functions form an orthonormal set.

If f : [−L,L] −→ C is any function with ‖f‖2 < ∞, then we define the
(complex) Fourier coefficients of f :

̂fn := 〈f,En〉 =
1

2L

∫ L

−L
f(x) · exp

(

−πinx
L

)

dx. (8D.2)

The (complex) Fourier Series of f is then the infinite summation of functions:

∞
∑

n=−∞

̂fn ·En. (8D.3)

(note that in this sum, n ranges from −∞ to ∞).
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Theorem 8D.1. Complex Fourier Convergence

(a) The set {. . . ,E−1,E0,E1, . . .} is an orthonormal basis for L2([−L,L]; C).
Thus, if f ∈ L2([−L,L]; C), then the complex Fourier series (8D.3) con-
verges to f in L2-norm.

Furthermore, { ̂fn}∞n=−∞ is the unique sequence of coefficients with this
property.

(b) If f is continuously differentiable1 on [−π, π], then the Fourier series (8D.3)
converges pointwise on (−π, π).

More generally, if f is piecewise C1, then the complex Fourier series (8D.3)
converges to f pointwise on each C1 interval for f . In other words, if
{j1, . . . , jm} is the set of discontinuity points of f and/or f ′ in [−L,L],

and jm < x < jm+1, then f(x) = lim
N→∞

N
∑

n=−N

̂fnEn(x).

(c) If

∞
∑

n=−∞

∣

∣

∣

̂fn

∣

∣

∣ < ∞, then the series (8D.3) converges to f uniformly on

[−π, π].

(d) Suppose f : [−π, π] −→ R is continuous and piecewise differentiable, f ′ ∈
L2[−π, π], and f(−π) = f(π). Then the series (8D.3) converges to f
uniformly on [−π, π].

(e) If f is piecewise C1, and K ⊂ (jm, jm+1) is any closed subset of a C1 interval
of f , then the series (8D.3) converges uniformly to f on K.

Proof. For (a) is Exercise 8D.2 (Hint: Use Theorem 8A.1(a) on page 162 and E©
Proposition 8D.2 below).

For a direct proof of (a), see [Kat76, §I.5.5, p.29-30].

(b) is Exercise 8D.3 (Hint: (i) use Theorem 8A.1(b) on page 162 and Proposition E©
8D.2 below. (ii) For a second proof, derive (b) from from (e).)

(c) is Exercise 8D.4 (Hint: Use the Weierstrass M -test, Proposition 6E.13 on E©
page 129.)

(d) is Exercise 8D.5 (Hint: use Theorem 8A.1(d) on page 162 and Proposition E©
8D.2 below).

For a direct proof of (d) see [WZ77, Theorem 12.20, p.219].

For (e) see [Fol84, Theorem 8.43, p.256] or [Kat76, Corollary on p.53 of §II.2.2].
2

1This means that f(x) = fr(x) + ifi(x), where fr : [−L,L] −→ R and fi : [−L,L] −→ R are
both continuously differentiable, real-valued functions.
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Proposition 8D.2. Relation between Real and Complex Fourier Series
Let f : [−π, π] −→ R be a real-valued function, and let {An}∞n=0 and {Bn}∞n=1

be its real Fourier coefficients, as defined on page 161. We can also regard f as
a complex-valued function; let { ̂fn}∞n=−∞ be the complex Fourier coefficients of
f , as defined by equation (8D.2) on page 172. Let n ∈ N+. Then

(a) ̂fn = 1
2 (An − iBn), and ̂f−n = ̂fn = 1

2 (An + iBn).

(b) Thus, An = ̂fn + ̂f−n, and Bn = i( ̂fn − ̂f−n).

(c) ̂f0 = A0.

Proof. Exercise 8D.6 Hint: use the equations (8D.1). 2
E©

Exercise 8D.7. Show that Theorem 8D.1(a) and Theorem 8A.1(a) are equivalent,E©
using the Proposition 8D.2. �

Remark 8D.3: Further remarks on Fourier convergence

(a) In Theorems 7A.1(b), 7A.4(b), 8A.1(b) and 8D.1(b), if x is a discontinuity
point of f , then the Fourier (co)sine series converges to the average of the
‘left-hand’ and ‘right-hand’ limits of f at x, namely:

f(x−) + f(x+)
2

, where f(x−) := lim
y↗x

f(y) and f(x+) := lim
y↘x

f(y).

(b) If the hypothesis of Theorems 7A.1(c), 7A.4(c), 8A.1(c) or 8D.1(c) is sat-
isfied, then we say that the Fourier series (real, complex, sine or cosine)
converges absolutely. (In fact, Theorems 7A.1(d)[i], 7A.4(d)[i], 8A.1(d)
or 8D.1(d) can be strengthened to yield absolute convergence). Absolute
convergence is stronger than uniform convergence, and functions with ab-
solutely convergent Fourier series form a special class; see [Kat76, §I.6,
p.31-33] for more information.

(c) In Theorems 7A.1(e), 7A.4(e), 8A.1(e) and 8D.1(e), we don’t quite need f
to be differentiable to guarantee uniform convergence of the Fourier (co)sine
series. Let α > 0 be a constant; we say that f is α-Hölder continuous on
[−π, π] if there is some M <∞ such that,

For all x, y ∈ [0, π],
|f(x)− f(y)|
|x− y|α

≤ M.

Bernstein’s Theorem says: If f is α-Hölder continuous for some α > 1
2 , then

the Fourier series (real, complex, sine or cosine) of f will converge uniformly
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(indeed, absolutely) to f ; see [Fol84, Theorem 8.39] or [Kat76, Thm 6.3 on
p.32]. (If f was differentiable, then f would be α-Hölder continuous with
α = 1, so Bernstein’s Theorem immediately implies Theorems 7A.1(e) and
7A.4(e).)

(d) The total variation of f is defined

var(f) := sup
N∈N

sup
−π≤x0<···<xN≤π

N
∑

n=1

∣

∣

∣f(xn)− f(xn−1)
∣

∣

∣

(∗)

∫ π

−π

∣

∣f ′(x)
∣

∣ dx.

Here, the supremum is taken over all finite increasing sequences {−π ≤
x0 < x1 < · · · < xN ≤ π} (for any N ∈ N), and equality (∗) is true if
and only if f is continuously differentiable. Zygmund’s Theorem says: if
var(f) <∞ (i.e. f has bounded variation) and f is α-Hölder continuous for
some α > 0, then the Fourier series of f will converge uniformly (indeed,
absolutely) to f on [−π, π]; see [Kat76, Thm 6.4 on p.33].

(e) However, merely being continuous is not sufficient for uniform Fourier con-
vergence, or even pointwise convergence. There exists a continuous func-
tion f : [0, π] −→ R whose Fourier series does not converge pointwise on
(0, π) —i.e. the series diverges at some points in (0, π); see [WZ77, Theo-
rem 12.35, p.227] or [Kat76, Theorem 2.1, p.51]. Thus, Theorems 7A.1(b),
7A.4(b), 8A.1(b) and 8D.1(b) are false if we replace ‘differentiable’ with
‘continuous’.

(f) Fix p ∈ [1,∞). For any f : [−π, π] −→ C, we define the Lp-norm of f :

‖f‖p =
(∫ π

−π
|f(x)|p dx

)1/p

.

(Thus, if p = 2, we get the familiar L2-norm ‖f‖2). Let Lp[−π, π] be
the set of all integrable functions f : [−π, π] −→ C such that ‖f‖p < ∞.
Theorem 8D.1(a) say that, if f ∈ L2[−π, π], then the complex Fourier series
of f converges to f in L2-norm. The Fourier series of f also converges in
Lp-norm for any other p ∈ (1,∞). That is, for any p ∈ (1,∞) and any
f ∈ Lp[−π, π], we have

lim
N→∞

∥

∥

∥

∥

∥

f −
N
∑

n=−N

̂fnEn

∥

∥

∥

∥

∥

p

= 0.

See [Kat76, Theorem 1.5, p.50]. If f ∈ Lp[−π, π] is purely real-valued, then
the same statement holds for the real Fourier series:

lim
N→∞

∥

∥

∥

∥

∥

f −

(

A0 +
N
∑

n=1

AnCn +
N
∑

n=1

BnSn

)∥

∥

∥

∥

∥

p

= 0.
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To understand the significance of Lp-convergence, we remark that if p is
very large, then Lp convergence is ‘almost’ the same as uniform conver-
gence. Also:

• If p > q, then Lp[−π, π] ⊂ Lq[−π, π]. (Exercise 8D.8).E©

For example, if f ∈ L3[−π, π], then it follows that f ∈ L2[−π, π] (but
not vice versa). If f ∈ L2[−π, π], then it follows that f ∈ L3/2[−π, π]
(but not vice versa).

• If p > q, and the Fourier series of f converges to f in Lp-norm, then
it also converges to f in Lq-norm; see e.g. [Fol84, Proposition 6.12,
p.178].
For example, if f ∈ L2[π, π], then Theorem 8D.1(a) implies that the
Fourier series of f converges to f in Lq-norm for all q ∈ [1, 2]. (How-
ever, if q < 2, then there are functions in Lq[−π, π] to which Theorem
8D.1(a) does not apply).

Finally, similar Lp-convergence statements hold for the Fourier (co)sine
series of real-valued functions in Lp[0, π].

(g) The pointwise convergence of a Fourier series is a somewhat subtle and
complicated business, once you depart from the realm of C1 functions. In
particular, the Fourier series of continuous (but non-differentiable) func-
tions can be badly behaved. This is perplexing, because we know that
Fourier series converge in L2 norm for any function in L2[−π, π] (which in-
cludes all sorts of strange functions which are not differentiable anywhere).
To bridge the gap between L2 and pointwise convergence, a variety of other
‘summation schemes’ have been introduced for Fourier coefficients. These
include:

• The Cesáro mean lim
N→∞

1
N

N
∑

n=1

SN (f), where SN (f) :=
N
∑

n=−N

̂fnEn is

the Nth partial sum of the complex Fourier series (8D.3).

• The Abel mean lim
r↗1

∞
∑

n=−∞
r|n| ̂fnEn.

These sums have somewhat nicer convergence properties than the ‘stan-
dard’ Fourier series (8D.3). (See § 18F on page 461 for further discussion
of the Abel mean.)

(h) There is a close relationship between the Fourier series of complex-valued
functions on [−π, π], and the Laurent series of complex-analytic functions
defined near the unit circle; see § 18E on page 454.
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(i) Remark (h) and the periodic boundary conditions required for Theorem
8D.1(d) both suggest that the Fourier series ‘wants’ us to identify the
interval (−π, π] with the unit circle S in the complex plane, via the bijection
φ : (−π, π] −→ S defined by φ(x) = eix. Now, S is an abelian group under
the complex multiplication operator. That is: if s, t ∈ S, then their product
s · t is also in S, the multiplicative inverse s−1 is in S, and the identity
element 1 is an element of S. Furthermore, S is a compact subset of C, and
the multiplication operation is continuous with respect to the topology of
S. In summary, S is a compact abelian topological group. The functions
{En}∞n=−∞ are then continuous homomorphisms from S into S (these are
called the characters of the group).

The existence of the Fourier series (8D.3) and the convergence properties
enumerated in Theorem 8D.1 are actually a consequence of these facts. In
fact, if G is any compact abelian topological group, then one can develop
a version of Fourier analysis on G. The characters of G are the continu-
ous homomorphisms from G into the unit circle group S. The set of all
characters of G forms an orthonormal basis for L2(G), so that almost any
‘reasonable’ function f : G −→ C can be expressed as a complex-linear
combination of these characters.

The study of Fourier series, their summability, and their generalizations to
other compact abelian groups is called harmonic analysis, and is a crucial
tool in many areas of mathematics, including the ergodic theory of dy-
namical systems and the representation theory of Lie groups. See [Fol84,
Ch.8], [WZ77, Ch.12] or the book [Kat76] to learn more about this vast
and fascinating area of mathematics.
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Chapter 9

Multidimensional Fourier
series

“The scientist does not study nature because it is useful; he studies it because he delights

in it, and he delights in it because it is beautiful. If nature were not beautiful, it would not

be worth knowing, and if nature were not worth knowing, life would not be worth living.”

—Henri Poincaré

9A ...in two dimensions
Prerequisites: §6E, §6F. Recommended: §7B.

Let X,Y > 0, and let X := [0, X] × [0, Y ] be an X × Y rectangle in the
plane. Suppose f : X −→ R is a real-valued function of two variables. For
all n,m ∈ N+ := {1, 2, 3, . . .}, we define the two-dimensional Fourier sine
coefficients:

Bn,m :=
4
XY

∫ X

0

∫ Y

0
f(x, y) sin

(πnx

X

)

sin
(πmy

Y

)

dx dy.

The two-dimensional Fourier sine series of f is the doubly infinite summa-
tion:

∞
∑

n,m=1

Bn,m sin
(πnx

X

)

sin
(πmy

Y

)

. (9A.1)

Notice that we are now summing over two independent indices, n and m.

Example 9A.1. Let X = π = Y , so that X = [0, π] × [0, π], and let
f(x, y) = x · y. Then f has two-dimensional Fourier sine series:

4
∞
∑

n,m=1

(−1)n+m

nm
sin(nx) sin(my).
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Figure 9A.1: Cn,m for n = 1...3 and m = 0...3 (rotate page).
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Figure 9A.2: Sn,m for n = 1...3 and m = 1...3 (rotate page).
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To see this, recall from By Example 7C.2(c) on page 148, we know that

2
π

∫ π

0
x sin(x) dx =

2(−1)n+1

n
.

Thus, Bn,m =
4
π2

∫ π

0

∫ π

0
xy · sin(nx) sin(my) dx dy

=
(

2
π

∫ π

0
x sin(nx) dx

)

·
(

2
π

∫ π

0
y sin(my) dy

)

=
(

2(−1)n+1

n

)

·
(

2(−1)m+1

m

)

=
4(−1)m+n

nm
. ♦

Example 9A.2.

Let X = π = Y , so that X = [0, π]× [0, π], and let f(x, y) = 1 be the constant
1 function. Then f has two-dimensional Fourier sine series:

4
π2

∞
∑

n,m=1

[1− (−1)n]
n

[1− (−1)m]
m

sin(nx) sin(my) =
16
π2

∞
∑

n,m=1
both odd

1
n ·m

sin(nx) sin(my)

Exercise 9A.1 Verify this. ♦E©

For all n,m ∈ N := {0, 1, 2, 3, . . .}, we define the two-dimensional Fourier
cosine coefficients of f :

A0 :=
1
XY

∫ X

0

∫ Y

0
f(x, y) dx dy,

An,0 :=
2
XY

∫ X

0

∫ Y

0
f(x, y) cos

(πnx

X

)

dx dy for n > 0;

A0,m :=
2
XY

∫ X

0

∫ Y

0
f(x, y) cos

(πmy

X

)

dx dy for m > 0; and

An,m :=
4
XY

∫ X

0

∫ Y

0
f(x, y) cos

(πnx

X

)

cos
(πmy

Y

)

dx dy for n,m > 0.

The two-dimensional Fourier cosine series of f is the doubly infinite sum-
mation:

∞
∑

n,m=0

An,m cos
(πnx

X

)

cos
(πmy

Y

)

. (9A.2)
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In what sense do these series converge to f? For any n,m ∈ N, define the
functions Cn,m,Sn,m : [0, X]× [0, Y ] −→ R by

Cn,m(x, y) := cos
(πnx

X

)

· cos
(πmy

Y

)

,

and Sn,m(x, y) := sin
(πnx

X

)

· sin
(πmy

Y

)

,

for all (x, y) ∈ [0, X]× [0, Y ] (see Figures 9A.1 and 9A.2).

Theorem 9A.3. Two-dimensional Co/Sine Series Convergence

Let X,Y > 0, and let X := [0, X]×[0, Y ].

(a) [i] The set {Sn,m ; n,m ∈ N+} is an orthogonal basis for L2 (X).

[ii] The set {Cn,m ; n,m ∈ N} is also an orthogonal basis for L2 (X).

[iii] Thus, if f ∈ L2(X), then the series (9A.1) and (9A.2) both converge
to f in L2-norm. Furthermore, the coefficient sequences {An,m}∞n,m=0 and
{Bn,m}∞n,m=1 are the unique sequences of coefficients with this property.

(b) If f ∈ C1(X) (i.e. f is continuously differentiable on X), then the series
(9A.1) and (9A.2) both converge to f pointwise on (0, X)× (0, Y ).

(c) [i] If

∞
∑

n,m=1

|Bn,m| <∞, then the two-dimensional Fourier sine series (9A.1)

converges to f uniformly on X.

[ii] If

∞
∑

n,m=0

|An,m| < ∞, then the two-dimensional Fourier cosine series

(9A.2) converges to f uniformly on X.

(d) [i] If f ∈ C1(X), and the derivative functions ∂x f and ∂y f are both in
L2(X), and f satisfies homogeneous Dirichlet boundary conditions1 on X,
then the two-dimensional Fourier sine series (9A.1) converges to f uniformly
on X.

[ii] Conversely, if the series (9A.1) converges to f uniformly on X, then f
is continuous and satisfies homogeneous Dirichlet boundary conditions.

(e) [i] If f ∈ C1(X), the derivative functions ∂x f and ∂y f are both in L2(X),
then the two-dimensional Fourier cosine series (9A.2) converges to f uni-
formly on X.

1That is, f(0, y) = 0 = f(X, y) for all y ∈ [0, Y ], and f(x, 0) = 0 = f(x, Y ) for all x ∈ [0, X].
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π/2 π

1

π/2

π

Figure 9A.3: The box function f(x, y) in Example 9A.4.

[ii] Conversely, if

∞
∑

n,m=1

n |Anm| < ∞ and

∞
∑

n,m=1

m |Anm| < ∞, then f ∈

C1(X), and f satisfies homogeneous Neumann boundary conditions2 on X.

Proof. This is just the case D = 2 of Theorem 9B.1 on page 187. 2

Example 9A.4. SupposeX = π = Y , and f(x, y) =
{

1 if 0 ≤ x < π
2 and 0 ≤ y < π

2 ;
0 if π

2 ≤ x or π
2 ≤ y.

(See Figure 9A.3). Then the two-dimensional Fourier cosine series of f is:

1
4

+
1
π

∞
∑

k=0

(−1)k

2k + 1
cos
(

(2k + 1)x
)

+
1
π

∞
∑

j=0

(−1)j

2j + 1
cos
(

(2j + 1)y
)

+
4
π2

∞
∑

k,j=0

(−1)k+j

(2k + 1)(2j + 1)
cos
(

(2k + 1)x
)

· cos
(

(2j + 1)y
)

To see this, note that f(x, y) = g(x)·g(y), where g(x) =
{

1 if 0 ≤ x < π
2

0 if π
2 ≤ x

.

Recall from Example 7C.6 on page 154 that the (one-dimensional) Fourier co-
sine series of g(x) is

g(x)
˜

L̃2

1
2

+
2
π

∞
∑

k=0

(−1)k

2k + 1
cos
(

(2k + 1)x
)

Thus, the cosine series for f(x, y) is given:

f(x, y) = g(x) · g(y)

2That is, ∂x f(0, y) = 0 = ∂x f(X, y) for all y ∈ [0, Y ], and ∂y f(x, 0) = 0 = ∂y f(x, Y ) for
all x ∈ [0, X].
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˜

L̃2

[

1
2

+
2
π

∞
∑

k=0

(−1)k

2k + 1
cos
(

(2k + 1)x
)

]

·





1
2

+
2
π

∞
∑

j=0

(−1)j

2j + 1
cos
(

(2j + 1)y
)



.

♦

Mixed Fourier series. (Optional)
We can also define the mixed Fourier sine/cosine coefficients:

C
[sc]
n,0 :=

2
XY

∫ X

0

∫ Y

0
f(x, y) sin

(πnx

X

)

dx dy, for n > 0.

C [sc]
n,m :=

4
XY

∫ X

0

∫ Y

0
f(x, y) sin

(πnx

X

)

cos
(πmy

Y

)

dx dy, for n,m > 0.

C
[cs]
0,m :=

2
XY

∫ X

0

∫ Y

0
f(x, y) sin

(πmy

Y

)

dx dy, for m > 0.

C [cs]
n,m :=

4
XY

∫ X

0

∫ Y

0
f(x, y) cos

(πnx

X

)

sin
(πmy

Y

)

dx dy, for n,m > 0.

The mixed Fourier sine/cosine series of f are then:

∞
∑

n=1,m=0

C [sc]
n,m sin

(πnx

X

)

cos
(πmy

Y

)

(9A.3)

and
∞
∑

n=0,m=1

C [cs]
n,m cos

(πnx

X

)

sin
(πmy

Y

)

For any n,m ∈ N, define the functions M[sc]
n,m,M

[cs]
n,m : [0, X]× [0, Y ] −→ R by

M[sc]
n,m(x, y) := sin

(πn1x

X

)

cos
(πn2y

Y

)

and M[cs]
n,m(x, y) := cos

(πn1x

X

)

sin
(πn2y

Y

)

.

for all (x, y) ∈ [0, X]× [0, Y ].

Proposition 9A.5. Two-dimensional Mixed Co/Sine Series Convergence

Let X := [0, X]×[0, Y ]. The sets of “mixed” functions,
{

M[sc]
n,m ; n ∈ N+, m ∈ N

}

and
{

M[cs]
n,m ; n ∈ N, m ∈ N+

}

are both orthogonal basis for L2 (X). In other

words, if f ∈ L2(X), then the series (9A.3) both converge to f in L2. 2

Exercise 9A.2. Formulate conditions for pointwise and uniform convergence of the E©
mixed series. �
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9B ...in many dimensions
Prerequisites: §6E, §6F. Recommended: §9A.

Let X1, . . . , XD > 0, and let X := [0, X1]× · · · × [0, XD] be an X1× · · · ×XD

box in D-dimensional space. For any n ∈ ND, define the functions Cn : X −→ R
and Sn : X −→ R by

Cn(x1, . . . , xD) := cos
(

πn1x1

X1

)

cos
(

πn2x2

X2

)

· · · cos
(

πnDxD
XD

)

, (9B.1)

Sn(x1, . . . , xD) := sin
(

πn1x1

X1

)

sin
(

πn2x2

X2

)

· · · sin
(

πnDxD
XD

)

, (9B.2)

for any x = (x1, x2, . . . , xD) ∈ X. Also, for any sequence ω = (ω1, . . . , ωD) of D
symbols “s” and “c”, we can define the “mixed” functions, Mω

n : X −→ R. For
example, if D = 3, then define

M[scs]
n (x, y, z) := sin

(

πn1x

Xx

)

cos
(

πn2y

Xy

)

sin
(

πn3z

Xz

)

.

If f : X −→ R is any function with ‖f‖2 < ∞, then, for all n ∈ ND+ , we define
the multiple Fourier sine coefficients:

Bn :=
〈f,Sn〉
‖Sn‖22

=
2D

X1 · · ·XD

∫

X
f(x) · Sn(x) dx.

The multiple Fourier sine series of f is then:

∑

n∈ND+

BnSn . (9B.3)

For all n ∈ ND, we define the multiple Fourier cosine coefficients:

A0 := 〈f, 11〉 =
1

X1 · · ·XD

∫

X
f(x) dx,

and An :=
〈f,Cn〉
‖Cn‖22

=
2dn

X1 · · ·XD

∫

X
f(x) ·Cn(x) dx.

where, for each n ∈ ND, the number dn is the number of nonzero entries in
n = (n1, n2, . . . , nD). The multiple Fourier cosine series of f is then:

∑

n∈ND
AnCn , where N := {0, 1, 2, 3, . . .}. (9B.4)
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Finally, we define the mixed Fourier Sine/Cosine coefficients:

Cωn :=
〈f,Mω

n〉
‖Mω

n‖
2
2

=
2dn

X1 · · ·XD

∫

X
f(x) ·Mω

n (x) dx,

where, for each n ∈ ND, the number dn is the number of nonzero entries ni in
n = (n1, . . . , nD). The mixed Fourier Sine/Cosine series of f is then:

∑

n∈ND
Cωn Mω

n . (9B.5)

Theorem 9B.1. Multidimensional Co/Sine Series Convergence on X
Let X := [0, X1]× · · · × [0, XD] be a D-dimensional box.

(a) [i] The set
{

Sn ; n ∈ ND+
}

is an orthogonal basis for L2 (X).

[ii] The set
{

Cn ; n ∈ ND
}

is an orthogonal basis for L2 (X).

[iii] For any sequence ω of D symbols “s” and “c”, the set of “mixed”
functions,

{

Mω
n ; n ∈ ND

}

is an orthogonal basis for L2 (X).

[iv] In other words, if f ∈ L2(X), then the series (9B.3), (9B.4), and
(9B.5) all converge to f in L2-norm. Furthermore, the coefficient sequences
{An}n∈ND , {Bn}n∈ND+ , and {Cωn }n∈ND are the unique sequences of coeffi-

cients with these properties.

(b) If f ∈ C1(X) (i.e. f is continuously differentiable on X), then the series
(9B.3), (9B.4), and (9B.5) converge pointwise on the interior of X.

(c) [i] If
∑

n∈ND+

|Bn| < ∞, then the multidimensional Fourier sine series (9B.3)

converges to f uniformly on X.

[ii] If
∑

n∈ND
|An| <∞, then the multidimensional Fourier cosine series (9B.4)

converges to f uniformly on X.

(d) [i] If f ∈ C1(X), and the derivative functions ∂k f are themselves in L2(X)
for all k ∈ [1...D], and f satisfies homogeneous Dirichlet boundary condi-
tions on X, then the multidimensional Fourier sine series (9B.3) converges
to f uniformly on X.

[ii] Conversely, if the series (9B.3) converges to f uniformly on X, then f
is continuous and satisfies homogeneous Dirichlet boundary conditions.

(e) [i] If f ∈ C1(X), and the derivative functions ∂k f are themselves in L2(X)
for all k ∈ [1...D], then the multidimensional Fourier cosine series (9B.4)
converges to f uniformly on X.
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[ii] Conversely, if
∑

n∈ND
(n1 + · · · + nD) |An| < ∞, then f ∈ C1(X), and f

satisfies homogeneous Neumann boundary conditions.

Proof. The proof of (c) is Exercise 9B.1 (Hint: Use the Weierstrass M -test,E©
Proposition 6E.13 on page 129.)

The proofs of (d,e)[ii] are Exercise 9B.2 (Hint: Generalize the solutions toE©
Exercises 7A.4 and 7A.9 on pages 139 and 142).

The proof of (a) is Exercise 9B.3 (Hint: Prove this by induction on the dimen-E©
sion D. The base case (D = 1) is Theorems 7A.1(a) and 7A.4(a) on pages 138 and
142. Use Lemma 15C.2(f) (on page 330) to handle the induction step.)

We will prove (b), (d)[i] and (e)[i] by induction on the dimension D. The
base cases (D = 1) are Theorems 7A.1(b,d[i]) and 7A.4(b,d[i]) on pages 138
and 142.

For the induction step, suppose the theorem is true for D, and consider D+1.
Let X := [0, X0]× [0, X1]× · · · × [0, XD] be a (D + 1)-dimensional box. Note
that X := [0, X0]× X∗, where X∗ := [0, X1]× · · · × [0, XD] is a D-dimensional
box. If f : X −→ R, then for all y ∈ [0, X0], let fy : X∗ −→ R be the function
defined by fy(x) := f(y,x) for all x ∈ X∗.
Claim 1: (a) If f ∈ C1(X), then fy ∈ C1(X∗) for all y ∈ [0, X0].

(b) Furthermore, if ∂k f ∈ L2(X) for all k ∈ [1...D], then ∂k (fy) ∈ L2(X∗) for
all k ∈ [1...D] and all y ∈ [0, X0].

(c) If f satisfies homogenous Dirichlet BC on X, then fy satisfies homogenous
Dirichlet BC on X∗, for all y ∈ [0, X0].

Proof. Exercise 9B.4 �
Claim 1

E©

For all n ∈ ND, define C∗n,S
∗
n : X∗ −→ R as in equations (9B.1) and (9B.2).

For every y ∈ [0, X0], let

Ayn :=
〈fy,C∗n〉
‖C∗n‖

2
2

and By
n :=

〈fy,S∗n〉
‖S∗n‖

2
2

be the D-dimensional Fourier (co)sine coefficients for fy, so that fy has D-
dimensional Fourier (co)sine series:

∑

n∈ND+

By
n S∗n ˜

L̃2
fy

˜

L̃2

∑

n∈ND
Ayn C∗n. (9B.6)

Claim 2: For all y ∈ [0, X0], the two series in eqn.(9B.6) converge to fy in
the desired fashion (i.e. pointwise or uniform) on X∗.
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Proof. Exercise 9B.5 (Hint: Use the induction hypothesis and Claim 1).E©
�

Claim 2

Fix n ∈ ND. Define αn, βn : [0, X0] −→ R by αn(y) := Ayn and βn(y) := By
n

for all y ∈ [0, X0].

Claim 3: For all n ∈ ND, αn ∈ L2[0, X0] and βn ∈ L2[0, X0].

Proof. We have

‖αn‖22 =
1
X0

∫ X0

0
|αn(y)|2 dy =

1
X0

∫ X0

0

∣

∣

∣

∣

∣

〈fy,C∗n〉
‖C∗n‖

2
2

∣

∣

∣

∣

∣

2

dy

=
1

X0 · ‖C∗n‖
4
2

∫ X0

0
|〈fy,C∗n〉|

2 dy

≤
(∗)

1
X0 · ‖C∗n‖

4
2

∫ X0

0
‖fy‖22 · ‖C

∗
n‖

2
2 dy

=
1

X0 · ‖C∗n‖
2
2

∫ X0

0
‖fy‖22 dy

=
1

X0 · ‖C∗n‖
2
2

(∫ X0

0

1
X1 · · ·XD

∫

X∗
|fy(x)|2 dx

)

dy

=
1

X0 · · ·XD · ‖C∗n‖
2
2

∫

X
|f(y,x)|2 d(y; x) =

1
‖C∗n‖

2
2

‖f‖22 .

Here, (∗) is the Cauchy-Bunyakowski-Schwarz Inequality (Theorem 6B.5 on
page 108).
Thus, ‖αn‖22 < ∞ because ‖f‖22 < ∞ because f ∈ L2(X) by hypothesis.
Thus, αn ∈ L2[0, X0]. The proof that βn ∈ L2[0, X0] is similar. �

Claim 3

For all m ∈ N, define Sm,Cm : [0, X0] −→ R by Sm(y) := sin(πmy/X0) and
Cm(y) := cos(πmy/X0), for all y ∈ [0, X0]. For all m ∈ N, let

An
m :=

〈αn,Cm〉
‖Cm‖22

and Bn
m :=

〈βn,Sm〉
‖Sm‖22

be the one-dimensional Fourier (co)sine coefficients for the functions αn and
βn, so that we get one-dimensional Fourier (co)sine series

αn ˜

L̃2

∞
∑

m=0

An
mCm and βn ˜

L̃2

∞
∑

m=1

Bn
mSm. (9B.7)

For all n ∈ ND and all m ∈ N, define Sm;n,Cm;n : X −→ R by Sm;n(y; x) :=
Sm(y) ·Sn(x) and Cm;n(y; x) := Cm(y) ·Cn(x), for all y ∈ [0, X0] and x ∈ X∗.
Then let

Am;n :=
〈f,Cm;n〉
‖Cm;n‖22

and Bm;n :=
〈f,Sm;n〉
‖Sm;n‖22
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be the (D+1)-dimensional Fourier (co)sine coefficients for the function f , so
that we get (D+1)–dimensional Fourier (co)sine series

∞
∑

m=0

∑

n∈ND
Am;n Cm;n ˜

L̃2
f

˜

L̃2

∞
∑

m=1

∑

n∈ND+

Bm;n Sm;n. (9B.8)

Claim 4: For all n ∈ ND and all m ∈ N, An
m = Am;n and Bn

m = Bm;n.

Proof. Exercise 9B.6 �
Claim 4

E©

Let ∂0 f be the derivative of f in the 0th (or ‘y’) coordinate, which we regard
as a function ∂0 f : X −→ R.

Claim 5: (a) If f ∈ C1(X), then for all n ∈ ND, αn ∈ C1[0, X0] and
βn ∈ C1[0, X0].

(b) Furthermore, if ∂0 f ∈ L2(X), then for all n ∈ ND, α′n ∈ L2[0, X0] and
β′n ∈ L2[0, X0].

(c) If f satisfies homogeneous Dirichlet BC on X, then βn satisfies homogeneous
Dirichlet BC on [0, X0], for all n ∈ ND+ .

Proof. To prove (a), we proceed as follows.
Exercise 9B.7 (a) Show that f is uniformly continuous on X. (Hint: f isE©
continuous on X, and X is compact.)
(b) Show: for any y0 ∈ [0, X0], the functions fy converge uniformly to fy0 as
y → y0.
(c) For any fixed n ∈ N, deduce that lim

y→y0
Ayn = Ay0

n and lim
y→y0

Byn = By0
n . (Hint:

Use Corollary 6E.11(b)[ii] on page 127.)
(d) Conclude that the functions αn and βn are continuous at y0.

The conclusion of Exercise 9B.7(d) holds for all y0 ∈ [0, X0] and all n ∈ N.
Thus, the functions αn and βn are continuous on [0, X0], for all n ∈ N.
For all y ∈ [0, X0], let (∂0f)y : X∗ −→ R be the function defined by
(∂0f)y(x) := ∂0 f(y,x) for all x ∈ X∗.
Exercise 9B.8 Suppose f ∈ C1(X). Use Proposition 0G.1 on page 567 toE©
show, for all n ∈ ND, that the functions αn and βn are differentiable on [0, X0];
furthermore, for all y ∈ [0, X0],

α′n(y) =
〈(∂0 f)y,Cn〉
‖Cn‖22

and β′n(y) =
〈(∂0 f)y,Sn〉
‖Sn‖22

. (9B.9)

Exercise 9B.9 Using the same technique as Exercise 9B.7, use eqn.(9B.9) toE©
prove that the functions α′n and β′n are continuous on [0, X0].
Thus, αn ∈ C1[0, X0] and βn ∈ C1[0, X0]; this proves part (a) of the Claim.
The proof of (b) is Exercise 9B.10 (Hint. Imitate the proof of Claim 3).E©
The proof of (c) is Exercise 9B.11 . �

Claim 5
E©
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Claim 6: The one-dimensional Fourier cosine series in eqn.(9B.7) converges
to αn, and the one-dimensional Fourier sine series in eqn.(9B.7) converges to
βn in the desired fashion (i.e. pointwise or uniform), for all n ∈ ND.

Proof. Exercise 9B.12 (Hint: Use Theorems 7A.1(b,d[i]) and 7A.4(b,d[i]) and E©
Claim 5).

Now, Claim 4 implies that the (D+1)–dimensional Fourier (co)sine series in
(9B.8) can be rewritten as

∞
∑

m=0

∑

n∈ND
An
m Cm Cn ˜

L̃2
f

˜

L̃2

∞
∑

m=1

∑

n∈ND+

Bn
m Sm Sn. (9B.10)

Exercise 9B.13 Suppose f ∈ C1(X). Use the ‘pointwise’ versions of Claims 2 and E©
6 to show that the two series in eqn.(9B.10) converges to f pointwise on the interior
of X.

This proves part (b) of the Theorem.

Exercise 9B.14 (hard) Suppose f ∈ C1(X), the derivative functions ∂0 f, ∂1 f, . . . , ∂0 f E©
are all in L2(X), and (for the sine series) f satisfies homogeneous Dirichlet boundary
conditions. Use the ‘uniform’ versions of Claims 2 and 6 to show that the two series
in eqn.(9B.10) converges to f uniformly if f ∈ C1(X).

This proves parts (d)[i] and (e)[i] of the Theorem. 2

Remarks. (a) If f is a piecewise C1 function on the interval [0, π], then The-
orems 7A.1 and 7A.4 also yield pointwise convergence and ‘local’ uniform con-
vergence of one-dimensional Fourier (co)sine to f inside the ‘C1 intervals’ of f .
Likewise, if f is a “piecewise C1 function” on the D-dimensional domain X, then
one can extend Theorem 9B.1 to get pointwise convergence and ‘local’ uniform
convergence of D-dimensional Fourier (co)sine to f inside the ‘C1 regions’ of f ;
however, it is too technically complicated to formally state this here.

(b) Remark 8D.3 on page 174 provided some technical remarks about the
(non)convergence of one-dimensional Fourier (co)sine series, when the hypotheses
of Theorems 7A.1 and 7A.4 are further weakened. Similar remarks apply to D-
dimensional Fourier series.

(c) It is also possible to define D-dimensional complex Fourier series on the
D-dimensional box [−π, π]D, in a manner analogous to the results of Section
8D, and then state and prove a theorem analogous to Theorem 9B.1 for such
D-dimensional complex Fourier series. (Exercise 9B.15 (Challenging) Do this.) E©

In Chapters 11-14, we will often propose a multiple Fourier series (or similar
object) as the solution to some PDE, perhaps with certain boundary conditions.
To verify that the Fourier series really satisfies the PDE, we must be able to
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compute its Laplacian. If we also require the Fourier series solution to satisfy
some Neumann boundary conditions, then we must be able to compute its normal
derivatives on the boundary of the domain. For these purposes, the next result
is crucial.

Proposition 9B.2. The Derivatives of a Multiple Fourier (co)sine series
Let X := [0, X1]× · · · × [0, XD]. Let f : X −→ R be have uniformly convergent

Fourier series

f
unif

A0 +
∑

n∈ND
AnCn +

∑

n∈ND+

BnSn.

(a) Fix i ∈ [1...D]. Suppose that
∑

n∈ND
ni|An| +

∑

n∈ND+

ni|Bn| < ∞. Then the

function ∂i f exists, and

∂i f ˜

L̃2

∑

n∈ND

(

πni
Xi

)

·
(

BnS′n −AnC′n
)

.

Here, for all n ∈ ND, and all x ∈ X, we define

C′n(x) := sin
(

πnixi
Xi

)

·Cn(x)/ cos
(

πnixi
Xi

)

,

and S′n(x) := cos
(

πnixi
Xi

)

· Sn(x)/ sin
(

πnixi
Xi

)

.

(b) Fix i ∈ [1...D]. Suppose that
∑

n∈ND
n2
i |An| +

∑

n∈ND+

n2
i |Bn| < ∞. Then

the function ∂2
i f exists, and

∂2
i f ˜

L̃2

∑

n∈ND
−
(

πni
Xi

)2

·
(

AnCn +BnSn

)

.

(c) Suppose that
∑

n∈ND
|n|2|An| +

∑

n∈ND
|n|2|Bn| < ∞ (where we define

|n|2 := n2
1 + ....+ n2

D). Then f is twice-differentiable, and

4f
˜

L̃2
− π2

∑

n∈ND

[

(

n1

X1

)2

+ · · ·+
(

nD
XD

)2
]

·
(

AnCn +BnSn

)

.

Proof. Exercise 9B.16 Hint: Apply Proposition 0F.1 on page 565 2
E©
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Example 9B.3. Fix n ∈ ND. If f = A ·Cn +B · Sn, then

4f = −π2

[

(

n1

X1

)2

+ · · ·+
(

nD
XD

)2
]

· f.

In particular, if X1 = · · · = XD = π, then this simplifies to: 4f = −|n|2 ·f .
In other words, f is an eigenfunction of the Laplacian operator, with eigenvalue
λ = −|n|2. ♦

9C Practice problems

Compute the two-dimensional Fourier sine transforms of the following functions.
For each question, also determine: at which points does the series converge
pointwise? Why? Does the series converge uniformly? Why or why not?

1. f(x, y) = x2 · y.

2. g(x, y) = x+ y.

3. f(x, y) = cos(Nx) · cos(My), for some integers M,N > 0.

4. f(x, y) = sin(Nx) · sinh(Ny), for some integer N > 0.
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Chapter 10

Proofs of the Fourier
convergence theorems

“The profound study of nature is the most fertile source of mathematical discoveries.”

—Jean Joseph Fourier

In this section, we will prove Theorem 8A.1(a,b,d) on page 162 (and thus,
indirectly prove 7A.1(a,b,d) and 7A.4(a,b,d) on pages 138 and 142). Along the
way, we will introduce some ideas which are of independent interest: Bessel’s
inequality, the Riemann-Lebesgue lemma, the Dirichlet kernel, convolutions and
mollifiers, and the relationship between the smoothness of a function and the
asymptotic decay of its Fourier coefficients. This chapter assumes no prior knowl-
edge of analysis, beyond some background from Chapter 6. However, the pre-
sentation is slightly more abstract than most of the book, and is intended for
more ‘theoretically inclined’ students.

10A Bessel, Riemann and Lebesgue

Prerequisites: §6D. Recommended: §7A, §8A.

We begin with a general result which is true for any orthonormal set in any
L2 space.

Theorem 10A.1. (Bessel’s Inequality)

Let X ⊂ RD be any bounded domain. Let {φn}∞n=1 be any orthonormal set of
functions in L2(X). Let f ∈ L2(X), and for all n ∈ N, let cn := 〈f, φn〉. Then for
all N ∈ N,

N
∑

n=1

|cn|2 ≤ ‖f‖22 .

In particular, lim
n→∞

cn = 0.
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Proof. Without loss of generality, suppose |X| = 1, so that 〈f, g〉 =
∫

X f(x) g(x) dx
for any f, g ∈ L2(X). First note that

[

f(x)−
N
∑

n=1

cnφn(x)

]2

= f(x)2 − 2f(x)
N
∑

n=1

cnφn(x) +

(

N
∑

n=1

cnφn(x)

)

·

(

N
∑

m=1

cmφm(x)

)

= f(x)2 − 2
N
∑

n=1

cnf(x)φn(x) +
N
∑

n,m=1

cncmφn(x)φm(x). (10A.1)

Thus,

0 ≤

∥

∥

∥

∥

∥

f −
N
∑

n=1

cnφn

∥

∥

∥

∥

∥

2

2

=
∫

X

[

f(x)−
N
∑

n=1

cnφn(x)

]2

dx

(∗)

∫

X



f(x)2 − 2
N
∑

n=1

cnf(x)φn(x) +
N
∑

n,m=1

cncmφn(x)φm(x)



 dx

=
∫

X
f(x)2 dx − 2

N
∑

n=1

cn

∫

X
f(x)φn(x) dx +

N
∑

n,m=1

cncm

∫

X
φn(x)φm(x) dx

= 〈f, f〉
︸ ︷︷ ︸

‖f‖22

− 2
N
∑

n=1

cn 〈f, φn〉
︸ ︷︷ ︸

cn

+
N
∑

n,m=1

cncm 〈φn, φm〉
︸ ︷︷ ︸

=1 if n=m
=0 if n6=m

= ‖f‖22 − 2
N
∑

n=1

c2
n +

N
∑

n=1

c2
n = ‖f‖22 −

N
∑

n=1

c2
n.

Here, (∗) is by eqn.(10A.1). Thus, 0 ≤ ‖f‖22 −
N
∑

n=1

c2
n. Thus

N
∑

n=1

c2
n ≤ ‖f‖

2
2,

as desired. 2

Example 10A.2. Suppose f ∈ L2[−π, π] has real Fourier coefficients {An}∞n=0

and {Bn}∞n=1, as defined on page 161. Then for all N ∈ N,

A2
0 +

N
∑

n=1

|An|2

2
+

N
∑

n=1

|Bn|2

2
≤ ‖f‖22 .

Exercise 10A.1 Prove this. (Hint: Let X = [−π, π] and let {φk}∞k=1 =
{√

2Cn

}∞

n=0
tE©

{√
2Sn

}∞

n=1
. Show that {φk}∞k=1 is an orthonormal set of functions (Use Proposi-

tion 6D.2 on page 112). Now apply Bessel’s Inequality). ♦
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Corollary 10A.3. (Riemann-Lebesgue Lemma)

(a) Suppose f ∈ L2[−π, π] has real Fourier coefficients {An}∞n=0 and {Bn}∞n=1,
as defined on page 161. Then lim

n→∞
An = 0 and lim

n→∞
Bn = 0.

(b) Suppose f ∈ L2[0, π] has Fourier cosine coefficients {An}∞n=0, as defined by
eqn.(7A.4) on page 141, and Fourier sine coefficients {Bn}∞n=1, as defined
by eqn.(7A.1) on page 137. Then lim

n→∞
An = 0 and lim

n→∞
Bn = 0.

Proof. Exercise 10A.2 Hint: Use Example 10A.2. 2
E©

10B Pointwise convergence

Prerequisites: §8A, §10A. Recommended: §17B.

In this section we will prove Theorem 8A.1(b), through a common strategy
in harmonic analysis: the use of a summation kernel. For all N ∈ N, the Nth
Dirichlet kernel is the function DN : [−2π, 2π] −→ R defined by

DN (x) := 1 + 2
N
∑

n=1

cos(nx) (see Figure 10B.1).

Note that DN is 2π-periodic (i.e. DN (x + 2π) = DN (x) for all x ∈ [−2π, 0]).
Thus, we could represent DN as a function from [−π, π] into R. However, it is
sometimes convenient to extend DN to [−2π, 2π]. For example, for any function
f : [−π, π] −→ R, the convolution of DN and f is the function DN ∗ f :
[−π, π] −→ R defined by

DN ∗ f(x) :=
1

2π

∫ π

−π
f(y) DN (x− y) dy, for all x ∈ [−π, π].

(Note that, to define DN ∗ f , we must evaluate DN (z) for all z ∈ [−2π, 2π]).
The connection between Dirichlet kernels and Fourier series is given by the next
lemma:

Lemma 10B.1. Let f ∈ L2[−π, π], and for all n ∈ N, let

An :=
1
π

∫ π

−π
cos(ny)f(y) dy and Bn :=

1
π

∫ π

−π
sin(ny)f(y) dy

be the real Fourier coefficients of f . Then for any N ∈ N, and every x ∈ [−π, π],
we have

A0 +
N
∑

n=1

AnCn(x) +
N
∑

n=1

BnSn(x) = DN ∗ f(x).
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Figure 10B.1: The Dirichlet kernels D1,D2, . . . ,D9 plotted on interval [−π, π]. Note the

increasing concentration of the function near x = 0. (In the terminology of Section 10D(ii) and

17B, the sequence {D1,D2, . . .} is like an approximation of the identity.)

Proof. For any x ∈ [−π, π], we have

A0 +
N
∑

n=1

AnCn(x) +
N
∑

n=1

BnSn(x)

= A0 +
N
∑

n=1

cos(nx)
(

1
π

∫ π

−π
cos(ny)f(y) dy

)

+
N
∑

n=1

sin(nx)
(

1
π

∫ π

−π
sin(ny)f(y) dy

)

= A0 +
N
∑

n=1

1
π

(∫ π

−π
cos(nx) cos(ny)f(y) dy +

∫ π

−π
sin(nx) sin(ny)f(y) dy

)

= A0 +
N
∑

n=1

1
π

∫ π

−π

(

cos(nx) cos(ny) + sin(nx) sin(ny)
)

f(y) dy
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(∗)

1
2π

∫ π

−π
f(y) dy +

N
∑

n=1

1
π

∫ π

−π
cos
(

n(x− y)
)

f(y) dy

=
1

2π

∫ π

−π

(

f(y) + 2
N
∑

n=1

cos
(

n(x− y)
)

f(y)

)

dy

=
1

2π

∫ π

−π
f(y) DN (x− y) dy = DN ∗ f(x).

Here, (∗) uses the fact that A0 := 1
2π

∫ π
−π f(y) dy, and also the well-known

trigonometric identity cos(u− v) = cos(u) cos(v) + sin(u) sin(v) (with u = nx
and v = ny). 2

Remark. See Exercise 18F.7 on page 464 for another proof of Lemma 10B.1
for complex Fourier series. ♦

Figure 10B.1 shows how the ‘mass’ of the Dirichlet kernel DN becomes in-
creasingly concentrated near x = 0 as N → ∞. In the terminology of Sections
10D and 17B (pages 207 and 379), the sequence {D1,D2, . . .} is like an approxi-
mation of the identity. Thus, our strategy is to show that DN ∗ f(x)→ f(x) as
N → ∞, whenever f is continuous at x. Indeed, we will go further: when f is
discontinuous at x, we will show that DN ∗ f(x) converges to the average of the
left-hand and right-hand limits of f at x. First we need some technical results.

Lemma 10B.2.

(a) For any N ∈ N, we have

∫ π

0
DN (x) dx = π.

(b) For anyN ∈ N and x ∈ (−π, 0)t(0, π), we have DN (x) =
sin((2N + 1)x/2)

sin(x/2)
.

(c) Let g : [0, π] −→ R be a piecewise continuous function. Then

lim
N→∞

∫ π

0
g(x) sin

(

(2N + 1)x
2

)

dx = 0.

Proof. The proof of (b) is Exercise 10B.1 (Hint: Use trigonometric identities). E©

To prove (a), note that

∫ π

0
DN (x) dx =

∫ π

0
1 + 2

N
∑

n=1

cos(nx) dx =
∫ π

0
1 dx+ 2

N
∑

n=1

∫ π

0
cos(nx) dx

= π + 2
N
∑

n=1

0 = π.
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To prove (c), first observe that

sin
(

(2N + 1)x
2

)

= sin
(

Nx+
x

2

)

= sin(Nx) cos(x/2) + cos(Nx) sin(x/2), (10B.1)

where the last step uses the well-known trigonometric identity sin(u + v) =
sin(u) cos(v) + cos(u) sin(v) (with u := Nx and v := x/2). Thus,
∫ π

0
g(x) sin

(

(2N + 1)x
2

)

dx

(†)

∫ π

0
g(x)

(

sin(Nx) cos(x/2) + cos(Nx) sin(x/2)
)

dx

=
∫ π

0
g(x) cos(x/2)
︸ ︷︷ ︸

G1(x)

sin(Nx)
︸ ︷︷ ︸

SN (x)

dx +
∫ π

0
g(x) sin(x/2)
︸ ︷︷ ︸

G2(x)

cos(Nx)
︸ ︷︷ ︸

CN (x)

dx

(∗)

2π
2π

∫ π

0
G1(x) SN (x) dx +

2π
2π

∫ π

0
G2(x) CN (x) dx

(‡)

π

2
〈G1,SN 〉+

π

2
〈G2,CN 〉

−−−−N→∞−→ 0 + 0, by Corollary 10A.3(b) (the Riemann-Lebesgue Lemma).

Here (†) is by eqn.(10B.1) and (‡) is by definition of the inner product on
L2[0, π]. In (∗), we define the functions G1(x) := g(x) cos(x/2) G2(x) :=
g(x) sin(x/2); these functions are piecewise continuous because g is piecewise
continuous; thus they are in L2[0, π], so the Riemann-Lebesgue Lemma is
applicable. 2

L

R

x

f

(A) x

f

(B) x

f

(C)

f   ((x) f 
 ) (x)

Figure 10B.2: (A) Left-hand and right-hand limits. Here, L := lim
y↗x

f(x) and R := lim
y↘x

f(x).

(B) The right-hand derivative f 〈(x). (C) The left-hand derivative f 〉(x).

Let f : [−π, π] −→ R be a function. For any x ∈ [−π, π), the right-hand
limit of f at x is defined

lim
y↘x

f(y) := lim
ε→0

f(x+ |ε|) (if this limit exists).
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Likewise, for any x ∈ (−π, π], the left-hand limit of f at x is defined

lim
y↗x

f(y) := lim
ε→0

f(x− |ε|) (if this limit exists).

See Figure 10B.2(A). Clearly, if f is continuous at x, then the left-hand and
right-hand limits both exist, and lim

y↘x
f(y) = f(x) = lim

y↗x
f(y). However, the

left-hand and right-hand limits may exist even when f is not continuous.
For any x ∈ [−π, π), let f(x+) := lim

y↘x
f(y). The right-hand derivative of

f at x is defined

f 〈(x) := lim
y↘x

f(y)− f(x+)
y − x

= lim
ε→0

f(x+ |ε|)− f(x+)
|ε|

(if this limit exists).

See Figure 10B.2(B). Likewise, for any x ∈ (−π, π], let f(x−) := lim
y↗x

f(y). The

left-hand derivative of f at x is defined

f 〉(x) := lim
y↗x

f(y)− f(x−)
y − x

= lim
ε→0

f(x− |ε|)− f(x−)
−|ε|

(if this limit exists).

See Figure 10B.2(C). If f 〈(x) and f 〉(x) both exist, then we say f is semidif-
ferentiable at x. Clearly, f is differentiable at x if and only if f is continuous
at x (so that f(x−) = f(x+)), and f semidifferentiable at x, and f 〈(x) = f 〉(x).
In this case, f ′(x) = f 〈(x) = f 〉(x). However, f can be semidifferentiable at x
even when f is not differentiable (or even continuous) at x.

Lemma 10B.3. Let ˜f : [−π, π] −→ R be a piecewise continuous function
which is semidifferentiable at 0. Then

lim
N→∞

∫ π

−π
˜f(x) DN (x) dx = π ·

(

lim
x↗0

˜f(x) + lim
x↘0

˜f(x)
)

.

Proof. It suffices to show that

lim
N→∞

∫ 0

−π
˜f(x) DN (x) dx = π · lim

x↗0

˜f(x) (10B.2)

and lim
N→∞

∫ π

0

˜f(x) DN (x) dx = π · lim
x↘0

˜f(x). (10B.3)

We will prove eqn.(10B.3). Let ˜f(0+) := lim
x↘0

˜f(x), and consider the function

g : [0, π] −→ R defined by g(x) :=
˜f(x)− ˜f(0+)

sin(x/2)
if x > 0, while g(0) :=

2 ˜f 〈(0).

Claim 1: g is piecewise continuous on [0, π].
Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



202— DRAFT Chapter 10. Proofs of the Fourier convergence theorems

Proof. Clearly, g is piecewise continuous on (0, π] because ˜f is piecewise
continuous, while sin(x/2) is nonzero on (0, π]. The only potential location
of an unbounded discontinuity is at 0. But

lim
x↘0

g(x) = lim
x↘0

˜f(x)− ˜f(0+)
sin(x/2)

= lim
x↘0

(

˜f(x)− ˜f(0+)
x

)

·
(

x

sin(x/2)

)

=

(

lim
x↘0

˜f(x)− ˜f(0+)
x− 0

)

︸ ︷︷ ︸

˜f〈(0)

· 2 ·
(

lim
x↘0

x/2
sin(x/2)

)

︸ ︷︷ ︸

=1

= 2 ˜f 〈(0) =: g(0).

Thus, g is (right-)continuous at 0, as desired. �
Claim 1

Now,

lim
N→∞

∫ π

0

˜f(x) DN (x) dx

= lim
N→∞

∫ π

0

(

˜f(0+) + ˜f(x)− ˜f(0+)
)

DN (x) dx

= lim
N→∞

∫ π

0

˜f(0+) DN (x) dx +
∫ π

0

(

˜f(x)− ˜f(0+)
)

DN (x) dx

(a)
π ˜f(0+) +

∫ π

0

(

˜f(x)− ˜f(0+)
)

DN (x) dx

(b)
π ˜f(0+) + lim

N→∞

∫ π

0

˜f(x)− ˜f(0+)
sin(x/2)

· sin
(

(2N + 1)x
2

)

dx

= π ˜f(0+) + lim
N→∞

∫ π

0
g(x) · sin

(

(2N + 1)x
2

)

dx

(c)
π ˜f(0+) + 0 = π ˜f(0+),

as desired. Here, (a) is by Lemma 10B.2(a), (b) is by Lemma 10B.2(b), and (c)
is by Lemma 10B.2(c), which is applicable because g is piecewise continuous
by Claim 1.

This proves eqn.(10B.3). The proof of eqn.(10B.2) is Exercise 10B.2. AddingE©
together equations (10B.2) and (10B.3) proves the lemma. 2

Lemma 10B.4. Let f : [−π, π] −→ R be piecewise continuous, and suppose
that f is semidifferentiable at x (i.e. f 〈(x) and f 〉(x) exist). Then

lim
N→∞

DN ∗ f(x) =
1
2

(

lim
y↘x

f(y) + lim
y↗x

f(y)
)

. (10B.4)

In particular, if f is continuous and semidifferentiable at x, then lim
N→∞

DN ∗
f(x) = f(x).
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π−π π−π π−π

f (y)

π−xx

f (y+x)

−π−x π−x

f (y)

(A) (B) (C)0 0 0

-x

x

Figure 10B.3: The 2π-periodic phase-shift of a function. (A) A function f : [−π, π] −→ R.

(B) The function y 7→ f(x+ y). (C) The function
y
f : [−π, π] −→ R.

Proof. Suppose x ∈ [0, π] (the case x ∈ [−π, 0] is handled similarly). Define
y
f : [−π, π] −→ R by

y
f (y) :=

{

f(y + x) if y ∈ [−π, π − x];
f(y + x− 2π) if y ∈ [π − x, π].

(Effectively, we are treating f as a 2π-periodic function, and ‘phase-shifting’
f by x; see Figure 10B.3). Then

2π ·DN ∗ f(x) =
∫ π

−π
f(y)DN (x− y) dy

(∗)

∫ π

−π
f(y)DN (y − x) dy

(c)

∫ π−x

−π−x
f(z + x)DN (z) dz

=
∫ −π

−π−x
f(z + x)DN (z) dz +

∫ π−x

−π
f(z + x)DN (z) dz

(@)

∫ π

π−x
f(w + x− 2π)DN (w − 2π) dw +

∫ π−x

−π
f(z + x)DN (z) dz

(†)

∫ π

π−x

y
f (w)DN (w) dw +

∫ π−x

−π

y
f (z)DN (z) dz

=
∫ π

−π

y
f (z)DN (z) dz

(�)
π ·
(

lim
z↘0

y
f (z) + lim

z↗0

y
f (z)

)

(‡)
π ·
(

lim
z↘0

f(z + x) + lim
z↗0

f(z + x)
)

(c)
π ·
(

lim
y↘x

f(y) + lim
y↗x

f(y)
)

.

Now divide both sides by 2π to get equation (10B.4).

Here, (∗) is because DN is even (i.e. DN (−r) = DN (r) for all r ∈ R).
Both equalities marked (c) are the change of variables z := y − x (so that
y = z + x). Likewise, equality (@) is the change of variables w := z + 2π (so

that z = w − 2π). Both (†) and (‡) use the definition of
y
f , and (†) also uses
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the fact that DN is 2π-periodic, so that DN (w − 2π) = DN (w) for all w ∈
[π−x, π]. Finally, (�) is by Lemma 10B.3 applied to

y
f (which is continuous

and semidifferentiable at 0 because f is continuous and semidifferentiable at
x). 2

Proof of Theorem 8A.1(b). Let x ∈ [−π, π], and suppose f is continuous and
differentiable at x. Then

lim
N→∞

A0 +
N
∑

n=1

AnCn(x) +
N
∑

n=1

BnSn(x)
(∗)

lim
N→∞

DN ∗ f(x)
(†)

f(x),

as desired. Here, (∗) is by Lemma 10B.1 and (†) is by Lemma 10B.4. 2

Remarks. (a) Note that we have actually proved a slightly stronger result
than Theorem 8A.1(b). If f is discontinuous, but semidifferentiable at x, then
Lemmas 10B.1 and 10B.4 together imply that

lim
N→∞

A0 +
N
∑

n=1

AnCn(x) +
N
∑

n=1

BnSn(x) =
1
2

(

lim
y↘x

f(y) + lim
y↗x

f(y)
)

.

This is how the ‘Pointwise Fourier Convergence Theorem’ is stated in some texts.
(b) For other good expositions of this material, see [CB87, §30-31, pp.87-92].

[Asm05, Thm. 1, p.30 of §2.2], [Pow99, §1.7, p.79], or [Bro89, Corollary 1.4.5,
p.16].

10C Uniform convergence

Prerequisites: §8A, §10A.

In this section, we will prove Theorem 8A.1(d). First we state a ‘discrete’ ver-
sion of the Cauchy-Bunyakowski-Schwarz Inequality (Theorem 6B.5 on page 108).

Lemma 10C.1. Cauchy-Bunyakowski-Schwarz Inequality in `2(N)
Let (an)∞n=1 and (bn)∞n=1 be two infinite sequences of real numbers. Then

( ∞
∑

n=1

anbn

)2

≤

( ∞
∑

n=1

a2
n

)

·

( ∞
∑

n=1

b2n

)

,

whenever these sums are finite.

Proof. Exercise 10C.1 Hint: imitate the proof of Theorem 6B.5 on page 108 2
E©
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Remark. For any infinite sequences of real numbers a := (an)∞n=1 and b :=

(bn)∞n=1, we can define 〈a,b〉 :=
∞
∑

n=1

anbn and ‖a‖2 :=
√

〈a,a〉 =
√∑∞

n=1 a
2
n.

The set of all sequences a such that ‖a‖2 <∞ is denoted `2(N). Lemma 10C.1
can then be reformulated as the statement: “For all a,b ∈ `2(N), |〈a,b〉| ≤
‖a‖2 · ‖b‖2”. ♦

Next, we will prove a result which relates the ‘smoothness’ of the function f
to the ‘asymptotic decay rate’ of its Fourier coefficients.

Lemma 10C.2. Let f : [−π, π] −→ R be continuous, with f(−π) = f(π). Let
{An}∞n=0 and {Bn}∞n=1 be the real Fourier coefficients of f , as defined on page 161.
If f is piecewise differentiable on [−π, π], and f ′ ∈ L2[−π, π], then the sequences

{An}∞n=0 and {Bn}∞n=1 converge to zero fast enough that

∞
∑

n=1

|An| < ∞ and

∞
∑

n=1

|Bn| < ∞.

Proof. If f ′ ∈ L2[−π, π], then we can compute its real Fourier coefficients
{A′n}∞n=0 and {B′n}∞n=1.

Claim 1: For all n ∈ N, An = −B′n/n and Bn = A′n/n.

Proof. By definition,

A′n :=
1
π

∫ π

−π
f ′(x) cos(nx) dx

(p)

1
π
f(x) cos(nx)

∣

∣

∣

x=π

x=−π
+

1
π

∫ π

−π
f(x) n sin(nx) dx

(c)

(−1)n

π

(

f(π)− f(−π)
)

+ nBn
(∗)

nBn.

Likewise, B′n :=
1
π

∫ π

−π
f ′(x) sin(nx) dx

(p)

1
π
f(x) sin(nx)

∣

∣

∣

x=π

x=−π
− 1
π

∫ π

−π
f(x) n cos(nx) dx

(s)

(

0− 0
)

− nAn = −nAn.

Here, (p) is integration by parts, (c) is because cos(−nπ) = (−1)n =
cos(nπ), (∗) is because f(−π) = f(π), and (s) is because sin(−nπ) = 0 =
sin(nπ).
Thus, B′n = −nAn and A′n = nBn; hence An = −B′n/n and Bn = A′n/n.
�

Claim 1
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Let K :=
∞
∑

n=1

1
n2

(a finite value). Then

( ∞
∑

n=1

|An|

)2

(∗)

( ∞
∑

n=1

1
n
|B′n|

)2

≤
(CBS)

( ∞
∑

n=1

1
n2

)

·

( ∞
∑

n=1

|B′n|2
)

= K ·
∞
∑

n=1

|B′n|2 ≤
(B)

K ·
∥

∥f ′
∥

∥

2

2
<
(†)
∞.

Here, (∗) is by Claim 1, (CBS) is by Lemma 10C.1, and (B) is by Bessel’s
inequality (Theorem 10A.1 on page 195). Finally, (†) is because f ′ ∈ L2[−π, π]

by hypothesis. It follows that
∞
∑

n=1

|An| < ∞. The proof that
∞
∑

n=1

|Bn| < ∞ is

similar. 2

Proof of Theorem 8A.1(d). If f : [−π, π] −→ R is continuous and piecewise
differentiable, f ′ ∈ L2[−π, π], and f(−π) = f(π), then Lemma 10C.2 implies

that
∞
∑

n=1

|An| +
∞
∑

n=1

|Bn| < ∞. But then Theorem 8A.1(c) says that the

Fourier series of f converges uniformly. (Theorem 8A.1(c), in turn, is a direct
consequence of the Weierstrass M test, Proposition 6E.13 on page 129.). 2

Remarks. (a) For other treatments of the material in this section, see [CB87,
§34-35, pp.105-109] or [Asm05, Thm. 3, p.90 of §2.9].

(b) The connection between smoothness of f and the asymptotic decay of
its Fourier coefficients is a recurring theme in harmonic analysis. In general, the
‘smoother’ a function is, the ‘faster’ its Fourier coefficients decay to zero. The
weakest statement of this kind is the Riemann-Lebesgue Lemma (Corollary 10A.3
on page 197), which says that if f is merely in L2, then its Fourier coefficients
must converge to zero —although perhaps very slowly. (In the context of Fourier
transforms of functions on R, the corresponding statement is Theorem 19B.1 on
page 492). If f is ‘slightly smoother’ —specifically, if f is absolutely continuous
or if f has bounded variation —then its Fourier coefficients decay to zero with
speed comparable to the sequence {1, 1

2 ,
1
3 , . . . ,

1
n , . . .}; see [Kat76, Thm.4.3 and

4.5, pp.24-25]. If f is differentiable, then Lemma 10C.2 says that its Fourier
coefficients must decay fast enough that the sums

∑∞
n=1 |An| and

∑∞
n=1 |Bn|

converge. (For Fourier transforms of functions on R, the corresponding result
is Theorem 19B.7 on page 496.) More generally, if f is k times differentiable
on [−π, π], then its Fourier coefficients must decay fast enough that the sums
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∞
∑

n=1

nk−1|An| and
∞
∑

n=1

nk−1|Bn| converge; see [Kat76, Thm.4.3, p.24]. Finally, if

f is analytic1, on [−π, π], then its Fourier coefficients must decay exponentially
quickly to zero; that is, for small enough r > 0, we have lim

n→∞
rn|An| = 0 and

lim
n→∞

rn|Bn| = 0 (see Proposition 18E.3 on page 458).
At the other extreme, what about a sequence of Fourier coefficients which

does not satisfy the Riemann-Lebesgue lemma —that is, which does not converge
to zero? This corresponds to the Fourier series of an object which is more
‘singular’ than any function can be: a Laurent distribution or a measure on
[−π, π], which can have ‘infinitely dense’ concentrations of mass at some points.
See [Kat76, §1.7, pp.34-46] or [Fol84, §8.5 and §8.8 on p.258 and p.281].

10D L2 convergence

Prerequisites: §6B.

In this section, we will prove Theorem 8A.1(a) (concerning the L2 conver-
gence of Fourier series). For any k ∈ N, let Ck

per
[−π, π] be the set of func-

tions f which are k times continuously differentiable on [−π, π], and such that
f(−π) = f(π), f ′(−π) = f ′(π), f ′′(−π) = f ′′(π), . . ., and f (k)(−π) = f (k)(π).
If f ∈ C1

per
[−π, π], then Theorem 8A.1(d) (which we just proved in §10C) says

the Fourier series of f converges uniformly. Then Corollary 6E.11(b)[i] (on page
127) immediately implies that the Fourier series of f converges in L2 norm. Un-
fortunately, this argument does not work for most functions in L2[−π, π], which
are not in C1

per
[−π, π]. Our strategy will be to show that C1

per
[−π, π] is dense

in L2[−π, π]; thus, the L2 convergence of Fourier series in C1
per

[−π, π] can be
‘leveraged’ to obtain L2 convergence for all functions in L2[−π, π].

A subset G ⊂ L2[−π, π] is dense in L2[−π, π] if, for any f ∈ L2[−π, π], and
any ε > 0, we can find some g ∈ G such that ‖f − g‖2 < ε. In other words,
any element of L2[−π, π] can be approximated arbitrarily closely2 by elements
of G. Aside from Theorem 8A.1(a), the major goal of this section is to prove the
following result:

Theorem 10D.1. For all k ∈ N, the subset Ck
per

[−π, π] is dense in L2[−π, π].

To achieve this goal, we must first examine the structure of integrable func-
tions, and develop some useful machinery involving ‘convolutions’ and ‘molli-
fiers’. Then we will prove Theorem 10D.1. Once Theorem 10D.1 is established,

1See page 570 of Appendix 0H
2In the same way, the set Q of rational numbers is dense in the set R of real numbers:

any real number can be approximated arbitrarily closely by rational numbers. Indeed, we
exploit this fact every time we approximate a real number using a decimal expansion —e.g.
π ≈ 3.141592653 = 3141592653

100000000
.
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we will prove Theorem 8A.1(a) by using Theorem 8A.1(d) and the triangle in-
equality.

10D(i) Integrable functions and step functions in L2[−π, π]

Prerequisites: §6B, §6E(i).

We have defined L2[−π, π] to be the set of ‘integrable’ functions f : [−π, π] −→
R such that

∫ π
−π |f(x)|2 dx <∞. But what exactly does integrable mean? To ex-

plain this, let Step[−π, π] be the set of all step functions on [−π, π] (see § 8B(ii)
on page 164 for the definition of step functions). If f : [−π, π] −→ R is any
bounded function, then we can ‘approximate’ f using step functions in a natural
way. First, let Y := {−π = y0 < y1 < y2 < y3 < · · · < yM−1 < yM = π} be
some finite ‘mesh’ of points in [−π, π]. For all n ∈ N, let an := inf

yn−1≤x≤yn
f(x)

and an := sup
yn−1≤x≤yn

f(x). Then define step functions SY : [−π, π] −→ R and

SY : [−π, π] −→ R by

SY(x) :=







































a1 if −π ≤ x ≤ y1;
a2 if y1 < x ≤ y2;

...
am if ym−1 < x ≤ ym;

...
aM if yM−1 < x ≤ π.

and SY(x) :=







































a1 if −π ≤ x ≤ y1;
a2 if y1 < x ≤ y2;

...
am if ym−1 < x ≤ ym;

...
aM if yM−1 < x ≤ π.

It is easy to compute the integrals of SY and SY :

∫ π

−π
SY(x) dx =

N
∑

n=1

an·|yn − yn−1| and
∫ π

−π
SY(x) dx =

N
∑

n=1

an·|yn − yn−1| .

(You may recognize these as upper and lower Riemann sums of f). If the mesh
{y0, y1, y2 ,. . ., yM} is ‘dense’ enough in [−π, π], so that SY and SY are ‘good
approximations’ of f , then we might expect

∫ π
−π SY(x) dx and

∫ π
−π SY(x) dx

to be good approximations of
∫ π
−π f(x) dx (if the integral of f is well-defined).

Furthermore, it is clear from their definitions that SY(x) ≤ f(x) ≤ SY(x) for all
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x ∈ [−π, π]; thus we would expect
∫ π

−π
SY(x) dx ≤

∫ π

−π
f(x) dx ≤

∫ π

−π
SY(x) dx,

whenever the integral
∫ π
−π f(x) dx exists. Let Y be the set of all finite ‘meshes’

of points in [−π, π]. Formally:

Y :=
{

Y ⊂ [−π, π] ; Y = {y0, y1, y2, . . . , yM}, for some M ∈ N
and − π = y0 < y1 < y2 < · · · < yM = π

}

.

We define the lower and upper semi-integrals of f :

I(f) := sup
Y∈Y

∫ π

−π
SY(x) dx (10D.1)

= sup

{

N
∑

n=1

(

|yn − yn−1| · inf
yn−1≤x≤yn

f(x)
)

; M ∈ N, −π = y0 < y1 < · · · < yM = π

}

.

I(f) := inf
Y∈Y

∫ π

−π
SY(x) dx (10D.2)

= inf

{

N
∑

n=1

(

|yn − yn−1| · sup
yn−1≤x≤yn

f(x)

)

; M ∈ N, −π = y0 < y1 < · · · < yM = π

}

.

It is easy to see that I(f) ≤ I(f) (Exercise 10D.1 Check this.). Indeed, if E©
f is a sufficiently ‘pathological’ function, then we may have I(f) < I(f). If
I(f) = I(f), then we say that f is (Riemann) integrable, and we define the
(Riemann) integral of f :

∫ π

−π
f(x) dx := I(f) = I(f).

For example:

• Any bounded, piecewise continuous function on [−π, π] is Riemann-integrable.

• Any continuous function on [−π, π] is Riemann-integrable.

• Any step function on [−π, π] is Riemann-integrable.

If f : [−π, π] −→ R is not bounded, then the definitions of SY and/or SY make
no sense (because at least one of them is defined as “∞” or “−∞” on some
interval). Thus, at least one of the expressions (10D.1) and (10D.2) is not well-
defined if f is unbounded. In this case, for any N ∈ N, we define the ‘truncated’
functions f+

N : [−π, π] −→ [0, N ] and f−N : [−π, π] −→ [−N, 0] as follows

f+
N (x) :=







0 if f(x) ≤ 0;
f(x) if 0 ≤ f(x) ≤ N ;
N if N ≤ f(x).
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and f−N (x) :=







−N if f(x) ≤ −N ;
f(x) if −N ≤ f(x) ≤ 0;

0 if 0 ≤ f(x).

The functions f+
N and f−N are clearly bounded, so their Riemann integrals are

potentially well-defined. If f+
N and f−N are integrable for all N ∈ N, then we say

that f is (Riemann) measurable. We then define
∫ π

−π
f(x) dx := lim

N→∞

∫ π

−π
f+
N (x) dx + lim

N→∞

∫ π

−π
f−N (x) dx.

If both these limits are finite, then
∫ π
−π f(x) dx is well-defined, and we say that the

unbounded function f is (Riemann) integrable. The set of all integrable func-
tions (bounded or unbounded) is denoted L1[−π, π], and for any f ∈ L1[−π, π],
we define

‖f‖1 =
∫ π

−π
|f(x)| dx.

We can now define L2[−π, π]:

L2[−π, π] :=

{

all measurable functions f : [−π, π] −→ R such that
f2 : [−π, π] −→ R is integrable —i.e.

∫ π
−π |f(x)|2 dx < ∞

}

.

Proposition 10D.2. Step[−π, π] is dense in L2[−π, π].

Proof. Let f ∈ L2[−π, π] and let ε > 0. We want to find some S ∈ Step[−π, π]
such that ‖f − S‖2 < ε.

First suppose that f is bounded. Since f2 is integrable, we know that I(f2) =
∫ π
−π f

2(x) dx, where I(f2) is defined by expression (10D.1). Thus, we can
find some step function S0 ∈ Step[−π, π] such that 0 ≤ S0(x) ≤ f2(x) for all
x ∈ [−π, π], and such that

0 ≤
∫ π

−π
f(x)2 dx −

∫ π

−π
S0(x) dx < ε. (10D.3)

Define the step function S ∈ Step[−π, π] by S(x) := sign[f(x)] ·
√

S0(x). Thus,
S2(x) = S0(x), and the sign of S agrees with that of f everywhere. Observe
that

(f − S)2 =
f − S
f + S

· (f − S)(f + S) =
f − S
f + S

· (f2 − S2)

≤
(∗)

f2 − S2 = f2 − S0. (10D.4)
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Here, (∗) is because 0 < f−S
f+S < 1 (because for all x, either f(x) ≤ S(x) ≤ 0,

or 0 ≤ S(x) ≤ f(x)), while f2 − S2 ≥ 0 (because f2 ≥ S0 = S2). Thus,

0 ≤ ‖f − S‖22 =
∫ π

−π
(f(x)− S(x))2 dx ≤

(∗)

∫ π

−π
f(x)2 − S0(x) dx

=
∫ π

−π
f(x)2 dx −

∫ π

−π
S0(x) dx <

(†)
ε,

where (∗) is by eqn.(10D.4) and (†) is by eqn.(10D.3).

This works for any ε > 0; thus the set Step[−π, π] is dense in the space of
bounded elements of L2[−π, π].

The case when f is unbounded is Exercise 10D.2 (Hint: approximate f with E©
bounded functions). 2

Remark 10D.3: To avoid developing a considerable amount of technical back-
ground, we have defined L2[−π, π] using the Riemann integral. The ‘true’ defini-
tion of L2[−π, π] involves the more powerful and versatile Lebesgue integral. (See
§ 6C(ii) on page 110 for an earlier discussion of Lebesgue integration). The defi-
nition of the Lebesgue integral is similar to the Riemann integral, but instead of
approximating f using step functions, we use simple functions. A simple function
is a piecewise-constant function, like a step function, but instead of open inter-
vals, the ‘pieces’ of a simple function are Borel-measurable subsets of [−π, π]. A
Borel measurable subset is a countable union of countable intersections of count-
able unions of countable intersections of .... of countable unions/intersections
of open and/or closed subsets of [−π, π]. In particular, any interval is Borel
measurable (so any step function is a simple function), but Borel measurable
subsets can be very complicated indeed. Thus, ‘simple’ functions are capable of
approximating even pathological, wildly discontinuous functions on [−π, π], so
that the Lebesgue integral can be evaluated even on such crazy functions. The
set of Lebesgue-integrable functions is thus much larger than the set of Riemann-
integrable functions. Every Riemann-integrable function is Lebesgue integrable
(and its Lebesgue integral is the same as its Riemann integral), but not vice
versa.

The analogy of Proposition 10D.2 is still true if we define L2[−π, π] using
Lebesgue-integrable functions, and if we replace Step[−π, π] with the set of all
simple functions. The other results in this section can also be extended to the
Lebesgue version of L2[−π, π], but at the cost of considerable technical complex-
ity. ♦

Let f : [−π, π] −→ R. Let f
�

: [−2π, 2π] −→ R be the 2π-periodic exten-
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−π π

f

π−π 2π−2π

f
0

Figure 10D.1: f� : [−2π, 2π] is the 2π-periodic extension of f : [−π, π] −→ R.

sion of f , defined:

f
�
(x) :=







f(x+ 2π) if −2π ≤ x < −π;
f(x) if −π ≤ x ≤ π;

f(x− 2π) if π < x ≤ 2π.
(See Figure 10D.1)

(Observe that f
�

is continuous if and only if f is continous and f(−π) = f(π)).

For any t ∈ R, define the function f
x
t : [−π, π] −→ R by f

x
t (x) = f

�
(x − t).

(For example, the function
y
f defined on page 203 could be written:

y
f= f

x
−x; see

Figure 10B.3 on page 203).

Lemma 10D.4. Let f ∈ L2[−π, π]. Then f = L2−lim
t→0

f
x
t .

Proof. We will employ a classic strategy in real analysis: first prove the
result for some ‘nice’ class of functions, and then prove it for all functions by
approximating them with these nice functions. In this case, the nice functions
are the step functions.

Claim 1: Let S ∈ Step[−π, π]. Then S = L2−lim
t→0

S
x
t .

Proof. Exercise 10D.3 �
Claim 1

E©

Now, let f ∈ L2[−π, π], and let ε > 0. Proposition 10D.2 says there is some
S ∈ Step[−π, π] such that

‖S − f‖2 <
ε

3
. (10D.5)

Claim 2: For all t ∈ R,
∥

∥

∥S
x
t − f

x
t
∥

∥

∥

2
= ‖S − f‖2.

Proof. Exercise 10D.4 �
Claim 2

E©

Now, using Claim 1, find δ > 0 such that, if |t| < δ, then
∥

∥

∥

∥

S − S
x
t

∥

∥

∥

∥

2

<
ε

3
. (10D.6)
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Then
∥

∥

∥

∥

f − f
x
t

∥

∥

∥

∥

2

=
∥

∥

∥

∥

f − S + S − S
x
t + S

x
t − f

x
t

∥

∥

∥

∥

2

≤
(4)

‖f − S‖2 +
∥

∥

∥

∥

S − S
x
t

∥

∥

∥

∥

2

+
∥

∥

∥

∥

S
x
t − f

x
t

∥

∥

∥

∥

2

≤
(∗)

ε

3
+
ε

3
+
ε

3
= ε.

Here (4) is the triangle inequality, and (∗) is by equations (10D.5) and (10D.6)
and Claim 2.

This works for all ε > 0; thus, f = L2−lim
t→0

f
x
t . 2

There is one final technical result we will need about L2[−π, π]. If f1, f2, . . . , fN ∈
L2[−π, π] and r1, r2, . . . , rN ∈ R are real numbers, then the triangle inequality
implies that

‖r1f1 + r2f2 + · · ·+ rNfN‖2 ≤ |r1| · ‖f1‖2 + |r2| · ‖f2‖2 + · · ·+ |rN | · ‖fN‖2 .

This is a special case of Minkowski’s inequality. The next result says that the
same inequality holds if we sum together a ‘continuum’ of functions.

Theorem 10D.5. (Minkowski’s inequality for integrals)

Let a < b, and for all t ∈ [a, b], let ft ∈ L2[−π, π]. Define F : [a, b]×[−π, π] −→ R
by F (t, x) = ft(x) for all (t, x) ∈ [a, b] × [−π, π], and suppose that the family
{ft}t∈[a,b] is such that the function F is integrable on [a, b] × [−π, π]. Let R :
[a, b] −→ R be some other integrable function, and define G : [−π, π] −→ R by

G(x) :=
∫ b

a
R(t)ft(x) dt, for all x ∈ [−π, π].

Then G ∈ L2[−π, π], and

‖G‖2 ≤
∫ b

a
|R(t)| · ‖ft‖2 dt,

In particular, if ‖ft‖2 < M for all t ∈ [a, b], then ‖G‖2 ≤ M · ‖R‖1, where

‖R‖1 :=
∫ b
a |R(t)| dt.

Proof. See [Fol84, Thm 6.18, p.186]. 2
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10D(ii) Convolutions and mollifiers

Prerequisites: §10D(i). Recommended: §17B.

Let f, g : [−π, π] −→ R be two integrable functions. Let g
�

: [−2π, 2π] −→ R
be the 2π-periodic extension of g (see Figure 10D.1 on page 212). The (2π-
periodic) convolution of f and g is the function f ∗ g : [−π, π] −→ R defined
by

f ∗ g(x) :=
1

2π

∫ π

−π
f(y) g

�
(x− y) dy, for all x ∈ [−π, π].

Convolution is an important and versatile mathematical operation, which ap-
pears frequently in harmonic analysis, probability theory, and the study of partial
differential equations. We will encounter it again in Chapter 17, in the context
of ‘impulse-response’ solutions to boundary value problems. In this subsection,
we will develop the theory of convolutions on [−π, π]. We will actually develop
slightly more than we need in order to prove Theorems 10D.1 and 8A.1(a). Re-
sults which are not logically required for the proofs of Theorems 10D.1 and
8A.1(a) are marked with the margin symbol ‘(Optional)’ and can be skipped
on a first reading; however, we feel that these results are interesting enough in
themselves to be worth including in the exposition.

Lemma 10D.6. (Properties of convolutions)
Let f, g : [−π, π] −→ R be integrable functions. The convolution of f and g has

the following properties:

(a) (Commutativity) f ∗ g = g ∗ f .

(b) (Linearity) If h : [−π, π] −→ R is another integrable function, then f ∗
(g + h) = f ∗ g + f ∗ h and (f + g) ∗ h = f ∗ h+ g ∗ h.

(c) If f, g ∈ L2[−π, π], then f ∗ g is bounded: for all x ∈ [−π, π], we have
|f ∗ g(x)| ≤ ‖f‖2 · ‖g‖2. (In other words, ‖f ∗ g‖∞ ≤ ‖f‖2 · ‖g‖2.)(Optional)

Proof. (a) is Exercise 10D.5 . To prove (b), let x ∈ [−π, π]. ThenE©

f ∗ (g + h)(x) =
1

2π

∫ π

−π
f(y)

(

g
�
(x− y) + h

�
(x− y)

)

dy

=
1

2π

∫ π

−π
f(y)g

�
(x− y) dy +

1
2π

∫ π

−π
f(y)h

�
(x− y) dy

= f ∗ g(x) + f ∗ h(x).

(c) Let x ∈ [−π, π]. Define h ∈ L2[−π, π] by h(y) := g
�
(x− y). Then(Optional)

f ∗ g(x) =
1

2π

∫ π

−π
f(y)g

�
(x− y) dy =

1
2π

∫ π

−π
f(y)h(y) dy = 〈f, h〉 .

Thus, |f ∗ g(x)| = |〈f, h〉| ≤
(CBS)

‖f‖2 · ‖h‖2 , (10D.7)
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where (CBS) is the Cauchy-Bunyakowski-Schwarz inequality (Theorem 6B.5
on page 108). But

‖h‖22 =
1

2π

∫ π

−π
h(y)2 dy =

1
2π

∫ π

−π
g
�
(x− y)2 dy

(∗)

−1
2π

∫ x−π

x+π
g
�
(z)2 dz

=
1

2π

∫ x+π

x−π
g
�
(z)2 dz

(†)

1
2π

∫ π

−π
g(z)2 dz = ‖g‖22 . (10D.8)

Here, (∗) is the change of variables z = x− y (so that dz = −dy) and (†) is by
definition of the periodic extension g

�
of g.

Combining equations (10D.7) and (10D.8) we conclude that |f ∗g(x)| < ‖f‖2 ·
‖g‖2, as claimed. 2

Remarks. (a) Proposition 17G.1 on page 409 provides an analog to Lemma
10D.6 for convolutions on RD.

(b) There is also an interesting relationship between convolution and complex
Fourier coefficients; see Lemma 18F.3 on page 463. ♦

Elements of L1[−π, π] and L2[−π, π] need not be differentiable, or even con-
tinuous (indeed, some of these functions are discontinuous ‘almost everywhere’).
But the convolution of even two highly discontinuous elements of L2[−π, π] will
be a continuous function. Furthermore, convolution with a smooth function has
a powerful ‘smoothing’ effect on even the nastiest elements of L1[−π, π].

Lemma 10D.7. Let f, g ∈ L1[−π, π].

(a) f ∗ g(−π) = f ∗ g(π).

(b) If f ∈ L1[−π, π] and g is continuous with g(−π) = g(π), then f ∗ g is
continuous.

(c) If f, g ∈ L2[−π, π], then f ∗ g is continuous. (Optional)

(d) If g is differentiable on [−π, π], then f ∗ g is also differentiable on [−π, π],
and (f ∗ g)′ = f ∗ (g′).

(e) If g ∈ C1[−π, π], then f ∗ g ∈ C1
per

[−π, π].

(f) For any k ∈ N, if g ∈ Ck[−π, π], then3 f ∗ g ∈ Ck
per

[−π, π]. Furthermore, (Optional)

(f ∗ g)′ = f ∗ g′, (f ∗ g)′′ = f ∗ g′′, . . ., and (f ∗ g)(k) = f ∗ g(k).

3See page 207 for the definition of Ckper [−π, π].
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Proof. (a) f ∗ g(π) =
1

2π

∫ π

−π
f(y)g

�
(π − y) dy

(∗)

1
2π

∫ π

−π
f(y)g

�
(π − y −

2π) dy =
1

2π

∫ π

−π
f(y)g

�
(−π − y) dy = f ∗ g(−π). Here, (∗) is because g

�
is

2π-periodic.

(b) Fix x ∈ [−π, π] and let ε > 0. We must find some δ > 0 such that, for any
x1 ∈ [−π, π], if |x− x1| < δ then |f ∗ g(x)− f ∗ g(x1)| < ε. But

f ∗ g(x)− f ∗ g(x1) =
1

2π

∫ π

−π
f(y) g

�
(x− y) dy − 1

2π

∫ π

−π
f(y) g

�
(x1 − y) dy

=
1

2π

∫ π

−π
f(y) g

�
(x− y)− f(y)g

�
(x1 − y) dy

=
1

2π

∫ π

−π
f(y)

(

g
�
(x− y)− g�(x1 − y)

)

dy. (10D.9)

Since g is continuous on [−π, π] and g(−π) = g(π), it follows that g
�

is contin-
uous on [−2π, 2π]; since [−2π, 2π] is a closed and bounded set, it then follows
that g

�
is uniformly continuous on [−2π, 2π]. That is, there is some δ > 0 such

that, for any z, z1 ∈ [−2π, 2π],

if |z − z1| < δ, then |g�(z)− g�(z1)| <
2πε
‖f‖1

. (10D.10)

Now, suppose |x− x1| < δ. Then

|f ∗ g(x)− f ∗ g(x1)|
(∗)

∣

∣

∣

∣

1
2π

∫ π

−π
f(y)

(

g
�
(x− y)− g�(x1 − y)

)

dy

∣

∣

∣

∣

≤
(4)

1
2π

∫ π

−π
|f(y)| ·

∣

∣

∣g
�
(x− y)− g�(x1 − y)

∣

∣

∣ dy

≤
(†)

1
2π

∫ π

−π
|f(y)| · 2πε

‖f‖1
dy =

ε

‖f‖1
·
∫ π

−π
|f(y)| dy

=
ε

‖f‖1
· ‖f‖1 = ε.

Here, (∗) is by eqn.(10D.9), (4) is the triangle inequality for integrals, and (†)
is by eqn.(10D.10), because |(x− y)− (x1− y)| < δ for all y ∈ [−π, π], because
|x− x1| < δ.

Thus, if |x− x1| < δ then |f ∗ g(x)− f ∗ g(x1)| < ε. This argument works for
any ε > 0 and x ∈ [−π, π]. Thus, f ∗ g is continuous, as desired.

(c) Fix x ∈ [−π, π] and let ε > 0. We must find some δ > 0 such that, for any(Optional)

t ∈ [−π, π], if |t| < δ then |f ∗ g(x)− f ∗ g(x− t)| < ε. But

f ∗ g(x− t) =
1

2π

∫ π

−π
f(y) g

�
(x− t− y) dy
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=
1

2π

∫ π

−π
f(y) (g

x
t )
�
(x− y) dy = f ∗ g

x
t (x).

Thus, f ∗ g(x)− f ∗ g(x− t) = f ∗ g(x)− f ∗ g
x
t (x)

(∗)
f ∗ (g − g

x
t )(x),

so
∣

∣

∣f ∗ g(x)− f ∗ g(x− t)
∣

∣

∣ =
∣

∣

∣

∣

f ∗ (g − g
x
t )(x)

∣

∣

∣

∣

≤
(†)
‖f‖2 ·

∥

∥

∥

∥

g − g
x
t

∥

∥

∥

∥

2

. (10D.11)

Here, (∗) is by Lemma 10D.6(b) and (†) is by Lemma 10D.6(c).

However, Lemma 10D.4 on page 212 says that g = L2−lim
t→0

g
x
t . Thus, there

exists some δ > 0 such that, if |t| < δ, then
∥

∥

∥g − g
x
t
∥

∥

∥

2
< ε/ ‖f‖2. Thus, if

|t| < δ, then

∣

∣

∣f ∗ g(x)− f ∗ g(x− t)
∣

∣

∣ ≤
(∗)

‖f‖2 ·
∥

∥

∥

∥

g − g
x
t

∥

∥

∥

∥

2

≤ ‖f‖2 ·
ε

‖f‖2
= ε.

where (∗) is by eqn.(10D.11). This argument works for any ε > 0 and x ∈
[−π, π]. Thus, f ∗ g is continuous, as desired.

(d) We have

2π (f ∗ g)′(x) = 2π ∂x (f ∗ g)(x) = ∂x

∫ π

−π
f(y) · g(x− y) dy

(∗)

∫ π

−π
f(y) · ∂x g(x− y) dy =

∫ π

−π
f(y) · g′(x− y) dy

= 2π f ∗ (g′)(x).

Here, (∗) is by Proposition 0G.1 on page 567.

(e) Follows immediately from (a), (b) and (d).

(f) is Exercise 10D.6 Hint: Use proof by induction, along with parts (b) and E©
(d). 2

Remarks. (a) Proposition 17G.2 on page 410 provides an analog to Lemma
10D.7 for convolutions on RD.

(b) (for algebraists) Let Cper[−π, π] be the set of all continuous functions
f : [−π, π] −→ R such that f(−π) = f(π). Then Lemmas 10D.6(a,b) and
10D.7(a,b) imply that Cper[−π, π] is a commutative ring, where functions are
added pointwise, and where the convolution operator ‘∗’ plays the role of ‘mul-
tiplication’. Furthermore, Lemma 10D.7(f) says that, for all k ∈ N, the set
Ck

per
[−π, π] is an ideal of the ring Cper[−π, π]. Note that this ring does not have
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εε

εε εε

εε−π −π

−π −π

γ1
γ2

γ3 γ4

π

π

π

π

Area/2π = 0.2

Area/2π = 0.7 Area/2π = 0.9

Area/2π = 0.5

Figure 10D.2: An approximation of identity on [−π, π]. Here, ε > 0 is fixed, and

lim
n→∞

1

2π

∫ ε

−ε
γn(x) dx = 1.

a multiplicative identity element. However, it does have ‘approximations’ of
identity, as we shall now see. ♦

For all n ∈ N, let γn : [−π, π] −→ R be a nonnegative function. The se-
quence {γn}∞n=1 is called an approximation of identity if it has the following
properties:

(AI1)
1

2π

∫ π

−π
γn(y) dy = 1 for all n ∈ N.

(AI2) For any ε > 0, lim
n→∞

1
2π

∫ ε

−ε
γn(x) dx = 1. (See Figure 10D.2).

Example 10D.8. Let Γ : [−π, π] −→ R be any nonnegative function with
1

2π

∫ π

−π
Γ(x) dx = 1. For all n ∈ N, define γn : [−π, π] −→ R by

γn(x) :=







0 if x < −π/n;
nΓ(nx) if −π/n ≤ x ≤ π/n;

0 if π/n < x.
(see Figure 10D.3).

Then {γn}∞n=1 is a 2π-periodic approximation of identity (Exercise 10D.7).E©
♦

The term ‘approximation of identity’ is due to the following result:
Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



10D. L2 convergence 219

1

2π
Γ = γ1

0−π π

1/3

6π

γ3

0−π π
1/4

8π

γ4

0−π π

1/2

4π γ2

0−π π

Figure 10D.3: Example 10D.8.

Proposition 10D.9. Let {γn}∞n=1 be an approximation of identity. Let f :
[−π, π] −→ R be some integrable function.

(a) If f ∈ L2[−π, π] then f = L2− lim
n→∞

γn ∗ f .

(b) If x ∈ (−π, π) and f is continuous at x, then f(x) = lim
n→∞

γn ∗ f(x). (Optional)

Proof. (a) Fix ε > 0. We must find N ∈ N such that, for all n > N ,
‖f − γn ∗ f‖2 < ε. First, find some η > 0 which is small enough that

(2 ‖f‖2 + 1) · η < ε. (10D.12)

Now, Lemma 10D.4 on page 212 says that there is some δ > 0 such that,

For any t ∈ (−δ, δ)
∥

∥

∥

∥

f − f
x
t

∥

∥

∥

∥

2

< η. (10D.13)

Next, property (AI2) says there is some N ∈ N such that,

For all n > N , 1− η <
1

2π

∫ δ

−δ
γn(y) dy ≤ 1. (10D.14)

Now, for any x ∈ [−π, π] and n ∈ N, observe that

f(x) = f(x) · 1
(∗)

f(x)
1

2π

∫ π

−π
γn(y) dy =

1
2π

∫ π

−π
f(x) γn(y) dy

(10D.15)
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where (∗) is by property (AI1). Thus, for all x ∈ [−π, π] and n ∈ N,

f(x)− γn ∗ f(x)
(∗)

1
2π

∫ π

−π
f(x) γn(t) dt− 1

2π

∫ π

−π
f
�
(x− t) γn(t) dt

=
1

2π

∫ π

−π

(

f(x)− f�(x− t)
)

γn(t) dt

=
1

2π

∫ π

−π

(

f(x)− f
x
t (x)

)

γn(t) dt

=
1

2π

∫ π

−π
γn(t) · Ft(x) dt,

where, (∗) is by eqn.(10D.15), and where, for all t ∈ [−π, π] we define the

function Ft : [−π, π] −→ R by Ft(x) := f(x)− f
x
t (x) for all x ∈ [−π, π]. Thus

‖f − γn ∗ f‖2 =
∥

∥

∥

∥

1
2π

∫ π

−π
γn(t) · Ft dt

∥

∥

∥

∥

2

≤
(M)

1
2π

∫ π

−π
|γn(t)| · ‖Ft‖2 dt

=
1

2π

∫ −δ

−π
γn(t) · ‖Ft‖2 dt +

1
2π

∫ δ

−δ
γn(t) · ‖Ft‖2 dt +

1
2π

∫ π

δ
γn(t) · ‖Ft‖2 dt

≤
(∗)

‖f‖2
π

∫ −δ

−π
γn(t) dt +

1
2π

∫ δ

−δ
γn(t) · ‖Ft‖2 dt +

‖f‖2
π

∫ π

δ
γn(t) dt

≤
(†)

‖f‖2
π

(∫ −δ

−π
γn(t) dt+

∫ π

δ
γn(t) dt

)

+
η

2π

∫ δ

−δ
γn(t) dt

<
(�)

2 ‖f‖2 · η + η · 1 = (2 ‖f‖2 + 1) · η ≤
(‡)

ε.

Here, (M) is Minkowski’s inequality for integrals (Theorem 10D.5 on page 213).
Next, (∗) is because

‖Ft‖2 =
∥

∥

∥

∥

f − f
x
t

∥

∥

∥

∥

2

≤
(4)

‖f‖2+
∥

∥

∥

∥

f
x
t

∥

∥

∥

∥

2

= ‖f‖2+‖f‖2 = 2 ‖f‖2 .

Next, (†) is because ‖Ft‖2 < η for all t ∈ (−δ, δ) by equation (10D.13). In-
equality (�) is because equation (10D.14) says 1 − η < 1

2π

∫ δ
−δ γn(t) dt ≤ 1;

thus, we must have 1
2π

∫ −δ
−π γn(t) dt + 1

2π

∫ π
δ γn(t) dt < η. Finally, (‡) is by

eqn.(10D.12).

This argument works for any ε > 0. We conclude that f = L2− lim
n→∞

γn ∗ f .

(b) is Exercise 10D.8 . 2
E©

For any k ∈ N, a Ck-mollifier is an approximation of identity {γn}∞n=1 such
that γn ∈ Ckper

[−π, π] for all n ∈ N. Lemma 10D.7(f) says that you can ‘mollify’
some initially pathological function f into a nice smooth approximation by con-
volving it with γn. Our last task in this section is to show how to construct such
a Ck-mollifier.
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Lemma 10D.10. Let Γ ∈ Ck[−π, π] be such that
1

2π

∫ π

−π
Γ(x) dx = 1, and

such that

Γ(−π) = Γ′(−π) = Γ′′(−π) = · · · = Γ(k)(−π) = 0
and Γ(π) = Γ′(π) = Γ′′(π) = · · · = Γ(k)(π) = 0.

Define {γn}∞n=1 as in Example 10D.8. Then {γn}∞n=1 is a Ck-mollifier.

Proof. Exercise 10D.9 2
E©

Example 10D.11. Let g(x) = (x+π)k+1(x−π)k+1, let G = 1
2π

∫ π
−π g(x) dx, and

then let Γ(x) := g(x)/G. Then Γ satisfies the hypotheses of Lemma 10D.10
(Exercise 10D.10). ♦ E©

Remark. For more information about convolutions and mollifiers, see [Fol84,
§8.2, pp.230-237] or [WZ77, Chap.9, pp.145-160].

10D(iii) Proof of Theorems 8A.1(a) and 10D.1.

Prerequisites: §8A, §10A, §10D(ii).

Proof of Theorem 10D.1. Let {γn}∞n=1 ⊂ Ckper
[−π, π] be the Ck-mollifier from

Lemma 10D.10. Then Proposition 10D.9(a) says that f = L2− lim
n→∞

γn ∗ f .

Thus, for any ε > 0, we can find some n ∈ N such that ‖f − γn ∗ f‖2 < ε.
Furthermore, γn ∈ Ck[−π, π], so Lemma 10D.7(f) says that γn∗f ∈ Ckper

[−π, π],
for all n ∈ N. 2

The proof of Theorem 8A.1(a) now follows a standard strategy in analysis:
approximate the function f with a ‘nice’ function ˜f , establish convergence for
the Fourier series of ˜f first, and then use the triangle inequality to ‘leverage’ this
into convergence for the Fourier series of f .

Proof of Theorem 8A.1(a). Let f ∈ L2[−π, π]. Fix ε > 0. Theorem 10D.1
says there exists some ˜f ∈ C1

per
[−π, π] such that

∥

∥

∥f − ˜f
∥

∥

∥

2
<

ε

3
. (10D.16)

Let {An}∞n=0 and {Bn}∞n=1 be the real Fourier coefficients for f , and let
{ ˜An}∞n=0 and { ˜Bn}∞n=1 be the real Fourier coefficients for ˜f . Let f := f − ˜f ,
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and let {An}∞n=0 and {Bn}∞n=1 be the real Fourier coefficients for f . Then for
all n ∈ N, we have

An = An + ˜An and Bn = Bn + ˜Bn. (10D.17)

Also, for any N ∈ N, we have
∥

∥

∥

∥

∥

A0 +
N
∑

n=0

AnCn +
N
∑

n=1

BnSn

∥

∥

∥

∥

∥

2

2

≤
(4)

A
2
0 +

∞
∑

n=0

|An|2 · ‖Cn‖22 +
∞
∑

n=1

|Bn|2 · ‖Cn‖22

(†)
A

2
0 +

∞
∑

n=0

|An|2

2
+

∞
∑

n=1

|Bn|2

2

≤
(B)

∥

∥f
∥

∥

2

2
=

∥

∥

∥f − ˜f
∥

∥

∥

2

2
<
(∗)

( ε

3

)2
. (10D.18)

Here, (4) is by the triangle inequality4, and (†) is because ‖Cn‖22 = 1
2 = ‖Sn‖22

for all n ∈ N (by Proposition 6D.2 on page 112). (B) is Bessel’s Inequality
(Example 10A.2 on page 196), and (∗) is by eqn.(10D.16).

Now, ˜f ∈ C1
per

[−π, π], so Theorem 8A.1(d) (which we proved in Section 10C)
says that

unif− lim
N→∞

(

˜A0 +
N
∑

n=0

˜AnCn +
N
∑

n=1

˜BnSn

)

= ˜f.

Thus Corollary 6E.11(b)[i] on page 127 implies that

L2− lim
N→∞

(

˜A0 +
N
∑

n=0

˜AnCn +
N
∑

n=1

˜BnSn

)

= ˜f.

Thus, there exists some N ∈ N such that
∥

∥

∥

∥

∥

˜A0 +
N
∑

n=0

˜AnCn +
N
∑

n=1

˜BnSn − ˜f

∥

∥

∥

∥

∥

2

<
ε

3
. (10D.19)

Thus,
∥

∥

∥

∥

∥

A0 +
N
∑

n=0

AnCn +
N
∑

n=1

BnSn − f

∥

∥

∥

∥

∥

2

(†)

∥

∥

∥

∥

∥

(A0 + ˜A0) +
N
∑

n=0

(An + ˜An)Cn +
N
∑

n=1

(Bn + ˜Bn)Sn − ˜f + ˜f − f

∥

∥

∥

∥

∥

2

4Actually, this is an equality, because of the L2 Pythagorean formula (equation (6F.1) on
page 131)
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=

∥

∥

∥

∥

∥

A0 +
N
∑

n=0

AnCn +
N
∑

n=1

BnSn + ˜A0 +
N
∑

n=0

˜AnCn +
N
∑

n=1

˜BnSn − ˜f + ˜f − f

∥

∥

∥

∥

∥

2

≤
(4)

∥

∥

∥

∥

∥

A0 +
N
∑

n=0

AnCn +
N
∑

n=1

BnSn

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

˜A0 +
N
∑

n=0

˜AnCn +
N
∑

n=1

˜BnSn − ˜f

∥

∥

∥

∥

∥

2

+
∥

∥

∥

˜f − f
∥

∥

∥

2

≤
(∗)

ε

3
+
ε

3
+
ε

3
= ε.

Here, (†) is by eqn.(10D.17), (4) is the Triangle inequality, and (∗) is by
inequalities (10D.16), (10D.18) and (10D.19).

This argument works for any ε > 0. We conclude that A0 +
∞
∑

n=0

AnCn +

∞
∑

n=1

BnSn ˜

L̃2
f . 2

Recall that a function f : [−π, π] −→ R is analytic if f is infinitely differ-
entiable, and the Taylor expansion of f around any x ∈ [−π, π] has a nonzero
radius of convergence.5 Let Cω

per
[−π, π] be the set of all analytic functions f on

[−π, π] such that f(−π) = f(π), and f (k)(−π) = f (k)(π) for all k ∈ N. For
example, the functions sin and cos are in Cω

per
[−π, π]. Elements of Cω

per
[−π, π] are

some of the ‘nicest’ possible functions on [−π, π]. On the other hand, arbitrary
elements of L2[−π, π] can by quite ‘nasty’ (i.e. nondifferentiable, discontinuous).
Thus, the following result is quite striking.

Corollary 10D.12. Cω
per

[−π, π] is dense in L2[−π, π].

Proof. Theorem 8A.1(a) says that any function in L2[−π, π] can be ap-
proximated arbitrarily closely by a ‘trigonometric polynomial’ of the form
A0 +

∑N
n=1AnCn +

∑N
n=1BnSn. But all trigonometric polynomials are

in Cω
per

[−π, π] (because they are finite linear combinations of the functions
Sn(x) := sin(nx) and Cn(x) := cos(nx), which are all in Cω

per
[−π, π]). Thus,

any function in L2[−π, π] can be approximated arbitrarily closely by an ele-
ment of Cω

per
[−π, π] —in other words, Cω

per
[−π, π] is dense in L2[−π, π]. 2

Remarks. (a) Proposition 17G.3 on page 411 provides a ‘pointwise’ version of
the Theorem 10D.1 for convolutional smoothing on RD.

(b) For another proof of the L2-convergence of real Fourier series, see [Bro89,
Theorems 1.5.4 (p.20) and 2.3.10 (p.35)]. For a proof of the L2-convergence of
complex Fourier series (which is very similar), see [Kat76, §I.5.5, p.29-30].

5See Appendix 0H(i) on page 568.
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IV BVP solutions via
eigenfunction expansions

A powerful and general method for solving linear PDEs is to represent the
solutions using eigenfunction expansions. Rather than first deploying this idea
in full abstract generality, we will start by illustrating it in a variety of special
cases. We will gradually escalate the level of abstraction, so that the general
theory is almost obvious when it is finally stated explicitly.

The orthogonal trigonometric functions Sn and Cn in a Fourier series are
eigenfunctions of the Laplacian operator 4. Furthermore, the eigenfunctions Sn

and Cn are particularly ‘well-adapted’ to domains like the interval [0, π], the
square [0, π]2, or the cube [0, π]3, for two reasons:

• The functions Sn and Cn and the domain [0, π]k are both easily expressed
in a Cartesian coordinate system.

• The functions Sn and Cn satisfy desirable boundary conditions (e.g. ho-
mogeneous Dirichlet/Neumann) on the boundaries of the domain [0, π]k.

Thus, we can use Sn and Cn as ‘building blocks’ to construct a solution to
a given partial differential equation —a solution which also satisfies specified
initial conditions and/or boundary conditions on [0, π]k. In particular, we will
use Fourier sine series to obtain homogeneous Dirichlet boundary conditions [by
Theorems 7A.1(d), 9A.3(d) and 9B.1(d)] , and Fourier cosine series to obtain
homogeneous Neumann boundary conditions [by Theorems 7A.4(d), 9A.3(e) and
9B.1(e)]. This basic strategy underlies all the solution methods developed in
Chapters 11 to 13.

When we consider other domains (e.g. disks, annuli, balls, etc.), the func-
tions Cn and Sn are no longer so ‘well-adapted’. In Chapter 14, we discover
that, in polar coordinates, the ‘well-adapted’ eigenfunctions are combinations of
trigonometric functions (Cn and Sn) with another class of transcendental func-
tions called Bessel functions. This yields another orthogonal system of eigen-
functions. We can then represent most functions on the disks and annuli using
Fourier-Bessel expansions (analogous to Fourier series), and we can then mimic
the solution methods of Chapters 11 to 13.
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Chapter 11

Boundary value problems on a
line segment

“Mathematics is the music of reason.” —James Joseph Sylvester

Prerequisites: §7A, §5C.

This chapter concerns boundary value problems on the line segment [0, L],
and provides solutions in the form of infinite series involving the functions
Sn(x) := sin

(

nπ
L x
)

and Cn(x) := cos
(

nπ
L x
)

. For simplicity, we will assume
throughout the chapter that L = π. Thus Sn(x) = sin (nx) and Cn(x) =
cos (nx). We will also assume that (through an appropriate choice of time units)
the physical constants in the various equations are all equal to one. Thus, the
heat equation becomes “∂t u = 4u”, the wave equation is “∂2

t u = 4u”, etc.
This does not limit the generality of our results. For example, faced with a

general heat equation of the form “∂t u(x, t) = κ·4u” for x ∈ [0, L], (with κ 6= 1
and L 6= π) you can simply replace the coordinate x with a new space coordinate
y = π

Lx and replace t with a new time coordinate s = κt, to reformulate the
problem in a way compatible with the following methods.

11A The heat equation on a line segment

Prerequisites: §7B, §5B, §5C, §1B(i),§0F. Recommended: §7C(v).

Proposition 11A.1. (Heat equation; homogeneous Dirichlet boundary)

Let X = [0, π], and let f ∈ L2[0, π] be some function describing an initial heat

distribution. Suppose f has Fourier Sine Series f(x)
˜

L̃2

∞
∑

n=1

Bn sin(nx), and
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define the function u : X× R 6− −→ R by

u(x; t)
˜

L̃2

∞
∑

n=1

Bn sin(nx) · exp
(

− n2 · t
)

, for all x ∈ [0, π] and t ≥ 0.

Then u is the unique solution to the one-dimensional heat equation “∂t u = ∂2
xu”,

with homogeneous Dirichlet boundary conditions

u(0; t) = u(π; t) = 0, for all t > 0.

and initial conditions: u(x; 0) = f(x), for all x ∈ [0, π].
Furthermore, the series defining u converges semiuniformly on X× R+.

Proof. Exercise 11A.1 Hint:E©

(a) Show that, when t = 0, the Fourier series of u(x; 0) agrees with that of f(x); hence
u(x; 0) = f(x).

(b) Show that, for all t > 0,
∞
∑

n=1

∣

∣

∣n2 ·Bn · e−n
2t
∣

∣

∣ < ∞.

(c) For any T > 0, apply Proposition 0F.1 on page 565 to conclude that

∂t u(x; t)
unif

∞
∑

n=1

−n2Bn sin(nx) · exp
(

− n2 · t
)

unif
4 u(x; t) on [T,∞).

(d) Observe that for any fixed t > 0,
∞
∑

n=1

∣

∣

∣Bne
−n2t

∣

∣

∣ < ∞.

(e) Apply part (c) of Theorem 7A.1 on page 138 to show that the Fourier series of
u(x; t) converges uniformly for all t > 0.

(f) Apply part (d) of Theorem 7A.1 on page 138 to conclude that u(0; t) = 0 = u(π, t)
for all t > 0.

(g) Apply Theorem 5D.8 on page 91 to show that this solution is unique. 2

Example 11A.2. Consider a metal rod of length π, with initial tempera-
ture distribution f(x) = τ · sinh(αx) (where τ, α > 0 are constants), and
homogeneous Dirichlet boundary condition. Proposition 11A.1 tells us to get
the Fourier sine series for f(x). In Example 7A.3 on page 140, we computed

this to be
2τ sinh(απ)

π

∞
∑

n=1

n(−1)n+1

α2 + n2
· sin(nx). The evolving temperature

distribution is therefore given:

u(x; t) =
2τ sinh(απ)

π

∞
∑

n=1

n(−1)n+1

α2 + n2
· sin(nx) · e−n2t. ♦
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Proposition 11A.3. (Heat equation; homogeneous Neumann boundary)
Let X = [0, π], and let f ∈ L2[0, π] be some function describing an initial heat

distribution. Suppose f has Fourier Cosine Series f(x)
˜

L̃2

∞
∑

n=0

An cos(nx),

and define the function u : X× R 6− −→ R by

u(x; t)
˜

L̃2

∞
∑

n=0

An cos(nx) · exp
(

− n2 · t
)

, for all x ∈ [0, π] and t ≥ 0.

Then u is the unique solution to the one-dimensional heat equation “∂t u = ∂2
xu”,

with homogeneous Neumann boundary conditions

∂x u(0; t) = ∂x u(π; t) = 0, for all t > 0.

and initial conditions: u(x; 0) = f(x), for all x ∈ [0, π].
Furthermore, the series defining u converges semiuniformly on X× R+.

Proof. Setting t = 0, we get:

u(x; 0) =
∞
∑

n=1

An cos(nx) · exp
(

− n2 · 0
)

=
∞
∑

n=1

An cos(nx) · exp (0)

=
∞
∑

n=1

An cos(nx) · 1 =
∞
∑

n=1

An cos(nx) = f(x),

so we have the desired initial conditions.

Let M := max
n∈N

|An|. Then M <∞ (because f ∈ L2).

Claim 1: For all t > 0,

∞
∑

n=0

∣

∣

∣n2 ·An · e−n
2t
∣

∣

∣ < ∞.

Proof. Since M = max
n∈N

|An|, we know that |An| < M for all n ∈ N. Thus,

∞
∑

n=0

∣

∣

∣n2 ·An · e−n
2t
∣

∣

∣ ≤
∞
∑

n=0

∣

∣n2
∣

∣ ·M ·
∣

∣

∣e−n
2t
∣

∣

∣ = M ·
∞
∑

n=0

n2 · e−n2t

Hence,it suffices to show that
∞
∑

n=0

n2 · e−n2t < ∞. To see this, let E = et.

Then E > 1 (because t > 0). Also, n2 ·e−n2t =
n2

En2 , for each n ∈ N. Thus,

∞
∑

n=1

n2e−n
2t =

∞
∑

n=1

n2

En2 ≤
∞
∑

m=1

m

Em
(11A.1)
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We must show that right-hand series in (11A.1) converges. We apply the
Ratio Test:

lim
m→∞

m+1
Em+1

m
Em

= lim
m→∞

m+ 1
m

Em

Em+1
= lim

m→∞

1
E

< 1.

Hence the right-hand series in (11A.1) converges. �
Claim 1

Claim 2: For any T > 0, we have ∂x u(x; t)
unif

−
∞
∑

n=1

nAn sin(nx) ·

exp
(

− n2 · t
)

on X × [T,∞), and also ∂2
x u(x; t)

unif
−
∞
∑

n=1

n2An cos(nx) ·

exp
(

− n2 · t
)

on X× [T,∞).

Proof. This follows from Claim 1 and two applications of Proposition 0F.1
on page 565. �

Claim 2

Claim 3: For any T > 0, we have ∂tu(x; t)
unif

−
∞
∑

n=1

n2An cos(nx) ·

exp
(

− n2 · t
)

on [T,∞).

Proof. ∂t u(x; t) = ∂t

∞
∑

n=1

An cos(nx) · exp
(

− n2 · t
)

(∗)

∞
∑

n=1

An cos(nx) · ∂t exp
(

− n2 · t
)

=
∞
∑

n=1

An cos(nx) · (−n2) exp
(

− n2 · t
)

,

where (∗) is by Claim 1 and Proposition 0F.1 on page 565. �
Claim 3

Combining Claims 2 and 3, we conclude that ∂t u(x; t) = 4u(x; t).

Finally Claim 1 also implies that, for any t > 0,

∞
∑

n=0

∣

∣

∣n ·An · e−n
2t
∣

∣

∣ <

∞
∑

n=0

∣

∣

∣n2 ·An · e−n
2t
∣

∣

∣ < ∞.

Hence, Theorem 7A.4(d)[ii] on p.142 implies that u(x; t) satisfies homogeneous
Neumann boundary conditions for any t > 0. (This can also be seen directly
via Claim 2).

Finally, Theorem 5D.8 on page 91 implies that this solution is unique. 2
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Example 11A.4. Consider a metal rod of length π, with initial temper-
ature distribution f(x) = cosh(x) and homogeneous Neumann boundary
condition. Proposition 11A.3 tells us to get the Fourier cosine series for

f(x). In Example 7A.6 on page 143, we computed this to be
sinh(π)
π

+

2 sinh(π)
π

∞
∑

n=1

(−1)n · cos(nx)
n2 + 1

. The evolving temperature distribution is there-

fore given:

u(x; t)
˜

L̃2

sinh(π)
π

+
2 sinh(π)

π

∞
∑

n=1

(−1)n · cos(nx)
n2 + 1

· e−n2t. ♦

Exercise 11A.2. Let L > 0 and let X := [0, L]. Let κ > 0 be a diffusion constant, E©
and consider the general one-dimensional heat equation

∂t u = κ ∂2
x u. (11A.2)

(a) Generalize Proposition 11A.1 to find the solution to eqn.(11A.2) on X satisfying
prescribed initial conditions and homogeneous Dirichlet boundary conditions.

(b) Generalize Proposition 11A.3 to find the solution to eqn.(11A.2) on X satisfying
prescribed initial conditions and homogeneous Neumann boundary conditions.

In both cases, prove that your solution converges, satisfies the desired initial conditions
and boundary conditions, and satisfies eqn.(11A.2) (Hint: imitate the strategy suggested
in Exercise 11A.1) �

Exercise 11A.3 Let X = [0, π], and let f ∈ L2(X) be a function whose Fourier E©

sine series satisfies
∞
∑

n=1

n2|Bn| <∞. Imitate Proposition 11A.1, to find a ‘Fourier

series’ solution to the initial value problem for the one-dimensional free Schrödinger
equation

i∂t ω =
−1
2
∂2
x ω, (11A.3)

on X, with initial conditions ω0 = f , and satisfying homogeneous Dirichlet
boundary conditions. Prove that your solution converges, satisfies the desired
initial conditions and boundary conditions, and satisfies eqn.(11A.3). (Hint:
imitate the strategy suggested in Exercise 11A.1).

11B The wave equation on a line (the vibrating string)

Prerequisites: §7B(i), §5B, §5C, §2B(i). Recommended: §17D(ii).

Imagine a piano string stretched tightly between two points. At equilibrium,
the string is perfectly flat, but if we pluck or strike the string, it will vibrate,
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meaning there will be a vertical displacement from equilibrium. Let X = [0, π]
represent the string, and for any point x ∈ X on the string and time t > 0,
let u(x; t) be the vertical displacement of the string. Then u will obey the one-
dimensional wave equation:

∂2
t u(x; t) = 4u(x; t). (11B.1)

However, since the string is fixed at its endpoints, the function u will also exhibit
homogeneous Dirichlet boundary conditions

u(0; t) = u(π; t) = 0 (for all t > 0). (11B.2)

Proposition 11B.1. (Initial Position Problem for Vibrating String with fixed
endpoints)

f0 : X −→ R be a function describing the initial displacement of the string.

Suppose f0 has Fourier Sine Series f0(x)
˜

L̃2

∞
∑

n=1

Bn sin(nx), and define the

function w : X× R 6− −→ R by

w(x; t)
˜

L̃2

∞
∑

n=1

Bn sin(nx) · cos (nt) , for all x ∈ [0, π] and t ≥ 0. (11B.3)

Then w is the unique solution to the wave equation (11B.1), satisfying the
Dirichlet boundary conditions (11B.2), as well as

Initial Position: w(x, 0) = f0(x),
Initial Velocity: ∂tw(x, 0) = 0,

}

for all x ∈ [0, π].

Proof. Exercise 11B.1 Hint:E©

(a) Prove the trigonometric identity sin(nx) cos(nt) = 1
2

(

sin (n(x− t)) + sin (n(x+ t))
)

.

(b) Use this identity to show that the Fourier sine series (11B.3) converges in L2 to
the d’Alembert solution from Theorem 17D.8(a) on page 401.

(c) Apply Theorem 5D.11 on page 94 to show that this solution is unique. 2

Example 11B.2. Let f0(x) = sin(5x). Thus, B5 = 1 and Bn = 0 for all
n 6= 5. Proposition 11B.1 tells us that the corresponding solution to the wave
equation is w(x, t) = cos(5t) sin(5x). To see that w satisfies the wave equation,
note that, for any x ∈ [0, π] and t > 0,

∂tw(x, t) = −5 sin(5t) sin(5x) and 5 cos(5t) cos(5x) = ∂xw(x, t);
Thus ∂2

t w(x, t) = −25 cos(5t) sin(5x) = −25 cos(5t) cos(5x) = ∂2
x w(x, t).
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Figure 11B.1: (A) A harpstring at rest. (B) A harpstring being plucked. (C) The harp-

string vibrating. (D) A big hammer striking a xylophone. (E) The initial velocity of the

xylophone when struck.

Also w has the desired initial position because, for any x ∈ [0, π], we have
w(x; 0) = cos(0) sin(5x) = sin(5x) = f0(x), because cos(0) = 1.

Next, w has the desired initial velocity because for any x ∈ [0, π], we have
∂tw(x; 0) = 5 sin(0) sin(5x) = 0, because sin(0) = 0.

Finally w satisfies homogeneous Dirichlet BC because, for any t > 0, we
have w(0, t) = cos(5t) sin(0) = 0 and w(π, t) = cos(5t) sin(5π) = 0, because
sin(0) = 0 = sin(5π). ♦

Example 11B.3: (The plucked harp string)

A harpist places her fingers at the midpoint of a harp string and plucks it.
What is the formula describing the vibration of the string?

Solution: For simplicity, we imagine the string has length π. The tight string
forms a straight line when at rest (Figure 11B.1A); the harpist plucks the
string by pulling it away from this resting position and then releasing it. At
the moment she releases it, the string’s initial velocity is zero, and its initial
position is described by a tent function like the one in Example 7C.7 on
page 155

f0(x) =
{

αx if 0 ≤ x ≤ π
2

α(π − x) if π
2 < x ≤ π. (Figure 11B.1B)

where α > 0 is a constant describing the force with which she plucks the string
(and its resulting amplitude).
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t = 0 t = 0.4 t = 0.8 t = 1.2 t = 1.6 ≈ π/2

t = 2.0 t = 2.4 t = 2.8 t = 3.2 ≈ π t = 3.6

Figure 11B.2: The plucked harpstring of Example 11B.3. From t = 0 to t = π/2, the initially

triangular shape is blunted; at t = π/2 it is totally flat. From t = π/2 to t = π, the process

happens in reverse, only the triangle grows back upside down. At t = π, the original triangle

reappears, upside down. Then the entire process happens in reverse, until the original triangle

reappears at t = 2π.

The endpoints of the harp string are fixed, so it vibrates with homogeneous
Dirichlet boundary conditions. Thus, Proposition 11B.1 tells us to find the
Fourier sine series for f0. In Example 7C.7, we computed this to be:

f0 ˜

L̃2

4 · α
π

∞
∑

n=1
n odd;
n=2k+1

(−1)k

n2
sin(nx).

Thus, the resulting solution is: u(x; t)
˜

L̃2

4 · α
π

∞
∑

n=1
n odd;
n=2k+1

(−1)k

n2
sin(nx) cos(nt);

(See Figure 11B.2). This is not a very accurate model because we have not
accounted for energy loss due to friction. In a real harpstring, these ‘per-
fectly triangular’ waveforms rapidly decay into gently curving waves depicted
in Figure 11B.1(C); these slowly settle down to a stationary state. ♦

Proposition 11B.4. (Initial Velocity Problem for Vibrating String with fixed
endpoints)

f1 : X −→ R be a function describing the initial velocity of the string.

Suppose f1 has Fourier Sine Series f1(x)
˜

L̃2

∞
∑

n=1

Bn sin(nx), and define the
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function v : X× R 6− −→ R by

v(x; t)
˜

L̃2

∞
∑

n=1

Bn
n

sin(nx) · sin (nt) , for all x ∈ [0, π] and t ≥ 0. (11B.4)

Then v is the unique solution to the wave equation (11B.1), satisfying the
Dirichlet boundary conditions (11B.2), as well as

Initial Position: v(x, 0) = 0;
Initial Velocity: ∂t v(x, 0) = f1(x),

}

for all x ∈ [0, π].

Proof. Exercise 11B.2 Hint: E©

(a) Prove the trigonometric identity− sin(nx) sin(nt) = 1
2

(

cos (n(x+ t))− cos (n(x− t))
)

.

(b) Use this identity to show that the Fourier sine series (11B.4) converges in L2 to
the d’Alembert solution from Theorem 17D.8(b) on page 401.

(c) Apply Theorem 5D.11 on page 94 to show that this solution is unique. 2

Example 11B.5. Let f1(x) = 3 sin(8x). Thus, B8 = 3 and Bn = 0 for all n 6= 8.
Proposition 11B.4 tells us that the corresponding solution to the wave equation
is w(x, t) = 3

8 sin(8t) sin(8x). To see that w satisfies the wave equation, note
that, for any x ∈ [0, π] and t > 0,

∂tw(x, t) = 3 sin(8t) cos(8x) and 3 cos(8t) sin(8x) = ∂xw(x, t);
Thus ∂2

t w(x, t) = −24 cos(8t) cos(8x) = −24 cos(8t) cos(8x) = ∂2
x w(x, t).

Also w has the desired initial position because, for any x ∈ [0, π], we have
w(x; 0) = 3

8 sin(0) sin(8x) = 0, because sin(0) = 0.

Next, w has the desired initial velocity because for any x ∈ [0, π], we have
∂tw(x; 0) = 3

88 cos(0) sin(8x) = 3 sin(8x) = f1(x), because cos(0) = 1.

Finally w satisfies homogeneous Dirichlet BC because, for any t > 0, we have
w(0, t) = 3

8 sin(8t) sin(0) = 0 and w(π, t) = 3
8 sin(8t) sin(8π) = 0, because

sin(0) = 0 = sin(8π). ♦

Example 11B.6: (The Xylophone)

A musician strikes the midpoint of a xylophone bar with a broad, flat hammer.
What is the formula describing the vibration of the string?

Solution: For simplicity, we imagine the bar has length π and is fixed at
its endpoints (actually most xylophones satisfy neither requirement). At the
moment when the hammer strikes it, the string’s initial position is zero, and
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its initial velocity is determined by the distribution of force imparted by the
hammer head. For simplicity, we will assume the hammer head has width π/2,
and hits the bar squarely at its midpoint (Figure 11B.1D). Thus, the initial
velocity is given by the function:

f1(x) =
{

α if π
4 ≤ x ≤

3π
4

0 otherwise
(Figure 11B.1E)

where α > 0 is a constant describing the force of the impact. Proposition
11B.4 tells us to find the Fourier sine series for f1(x). From Example 7C.4 on
page 151, we know this to be

f1(x)
˜

L̃2

2α
√

2
π



sin(x) +
∞
∑

k=1

(−1)k
sin
(

(4k − 1)x
)

4k − 1
+

∞
∑

k=1

(−1)k
sin
(

(4k + 1)x
)

4k + 1



 .

The resulting vibrational motion is therefore described by:

v(x, t)
˜

L̃2

2α
√

2
π



sin(x) sin(t) +
∞
∑

k=1

(−1)k
sin
(

(4k − 1)x
)

sin
(

(4k − 1)t
)

(4k − 1)2

+
∞
∑

k=1

(−1)k
sin
(

(4k + 1)x
)

sin
(

(4k + 1)t
)

(4k + 1)2



.

♦

Exercise 11B.3 Let L > 0 and let X := [0, L]. Let λ > 0 be a parameterE©
describing wave velocity (determined by the string’s tension, elasticity, density,
etc.), and consider the general one-dimensional wave equation

∂2
t u = λ2 ∂2

x u. (11B.5)

(a) Generalize Proposition 11B.1 to find the solution to eqn.(11B.5) on X hav-
ing zero initial velocity and a prescribed initial position, and homogeneous
Dirichlet boundary conditions.

(b) Generalize Proposition 11B.4 to find the solution to eqn.(11B.5) on X hav-
ing zero initial position and a prescribed initial velocity, and homogeneous
Dirichlet boundary conditions.

In both cases, prove that your solution converges, satisfies the desired initial
conditions and boundary conditions, and satisfies eqn.(11B.5) (Hint: imitate the
strategy suggested in Exercises 11B.1 and 11B.2.)
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11C The Poisson problem on a line segment

Prerequisites: §7B, §5C, §1D. Recommended: §7C(v).

We can also use Fourier series to solve the one-dimensional Poisson problem
on a line segment. This is not usually a practical solution method, because we
already have a simple, complete solution to this problem using a double integral
(see Example 1D.1 on page 13). However, we include this result anyways, as a
simple illustration of Fourier techniques.

Proposition 11C.1. Let X = [0, π], and let q : X −→ R be some func-

tion, with semiuniformly convergent Fourier sine series: q(x)
˜

L̃2

∞
∑

n=1

Qn sin(nx).

Define the function u : X −→ R by

u(x)
unif

∞
∑

n=1

−Qn
n2

sin(nx), for all x ∈ [0, π].

Then u is the unique solution to the Poisson equation “4u(x) = q(x)” satisfying
homogeneous Dirichlet boundary conditions: u(0) = u(π) = 0.

Proof. Exercise 11C.1 Hint: (a) Apply Proposition 0F.1 on page 565 twice to E©

show that 4u(x)
unif

∞
∑

n=1

Qn sin(nx) = q(x), for all x ∈ int (X). (Hint: The Fourier

series of q is semiuniformly convergent).

(b) Observe that
∞
∑

n=1

∣

∣

∣

∣

Qn
n2

∣

∣

∣

∣

< ∞.

(c) Apply Theorem 7A.1(c) (p.138) to show that the given Fourier sine series for u(x)
converges uniformly.

(d) Apply Theorem 7A.1(d)[ii] (p.138) to conclude that u(0) = 0 = u(π).

(e) Apply Theorem 5D.5(a) on page 88 to conclude that this solution is unique. 2

Proposition 11C.2. Let X = [0, π], and let q : X −→ R be some some func-

tion, with semiuniformly convergent Fourier cosine series: q(x)
˜

L̃2

∞
∑

n=1

Qn cos(nx),

and suppose that Q0 = 0. Fix any constant K ∈ R, and define the function
u : X −→ R by

u(x)
unif

∞
∑

n=1

−Qn
n2

cos(nx) + K, for all x ∈ [0, π]. (11C.1)

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



236— DRAFT Chapter 11. Boundary value problems on a line segment

Then u is a solution to the Poisson equation “4u(x) = q(x)”, satisfying homo-
geneous Neumann boundary conditions u′(0) = u′(π) = 0.

Furthermore, all solutions to this Poisson equation with these boundary con-
ditions have the form (11C.1) for some choice of K.

If Q0 6= 0, however, the problem has no solution.

Proof. Exercise 11C.2 Hint: (a) Apply Proposition 0F.1 on page 565 twice toE©

show that 4u(x)
unif

∞
∑

n=1

Qn cos(nx) = q(x), for all x ∈ int (X). (Hint: The Fourier

series of q is semiuniformly convergent).

(b) Observe that
∞
∑

n=1

∣

∣

∣

∣

Qn
n

∣

∣

∣

∣

< ∞.

(c) Apply Theorem 7A.4(d)[ii] (p.142) to conclude that u′(0) = 0 = u′(π).

(d) Apply Theorem 5D.5(c) on page 88 to conclude that this solution is unique up to
addition of a constant. 2

Exercise 11C.3. Mathematically, it is clear that the solution of Proposition 11C.2E©
cannot be well-defined if Q0 6= 0. Provide a physical explanation for why this is to be
expected. �

11D Practice problems

1. Let g(x) =
{

1 if 0 ≤ x < π
2

0 if π
2 ≤ x

. (see problem #5 of §7D)

(a) Find the solution to the one-dimensional heat equation ∂t u(x, t) =
4u(x, t) on the interval [0, π], with initial conditions u(x, 0) = g(x)
and homogeneous Dirichlet Boundary conditions.

(b) Find the solution to the one-dimensional heat equation ∂t u(x, t) =
4u(x, t) on the interval [0, π], with initial conditions u(x, 0) = g(x)
and homogeneous Neumann Boundary conditions.

(c) Find the solution to the one-dimensional wave equation ∂2
t w(x, t) =

4w(x, t) on the interval [0, π], satisfying homogeneous Dirichlet Bound-
ary conditions, with initial position w(x, 0) = 0 and initial velocity
∂tw(x, 0) = g(x).

2. Let f(x) = sin(3x), for x ∈ [0, π].

(a) Compute the Fourier Sine Series of f(x) as an element of L2[0, π].

(b) Compute the Fourier Cosine Series of f(x) as an element of L2[0, π].
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(c) Solve the one-dimensional heat equation (∂t u = 4u) on the do-
main X = [0, π], with initial conditions u(x; 0) = f(x), and the
following boundary conditions:

i. Homogeneous Dirichlet boundary conditions.
ii. Homogeneous Neumann boundary conditions.

(d) Solve the the one-dimensional wave equation (∂2
t v = 4v) on the

domain X = [0, π], with homogeneous Dirichlet boundary conditions,
and with
Initial position: v(x; 0) = 0,
Initial velocity: ∂t v(x; 0) = f(x).

3. Let f : [0, π] −→ R, and suppose f has

Fourier cosine series: f(x) =
∞
∑

n=0

1
2n

cos(nx)

Fourier sine series: f(x) =
∞
∑

n=1

1
n!

sin(nx)

(a) Find the solution to the one-dimensional heat equation ∂t u = 4u,
with homogeneous Neumann boundary conditions, and initial con-
ditions u(x; 0) = f(x) for all x ∈ [0, π].

(b) Verify your solution in part (a). Check the heat equation, the initial
conditions, and boundary conditions. [Hint: Use Proposition 0F.1 on
page 565]

(c) Find the solution to the one-dimensional wave equation ∂2
t u(x; t) =

4u(x; t) with homogeneous Dirichlet boundary conditions, and

Initial position u(x; 0) = f(x), for all x ∈ [0, π].
Initial velocity ∂t u(x; 0) = 0, for all x ∈ [0, π].

4. Let f : [0, π] −→ R be defined by f(x) = x.

(a) Compute the Fourier sine series for f .

(b) Does the Fourier sine series converge pointwise to f on (0, π)? Justify
your answer.

(c) Does the Fourier sine series converge uniformly to f on [0, π]? Justify
your answer in two different ways.

(d) Compute the Fourier cosine series for f .

(e) Solve the one-dimensional heat equation (∂tu = 4u) on the do-
main X := [0, π], with initial conditions u(x, 0) := f(x), and with the
following boundary conditions:
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[i] Homogeneous Dirichlet boundary conditions.
[ii] Homogeneous Neumann boundary conditions.

(f) Verify your solution to question (e) part [i]. That is: check that your
solution satisfies the heat equation, the desired initial conditions, and
homogeneous Dirichlet BC. [You may assume that the relevent series converge

uniformly, if necessary. You may differentiate Fourier series termwise, if necessary.]

(g) Find the solution to the one-dimensional wave equation on the do-
main X := [0, π], with homogeneous Dirichlet boundary conditions,
and with

Initial position u(x; 0) = f(x), for all x ∈ [0, π].
Initial velocity ∂t u(x; 0) = 0, for all x ∈ [0, π].
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Chapter 12

Boundary value problems on a
square

“Each problem that I solved became a rule which served afterwards to solve other problems.”

—René Descartes

Prerequisites: §9A, §5C. Recommended: §11.

Multiple Fourier series can be used to find solutions to boundary value prob-
lems on a box [0, X] × [0, Y ]. The key idea is that the functions Sn,m(x, y) :=
sin
(

nπ
X x
)

sin
(

mπ
Y y
)

and Cn,m(x, y) := cos
(

nπ
X x
)

cos
(

mπ
Y y
)

are eigenfunctions of
the Laplacian operator. Furthermore, Sn,m satisfies Dirichlet boundary condi-
tions, so any (uniformly convergent) Fourier sine series will also do so. Likewise,
Cn,m satisfies Neumann boundary conditions, so any (sufficiently convergent)
Fourier cosine series will also do so.

For simplicity, we will assume throughout that X = Y = π. Thus Sn,m(x) =
sin (nx) sin (my) and Cn,m(x) = cos (nx) cos (my). We will also assume that
(through an appropriate choice of time units) the physical constants in the vari-
ous equations are all equal to one. Thus, the heat equation becomes “∂t u = 4u”,
the wave equation is “∂2

t u = 4u”, etc. This will allow us to develop the solution
methods in the simplest possible scenario, without a lot of distracting technical-
ities.

The extension of these solution methods to equations with arbitrary physical
constants on an arbitrary rectangular domain [0, X] × [0, Y ] (for some X,Y >
0) are left as exercises. These exercises are quite straightforward, but are an
effective test of your understanding of the solution techniques.

Remark on Notation: Throughout this chapter (and the following ones) we
will often write a function u(x, y; t) in the form ut(x, y). This emphasizes the
distinguished role of the ‘time’ coordinate t, and makes it natural to think of
fixing t at some value and applying the 2-dimensional Laplacian 4 = ∂2

x + ∂2
y to

the resulting 2-dimensional function ut.



240— DRAFT Chapter 12. Boundary value problems on a square

u(x,0)=0

u(
0,

y)
=0

u(π,y)=R

u(x,0)=B

u(x,π)=T

u(
0,

y)
=L

(B)(A)

u(x,π)=1

u(π,y)=0

Figure 12A.1: The Dirichlet problem on a square. (A) Proposition 12A.1; (B) Proposi-

tions 12A.2 and 12A.4.

Some authors use the subscript notation “ut” to denote the partial derivative
∂t u. We never use this notation. In this book, partial derivatives are always
denoted by “∂t u”, etc.

12A The Dirichlet problem on a square
Prerequisites: §9A, §5C(i), §1C, §0F. Recommended: §7C(v).

In this section we will learn to solve the Dirichlet problem on a square
domain X: that is, to find a function which is harmonic on the interior of X
and which satisfies specified Dirichlet boundary conditions on the boundary X.
Solutions to the Dirichlet problem have several physical interpretations.

Heat: Imagine that the boundaries of X are perfect heat conductors, which are
in contact with external ‘heat reservoirs’ with fixed temperatures. For ex-
ample, one boundary might be in contact with a heat source, and another,
in contact with a coolant liquid. The solution to the Dirichlet problem is
then the equilibrium temperature distribution on the interior of the box,
given these constraints.

Electrostatic: Imagine that the boundaries of X are electrical conductors which
are held at some fixed voltage by the application of an external electric
potential (different boundaries, or different parts of the same boundary,
may be held at different voltages). The solution to the Dirichlet problem
is then the electric potential field on the interior of the box, given these
constraints.

Minimal surface: Imagine a squarish frame of wire, which we have bent in the
vertical direction to have some shape. If we dip this wire frame in a soap
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Proposition 12A.1 Example 12A.3 Example 12A.6
T = 1, R = L = B = 0 T = −3, L = 5, R = B = 0 T = tent function , R = L = B = 0

sin(x) sinh(y) sin(2x) sinh(2y) sin(3x) sinh(3y)
T (x) = sin(x) , R = L = B = 0 T (x) = sin(2x) , R = L = B = 0 T (x) = sin(3x) , R = L = B = 0

Figure 12A.2: The Dirichlet problem on a box. The curves represent isothermal contours (of

a temperature distribution) or equipotential lines (of an electric voltage field).

solution, we can form a soap bubble (i.e. minimal-energy surface) which
must obey the ‘boundary conditions’ imposed by the shape of the wire.
The differential equation describing a minimal surface is not exactly the
same as the Laplace equation; however, when the surface is not too steeply
slanted (i.e. when the wire frame is not too bent), the Laplace equation
is a good approximation; hence the solution to the Dirichlet problem is a
good approximation of the shape of the soap bubble.

We will begin with the simplest problem: a constant, nonzero Dirichlet
boundary condition on one side of the box, and zero boundary conditions on
the other three sides.

Proposition 12A.1. (Dirichlet problem; one constant nonhomog. BC)

Let X = [0, π] × [0, π], and consider the Laplace equation “4u = 0”, with
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Proposition 12A.1 Example 12A.3 Example 12A.6
T = 1, R = L = B = 0 T = −3, L = 5, R = B = 0 T = tent function , R = L = B = 0

3-1
0 2.5

-0.5

0.5 21

0

1.51.5 y

0.5

1x 2

1

0.52.5
3 0

sin(x) sinh(y) sin(2x) sinh(2y) sin(3x) sinh(3y)
T (x) = sin(x) , R = L = B = 0 T (x) = sin(2x) , R = L = B = 0 T (x) = sin(3x) , R = L = B = 0

Figure 12A.3: The Dirichlet problem on a box: 3-dimensional plots. You can imagine these

as soap films.

nonhomogeneous Dirichlet boundary conditions [see Figure 12A.1(A)]:

u(0, y) = u(π, y) = 0, for all y ∈ [0, π). (12A.1)
u(x, 0) = 0 and u(x, π) = 1, for all x ∈ [0, π]. (12A.2)

The unique solution to this problem is the function u : X −→ R defined:

u(x, y)
˜

L̃2

4
π

∞
∑

n=1
n odd

1
n sinh(nπ)

sin(nx) · sinh(ny), for all (x, y) ∈ X.

[See Figures 12A.2(a) and 12A.3(a).] Furthermore, this series converges semiu-
niformly on int (X).

Proof. Exercise 12A.1E©

(a) Check that, for all n ∈ N, the function un(x, y) = sin(nx) · sinh(ny) satisfies the
Laplace equation and the first boundary condition (12A.1). See Figures 12A.2(d,e,f)
and 12A.3(d,e,f).
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(b) Show that
∞
∑

n=1
n odd

n2

∣

∣

∣

∣

sinh(ny)
n sinh(nπ)

∣

∣

∣

∣

< ∞, for any fixed y < π. (Hint. If y < π,

then sinh(ny)/ sinh(nπ) decays like exp(n(y − π)) as n→∞.)

(c) Apply Proposition 0F.1 on page 565 to conclude that 4u(x, y) = 0.

(d) Observe that
∞
∑

n=1
n odd

∣

∣

∣

∣

sinh(ny)
n sinh(nπ)

∣

∣

∣

∣

< ∞, for any fixed y < π.

(e) Apply part (c) of Theorem 7A.1 on page 138 to show that the series given for
u(x, y) converges uniformly for any fixed y < π.

(f) Apply part (d) of Theorem 7A.1 on page 138 to conclude that u(0, y) = 0 = u(π, y)
for all y < π.

(g) Observe that sin(nx) · sinh(n · 0) = 0 for all n ∈ N and all x ∈ [0, π]. Conclude
that u(x, 0) = 0 for all x ∈ [0, π].

(h) To check that the solution also satisfies the boundary condition (12A.2), subsiti-
tute y = π to get:

u(x, π) =
4
π

∞
∑

n=1
n odd

1
n sinh(nπ)

sin(nx)·sinh(nπ) =
4
π

∞
∑

n=1
n odd

1
n

sin(nx)
˜

L̃2
1.

because
4
π

∞
∑

n=1
n odd

1
n

sin(nx) is the (one-dimensional) Fourier sine series for the function

b(x) = 1 (see Example 7A.2(b) on page 139).

(i) Apply Theorem 5D.5(a) on page 88 to conclude that this solution is unique.
2

Proposition 12A.2. (Dirichlet Problem; four constant nonhomog. BC)
Let X = [0, π] × [0, π], and consider the Laplace equation “4u = 0”, with

nonhomogeneous Dirichlet boundary conditions [see Figure 12A.1(B)]:

u(0, y) = L and u(π, y) = R, for all y ∈ (0, π);
u(x, π) = T and u(x, 0) = B, for all x ∈ (0, π).

where L, R, T , and B are four constants. The unique solution to this problem
is the function u : X −→ R defined:

u(x, y) := l(x, y) + r(x, y) + t(x, y) + b(x, y), for all (x, y) ∈ X.

where, for all (x, y) ∈ X,

l(x, y)
˜

L̃2
L

∞
∑

n=1
n odd

cn sinh
(

n(π − x)
)

· sin(ny), r(x, y)
˜

L̃2
R

∞
∑

n=1
n odd

cn sinh(nx) · sin(ny),

t(x, y)
˜

L̃2
T

∞
∑

n=1
n odd

cn sin(nx) · sinh(ny), b(x, y)
˜

L̃2
B

∞
∑

n=1
n odd

cn sin(nx) · sinh
(

n(π − y)
)

.

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



244— DRAFT Chapter 12. Boundary value problems on a square

where cn :=
4

nπ sinh(nπ)
, for all n ∈ N.

Furthermore, these four series converge semiuniformly on int (X).

Proof. Exercise 12A.2E©

(a) Apply Proposition 12A.1 to show that each of the functions l(x, y), r(x, y), t(x, y),
b(x, y) satisfies a Dirichlet problem where one side has nonzero temperature and the
other three sides have zero temperature.

(b) Add these four together to get a solution to the original problem.

(c) Apply Theorem 5D.5(a) on page 88 to conclude that this solution is unique. 2

Exercise 12A.3. What happens to the solution at the four corners (0, 0), (0, π),E©
(π, 0) and (π, π)? �

Example 12A.3. Suppose R = 0 = B, T = −3, and L = 5. Then the solution
is:

u(x, y)
˜

L̃2
L

∞
∑

n=1
n odd

cn sinh
(

n(π − x)
)

· sin(ny) + T

∞
∑

n=1
n odd

cn sin(nx) · sinh(ny)

=
20
π

∞
∑

n=1
n odd

sinh
(

n(π − x)
)

· sin(ny)

n sinh(nπ)
− 12

π

∞
∑

n=1
n odd

sin(nx) · sinh(ny)
n sinh(nπ)

.

See Figures 12A.2(b) and 12A.3(b). ♦

Proposition 12A.4. (Dirichlet Problem; arbitrary nonhomogeneous boundaries)

Let X = [0, π] × [0, π], and consider the Laplace equation “4u = 0”, with
nonhomogeneous Dirichlet boundary conditions [see Figure 12A.1(B)]:

u(0, y) = L(y) and u(π, y) = R(y), for all y ∈ (0, π);
u(x, π) = T (x) and u(x, 0) = B(x), for all x ∈ (0, π).

where L,R, T,B : [0, π] −→ R are four arbitrary functions. Suppose these func-
tions have (one-dimensional) Fourier sine series:

L(y)
˜

L̃2

∞
∑

n=1

Ln sin(ny), R(y)
˜

L̃2

∞
∑

n=1

Rn sin(ny), for all y ∈ [0, π];

T (x)
˜

L̃2

∞
∑

n=1

Tn sin(nx), and B(x)
˜

L̃2

∞
∑

n=1

Bn sin(nx), for all x ∈ [0, π].
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The unique solution to this problem is the function u : X −→ R defined:

u(x, y) := l(x, y) + r(x, y) + t(x, y) + b(x, y), for all (x, y) ∈ X.

where, for all (x, y) ∈ X,

l(x, y)
˜

L̃2

∞
∑

n=1

Ln
sinh(nπ)

sinh
(

n(π − x)
)

· sin(ny),

r(x, y)
˜

L̃2

∞
∑

n=1

Rn
sinh(nπ)

sinh(nx) · sin(ny),

t(x, y)
˜

L̃2

∞
∑

n=1

Tn
sinh(nπ)

sin(nx) · sinh(ny),

and b(x, y)
˜

L̃2

∞
∑

n=1

Bn
sinh(nπ)

sin(nx) · sinh
(

n(π − y)
)

.

Furthermore, these four series converge semiuniformly on int (X).

Proof. Exercise 12A.4 First we consider the function t(x, y). E©

(a) Same as Exercise 12A.1(a)

(b) For any fixed y < π, show that
∞
∑

n=1

n2Tn
∣

∣

∣

∣

sinh(ny)
sinh(nπ)

∣

∣

∣

∣

< ∞. (Hint. If y < π, then

sinh(ny)/ sinh(nπ) decays like exp(n(y − π)) as n→∞.)

(c) Combine part (b) and Proposition 0F.1 on page 565 to conclude that t(x, y) is
harmonic —i.e. 4t(x, y) = 0.

Through symmetric reasoning, conclude that the functions `(x, y), r(x, y) and b(x, y)
are also harmonic.

(d) Same as Exercise 12A.1(d)

(e) Apply part (c) of Theorem 7A.1 on page 138 to show that the series given for
t(x, y) converges uniformly for any fixed y < π.

(f) Apply part (d) of Theorem 7A.1 on page 138 to conclude that t(0, y) = 0 = t(π, y)
for all y < π.

(g) Observe that sin(nx) · sinh(n · 0) = 0 for all n ∈ N and all x ∈ [0, π]. Conclude
that t(x, 0) = 0 for all x ∈ [0, π].

(h) To check that the solution also satisfies the boundary condition (12A.2), subsiti-
tute y = π to get:

t(x, π) =
∞
∑

n=1

Tn
sinh(nπ)

sin(nx) · sinh(nπ) =
4
π

∞
∑

n=1

Tn sin(nx) = T (x).

(j) At this point, we know that t(x, π) = T (x) for all x ∈ [0, π], and t ≡ 0 on the other
three sides of the square. Through symmetric reasoning, show that:
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• `(0, y) = L(y) for all y ∈ [0, π], and ` ≡ 0 on the other three sides of the square.

• r(π, y) = R(y) for all y ∈ [0, π], and r ≡ 0 on the other three sides of the square.

• b(x, 0) = B(x) for all x ∈ [0, π], and b ≡ 0 on the other three sides of the square.

(k) Conclude that u = t + b + r + ` is harmonic and satisfies the desired boundary
conditions.

(l) Apply Theorem 5D.5(a) on page 88 to conclude that this solution is unique. 2

Example 12A.5. If T (x) = sin(3x), and B ≡ L ≡ R ≡ 0, then u(x, y) =
sin(3x) sinh(3y)

sinh(3π)
. ♦

Example 12A.6. Let X = [0, π] × [0, π]. Solve the 2-dimensional Laplace
Equation on X, with inhomogeneous Dirichlet boundary conditions:

u(0, y) = 0; u(π, y) = 0; u(x, 0) = 0;

u(x, π) = T (x) =
{

x if 0 ≤ x ≤ π
2

π − x if π
2 < x ≤ π (see Figure 7C.4(B) on page 154)

Solution: Recall from Example 7C.7 on page 155 that T (x) has Fourier series:

T (x)
˜

L̃2

4
π

∞
∑

n=1
n odd;
n=2k+1

(−1)k

n2
sin(nx).

Thus, the solution is u(x, y)
˜

L̃2

4
π

∞
∑

n=1
n odd;
n=2k+1

(−1)k

n2 sinh(nπ)
sin(nx) sinh(ny).

See Figures 12A.2(c) and 12A.3(c). ♦

Exercise 12A.5. Let X,Y > 0 and let X := [0, X]× [0, Y ]. Generalize PropositionE©
12A.4 to find the solution to the Laplace equation on X, satisfying arbitrary nonhomo-
geneous Dirichlet boundary conditions on the four sides of ∂X. �

12B The heat equation on a square
12B(i) Homogeneous boundary conditions

Prerequisites: §9A, §5B, §5C, §1B(ii), §0F. Recommended: §11A, §7C(v).
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Proposition 12B.1. (Heat equation; homogeneous Dirichlet boundary)

Consider the box X = [0, π] × [0, π], and let f : X −→ R be some function
describing an initial heat distribution. Suppose f has Fourier Sine Series

f(x, y)
˜

L̃2

∞
∑

n,m=1

Bn,m sin(nx) sin(my)

and define the function u : X× R 6− −→ R by

ut(x, y)
˜

L̃2

∞
∑

n,m=1

Bn,m sin(nx) · sin(my) · exp
(

− (n2 +m2) · t
)

,

for all (x, y) ∈ X and t ≥ 0. Then u is the unique solution to the heat equation
“∂t u = 4u”, with homogeneous Dirichlet boundary conditions

ut(x, 0) = ut(0, y) = ut(π, y) = ut(x, π) = 0, for all x, y ∈ [0, π] and t > 0.

and initial conditions: u0(x, y) = f(x, y), for all (x, y) ∈ X.

Furthermore, the series defining u converges semiuniformly on X× R+.

Proof. Exercise 12B.1 Hint: E©

(a) Show that, when t = 0, the two-dimensional Fourier series of u0(x, y) agrees with
that of f(x, y); hence u0(x, y) = f(x, y).

(b) Show that, for all t > 0,
∞
∑

n,m=1

∣

∣

∣(n2 +m2) ·Bn,m · e−(n2+m2)t
∣

∣

∣ < ∞.

(c) For any T > 0, apply Proposition 0F.1 on page 565 to conclude that

∂t ut(x, y)
unif

∞
∑

n,m=1

−(n2+m2)Bn,m sin(nx)·sin(my)·exp
(

− (n2 +m2) · t
)

unif
4ut(x, y),

for all (x, y; t) ∈ X× [T,∞).

(d) Observe that for all t > 0,
∞
∑

n,m=1

∣

∣

∣Bn,me
−(n2+m2)t

∣

∣

∣ < ∞.

(e) Apply part (c)[i] of Theorem 9A.3 on page 183 to show that the two-dimensional
Fourier series of ut converges uniformly for any fixed t > 0.

(f) Apply part (d)[ii] of Theorem 9A.3 on page 183 to conclude that ut satisfies
homogeneous Dirichlet boundary conditions, for all t > 0.

(g) Apply Theorem 5D.8 on page 91 to show that this solution is unique. 2
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Figure 12B.1: (A) A hot metal rod quenched in a cold bucket. (B) A cross
section of the rod in the bucket.

Example 12B.2: (The quenched rod)

On a cold January day, a blacksmith is tempering an iron rod. He pulls it out
of the forge and plunges it, red-hot, into ice-cold water (Figure 12B.1A). The
rod is very long and narrow, with a square cross section. We want to compute
how the rod cooled.

Answer: The rod is immersed in freezing cold water, and is a good conduc-
tor, so we can assume that its outer surface takes the the surrounding water
temperature of 0 degrees. Hence, we assume homogeneous Dirichlet boundary
conditions.

Endow the rod with coordinate system (x, y, z), where z runs along the length
of the rod. Since the rod is extremely long relative to its cross-section, we
can neglect the z coordinate, and reduce to a 2-dimensional equation (Figure
12B.1B). Assume the rod was initially uniformly heated to a temperature of T .
The initial temperature distribution is thus a constant function: f(x, y) = T .
From Example 9A.2 on page 182, we know that the constant function 1 has
two-dimensional Fourier sine series:

1
˜

L̃2

16
π2

∞
∑

n,m=1
both odd

1
n ·m

sin(nx) sin(my).

Thus, f(x, y)
˜

L̃2

16T
π2

∞
∑

n,m=1
both odd

1
n ·m

sin(nx) sin(my). Thus, the time-varying

thermal profile of the rod is given:

ut(x, y)
˜

L̃2

16T
π2

∞
∑

n,m=1
both odd

1
n ·m

sin(nx) sin(my) exp
(

− (n2 +m2) · t
)

. ♦
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Proposition 12B.3. (Heat equation; homogeneous Neumann boundary)

Consider the box X = [0, π] × [0, π], and let f : X −→ R be some function
describing an initial heat distribution. Suppose f has Fourier Cosine Series

f(x, y)
˜

L̃2

∞
∑

n,m=0

An,m cos(nx) cos(my)

and define the function u : X× R 6− −→ R by:

ut(x, y)
˜

L̃2

∞
∑

n,m=0

An,m cos(nx) · cos(my) · exp
(

− (n2 +m2) · t
)

,

for all (x, y) ∈ X and t ≥ 0. Then u is the unique solution to the heat equation
“∂t u = 4u”, with homogeneous Neumann boundary conditions

∂y ut(x, 0) = ∂y ut(x, π) = ∂x ut(0, y) = ∂x ut(π, y) = 0, for all x, y ∈ [0, π] and t > 0.

and initial conditions: u0(x, y) = f(x, y), for all (x, y) ∈ X. 2

Furthermore, the series defining u converges semiuniformly on X× R+.

Proof. Exercise 12B.2 Hint: E©

(a) Show that, when t = 0, the two-dimensional Fourier cosine series of u0(x, y) agrees
with that of f(x, y); hence u0(x, y) = f(x, y).

(b) Show that, for all t > 0,
∞
∑

n,m=0

∣

∣

∣(n2 +m2) ·An,m · e−(n2+m2)t
∣

∣

∣ < ∞.

(c) Apply Proposition 0F.1 on page 565 to conclude that

∂t ut(x, y)
unif

∞
∑

n,m=0

−(n2+m2)An,m cos(nx)·cos(my)·exp
(

− (n2 +m2) · t
)

unif
4ut(x, y),

for all (x, y) ∈ X and t > 0.

(d) Observe that for all t > 0,
∞
∑

n,m=0

n ·
∣

∣

∣An,me
−(n2+m2)t

∣

∣

∣ < ∞ and
∞
∑

n,m=0

m ·
∣

∣

∣An,me
−(n2+m2)t

∣

∣

∣ < ∞.

(e) Apply part (e)[ii] of Theorem 9A.3 on page 183 to conclude that ut satisfies
homogeneous Neumann boundary conditions, for any fixed t > 0.

(f) Apply Theorem 5D.8 on page 91 to show that this solution is unique. 2
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Example 12B.4. Suppose X = [0, π]× [0, π]

(a) Let f(x, y) = cos(3x) cos(4y) + 2 cos(5x) cos(6y). Then A3,4 = 1 and
A5,6 = 2, and all other Fourier coefficients are zero. Thus, u(x, y; t) =
cos(3x) cos(4y) · e−25t + cos(5x) cos(6y) · e−59t.

(b) Suppose f(x, y) =
{

1 if 0 ≤ x < π
2 and 0 ≤ y < π

2 ;
0 if π

2 ≤ x or π
2 ≤ y.

We know

from Example 9A.4 on page 184 that the two-dimensional Fourier cosine
series of f is:

f(x, y)
˜

L̃2

1
4

+
1
π

∞
∑

k=0

(−1)k

2k + 1
cos
(

(2k + 1)x
)

+
1
π

∞
∑

j=0

(−1)j

2j + 1
cos
(

(2j + 1)y
)

+
4
π2

∞
∑

k,j=1

(−1)k+j

(2k + 1)(2j + 1)
cos
(

(2k + 1)x
)

· cos
(

(2j + 1)y
)

Thus, the solution to the heat equation, with initial conditions u0(x, y) =
f(x, y) and homogeneous Neumann boundary conditions is given:

ut(x, y)
˜

L̃2

1
4

+
1
π

∞
∑

k=0

(−1)k

2k + 1
cos
(

(2k + 1)x
)

· e−(2k+1)2t

+
1
π

∞
∑

j=0

(−1)j

2j + 1
cos
(

(2j + 1)y
)

· e−(2j+1)2t

+
4
π2

∞
∑

k,j=1

(−1)k+j

(2k + 1)(2j + 1)
cos
(

(2k + 1)x
)

· cos
(

(2j + 1)y
)

· e−[(2k+1)2+(2j+1)2]·t

♦

Exercise 12B.3. Let X,Y > 0 and let X := [0, X]× [0, Y ]. Let κ > 0 be a diffusionE©
constant, and consider the general two-dimensional heat equation

∂t u = κ 4 u. (12B.1)

(a) Generalize Proposition 12B.1 to find the solution to eqn.(12B.1) on X satisfying
prescribed initial conditions and homogeneous Dirichlet boundary conditions.

(b) Generalize Proposition 12B.3 to find the solution to eqn.(12B.1) on X satisfying
prescribed initial conditions and homogeneous Neumann boundary conditions.

In both cases, prove that your solution converges, satisfies the desired initial conditions
and boundary conditions, and satisfies eqn.(12B.1) (Hint: imitate the strategy suggested
in Exercises 12B.1 and 12B.2) �
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Exercise 12B.4. Let f : X −→ R and suppose the Fourier sine series of f satisfiesE©

the constraint
∞
∑

n,m=1

(n2 + m2)|Bnm| < ∞. Imitate Proposition 12B.1 to find a Fourier

series solution to the initial value problem for the two-dimensional free Schrödinger
equation

i∂t ω =
−1
2
4 ω (12B.2)

on the box X = [0, π]2, with homogeneous Dirichlet boundary conditions. Prove that
your solution converges, satisfies the desired initial conditions and boundary conditions,
and satisfies eqn.(12B.2). (Hint: imitate the strategy suggested in Exercise 12B.1, and
also Exercise 12D.1 on page 260). �

12B(ii) Nonhomogeneous boundary conditions

Prerequisites: §12B(i), §12A. Recommended: §12C(ii).

Proposition 12B.5. (Heat equation on box; nonhomogeneous Dirichlet BC)

Let X = [0, π] × [0, π]. Let f : X −→ R and let L,R, T,B : [0, π] −→ R be
functions. Consider the Heat equation

∂tu(x, y; t) = 4u(x, y; t),

with initial conditions

u(x, y; 0) = f(x, y), for all (x, y) ∈ X, (12B.3)

and nonhomogeneous Dirichlet boundary conditions:

u(x, π; t) = T (x) and u(x, 0; t) = B(x), for all x ∈ [0, π]
u(0, y; t) = L(y) and u(π, y; t) = R(y), for all y ∈ [0, π]

}

for all t > 0.

(12B.4)
This problem is solved as follows:

1. Let w(x, y) be the solution1 to the Laplace Equation “4w(x, y) = 0”, with
the nonhomogeneous Dirichlet BC (12B.4).

2. Define g(x, y) := f(x, y) − w(x, y). Let v(x, y; t) be the solution2 to
the heat equation “∂tv(x, y; t) = 4v(x, y; t)” with initial conditions
v(x, y; 0) = g(x, y), and homogeneous Dirichlet BC.

3. Define u(x, y; t) := v(x, y; t) +w(x, y). Then u(x, y; t) is a solution to the
heat equation with initial conditions (12B.3) and nonhomogeneous Dirich-
let BC (12B.4).
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Proof. Exercise 12B.5 2
E©

Interpretation: In Proposition 12B.5, the function w(x, y) represents the
long-term thermal equilibrium that the system is ‘trying’ to attain. The function
g(x, y) = f(x, y) − w(x, y) thus measures the deviation between the current
state and this equilibrium, and the function v(x, y; t) thus represents how this
‘transient’ deviation decays to zero over time.

Example 12B.6. Suppose T (x) = sin(2x) and R ≡ L ≡ 0 and B ≡ 0. Then
Proposition 12A.4 on page 244 says

w(x, y) =
sin(2x) sinh(2y)

sinh(2π)
.

Suppose f(x, y) := sin(2x) sin(y). Then

g(x, y) = f(x, y)− w(x, y) = sin(2x) sin(y)− sin(2x) sinh(2y)
sinh(2π)

(∗)
sin(2x) sin(y) −

(

sin(2x)
sinh(2π)

)(

2 sinh(2π)
π

) ∞
∑

m=1

m(−1)m+1

22 +m2
· sin (my)

= sin(2x) sin(y) − 2 sin(2x)
π

∞
∑

m=1

m(−1)m+1

4 +m2
· sin (my) .

Here (∗) is because Example 7A.3 on page 140 says sinh(2y) =
2 sinh(2π)

π

∞
∑

m=1

m(−1)m+1

22 +m2
·

sin (my). Thus, Proposition 12B.1 on page 247 says that

v(x, y; t) = sin(2x) sin(y)e−5t−2 sin(2x)
π

∞
∑

m=1

m(−1)m+1

4 +m2
·sin (mx) exp(−(4+m2)t).

Finally, Proposition 12B.5 says the solution is u(x, y; t) := v(x, y; t) +
sin(2x) sinh(2y)

sinh(2π)
. ♦

Example 12B.7. A freshly baked baguette is removed from the oven and left on
a wooden plank to cool near the window. The baguette is initially at a uniform
temperature of 90oC; the air temperature is 20oC, and the temperature of the
wooden plank (which was sitting in the sunlight) is 30oC.

Mathematically model the cooling process near the center of the baguette. How
long will it be before the baguette is cool enough to eat? (assuming ‘cool enough’
is below 40oC.)
1Obtained from Proposition 12A.4 on page 244, for example.
2Obtained from Proposition 12B.1 on page 247, for example.
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Figure 12B.2: The temperature distribution of a baguette

Answer: For simplicity, we will assume the baguette has a square cross-
section (and dimensions π × π, of course). If we confine our attention to the
middle of the baguette, we are far from the endpoints, so that we can neglect
the longitudinal dimension and treat this as a two-dimensional problem.

Suppose the temperature distribution along a cross section through the center
of the baguette is given by the function u(x, y; t). To simplify the problem, we
will subtract 20oC off all temperatures. Thus, in the notation of Proposition
12B.5 the boundary conditions are:

L(y) = R(y) = T (x) = 0 (the air)
and B(x) = 10. (the wooden plank)

and our initial temperature distribution is f(x, y) = 70 (see Figure 12B.2).

From Proposition 12A.1 on page 241, we know that the long-term equilibrium
for these boundary conditions is given by:

w(x, y)
˜

L̃2

40
π

∞
∑

n=1
n odd

1
n sinh(nπ)

sin(nx) · sinh(n(π − y)).

We want to represent this as a two-dimensional Fourier sine series. To do this,
we need the (one-dimensional) Fourier sine series for sinh(nx). We set α = n
in Example 7A.3 on page 140, and get:

sinh(nx)
˜

L̃2

2 sinh(nπ)
π

∞
∑

m=1

m(−1)m+1

n2 +m2
· sin (mx) . (12B.5)

Thus,

sinh
(

n(π − y)
)

˜

L̃2

2 sinh(nπ)
π

∞
∑

m=1

m(−1)m+1

n2 +m2
· sin (mπ −my)
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=
2 sinh(nπ)

π

∞
∑

m=1

m

n2 +m2
· sin (my) ,

because sin (mπ − ny) = sin(mπ) cos(ny)−cos(mπ) sin(ny) = (−1)m+1 sin (ny).
Substituting this into (12B.5) yields:

w(x, y)
˜

L̃2

80
π2

∞
∑

n=1
n odd

∞
∑

m=1

m · sinh(nπ)
n · sinh(nπ)(n2 +m2)

sin(nx) · sin (my)

=
80
π2

∞
∑

n=1
n odd

∞
∑

m=1

m · sin(nx) · sin(my)
n · (n2 +m2)

(12B.6)

Now, the initial temperature distribution is the constant function with value
70. Take the two-dimensional sine series from Example 9A.2 on page 182, and
multiply it by 70, to obtain:

f(x, y) = 70
˜

L̃2

1120
π2

∞
∑

n,m=1
both odd

1
n ·m

sin (nx) sin (my)

Thus,

g(x, y) = f(x, y)− w(x, y)

˜

L̃2

1120
π2

∞
∑

n,m=1
both odd

sin (nx) · sin (my)
n ·m

− 80
π2

∞
∑

n=1
n odd

∞
∑

m=1

m · sin(nx) · sin(my)
n · (n2 +m2)

Thus,

v(x, y; t)
˜

L̃2

1120
π2

∞
∑

n,m=1
both odd

sin (nx) · sin (my)
n ·m

exp
(

− (n2 +m2)t
)

− 80
π2

∞
∑

n=1
n odd

∞
∑

m=1

m · sin(nx) · sin(my)
n · (n2 +m2)

exp
(

− (n2 +m2)t
)

If we combine the second term in this expression with (12B.6), we get the final
answer:

u(x, y; t) = v(x, y; t) + w(x, y)

˜

L̃2

1120
π2

∞
∑

n,m=1
both odd

sin (nx) · sin (my)
n ·m

exp
(

− (n2 +m2)t
)

+
80
π2

∞
∑

n=1
n odd

∞
∑

m=1

m · sin(nx) · sin(my)
n · (n2 +m2)

[

1− exp
(

− (n2 +m2)t
)

]

♦
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12C The Poisson problem on a square

12C(i) Homogeneous boundary conditions

Prerequisites: §9A, §5C, §1D. Recommended: §11C, §7C(v).

Proposition 12C.1. Let X = [0, π] × [0, π], and let q : X −→ R be some
function with semiuniformly convergent Fourier sine series:

q(x, y)
˜

L̃2

∞
∑

n,m=1

Qn,m sin(nx) sin(my).

Define the function u : X −→ R by u(x, y)
unif

∞
∑

n,m=1

−Qn,m
n2 +m2

sin(nx) sin(my),

for all (x, y) ∈ X.

Then u is the unique solution to the Poisson equation “4u(x, y) = q(x, y)”,
satisfying homogeneous Dirichlet boundary conditions u(x, 0) = u(0, y) = u(x, π) =
u(π, y) = 0.

Proof. Exercise 12C.1 (a) Use Proposition 0F.1 on page 565 to show that u E©
satisfies the Poisson equation on int (X).

(b) Use Proposition 9A.3(e) on page 183 to show that u satisfies homogeneous Dirich-
let BC.

(c) Apply Theorem 5D.5(a) on page 88 to conclude that this solution is unique. 2

Example 12C.2. A nuclear submarine beneath the Arctic Ocean has jettisoned
a fuel rod from its reactor core (Figure 12C.1). The fuel rod is a very long,
narrow, enriched uranium bar with square cross section. The radioactivity
causes the fuel rod to be uniformly heated from within at a rate of Q, but the
rod is immersed in freezing Arctic water. We want to compute its internal
temperature distribution.

Answer: The rod is immersed in freezing cold water, and is a good conduc-
tor, so we can assume that its outer surface takes the the surrounding water
temperature of 0 degrees. Hence, we assume homogeneous Dirichlet boundary
conditions.

Endow the rod with coordinate system (x, y, z), where z runs along the length
of the rod. Since the rod is extremely long relative to its cross-section, we can
neglect the z coordinate, and reduce to a 2-dimensional equation. The uniform
heating is described by a constant function: q(x, y) = Q. From Example 9A.2
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Figure 12C.1: A jettisoned fuel rod in the Arctic Ocean

on page 182, know that the constant function 1 has two-dimensional Fourier
sine series:

1
˜

L̃2

16
π2

∞
∑

n,m=1
both odd

1
n ·m

sin(nx) sin(my)

Thus, q(x, y)
˜

L̃2

16Q
π2

∞
∑

n,m=1
both odd

1
n ·m

sin(nx) sin(my). The temperature dis-

tribution must satisfy Poisson’s equation. Thus, the temperature distribution
is:

u(x, y)
unif

−16Q
π2

∞
∑

n,m=1
both odd

1
n ·m · (n2 +m2)

sin(nx) sin(my). ♦

Example 12C.3. Suppose q(x, y) = x · y. Then the solution to the Poisson
equation 4u = q on the square, with homogeneous Dirichlet boundary
conditions, is given by:

u(x, y)
unif

4
∞
∑

n,m=1

(−1)n+m+1

nm · (n2 +m2)
sin(nx) sin(my)

To see this, recall from Example 9A.1 on page 179 that the two-dimensional
Fourier sine series for q(x, y) is:

xy
˜

L̃2
4
∞
∑

n,m=1

(−1)n+m

nm
sin(nx) sin(my).

Now apply Proposition 12C.1. ♦
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Proposition 12C.4. Let X = [0, π] × [0, π], and let q : X −→ R be some
function with semiuniformly convergent Fourier cosine series:

q(x, y)
˜

L̃2

∞
∑

n,m=0

Qn,m cos(nx) cos(my).

Suppose that Q0,0 = 0. Fix some constant K ∈ R, and define the function
u : X −→ R by

u(x, y)
unif

∞
∑

n,m=0
not both zero

−Qn,m
n2 +m2

cos(nx) cos(my) + K, (12C.1)

for all (x, y) ∈ X. Then u is a solution to the Poisson equation “4u(x, y) =
q(x, y)”, satisfying homogeneous Neumann boundary conditions ∂y u(x, 0) =
∂x u(0, y) = ∂y u(x, π) = ∂x u(π, y) = 0.

Furthermore, all solutions to this Poisson equation with these boundary con-
ditions have the form (12C.1).

If Q0,0 6= 0, however, the problem has no solution.

Proof. Exercise 12C.2 (a) Use Proposition 0F.1 on page 565 to show that u E©
satisfies the Poisson equation on int (X).

(b) Use Proposition 9A.3 on page 183 to show that u satisfies homogeneous Neumann
BC.

(c) Apply Theorem 5D.5(c) on page 88 to conclude that this solution is unique up to
addition of a constant. 2

Exercise 12C.3. Mathematically, it is clear that the solution of Proposition 12C.4 E©
cannot be well-defined if Q0,0 6= 0. Provide a physical explanation for why this is to be
expected. �

Example 12C.5. Suppose q(x, y) = cos(2x) · cos(3y). Then the solution to
the Poisson equation 4u = q on the square, with homogeneous Neumann
boundary conditions, is given by:

u(x, y) =
− cos(2x) · cos(3y)

13
.

To see this, note that the two-dimensional Fourier Cosine series of q(x, y) is
just cos(2x) · cos(3y). In other words, A2,3 = 1, and An,m = 0 for all other n
and m. In particular, A0,0 = 0, so we can apply Proposition 12C.4 to conclude:
u(x, y) = − cos(2x)·cos(3y)

22+32 = − cos(2x)·cos(3y)
13 . ♦

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



258— DRAFT Chapter 12. Boundary value problems on a square

12C(ii) Nonhomogeneous boundary conditions

Prerequisites: §12C(i), §12A. Recommended: §12B(ii).

Proposition 12C.6. (Poisson equation on box; nonhomogeneous Dirichlet BC)
Let X = [0, π]× [0, π]. Let q : X −→ R and L,R, T,B : [0, π] −→ R be functions.

Consider the Poisson equation

4 u(x, y) = q(x, y), (12C.2)

with nonhomogeneous Dirichlet boundary conditions:

u(x, π) = T (x) and u(x, 0) = B(x), for all x ∈ [0, π]
u(0, y) = L(y) and u(π, y) = R(y), for all y ∈ [0, π]

(12C.3)

(see Figure 12A.1(B) on page 240). This problem is solved as follows:

1. Let v(x, y) be the solution3 to the Poisson equation (12C.2) with homoge-
neous Dirichlet BC: v(x, 0) = v(0, y) = v(x, π) = v(π, y) = 0.

2. Let w(x, y) be the solution4 to the Laplace Eqation “4w(x, y) = 0”, with
the nonhomogeneous Dirichlet BC (12C.3).

3. Define u(x, y) := v(x, y)+w(x, y); then u(x, y) is a solution to the Poisson
problem with the nonhomogeneous Dirichlet BC (12C.3).

Proof. Exercise 12C.4 2
E©

Example 12C.7. Suppose q(x, y) = x · y. Find the solution to the Poisson
equation 4u = q on the square, with nonhomogeneous Dirichlet boundary
conditions:

u(0, y) = 0; u(π, y) = 0; u(x, 0) = 0; (12C.4)

u(x, π) = T (x) =
{

x if 0 ≤ x ≤ π
2

π
2 − x if π

2 < x ≤ π (see Figure 7C.4(B) on page 154)

(12C.5)

Solution: In Example 12C.3, we found the solution to the Poisson equation
4v = q, with homogeneous Dirichlet boundary conditions; it was:

v(x, y)
unif

4
∞
∑

n,m=1

(−1)n+m+1

nm · (n2 +m2)
sin(nx) sin(my).

3Obtained from Proposition 12C.1 on page 255, for example.
4Obtained from Proposition 12A.4 on page 244, for example.
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In Example 12A.6 on page 246, we found the solution to the Laplace equation
4w = 0, with nonhomogeneous Dirichlet boundary conditions (12C.4) and
(12C.5); it was:

w(x, y)
˜

L̃2

4
π

∞
∑

n=1
n odd;
n=2k+1

(−1)k

n2 sinh(nπ)
sin(nx) sinh(ny).

Thus, according to Proposition 12C.6 on the facing page, the solution to the
nonhomogeneous Poisson problem is:

u(x, y) = v(x, y) + w(x, y)

˜

L̃2
4
∞
∑

n,m=1

(−1)n+m+1

nm · (n2 +m2)
sin(nx) sin(my) +

4
π

∞
∑

n=1
n odd;
n=2k+1

(−1)k

n2 sinh(nπ)
sin(nx) sinh(ny).

♦

12D The wave equation on a square (the square drum)

Prerequisites: §9A, §5B, §5C, §2B(ii), §0F. Recommended: §11B, §7C(v).

Imagine a drumskin stretched tightly over a square frame. At equilibrium,
the drumskin is perfectly flat, but if we strike the skin, it will vibrate, meaning
that the membrane will experience vertical displacements from equilibrium. Let
X = [0, π]× [0, π] represent the square skin, and for any point (x, y) ∈ X on the
drumskin and time t > 0, let u(x, y; t) be the vertical displacement of the drum.
Then u will obey the two-dimensional wave equation:

∂2
t u(x, y; t) = 4u(x, y; t). (12D.1)

However, since the skin is held down along the edges of the box, the function u
will also exhibit homogeneous Dirichlet boundary conditions

u(x, π; t) = 0 and u(x, 0; t) = 0, for all x ∈ [0, π]
u(0, y; t) = 0 and u(π, y; t) = 0, for all y ∈ [0, π]

}

for all t > 0.

(12D.2)

Proposition 12D.1. (Initial Position for Square Drumskin)

Let X = [0, π] × [0, π], and let f0 : X −→ R be a function describing
the initial displacement of the drumskin. Suppose f0 has Fourier Sine Series
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f0(x, y)
unif

∞
∑

n,m=1

Bn,m sin(nx) sin(my), such that:

∞
∑

n,m=1

(n2 +m2)|Bn,m| <∞. (12D.3)

Define the function w : X× R 6− −→ R by

w(x, y; t)
unif

∞
∑

n,m=1

Bn,m sin(nx) · sin(my) · cos
(
√

n2 +m2 · t
)

, (12D.4)

for all (x, y) ∈ X and t ≥ 0. Then series (12D.4) converges uniformly, and
w(x, y; t) is the unique solution to the wave equation (12D.1), satisfying the
Dirichlet boundary conditions (12D.2), as well as

Initial Position: w(x, y, 0) = f0(x, y),
Initial Velocity: ∂tw(x, y, 0) = 0,

}

for all (x, y) ∈ X.

Proof. Exercise 12D.1 (a) Use the hypothesis (12D.3) and Proposition 0F.1 onE©
page 565 to conclude that

∂2
t w(x, y; t)

unif
−

∞
∑

n,m=1

(n2+m2)·Bn,m sin(nx)·sin(my)·cos
(
√

n2 +m2 · t
)

unif
4w(x, y; t)

for all (x, y) ∈ X and t > 0.

(b) Check that the Fourier series (12D.4) converges uniformly.

(c) Use Theorem 9A.3(d)[ii] on page 183 to conclude that w satisfies Dirichlet bound-
ary conditions.

(d) Set t = 0 to check the initial position.

(e) Set t = 0 and use Proposition 0F.1 on page 565 to check initial velocity.

(f) Apply Theorem 5D.11 on page 94 to show that this solution is unique. 2

Example 12D.2. Suppose f0(x, y) = sin(2x) · sin(3y). Then the solution to
the wave equation on the square, with initial position f0, and homogeneous
Dirichlet boundary conditions, is given by:

w(x, y; t) = sin(2x) · sin(3y) · cos(
√

13 t).

To see this, note that the two-dimensional Fourier sine series of f0(x, y) is
just sin(2x) · sin(3y). In other words, B2,3 = 1, and Bn,m = 0 for all other n
and m. Apply Proposition 12D.1 to conclude: w(x, y; t) = sin(2x) · sin(3y) ·
cos
(√

22 + 32 t
)

= sin(2x) · sin(3y) · cos(
√

13 t). ♦
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Proposition 12D.3. (Initial Velocity for Square Drumskin)

Let X = [0, π] × [0, π], and let f1 : X −→ R be a function describing the
initial velocity of the drumskin. Suppose f1 has Fourier Sine Series f1(x, y)

unif
∞
∑

n,m=1

Bn,m sin(nx) sin(my), such that

∞
∑

n,m=1

√

n2 +m2 · |Bn,m| <∞. (12D.5)

Define the function v : X× R 6− −→ R by:

v(x, y; t)
unif

∞
∑

n,m=1

Bn,m√
n2 +m2

sin(nx) · sin(my) · sin
(
√

n2 +m2 · t
)

, (12D.6)

for all (x, y) ∈ X and t ≥ 0. Then the series (12D.6) converges uniformly,
and v(x, y; t) is the unique solution to the wave equation (12D.1), satisfying the
Dirichlet boundary conditions (12D.2), as well as

Initial Position: v(x, y, 0) = 0;
Initial Velocity: ∂t v(x, y, 0) = f1(x, y).

}

for all (x, y) ∈ X.

Proof. Exercise 12D.2 (a) Use the hypothesis (12D.5) and Proposition 0F.1 on E©
page 565 to conclude that

∂2
t v(x, y; t)

unif
−

∞
∑

n,m=1

√

n2 +m2 ·Bn,m sin(nx) · sin(my) · cos
(
√

n2 +m2 · t
)

unif
4v(x, y; t),

for all (x, y) ∈ X and t > 0.

(b) Check that the Fourier series (12D.6) converges uniformly.

(c) Use Theorem 9A.3(d)[ii] on page 183 to conclude that v(x, y; t) satisfies Dirichlet
boundary conditions.

(d) Set t = 0 to check the initial position.

(e) Set t = 0 and use Proposition 0F.1 on page 565 to check initial velocity.

(f) Apply Theorem 5D.11 on page 94 to show that this solution is unique. 2
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Remark. Note that it is important in these theorems not only for the Fourier
series (12D.4) and (12D.6) to converge uniformly, but also for their formal second
derivative series to converge uniformly. This is not guaranteed. This is the reason
for imposing the hypotheses (12D.3) and (12D.5).

Example 12D.4. Suppose

f1(x, y) =
16
π2

99
∑

n,m=1
both odd

1
n ·m

sin(nx) sin(my)

(This is a partial sum of the two-dimensional Fourier sine series for the constant
function ˜f1(x, y) ≡ 1, from Example 9A.2 on page 182). Then the solution
to the two-dimensional wave equation, with homogeneous Dirichlet boundary
conditions and initial velocity f1, is given:

w(x, y; t)
˜

L̃2

16
π2

99
∑

n,m=1
both odd

1
n ·m ·

√
n2 +m2

sin(nx) sin(my) sin
(
√

n2 +m2 · t
)

.

Question: Why can’t we apply Theorem 12D.3 to the full Fourier series for
the function f1 = 1? (Hint: Is (12D.5) satisfied?) ♦

Question: For the solutions of the heat equation and Poisson equation,
in Propositions 12B.1, 12B.3, and 12C.1, we did not need to impose explicit
hypotheses guaranteeing the uniform convergence of the given series (and its
derivatives). But we do need explicit hypotheses to get convergence for the wave
equation. Why is this?

12E Practice problems

1. Let f(y) = 4 sin(5y) for all y ∈ [0, π].

(a) Solve the two-dimensional Laplace Equation (4u = 0) on the
square domain X = [0, π]× [0, π], with nonhomogeneous Dirichlet
boundary conditions:

u(x, 0) = 0 and u(x, π) = 0, for all x ∈ [0, π]
u(0, y) = 0 and u(π, y) = f(y), for all y ∈ [0, π].

(b) Verify your solution to part (a) (i.e. check boundary conditions,
Laplacian, etc.).

2. Let f1(x, y) = sin(3x) sin(4y).
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(a) Solve the two-dimensional wave equation (∂2
t u = 4u) on the

square domain X = [0, π] × [0, π], with on the square domain X =
[0, π]× [0, π], with homogeneous Dirichlet boundary conditions,
and initial conditions:

Initial position: u(x, y, 0) = 0 for all (x, y) ∈ X
Initial velocity: ∂t u(x, y, 0) = f1(x, y) for all (x, y) ∈ X

(b) Verify your that solution in part (a) satisfies the required initial con-
ditions (don’t worry about boundary conditions or checking the wave
equation).

3. Solve the two-dimensional Laplace Equation 4h = 0 on the square do-
main X = [0, π]2, with inhomogeneous Dirichlet boundary conditions:

(a) h(π, y) = sin(2y) and h(0, y) = 0, for all y ∈ [0, π];
h(x, 0) = 0 = h(x, π) for all x ∈ [0, π].

(b) h(π, y) = 0 and h(0, y) = sin(4y), for all y ∈ [0, π];
h(x, π) = sin(3x); h(x, 0) = 0, for all x ∈ [0, π].

4. Let X = [0, π]2 and let q(x, y) = sin(x) · sin(3y) + 7 sin(4x) · sin(2y). Solve
the Poisson Equation 4u(x, y) = q(x, y). with homogeneous Dirichlet
boundary conditions.

5. Let X = [0, π]2. Solve the heat equation ∂t u(x, y; t) = 4u(x, y; t) on X,
with initial conditions u(x, y; 0) = cos(5x) · cos(y). and homogeneous
Neumann boundary conditions.

6. Let f(x, y) = cos(2x) cos(3y). Solve the following boundary value prob-
lems on the square domain X = [0, π]2 (Hint: see problem #3 of §9C).

(a) Solve the two-dimensional heat equation ∂tu = 4u, with homoge-
neous Neumann boundary conditions, and initial conditions u(x, y; 0) =
f(x, y).

(b) Solve the two-dimensional wave equation ∂2
t u = 4u, with homoge-

neous Dirichlet boundary conditions, initial position w(x, y; 0) =
f(x, y) and initial velocity ∂tw(x, y; 0) = 0.

(c) Solve the two-dimensional Poisson Equation 4u = f with homo-
geneous Neumann boundary conditions.

(d) Solve the two-dimensional Poisson Equation 4u = f with homo-
geneous Dirichlet boundary conditions.
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(e) Solve the two-dimensional Poisson Equation 4v = f with inho-
mogeneous Dirichlet boundary conditions:

v(π, y) = sin(2y); v(0, y) = 0 for all y ∈ [0, π].
v(x, 0) = 0 = v(x, π) for all x ∈ [0, π].

7. X = [0, π]2 be the box of sidelength π. Let f(x, y) = sin(3x) · sinh(3y).
(Hint: see problem #4 of §9C).

(a) Solve the heat equation on X, with initial conditions u(x, y; 0) =
f(x, y), and homogeneous Dirichlet boundary conditions.

(b) Let T (x) = sin(3x). Solve the Laplace Equation 4u(x, y) = 0
on the box, with inhomogeneous Dirichlet boundary conditions:
u(x, π) = T (x) and u(x, 0) = 0 for x ∈ [0, π]; u(0, y) = 0 =
u(π, y), for y ∈ [0, π].

(c) Solve the heat equation on the box with initial conditions on the
box X, with initial conditions u(x, y; 0) = 0, and the same inho-
mogeneous Dirichlet boundary conditions as in part (b).
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Chapter 13

Boundary value problems on a
cube

“Mathematical Analysis is as extensive as nature herself.” —Jean Joseph Fourier

The Fourier series technique used to solve BVPs on a square box extends
readily to 3-dimensional cubes, and indeed, to rectilinear domains in any number
of dimensions. As in Chapter 12, we will confine our exposition to the cube
[0, π]3, and assume that the physical constants in the various equations are all
set to one. Thus, the heat equation becomes “∂t u = 4u”, the wave equation is
“∂2

t u = 4u”, etc. This allows us to develop the solution methods with minimum
technicalities. The extension of each solution method to equations with arbitrary
physical constants on an arbitrary box [0, X]× [0, Y ]× [0, Z] (for some X,Y, Z >
0) is left as a straightforward (but important!) exercise.

We will use the following notation:

• The cube of dimensions π× π× π is denoted X = [0, π]× [0, π]× [0, π] =
[0, π]3.

• A point in the cube will be indicated by a vector x = (x1, x2, x3), where
0 ≤ x1, x2, x3 ≤ π.

• If f : X −→ R is a function on the cube, then

4f(x) = ∂2
1f(x) + ∂2

2f(x) + ∂2
3f(x).

• A triple of natural numbers will be denoted by n = (n1, n2, n3), where
n1, n2, n3 ∈ N := {0, 1, 2, 3, 4, . . .}. Let N3 be the set of all triples n =
(n1, n2, n3), where n1, n2, n3 ∈ N. Thus, an expression of the form

∑

n∈N3

(something about n)
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should be read as: “
∞
∑

n1=0

∞
∑

n2=0

∞
∑

n3=0

(something about (n1, n2, n3))”.

Let N+ := {1, 2, 3, 4, . . .} be the set of nonzero natural numbers, and let
N3

+ be the set of all such triples. Thus, an expression of the form
∑

n∈N3
+

(something about n)

should be read as: “
∞
∑

n1=1

∞
∑

n2=1

∞
∑

n3=1

(something about (n1, n2, n3))”.

• For any n ∈ N3
+, Sn(x) = sin(n1x1) · sin(n2x2) · sin(n3x3). The Fourier

sine series of a function f(x) thus has the form: f(x) =
∑

n∈N3
+

BnSn(x)

• For any n ∈ N3, Cn(x) = cos(n1x1) · cos(n2x2) · cos(n3x3). The Fourier
cosine series of a function f(x) thus has the form: f(x) =

∑

n∈N3

AnCn(x)

• For any n ∈ N3, let ‖n‖ =
√

n2
1 + n2

2 + n2
3. In particular, note that:

4Sn = −‖n‖2 · Sn, and 4Cn = −‖n‖2 ·Cn

(Exercise 13.1)E©

13A The heat equation on a cube

Prerequisites: §9B, §5B, §5C, §1B(ii). Recommended: §11A, §12B(i), §7C(v).

Proposition 13A.1. (Heat equation; homogeneous Dirichlet BC)

Consider the cube X = [0, π]3, and let f : X −→ R be some function describ-

ing an initial heat distribution. Suppose f has Fourier sine series f(x)
˜

L̃2

∑

n∈N3
+

BnSn(x).

Define the function u : X× R 6− −→ R by:

u(x; t)
˜

L̃2

∑

n∈N3
+

BnSn(x) · exp
(

− ‖n‖2 · t
)

.

Then u is the unique solution to the heat equation “∂t u = 4u”, with homoge-
neous Dirichlet boundary conditions

u(x1, x2, 0; t) = u(x1, x2, π; t) = u(x1, 0, x3; t) (see Figure 13A.1A)

= u(x1, π, x3; t) = u(0, x2, x3; t) = u(π, x2, x3, ; t) = 0,
Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009
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Figure 13A.1: Boundary conditions on a cube: (A) Dirichlet. (B) Neumann.

and initial conditions: u(x; 0) = f(x).
Furthermore, the series defining u converges semiuniformly on X× R+.

Proof. Exercise 13A.1 2
E©

Example: An ice cube of dimensions π × π × π is removed from a freezer
(ambient temperature −10o C) and dropped into a pitcher of freshly brewed tea
(initial temperature +90o C). We want to compute how long it takes the ice cube
to melt.
Answer: We will assume that the cube has an initially uniform temperature of
−10o C and is completely immersed in the tea1. We will also assume that the
pitcher is large enough that its temperature doesn’t change during the experi-
ment.

We assume the outer surface of the cube takes the temperature of the sur-
rounding tea. By subtracting 90 from the temperature of the cube and the
water, we can set the water to have temperature 0 and the cube, −100. Hence,
we assume homogeneous Dirichlet boundary conditions; the initial temperature
distribution is a constant function: f(x) = −100. The constant function −100
has Fourier sine series:

−100
˜

L̃2

−6400
π3

∞
∑

n∈N3
+

n1,n2,n3 all odd

1
n1n2n3

Sn(x).

(Exercise 13A.2 Verify this Fourier series). Let κ be the thermal conductivity E©

1Unrealistic, since actually the cube floats just at the surface.
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of the ice. Thus, the time-varying thermal profile of the cube is given2

u(x; t)
˜

L̃2

−6400
π3

∞
∑

n∈N3
+

n1,n2,n3 all odd

1
n1n2n3

Sn(x) exp
(

− ‖n‖2 · κ · t
)

.

Thus, to determine how long it takes the cube to melt, we must solve for the min-
imum value of t such that u(x, t) > −90 everywhere (recall than −90 corresponds
to 0o C.). The coldest point in the cube is always at its center (Exercise 13A.3),E©
which has coordinates

(

π
2 ,

π
2 ,

π
2

)

, so we need to solve for t in the inequality
u
((

π
2 ,

π
2 ,

π
2

)

; t
)

≥ −90, which is equivalent to

90 · π3

6400
≥

∞
∑

n∈N3
+

n1,n2,n3 all odd

1
n1n2n3

Sn

(π

2
,
π

2
,
π

2

)

exp
(

− ‖n‖2 · κ · t
)

=
∞
∑

n∈N3
+

n1,n2,n3 all odd

1
n1n2n3

sin
(n1π

2

)

sin
(n2π

2

)

sin
(n3π

2

)

exp
(

− ‖n‖2 · κ · t
)

(7C.5)

∑

k1,k2,k3∈N+

(−1)k1+k2+k3 exp
(

− κ ·
[

(2k1 + 1)2 + (2k2 + 1)2 + (2k3 + 1)2
]

· t
)

(2k1 + 1) · (2k2 + 1) · (2k3 + 1)
.

where (7C.5) is by eqn. (7C.5) on p. 147. The solution of this inequality is
Exercise 13A.4 .E©

Exercise 13A.5. Imitating Proposition 13A.1, find a Fourier series solution to theE©
initial value problem for the free Schrödinger equation

i∂t ω =
−1
2
4 ω,

on the cube X = [0, π]3, with homogeneous Dirichlet boundary conditions. Prove that
your solution converges, satisfies the desired initial conditions and boundary conditions,
and satisfies the Schrödinger equation. �

Proposition 13A.2. (Heat equation; homogeneous Neumann BC)

2Actually, this is physically unrealistic for two reasons. First, as the ice melts, additional
thermal energy is absorbed in the phase transition from solid to liquid. Second, once part of
the ice cube has melted, its thermal properties change; liquid water has a different thermal
conductivity, and in addition, transports heat through convection.
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Figure 13B.1: Dirichlet boundary conditions on a cube (A) Constant; Nonho-
mogeneous on one side only. (B) Arbitrary nonhomogeneous on all sides.

Consider the cube X = [0, π]3, and let f : X −→ R be some function
describing an initial heat distribution. Suppose f has Fourier Cosine Series

f(x)
˜

L̃2

∑

n∈N3

AnCn(x). Define the function u : X× R 6− −→ R by:

u(x; t)
˜

L̃2

∑

n∈N3

AnCn(x) · exp
(

− ‖n‖2 · t
)

.

Then u is the unique solution to the heat equation “∂t u = 4u”, with homoge-
neous Neumann boundary conditions

∂3 u(x1, x2, 0; t) = ∂3 u(x1, x2, π; t) = ∂2 u(x1, 0, x3; t) =
∂2 u(x1, π, x3; t) = ∂1 u(0, x2, x3; t) = ∂1 u(π, x2, x3, ; t) = 0. (see Figure 13A.1B)

and initial conditions: u(x; 0) = f(x).
Furthermore, the series defining u converges semiuniformly on X× R+.

Proof. Exercise 13A.6 2
E©

13B The Dirichlet problem on a cube

Prerequisites: §9B, §5C(i), §1C. Recommended: §7C(v), §12A.
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Proposition 13B.1. (Laplace Equation; one constant nonhomog. Dirichlet BC)

Let X = [0, π]3, and consider the Laplace equation “4u = 0”, with nonho-
mogeneous Dirichlet boundary conditions (see Figure 13B.1A):

u(x1, 0, x3) = u(x1, π, x3) = u(0, x2, x3) = u(π, x2, x3, ) = 0; (13B.1)
u(x1, x2, 0) = 0;
u(x1, x2, π) = 1. (13B.2)

The unique solution to this problem is the function u : X −→ R defined

u(x1, x2, x3)
˜

L̃2

∞
∑

n,m=1
n,m both odd

16
nmπ sinh(π

√
n2 +m2)

sin(nx) sin(my)·sinh(
√

n2 +m2·x3).

for all (x1, x2, x3) ∈ X. Furthermore, this series converges semiuniformly on
int (X).

Proof. Exercise 13B.1 (a) Check that the series and its formal Laplacian bothE©
converge semiuniformly on int (X). (b) Check that each of the functions un,m(x) =
sin(nx) sin(my) ·sinh(

√
n2 +m2x3) satisfies the Laplace equation and the first bound-

ary condition (13B.1). (c) To check that the solution also satisfies the boundary
condition (13B.2), subsititute x2 = π to get:

u(x1, x2, π) =
∞
∑

n,m=1
n,m both odd

16
nmπ sinh(π

√
n2 +m2)

sin(nx) sin(my) · sinh(
√

n2 +m2π)

=
∞
∑

n,m=1
n,m both odd

16
nmπ

sin(nx) sin(my)
˜

L̃2
1,

because this is the Fourier sine series for the function b(x1, x2) = 1, by Example 9A.2
on page 182.

(d) Apply Theorem 5D.5(a) on page 88 to conclude that this solution is unique. 2

Proposition 13B.2. (Laplace Equation; arbitrary nonhomogeneous Dirichlet BC)

Let X = [0, π]3, and consider the Laplace equation “4h = 0”, with nonho-
mogeneous Dirichlet boundary conditions (see Figure 13B.1B):

h(x1, x2, 0) = D(x1, x2) h(x1, x2, π) = U(x1, x2)
h(x1, 0, x3) = S(x1, x3) h(x1, π, x3) = N(x1, x3)
h(0, x2, x3) = W (x2, x3) h(π, x2, x3, ) = E(x2, x3)
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where D(x1, x2), U(x1, x2), S(x1, x3), N(x1, x3), W (x2, x3), and E(x2, x3)
are six functions. Suppose that these functions have two-dimensional Fourier
sine series:

D(x1, x2)
˜

L̃2

∞
∑

n1,n2=1

Dn1,n2 sin(n1x1) sin(n2x2);

U(x1, x2)
˜

L̃2

∞
∑

n1,n2=1

Un1,n2 sin(n1x1) sin(n2x2);

S(x1, x3)
˜

L̃2

∞
∑

n1,n3=1

Sn1,n3 sin(n1x1) sin(n3x3);

N(x1, x3)
˜

L̃2

∞
∑

n1,n3=1

Nn1,n3 sin(n1x1) sin(n3x3);

W (x2, x3)
˜

L̃2

∞
∑

n2,n3=1

Wn2,n3 sin(n2x2) sin(n3x3);

E(x2, x3)
˜

L̃2

∞
∑

n2,n3=1

En2,n3 sin(n2x2) sin(n3x3).

Then the unique solution to this problem is the function:

h(x) = d(x) + u(x) + s(x) + n(x) + w(x) + e(x)

d(x1, x2, x3)
˜

L̃2

∞
∑

n1,n2=1

Dn1,n2

sinh
(

π
√

n2
1 + n2

2

) sin(n1x1) sin(n2x2) sinh
(
√

n2
1 + n2

2 · x3

)

;

u(x1, x2, x3)
˜

L̃2

∞
∑

n1,n2=1

Un1,n2

sinh
(

π
√

n2
1 + n2

2

) sin(n1x1) sin(n2x2) sinh
(
√

n2
1 + n2

2 · (π − x3)
)

;

s(x1, x2, x3)
˜

L̃2

∞
∑

n1,n3=1

Sn1,n3

sinh
(

π
√

n2
1 + n2

3

) sin(n1x1) sin(n3x3) sinh
(
√

n2
1 + n2

3 · x2

)

;

n(x1, x2, x3)
˜

L̃2

∞
∑

n1,n3=1

Nn1,n3

sinh
(

π
√

n2
1 + n2

3

) sin(n1x1) sin(n3x3) sinh
(
√

n2
1 + n2

3 · (π − x2)
)

;

w(x1, x2, x3)
˜

L̃2

∞
∑

n2,n3=1

Wn2,n3

sinh
(

π
√

n2
2 + n2

3

) sin(n2x2) sin(n3x3) sinh
(
√

n2
2 + n2

3 · x1

)

;

e(x1, x2, x3)
˜

L̃2

∞
∑

n2,n3=1

En2,n3

sinh
(

π
√

n2
2 + n2

3

) sin(n2x2) sin(n3x3) sinh
(
√

n2
2 + n2

3 · (π − x1)
)

.

Furthermore, these six series converge semiuniformly on int (X).
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Proof. Exercise 13B.2 2
E©

13C The Poisson problem on a cube

Prerequisites: §9B, §5C, §1D. Recommended: §11C, §12C, §7C(v).

Proposition 13C.1. Poisson Problem on Cube; homogeneous Dirichlet BC
Let X = [0, π]3, and let q : X −→ R be some function with semiuniformly

convergent Fourier sine series: q(x)
˜

L̃2

∑

n∈N3
+

QnSn(x). Define the function

u : X −→ R by

u(x)
unif

∑

n∈N3
+

−Qn

‖n‖2
· Sn(x), for all x ∈ X.

Then u is the unique solution to the Poisson equation “4u(x) = q(x)”, satis-
fying homogeneous Dirichlet boundary conditions u(x1, x2, 0) = u(x1, x2, π) =
u(x1, 0, x3) = u(x1, π, x3) = u(0, x2, x3) = u(π, x2, x3, ) = 0.

Proof. Exercise 13C.1 2
E©

Proposition 13C.2. Poisson Problem on Cube; homogeneous Neumann BC

Let X = [0, π]3, and let q : X −→ R be some function with semiuniformly

convergent Fourier cosine series: q(x)
˜

L̃2

∑

n∈N3
+

QnCn(x).

Suppose Q0,0,0 = 0. Fix some constant K ∈ R, and define the function
u : X −→ R by

u(x)
unif

∑

n∈N3

n1,n2,n3 not all zero

−Qn

‖n‖2
·Cn(x) + K, for all x ∈ X. (13C.1)

Then u is a solution to the Poisson equation “4u(x) = q(x)”, satisfying homoge-
neous Neumann boundary conditions ∂3 u(x1, x2, 0) = ∂3 u(x1, x2, π) = ∂2 u(x1, 0, x3) =
∂2 u(x1, π, x3) = ∂1 u(0, x2, x3) = ∂1 u(π, x2, x3, ) = 0.

Furthermore, all solutions to this Poisson equation with these boundary con-
ditions have the form (13C.1).

If Q0,0,0 6= 0, however, the problem has no solution.

Proof. Exercise 13C.2 2
E©
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Chapter 14

Boundary value problems in
polar coordinates

“The source of all great mathematics is the special case, the concrete example. It is frequent

in mathematics that every instance of a concept of seemingly great generality is in essence the

same as a small and concrete special case.” —Paul Halmos

14A Introduction

Prerequisites: §0D(ii).

When solving a boundary value problem, the shape of the domain dictates
the choice of coordinate system. Seek the coordinate system yielding the simplest
description of the boundary. For rectangular domains, Cartesian coordinates are
the most convenient. For disks and annuli in the plane, polar coordinates are
a better choice. Recall that polar coordinates (r, θ) on R2 are defined by the
transformation:

x = r · cos(θ) and y = r · sin(θ). (Figure 14A.1A)

with reverse transformation:

r =
√

x2 + y2 and θ = arctan
(y

x

)

.

Here, the coordinate r ranges over R 6−, while the variable θ ranges over [−π, π).
(Clearly, we could let θ range over any interval of length 2π; we just find [−π, π)
the most convenient).

The three domains we will examine are:

• D = {(r, θ) ; r ≤ R}, the disk of radius R; see Figure 14A.1B. For simplic-
ity we will usually assume R = 1.
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R R
Rmin

Rmax

(B)
(C)

(D)(A)

r

x

y

θ

Figure 14A.1: (A) Polar coordinates; (B) The disk D; (C) The codisk D{;
(D) The annulus A.

• D{ = {(r, θ) ; R ≤ r}, the codisk or punctured plane of radius R; see
Figure 14A.1C. For simplicity we will usually assume R = 1.

• A = {(r, θ) ; Rmin ≤ r ≤ Rmax}, the annulus, of inner radius Rmin and
outer radius Rmax ; see Figure 14A.1D.

The boundaries of these domains are circles. For example, the boundary of
the disk D of radius R is the circle:

∂D = S = {(r, θ) ; r = R} .

The circle can be parameterized by a single angular coordinate θ ∈ [−π, π).
Thus, the boundary conditions will be specified by a function b : [−π, π) −→ R.
Note that, if b(θ) is to be continuous as a function on the circle, then it must be
2π-periodic as a function on [−π, π).

In polar coordinates, the Laplacian is written:

4 u = ∂2
r u +

1
r
∂r u +

1
r2
∂2
θ u. (14A.1)

(Exercise 14A.1)E©

14B The Laplace equation in polar coordinates

14B(i) Polar harmonic functions

Prerequisites: §0D(ii), §1C.
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Figure 14B.1: Φn and Ψn for n = 2...6 (rotate page).
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Figure 14B.2: φn and ψn for n = 1...4 (rotate page). Note that these plots have
been ‘truncated’ to have vertical bounds ±3, because these functions explode to
±∞ at zero.
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Figure 14B.4: Radial growth/decay of polar-separated harmonic functions.

The following important harmonic functions separate in polar coordinates:

Φn(r, θ) = cos(nθ) · rn; Ψn(r, θ) = sin(nθ) · rn; for n ∈ N+ (Fig.14B.1)

φn(r, θ) =
cos(nθ)
rn

; ψn(r, θ) =
sin(nθ)
rn

; for n ∈ N+ (Fig.14B.2)

Φ0(r, θ) = 1 and φ0(r, θ) = log(r) (Fig.14B.3)

Proposition 14B.1. The functions Φn, Ψn, φn, and ψn are harmonic, for
all n ∈ N.

Proof. See practice problems #1 to #5 in §14I. 2
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Exercise 14B.1. (a) Show that Φ1(r, θ) = x and Ψ1(r, θ) = y in Cartesian E©
coordinates.

(b) Show that Φ2(r, θ) = x2 − y2 and Ψ2(r, θ) = 2xy in Cartesian coordinates.
(c) Define Fn : C −→ C by Fn(z) := zn. Show that Φn(x, y) = Re [Fn(x+ yi)] and

Ψn(x, y) = Im [Fn(x+ yi)].
(d) (Hard) Show that Φn can be written as a homogeneous polynomial of degree n

in x and y.
(e) Show that, if (x, y) ∈ ∂D (i.e. if x2 + y2 = 1), then ΦN (x, y) = ζN (x), where

ζN (x) := 2(N−1)xN +
bN2 c
∑

n=1

(−1)n2(N−1−2n)N

n

(

N − n− 1
n− 1

)

x(N−2n).

is the Nth Chebyshev polynomial. (For more information, see [Bro89, §3.4]). �

We will solve the Laplace equation in polar coordinates by representing so-
lutions as sums of these simple functions. Note that Φn and Ψn are bounded
at zero, but unbounded at infinity (Figure 14B.4(A) shows the radial growth
of Φn and Ψn). Conversely, φn and ψn are unbounded at zero, but bounded at
infinity) (Figure 14B.4(B) shows the radial decay of φn and ψn). Finally, Φ0

being constant, is bounded everywhere, while φ0 is unbounded at both 0 and
∞ (see Figure 14B.4B). Hence, when solving BVPs in a neighbourhood around
zero (e.g. the disk), it is preferable to use Φ0, Φn and Ψn. When solving BVPs
on an unbounded domain (i.e. one “containing infinity”) it is preferable to use
Φ0, φn and ψn. When solving BVP’s on a domain containing neither zero nor
infinity (e.g. the annulus), we use all of Φn, Ψn, φn, ψn, Φ0, and φ0.

14B(ii) Boundary value problems on a disk

Prerequisites: §5C, §14A, §14B(i), §8A, §0F.

Proposition 14B.2. (Laplace Equation, Unit Disk, nonhomog. Dirichlet BC)

Let D = {(r, θ) ; r ≤ 1} be the unit disk, and let b ∈ L2[−π, π) be some func-
tion. Consider the Laplace equation “4u = 0”, with nonhomogeneous Dirichlet
boundary conditions:

u(1, θ) = b(θ), for all θ ∈ [−π, π). (14B.1)

Suppose b has real Fourier series: b(θ)
˜

L̃2
A0+

∞
∑

n=1

An cos(nθ) +
∞
∑

n=1

Bn sin(nθ).

Then the unique solution to this problem is the function u : D −→ R defined:

u(r, θ)
˜

L̃2
A0 +

∞
∑

n=1

AnΦn(r, θ) +
∞
∑

n=1

BnΨn(r, θ)
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(A): A bent circular wire frame: (B): A bubble in the frame:
b(θ) = sin(3θ). u(r, θ) = r3 sin(3θ).

Figure 14B.5: A soap bubble in a bent wire frame.

= A0 +
∞
∑

n=1

An cos(nθ) · rn +
∞
∑

n=1

Bn sin(nθ) · rn (14B.2)

Furthermore, the series (14B.2) converges semiuniformly to u on int (D).

Proof. Exercise 14B.2 (a) Fix R < 1 and let D(R) := {(r, θ) ; r < R}. Show E©
that on the domain D(R), the conditions of Proposition 0F.1 on page 565 are satisfied;
use this to show that

4u(r, θ)
unif

∞
∑

n=1

An 4 Φn(r, θ) +
∞
∑

n=1

Bn 4Ψn(r, θ)

for all (r, θ) ∈ D(R). Now use Proposition 14B.1 on page 277 to deduce that
4u(r, θ) = 0 for all r ≤ R. Since this works for any R < 1, conclude that 4u ≡ 0
on D.

(b) To check that u also satisfies the boundary condition (14B.1), substitute r = 1

into (14B.2) to get: u(1, θ)
˜

L̃2
A0 +

∞
∑

n=1

An cos(nθ) +
∞
∑

n=1

Bn sin(nθ) = b(θ).

(c) Use Proposition 5D.5(a) on page 88 to conclude that this solution is unique. 2

Example 14B.3. Take a circular wire frame of radius 1, and warp it so that its
vertical distortion is described by the function b(θ) = sin(3θ), shown in Figure
14B.5(A). Dip the frame into a soap solution to obtain a bubble with the bent
wire as its boundary. What is the shape of the bubble?

Solution: A soap bubble suspended from the wire is a minimal surface,
and minimal surfaces of low curvature are well-approximated by harmonic
functions. Let u(r, θ) be a function describing the bubble surface. As long as
the distortion b(θ) is relatively small, u(r, θ) will be a solution to Laplace’s
equation, with boundary conditions u(1, θ) = b(θ). Thus, as shown in Figure
14B.5(B), u(r, θ) = r3 sin(3θ). ♦
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Exercise 14B.3. Let u(x, θ) be a solution to the Dirichlet problem with boundaryE©
conditions u(1, θ) = b(θ). Let 0 be the center of the disk (i.e. the point with radius 0).

Use Proposition 14B.2 to prove that u(0) =
1

2π

∫ π

−π
b(θ) dθ. �

Proposition 14B.4. (Laplace Equation, Unit Disk, nonhomog. Neumann BC)

Let D = {(r, θ) ; r ≤ 1} be the unit disk, and let b ∈ L2[−π, π). Consider
the Laplace equation “4u = 0”, with nonhomogeneous Neumann boundary con-
ditions:

∂r u(1, θ) = b(θ), for all θ ∈ [−π, π). (14B.3)

Suppose b has real Fourier series: b(θ)
˜

L̃2
A0+

∞
∑

n=1

An cos(nθ) +
∞
∑

n=1

Bn sin(nθ).

If A0 = 0, then the solutions to this problem are all functions u : D −→ R of
the form

u(r, θ)
˜

L̃2
C +

∞
∑

n=1

An
n

Φn(r, θ) +
∞
∑

n=1

Bn
n

Ψn(r, θ)

= C +
∞
∑

n=1

An
n

cos(nθ) · rn +
∞
∑

n=1

Bn
n

sin(nθ) · rn(14B.4)

where C is any constant. Furthermore, the series (14B.4) converges semiuni-
formly to u on int (D).

However, if A0 6= 0, then there is no solution.

Proof.

Claim 1: For any r < 1,

∞
∑

n=1

n2 |An|
n
· rn +

∞
∑

n=1

n2 |Bn|
n
· rn < ∞.

Proof. Let M = max
{

max{|An|}∞n=1, max{|Bn|}∞n=1

}

. Then

∞
∑

n=1

n2 |An|
n
· rn +

∞
∑

n=1

n2 |Bn|
n
· rn ≤

∞
∑

n=1

n2M

n
· rn +

∞
∑

n=1

n2M

n
· rn

= 2M
∞
∑

n=1

nrn. (14B.5)

Let f(r) =
1

1− r
. Then f ′(r) =

1
(1− r)2

. Recall that, for |r| < 1,

f(r) =
∞
∑

n=0

rn. Thus, f ′(r) =
∞
∑

n=1

nrn−1 =
1
r

∞
∑

n=1

nrn. Hence, the right
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hand side of eqn.(14B.5) is equal to

2M
∞
∑

n=1

nrn = 2Mr · f ′(r) = 2Mr · 1
(1− r)2

< ∞,

for any r < 1. �
Claim 1

Let R < 1 and let D(R) = {(r, θ) ; r ≤ R} be the disk of radius R. If u(r, θ) =

C +
∞
∑

n=1

An
n

Φn(r, θ) +
∞
∑

n=1

Bn
n

Ψn(r, θ), then for all (r, θ) ∈ D(R),

4u(r, θ)
unif

∞
∑

n=1

An
n
4 Φn(r, θ) +

∞
∑

n=1

Bn
n
4Ψn(r, θ)

(∗)

∞
∑

n=1

An
n

(0) +
∞
∑

n=1

Bn
n

(0) = 0,

on D(R). Here, “
unif

” is by Proposition 0F.1 on page 565 and Claim 1, while
(∗) is by Proposition 14B.1 on page 277.

To check boundary conditions, observe that, for all R < 1 and all (r, θ) ∈ D(R),

∂r u(r, θ)
unif

∞
∑

n=1

An
n
∂r Φn(r, θ) +

∞
∑

n=1

Bn
n
∂r Ψn(r, θ)

=
∞
∑

n=1

An
n
nrn−1 cos(nθ) +

∞
∑

n=1

Bn
n
nrn−1 sin(nθ)

=
∞
∑

n=1

Anr
n−1 cos(nθ) +

∞
∑

n=1

Bnr
n−1 sin(nθ).

Here “
unif

” is by Proposition 0F.1 on page 565. Hence, letting R→ 1, we get

∂⊥ u(1, θ) = ∂r u(1, θ) =
∞
∑

n=1

An · (1)n−1 cos(nθ) +
∞
∑

n=1

Bn · (1)n−1 sin(nθ)

=
∞
∑

n=1

An cos(nθ) +
∞
∑

n=1

Bn sin(nθ)
˜

L̃2
b(θ),

as desired. Here, “
˜

L̃2
” is because this is the Fourier Series for b(θ), assuming

A0 = 0. (If A0 6= 0, then this solution doesn’t work.)

Finally, Proposition 5D.5(c) on page 88 implies that this solution is unique up
to addition of a constant. 2
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Figure 14B.6: The electric potential deduced from Scully’s voltage measurements in Example

14B.5.

Remark. Physically speaking, why must A0 = 0?
If u(r, θ) is an electric potential, then ∂r u is the radial component of the

electric field. The requirement that A0 = 0 is equivalent to requiring that the
net electric flux entering the disk is zero, which is equivalent (via Gauss’s law)
to the assertion that the net electric charge contained in the disk is zero. If
A0 6= 0, then the net electric charge within the disk must be nonzero. Thus,
if q : D −→ R is the charge density field, then we must have q 6≡ 0. However,
q = 4u (see Example 1D.2 on page 14), so this means 4u 6= 0, which means u
is not harmonic.

Example 14B.5. While covertly investigating mysterious electrical phenomena
on a top-secret military installation in the Nevada desert, Mulder and Scully
are trapped in a cylindrical concrete silo by the Cancer Stick Man. Scully
happens to have a voltimeter, and she notices an electric field in the silo.
Walking around the (circular) perimeter of the silo, Scully estimates the radial
component of the electric field to be the function b(θ) = 3 sin(7θ) − cos(2θ).
Estimate the electric potential field inside the silo.

Solution: The electric potential will be a solution to Laplace’s equation,
with boundary conditions ∂r u(1, θ) = 3 sin(7θ)− cos(2θ). Thus,

u(r, θ) = C +
3
7

sin(7θ) · r7 − 1
2

cos(2θ) · r2. (see Figure 14B.6)

Question: Moments later, Mulder repeats Scully’s experiment, and finds that
the perimeter field has changed to b(θ) = 3 sin(7θ)−cos(2θ)+6. He immediately
suspects that an Alien Presence has entered the silo. Why? ♦
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14B(iii) Boundary value problems on a codisk

Prerequisites: §5C, §14A, §14B(i), §8A, §0F. Recommended: §14B(ii).

We will now solve the Dirichlet problem on an unbounded domain: the codisk

D{ := {(r, θ) ; 1 ≤ r, θ ∈ [−π, π)} .

Physical Interpretations:

Chemical Concentration: Suppose there is an unknown source of some chem-
ical hidden inside the disk, and that this chemical diffuses into the sur-
rounding medium. Then the solution function u(r, θ) represents the equi-
librium concentration of the chemical. In this case, it is reasonable to
expect u(r, θ) to be bounded at infinity, by which we mean:

lim
r→∞

|u(r, θ)| 6= ∞, for all θ ∈ [−π, π). (14B.6)

Otherwise the chemical concentration would become very large far away
from the center, which is not realistic.

Electric Potential: Suppose there is an unknown charge distribution inside
the disk. Then the solution function u(r, θ) represents the electric potential
field generated by this charge. Even though we don’t know the exact charge
distribution, we can use the boundary conditions to extrapolate the shape
of the potential field outside the disk.

If the net charge within the disk is zero, then the electric potental far
away from the disk should be bounded (because from far away, the charge
distribution inside the disk ‘looks’ neutral); hence, the solution u(r, θ) will
again satisfy the Boundedness Condition (14B.6).

However, if there is a nonzero net charge within the the disk, then the
electric potential will not be bounded (because, even from far away, the
disk still ‘looks’ charged). Nevertheless, the electric field generated by this
potential should still decay to zero (because the influence of the charge
should be weak at large distances). This means that, while the potential is
unbounded, the gradient of the potential must decay to zero near infinity.
In other words, we must impose the decaying gradient condition:

lim
r→∞

∇u(r, θ) = 0, for all θ ∈ [−π, π). (14B.7)
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Proposition 14B.6. (Laplace equation, Codisk, nonhomog. Dirichlet BC)

Let D{ = {(r, θ) ; 1 ≤ r} be the codisk, and let b ∈ L2[−π, π). Consider the
Laplace equation “4u = 0”, with nonhomogeneous Dirichlet boundary condi-
tions:

u(1, θ) = b(θ), for all θ ∈ [−π, π). (14B.8)

Suppose b has real Fourier series: b(θ)
˜

L̃2
A0+

∞
∑

n=1

An cos(nθ) +
∞
∑

n=1

Bn sin(nθ).

Then the unique solution to this problem which is bounded at infinity as in
(14B.6) is the function u : D{ −→ R defined:

u(r, θ)
˜

L̃2
A0 +

∞
∑

n=1

An
cos(nθ)
rn

+
∞
∑

n=1

Bn
sin(nθ)
rn

(14B.9)

Furthermore, the series (14B.9) converges semiuniformly to u on int
(

D{
)

.

Proof. Exercise 14B.4 (a) To show that u is harmonic, apply eqn.(14A.1) onE©
page 274 to get

4 u(r, θ) = ∂2
r

( ∞
∑

n=1

An
cos(nθ)

rn
+
∞
∑

n=1

Bn
sin(nθ)

rn

)

+
1

r
∂r

( ∞
∑

n=1

An
cos(nθ)

rn
+
∞
∑

n=1

Bn
sin(nθ)

rn

)

+
1

r2
∂2
θ

( ∞
∑

n=1

An
cos(nθ)

rn
+
∞
∑

n=1

Bn
sin(nθ)

rn

)

. (14B.10)

Now let R > 1. Check that, on the domain D{(R) = {(r, θ) ; r > R}, the conditions
of Proposition 0F.1 on page 565 are satisfied; use this to simplify the expression
(14B.10). Finally, apply Proposition 14B.1 on page 277 to deduce that 4u(r, θ) = 0
for all r ≥ R. Since this works for any R > 1, conclude that 4u ≡ 0 on D{.
(b) To check that the solution also satisfies the boundary condition (14B.8), subsititute

r = 1 into (14B.9) to get: u(1, θ)
˜

L̃2
A0 +

∞
∑

n=1

An cos(nθ) +
∞
∑

n=1

Bn sin(nθ) = b(θ).

(c) Use Proposition 5D.5(a) on page 88 to conclude that this solution is unique. 2

Example 14B.7. An unknown distribution of electric charges lies inside the
unit disk in the plane. Using a voltimeter, the electric potential is measured
along the perimeter of the circle, and is approximated by the function b(θ) =
sin(2θ)+4 cos(5θ). Far away from the origin, the potential is found to be close
to zero. Estimate the electric potential field.

Solution: The electric potential will be a solution to Laplace’s equation,
with boundary conditions u(1, θ) = sin(2θ)+4 cos(5θ). Far away, the potential
apparently remains bounded. Thus, as shown in Figure 14B.7,

u(r, θ) =
sin(2θ)
r2

+
4 cos(5θ)

r5
. ♦
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Figure 14B.7: The electric potential deduced from voltage measurements in Example 14B.7.

Remark. Note that, for any constant C ∈ R, another solution to the Dirichlet
problem with boundary conditions (14B.8) is given by the function

u(r, θ) = A0 + C log(r) +
∞
∑

n=1

An
cos(nθ)
rn

+
∞
∑

n=1

Bn
sin(nθ)
rn

.

(Exercise 14B.5). However, unless C = 0, this will not be bounded at infinity. E©

Proposition 14B.8. (Laplace equation, Codisk, nonhomog. Neumann BC)
Let D{ = {(r, θ) ; 1 ≤ r} be the codisk, and let b ∈ L2[−π, π). Consider the

Laplace equation “4u = 0”, with nonhomogeneous Neumann boundary condi-
tions:

− ∂⊥ u(1, θ) = ∂r u(1, θ) = b(θ), for all θ ∈ [−π, π). (14B.11)

Suppose b has real Fourier series: b(θ)
˜

L̃2
A0+

∞
∑

n=1

An cos(nθ) +
∞
∑

n=1

Bn sin(nθ).

Fix a constant C ∈ R, and define u : D{ −→ R by:

u(r, θ)
˜

L̃2
C + A0 log(r) +

∞
∑

n=1

−An
n

cos(nθ)
rn

+
∞
∑

n=1

−Bn
n

sin(nθ)
rn

(14B.12)

Then u is a solution to the Laplace equation, with nonhomogeneous Neumann
boundary conditions (14B.11), and furthermore, obeys the Decaying Gradient
Condition (14B.7) on p.283. Furthermore, all harmonic functions satisfying equa-
tions (14B.11) and (14B.7) must be of the form (14B.12). However, the solution
(14B.12) is bounded at infinity as in (14B.6) if and only if A0 = 0.
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Finally, the series (14B.12) converges semiuniformly to u on int
(

D{
)

.

Proof. Exercise 14B.6 (a) To show that u is harmonic, apply eqn.(14A.1) onE©
page 274 to get

4 u(r, θ) = ∂2
r

(

A0 log(r) −
∞
∑

n=1

An
n

cos(nθ)
rn

−
∞
∑

n=1

Bn
n

sin(nθ)
rn

)

+
1
r
∂r

(

A0 log(r) −
∞
∑

n=1

An
n

cos(nθ)
rn

−
∞
∑

n=1

Bn
n

sin(nθ)
rn

)

+
1
r2
∂2
θ

(

A0 log(r) −
∞
∑

n=1

An
n

cos(nθ)
rn

−
∞
∑

n=1

Bn
n

sin(nθ)
rn

)

. (14B.13)

Now let R > 1. Check that, on the domain D{(R) = {(r, θ) ; r > R}, the conditions
of Proposition 0F.1 on page 565 are satisfied; use this to simplify the expression
(14B.13). Finally, apply Proposition 14B.1 on page 277 to deduce that 4u(r, θ) = 0
for all r ≥ R. Since this works for any R > 1, conclude that 4u ≡ 0 on D{.
(b) To check that the solution also satisfies the boundary condition (14B.11), subsi-
titute r = 1 into (14B.12) and compute the radial derivative (using Proposition 0F.1

on page 565) to get: ∂r u(1, θ) = A0 +
∞
∑

n=1

An cos(nθ) +
∞
∑

n=1

Bn sin(nθ)
˜

L̃2
b(θ).

(c) Use Proposition 5D.5(c) on page 88 to show that this solution is unique up to
addition of a constant.

(d) What is the physical interpretation of A0 = 0? 2

Example 14B.9. An unknown distribution of electric charges lies inside the
unit disk in the plane. The radial component of the electric field is measured
along the perimeter of the circle, and is approximated by the function b(θ) =
0.9 + sin(2θ) + 4 cos(5θ). Estimate the electric potential potential (up to a
constant).

Solution: The electric potential will be a solution to Laplace’s equation,
with boundary conditions ∂r u(1, θ) = 0.9 + sin(2θ) + 4 cos(5θ). Thus, as
shown in Figure 14B.8,

u(r, θ) = C + 0.9 log(r) +
− sin(2θ)

2 · r2
+
−4 cos(5θ)

5 · r5
. ♦

14B(iv) Boundary value problems on an annulus

Prerequisites: §5C, §14A, §14B(i), §8A, §0F. Recommended: §14B(ii), §14B(iii).
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Figure 14B.8: The electric potential deduced from field measurements in Example 14B.9.

Proposition 14B.10. (Laplace Equation, Annulus, nonhomog. Dirichlet BC)

Let A = {(r, θ) ; Rmin ≤ r ≤ Rmax} be an annulus, and let b, B : [−π, π) −→
R be two functions. Consider the Laplace equation “4u = 0”, with nonhomo-
geneous Dirichlet boundary conditions:

u(Rmin , θ) = b(θ) and u(Rmax , θ) = B(θ), for all θ ∈ [−π, π). (14B.14)

Suppose b and B have real Fourier series:

b(θ)
˜

L̃2
a0 +

∞
∑

n=1

an cos(nθ) +
∞
∑

n=1

bn sin(nθ)

and B(θ)
˜

L̃2
A0 +

∞
∑

n=1

An cos(nθ) +
∞
∑

n=1

Bn sin(nθ).

Then the unique solution to this problem is the function u : A −→ R defined

u(r, θ) =
˜

L̃2
U0 + u0 log(r) +

∞
∑

n=1

(

Unr
n +

un
rn

)

cos(nθ)

+
∞
∑

n=1

(

Vnr
n +

vn
rn

)

sin(nθ). (14B.15)

where the coefficients {un, Un, vn, VN}∞n=1 are the unique solutions to the equa-
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Figure 14B.9: A bubble between two concentric circular wires

tions:

U0 + u0 log(Rmin) = a0; U0 + u0 log(Rmax) = A0;

UnR
n
min

+
un
Rn

min

= an; UnR
n
max

+
un
Rn

max

= An;

VnR
n
min

+
vn
Rn

min

= bn; VnR
n
max

+
vn
Rn

max

= Bn.

Furthermore, the series (14B.15) converges semiuniformly to u on int (A).

Proof. Exercise 14B.7 (a) To check that u is harmonic, generalize the strategiesE©
used to prove Proposition 14B.2 on page 278 and Proposition 14B.6 on page 284.

(b) To check that the solution also satisfies the boundary condition (14B.14), sub-
sititute r = Rmin and r = Rmax into (14B.15) to get the Fourier series for b and
B.

(c) Use Proposition 5D.5(a) on page 88 to show that this solution is unique. 2

Example: Consider an annular bubble spanning two concentric circular wire
frames. The inner wire has radius Rmin = 1, and is unwarped, but is elevated
to a height of 4cm, while the outer wire has radius Rmax = 2, and is twisted to
have shape B(θ) = cos(3θ) − 2 sin(θ). Estimate the shape of the bubble between
the two wires.

Solution: We have b(θ) = 4, and B(θ) = cos(3θ)− 2 sin(θ). Thus:

a0 = 4; A3 = 1; and B1 = −2

and all other coefficients of the boundary conditions are zero. Thus, our solution
will have the form:

u(r, θ) = U0 + u0 log(r) +
(

U3r
3 +

u3

r3

)

· cos(3θ) +
(

V1r +
v1

r

)

· sin(θ),
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Figure 14B.10: The Poisson kernel (see also Figure 17F.1 on page 407)

where U0, u0, U3, u3, V1, and v1 are chosen to solve the equations:

U0 + u0 log(1) = 4; U0 + u0 log(2) = 0;

U3 + u3 = 0; 8U3 +
u3

8
= 1;

V1 + v1 = 0; 2V1 +
v1

2
= −2.

which is equivalent to:

U0 = 4; u0 =
−U0

log(2)
=
−4

log(2)
;

u3 = −U3;
(

8− 1
8

)

U3 = 1, and thus U3 =
8
63

;

v1 = −V1;
(

2− 1
2

)

V1 = −2, and thus V1 =
−4
3
.

so that u(r, θ) = 4 − 4 log(r)
log(2)

+
8
63

(

r3 − 1
r3

)

·cos(3θ) − 4
3

(

r − 1
r

)

·sin(θ).

14B(v) Poisson’s solution to Dirichlet problem on the disk

Prerequisites: §14B(ii). Recommended: §17F.1

Let D = {(r, θ) ; r ≤ R} be the disk of radiusR, and let ∂D = S = {(r, θ) ; r = R}
be its boundary, the circle of radius R. Recall the Dirichlet problem on the disk

1See § 17F on page 406 for a different development of the material in this section, us-
ing impulse-response functions. For yet another approach, using complex analysis, see Corol-
lary 18C.13 on page 445.
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from §14B(ii). We will now construct an ‘integral representation formula’ for the
solution to this problem. The Poisson kernel is the function P : D× S −→ R
defined:

P(x, s) :=
R2 − ‖x‖2

‖x− s‖2
for any x ∈ D and s ∈ S.

In polar coordinates (Figure 14B.10B), we can parameterize s ∈ S with a single
angular coordinate σ ∈ [−π, π), and assign x the coordinates (r, θ). Poisson’s
kernel then takes the form:

P(x, s) = P(r, θ; σ) =
R2 − r2

R2 − 2rR cos(θ − σ) + r2
.

(Exercise 14B.8)E©

Proposition 14B.11. Poisson’s Integral Formula

Let D = {(r, θ) ; r ≤ R} be the disk of radius R, and let b ∈ L2[−π, π). Con-
sider the Laplace equation “4u = 0”, with nonhomogeneous Dirichlet boundary
conditions u(R, θ) = b(θ). The unique solution to this problem satisfies:

For any r ∈ [0, R) and θ ∈ [−π, π), u(r, θ) =
1

2π

∫ π

−π
P(r, θ;σ) · b(σ) dσ.

(14B.16)

or, more abstractly, u(x) =
1

2π

∫

S
P(x, s) · b(s) ds, for any x ∈ int (D).

Proof. For simplicity, assume R = 1 (the general case can be obtained by
rescaling). From Proposition 14B.2 on page 278, we know that

u(r, θ)
˜

L̃2
A0 +

∞
∑

n=1

An cos(nθ) · rn +
∞
∑

n=1

Bn sin(nθ) · rn,

where An and Bn are the (real) Fourier coefficients for the function b. Substi-
tuting in the definition of these coefficients (see § 8A on page 161), we get:

u(r, θ) =
1

2π

∫ π

−π
b(σ) dσ +

∞
∑

n=1

cos(nθ) · rn ·
(

1
π

∫ π

−π
b(σ) cos(nσ) dσ

)

+
∞
∑

n=1

sin(nθ) · rn ·
(

1
π

∫ π

−π
b(σ) sin(nσ) dσ

)

=
1

2π

∫ π

−π
b(σ)

(

1 + 2
∞
∑

n=1

rn · cos(nθ) cos(nσ) + 2
∞
∑

n=1

rn · sin(nθ) sin(nσ)

)

dσ

(∗)

1
2π

∫ π

−π
b(σ)

(

1 + 2
∞
∑

n=1

rn · cos
(

n(θ − σ)
)

)

(14B.17)
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where (∗) is because cos(nθ) cos(nσ) + sin(nθ) sin(nσ) = cos
(

n(θ − σ)
)

.

It now suffices to prove:

Claim 1: 1 + 2
∞
∑

n=1

rn · cos
(

n(θ − σ)
)

= P(r, θ;σ).

Proof. By Euler’s Formula (see page 551), 2 cos
(

n(θ − σ)
)

= ein(θ−σ) +

e−in(θ−σ). Hence,

1 + 2
∞
∑

n=1

rn · cos
(

n(θ − σ)
)

= 1 +
∞
∑

n=1

rn ·
(

ein(θ−σ) + e−in(θ−σ)
)

.

(14B.18)
Now define complex number z = r ·ei(θ−σ); then observe that rn ·ein(θ−σ) =
zn and rn · e−in(θ−σ) = zn. Thus, we can rewrite the right hand side of
(14B.18) as:

1 +
∞
∑

n=1

rn · ein(θ−σ) +
∞
∑

n=1

rn · e−in(θ−σ)

= 1 +
∞
∑

n=1

zn +
∞
∑

n=1

zn
(a)

1 +
z

1− z
+

z

1− z

= 1 +
z − zz + z − zz
1− z − z + zz (b)

1 +
2Re [z]− 2|z|2

1− 2Re [z] + |z|2

=
1− 2Re [z] + |z|2

1− 2Re [z] + |z|2
+

2Re [z]− 2|z|2

1− 2Re [z] + |z|2

=
1− |z|2

1− 2Re [z] + |z|2 (c)

1− r2

1 − 2r cos (θ − σ) + r2
= P(r, θ;σ).

(a) is because
∞
∑

n=1

xn =
x

1− x for any x ∈ C with |x| < 1. (b) is because z + z =

2Re [z] and zz = |z|2 for any z ∈ C. (c) is because |z| = r and Re [z] = cos(θ − σ) by

definition of z. �
Claim 1

Now, use Claim 1 to substitute P(r, θ;σ) into (14B.17); this yields the Poisson
integral formula (14B.16). 2

14C Bessel functions
14C(i) Bessel’s equation; Eigenfunctions of 4 in Polar Coordi-

nates

Prerequisites: §4B, §14A. Recommended: §16C.
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Figure 14C.1: Bessel functions near zero.

Fix n ∈ N. The (2-dimensional) Bessel’s Equation (of order n) is the
ordinary differential equation

x2R′′(x) + xR′(x) + (x2 − n2) · R(x) = 0, (14C.1)

where R : [0,∞] −→ R is an unknown function. In §16C, we will explain how
this equation was first derived. In the present section, we will investigate its
mathematical consequences.

The Bessel equation has two solutions:

R(x) = Jn(x) the nth order Bessel function of the first kind.
[See Figures 14C.1(A) and 14C.2(A)]

R(x) = Yn(x) the nth order Bessel function of the second kind, or
Neumann function. [See Figures 14C.1(B) and 14C.2(B)]

Bessel functions are like trigonometric or logarithmic functions; the ‘simplest’
expression for them is in terms of a power series. Hence, you should treat the
functions “Jn” and “Yn” the same way you treat elementary functions like “sin”,
“tan” or “log”. In §14G we will derive an explicit power series for Bessel’s func-
tions, and in §14H, we will derive some of their important properties. However,
for now, we will simply take for granted that some solution functions Jn ex-
ists, and discuss how we can use these functions to build eigenfunctions for the
Laplacian which separate in polar coordinates.

Proposition 14C.1.
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Figure 14C.2: Bessel functions are asymptotically periodic.

Fix λ > 0. For any n ∈ N, define the functions Φn,λ,Ψn,λ, φn,λ, ψn,λ : R2 −→
R by

Φn,λ(r, θ) = Jn(λ · r) · cos(nθ); Ψn,λ(r, θ) = Jn(λ · r) · sin(nθ);
φn,λ(r, θ) = Yn(λ · r) · cos(nθ); and ψn,λ(r, θ) = Yn(λ · r) · sin(nθ).

(see Figures 14C.3 and 14C.4). Then Φn,λ, Ψn,λ, φn,λ, and ψn,λ are all eigen-
functions of the Laplacian with eigenvalue −λ2:

4Φn,λ = −λ2Φn,λ; 4Ψn,λ = −λ2Ψn,λ;
4φn,λ = −λ2φn,λ; and 4 ψn,λ = −λ2ψn,λ.

Proof. See practice problems #12 to #15 of §14I. 2

We can now use these eigenfunctions to solve PDEs in polar coordinates.
Notice that Jn —and thus, eigenfunctions Φn,λ and Ψn,λ —are bounded around
zero (see Figure 14C.1A). On the other hand, Yn —and thus, eigenfunctions
φn,λ and ψn,λ —are unbounded at zero (see Figure 14C.1B). Hence, when solving
BVPs in a neighbourhood around zero (e.g. the disk), we should use Jn, Φn,λ

and Ψn,λ. When solving BVPs on a domain away from zero (e.g. the annulus),
we can also use Yn, φn,λ and ψn,λ.
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Φ31(r, θ) = Φ32(r, θ) = Φ33(r, θ) = Φ34(r, θ) = Φ35(r, θ) =

J3(λ31r) cos (3θ) J3(λ32r) cos (3θ) J3(λ33r) cos (3θ) J3(λ34r) cos (3θ) J3(λ35r) cos (3θ)

Figure 14C.4: Φn,m for n = 3, 4, 5 and for m = 1, 2, 3, 4, 5 (rotate page).
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14C(ii) Boundary conditions; the roots of the Bessel function

Prerequisites: §5C, §14C(i).

To obtain homogeneous Dirichlet boundary conditions on a disk of radius R,
we need an eigenfunction of the form Φn,λ (or Ψn,λ) such that Φn,λ(R, θ) = 0 for
all θ ∈ [−π, π). Hence, we need:

Jn(λ ·R) = 0. (14C.2)

The roots of the Bessel function Jn are the values κ ∈ R 6− such that Jn(κ) = 0.
These roots form an increasing sequence

0 ≤ κn1 < κn2 < κn3 < κn4 < . . . (14C.3)

of irrational values2. Thus, to satisfy the homogeneous Dirichlet boundary condi-
tion (14C.2), we must set λ := κnm/R for some m ∈ N. This yields an increasing
sequence of eigenvalues:

λ2
n1 =

(κn1

R

)2
< λ2

n2 =
(κn2

R

)2
< λ2

n3 =
(κn3

R

)2
< λ2

n4 =
(κn4

R

)2
< . . .

(14C.4)
which are the eigenvalues which we can expect to see in this problem. The
corresponding eigenfunctions will then have the form:

Φn,m(r, θ) = Jn(λn,m · r) · cos(nθ) Ψn,m(r, θ) = Jn(λn,m · r) · sin(nθ)
(14C.5)

(see Figures 14C.3 and 14C.4).

14C(iii) Initial conditions; Fourier-Bessel expansions

Prerequisites: §5B, §6F, §14C(ii).

To solve an initial value problem, while satisfying the desired boundary con-
ditions, we express our initial conditions as a sum of the eigenfunctions from
expression (14C.5). This is called a Fourier-Bessel Expansion:

f(r, θ) =
∞
∑

n=0

∞
∑

m=1

Anm · Φnm(r, θ) +
∞
∑

n=1

∞
∑

m=1

Bnm ·Ψnm(r, θ)

+
∞
∑

n=0

∞
∑

m=1

anm · φnm(r, θ) +
∞
∑

n=1

∞
∑

m=1

bnm · ψnm(r, θ), (14C.6)

where Anm, Bnm, anm, and bnm are all real-valued coefficients. Suppose we
are considering boundary value problems on the unit disk D. Then we want

2Computing these roots is difficult; tables of κnm can be found in most standard references
on PDEs.
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this expansion to be bounded at 0, so we don’t want the second two types of
eigenfunctions. Thus, expression (14C.6) simplifies to:

∞
∑

n=0

∞
∑

m=1

Anm · Φnm(r, θ) +
∞
∑

n=1

∞
∑

m=1

Bnm ·Ψnm(r, θ). (14C.7)

If we substitute the explicit expressions from (14C.5) for Φnm(r, θ) and Ψnm(r, θ)
into expression (14C.7), we get:

∞
∑

n=0

∞
∑

m=1

Anm·Jn
(κnm · r

R

)

·cos(nθ) +
∞
∑

n=1

∞
∑

m=1

Bnm·Jn
(κnm · r

R

)

·sin(nθ).

(14C.8)
Now, if f : D −→ R is some function describing initial conditions, is it always
possible to express f using an expansion like (14C.8)? If so, how do we com-
pute the coefficients Anm and Bnm in expression (14C.8)? The answer to these
questions lies in the following result:

Theorem 14C.2. The collection {Φn,m, Ψ`,m ; n = 0...∞, ` ∈ N,m ∈ N} is
an orthogonal basis for L2(D). Thus, suppose f ∈ L2(D), and for all n,m ∈ N,
we define

Anm :=
〈f, Φnm〉
‖Φnm‖22

=
2

πR2 · J 2
n+1 (κnm)

·
∫ π

−π

∫ R

0
f(r, θ) · Jn

(κnm · r
R

)

· cos(nθ) · r dr dθ,

and Bnm :=
〈f, Ψnm〉
‖Ψnm‖22

=
2

πR2 · J 2
n+1 (κnm)

·
∫ π

−π

∫ R

0
f(r, θ) · Jn

(κnm · r
R

)

· sin(nθ) · r dr dθ.

Then the Fourier-Bessel series (14C.8) converges to f in L2-norm.

Proof. (sketch) The fact that the collection {Φn,m, Ψ`,m ; n = 0...∞, ` ∈ N,m ∈ N}
is an orthogonal set will be verified in Proposition 14H.4 on page 313 of §14H.
The fact that this orthogonal set is actually a basis of L2(D) is too com-
plicated for us to prove here. Given that this is true, if we define Anm :=
〈f, Φnm〉/‖Φnm‖22 and Bnm := 〈f, Ψnm〉/‖Ψnm‖22, then the Fourier-Bessel
series (14C.8) converges to f in L2-norm, by definition of “orthogonal basis”
(see § 6F on page 131).

It remains to verify the integral expressions given for the two inner products.
To do this, recall that

〈f, Φnm〉 =
1

Area [D]

∫

D
f(x) · Φnm(x) dx
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=
1

πR2

∫ 2π

0

∫ R

0
f(r, θ) · Jn

(κnm · r
R

)

· cos(nθ) · r dr dθ

and ‖Φnm‖22 = 〈Φnm, Φnm〉 =
1

πR2

∫ π

−π

∫ R

0
J 2
n

(κnm · r
R

)

· cos2(nθ) · r dr dθ

=
(

1
R2

∫ R

0
J 2
n

(κnm · r
R

)

· r dr
)

·
(

1
π

∫ π

−π
cos2(nθ) dθ

)

(†)

1
R2

∫ R

0
J 2
n

(κnm · r
R

)

· r dr.

(‡)

∫ 1

0
J 2
n (κnm · s) · s ds.

(∗)

1
2
J 2
n+1 (κnm)

here, (†) is by Proposition 6D.2 on page 112, (†) is the change of variables
s := r

R , so that dr = Rds), and (∗) is by Lemma 14H.3(b) on page 310. 2

To compute the integrals in Theorem 14C.2, one generally uses ‘integration
by parts’ techniques similar to those used to compute trigonometic Fourier coef-
ficients (see e.g. § 7C on page 147). However, instead of the convenient trigono-
metric facts that sin′ = cos and cos′ = − sin, one must make use of slightly more
complicated recurrence relations of Proposition 14H.1 on page 309 of §14H. See
Remark 14H.2 on page 310.

We will do not have space in this book to properly develop integration tech-
niques for computing Fourier-Bessel coefficients. Instead, in the remaining dis-
cussion, we will simply assume that f is given to us in the form (14C.8).

14D The Poisson equation in polar coordinates

Prerequisites: §1D, §14C(ii), §0F. Recommended: §11C, §12C, §13C, §14B .

Proposition 14D.1. (Poisson Equation on Disk; homogeneous Dirichlet BC)

Let D = {(r, θ) ; r ≤ R} be a disk, and let q ∈ L2(D) be some function.
Consider the Posson equation “4u(r, θ) = q(r, θ)”, with homogeneous Dirich-
let boundary conditions. Suppose q has semiuniformly convergent Fourier-Bessel
series:

q(r, θ)
˜

L̃2

∞
∑

n=0

∞
∑

m=1

Anm·Jn
(κnm · r

R

)

·cos(nθ) +
∞
∑

n=1

∞
∑

m=1

Bnm·Jn
(κnm · r

R

)

·sin(nθ)
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Then the unique solution to this problem is the function u : D −→ R defined

u(r, θ)
unif

−
∞
∑

n=0

∞
∑

m=1

R2 ·Anm
κ2
nm

· Jn
(κnm · r

R

)

· cos(nθ)

−
∞
∑

n=1

∞
∑

m=1

R2 ·Bnm
κ2
nm

· Jn
(κnm · r

R

)

· sin(nθ)

Proof. Exercise 14D.1 2
E©

Remark. If R = 1, then the expression for q simplifies to:

q(r, θ)
˜

L̃2

∞
∑

n=0

∞
∑

m=1

Anm·Jn (κnm · r)·cos(nθ) +
∞
∑

n=1

∞
∑

m=1

Bnm·Jn (κnm · r)·sin(nθ)

and the solution simplifies to

u(r, θ)
unif
−
∞
∑

n=0

∞
∑

m=1

Anm
κ2
nm

·Jn (κnm · r)·cos(nθ) −
∞
∑

n=1

∞
∑

m=1

Bnm
κ2
nm

·Jn (κnm · r)·sin(nθ)

Example 14D.2. Suppose R = 1, and q(r, θ) = J0 (κ0,3 · r) + J5 (κ2,5 · r) ·
sin(2θ). Then

u(r, θ) =
−J0 (κ0,3 · r)

κ2
0,3

− J5 (κ2,5 · r) · sin(2θ)
κ2

2,5

. ♦

Proposition 14D.3. (Poisson Equation on Disk; nonhomogeneous Dirichlet BC)

Let D = {(r, θ) ; r ≤ R} be a disk. Let b ∈ L2[−π, π) and q ∈ L2(D). Con-
sider the Poisson equation “4u(r, θ) = q(r, θ)”, with nonhomogeneous Dirichlet
boundary conditions:

u(R, θ) = b(θ), for all θ ∈ [−π, π). (14D.1)

1. Let w : D −→ R be the solution3 to the Laplace Equation; “4w = 0”, with
the nonhomogeneous Dirichlet BC (14D.1).

2. Let v : D −→ R be the solution4 to the Poisson Equation; “4v = q”, with
the homogeneous Dirichlet BC.
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3. Define u(r, θ) := v(r, θ; t) + w(r, θ). Then u(r, θ) is a solution to the
Poisson Equation with inhomogeneous Dirichlet BC (14D.1).

Proof. Exercise 14D.2 2
E©

Example 14D.4. Suppose R = 1, and q(r, θ) = J0 (κ0,3 · r) + J2 (κ2,5 · r) ·
sin(2θ). Let b(θ) = sin(3θ).

From Example 14B.3 on page 279, we know that the (bounded) solution to
the Laplace equation with Dirichlet BC w(1, θ) = b(θ) is:

w(r, θ) = r3 sin(3θ).

From Example 14D.2, we know that the solution to the Poisson equation
“4v = q”, with homogeneous Dirichlet BC is:

v(r, θ) =
J0 (κ0,3 · r)

κ2
0,3

+
J2 (κ2,5 · r) · sin(2θ)

κ2
2,5

.

Thus, by Proposition 14D.3, the the solution to the Poisson equation “4u =
q”, with Dirichlet BC w(1, θ) = b(θ), is given:

u(r, θ) = v(r, θ) + w(r, θ) =
J0 (κ0,3 · r)

κ2
0,3

+
J2 (κ2,5 · r) · sin(2θ)

κ2
2,5

+

r3 sin(3θ). ♦

14E The heat equation in polar coordinates

Prerequisites: §1B, §14C(iii), §0F. Recommended: §11A, §12B, §13A, §14B .

Proposition 14E.1. (Heat equation on Disk; homogeneous Dirichlet BC)

Let D = {(r, θ) ; r ≤ R} be a disk, and consider the heat equation “∂t u =
4u”, with homogeneous Dirichlet boundary conditions, and initial conditions
u(r, θ; 0) = f(r, θ). Suppose f has Fourier-Bessel series:

f(r, θ)
˜

L̃2

∞
∑

n=0

∞
∑

m=1

Anm·Jn
(κnm · r

R

)

·cos(nθ) +
∞
∑

n=1

∞
∑

m=1

Bnm·Jn
(κnm · r

R

)

·sin(nθ)

3Obtained from Proposition 14B.2 on page 278, for example.
4Obtained from Proposition 14D.1, for example.
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Then the unique solution to this problem is the function u : D × R 6− −→ R
defined:

u(r, θ; t)
˜

L̃2

∞
∑

n=0

∞
∑

m=1

Anm · Jn
(κnm · r

R

)

· cos(nθ) exp
(

−κ2
nm

R2
t

)

+
∞
∑

n=1

∞
∑

m=1

Bnm · Jn
(κnm · r

R

)

· sin(nθ) exp
(

−κ2
nm

R2
t

)

Furthermore, the series defining u converges semiuniformly on D× R+.

Proof. Exercise 14E.1 2
E©

Remark. If R = 1, then the initial conditions simplify to:

f(r, θ)
˜

L̃2

∞
∑

n=0

∞
∑

m=1

Anm·Jn (κnm · r)·cos(nθ) +
∞
∑

n=1

∞
∑

m=1

Bnm·Jn (κnm · r)·sin(nθ)

and the solution simplifies to:

u(r, θ; t)
˜

L̃2

∞
∑

n=0

∞
∑

m=1

Anm · Jn (κnm · r) · cos(nθ) · e−κ2
nmt

+
∞
∑

n=1

∞
∑

m=1

Bnm · Jn (κnm · r) · sin(nθ) · e−κ2
nmt.

Example 14E.2. Suppose R = 1, and f(r, θ) = J0 (κ0,7 · r) − 4J3 (κ3,2 · r) ·
cos(3θ). Then

u(r, θ; t) = J0 (κ0,7 · r) · e−κ
2
0,7t − 4J3 (κ3,2 · r) · cos(3θ) · e−κ2

32t. ♦

Proposition 14E.3. (Heat equation on Disk; nonhomogeneous Dirichlet BC)

Let D = {(r, θ) ; r ≤ R} be a disk, and let f : D −→ R and b : [−π, π) −→ R
be given functions. Consider the Heat equation “∂t u = 4u”, with initial
conditions u(r, θ) = f(r, θ), and nonhomogeneous Dirichlet boundary conditions:

u(R, θ) = b(θ), for all θ ∈ [−π, π). (14E.1)

1. Let w : D −→ R be the solution5 to the Laplace Equation; “4w = 0”, with
the nonhomogeneous Dirichlet BC (14E.1).

5Obtained from Proposition 14B.2 on page 278, for example.
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2. Define g(r, θ) := f(r, θ)− w(r, θ). Let v : D× R 6− −→ R be the solution6

to the heat equation “∂tv = 4v” with initial conditions v(r, θ) = g(r, θ),
and homogeneous Dirichlet BC.

3. Define u(r, θ; t) := v(r, θ; t) + w(r, θ). Then u(r, θ; t) is a solution to the
heat equation with initial conditions u(r, θ) = f(r, θ), and inhomogeneous
Dirichlet BC (14E.1).

Proof. Exercise 14E.2 2
E©

14F The wave equation in polar coordinates

Prerequisites: §2B, §14C(ii), §14C(iii), §0F. Recommended: §11B, §12D, §14E.

Imagine a drumskin stretched tightly over a circular frame. At equilibrium,
the drumskin is perfectly flat, but if we strike the skin, it will vibrate, meaning
that the membrane will experience vertical displacements from equilibrium. Let
D = {(r, θ) ; r ≤ R} represent the round skin, and for any point (r, θ) ∈ D on
the drumskin and time t > 0, let u(r, θ; t) be the vertical displacement of the
drum. Then u will obey the two-dimensional wave equation:

∂2
t u(r, θ; t) = 4u(r, θ; t). (14F.1)

However, since the skin is held down along the edges of the circle, the function
u will also exhibit homogeneous Dirichlet boundary conditions:

u(R, θ; t) = 0, for all θ ∈ [−π, π) and t ≥ 0. (14F.2)

Proposition 14F.1. (Wave equation on Disk; homogeneous Dirichlet BC)

Let D = {(r, θ) ; r ≤ R} be a disk, and consider the wave equation “∂2
t u =

4u”, with homogeneous Dirichlet boundary conditions, and

Initial position: u(r, θ; 0) = f0(r, θ);
Initial velocity: ∂t u(r, θ; 0) = f1(r, θ)

Suppose f0 and f1 have Fourier-Bessel series:

f0(r, θ)
˜

L̃2

∞
∑

n=0

∞
∑

m=1

Anm · Jn
(κnm · r

R

)

· cos(nθ)

+
∞
∑

n=1

∞
∑

m=1

Bnm · Jn
(κnm · r

R

)

· sin(nθ);

6Obtained from Proposition 14E.1, for example.
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and f1(r, θ)
˜

L̃2

∞
∑

n=0

∞
∑

m=1

A′nm · Jn
(κnm · r

R

)

· cos(nθ)

+
∞
∑

n=1

∞
∑

m=1

B′nm · Jn
(κnm · r

R

)

· sin(nθ).

Assume that

∞
∑

n=0

∞
∑

m=1

κ2
nm|Anm| +

∞
∑

n=1

∞
∑

m=1

κ2
nm|Bnm| < ∞,

and

∞
∑

n=0

∞
∑

m=1

κnm|A′nm| +
∞
∑

n=1

∞
∑

m=1

κnm|B′nm| < ∞.

Then the unique solution to this problem is the function u : D × R 6− −→ R
defined:

u(r, θ; t)
˜

L̃2

∞
∑

n=0

∞
∑

m=1

Anm · Jn
(κnm · r

R

)

· cos(nθ) · cos
(κnm
R

t
)

+
∞
∑

n=1

∞
∑

m=1

Bnm · Jn
(κnm · r

R

)

· sin(nθ) · cos
(κnm
R

t
)

+
∞
∑

n=0

∞
∑

m=1

R ·A′nm
κnm

· Jn
(κnm · r

R

)

· cos(nθ) · sin
(κnm
R

t
)

+
∞
∑

n=1

∞
∑

m=1

R ·B′nm
κnm

· Jn
(κnm · r

R

)

· sin(nθ) · sin
(κnm
R

t
)

.

Proof. Exercise 14F.1 2
E©

Remark. If R = 1, then the initial conditions would be:

f0(r, θ)
˜

L̃2

∞
∑

n=0

∞
∑

m=1

Anm · Jn (κnm · r) · cos(nθ)

+
∞
∑

n=1

∞
∑

m=1

Bnm · Jn (κnm · r) · sin(nθ),

and f1(r, θ)
˜

L̃2

∞
∑

n=0

∞
∑

m=1

A′nm · Jn (κnm · r) · cos(nθ)

+
∞
∑

n=1

∞
∑

m=1

B′nm · Jn (κnm · r) · sin(nθ).
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and the solution simplifies to:

u(r, θ; t)
˜

L̃2

∞
∑

n=0

∞
∑

m=1

Anm · Jn (κnm · r) · cos(nθ) · cos (κnmt)

+
∞
∑

n=1

∞
∑

m=1

Bnm · Jn (κnm · r) · sin(nθ) · cos (κnmt)

+
∞
∑

n=0

∞
∑

m=1

A′nm
κnm

· Jn (κnm · r) · cos(nθ) · sin (κnmt)

+
∞
∑

n=1

∞
∑

m=1

B′nm
κnm

· Jn (κnm · r) · sin(nθ) · sin (κnmt) .

Acoustic Interpretation: The vibration of the drumskin is a superposition
of distinct modes of the form

Φnm(r, θ) = Jn
(κnm · r

R

)

·cos(nθ) and Ψnm(r, θ) = Jn
(κnm · r

R

)

·sin(nθ),

for all m,n ∈ N. For fixed m and n, the modes Φnm and and Ψnm vibrate at
(temporal) frequency λnm =

κnm
R

. In the case of the vibrating string, all the
different modes vibrated at frequences that were integer multiples of the funda-
mental frequency; musically speaking, this means that they are ‘in harmony’. In
the case of a drum, however, the frequencies are all irrational multiples (because
the roots κnm are all irrationally related). Acoustically speaking, this means we
expect a drum to sound somewhat more ‘discordant’ than a string.

Notice also that, as the radius R gets larger, the frequency λnm =
κnm
R

gets smaller. This means that larger drums vibrate at lower frequencies, which
matches our experience.

Example 14F.2. A circular membrane of radius R = 1 is emitting a pure pitch
at frequency κ35. Roughly describe the space-time profile of the solution (as a
pattern of distortions of the membrane).

Answer: The spatial distortion of the membrane must be a combination of
modes vibrating at this frequency. Thus, we expect it to be a function of the
form:

u(r, θ; t) = J3 (κ35 · r)
[(

A · cos(3θ) + B · sin(3θ)
)

· cos (κ35t) +
(

A′

κ35
· cos(3θ) +

B′

κ35
· sin(3θ)

)

· sin (κ35t)
]

By introducing some constant angular phase-shifts φ and φ′, as well as new
constants C and C ′, we can rewrite this (Exercise 14F.2 ) as:E©
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u(r, θ; t) = J3 (κ35 · r)
(

C · cos(3(θ + φ)) · cos (κ35t) +
C ′

κ35
· cos(3(θ + φ′)) · sin (κ35t)

)

.

♦

Example 14F.3. An initially silent circular drum of radius R = 1 is struck in its
exact center with a drumstick having a spherical head. Describe the resulting
pattern of vibrations.

Solution: This is a problem with nonzero initial velocity and zero initial
position. Since the initial velocity (the impact of the drumstick) is rotationally
symmetric (dead centre, spherical head), we can write it as a Fourer-Bessel
expansion with no angular dependence:

f1(r, θ) = f(r)
˜

L̃2

∞
∑

m=1

A′m·J0 (κ0m · r) (A′1, A
′
2, A

′
3, . . . some constants)

(all the higher-order Bessel functions disappear, since Jn is always associated
with terms of the form sin(nθ) and cos(nθ), which depend on θ.) Thus, the
solution must have the form:

u(r, θ; t) = u(r, t)
˜

L̃2

∞
∑

m=1

A′m
κ0m

· J0 (κ0m · r) · sin (κ0mt). ♦

14G The power series for a Bessel function

Prerequisites: §0H(iii). Recommended: §14C(i).

In §14C-§14F, we claimed that Bessel’s equation had certain solutions called
Bessel functions, and showed how to use these Bessel functions to solve differ-
ential equations in polar coordinates. Now we will derive an an explicit formula
for these Bessel functions in terms of their power series.

Proposition 14G.1. Set λ := 1. For any fixed m ∈ N there is a solution
Jm : R 6− −→ R to the Bessel Equation

x2J ′′(x) + x · J ′(x) + (x2 −m2) · J (x) = 0, for all x > 0. (14G.1)

with a power series expansion:

Jm(x) =
(x

2

)m
·
∞
∑

k=0

(−1)k

22k k! (m+ k)!
x2k (14G.2)

(Jm is called the mth order Bessel function of the first kind.)
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Proof. The ODE (14G.1) satisfies the hypotheses of the Frobenius Theorem
(see Example 0H.5 on page 574 of Appendix 0H(iii)). Thus, we can apply the
Method of Frobenius to solve (14G.1). Suppose that J is a solution, with an

(unknown) power series J (x) = xM
∞
∑

k=0

akx
k, where a0, a1, . . . are unknown

coefficients, and M ≥ 0. We assume that a0 6= 0. We substitute this power
series into eqn.(14G.1) to get equations relating the coefficients. The details
of this computation are shown in Table 14.1.

Claim 1: M = m.

Proof. If the Bessel equation is to be satisfied, the power series in the bottom
row of Table 14.1 must be identically zero. In particular, this means that
the coefficient labeled ‘(a)’ must be zero; in other words a0(M2−m2) = 0.
Since we know that a0 6= 0, this means (M2 −m2) = 0 —i.e. M2 = m2.
But M ≥ 0, so this means M = m. �

Claim 1

Claim 2: a1 = 0.

Proof. If the Bessel equation is to be satisfied, the power series in the bottom
row of Table 14.1 must be identically zero. In particular, this means that the
coefficient labeled ‘(b)’ must be zero; in other words, a1

[

(M + 1)2 −m2
]

=
0.
Claim 1 says that M = m; hence this is equivalent to a1

[

(m+ 1)2 −m2
]

=
0. Clearly,

[

(m+ 1)2 −m2
]

6= 0; hence we conclude that a1 = 0. �
Claim 2

Claim 3: For all k ≥ 2, the coefficients {a2, a3, a4, . . .} must satisfy the
following recurrence relation:

ak =
−1

(m+ k)2 −m2
ak−2, for all even k ∈ N with k ≥ 2. (14G.3)

On the other hand, ak = 0 for all odd k ∈ N.

Proof. If the Bessel equation is to be satisfied, the power series in the
bottom row of Table 14.1 must be identically zero. In particular, this
means that all the coefficients bk must be zero. In other words, ak−2 +
(

(M + k)2 −m2
)

ak = 0.
From Claim 1, we know that M = m; hence this is equivalent to ak−2 +
(

(m+ k)2 −m2
)

ak = 0. In other words, ak = −ak−2/
(

(m+ k)2 −m2
)

ak.
From Claim 2, we know that a1 = 0. It follows from this equation that
a3 = 0; hence a5 = 0, etc. Inductively, an = 0 for all odd n. �

Claim 3

Claim 4: Assume we have fixed a value for a0. Define

a2j :=
(−1)j · a0

22jj!(m+ 1)(m+ 2) · · · (m+ j)
, for all j ∈ N.
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J
(x

)
=

a
0
x
M

+
a

1
x
M

+
1

+
a

2
x
M

+
2

+
··
·+

a
k
x
M

+
k

+
··
·

T
he

n
−
m

2
J

(x
)

=
−
m

2
a

0
x
M
−

m
2
a

1
x
M

+
1

+
−
m

2
a

2
x
M

+
2

+
··
·+

−
m

2
a
k
x
M

+
k

+
··
·

x
2
J

(x
)

=
a

0
x
M

+
2

+
··
·+

a
k
−

2
x
M

+
k

+
··
·

x
J
′ (
x

)
=

M
a

0
x
M

+
(M

+
1)
a

1
x
M

+
1

+
(M

+
2)
a

2
x
M

+
2

+
··
·+

(M
+
k
)a
k
x
M

+
k

+
··
·

x
2
J
′′ (
x

)
=

M
(M
−

1)
a

0
x
M

+
(M

+
1)
M
a

1
x
M

+
1

+
(M

+
2)

(M
+

1)
a

2
x
M

+
2

+
··
·+

(M
+
k
)(
M

+
k
−

1)
a
k
x
M

+
k

+
··
·

T
hu

s
0

=
x

2
J
′′ (
x

)
+
x
·J
′ (
x

)
+

(x
2
−
m

2
)
·J

(x
)

=
(M

2
−
m

2
)

︸
︷
︷

︸

(a
)

a
0
x
M

+
((
M

+
1)

2
−
m

2
)

︸
︷
︷

︸

(b
)

a
1
x
M

+
1

+
(

a
0
+

((
M

+
2
)2
−
m

2
)a

2

)

x
M

+
2

+
··
·+

b k
x
M

+
k

+
··
·

w
he

re

b k
:=

a
k
−

2
+

(M
+
k
)a
k

+
(M

+
k
)(
M

+
k
−

1)
a
k
−
m

2
a
k

=
a
k
−

2
+

(M
+
k
)(

1
+
M

+
k
−

1)
a
k
−
m

2
a
k

=
a
k
−

2
+
(

(M
+
k
)2
−
m

2
)

a
k
.

Table 14.1: The method of Frobenius to solve Bessel’s equation in the proof of 14G.1.
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Then the sequence {a0, a2, a4, . . .} satisfies the recurrence relation (14G.3).

Proof. Set k = 2j in eqn.(14G.3). For any j ≥ 2, we must show that

a2j =
−a2j−2

(m+ 2j)2 −m2
. Now, by definition,

a2j−2 = a2(j−1) :=
(−1)j−1 · a0

22j−2(j − 1)!(m+ 1)(m+ 2) · · · (m+ j − 1)
,

Also,

(m+2j)2−m2 = m2+4jm+4j2−m2 = 4jm+4j2 = 22j(m+j).

Hence

−a2j−2

(m+ 2j)2 −m2
=

−a2j−2

22j(m+ j)

=
(−1)(−1)j−1 · a0

22j(m+ j) · 22j−2(j − 1)!(m+ 1)(m+ 2) · · · (m+ j − 1)

=
(−1)j · a0

22j−2+2 · j(j − 1)! · (m+ 1)(m+ 2) · · · (m+ j − 1)(m+ j)

=
(−1)j · a0

22jj!(m+ 1)(m+ 2) · · · (m+ j − 1)(m+ j)
= a2j ,

as desired. �
Claim 4

By convention we define a0 :=
1

2m
1
m!

. We claim that that the resulting

coefficients yield the Bessel function Jm(x) defined by (14G.2) To see this, let
b2k be the 2kth coefficient of the Bessel series. By definition,

b2k :=
1

2m
· (−1)k

22k k! (m+ k)!
=

1
2m
· (−1)k

22k k!m!(m+ 1)(m+ 2) · · · (m+ k − 1)(m+ k)

=
1

2mm!
· (−1)k

22k k! (m+ 1)(m+ 2) · · · (m+ k − 1)(m+ k)

= a0 ·
(

(−1)k+1

22kk!(m+ 1)(m+ 2) · · · (m+ k − 1)(m+ k)

)

= a2k,

as desired. 2

Corollary 14G.2. Fix m ∈ N. For any λ > 0, the Bessel Equation (16C.12)
has solution R(r) := Jm(λr).

Proof. Exercise 14G.1 . 2
E©
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Remarks: (a) We can generalize the Bessel Equation be replacing m with
an arbitrary real number µ ∈ R with µ ≥ 0. The solution to this equation is the
Bessel function

Jµ(x) =
(x

2

)µ
·
∞
∑

k=0

(−1)k

22k k! Γ(µ+ k + 1)
x2k

Here, Γ is the Gamma function; if µ = m ∈ N, then Γ(m+ k+ 1) = (m+ k)!, so
this expression agrees with (14G.2).

(b) There is a second solution to (14G.1); a function Ym(x) which is un-
bounded at zero. This is called a Neumann function (or a Bessel function of
the second kind or a Weber-Bessel function). It’s derivation is too complicated
to discuss here. See [Bro89, §6.8, p.115] or [CB87, §68, p.233].

14H Properties of Bessel functions

Prerequisites: §14G. Recommended: §14C(i).

Let Jn(x) be the Bessel function defined by eqn.(14G.2) on page 305 of §14G.
In this section, we will develop some computational tools to work with these
functions. First, we will define Bessel functions with negative order as follows:
for any n ∈ N, we define

J−n(x) := (−1)nJn(x). (14H.4)

We can now state the following useful recurrence relations

Proposition 14H.1. For any m ∈ Z,

(a)
2m
x
Jm(x) = Jm−1(x) + Jm+1(x).

(b) 2J ′m(x) = Jm−1(x)− Jm+1(x).

(c) J ′0(x) = −J1(x).

(d) ∂x

(

xm · Jm(x)
)

= xm · Jm−1(x).

(e) ∂x

(

1
xm
Jm(x)

)

=
−1
xm
· Jm+1(x).

(f) J ′m(x) = Jm−1(x)− m

x
Jm(x).

(g) J ′m(x) = −Jm+1(x) +
m

x
Jm(x).
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Proof. Exercise 14H.1 (i) Prove (d) for m ≥ 1 by substituting in the power E©
series (14G.2) and differentiating.

(ii) Prove (e) for m ≥ 0 by substituting in the power series (14G.2) and differentiating.

(iii) Use the definition (14H.4) and (i) and (ii) to prove (d) for m ≤ 0 and (e) for
m ≤ −1.

(iv) Set m = 0 in (e) to obtain (c).

(v) Deduce (f) and (g) from (d) and (e).

(vi) Compute the sum and difference of (f) and (g) to get (a) and (b). 2

Remark 14H.2: (Integration with Bessel functions)
The recurrence relations of Proposition 14H.1 can be used to simplify inte-

grals involving Bessel functions. For example, parts (d) and (e) immediately
imply that

∫

xm · Jm−1(x) dx = xm · Jm(x) + C

and
∫

1
xm
· Jm+1(x) dx =

−1
xm
Jm(x) + C.

The other relations are sometimes useful in an ‘integration by parts’ strategy.♦

For any n ∈ N, let 0 ≤ κn,1 < κn,2 < κn,3 < · · · be the zeros of the nth Bessel
function Jn (i.e. Jn(κn,m) = 0 for all m ∈ N). Proposition 14C.1 on page 292 of
§14C(i) says we can use Bessel functions to define a sequence of polar-separated
eigenfunctions of the Laplacian:

Φn,m(r, θ) := Jn(κn,m · r) · cos(nθ); Ψn,m(r, θ) := Jn(κn,m · r) · sin(nθ).

In the proof of Theorem 14C.2 on page 297 of §14C(iii), we claimed that these
eigenfunctions were orthogonal as elements of L2(D). We will now verify this
claim. First we must prove a technical lemma.

Lemma 14H.3. Fix n ∈ N.

(a) If m 6= M , then

∫ 1

0
Jn(κn,m · r) · Jn(κn,M · r) r dr = 0.

(b)
∫ 1

0
Jn(κn,m · r)2 · r dr =

1
2
Jn+1(κn,m)2.

Proof. (a) Let α = κn,m and β = κn,M . Define f(x) := Jm(αx) and
g(x) := Jm(βx). Hence we want to show that

∫ 1

0
f(x)g(x)x dx = 0.
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Define h(x) = x ·
(

f(x)g′(x)− g(x)f ′(x)
)

.

Claim 1: h′(x) = (α2 − β2)f(x)g(x)x.

Proof. First observe that

h′(x) = x · ∂x
(

f(x)g′(x)− g(x)f ′(x)
)

+
(

f(x)g′(x)− g(x)f ′(x)
)

= x ·
(

f(x)g′′(x) + f ′(x)g′(x)− g′(x)f ′(x)− g(x)f ′′(x)
)

+
(

f(x)g′(x)− g(x)f ′(x)
)

= x ·
(

f(x)g′′(x)− g(x)f ′′(x)
)

+
(

f(x)g′(x)− g(x)f ′(x)
)

.

By setting R = f or R = g in Corollary 14G.2, we obtain:

x2f ′′(x) + xf ′(x) + (α2x2 − n2)f(x) = 0,
and x2g′′(x) + xg′(x) + (β2x2 − n2)g(x) = 0.

We multiply the first equation by g(x) and the second by f(x) to get

x2f ′′(x)g(x) + xf ′(x)g(x) + α2x2f(x)g(x)− n2f(x)g(x) = 0,
and x2g′′(x)f(x) + xg′(x)f(x) + β2x2g(x)f(x)− n2g(x)f(x) = 0.

We then subtract these two equations to get

x2
(

f ′′(x)g(x)− g′′(x)f(x)
)

+x
(

f ′(x)g(x)− g′(x)f(x)
)

+
(

α2 − β2
)

f(x)g(x)x2 = 0.

Divide by x to get

x
(

f ′′(x)g(x)− g′′(x)f(x)
)

+
(

f ′(x)g(x)− g′(x)f(x)
)

+
(

α2 − β2
)

f(x)g(x)x = 0.

Hence we conclude
(

α2 − β2
)

f(x)g(x)x = x
(

g′′(x)f(x)− f ′′(x)g(x)
)

+
(

g′(x)f(x)− f ′(x)g(x)
)

= h′(x),

as desired �
Claim 1

It follows from Claim 1 that

(α2−β2)·
∫ 1

0
f(x)g(x)x dx =

∫ 1

0
h′(x) dx = h(1)−h(0)

(∗)
0−0 = 0.

To see (∗), observe that h(0) = 0 ·
(

f(0)g′(0)− g(0)f ′(0)
)

= 0. Also,

h(1) = (1) ·
(

f(1)g′(1)− g(1)f ′(1)
)

= 0,
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because f(1) = Jn(κn,m) = 0 and g(1) = Jn(κn,N ) = 0.

(b) Let α = κn,m and f(x) := Jm(αx). Hence we want to evaluate
∫ 1

0
f(x)2x dx.

Define h(x) := x2(f ′(x))2 + (α2x2 − n2)f2(x).

Claim 2: h′(x) = 2α2f(x)2x.

Proof. By setting R = f in Corollary 14G.2, we obtain:

0 = x2f ′′(x) + xf ′(x) + (α2x2 − n2)f(x).

We multiply by f ′(x) to get

0 = x2f ′(x)f ′′(x) + x(f ′(x))2 + (α2x2 − n2)f(x)f ′(x)

= x2f ′(x)f ′′(x) + x(f ′(x))2 + (α2x2 − n2)f(x)f ′(x) + α2xf2(x)− α2xf2(x)

=
1
2
∂x

[

x2(f ′(x))2 + (α2x2 − n2)f2(x)
]

− α2xf2(x)

=
1
2
h′(x)− α2xf2(x).

�
Claim 2

It follows from Claim 2 that

2α2

∫ 1

0
f(x)2x dx

=
∫ 1

0
h′(x) dx = h(1)− h(0)

= 12(f ′(1))2 + (α212 − n2) ·f2(1)
︸ ︷︷ ︸

J 2
n(κn,m)

=0

− 02(f ′(0))2

︸ ︷︷ ︸

0

+ (α202 − n2)
︸ ︷︷ ︸

[0 if n = 0]

f2(0)
︸ ︷︷ ︸

[0 if n 6= 0]

= f ′(1)2 =
(

αJ ′n(α)
)2

= α2J ′n(α)2.

Hence
∫ 1

0
f(x)2x dx =

1
2
J ′n(α)2

(∗)

1
2

(n

α
Jn(α)− Jn+1(α)

)2

(†)

1
2





n

κn,m
Jn(κn,m)
︸ ︷︷ ︸

=0

−Jn+1(κn,m)





2

=
1
2
Jn+1(κn,m)2,

where (∗) is by Proposition 14H.1(g) and (†) is because α := κn,m. 2
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Proposition 14H.4. Let D = {(r, θ) ; r ≤ 1} be the unit disk. Then the
collection

{Φn,m, Ψ`,m ; n = 0...∞, ` ∈ N,m ∈ N}

is an orthogonal set for L2(D). In other words, for any n,m,N,M ∈ N,

(a) 〈Φn,m,ΨN,M 〉 =
1
π

∫ 1

0

∫ π

−π
Φn,m(r, θ) ·ΨN,M (r, θ) dθ r dr = 0.

Furthermore, if (n,m) 6= (N,M), then

(b) 〈Φn,m,ΦN,M 〉 =
1
π

∫ 1

0

∫ π

−π
Φn,m(r, θ) · ΦN,M (r, θ) dθ r dr = 0.

(c) 〈Ψn,m,ΨN,M 〉 =
1
π

∫ 1

0

∫ π

−π
Ψn,m(r, θ) ·ΨN,M (r, θ) dθ r dr = 0.

Finally, for any (n,m),

(d) ‖Φn,m‖2 =
1
π

∫ 1

0

∫ π

−π
Φn,m(r, θ)2 dθ r dr =

1
2
Jn+1(κn,m)2.

(e) ‖Ψn,m‖2 =
1
π

∫ 1

0

∫ π

−π
Ψn,m(r, θ)2 dθ r dr =

1
2
Jn+1(κn,m)2.

Proof. (a) Φn,m and ΨN,M separate in the coordinates (r, θ), so the integral
splits in two:
∫ 1

0

∫ π

−π
Φn,m(r, θ) ·ΨN,M (r, θ) dθ r dr

=
∫ 1

0

∫ π

−π
Jn(κn,m · r) · cos(nθ) · JN (κN,M · r) · sin(Nθ) dθ r dr

=
∫ 1

0
Jn(κn,m · r) · JN (κN,M · r) r dr ·

∫ π

−π
cos(nθ) · sin(Nθ) dθ

︸ ︷︷ ︸

= 0 by Prop. 6D.2(c), p.112

= 0.

(b) or (c) (Case n 6= N). Likewise, if n 6= N , then
∫ 1

0

∫ π

−π
Φn,m(r, θ) · ΦN,M (r, θ) dθ r dr

=
∫ 1

0

∫ π

−π
Jn(κn,m · r) · cos(nθ) · JN (κN,M · r) · cos(Nθ) dθ r dr

=
∫ 1

0
Jn(κn,m · r) · JN (κN,M · r) r dr ·

∫ π

−π
cos(nθ) · cos(Nθ) dθ

︸ ︷︷ ︸

= 0 by Prop. 6D.2(a), p.112

= 0.
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the case (c) is proved similarly.

(b) or (c) (Case n = N but m 6= M). If n = N , then
∫ 1

0

∫ π

−π
Φn,m(r, θ) · Φn,M (r, θ) dθ r dr

=
∫ 1

0

∫ π

−π
Jn(κn,m · r) · cos(nθ) · Jn(κn,M · r) · cos(nθ) dθ r dr

=
∫ 1

0
Jn(κn,m · r) · Jn(κn,M · r) r dr

︸ ︷︷ ︸

= 0 by Lemma 14H.3(a)

·
∫ π

−π
cos(nθ)2 dθ

︸ ︷︷ ︸

= π by 6D.2(d),
on p.112.

= 0 · π = 0.

(d): If n = N and m = M then
∫ 1

0

∫ π

−π
Φn,m(r, θ)2 dθ r dr =

∫ 1

0

∫ π

−π
Jn(κn,m · r)2 · cos(nθ)2 dθ r dr

=
∫ 1

0
Jn(κn,m · r)2 r dr

︸ ︷︷ ︸

= 1
2
Jn+1(κn,m)2

by Lemma 14H.3(b)

·
∫ π

−π
cos(nθ)2 dθ

︸ ︷︷ ︸

= π by Prop 6D.2(d)
on p.112.

=
π

2
Jn+1(κn,m)2.

The proof of (e) is Exercise 14H.2 . 2
E©

Exercise 14H.3. (a) Use a ‘separation of variables’ argument (similar to Proposi-E©
tion 16C.2) to prove:

Proposition: Let f : R2 −→ R be a harmonic function —in other words suppose
4f = 0.

Suppose f separates in polar coordinates, meaning that there is a function Θ :
[−π, π] −→ R (satisfying periodic boundary conditions) and a function R : R 6− −→ R
such that

f(r, θ) = R(r) ·Θ(θ), for all r ≥ 0 and θ ∈ [−π, π].

Then there is some m ∈ N such that

Θ(θ) = A cos(mθ) +B sin(mθ), (for constants A,B ∈ R.)

and R is a solution to the Cauchy-Euler Equation:

r2R′′(r) + r · R′(r)−m2 · R(r) = 0, for all r > 0. (14H.5)

(b) Let R(r) = rα where α = ±m. Show that R(r) is a solution to the Cauchy-Euler
equation (14H.5).

(c) Deduce that Ψm(r, θ) = rm · sin(mθ); Φm(r, θ) = rm · cos(mθ); ψm(r, θ) =
r−m · sin(mθ); and φm(r, θ) = r−m · cos(mθ) are harmonic functions in R2. �
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14I Practice problems

1. For all (r, θ), let Φn(r, θ) = rn cos(nθ). Show that Φn is harmonic.

2. For all (r, θ), let Ψn(r, θ) = rn sin(nθ). Show that Ψn is harmonic.

3. For all (r, θ) with r > 0, let φn(r, θ) = r−n cos(nθ). Show that φn is
harmonic.

4. For all (r, θ) with r > 0, let ψn(r, θ) = r−n sin(nθ). Show that ψn is
harmonic.

5. For all (r, θ) with r > 0, let φ0(r, θ) = log |r|. Show that φ0 is harmonic.

6. Let b(θ) = cos(3θ) + 2 sin(5θ) for θ ∈ [−π, π).

(a) Find the bounded solution(s) to the Laplace equation on D, with
nonhomogeneous Dirichlet boundary conditions u(1, θ) = b(θ). Is
the solution unique?

(b) Find the bounded solution(s) to the Laplace equation on D{, with
nonhomogeneous Dirichlet boundary conditions u(1, θ) = b(θ). Is
the solution unique?

(c) Find the ‘decaying gradient’ solution(s) to the Laplace equation on
D{, with nonhomogeneous Neumann boundary conditions ∂r u(1, θ) =
b(θ). Is the solution unique?

7. Let b(θ) = 2 cos(θ)− 6 sin(2θ), for θ ∈ [−π, π).

(a) Find the bounded solution(s) to the Laplace equation on D, with
nonhomogeneous Dirichlet boundary conditions: u(1, θ) = b(θ) for
all θ ∈ [−π, π). Is the solution unique?

(b) Find the bounded solution(s) to the Laplace equation on D, with
nonhomogeneous Neumann boundary conditions: ∂r u(1, θ) = b(θ)
for all θ ∈ [−π, π). Is the solution unique?

8. Let b(θ) = 4 cos(5θ) for θ ∈ [−π, π).

(a) Find the bounded solution(s) to the Laplace equation on the disk
D = {(r, θ) ; r ≤ 1}, with nonhomogeneous Dirichlet boundary con-
ditions u(1, θ) = b(θ). Is the solution unique?

(b) Verify your answer in part (a) (i.e. check that the solution is harmonic
and satisfies the prescribed boundary conditions.)
(Hint: Recall that 4 = ∂2

r + 1
r∂r + 1

r2∂
2
θ .)

9. Let b(θ) = 5 + 4 sin(3θ) for θ ∈ [−π, π).
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(a) Find the ‘decaying gradient’ solution(s) to the Laplace equation on
the codisk D{ = {(r, θ) ; r ≥ 1}, with nonhomogeneous Neumann
boundary conditions ∂r u(1, θ) = b(θ). Is the solution unique?

(b) Verify that your answer in part (a) satisfies the prescribed boundary
conditions. (Forget about the Laplacian).

10. Let b(θ) = 2 cos(5θ) + sin(3θ), for θ ∈ [−π, π).

(a) Find the solution(s) (if any) to the Laplace equation on the disk
D = {(r, θ) ; r ≤ 1}, with nonhomogeneous Neumann boundary
conditions: ∂⊥ u(1, θ) = b(θ), for all θ ∈ [−π, π).
Is the solution unique? Why or why not?

(b) Find the bounded solution(s) (if any) to the Laplace equation on
the codisk D{ = {(r, θ) ; r ≥ 1}, with nonhomogeneous Dirichlet
boundary conditions: u(1, θ) = b(θ), for all θ ∈ [−π, π).
Is the solution unique? Why or why not?

11. Let D be the unit disk. Let b : ∂D −→ R be some function, and let
u : D −→ R be the solution to the corresponding Dirichlet problem with
boundary conditions b(σ). Prove that

u(0, 0) =
1

2π

∫ π

−π
b(σ) dσ.

Remark: This is a special case of the Mean Value Theorem for Harmonic
Functions (Theorem 1E.1 on page 16), but do not simply ‘quote’ Theorem
1E.1 to solve this problem. Instead, apply Proposition 14B.11 on page 290.

12. Let Φn,λ(r, θ) := Jn(λ · r) · cos(nθ). Show that 4Φn,λ = −λ2Φn,λ.

13. Let Ψn,λ(r, θ) := Jn(λ · r) · sin(nθ). Show that 4Ψn,λ = −λ2Ψn,λ.

14. Let φn,λ(r, θ) := Yn(λ · r) · cos(nθ). Show that 4φn,λ = −λ2φn,λ.

15. ψn,λ(r, θ) := Yn(λ · r) · sin(nθ). Show that 4ψn,λ = −λ2ψn,λ.
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Chapter 15

Eigenfunction methods on
arbitrary domains

“Science is built up with facts, as a house is with stones. But a collection of facts is no

more a science than a heap of stones is a house.” —Henri Poincaré

The methods given in Chapters 11-14 are all special cases of a single, general
technique: the solution of initial/boundary value problems using eigenfunction
expansions. The time has come to explicate this technique in full generality. The
exposition in this chapter is somewhat more abstract than in previous chapters,
but that is because the concepts we introduce are of such broad applicability.
Technically, this chapter can be read without having read Chapters 11-14; how-
ever, this chapter will be easier to understand if you have have already read
Chapters 11-14.

15A General solution to Poisson, heat and wave equa-
tion BVPs

Prerequisites: §4B(iv), §5D, §6F, §0D. Recommended: Chapters 11, 12, 13, 14 .

Throughout this section:

• Let X ⊂ RD be any bounded domain (e.g. a line segment, box, disk,
sphere, etc. —see §0D). When we refer to Neumann boundary conditions,
we will also assume that X has a piecewise smooth boundary (so the normal
derivative is well-defined).

• Let {Sk}∞k=1 ⊂ L2(X) be a Dirichlet eigenbasis —that is, {Sk}∞k=1 is an
orthogonal basis of L2(X), such that every Sk is an eigenfunction of the
Laplacian, and satisfies homogeneous Dirichlet boundary conditions on X
(i.e. Sk(x) = 0 for all x ∈ ∂X). For every k ∈ N, let −λk < 0 be the
eigenvalue associated with Sk (i.e. 4Sk = −λkSk). We can assume
without loss of generality that λk 6= 0 for all k ∈ N (Exercise 15A.1 E©
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Why? Hint: Lemma 5D.3(a)).

• Let {Ck}∞k=0 ⊂ L2(X) be a Neumann eigenbasis —that is, {Ck}∞k=0 is
an orthogonal basis L2(X), such that every Ck is an eigenfunction of the
Laplacian, and satisfies homogeneous Neumann boundary conditions on X
(i.e. ∂⊥Ck(x) = 0 for all x ∈ ∂X). For every k ∈ N, let −µk ≤ 0 be
the eigenvalue associated with Ck (i.e. 4Ck = −µkCk). We can assume
without loss of generality that C0 is a constant function (so that µ0 = 0),
while µk 6= 0 for all k ≥ 1 (Exercise 15A.2 Why? Hint: Lemma 5D.3(b)).E©

Theorem 15E.12 (page 347 below) will guarantee that we will be able to find a
Dirichlet eigenbasis for any domain X ⊂ RD, and a Neumann eigenbasis for many
domains. If f ∈ L2(X) is some other function (describing, for example, an initial
condition), then we can express f as a combination of these basis elements, as
described in §6F:

f
˜

L̃2

∞
∑

k=0

AkCk, where Ak :=
〈f, Ck〉
‖Ck‖22

, for all k ∈ N; (15A.1)

and f
˜

L̃2

∞
∑

k=1

BkSk, where Bk :=
〈f,Sk〉
‖Sk‖22

, for all k ∈ N. (15A.2)

These expressions are called eigenfunction expansions for f .

Example 15A.1. (a) If X = [0, π] ⊂ R, then we could use the eigenbases
{Sk}∞k=1 = {Sn}∞n=1 and {Ck}∞k=0 = {Cn}∞n=0, where Sn(x) := sin(nx) and
Cn(x) := cos(nx) for all n ∈ N. In this case, λn = n2 = µn for all n ∈ N.
Also the eigenfunction expansions (15A.1) and (15A.2) are, respectively, the
Fourier Cosine Series and Fourier Sine Series for f , from §7A.

(b) If X = [0, π]2 ⊂ R2, then we could use the eigenbases {Sk}∞k=1 = {Sn,m}∞n,m=1

and {Ck}∞k=0 = {Cn,m}∞n,m=0, where Sn,n(x, y) := sin(nx) sin(my) and Cn,m(x) :=
cos(nx) cos(my) for all n,m ∈ N. In this case, λn,m = n2 + m2 = µn,m for
all (n,m) ∈ N. Also, the eigenfunction expansions (15A.1) and (15A.2) are,
respectively, the two-dimensional Fourier Cosine Series and Fourier Sine Series
for f , from §9A.

(c) If X = D ⊂ R2, then we could use the Dirichlet eigenbasis {Sn}∞k=1 =
{Φn,m}∞n=0,m=1 t {Ψn,m}∞n,m=1, where Φn,m and Ψn,m are the type-1 Fourier-
Bessel eigenfunctions defined by eqn.(14C.5) on page 296 of §14C(ii). In this
case, we have eigenvalues λn,m = κ2

n,m, as defined in equation (14C.4) on
page 296. Then the eigenfunction expansion in (15A.2) is the Fourier-Bessel
expansion for f , from §14C(iii). ♦
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Theorem 15A.2. General Solution of the Poisson Equation
Let X ⊂ RD be a bounded domain. Let f ∈ L2(X), and let b : ∂X −→ R be

some other function. Let u : X −→ R be a solution to the Poisson equation
“4u = f”.

(a) Suppose {Sk, λk}∞k=1 is a Dirichlet eigenbasis, and {Bn}∞n=1 are as in equa-
tion (15A.2). Assume that |λk| > 1 for all but finitely many k ∈ N. If u
satisfies homogeneous Dirichlet BC (i.e. u(x) = 0 for all x ∈ ∂X), then

u
˜

L̃2
−
∞
∑

n=1

Bn
λn
Sn.

(b) Let h : X −→ R be a solution to the Laplace equation “4h = 0” satisfying
the nonhomogeneous Dirichlet BC h(x) = b(x) for all x ∈ ∂X. If u is as in
part (a), then w := u+h is a solution to the Poisson equation “4w = f”
and also satisfies Dirichlet BC w(x) = b(x) for all x ∈ ∂X.

(c) Suppose {Ck, µk}∞k=1 is a Neumann eigenbasis, and suppose that |µk| > 1
for all but finitely many k ∈ N. Let {An}∞n=1 be as in equation (15A.1),
and suppose A0 = 0. For any j ∈ [1...D], let ‖∂j Ck‖∞ be the supremum of
the j-derivative of Ck on X, and suppose that

∞
∑

k=1
µk 6=0

|Ak|
|µk|
‖∂j Ck‖∞ < ∞. (15A.3)

If u satisfies homogeneous Neumann BC (i.e. ∂⊥u(x) = 0 for all x ∈ ∂X),

then u
˜

L̃2
C −

∞
∑

k=1
µk 6=0

Ak
µk
Ck, where C ∈ R is an arbitrary constant.

However, if A0 6= 0, then there is no solution to this problem with homo-
geneous Neumann BC.

(d) Let h : X −→ R be a solution to the Laplace equation “4h = 0” satisfying
the nonhomogeneous Neumann BC ∂⊥ h(x) = b(x) for all x ∈ ∂X. If u
is as in part (c), then w := u + h is a solution to the Poisson equation
“4w = f” and also satisfies Neumann BC ∂⊥ w(x) = b(x) for all x ∈ ∂X.

Proof. Exercise 15A.3 Hint: To show solution uniqueness, use Theorem 5D.5. E©

For (a), imitate the proofs of Propositions 11C.1, 12C.1, 13C.1, and 14D.1.

For (b,d), imitate the proofs of Propositions 12C.6 and 14D.3.

For (c), imitate the proofs of Propositions 11C.2, 12C.4 and 13C.2. Note that you
need hypothesis (15A.3) to apply Proposition 0F.1. 2
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Exercise 15A.4. Show how Propositions 11C.1, 11C.2, 12C.1, 12C.4,12C.6 13C.1, E©
13C.2, 14D.1, and 14D.3 are all special cases of Theorem 15A.2. For the results involving
Neumann BC, don’t forget to check that (15A.3) is satisfied. �

Theorem 15A.3. General Solution of the heat equation
Let X ⊂ RD be a bounded domain. Let f ∈ L2(X), and let b : ∂X −→ R be

some other function. Let u : X × R 6− −→ R be a solution to the heat equation
“∂t u = 4u”, with initial conditions u(x, 0) = f(x) for all x ∈ X.

(a) Suppose {Sk, λk}∞k=1 is a Dirichlet eigenbasis, and {Bn}∞n=1 are as in equa-
tion (15A.2). If u satisfies homogeneous Dirichlet BC (i.e. u(x, t) = 0 for

all x ∈ ∂X and t ∈ R 6−), then u
˜

L̃2

∞
∑

n=1

Bn exp(−λnt)Sn.

(b) Let h : X −→ R be a solution to the Laplace equation “4h = 0” satisfying
the nonhomogeneous Dirichlet BC h(x) = b(x) for all x ∈ ∂X. If u is as in
part (a), then w := u+ h is a solution to the heat equation “∂tw = 4w”,
with initial conditions w(x, 0) = f(x)+h(x) for all x ∈ X, and also satisfies
Dirichlet BC w(x, t) = b(x) for all (x, t) ∈ ∂X× R+.

(c) Suppose {Ck, µk}∞k=0 is a Neumann eigenbasis, and {An}∞n=0 are as in equa-
tion (15A.1). Suppose the sequence {µk}∞k=0 grows fast enough that

lim
k→∞

log(k)
µk

= 0, and, for all j ∈ [1...D], lim
k→∞

log ‖∂j Ck‖∞
µk

= 0.

(15A.4)
If u satisfies homogeneous Neumann BC (i.e. ∂⊥u(x, t) = 0 for all x ∈ ∂X

and t ∈ R 6−), then u
˜

L̃2

∞
∑

n=0

An exp(−µnt) Cn.

(d) Let h : X −→ R be a solution to the Laplace equation “4h = 0” satisfying
the nonhomogeneous Neumann BC ∂⊥ h(x) = b(x) for all x ∈ ∂X. If u is as
in part (c), then w := u+h is a solution to the heat equation “∂tw = 4w”
with initial conditions w(x, 0) = f(x)+h(x) for all x ∈ X, and also satisfies
Neumann BC ∂⊥ w(x, t) = b(x) for all (x, t) ∈ ∂X× R+.

Furthermore, in parts (a) and (c), the series defining u converges semiuniformly
on X× R+.

Proof. Exercise 15A.5 Hint: To show solution uniqueness, use Theorem 5D.8.E©

For part (a), imitate the proofs of Propositions 11A.1, 12B.1, 13A.1, and 14E.1.

For (b,d) imitate the proofs of Propositions 12B.5 and 14E.3.

For (c), imitate the proofs of Propositions 11A.3, 12B.3, and 13A.2. First use hy-
pothesis (15A.4) to show that the sequence {e−µnt ‖∂j Cn‖∞}

∞
n=0 is square-summable
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for any t > 0. Use Parseval’s equality (Theorem 6F.1) to show that the sequence
{|Ak|}∞k=0 is also square-summable. Use the Cauchy-Bunyakowski-Schwarz inequal-
ity to conclude that the sequence {e−µnt |Ak| ‖∂j Cn‖∞}

∞
n=0 is absolutely summable,

which means the formal derivative ∂ju is absolutely convergent. Now apply Proposi-
tion 0F.1. 2

Exercise 15A.6. Show how Propositions 11A.1, 11A.3, 12B.1, 12B.3, 12B.5, 13A.1, E©
13A.2, 14E.1, and 14E.3. are all special cases of Theorem 15A.3. For the results involving
Neumann BC, don’t forget to check that (15A.4) is satisfied. �

Theorem 15A.4. General Solution of the wave equation

Let X ⊂ RD be a bounded domain and let f ∈ L2(X). Suppose u : X×R 6− −→ R
is a solution to the wave equation “∂2

t u = 4u”, and has initial position u(x; 0) =
f(x) for all x ∈ X.

(a) Suppose {Sk, λk}∞k=1 is a Dirichlet eigenbasis, and {Bn}∞n=1 are as in equa-

tion (15A.2). Suppose

∞
∑

n=1

|λnBn| <∞. If u satisfies homogeneous Dirich-

let BC (i.e. u(x, t) = 0 for all x ∈ ∂X and t ∈ R 6−), then u
˜

L̃2

∞
∑

n=1

Bn cos(
√

λn t)Sn.

(b) Suppose {Ck, µk}∞k=0 is a Neumann eigenbasis, and {An}∞n=0 are as in equa-
tion (15A.1). Suppose the sequence {An}∞n=0 decays quickly enough that

∞
∑

n=0

|µnAn| < ∞, and, for all j ∈ [1...D],
∞
∑

n=0

|An| · ‖∂j Cn‖∞ < ∞.

(15A.5)
If u satisfies homogeneous Neumann BC (i.e. ∂⊥u(x, t) = 0 for all x ∈ ∂X

and t ∈ R 6−), then u
˜

L̃2

∞
∑

n=0

An cos(
√
µn t) Cn.

Now suppose u : X×R 6− −→ R is a solution to the wave equation “∂2
t u = 4u”,

and has initial velocity ∂t u(x; 0) = f(x) for all x ∈ X.

(c) Suppose

∞
∑

n=1

√

λn |Bn| <∞. If u satisfies homogeneous Dirichlet BC, then

u
˜

L̃2

∞
∑

n=1

Bn√
λn

sin(
√

λn t)Sn.
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(d) Suppose the sequence {An}∞n=0 decays quickly enough that

∞
∑

n=1

√
µn |An| < ∞, and, for all j ∈ [1...D],

∞
∑

n=1

|An|√
µn
‖∂j Cn‖∞ < ∞.

(15A.6)
If u satisfies homogeneous Neumann BC, then there is some constant C ∈ R
such that, for all x ∈ X, we have u(x; 0) = C, and for all t ∈ R, we have

u(x; t)
˜

L̃2
A0 t +

∞
∑

n=1

An√
µn

sin(
√
µn t) Cn(x) + C.

(e) To obtain a solution with both a specified initial position and a specified
initial velocity, add the solutions from (a) and (c) for homogeneous Dirich-
let BC. Add the solutions from (b) and (d) for homogeneous Neumann BC
(setting C = 0 in part (d)).

Proof. Exercise 15A.7 Hint: To show solution uniqueness, use Theorem 5D.11.E©
For (a), imitate Propositions 12D.1 and 14F.1. For (c) imitate the proof of Proposi-
tions 12D.3 and 14F.1. For (b) and (d), use hypotheses (15A.5) and (15A.6) to apply
Proposition 0F.1. 2

Exercise 15A.8. Show how Propositions 11B.1, 11B.4 12D.1, 12D.3, and 14F.1 areE©
all special cases of Theorem 15A.4(a,c). �

Exercise 15A.9. What is the physical meaning of a nonzero value of A0 in TheoremE©
15A.4(d)? �

Theorems 15A.2, 15A.3, and 15A.4 allow us to solve I/BVPs on any domain,
once we have a suitable eigenbasis. We illustrate with a simple example.

Proposition 15A.5. Eigenbases for a Triangle

Let X :=
{

(x, y) ∈ [0, π]2 ; y ≤ x
}

be a filled right-angle triangle (Figure

15A.1).

(a) For any two-element subset {n,m} ⊂ N (i.e. n 6= m), let S{n,m} :=
sin(nx) sin(my)− sin(mx) sin(ny), and let λ{n,m} := n2 +m2. Then:

[i] S{n,m} is an eigenfunction of the Laplacian: 4S{n,m} = −λ{n,m}S{n,m}.
[ii] {S{n,m}}{n,m}⊂N is a Dirichlet eigenbasis for L2(X).

(b) Let C0,0 = 1, and for any two-element subset {n,m} ⊂ N, let C{n,m} :=
cos(nx) cos(my) + cos(mx) cos(ny), and let λ{n,m} := n2 +m2. Then:
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π

π2  
π  

X

Figure 15A.1: Right-angle triangular domain of Proposition 15A.5

[i] C{n,m} is an eigenfunction of the Laplacian: 4C{n,m} = −λ{n,m}C{n,m}.
[ii] {C{n,m}}{n,m}⊂N is a Neumann eigenbasis for L2(X).

Proof. Exercise 15A.10 Hint: Part [i] is a straightforward computation, as is E©
the verification of the homogeneous boundary conditions (Hint: on the hypotenuse,
∂⊥ = ∂2 − ∂1). To verify that the specified sets are orthogonal bases, use Theorem
9A.3. 2

Exercise 15A.11. (a) Combine Proposition 15A.5 with Theorems 15A.2, 15A.3, E©
and 15A.4 to provide a general solution method for solving the Poisson equation, heat
equation, and wave equation on a right-angle triangle domain, with either Dirichlet or
Neumann boundary conditions.

(b) Set up and solve some simple initial/boundary value problems using your method.
�

Remark 15A.6. There is nothing special about the role of the Laplacian 4
in Theorems 15A.2, 15A.3, and 15A.4. If L is any linear differential operator,
for which we have ‘solution uniqueness’ results analogous to the results of §5D,
then Theorems 15A.2, 15A.3, and 15A.4 are still true if you replace “4” with
“L” everywhere (Exercise 15A.12 Verify this). In particular, if L is an elliptic E©
differential operator (see §5E), then:

• Theorem 15A.2 becomes the general solution to the boundary value prob-
lem for the nonhomogeneous elliptic PDE “Lu = f”.

• Theorem 15A.3 becomes the general solution to the the initial/boundary
value problem for the homogeneous parabolic PDE “∂t u = Lu”.

• Theorem 15A.4 becomes the general solution to the initial value problem
for the homogeneous hyperbolic PDE “∂2

t u = Lu”.
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Theorem 15E.17 on page 349 (below) discusses the existence of Dirichlet eigen-
bases for other elliptic differential operators.

Exercise 15A.13. Let X ⊂ R3 be a bounded domain, and consider a quantumE©
particle confined to the domain X by an ‘infinite potential well’ V : R3 −→ R ∪ {∞},
where V (x) = 0 for all x ∈ X, and V (x) =∞ for all x 6∈ X (see Examples 3C.4 and 3C.5
on pages 49-50 for discussion of the physical meaning of this model). Modify Theorem
15A.3 to state and prove a theorem describing the general solution to the initial value
problem for the Schrödinger equation with the potential V .

Hint. If ω : R3 ×R −→ C is a solution to the corresponding Schrödinger equation,
then we can assume ωt(x) = 0 for all x 6∈ X. If ω is also continuous, then we can model
the particle using a function ω : X × R −→ C, which satisfies homogeneous Dirichlet
boundary conditions on ∂X. �

15B General solution to Laplace equation BVPs
Prerequisites: §4B(iv), §5B, §5C, §6F, §0D.

Recommended: §5D, §12A, §13B, §14B, §15A.

Theorems 15A.2(b,d) and 15A.3(b,d) both used the same strategy to solve a
PDE with nonhomogeneous boundary conditions:

• Solve the original PDE with homogeneous boundary conditions.

• Solve the Laplace equation with the specified nonhomogeneous BC.

• Add these two solutions together to get a solution to the original problem.

However, we do not yet have a general method for solving the Laplace equation.
That is the goal of this section. Throughout this section, we make the following
assumptions.

• Let X ⊂ RD be a bounded domain, whose boundary ∂X is piecewise
smooth. This has two consequences: (1) The normal derivative on the
boundary is well-defined (so we can meaningfully impose Neumann bound-
ary conditions); and (2) We can meaningfully speak of integrating func-
tions over ∂X. For example, if X ⊂ R2, then ∂X should be a finite union
of smooth curves. If X ⊂ R3, then ∂X should be a finite union of smooth
surfaces, etc. If b, c : ∂X −→ R are functions, then define

〈b, c〉 :=
∫

∂X
b(x)·c(x) dx and ‖b‖2 :=

√

〈b, b〉 :=
(∫

∂X
|b(x)|2 dx

)1/2

,

where these are computed as contour integrals (or surface integrals, etc.)
over ∂X. As usual, let L2(∂X) be the set of all integrable functions b :
∂X −→ R such that ‖b‖2 <∞ (see §6B for further discussion).
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• Let {Ξn}∞n=1 be an orthogonal basis for L2(∂X). Thus, for any b ∈ L2(X),
we can write

b
˜

L̃2

∞
∑

n=1

BnΞn where Bn :=
〈b,Ξn〉
‖Ξn‖22

, for all n ∈ N.

(15B.1)

• For all n ∈ N, let Hn : X −→ R be a harmonic function (i.e. 4Hn =
0) satisfying the nonhomogeneous Dirichlet boundary condition Hn(x) =
Ξn(x) for all x ∈ ∂X. The system H := {Hn}∞n=1 is called a Dirichlet
harmonic basis for X.

• Suppose Ξ1 ≡ 1 is the constant function. Then
∫

∂X Ξn(x) dx = 〈Ξn, 1〉 =
0, for all n ≥ 2 (by orthogonality). For all n ≥ 2, let Gn : X −→ R
be a harmonic function (i.e. 4Gn = 0) satisfying the nonhomogeneous
Neumann boundary condition ∂⊥Gn(x) = Ξn(x) for all x ∈ ∂X. The
system G := {1} t {Gn}∞n=2 is called a Neumann harmonic basis for X.
(Note that ∂⊥1 = 0, not Ξ1).

Note. Although they are called ‘harmonic bases for X’, H and {∂⊥Gn}∞n=2 are
actually orthogonal bases for L2(∂X), not for L2(X).

Exercise 15B.1. Show that there is no harmonic function G1 on X satisfying the E©
Neumann boundary condition ∂⊥G1(x) = 1 for all x ∈ ∂X. Hint: Use Corollary
5D.4(b)[i] on page 87. �

Example 15B.1. If X = [0, π]2 ⊂ R2, then ∂X = L ∪R ∪T ∪B, where

L := {0}×[0, π], R := {π}×[0, π], B := [0, π]×{0}, and T := [0, π]×{π}.

(See Figure 12A.1(B) on page 240).

(a) Let {Ξk}∞k=1 := {Ln}∞n=1 t{Rn}∞n=1 t{Bn}∞n=1 t{Tn}∞n=1, where, for all
n ∈ N, the functions Ln,Rn,Bn, Tn : ∂X −→ R are defined by

Ln(x, y) :=
{

sin(ny) if (x, y) ∈ L;
0 otherwise.

Rn(x, y) :=
{

sin(ny) if (x, y) ∈ R;
0 otherwise.

Bn(x, y) :=
{

sin(nx) if (x, y) ∈ B;
0 otherwise.

and Tn(x, y) :=
{

sin(nx) if (x, y) ∈ T;
0 otherwise.
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Now, {Ln}∞n=1 is an orthogonal basis for L2(L) (by Theorem 7A.1). Likewise,
{Rn}∞n=1 is an orthogonal basis for L2(R), {Bn}∞n=1 is an orthogonal basis for
L2(B), and {Tn}∞n=1 is an orthogonal basis for L2(T). Thus, {Ξk}∞k=1 is an
orthogonal basis for L2(∂X).

Let H := {HLn}∞n=1t{HRn }∞n=1t{HTn}∞n=1t{HBn }∞n=1, where for all n ∈ N, and
all (x, y) ∈ [0, π]2, we define

HLn(x, y) :=
sinh (n(π − x)) sin(ny)

sinh(nπ)
;

HRn (x, y) :=
sinh(nx) sin(ny)

sinh(nπ)
;

HBn (x, y) :=
sin(nx) sinh (n(π − y))

sinh(nπ)
;

and HTn (x, y) :=
sin(nx) sinh(ny)

sinh(nπ)
.

(See Figures 12A.2 and 12A.3 on pages 241-242). Then H is a Dirichlet har-
monic basis for X. This was the key fact employed by Proposition 12A.4 on
page 244 to solve the Laplace Equation on [0, π]2 with arbitrary nonhomoge-
neous Dirichlet boundary conditions.

(b) Let {Ξk}∞k=1 := {Ξ1,Ξ=,Ξ||,Ξ�} t {Ln}∞n=1 t {Rn}∞n=1 t {Bn}∞n=1 t
{Tn}∞n=1. Here, for all (x, y) ∈ ∂[0, π]2, we define

Ξ1(x, y) := 1;

Ξ||(x, y) :=







1 if (x, y) ∈ R;
−1 if (x, y) ∈ L;

0 if (x, y) ∈ B tT.

Ξ=(x, y) :=







1 if (x, y) ∈ T;
−1 if (x, y) ∈ B;

0 if (x, y) ∈ L tR.

and Ξ�(x, y) :=
{

1 if (x, y) ∈ L tR;
−1 if (x, y) ∈ T tB.

Meanwhile, for all n ∈ N, the functions Ln,Rn,Bn, Tn : ∂X −→ R are defined
by

Ln(x, y) :=
{

cos(ny) if (x, y) ∈ L;
0 otherwise.

Rn(x, y) :=
{

cos(ny) if (x, y) ∈ R;
0 otherwise.

Bn(x, y) :=
{

cos(nx) if (x, y) ∈ B;
0 otherwise.
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and Tn(x, y) :=
{

cos(nx) if (x, y) ∈ T;
0 otherwise.

Now, {1} t {Ln}∞n=1 is an orthogonal basis for L2(L) (by Theorem 7A.1).
Likewise, {1}t{Rn}∞n=1 is an orthogonal basis for L2(R), {1}t{Bn}∞n=1 is an
orthogonal basis for L2(B), and {1}t{Tn}∞n=1 is an orthogonal basis for L2(T).
It follows that {Ξk}∞k=1 is an orthogonal basis for L2(∂X) (Exercise 15B.2). E©

Let G := {1,G=,G||,G�} t {GLn }∞n=1 t {GRn }∞n=1 t {GBn }∞n=1 t {GTn }∞n=1, where,
for all (x, y) ∈ [0, π]2,

G||(x, y) := x;
G=(x, y) := y;

and G�(x, y) :=
1
π

(

(

x− π

2

)2
−
(

y − π

2

)2
)

.

The graphs of G||(x, y) and G=(x, y) are inclined planes at 45o in the x and
y directions respectively. The graph of G� is a ‘saddle’ shape very similar to
Figure 1C.1(B) on page 10. Meanwhile, for all n ≥ 1, and all (x, y) ∈ [0, π]2,
we define

GLn (x, y) :=
cosh (n(π − x)) cos(ny)

n sinh(nπ)
;

GRn (x, y) :=
cosh(nx) cos(ny)
n sinh(nπ)

;

GBn (x, y) :=
cos(nx) cosh (n(π − y))

n sinh(nπ)
;

and GTn (x, y) :=
cos(nx) cosh(ny)
n sinh(nπ)

.

Then G is a Neumann harmonic basis for X (Exercise 15B.3). ♦ E©

Example 15B.2. (a) If X = D = {(r, θ) ; r ≤ 1} (the unit disk in polar coor-
dinates), then ∂X = S = {(r, θ) ; r = 1} (the unit circle). In this case, let
{Ξk}∞k=1 := {Cn}∞n=0 t {Sn}∞n=1, where, for all n ∈ N and θ ∈ [−π, π),

Cn(θ, 1) := cos(nθ) and Sn(θ, 1) := sin(nθ).

Then {Ξk}∞k=1 is a basis of L2(S), by Theorem 8A.1. Let H := {Φn}∞n=0 t
{Ψn}∞n=1, where Φ0 ≡ 1, and where, for all n ≥ 1 and (r, θ) ∈ D, we define

Φn(r, θ) := cos(nθ) · rn and Ψn(r, θ) := sin(nθ) · rn.

(See Figure 14B.1 on page 275). Then H is a Dirichlet harmonic basis for D;
this was the key fact employed by Proposition 14B.2 on page 278, to solve the
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Laplace Equation on D with arbitrary nonhomogeneous Dirichlet boundary
conditions.

Suppose Ξ1 = C0 (i.e. Ξ1 ≡ 1). Let G := {1} t {Φn/n}∞n=1 t {Ψn/n}∞n=1,
where, for all n ∈ N and (r, θ) ∈ D, we have

Φn(r, θ)/n :=
cos(nθ) · rn

n
and Ψn(r, θ)/n :=

sin(nθ) · rn

n
.

Then G is a Neumann harmonic basis for D; this was the key fact employed
by Proposition 14B.4 on page 280, to solve the Laplace Equation on D with
arbitrary nonhomogeneous Neumann boundary conditions.

(b) If X = D{ = {(r, θ) ; r ≥ 1} (in polar coordinates)1, then ∂X = S =
{(r, θ) ; r = 1}. In this case, let {Ξk}∞k=1 := {Cn}∞n=0 t {Sn}∞n=1, just as in
Example (a). However, this time, let H := {Φ0} t {φn}∞n=1 t {ψn}∞n=1, where
Φ0 ≡ 1, and where, for all n ≥ 1 and (r, θ) ∈ D, we define

φn(r, θ) := cos(nθ)/rn and ψn(r, θ) := sin(nθ)/rn.

(See Figure 14B.2 on page 276). Then H is a Dirichlet harmonic basis for D{;
this was the key fact employed by Proposition 14B.6 on page 284, to solve the
Laplace Equation on D{ with arbitrary nonhomogeneous Neumann boundary
conditions.

Recall Ξ1 = C0 ≡ 1. Let G := {1}t{−φn/n}∞n=1t{−ψn/n}∞n=1, where φn and
ψn are as defined above, for all n ≥ 1. Then G is a Neumann harmonic basis
for D{; this was the key fact employed by Proposition 14B.8 on page 285, to
solve the Laplace Equation on D{ with arbitrary nonhomogeneous Neumann
boundary conditions.2 ♦

Theorem 15B.3. General solution to Laplace equation
Let b ∈ L2(∂X) have orthogonal expansion (15B.1). Let H := {Hk}∞k=1 be

a Dirichlet harmonic basis for X and let G := {1} t {Gk}∞k=2 be a Neumann
harmonic basis for X.

1Technically, we are here developing a theory for bounded domains, and D{ is obviously
not bounded. But it is interesting to note that many our techniques still apply to D{. This is
because D{ is conformally isomorphic to a bounded domain, once we regard D{ as a subset of the
Riemann sphere by including the ‘point at infinity’. See §18B on page 422 for an introduction
to conformal isomorphism. See Remark 18G.4 on page 469 for a discussion of the Riemann
sphere.

2Note that our Neumann harmonic basis does not include the element φ0(r, θ) := log(r).

This is because ∂⊥φ0 = Ξ1. Of course, the domain D{ is not bounded, so Corollary 5D.4(b)[i]

does not apply, and indeed φ0 is a continuous harmonic function on D{. However, unlike the
elements of G, the function φ0 is not bounded, and thus does not extend to a continuous real-
valued harmonic function when we embed D{ in the Riemann sphere by adding the ‘point at
infinity’.
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(a) Let u
˜

L̃2

∞
∑

k=1

BkHk. If this series converges uniformly to u on the interior

of X, then u is the unique continuous harmonic function with nonhomoge-
neous Dirichlet BC u(x) = b(x) for all x ∈ ∂X.

(b) Suppose Ξ1 ≡ 1. If B1 6= 0, then there is no continuous harmonic function
on X with nonhomogeneous Neumann BC ∂⊥u(x) = b(x) for all x ∈ ∂X.

Suppose B1 = 0. Let u
˜

L̃2

∞
∑

k=2

BkGk + C, where C ∈ R is any con-

stant. If this series converges uniformly to u on the interior of X, then
it is a continuous harmonic function with nonhomogeneous Neumann BC
∂⊥u(x) = b(x) for all x ∈ ∂X. Furthermore, all solutions to this BVP have
this form, for some value of C ∈ R.

Proof. Exercise 15B.4 Hint: The boundary conditions follow from expansion E©
(15B.1). To verify that u is harmonic, use the Mean Value Theorem (Theorem 1E.1
on page 16). (Use Proposition 6E.10(b) on page 127 to guarantee that the integral of
the sum is the sum of the integrals.) Finally, use Corollary 5D.4 on page 87 to show
solution uniqueness. 2

Exercise 15B.5. Show how Propositions 12A.4, 13B.2, 14B.2, 14B.4 14B.6, 14B.8 E©
and 14B.10 are all special cases of Theorem 15B.3. �

Remark. There is nothing special about the role of the Laplacian 4 in Theo-
rem 15B.3. If L is any linear differential operator, then something like Theorem
15B.3 is still true if you replace “4” with “L” everywhere. In particular, if L is
an elliptic differential operator (see §5E), then Theorem 15B.3 becomes the gen-
eral solution to the boundary value problem for the homogeneous elliptic PDE
“Lu ≡ 0”.

However, if L is an arbitrary differential operator, then there is no guarantee
that you will find a ‘harmonic basis’ {Hk}∞k=1 of functions such that LHk ≡ 0
for all k ∈ N, and such that the collection {Hk}∞k=1 (or {∂⊥Hk}∞k=1) provides
an orthonormal basis for L2(∂X). (Even for the Laplacian, this is a nontrivial
problem; see e.g. Corollary 15C.8 on page 333 below.)

Furthermore, once you define u
˜

L̃2

∞
∑

k=1

BkHk as in Theorem 15B.3, you might

not be able to use something like the Mean Value Theorem to guarantee that
Lu = 0. Instead you must ‘formally differentiate’ the series

∑∞
k=1BkHk and

∑∞
k=1BkGk using Proposition 0F.1 on page 565. For this to work, you need some

convergence conditions on the ‘formal derivatives’ of these series. For example,
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if L was an Nth order differential operator, it would be sufficient to require

that
∞
∑

k=1

|Bk| ·
∥

∥∂Nj Hk
∥

∥

∞ < ∞ and
∞
∑

k=1

|Bk| ·
∥

∥∂Nj Gk
∥

∥

∞ < ∞ for all j ∈ [1...D]

(Exercise 15B.6 Verify this).E©
Finally, for an arbitrary differential operator, there may not be a result like

Corollary 5D.4 on page 87, which guarantees a unique solution to a Dirich-
let/Neumann BVP. It may be necessary to impose further constraints to get a
unique solution.

15C Eigenbases on Cartesian products

Prerequisites: §4B(iv), §5B, §5C, §6F, §0D.

If X1 ⊂ RD1 and X2 ⊂ RD2 are two domains, then their Cartesian product
is the set

X1 × X2 := {(x1,x2) ; x1 ∈ X1 and x2 ∈ X2} ⊂ RD1+D2 .

Example 15C.1. (a) if X1 = [0, π] ⊂ R and X2 = [0, π]2 ⊂ R2 then X1 × X2 =
[0, π]3 ⊂ R3.

(b) If X1 = D ⊂ R2 and X2 = [0, π] ⊂ R, then X1 × X2 = {(r, θ, z) ; (r, θ) ∈
D and 0 ≤ z ≤ π} ⊂ R3 is the cylinder of height π. ♦

To apply the solution methods from Sections 15A and 15B, we must first
construct eigenbases and/or harmonic bases on the domain X; that is the goal of
this section. We begin with some technical results which are useful and straight-
forward to prove.

Lemma 15C.2. Let X1 ⊂ RD1 and X2 ⊂ RD2 . Let X := X1 × X2 ⊂ RD1+D2 .

(a) ∂X = [(∂X1)× X2] ∪ [X1 × (∂X2)].

Let Φ1 : X1 −→ R and Φ2 : X2 −→ R, and define Φ = Φ1 · Φ2 : X −→ R by
Φ(x1,x2) := Φ1(x1) · Φ2(x2) for all (x1,x2) ∈ X.

(b) If Φ1 satisfies homogeneous Dirichlet BC on X1 and Φ2 satisfies homoge-
neous Dirichlet BC on X2, then Φ satisfies homogeneous Dirichlet BC on
X.

(c) If Φ1 satisfies homogeneous Neumann BC on X1 and Φ2 satisfies homoge-
neous Neumann BC on X2, then Φ satisfies homogeneous Neumann BC on
X.
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(d) ‖Φ‖2 = ‖Φ1‖2 · ‖Φ2‖2. Thus, if Φ1 ∈ L2(X1) and Φ2 ∈ L2(X2) then
Φ ∈ L2(X).

(e) If Ψ1 ∈ L2(X1) and Ψ2 ∈ L2(X2) and Ψ = Ψ1 ·Ψ2 then 〈Φ,Ψ〉 = 〈Φ1,Ψ1〉 ·
〈Φ2,Ψ2〉.

(f) Let {Φ(1)
n }∞n=1 be an orthogonal basis for L2(X1) and let {Φ(2)

m }∞m=1 be an

orthogonal basis for L2(X2). For all (n,m) ∈ N, let Φn,m := Φ(1)
n · Φ(2)

m .
Then {Φn,m}∞n,m=1 is an orthogonal basis for L2(X).

Let 41 be the Laplacian operator on RD1 , let 42 be the Laplacian operator on
RD2 , and let 4 be the Laplacian operator on RD1+D2 .

(g) 4Φ(x1,x2) =
(

41 Φ1(x1)
)

· Φ2(x2) + Φ1(x1) ·
(

42 Φ2(x2)
)

.

(h) Thus, if Φ1 is an eigenfunction of 41 with eigenvalue λ1, and Φ2 is an
eigenfunction of 42 with eigenvalue λ2, then Φ is an eigenfunction of 4
with eigenvalue (λ1 + λ2).

Proof. Exercise 15C.1 (Remark: For part (f), just show that {Φn,m}∞n,m=1 is an E©
orthogonal collection of functions. Showing that {Φn,m}∞n,m=1 is actually a basis for
L2(X) requires methods beyond the scope of this course.) 2

Corollary 15C.3. Eigenbases for Cartesian Products

Let X1 ⊂ RD1 and X2 ⊂ RD2 . Let X := X1 × X2 ⊂ RD1+D2 . Let {Φ(1)
n }∞n=1

be a Dirichlet (or Neumann) eigenbasis for L2(X1), and let {Φ(2)
m }∞m=1 be a

Dirichlet (respectively Neumann) eigenbasis for L2(X2). For all (n,m) ∈ N,

define Φn,m = Φ(1)
n · Φ(2)

m . Then {Φn,m}∞n,m=1 Dirichlet (respectively Neumann)
eigenbasis for L2(X).

Proof. Exercise 15C.2 Just combine Lemma 15C.2(b,c,f,h). 2
E©

Example 15C.4. Let X1 = [0, π] and X2 = [0, π]2, so X1 × X2 = [0, π]3.
Note that ∂([0, π]3) =

(

{0, π} × [0, π]2
)

∪
(

[0, π]× ∂[0, π]2
)

. For all ` ∈ N,

define C` and S` ∈ L2[0, π] by C`(x) := cos(`x) and S`(x) := sin(`x). For all
m,n ∈ N, define Cm,n and Sm,n ∈ L2([0, π]2) by Cm,n(y, z) := cos(my) cos(nz)
and Sm,n(y, z) := sin(my) sin(nz).

For any `,m, n ∈ N, define C`,m,n and S`,m,n ∈ L2(X) by C`,m,n(x, y, z) :=
C`(x) · Cm,n(y, z) = cos(`x) cos(my) cos(nz) and S`,m,n(x, y, z) := S`(x) ·
Sm,n(y, z) = sin(`x) sin(my) sin(nz).
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Now, {S`}∞`=1 is a Dirichlet eigenbasis for [0, π] (by Theorem 7A.1), and
{Sm,n}∞m,n=1 is a Dirichlet eigenbasis for [0, π]2 (by Theorem 9A.3(a)); thus,
Corollary 15C.3 says that {S`,m,n}∞`,m,n=1 is a Dirichlet eigenbasis for [0, π]3

(as earlier noted by Theorem 9B.1).

Likewise, {C`}∞`=0 is a Neumann eigenbasis for [0, π] (by Theorem 7A.4), and
{Cm,n}∞m,n=0 is a Neumann eigenbasis for [0, π]2; (by Theorem 9A.3(b)); thus,
Corollary 15C.3 says that {C`,m,n}∞`,m,n=0 is a Neumann eigenbasis for [0, π]3

(as earlier noted by Theorem 9B.1). ♦

Example 15C.5. Let X1 = D and X2 = [0, π], so that X1 × X2 is the cylinder
of height π and radius 1. Let S := ∂D (the unit circle). Note that ∂X =
(

S× [0, π]
)

∪
(

D× {0, π}
)

. For all n ∈ N, define Sn ∈ L2[0, π] as in Example
15C.4. For all `,m ∈ N, let Φ`,m and Ψ`,m be the type-1 Fourier-Bessel eigen-
functions defined by eqn.(14C.5) on page 296 of §14C(ii). For any `,m, n ∈ N,
define Φ`,m,n and Ψ`,m,n ∈ L2(X) by Φ`,m,n(r, θ, z) := Φ`,m(r, θ) · Sn(z) and
Ψ`,m,n(r, θ, z) := Ψ`,m(r, θ) · Sn(z).

Now {Φm,n,Ψm,n}∞m,n=1 is a Dirichlet eigenbasis for the disk D (by Theorem
14C.2) and {Sn}∞n=1 is a Dirichlet eigenbasis for the line [0, π] (by Theorem
7A.1); thus, Corollary 15C.3 says that {Φ`,m,n,Ψ`,m,n}∞`,m,n=1 is a Dirichlet
eigenbasis for the cylinder X. ♦

Exercise 15C.3. (a) Combine Example 15C.5 with Theorems 15A.2, 15A.3, andE©
15A.4 to provide a general solution method for solving the Poisson equation, heat equa-
tion, and wave equation on a finite cylinder with Dirichlet boundary conditions.

(b) Set up and solve some simple initial/boundary value problems using your method.
�

Exercise 15C.4. In cylindrical coordinates on R3, let X = {(r, θ, z); 1 ≤ r, 0 ≤E©
z ≤ π, and − π ≤ θ < π} be the punctured slab of thickness π, having a cylindrical
hole of radius 1.

(a) Express X as a Cartesian product of the punctured plane and a line segment.
(b) Use Corollary 15C.3 to obtain a Dirichlet eigenbasis for X.
(c) Apply Theorems 15A.2, 15A.3, and 15A.4 to provide a general solution method

for solving the Poisson equation, heat equation, and wave equation on the punctured
slab with Dirichlet boundary conditions.

(d) Set up and solve some simple initial/boundary value problems using your method.
�

Exercise 15C.5. Let X1 =
{

(x, y) ∈ [0, π]2 ; y ≤ x
}

be the right angle triangleE©
from Proposition 15A.5 on page 322, and let X2 = [0, π] ⊂ R. Then X = X1 × X2 is a
right-angle triangular prism.
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(a) Use Proposition 15A.5 and Corollary 15C.3 to obtain Dirichlet and Neumann
eigenbases for the prism X.

(b) Apply Theorems 15A.2, 15A.3, and 15A.4 to provide a general solution method
for solving the Poisson equation, heat equation, and wave equation on the prism with
Dirichlet or Neumann boundary conditions.

(c) Set up and solve some simple initial/boundary value problems using your method.
�

We now move on to the problem of constructing harmonic bases on a Carte-
sian product. We will need two technical lemmas.

Lemma 15C.6. Harmonic functions on Cartesian products

Let X1 ⊂ RD1 and X2 ⊂ RD2 . Let X := X1 × X2 ⊂ RD1+D2 .

Let E1 : X1 −→ R be an eigenfunction of 41 with eigenvalue λ, and let
E2 : X2 −→ R be an eigenfunction of 42 with eigenvalue −λ. If we define
H := E1 · E2 : X −→ R, as in Lemma 15C.2, then H is a harmonic function
—that is, 4H = 0.

Proof. Exercise 15C.6 Hint: Use Lemma 15C.2(h). 2
E©

Lemma 15C.7. Orthogonal bases on almost-disjoint unions

Let Y1,Y2 ⊂ RD be two (D−1)-dimensional subsets (e.g. two curves in R2,
two surfaces in R3, etc.). Suppose that Y1 ∩ Y2 has dimension (D−2) (e.g. it
is a discrete set of points in R2, or a curve in R3, etc.). Let {Φ(1)

n }∞n=1 be an

orthogonal basis for L2(Y1), such that Φ(1)
n (y) = 0 for all y ∈ Y2 and n ∈ N.

Likewise, let {Φ(2)
n }∞n=1 be an orthogonal basis for L2(Y2), such that Φ(2)

n (y) = 0
for all y ∈ Y1 and n ∈ N. Then {Φ(1)

n }∞n=1 t {Φ
(2)
n }∞n=1 is an orthogonal basis for

L2(Y1 ∪ Y2).

Proof. Exercise 15C.7 Hint: the (D−1)-dimensional integral of any function on E©
Y1 ∩ Y2 must be zero. 2

For the rest of this section we adopt the following notational convention: if
f : X −→ R is a function, then let ˜f denote the restriction of f to a function
˜f : ∂X −→ R (that is, ˜f := f |∂X ).

Corollary 15C.8. Harmonic bases on Cartesian products

Let X1 ⊂ RD1 and X2 ⊂ RD2 . Let X := X1 × X2 ⊂ RD1+D2 .

Let {Ξ2
m}m∈M2 be an orthogonal basis for L2(∂X2) (here,M2 is some indexing

set, either finite or infinite; e.g. M2 = N). Let {E1
n}∞n=1 be a Dirichlet eigenbasis

for X1. For all n ∈ N, suppose 41E1
n = −λ(1)

n E1
n, and for all m ∈ M2, let
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F2
n,m ∈ L2(X2) be an eigenfunction of 42 with eigenvalue +λ(1)

n , such that
˜F2
n,m = Ξ2

m. Let H1
n,m := E1

n · F2
n,m : X −→ R, for all n ∈ N and m ∈M2.

Likewise, let {Ξ1
m}m∈M1 be an orthogonal basis for L2(∂X1) (where M1 is

some indexing set), and let {E2
n}∞n=1 be a Dirichlet eigenbasis for X2. For all

n ∈ N, suppose 42E2
n = −λ(2)

n E2
n, and for all m ∈ M1, let F1

n,m ∈ L2(X1) be

an eigenfunction of 41 with eigenvalue +λ(2)
n , such that ˜F1

n,m = Ξ1
m. Define

H2
n,m := F1

n,m · E2
n : X −→ R, for all n ∈ N and m ∈M1.

Then H := {H1
n,m ; n ∈ N, m ∈ M2} t {H2

n,m; n ∈ N, m ∈ M1} is a
Dirichlet harmonic basis for L2(∂X).

Proof. Exercise 15C.8 (a) Use Lemma 15C.6 to verify that all the functionsE©
H1
n,m and H2

n,m are harmonic on X.

(b) Show that { ˜H1
n,m}n∈N,m∈M2 is an orthogonal basis for L2

(

X1 × (∂X2)
)

, while

{ ˜H2
n,m}n∈N,m∈M1 is an orthogonal basis for L2

(

(∂X1)× X2

)

. Use Lemma 15C.2(f).

(c) Show that H is an orthogonal basis for L2(∂X). Use Lemma 15C.2(a) and Lemma
15C.7. 2

Example 15C.9. Let X1 = [0, π] = X2, so that X = [0, π]2. Observe that
∂
(

[0, π]2
)

=
(

{0, π} × [0, π]
)

∪
(

[0, π]× {0, π}
)

.

Observe that ∂X1 = {0, π} = ∂X2 (a two-element set), and L2{0, π} is 2-
dimensional vector space (isomorphic to R2). Let M1 := {1, 2} =: M2. Let
Ξ1

1 = Ξ2
1 = Ξ1 and Ξ1

2 = Ξ2
2 = Ξ2, where Ξ1,Ξ2 : {0, π} −→ R are defined:

Ξ2(0) := 1 =: Ξ1(π), and Ξ2(π) := 0 =: Ξ1(0).

Then {Ξ1,Ξ2} is an orthogonal basis for L2{0, π}. For all n ∈ N, let

E1
n(x) = E2

n(x) = En(x) := sin(nx).
F1
n,1(x) = F2

n,1(x) = Fn,1(x) := sinh(nx)/ sinh(nπ)

F1
n,2(x) = F2

n,2(x) = Fn,2(x) := sinh (n(π − x)) / sinh(nπ).

Then {En}∞n=1 is a Dirichlet eigenbasis for [0, π] (by Theorem 7A.1), while
˜Fn,1 = Ξ1 and ˜Fn,2 = Ξ2 for all n ∈ N.

For each n ∈ N, we have eigenvalue λn := n2. That is 4En(x) = −n2En(x)
while 4Fn,m(x) = n2Fn,m(x). Thus, the functions Hn(x, y) := En(x)Fn,m(y)
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are harmonic, by Lemma 15C.6. Thus, if we define

H1
n,1(x, y) := E1

n(x) · F2
n,1(y) =

sin(nx) sinh(ny)
sinh(nπ)

,

H1
n,2(x, y) := E1

n(x) · F2
n,2(y) =

sin(nx) sinh (n(π − y))
sinh(nπ)

,

H2
n,1(x, y) := F1

n,1(x) · E2
n(y) =

sinh(nx) sin(ny)
sinh(nπ)

, and

H2
n,2(x, y) := F1

n,2(x) · E2
n(y) =

sinh (n(π − x)) sin(ny)
sinh(nπ)

,

then Corollary 15C.8 says that the collection {H1
n,1}n∈Nt{H1

n,2}n∈Nt{H2
n,1}n∈Nt

{H2
n,2}n∈N is a Dirichlet harmonic basis for [0, π]2 —a fact we already observed

in Example 15B.1(a), and exploited earlier in Proposition 12A.4. ♦

Example 15C.10. Let X1 = D ⊂ R2 and X2 = [0, π], so that X1 × X2 ⊂ R3

is the cylinder of height π and radius 1. Note that ∂X =
(

S× [0, π]
)

∪
(

D× {0, π}
)

.

For all n ∈ N and ` ∈ N, let E1
`,n := Φ`,n, and E1

`,−n := Ψ`,n, where Φ`,n and
Ψ`,n are the type-1 Fourier-Bessel eigenfunctions defined by eqn.(14C.5) on
page 296 of §14C(ii). Then {E1

`,n; ` ∈ N and n ∈ Z} is a Dirichlet eigenbasis
for D, by Theorem 14C.2.

As in Example 15C.9, ∂[0, π] = {0, π}. LetM2 := {0, 1} and let Ξ2
1 : {0, π} −→

R and Ξ2
2 : {0, π} −→ R be as in Example 15C.9. Let {κ`,n}∞`,n=1 be the roots

of the Bessel function Jn, as described in equation (14C.3) on page 296. For
every (`, n) ∈ N× Z, define F2

`,n;1 and F2
`,n;2 ∈ L2[0, π] by

F2
`,n;1(z) :=

sinh
(

κ`,|n| · z
)

sinh(κ`,|n| π)
and F2

`,n;2(z) :=
sinh

(

κ`,|n| · (π − z)
)

sinh(κ`,|n| π)
,

for all z ∈ [0, π]. Then clearly ˜F2
`,n;1 = Ξ2

1 and ˜F2
`,n;2 = Ξ2

2.

For each (`, n) ∈ N×Z, we have eigenvalue −κ2
`,|n| by equation (14C.4) on page

296. That is 4Φ`,n(r, θ) = −κ2
`,n Φ`,n(r, θ) and 4Ψ`,n(r, θ) = −κ2

`,n Ψ`,n(r, θ);
thus, 4E1

`,n(z) = −κ2
`,|n|E

1
`,n(z) for all (`, n) ∈ N×Z. Meanwhile, 4F1

`,n;m(z) =
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κ2
`,|n|F

1
`,n;m(z), for all (`, n;m) ∈ N× Z× {1, 2}. Thus, the functions

H1
`,n,1(r, θ, z) := E1

`,n(r, θ) · F2
`,n;1(z) =

Φ`,n(r, θ) sinh(κ`,n · z)
sinh(κ`,n π)

,

H1
`,n,2(r, θ, z) := E1

`,n(r, θ) · F2
`,n;2(z) =

Φ`,n(r, θ) sinh (κ`,n · (π − z))
sinh(κ`,n π)

,

H1
`,−n,1(r, θ, z) := E1

`,−n(r, θ) · F2
`,−n;1(z) =

Ψ`,n(r, θ) sinh(κ`,n · z)
sinh(κ`,n π)

, and

H1
`,−n,2(r, θ, z) := E1

`,−n(r, θ) · F2
`,−n;2(z) =

Ψ`,n(r, θ) sinh (κ`,n · (π − z))
sinh(κ`,n π)

are all harmonic, by Lemma 15C.6.

Recall that ∂D = S. Let M1 := Z, and for all m ∈ Z, define Ξ1
m ∈ L2(S) by

Ξ1
m(1, θ) := sin(mθ) (if m > 0) and Ξ1

m(1, θ) := cos(mθ) (if m ≤ 0), for all
θ ∈ [−π, π]; then {Ξ1

m}m∈Z is an orthogonal bass for L2(S), by Theorem 8A.1.
For all n ∈ N and z ∈ [0, π], define E2

n(z) := sin(nz) as in Example 15C.9.
Then {E2

n}∞n=1 is a Dirichlet eigenbasis for [0, π], by Theorem 7A.1. For all
n ∈ N, the eigenfunction E2

n has eigenvalue λ(2)
n := −n2. For all m ∈ Z, let

F1
n,m : D −→ R be an eigenfunction of the Laplacian with eigenvalue n2, and

with boundary condition F1
n,m(1, θ) = Ξ1

m(θ) for all θ ∈ [−π, π] (see Exercise
15C.9(a) below). The function H2

n,m(r, θ, z) := F1
n,m(r, θ) · E2

n(z) is harmonic,
by Lemma 15C.6. Thus, Corollary 15C.8 says that the collection

{

H1
`,n,m ; ` ∈ N, n ∈ Z, m = 1, 2

}

t
{

H2
n,m ; n ∈ N, m ∈ Z

}

is a Dirichlet harmonic basis for the cylinder X. ♦

Exercise 15C.9. (a) Example 15C.10 posits the existence of eigenfunctions F1
n,m :E©

D −→ R of the Laplacian with eigenvalue n2 and with boundary condition F1
n,m(1, θ) =

Ξ1
m(θ) for all θ ∈ [−π, π]. Assume F1

n,m separates in polar coordinates —that is,
F1
n,m(r, θ) = R(r) · Ξm(θ), where R : [0, 1] −→ R is some unknown function with
R(1) = 1. Show that R must satisfy the ordinary differential equation r2R′′(r) +
rR′(r)− (r2 + 1)n2R(r) = 0. Use the Method of Frobenius (§0H(iii)) to solve this ODE
and get an expression for F1

n,m.
(b) Combine Theorem 15B.3 with Example 15C.10 to obtain a general solution

to the Laplace equation on a finite cylinder with nonhomogeneous Dirichlet boundary
conditions.

(c) Set up and solve a few simple Dirichlet problems using your method. �

Exercise 15C.10. Let X = {(r, θ, z) ; 1 ≤ r and 0 ≤ z ≤ π} be the puncturedE©
slab from Exercise 15C.4.

(a) Use Corollary 15C.8 to obtain a Dirichlet harmonic basis for X.
(b) Apply Theorem 15B.3 to obtain a general solution to the Laplace equation on

the punctured slab with nonhomogeneous Dirichlet boundary conditions.
(c) Set up and solve a few simple Dirichlet problems using your method. �
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Exercise 15C.11. Let X be the right-angle triangular prism from Exercise 15C.5. E©
(a) Use Proposition 15A.5 and Corollary 15C.8 to obtain a Dirichlet harmonic basis

for X.
(b) Apply Theorem 15B.3 to obtain a general solution to the Laplace equation on

the prism with nonhomogeneous Dirichlet boundary conditions.
(c) Set up and solve a few simple Dirichlet problems using your method. �

Exercise 15C.12. State and prove a theorem analogous to Corollary 15C.8 for E©
Neumann harmonic bases. �

15D General method for solving I/BVPs

Prerequisites: §15A, §15B. Recommended: §15C.

We now provide a general method for solving initial/boundary value prob-
lems. Throughout this section, let X ⊂ RD be a domain. Let L be a linear
differential operator on X (e.g. L = 4).

1. Pick a suitable coordinate system. Find the coordinate system where
your problem can be expressed in simplest form. Generally, this is a coordinate
system where the domain X can be described using a few simple inequalities.
For example, if X = [0, L]D, then probably the Cartesian coordinate system is
best. If X = D or D{ or A, then probably polar coordinates on R2 are the most
suitable. If X = B or X = ∂B, then probably spherical polar coordinates on R3

are best.
If the differential operator L has nonconstant coefficients, then you should

also seek a coordinate system where these coefficients can be expressed using the
simplest formulae. (If L = 4, then it has constant coefficients, so this is not an
issue).

Finally, if several coordinate systems are equally suitable for describing X and
L, then find the coordinate system where the initial conditions and/or boundary
conditions can be expressed most easily. For example, if X = R2 and L = 4,
then either Cartesian or polar coordinates might be appropriate. However, if the
initial conditions are rotationally symmetric around zero, then polar coordinates
would be more appropriate. If the initial conditions are invariant under transla-
tion in some direction, then Cartesian coordinates would be more appropriate.

Note. Don’t forget to find the correct expression for L in the new coordinate
system. For example, in Cartesian coordinates on R2, we have 4u(x, y) =
∂2
y u(x, y) + ∂2

y u(x, y). However, in polar coordinates, 4u(r, θ) = ∂2
r u(r, θ) +

1
r ∂r u(r, θ) + 1

r2 ∂
2
θ u(r, θ). If you apply the ‘Cartesian’ Laplacian to a function

expressed in polar coordinates, the result will be nonsense.
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2. Eliminate irrelevant coordinates. A coordinate x is “irrelevant” if:

(a) membership in the domain X does not depend on this coordinate; and

(b) the coefficients of L do not depend on this coordinate; and

(c) the initial and/or boundary conditions do not depend on this coordinate.

In this case, we can eliminate the x coordinate from all equations, by ex-
pressing the domain X, the operator L and the initial/boundary conditions as
functions of only the non-x coordinates. This reduces the dimension of the prob-
lem, thereby simplifying it.

To illustrate (a), suppose X = D or D{ or A, and we use the polar coordinate
system (r, θ); then the angle coordinate θ is irrelevant to membership in X. On
the other hand, suppose X = R2× [0, L] is the ‘slab’ of thickness L in R3, and we
use Cartesian coordinates (x, y, z). Then the coordinates x and y are irrelevant
to membership in X.

If L = 4 or any other differential operator with constant coefficients, then
(b) is automatically satisfied.

To illustrate (c), suppose X = D and we use polar coordinates. Let f : D −→
R be some initial condition. If f(r, θ) is a function only of r, and doesn’t depend
on θ, then θ is a redundant coordinate and can be eliminated, thereby reducing
the BVP to a one-dimensional problem, as in Example 14F.3 on page 305.

On the other hand, let b : S −→ R be a boundary condition. Then θ is only
irrelevant if b is a constant function (otherwise b has nontrivial dependence on
θ).

Now, suppose X = R2 × [0, L] is the ‘slab’ of thickness L in R3. If the
boundary condition b : ∂X −→ R is constant on the top and bottom faces of the
slab, then the x and y coordinates can be eliminated, thereby reducing the BVP
to a one-dimensional problem: a BVP on the line segment [0, L], which can be
solved using the methods of Chapter 11.

In some cases, a certain coordinate can be eliminated if it is ‘approximately’
irrelevant. For example, if the domain X is particularly ‘long’ in the x dimen-
sion relative to its other dimensions, and the boundary conditions are roughly
constant in the x dimension, then we can approximate ‘long’ with ‘infinite’
and ‘roughly constant’ with ‘exactly constant’, and eliminate the x dimension
from the problem. This method was used in Example 12B.2 on page 248 (the
‘quenched rod’), Example 12B.7 on page 252 (the ‘baguette’), and Example
12C.2 on page 255 (the ‘nuclear fuel rod’).

3. Find an eigenbasis for L2(X). If X is one of the ‘standard’ domains we
have studied in this book, then use the eigenbases we have introduced in Chap-
ters 7-9, Section 14C, or Section 15C. Otherwise, you must construct a suitable
eigenbasis. Theorem 15E.12 (page 347) guarantees that such an eigenbasis exists,
Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



15D. General method for solving I/BVPs 339

but it doesn’t tell you how to construct it. The actual construction of eigenbases
is usually done using Separation of Variables, discussed in Chapter 16. The sep-
aration of the “time” variable is really just a consequence of the fact that we
have an eigenfunction. The separation of the “space” variables is not necessary
to get an eigenfunction, but it is very convenient, for two reasons:

1. Separation of variables is a powerful strategy for finding the eigenfunctions;
it reduces the problem to set of independent ODEs which can each be solved
using classical ODE methods.

2. If an eigenfunction En appears in ‘separated’ form, then it is often easier to
compute the inner product 〈En, f〉, where f is some other function. This is
important when the eigenfunctions form an orthogonal basis, and we want
to compute the coefficients of f in this basis.

4. Find a harmonic basis for L2(∂X) (if there are nonhomogeneous bound-
ary conditions). The same remarks apply as in Step 3.

5. Solve the problem Express any initial conditions in terms of the eigenbasis
from step #3, as described in §15A Express any boundary conditions in terms
of the harmonic basis from step #4, as described in §15B.

If L = 4, then use Theorems 15A.2, 15A.3, 15A.4, and/or 15B.3. If L is
some other linear differential operator, then use the appropriate analogues of
these theorems (see Remark 15A.6).

6. Verify convergence. Note that Theorems 15A.2, 15A.3, 15A.4, and/or
15B.3 require the eigenvalue sequences {λn}∞n=1 and/or {µn}∞n=1 to grow at a
certain speed, or require the coefficient sequences {An}∞n=0 and {Bn}∞n=1 to decay
at a certain speed, so as to guarantee that the solution series and its formal
derivatives are absolutely convergent. These conditions are important, and must
be checked. Typically, if L = 4, the growth conditions on {λn}∞n=1 and {µn}∞n=1

are easily satisfied. However, if you try to extend these theorems to some other
linear differential operator, the conditions on {λn}∞n=1 and {µn}∞n=1 must be
checked.

7. Check the uniqueness of the solution. Section 5D describes condi-
tions under which boundary value problems for the Poisson, Laplace, Heat, and
wave equations will have a unique solution. Check that these conditions are
satisfied. If L 6= 4, then you will need to establish solution uniqueness using
theorems analogous to those found in Section 5D. (General theorems for the ex-
istence/uniqueness of solutions to I/BVPs can be found in most advanced texts
on PDE theory, such as [Eva91]).

If the solution is not unique, then it is important to enumerate all solutions to
the problem. Remember that your ultimate goal here is to predict the behaviour
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of some physical system in response to some initial or boundary condition. If the
solution to the I/BVP is not unique, then you cannot make a precise prediction;
instead, your prediction must take the form of a precisely specified range of
possible outcomes.

15E Eigenfunctions of self-adjoint operators

Prerequisites: §4B(iv), §5C, §6F. Recommended: §7A, §8A, §9B, §15A.

The solution methods of Section 15A are only relevant if we know that a
suitable eigenbasis for the Laplacian exists on the domain of interest. If we
want to develop similar methods for some other linear differential operator L
(as described in Remark 15A.6 on page 323), then we must first know that
suitable eigenbases exists for L. In this section, we will discuss the eigenfunctions
and eigenvalues of an important class of linear operators: self-adjoint operators.
This class includes the Laplacian and all other symmetric elliptic differential
operators.

A linear operator F : RD −→ RD is self-adjoint if, for any vectors x,y ∈ RD,

〈F (x), y〉 = 〈x, F (y)〉 .

Example 15E.1. The matrix
[

1 −2
−2 1

]

defines a self-adjoint operator on R2,

because for any x =
[

x1

x2

]

and y =
[

y1

y2

]

in R2, we have

〈F (x),y〉 =
〈[

x1−2x2

x2−2x1

]

,
[

y1

y2

]〉

= y1

(

x1 − 2x2

)

+ y2

(

x2 − 2x1

)

= x1

(

y1 − 2y2

)

+ x2

(

y2 − 2y1

)

=
〈[

x1

x2

]

,
[

y1−2y2

y2−2y1

]〉

= 〈x, F (y)〉 . ♦

Theorem 15E.2. Let F : RD −→ RD be a linear operator with matrix A.
Then F is self-adjoint if and only if A is symmetric (i.e. aij = aji for all j, i)

Proof. Exercise 15E.1 . 2
E©

A linear operator L : C∞ −→ C∞ is self-adjoint if, for any two functions
f, g ∈ C∞,

〈L[f ], g〉 = 〈f, L[g]〉
whenever both sides are well-defined3.

3This is an important point. Often, one of these inner products (say, the left one) will

not be well-defined, because the integral

∫

X
L[f ] · g dx does not converge, in which case “self-

adjointness” is meaningless.
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Example 15E.3: Multiplication Operators are Self-Adjoint.

Let X ⊂ RD be any bounded domain. Let C∞ := C∞(X;R). Fix q ∈ C∞(X),
and define the operator Q : C∞ −→ C∞ by Q(f) := q ·f for any f ∈ C∞. Then
Q is self-adjoint. To see this, let f, g ∈ C∞. Then

〈q · f, g〉 =
∫

X
(q · f) · g dx =

∫

X
f · (q · g) dx = 〈f, q · g〉 .

(These integrals are all well-defined because q, f and g are all continuous and
hence bounded on X.) ♦

Let L > 0, and consider the interval [0, L]. Recall that C∞[0, L] is the set of
all smooth functions from [0, L] into R, and that:

C∞0 [0, L] is the space of all f ∈ C∞[0, L] satisfying homogeneous Dirichlet bound-
ary conditions: f(0) = 0 = f(L) (see §5C(i)).

C∞
⊥

[0, L] is the space of all f ∈ C∞[0, L] satisfying f : [0, L] −→ R satisfy-
ing homogeneous Neumann boundary conditions: f ′(0) = 0 = f ′(L) (see
§5C(ii)).

C∞
per

[0, L] is the space of all f ∈ C∞[0, L] satisfying f : [0, L] −→ R satisfying
periodic boundary conditions: f(0) = f(L) and f ′(0) = f ′(L) (see §5C(iv)).

C∞h,h⊥ [0, L] is the space of all f ∈ C∞[0, L] satisfying homogeneous mixed bound-
ary conditions, for any fixed real numbers h(0), h⊥(0), h(L) and h⊥(L)
(see §5C(iii)).

When restricted to these function spaces, the one-dimensional Laplacian op-
erator ∂2

x is self-adjoint.

Proposition 15E.4. Let L > 0, and consider the operator ∂2
x on C∞[0, L].

(a) ∂2
x is self-adjoint when restricted to C∞0 [0, L].

(b) ∂2
x is self-adjoint when restricted to C∞

⊥
[0, L].

(c) ∂2
x is self-adjoint when restricted to C∞

per
[0, L].

(d) ∂2
x is self-adjoint when restricted to C∞h,h⊥ [0, L], for any h(0), h⊥(0), h(L)

and h⊥(L) in R.

Proof. Let f, g : [0, L] −→ R be smooth functions. We apply integration by
parts to get:

〈

∂2
x f, g

〉

=
∫ L

0
f ′′(x) · g(x) dx = f ′(x) · g(x)

∣

∣

∣

x=L

x=0
−
∫ L

0
f ′(x) · g′(x) dx.

(15E.1)
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But if we apply Dirichlet, Neumann, or Periodic boundary conditions, we get:

f ′(x) · g(x)
∣

∣

∣

x=L

x=0
= f ′(L) · g(L)− f ′(0) · g(0)

=







f ′(L) · 0 − f ′(0) · 0 = 0 (if homog. Dirichlet BC)
0 · g(L) − 0 · g(0) = 0 (if homog. Neumann BC)

f ′(0) · g(0) − f ′(0) · g(0) = 0 (if Periodic BC)
= 0 in all cases.

Thus, the first term in (15E.1) is zero, so
〈

∂2
x f, g

〉

=
∫ L

0
f ′(x) · g′(x) dx.

But by the same reasoning, with f and g interchanged,
∫ L

0
f ′(x) ·g′(x) dx =

〈

f, ∂2
x g
〉

.

Thus, we’ve proved parts (a), (b), and (c). To prove part (d), first note that

f ′(x) · g(x)
∣

∣

∣

x=L

x=0
= f ′(L) · g(L) − f ′(0) · g(0)

= f(L) · h(L)
h⊥(L)

· g(L) + f(0) · h(0)
h⊥(0)

· g(0)

= f(L) · g′(L) − f(0) · g′(0) = f(x) · g′(x)
∣

∣

∣

x=L

x=0
.

Hence, substituting f(x) · g′(x)
∣

∣

∣

x=L

x=0
for f ′(x) · g(x)

∣

∣

∣

x=L

x=0
in (15E.1), we get:

〈

∂2
x f, g

〉

=
∫ L

0
f ′′(x) · g(x) dx =

∫ L

0
f(x) · g′′(x) dx =

〈

f, ∂2
x g
〉

. 2

Proposition 15E.4 generalizes to higher-dimensional Laplacians in the obvious
way:

Theorem 15E.5. Let L > 0.

(a) The Laplacian operator 4 is self-adjoint on any of the spaces: C∞0 [0, L]D,
C∞
⊥

[0, L]D, C∞h,h⊥ [0, L]D or C∞
per

[0, L]D.

(b) More generally, if X ⊂ RD is any bounded domain with a smooth bound-
ary4, then the Laplacian operator 4 is self-adjoint on any of the spaces:
C∞0 (X), C∞

⊥
(X), or C∞h,h⊥ (X).

In other words, the Laplacian is self-adjoint whenever we impose homogeneous
Dirichlet, Neumann, or mixed boundary conditions, or (when meaningful) peri-
odic boundary conditions.
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Proof. (a) Exercise 15E.2 Hint: The argument is similar to Proposition 15E.4.E©
Apply integration by parts in each dimension, and cancel the “boundary” terms using
the boundary conditions.

(b) Exercise 15E.3 Hint: Use Green’s Formulae (Corollary 0E.5(c) on page 564) E©
to set up an ‘integration by parts’ argument similar to Proposition 15E.4. 2

If L1 and L2 are two self-adjoint operators, then their sum L1 + L2 is also
self-adjoint (Exercise 15E.4). E©

Example 15E.6. Let X ⊂ RD be some domain (e.g. a cube), and let V : X −→ R
be a potential describing the force acting on a quantum particle (e.g. an
electron) confined to the region X by an infinite potential barrier along ∂X.
Consider the Hamiltonian operator H defined in Section 3B on page 41:

Hω(x) =
−~2

2m
4 ω(x) + V (x) · ω(x), for all x ∈ X.

(Here, ~ is Plank’s constant, m is the mass of the particle, and ω ∈ C∞0 X is
its wavefunction.) The operator H is self-adjoint on C∞0 (X). To see this, note
that H[ω] = −~2

2m 4 ω + V[ω], where V[ω] = V · ω. Now, 4 is self-adjoint
by Theorem 15E.5(b), and V is self-adjoint from Example 15E.3; thus, their
sum H is also self-adjoint. The stationary Schrödinger equation5 Hω = λω
simply says that ω is an eigenfunction of H with eigenvalue λ. ♦

Example 15E.7. Let s, q : [0, L] −→ R be differentiable. The Sturm-
Liouville operator

SLs,q[f ] := s · f ′′ + s′ · f ′ + q · f

is self-adjoint on any of the spaces C∞0 [0, L], C∞
⊥

[0, L], C∞h,h⊥ [0, L] or C∞
per

[0, L].
To see this, notice that

SLs,q[f ] = (s · f ′)′ + (q · f) = S[f ] + Q[f ], (15E.2)

where Q[f ] = q · f is just a multiplication operator, and S[f ] = (s · f ′)′. We
know that Q is self-adjoint from Example 15E.3. We claim that S is also
self-adjoint. To see this, note that:

〈S[f ], g〉 =
∫ L

0
(s · f ′)′(x) · g(x) dx

(∗)
s(x) · f ′(x) · g(x)

∣

∣

∣

x=L

x=0
−
∫ L

0
s(x) · f ′(x) · g′(x) dx

4See page 85 of §5D.
5See §3C.
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(∗)
s(x) · f ′(x) · g(x)

∣

∣

∣

x=L

x=0
− s(x) · f(x) · g′(x)

∣

∣

∣

x=L

x=0
+
∫ L

0
f(x) · (s · g′)′(x) dx

(†)

∫ L

0
f(x) · (s · g′)′(x) dx = 〈f, S[g]〉 .

Here, each (∗) is integration by parts, and (†) follows from any of the cited
boundary conditions as in Proposition 15E.4 on page 341 (Exercise 15E.5).E©
Thus, S is self-adjoint, so SLs,q = S + Q is self-adjoint. ♦

If SLs,q is a Sturm-Liouville operator, then the corresponding Sturm-Liouville
equation is the linear ordinary differential equation

SLs,q[f ] = λ f. (15E.3)

where f : [0, L] −→ C and λ ∈ C are unknown. Clearly, equation (15E.3) simply
asserts that f is an eigenfunction of SLs,q, with eigenvalue λ. Sturm-Liouville
equations appear frequently in the study of ordinary and partial differential
equations.

Example 15E.8. (a) The one-dimensional Helmholtz equation f ′′(x) = λ f(x)
is a Sturm-Liouville equation, with s ≡ 1 (constant) and q ≡ 0.

(b) The one-dimensional stationary Schrödinger equation

−~2

2m
f ′′(x) + V (x) · f(x) = λ f(x), for all x ∈ [0, L].

is a Sturm-Liouville equation, with s ≡ −~2

2m (constant) and q(x) := V (x).

(c) The Cauchy-Euler equation6 x2 f ′′(x)+2x f ′(x)−λ ·f(x) = 0 is a Sturm-
Liouville equation: let s(x) := x2 and q ≡ 0

(d) The Legendre equation7 (1−x2) f ′′(x)− 2x f ′(x) +µf(x) = 0 is a Sturm-
Liouville equation: let s(x) := (1− x2), q ≡ 0, and let λ := −µ.

For more information about Sturm-Liouville problems, see [Bro89, §2.6, pp.39-
44], [Pow99, §2.7, pp.146-150], [Con90, §II.6, pp.49-53], and especially [CB87,
Chap.6, pp.159-203]. ♦

Examples 15E.6 and 15E.8, Theorem 15E.5, and the solution methods of §15A
all illustrate the importance of the eigenfunctions of self-adjoint operators. One
nice property of self-adjoint operators is that their eigenfunctions are orthogonal.

6See equation (14H.5) on page 314, and equation (16D.20) on page 361.
7See equation (16D.19) on page 361.
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Proposition 15E.9. Suppose L is a self-adjoint operator. If f1 and f2 are
eigenfunctions of L with eigenvalues λ1 6= λ2, then f1 and f2 are orthogonal.

Proof. By hypothesis, L[fk] = λk · fk, for k = 1, 2. Thus,

λ1·〈f1, f2〉 = 〈λ1 · f1, f2〉 = 〈L[f1], f2〉
(∗)
〈f1, L[f2]〉 = 〈f1, λ2 · f2〉 = λ2·〈f1, f2〉 ,

where (∗) follows from self-adjointness. Since λ1 6= λ2, this can only happen
if 〈f1, f2〉 = 0. 2

Example 15E.10. Eigenfunctions of ∂2
x

(a) Let ∂2
x act on C∞[0, L]. Then all real numbers λ ∈ R are eigenvalues of ∂2

x.
For any µ ∈ R,

• If λ = µ2 > 0, the eigenfunctions are of the form φ(x) = A sinh(µ ·
x) +B cosh(µ · x) for any constants A,B ∈ R.

• If λ = 0, the eigenfunctions are of the form φ(x) = Ax + B for any
constants A,B ∈ R.

• If λ = −µ2 < 0, the eigenfunctions are of the form φ(x) = A sin(µ ·
x) +B cos(µ · x) for any constants A,B ∈ R.

Note: Because we have not imposed any boundary conditions, Proposition
15E.4 does not apply; indeed ∂2

x is not a self-adjoint operator on C∞[0, L].

(b) Let ∂2
x act on C∞([0, L];C). Then all complex numbers λ ∈ C are eigenval-

ues of ∂2
x. For any µ ∈ C, with λ = µ2, the eigenvalue λ has eigenfunctions

of the form φ(x) = A exp(µ ·x)+B exp(−µ ·x) for any constants A,B ∈ C.
(Note that the three cases of the previous example arise by taking λ ∈ R.)

Again, Proposition 15E.4 does not apply in this case, because ∂2
x is not a

self-adjoint operator on C∞([0, L];C).

(c) Now let ∂2
x act on C∞0 [0, L]. Then the eigenvalues of ∂2

x are λn = −
(nπ

L

)2

for every n ∈ N, each of multiplicity 1; the corresponding eigenfunctions
are all scalar multiples of Sn(x) := sin

(

nπx
L

)

.

(d) If ∂2
x acts on C∞

⊥
[0, L], then the eigenvalues of ∂2

x are again λn = −
(nπ

L

)2

for every n ∈ N, each of multiplicity 1, but the corresponding eigenfunctions
are now all scalar multiples of Cn(x) := cos

(

nπx
L

)

. Also, 0 is an eigenvalue,
with eigenfunction C0 = 11.
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(e) Let h > 0, and let ∂2
x act on C = {f ∈ C∞[0, L] ; f(0) = 0 and h · f(L) + f ′(L) = 0}.

Then the eigenfunctions of ∂2
x are all scalar multiples of

Φn(x) := sin (µn · x) ,

with eigenvalue λn = −µ2
n, where µn > 0 is any real number such that

tan(L · µn) =
−µn
h

This is a transcendental equation in the unknown µn. Thus, although
there is an infinite sequence of solutions {µ0 < µ1 < µ2 < . . .}, there is
no closed-form algebraic expression for µn. At best, we can estimate µn
through numerical methods.

(f) Let h(0), h⊥(0), h(L), and h⊥(L) be real numbers, and let ∂2
x act on

C∞h,h⊥ [0, L]. Then the eigenfunctions of ∂2
x are all scalar multiples of

Φn(x) := sin
(

θn + µn · x
)

,

with eigenvalue λn = −µ2
n, where θn ∈ [0, 2π] and µn > 0 are constants

satisfying the transcendental equations:

tan (θn) = µn ·
h⊥(0)
h(0)

and tan (µn · L+ θn) = −µn ·
h⊥(L)
h(L)

.

(Exercise 15E.6). In particular, if h⊥(0) = 0, then we must have θ = 0.E©
If h(L) = h and h⊥(L) = 1, then we return to Example (e).

(g) Let ∂2
x act on C∞

per
[−L,L]. Then the eigenvalues of ∂2

x are again λn =

−
(nπ

L

)2
, for every n ∈ N, each having multiplicity 2. The corresponding

eigenfunctions are of the form A·Sn+B·Cn for any A,B ∈ R. In particular,
0 is an eigenvalue, with eigenfunction C0 = 11.

(h) Let ∂2
x act on C∞

per
([−L,L]; C). Then the eigenvalues of ∂2

x are again λn =

−
(nπ

L

)2
, for every n ∈ N, each having multiplicity 2. The corresponding

eigenfunctions are of the form A · En + B · E−n for any A,B ∈ R, where

En(x) := exp
(

πinx
L

)

. In particular 0 is an eigenvalue, with eigenfunction

E0 = 11. ♦
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Example 15E.11. Eigenfunctions of 4

(a) Let 4 act on C∞0 [0, L]D. Then the eigenvalues of 4 are the numbers

λm := −
(π

L

)2
· ‖m‖2 for all m ∈ ND+ . (Here, if m = (m1, . . . ,mD), then

‖m‖2 := m2
1 + . . .+m2

d). The eigenspace of λm is spanned by all functions

Sn(x1, ..., xD) := sin
(πn1x1

L

)

sin
(πn2x2

L

)

· · · sin
(πnDxD

L

)

,

for all n = (n1, . . . , nD) ∈ ND+ such that ‖n‖ = ‖m‖.

(b) Now let 4 act on C∞
⊥

[0, L]D. Then the eigenvalues of 4 are λm for all
m ∈ ND. The eigenspace of λm is spanned by all functions

Cn(x1, ..., xD) := cos
(πn1x1

L

)

cos
(πn2x2

L

)

· · · cos
(πnDxD

L

)

,

for all n ∈ ND such that ‖n‖ = ‖m‖. In particular, 0 is an eigenvalue whose
eigenspace is the set of constant functions —i.e. multiples of C0 = 11.

(c) Let 4 act on C∞
per

[−L,L]D. Then the eigenvalues of 4 are again λm for all
m ∈ ND. The eigenspace of λm contains Cn and Sn for all n ∈ ND such
that ‖n‖ = ‖m‖.

(d) Let 4 act on C∞
per

(

[−L,L]D; C
)

. Then the eigenvalues of 4 are again λm

for all m ∈ ND. The eigenspace of λm is spanned by all functions

En(x1, . . . , xD) := exp
(

πin1x1

L

)

· · · exp
(

πinDxD
L

)

,

for all n ∈ ZD such that ‖n‖ = ‖m‖. ♦

The alert reader will notice that, in each of the above scenarios (except Exam-
ples 15E.10(a) and 15E.10(b), where ∂2

x is not self-adjoint), the eigenfunctions
are not only orthogonal, but actually form an orthogonal basis for the corre-
sponding L2-space. This is not a coincidence. If C is a subspace of L2(X), and
L : C −→ C is a linear operator, then a set {Φn}∞n=1 ⊂ C is an L-eigenbasis for
L2(X) if {Φn}∞n=1 is an orthogonal basis for L2(X), and for every n ∈ N, Φn is
an eigenfunction for L.

Theorem 15E.12. Eigenbases of the Laplacian

(a) Let L > 0. Let C be any one of C∞0 [0, L]D, C∞
⊥

[0, L]D, or C∞
per

[0, L]D,
and treat 4 as a linear operator on C. Then there is a 4-eigenbasis for
L2[0, L]D consisting of elements of C. The corresponding eigenvalues of 4
are the values λm defined in Example 15E.11(a), for all m ∈ ND.
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(b) More generally, if X ⊂ RD is any bounded open domain, then there is a
4-eigenbasis for L2[X] consisting of elements of C∞0 [X]. The corresponding
eigenvalues of 4 on C form a decreasing sequence 0 > λ1 ≥ λ2 ≥ λ3 ≥ · · ·
with lim

n→∞
λn = −∞.

In both (a) and (b), some of the eigenspaces may be many-dimensional.

Proof. (a) we have already established. The eigenfunctions of the Lapla-
cian in these contexts are

{

Cn ; n ∈ ND
}

and/or
{

Sn ; n ∈ ND+
}

. Theorem
8A.1(a) on page 162 and Theorem 9B.1(a) on page 187 tell us that these form
orthogonal bases for L2[0, L]D.

(b) follows from Theorem 15E.17 on the next page. Alternately, see [War83],
Chapter 6, p. 255; exercise 16(g), or [Cha93], Theorem 3.21, p. 156. 2

Example 15E.13. (a) Let B =
{

x ∈ RD ; ‖x‖ < R
}

be the ball of radius R.
Then there is a 4-eigenbasis for L2(B) consisting of functions which are zero
on the spherical boundary of B.

(b) Let A =
{

(x, y) ∈ R2 ; r2 < x2 + y2 < R2
}

be the annulus of inner radius
r and outer radius R in the plane. Then there is a 4-eigenbasis for L2(A)
consisting of functions which are zero on the inner and outer boundary circles
of A. ♦

Theorem 15E.14. Eigenbases for Sturm-Liouville operators

Let L > 0, let s, q : [0, L] −→ R be differentiable functions, and let SLs,q be the
Sturm-Liouville operator defined by s and q on C∞0 [0, L]. Then there exists an
SLs,q-eigenbasis for L2[0, L] consisting of elements of C∞0 [0, L]. The corresponding
eigenvalues of SLs,q form an infinite increasing sequence 0 < λ0 < λ1 < λ2 < . . .,
with lim

n→∞
λn =∞. Each eigenspace is one-dimensional.

Proof. See [Tit62, Theorem 1.9]. For a proof in the special case when s ≡ 1,
see [Con90, Theorem 6.12, p.52]. 2

Symmetric Elliptic Operators. The rest of this section concerns the eigen-
functions of symmetric elliptic operators. (Please see §5E for the definition of
an elliptic operator.)
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Lemma 15E.15. Let X ⊂ RD. If L is an elliptic differential operator on
C∞(X), then there are functions ωcd : X −→ R for all c, d ∈ [1...D], and functions
α, ξ1, . . . , ξD : X −→ R such that L can be written in divergence form:

L[u] =
D
∑

c,d=1

∂c(ωcd · ∂du) +
D
∑

d=1

ξd · ∂d u + α · u,

= div [Ω · ∇φ] + 〈Ξ, ∇φ〉 + α · u,

where Ξ =







ξ1
.
.
.
ξD





, and Ω =







ω11 . . . ω1D

.

.

.
. . .

.

.

.
ωD1 . . . ωDD





 is a symmetric, positive-definite

matrix.

Proof. Exercise 15E.7 Hint. Use the same strategy as as equation (15E.2). 2
E©

L is called symmetric if, in the divergence form, Ξ ≡ 0. For example, in the
case when L = 4, we have Ω = Id and Ξ = 0, so 4 is symmetric.

Theorem 15E.16. If X ⊂ RD is an open bounded domain, then any symmetric
elliptic differential operator on C∞0 (X) is self-adjoint.

Proof. This is a generalization of the integration-by-parts argument used to
prove Proposition 15E.4 on page 341 and Theorem 15E.5 on page 342. See
[Eva91, §6.5, p.334]. 2

Theorem 15E.17. Let X ⊂ RD be an open, bounded domain, and let L
be any symmetric, elliptic differential operator on C∞0 (X). Then there exists
an L-eigenbasis for L2(X) consisting of elements of C∞0 (X). The corresponding
eigenvalues of L form an infinite decreasing series 0 > λ0 ≥ λ1 ≥ λ2 ≥ . . ., with
lim
n→∞

λn = −∞.

Proof. See of [Eva91, Theorem 1, §6.5.1, p.335]. 2

Remark. Theorems 15E.12, 15E.14, and 15E.17 are all manifestations of a far
more general result, the Spectral Theorem for Unbounded Self-Adjoint Opera-
tors. Unfortunately, it would take us too far afield to even set up the necessary
background to precisely state this theorem. See [Con90, §X.4 p. 319] for a good
exposition.
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Further reading

The study of eigenfunctions and eigenvalues is sometimes called spectral theory.
For a good introduction to the spectral theory of linear operators on function
spaces, see [Con90]. An analogy of the Laplacian can be defined on any Rieman-
nian manifold; it is often called the Laplace-Beltrami operator, and its eigenfunc-
tions reveal much about the geometry of the manifold; see [War83, Chap.6] or
[Cha93, §3.9]. In particular, the eigenfunctions of the Laplacian on spheres have
been extensively studied. These are called spherical harmonics, and a sort of
“Fourier theory” can be developed on spheres, analogous to multivariate Fourier
theory on the cube [0, L]D, but with the spherical harmonics forming the or-
thonormal basis [Tak94, Mül66]. Much of this theory generalizes to a broader
family of manifolds called symmetric spaces [Ter85, Hel81]. The eigenfunctions
of the Laplacian on symmetric spaces are closely related to the theory of Lie
groups and their representations [CW68, Sug75], a subject which is sometimes
called noncommutative harmonic analysis [Tay86].

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



351

V Miscellaneous solution
methods

In Chapters 11 to 15, we saw how initial/boundary value problems for linear
partial differential equations could be solved by first identifying an orthogonal
basis of eigenfunctions for the relevant differential operator (usually the Lapla-
cian), and then representing the desired initial conditions or boundary conditions
as an infinite summation of these eigenfunctions. For each bounded domain, each
boundary condition, and each coordinate system we considered, we found a sys-
tem of eigenfunctions that was ‘adapted’ to that domain, boundary conditions,
and coordinate system.

This method is extremely powerful, but it raises several questions:

1. What if you are confronted with a new domain or coordinate system, where
none of the known eigenfunction bases is applicable? Theorem 15E.12 on
page 347 says that a suitable eigenfunction basis for this domain always
exists, in principle. But how do you go about discovering such a basis in
practice? For that matter, how were eigenfunctions bases like the Fourier-
Bessel functions discovered in the first place? Where did Bessel’s equation
come from?

2. What if you are dealing with an unbounded domain, such as diffusion in R3?
In this case, Theorem 15E.12 is not applicable, and in general, it may not be
possible (or at least, not feasible) to represent initial/boundary conditions
in terms of eigenfunctions. What alternative methods are available?

3. The eigenfunction method is difficult to connect to our physical intuitions.
For example, intuitively, heat ‘seaps’ slowly through space, and temper-
ature distributions gradually and irreversibly decay towards uniformity.
It is thus impossible to send a long-distance ‘signal’ using heat. On the
other hand, waves maintain their shape and propagate across great dis-
tances with a constant velocity; hence they can be used to send signals
through space. These familiar intiutions are not explained or justified by
the eigenfunction method. Is there an alternative solution method where
these intuitions have a clear mathematical expression?

Part V provides answers to these questions. In Chapter 16, we introduce
a powerful and versatile technique called separation of variables, to construct
eigenfunctions adapted to any coordinate system. In Chapter 17, we develop
the entirely different solution technology of impulse-response functions, which
allows you to solve differential equations on unbounded domains, and which has
an an appealing intuitive interpretation. Finally, in Chapter 18, we explore some
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surprising and beautiful applications of complex analysis to harmonic functions
and Fourier theory.
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Chapter 16

Separation of variables

“Before creation God did just pure mathematics. Then He thought it would be a pleasant

change to do some applied.” —J. E. Littlewood

16A Separation of variables in Cartesian coordinates
on R2

Prerequisites: §1B, §1C.

A function u : R2 −→ R is said to separate if we can write u(x, y) =
X(x) · Y (y) for some functions X,Y : R −→ R. If u is a solution to some partial
differential equation, we say u is a separated solution.

Example 16A.1. The heat equation on R
We wish to find u : R × R 6− −→ R such that ∂t u = ∂2

x u. Suppose u(x; t) =
X(x) · T (t), where

X(x) = exp(iµx) and T (t) = exp(−µ2t),

for some constant µ ∈ R. Then u(x; t) = exp(µix − µ2t), so that ∂2
x u =

−µ2 · u = ∂t u. Thus, u is a separated solution to the heat equation. ♦

Separation of variables is a strategy for for solving partial differential equa-
tions by specifically looking for separated solutions. At first, it seem like we are
making our lives harder by insisting on a solution in separated form. However,
often, we can use the hypothesis of separation to actually simplify the problem.

Suppose we are given some PDE for a function u : R2 −→ R of two variables.
Separation of variables is the following strategy:

1. Hypothesize that u can be written as a product of two functions, X(x) and
Y (y), each depending on only one coordinate; in other words, assume that

u(x, y) = X(x) · Y (y) (16A.1)
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2. When we evaluate the PDE on a function of type (16A.1), we may find
that the PDE decomposes into two separate, ordinary differential equations
for each of the two functions X and Y . Thus, we can solve these ODEs
independently, and combine the resulting solutions to get a solution for u.

Example 16A.2. Laplace’s Equation in R2

Suppose we want to find a function u : R2 −→ R such that 4u ≡ 0. If
u(x, y) = X(x) · Y (y), then

4u = ∂2
x (X · Y ) + ∂2

y (X · Y ) =
(

∂2
xX
)

·Y + X·
(

∂2
y Y
)

= X ′′·Y +X·Y ′′,

where we denote X ′′ = ∂2
xX and Y ′′ = ∂2

y Y . Thus,

4u(x, y) = X ′′(x) · Y (y) + X(x) · Y ′′(y)

=
(

X ′′(x) · Y (y) + X(x) · Y ′′(y)
) X(x)Y (y)
X(x)Y (y)

=
(

X ′′(x)
X(x)

+
Y ′′(y)
Y (y)

)

· u(x, y).

Thus, dividing by u(x, y), Laplace’s equation is equivalent to:

0 =
4u(x, y)
u(x, y)

=
X ′′(x)
X(x)

+
Y ′′(y)
Y (y)

.

This is a sum of two functions which depend on different variables. The only
way the sum can be identically zero is if each of the component functions is
constant:

X ′′

X
≡ λ,

Y ′′

Y
≡ −λ

So, pick some separation constant λ ∈ R, and then solve the two ordinary
differential equations:

X ′′(x) = λ ·X(x) and Y ′′(y) = −λ · Y (y) (16A.2)

The (real-valued) solutions to (16A.2) depends on the sign of λ. Let µ =
√

|λ|.
Then the solutions of (16A.2) have the form:

X(x) =







A sinh(µx) +B cosh(µx) if λ > 0;
Ax+B if λ = 0;

A sin(µx) +B cos(µx) if λ < 0;

where A and B are arbitrary constants. Assuming λ < 0, and µ =
√

|λ|, we
get:

X(x) = A sin(µx)+B cos(µx) and Y (y) = C sinh(µx)+D cosh(µx).
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This yields the following separated solution to Laplace’s equation:

u(x, y) = X(x)·Y (y) =
(

A sin(µx) +B cos(µx)
)

·
(

C sinh(µx) +D cosh(µx)
)

(16A.3)
Alternately, we could consider the general complex solution to (16A.2), given
by:

X(x) = exp
(√

λ · x
)

,

where
√
λ ∈ C is some complex number. For example, if λ < 0 and µ =

√

|λ|,
then

√
λ = ±µi are imaginary, and

X1(x) = exp(iµx) = cos(µx) + i sin(µx)
and X2(x) = exp(−iµx) = cos(µx)− i sin(µx)

are two linearly independent solutions to (16A.2). The general solution is then
given by:

X(x) = a ·X1(x) + b ·X2(x) = (a+ b) · cos(µx) + i · (a− b) · sin(µx).

Meanwhile, the general form for Y (y) is

Y (y) = c · exp(µy) + d · exp(−µy) = (c+ d) cosh(µy) + (c− d) sinh(µy).

The corresponding separated solution to Laplace’s equation is:

u(x, y) = X(x)·Y (y) =
(

A sin(µx) +Bi cos(µx)
)

·
(

C sinh(µx) +D cosh(µx)
)

,

(16A.4)
where A = (a+ b), B = (a− b), C = (c+ d), and D = (c− d). In this case,
we just recover solution (16A.3). However, we could also construct separated
solutions where λ ∈ C is an arbitrary complex number, and

√
λ is one of its

square roots. ♦

16B Separation of variables in Cartesian coordinates
on RD

Recommended: §16A.

Given some PDE for a function u : RD −→ R, we apply the strategy of
separation of variables as follows:

1. Hypothesize that u can be written as a product of D functions, each de-
pending on only one coordinate; in other words, assume that

u(x1, . . . , xD) = u1(x1) · u2(x2) . . . uD(xD) (16B.5)
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2. When we evaluate the PDE on a function of type (16B.5), we may find
that the PDE decomposes into D separate, ordinary differential equations
for each of the D functions u1, . . . , uD. Thus, we can solve these ODEs
independently, and combine the resulting solutions to get a solution for u.

Example 16B.1. Laplace’s Equation in RD:

Suppose we want to find a function u : RD −→ R such that 4u ≡ 0. As in
the two-dimensional case (Example 16A.2), we reason:

If u(x) = X1(x1)·X2(x2) . . . XD(xD), then 4u =
(

X ′′1
X1

+
X ′′2
X2

+ . . .+
X ′′D
XD

)

·u.

Thus, Laplace’s equation is equivalent to:

0 =
4u
u

(x) =
X ′′1
X1

(x1) +
X ′′2
X2

(x2) + . . . +
X ′′D
xD

(xD).

This is a sum of D distinct functions, each of which depends on a different vari-
able. The only way the sum can be identically zero is if each of the component
functions is constant:

X ′′1
X1
≡ λ1,

X ′′2
X2
≡ λ2, . . . ,

X ′′D
XD
≡ λD, (16B.6)

such that

λ1 + λ2 + . . .+ λD = 0. (16B.7)

So, pick some separation constant λ = (λ1, λ2, . . . , λD) ∈ RD satisfying
(16B.7), and then solve the ODEs:

X ′′d = λd ·Xd for d=1,2,. . . ,D (16B.8)

The (real-valued) solutions to (16B.8) depends on the sign of λ (and clearly,
if (16B.7) is going to be true, either all λd are zero, or some are negative and
some are positive). Let µ =

√

|λ|. Then the solutions of (16B.8) have the
form:

X(x) =







A exp(µx) +B exp(−µx) if λ > 0;
Ax+B if λ = 0;

A sin(µx) +B cos(µx) if λ < 0;

where A and B are arbitrary constants. We then combine these as in Example
16A.2. ♦
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16C Separation in polar coordinates: Bessel’s equa-
tion

Prerequisites: §0D(ii), §1C. Recommended: §14C, §16A.

In §14C-§14F, we explained how to use solutions of Bessel’s equation to solve
the heat equation or wave equation in polar coordinates. In this section, we will
see how Bessel derived his equation in the first place: it arises naturally when
one uses ‘separation of variables’ to find eigenfunctions of the Laplacian in polar
coordinates. First, a technical lemma from the theory of ordinary differential
equations:

Lemma 16C.1. Let Θ : [−π, π] −→ R be a function satisfying periodic
boundary conditions [i.e. Θ(−π) = Θ(π) and Θ′(−π) = Θ′(π)]. Let µ > 0 be
some constant, and suppose Θ satisfies the linear ordinary differential equation:

Θ′′(θ) = −µ ·Θ(θ), for all θ ∈ [−π, π]. (16C.9)

Then µ = m2 for some m ∈ N, and Θ must be a function of the form:

Θ(θ) = A cos(mθ) +B sin(mθ), (for constants A,B ∈ C.)

Proof. Eqn.(16C.9) is a second-order linear ODE, so the set of all solutions to
eqn.(16C.9) is a two-dimensional vector space. This vector space is spanned
by functions of the form Θ(θ) = erθ, where r is any root of the characteristic
polynomial p(x) = x2 + µ. The two roots of this polynomial are of course
r = ±√µi. Let m =

√
µ (it will turn out that m is an integer, although we

don’t know this yet). Hence the general solution to (16C.9) is

Θ(θ) = C1e
miθ + C2e

−miθ,

where C1 and C2 are any two constants. The periodic boundary conditions
mean that

Θ(−π) = Θ(π) and Θ′(−π) = Θ′(π),

which means

C1e
−miπ + C2e

miπ = C1e
miπ + C2e

−miπ, (16C.10)
and miC1e

−miπ − miC2e
miπ = miC1e

miπ − miC2e
−miπ. (16C.11)

If we divide both sides of the eqn.(16C.11) by mi, we get

C1e
−miπ − C2e

miπ = C1e
miπ − C2e

−miπ.
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If we add this to eqn.(16C.10), we get

2C1e
−miπ = 2C1e

miπ,

which is equivalent to e2miπ = 1. Hence, m must be some integer, and
µ = m2.

Now, let A := C1 + C2 and B′ := C1 − C2. Then C1 = 1
2(A + B′) and

C2 = 1
2(A−B′). Thus,

Θ(θ) = C1e
miθ + C2e

−miθ = (A+B′)emiθ + (A−B′)e−miθ

=
A

2

(

emiθ + e−miθ
)

+
B′i
2i

(

emiθ − e−miθ
)

= A cos(mθ) +B′i sin(mθ)

because of the Euler formulas: cos(x) = 1
2(eix + e−ix) and sin(x) = 1

2i(e
ix −

e−ix).

Now let B = B′i; then Θ(θ) = A cos(mθ) +B sin(mθ), as desired. 2

Proposition 16C.2. Let f : R2 −→ R be an eigenfunction of the Laplacian
[i.e. 4f = −λ2 · f for some constant λ ∈ R]. Suppose f separates in polar
coordinates, meaning that there is a function Θ : [−π, π] −→ R (satisfying
periodic boundary conditions) and a function R : R 6− −→ R such that

f(r, θ) = R(r) ·Θ(θ), for all r ≥ 0 and θ ∈ [−π, π].

Then there is some m ∈ N such that

Θ(θ) = A cos(mθ) +B sin(mθ), (for constants A,B ∈ R.)

and R is a solution to the (mth order) Bessel Equation:

r2R′′(r) + r · R′(r) + (λ2r2 −m2) · R(r) = 0, for all r > 0. (16C.12)

Proof. Recall that, in polar coordinates, 4f = ∂2
r f +

1
r
∂r f +

1
r2
∂2
θ f .

Thus, if f(r, θ) = R(r) · Θ(θ), then the eigenvector equation 4f = −λ2 · f
becomes

−λ2 · R(r) ·Θ(θ) = 4R(r) ·Θ(θ)

= ∂2
r R(r) ·Θ(θ) +

1
r
∂rR(r) ·Θ(θ) +

1
r2
∂2
θ R(r) ·Θ(θ)

= R′′(r)Θ(θ) +
1
r
R′(r)Θ(θ) +

1
r2
R(r)Θ′′(θ),
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which is equivalent to

− λ2 =
R′′(r)Θ(θ) + 1

rR
′(r)Θ(θ) + 1

r2R(r)Θ′′(θ)
R(r) ·Θ(θ)

=
R′′(r)
R(r)

+
R′(r)
rR(r)

+
Θ′′(θ)
r2Θ(θ)

, (16C.13)

If we multiply both sides of (16C.13) by r2 and isolate the Θ′′ term, we get:

− λ2r2 − r2R′′(r)
R(r)

+
rR′(r)
R(r)

=
Θ′′(θ)
Θ(θ)

. (16C.14)

Abstractly, equation (16C.14) has the form: F (r) = G(θ), where F is a func-
tion depending only on r and G is a function depending only on θ. The only
way this can be true is if there is some constant µ ∈ R such that F (r) = −µ
for all r > 0 and G(θ) = −µ for all θ ∈ [−π, π). In other words,

Θ′′(θ)
Θ(θ)

= −µ, for all θ ∈ [−π, π), (16C.15)

and λ2r2 +
r2R′′(r)
R(r)

+
rR′(r)
R(r)

= µ, for all r ≥ 0. (16C.16)

Multiply both sides of equation (16C.15) by Θ(θ) to get:

Θ′′(θ) = −µ ·Θ(θ), for all θ ∈ [−π, π). (16C.17)

Multiply both sides of equation (16C.16) by R(r) to get:

r2R′′(r) + r · R′(r) + λ2r2R(r) = µR(r), for all r > 0. (16C.18)

Apply Lemma 16C.1 to to eqn.(16C.17) to deduce that µ = m2 for some
m ∈ N, and that Θ(θ) = A cos(mθ) + B sin(mθ). Substitute µ = m2 into
eqn.(16C.18) to get

r2R′′(r) + r · R′(r) + λ2r2R(r) = m2R(r),

Now subtract m2R(r) from both sides to get Bessel’s equation (16C.12). 2

16D Separation in spherical coordinates: Legendre’s
equation

Prerequisites: §0D(iv), §1C, §5C(i), §6F, §0H(iii). Recommended: §16C.
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z
π

0 φ 

x

y
θcos(φ)

z

x

y

(A) (B)

Figure 16D.1: (A) Spherical coordinates. (B) Zonal functions.

Recall that spherical coordinates (r, θ, φ) on R3 are defined by the transfor-
mation:

x = r·sin(φ)·cos(θ), y = r·sin(φ)·sin(θ) and z = r·cos(φ).

where r ∈ R 6−, θ ∈ [−π, π), and φ ∈ [0, π]. The reverse transformation is defined:

r =
√

x2 + y2 + z2, θ = arctan
(y

x

)

and φ = arctan

(
√

x2 + y2

z

)

.

[See Figure 16D.1(A)]. Geometrically, r is the radial distance from the origin. If
we fix r = 1 , then we get a sphere of radius 1. On the surface of this sphere,
θ is longitude and φ is latitude. In terms of these coordinates, the Laplacian is
written:

4f(r, θ, φ) = ∂2
r f +

2
r
∂r f +

1
r2 sin(φ)

∂2
φ f +

cot(φ)
r2

∂φ f +
1

r2 sin(φ)2
∂2
θ f.

(Exercise 16D.1)E©
A function f : R3 −→ R is called zonal if f(r, θ, φ) depends only on on r

and φ –in other words, f(r, θ, φ) = F (r, φ), where F : R 6− × [0, π] −→ R is some
other function. If we restrict f to the aforementioned sphere of radius 1, then f
is invariant under rotations around the ‘north-south axis’ of the sphere. Thus,
f is constant along lines of equal latitude around the sphere, so it divides the
sphere into ‘zones’ from north to south [Figure 16D.1(B)].

Proposition 16D.1. Let f : R3 −→ R be zonal. Suppose f is a harmonic
function (i.e. 4f = 0). Suppose f separates in spherical coordinates, meaning
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that there are (bounded) functions Φ : [0, π] −→ R and R : R 6− −→ R such that

f(r, θ, φ) = R(r) · Φ(φ), for all r ≥ 0, φ ∈ [0, π], and θ ∈ [−π, π].

Then there is some µ ∈ R such that Φ(φ) = L[cos(φ)], where L : [−1, 1] −→ R
is a (bounded) solution of the Legendre Equation:

(1− x2)L′′(x)− 2xL′(x) + µL(x) = 0, (16D.19)

and R is a (bounded) solution to the Cauchy-Euler Equation:

r2R′′(r) + 2r · R′(r)− µ · R(r) = 0, for all r > 0. (16D.20)

Proof. By hypothesis

0 = 4f(r, θ, φ)

= ∂2
r f +

2
r
∂r f +

1
r2 sin(φ)

∂2
φ f +

cot(φ)
r2

∂φ f +
1

r2 sin(φ)2
∂2
θ f

(∗)
R′′(r) · Φ(φ) +

2
r
R′(r) · Φ(φ)

+
1

r2 sin(φ)
R(r) · Φ′′(φ) +

cot(φ)
r2
R(r) · Φ′(φ) + 0.

[where (∗) is because f(r, θ, φ) = R(r) ·Φ(φ).] Hence, multiplying both sides

by
r2

R(r) · Φ(φ)
, we obtain

0 =
r2R′′(r)
R(r)

+
2rR′(r)
R(r)

+
1

sin(φ)
Φ′′(φ)
Φ(φ)

+
cot(φ)Φ′(φ)

Φ(φ)
,

Or, equivalently,

r2R′′(r)
R(r)

+
2rR′(r)
R(r)

=
−1

sin(φ)
Φ′′(φ)
Φ(φ)

− cot(φ)Φ′(φ)
Φ(φ)

. (16D.21)

Now, the left hand side of (16D.21) depends only on the variable r, whereas the
right hand side depends only on φ. The only way that these two expressions
can be equal for all values of r and φ is if both expressions are constants. In
other words, there is some constant µ ∈ R (called a separation constant) such
that

r2R′′(r)
R(r)

+
2rR′(r)
R(r)

= µ, for all r ≥ 0,

and
1

sin(φ)
Φ′′(φ)
Φ(φ)

+
cot(φ)Φ′(φ)

Φ(φ)
= −µ, for all φ ∈ [0, π].
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Or, equivalently,

r2R′′(r) + 2rR′(r) = µR(r), for all r ≥ 0, (16D.22)

and
Φ′′(φ)
sin(φ)

+ cot(φ)Φ′(φ) = −µΦ(φ), for all φ ∈ [0, π]. (16D.23)

If we make the change of variables x = cos(φ) (so that φ = arccos(x), where
x ∈ [−1, 1]), then Φ(φ) = L(cos(φ)) = L(x), where L is some other (unknown)
function.

Claim 1: The function Φ satisfies the ODE (16D.23) if and only if L satisfies
the Legendre equation (16D.19).

Proof. Exercise 16D.2 (Hint: This is a straightforward application of theE©
Chain Rule.) �

Claim 1

Finally, observe that the ODE (16D.22) is equivalent to the Cauchy-Euler
equation (16D.20). 2

For all n ∈ N, we define the nth Legendre Polynomial by

Pn(x) :=
1

n! 2n
∂nx

[

(x2 − 1)
]n
. (16D.24)

For example:

P0(x) = 1 P3(x) = 1
2(5x3 − 3x)

P1(x) = x P4(x) = 1
8(35x4 − 30x2 + 3)

P2(x) = 1
2(3x2 − 1) P5(x) = 1

8(63x5 − 70x3 + 15x).

(see Figure 16D.2(A))

Lemma 16D.2. Let n ∈ N. Then the Legendre Polynomial Pn is a solution
to the Legendre Equation (16D.19) with µ = n(n+ 1).

Proof. Exercise 16D.3 (Direct computation) 2
E©

Is Pn the only solution to the Legendre Equation (16D.19)? No, because the
Legendre Equation is an order-two linear ODE, so the set of solutions forms
a two-dimensional vector space V. The scalar multiples of Pn form a one-
dimensional subspace of V. However, to be physically meaningful, we need the
solutions to be bounded at x = ±1. So instead we ask: is Pn the only bounded
solution to the Legendre Equation (16D.19)? Also, what happens if µ 6= n(n+1)
for any n ∈ N?
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Above. The Legendre polynomials P1(x) to P6(x),
plotted for x ∈ [−1, 1].

Right. Substitution of the power series
∞
∑

n=0

anx
n into

the Legendre Equation (16D.19), in the proof of Claim

1 of Lemma 16D.3.
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Figure 16D.2:
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Lemma 16D.3.

(a) If µ = n(n+1) for some n ∈ N, then (up to multiplication by a scalar), the
Legendre polynomial Pn(x) is the unique solution to the Legendre Equation
(16D.19) which is bounded on [−1, 1].

(b) If µ 6= n(n+ 1) for any n ∈ N, then all solutions to the Legendre Equation
(16D.19) are infinite power series which diverge at x = ±1 (and thus, are
unsuitable for Proposition 16D.1).

Proof. We apply the Power series method (see § 0H(iii) on page 571). Sup-

pose L(x) =
∞
∑

n=0

anx
n is some analytic function defined on [−1, 1] (where the

coefficients {an}∞n=1 are as yet unknown).

Claim 1: L(x) satisfies the Legendre Equation (16D.19) if and only if the
coefficients {a0, a1, a2, . . .} satisfy the recurrence relation

ak+2 =
k(k + 1)− µ

(k + 2)(k + 1)
ak, for all k ∈ N. (16D.25)

In particular, a2 =
−µ
2
a0 and a3 =

2− µ
6

a1.

Proof. We will substitute the power series
∞
∑

n=0

anx
n into the Legendre

Equation (16D.19). The details of the computation are shown on the right

side of Figure 16D.2. The computation yields the equation 0 =
∞
∑

k=0

bkxk,

where bk := (k + 2)(k + 1)ak+2 +
[

µ− k(k + 1)
]

ak for all k ∈ N. It follows
that bk = 0 for all k ∈ N; in other words, that

(k + 2)(k + 1)ak+2 +
[

µ− k(k + 1)
]

ak = 0, for all k ∈ N.

Rearranging this equation produces the desired recurrence relation (16D.25).
�

Claim 1

The space of all solutions to the Legendre Equation (16D.19) is a two-dimensional
vector space, because the Legendre equation is a linear differential equation
of order 2. We will now find a basis for this space. Recall that L is even
if L(−x) = L(x) for all x ∈ [−1, 1], and L is odd if L(−x) = −L(x) for all
x ∈ [−1, 1].

Claim 2: There is a unique even analytic function E(x) and a unique odd
analytic function O(x) which satisfy the Legendre Equation (16D.19), such
that E(1) = 1 = O(1), and such that any other solution L(x) can be written
as a linear combination L(x) = a E(x) + bO(x), for some constants a, b ∈ R.
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Proof. Claim 1 implies that the power series L(x) =
∞
∑

n=0

anx
n is entirely

determined by the coefficients a0 and a1. To be precise, L(x) = E(x) +

O(x), where E(x) =
∞
∑

n=0

a2nx
2n and O(x) =

∞
∑

n=0

a2n+1x
2n+1 both satisfy

the recurrence relation (16D.25), and thus, are solutions to the Legendre
Equation (16D.19). �

Claim 2

Claim 3: Suppose µ = n(n + 1) for some n ∈ N. Then the Legendre
equation (16D.19) has a degree-n polynomial as one of its solutions. To be
precise:

(a) If n is even, then ak = 0 for all even k > n. Hence, E(x) is a degree-n
polynomial.

(b) If n is odd, then ak = 0 for all odd k > n. Hence, O(x) is a degree-n
polynomial.

Proof. Exercise 16D.4 �
Claim 3

E©

Thus, there is a one-dimensional space of polynomial solutions to the Legendre
equation —namely all scalar multiples of E(x) (if n is even) or O(x) (if n is
odd).

Claim 4: If µ 6= n(n + 1) for any n ∈ N, the series E(x) and O(x) both
diverge at x = ±1.

Proof. Exercise 16D.5 (a) First note that an infinite number of coefficients E©
{an}∞n=0 are nonzero.
(b) Show that lim

n→∞
|an| = 1.

(c) Conclude that the series E(x) and O(x) diverge when x = ±1. �
Claim 4

So, there exist solutions to the Legendre equation (16D.19) that are bounded
on [−1, 1] if and only if µ = n(n + 1) for some n ∈ N, and in this case, the
bounded solutions are all scalar multiples of a polynomial of degree n [either
E(x) or O(x)]. But Lemma 16D.2 says that the Legendre polynomial Pn(x) is
a solution to the Legendre equation (16D.19). Thus, (up to multiplication by
a constant), Pn(x) must be equal to E(x) (if n is even) or O(x) (if n is odd).
2

Remark: Sometimes the Legendre polynomials are defined as the (unique)
polynomial solutions to Legendre’s equation; the definition we have given in
eqn.(16D.24) is then derived from this definition, and is called Rodrigues Formula.
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Lemma 16D.4. LetR : R 6− −→ R be a solution to the Cauchy-Euler equation

r2R′′(r) + 2r · R′(r)− n(n+ 1) · R(r) = 0, for all r > 0. (16D.26)

Then R(r) = Arn + B
rn+1 for some constants A and B.

If R is bounded at zero, then B = 0, so R(r) = Arn.

Proof. Check that f(r) = rn and g(r) = r−n−1 are solutions to eqn.(16D.26).
But (16D.26) is a second-order linear ODE, so the solutions form a 2-dimensional
vector space. Since f and g are linearly independent, they span this vector
space. 2

Corollary 16D.5. Let f : R3 −→ R be a zonal harmonic function that
separates in spherical coordinates (as in Proposition 16D.1). Then there is some
m ∈ N such that f(r, φ, θ) = Crn · Pn[cos(φ)], where Pn is the nth Legendre
Polynomial, and C ∈ R is some constant. (See Figure 16D.3.)

Proof. Combine Proposition 16D.1 with Lemmas 16D.3 and 16D.4 2

Thus, the Legendre polynomials are important when solving the Laplace
equation on spherical domains. We now describe some of their important prop-
erties

Proposition 16D.6. Legendre polynomials satisfy the following recurrence
relations:

(a) (2n+ 1)Pn(x) = P ′n+1(x)− P ′n−1(x).

(b) (2n+ 1)xPn(x) = (n+ 1)Pn+1(x) + nP ′n−1(x).

Proof. Exercise 16D.6 2
E©

Proposition 16D.7. The Legendre polynomials form an orthogonal set for
L2[−1, 1]. That is:

(a) For any n 6= m, 〈Pn,Pm〉 =
1
2

∫ 1

−1
Pn(x)Pm(x) dx = 0.

(b) For any n ∈ N, ‖Pn‖22 =
1
2

∫ 1

−1
P2
n(x)dx =

1
2n+ 1

.

Proof. (a) Exercise 16D.7 (Hint: Start with the Rodrigues formula (16D.24).E©
Apply integration by parts n times.)

(b) Exercise 16D.8 (Hint: Use Proposition 16D.6(b).) 2
E©
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Figure 16D.3: Planar cross-sections of the zonal harmonic functions rP1(cos(φ)) to

r6P6(cos(φ)), plotted for r ∈ [0...6]; see Corollary 16D.5 on the preceding page. Remember

that these are functions in R3. To visualize these functions in three dimensions, take the above

contour plots and mentally rotate them around the vertical axis.
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Because of Proposition 16D.7, we can try to represent an arbitrary function
f ∈ L2[−1, 1] in terms of Legendre polynomials, to obtain a Legendre Series:

f(x)
˜

L̃2

∞
∑

n=0

anPn(x), (16D.27)

where an :=
〈f,Pn〉
‖Pn‖22

=
2n+ 1

2

∫ 1

−1
f(x)Pn(x) dx is the nth Legendre coef-

ficient of f .

Theorem 16D.8. The Legendre polynomials form an orthogonal basis for
L2[−1, 1]. Thus, if f ∈ L2[−1, 1], then the Legendre series (16D.27) converges
to f in L2.

Proof. See [Bro89, Thm 3.2.4, p.50]. 2

Let B = {(r, θ, φ) ; r ≤ 1, θ ∈ [−π, π], φ ∈ [0, π]} be the unit ball in spherical
coordinates. Thus, ∂B = {(1, θ, φ) ; θ ∈ [−π, π], φ ∈ [0, π]} is the unit sphere.
Recall that a zonal function on ∂B is a function which depends only on the
‘latitude’ coordinate φ, and not on the ‘longitude’ coordinate θ.

Theorem 16D.9. Dirichlet problem on a ball

Let f : ∂B −→ R be some function describing a heat distribution on the
surface of the ball. Suppose f is zonal –i.e. f(1, θ, φ) = F (cos(φ)), where
F ∈ L2[−1, 1], and F has Legendre series

F (x)
˜

L̃2

∞
∑

n=0

anPn(x).

Define u : B −→ R by u(r, φ, θ) =
∞
∑

n=0

anr
nPn (cos(φ)). Then u is the uniqe solu-

tion to the Laplace equation, satisfying the nonhomogeneous Dirichlet boundary
conditions

u(1, θ, φ)
˜

L̃2
f(θ, φ), for all (1, θ, φ) ∈ ∂B.

Proof. Exercise 16D.9 2
E©
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16E Separated vs. quasiseparated

Prerequisites: §16B.

If we use complex-valued functions like (16A.4) as the components of the
separated solution (16B.5) on page 355, then we will still get mathematically
valid solutions to Laplace’s equation (as long as (16B.7) is true). However,
these solutions are not physically meaningful —what does a complex-valued heat
distribution feel like? This is not a problem, because we can extract real-valued
solutions from the complex solution as follows.

Proposition 16E.1. Suppose L is a linear differential operator with real-
valued coefficients, and g : RD −→ R, and consider the nonhomogeneous PDE
“Lu = g”.

If u : RD −→ C is a (complex-valued) solution to this PDE, and we define
uR(x) = Re [u(x)] and uI(x) = Im [u(x)], then LuR = g and LuI = 0.

Proof. Exercise 16E.1 2
E©

In this case, the solutions uR and uI are not themselves generally going to
be in separated form. Since they arise as the real and imaginary components of
a complex separated solution, we call uR and uI quasiseparated solutions.

Example 16E.2. Recall the separated solutions to the two-dimensional
Laplace equation from Example 16A.2 on page 354. Here, L = 4 and g ≡ 0,
and, for any fixed µ ∈ R, the function

u(x, y) = X(x) · Y (y) = exp(µy) · exp(µiy)

is a complex solution to Laplace’s equation. Thus,

uR(x, y) = exp(µx) cos(µy) and uI(x, y) = exp(µx) sin(µy)

are real-valued solutions of the form obtained earlier. ♦

16F The polynomial formalism

Prerequisites: §16B, §4B.

Separation of variables seems like a bit of a miracle. Just how generally
applicable is it? To answer this, it is convenient to adopt a polynomial for-
malism for differential operators. If L is a differential operator with constant1

1This is important.
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coefficients, we will formally represent L as a “polynomial” in the “variables”
∂1, ∂2, . . . , ∂D. For example, we can write the Laplacian:

4 = ∂2
1 + ∂2

2 + . . .+ ∂2
D = P(∂1, ∂2, . . . , ∂D),

where P(x1, x2, . . . , xD) = x2
1 + x2

2 + . . .+ x2
D.

In another example, the general second-order linear PDE

A∂2
x u + B∂x ∂y u + C∂2

y u + D∂x u + E∂y u + Fu = G

(where A,B,C, . . . , F are constants) can be rewritten:

P(∂x, ∂y)u = g

where P(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F .
The polynomial P is called the polynomial symbol of L, and provides a

convenient method for generating separated solutions

Proposition 16F.1. Suppose that L is a linear differential operator on RD
with polynomial symbol P. Regard P : CD −→ C as a function.

Fix z = (z1, . . . , zD) ∈ CD, and define uz : RD −→ R by

uz(x1, . . . , xD) = exp(z1x1) · exp(z2x2) . . . exp(zDxD) = exp(z • x).

Then Luz(x) = P(z) · uz(x) for all x ∈ RD.
In particular, if z is a root of P (that is, P(z1, . . . , zD) = 0), then Lu = 0.

Proof. Exercise 16F.1 Hint: First, use formula (0C.1) on page 551 to show thatE©
∂d uz = zd · uz, and, more generally, ∂nd uz = znd · uz. 2

Thus, many2 separated solutions of the differential equation “Lu = 0” are
defined by the the complex-valued solutions of the algebraic equation “P(z) = 0”.

Example 16F.2. Consider again the two-dimensional Laplace equation

∂2
x u+ ∂2

y u = 0

The corresponding polynomial is P(x, y) = x2 + y2. Thus, if z1, z2 ∈ C are
any complex numbers such that z2

1 + z2
2 = 0, then

u(x, y) = exp(z1x+ z2y) = exp(z1x) · exp(z2y)

is a solution to Laplace’s equation. In particular, if z1 = 1, then we must have
z2 = ±i. Say we pick z2 = i; then the solution becomes

u(x, y) = exp(x) · exp(iy) = ex ·
(

cos(y) + i sin(y)
)

.

2But not all.
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More generally, if we choose z1 = µ ∈ R to be a real number, then we must
choose z2 = ±µi to be purely imaginary, and the solution becomes

u(x, y) = exp(µx) · exp(±µiy) = eµx ·
(

cos(±µy) + i sin(±µy)
)

.

Compare this with the separated solutions obtained from Example 16A.2 on
page 354. ♦

Example 16F.3. Consider the one-dimensional telegraph equation:

∂2
t u+ 2∂tu+ u = 4u. (16F.28)

We can rewrite this as

∂2
t u+ 2∂tu+ u− ∂2

xu = 0,

which is equivalent to “Lu = 0”, where L is the linear differential operator

L = ∂2
t + 2∂t + u− ∂2

x,

with polynomial symbol

P(x, t) = t2 + 2t+ 1− x2 = (t+ 1 + x)(t+ 1− x).

Thus, the equation “P(α, β) = 0” has solutions:

α = ±(β + 1)

So, if we define u(x, t) = exp(α · x) exp(β · t), then u is a separated solution to
equation (16F.28). (Exercise 16F.2 Check this.). In particular, suppose we E©
choose α = −β−1. Then the separated solution is u(x, t) = exp(β(t−x)−x).
If β = βR + βI i is a complex number, then the quasiseparated solutions are:

uR = exp (βR(x+ t)− x) · cos (βI(x+ t))
uI = exp (βR(x+ t)− x) · sin (βI(x+ t)) . ♦

Remark 16F.4: The polynomial formalism provides part of the motivation
for the classification of PDEs as elliptic, hyperbolic3, etc. Notice that, if L is an
elliptic differential operator on R2, then the real-valued solutions to P(z1, z2) = 0
(if any) form an ellipse in R2. In RD, the solutions form an ellipsoid.

Similarly, if we consider the parabolic PDE “∂t u = Lu”, the the correspond-
ing differential operator L− ∂t has polynomial symbol Q(x; t) = P(x)− t. The
real-valued solutions to Q(x; t) = 0 form a paraboloid in RD × R. For example,
the 1-dimensional heat equation “∂2

x u − ∂t u = 0” yields the classic equation
“t = x2” for a parabola in the (x, t)-plane. Similarly, with a hyperbolic PDE,
the differential operator L− ∂2

t has polynomial symbol Q(x; t) = P(x)− t2, and
the roots form a hyperboloid.

3See § 5E on page 95.
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16G Constraints

Prerequisites: §16F.

Normally, we are not interested in just any solution to a PDE; we want a
solution which satisfies certain constraints. The most common constraints are:

• Boundary Conditions: If the PDE is defined on some bounded domain
X ⊂ RD, then we may want the solution function u (or its derivatives) to
have certain values on the boundary of this domain.

• Boundedness: If the domain X is unbounded (e.g. X = RD), then we
may want the solution u to be bounded; in other words, we want some finite
M > 0 such that |u(x)| < M for all values of some coordinate xd.

16G(i) Boundedness

The solution obtained through Proposition 16F.1 is not generally going to be
bounded, because the exponential function f(x) = exp(λx) is not bounded as a
function of x, unless λ is a purely imaginary number. More generally:

Proposition 16G.1. Fix z = (z1, . . . , zD) ∈ CD, and suppose uz : RD −→ R
is defined as in Proposition 16F.1:

uz(x1, . . . , xD) = exp(z1x1) · exp(z2x2) . . . exp(zDxD) = exp(z • x).

Then:

1. u(x) is bounded for all values of the variable xd ∈ R if and only if zd = λi
for some λ ∈ R.

2. u(x) is bounded for all xd > 0 if and only if zd = ρ+ λi for some ρ ≤ 0.

3. u(x) is bounded for all xd < 0 if and only if zd = ρ+ λi for some ρ ≥ 0.

Proof. Exercise 16G.1 2
E©

Example 16G.2. Recall the one-dimensional telegraph equation of Example
16F.3:

∂2
t u+ 2∂tu+ u = 4u

We constructed a separated solution of the form: u(x, t) = exp(αx + βt),
where α = ±(β + 1). This solution will be bounded in time if and only if β
is a purely imaginary number; i.e. β = βI · i. Then α = ±(βI · i + 1), so that

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



16G. Constraints 373

u(x, t) = exp(±x) · exp
(

βI · (t± x) · i
)

; thus, the quasiseparated solutions
are:

uR = exp (±x)·cos
(

βI · (t± x)
)

and uI = exp (±x)·sin
(

βI · (t± x)
)

.

Unfortunately, this solution is unbounded in space, which is probably not what
we want. An alternative is to set β = βI i − 1, and then set α = β + 1 = βI i.
Then the solution becomes u(x, t) = exp(βI i(x+ t)− t) = e−t exp(βI i(x+ t)),
and the quasiseparated solutions are:

uR = e−t · cos (βI(x+ t)) and uI = e−t · sin (βI(x+ t)) .

These solutions are exponentially decaying as t → ∞, and thus, bounded in
“forward time”. For any fixed time t, they are also bounded (and actually
periodic) functions of the space variable x. ♦

16G(ii) Boundary conditions

Prerequisites: §5C.

There is no cureall like Proposition 16G.1 for satisfying boundary conditions,
since generally they are different in each problem. Generally, a single separated
solution (say, from Proposition 16F.3) will not be able to satisfy the conditions;
we must sum together several solutions, so that they “cancel out” in suitable
ways along the boundaries. For these purposes, the following Euler identities
are often useful:

sin(x) =
exi − e−xi

2i
; cos(x) =

exi + e−xi

2i
;

sinh(x) =
ex − e−x

2
; cosh(x) =

ex + e−x

2
.

which we can utilize along with the following boundary information:

− cos′(nπ) = sin(nπ) = 0, for all n ∈ Z;

sin′
((

n+
1
2

)

π

)

= cos
((

n+
1
2

)

π

)

= 0, for all n ∈ Z;

cosh′(0) = sinh(0) = 0.

For “rectangular” domains, the boundaries are obtained by fixing a partic-
ular coordinate at a particular value; i.e. they are each of the form form
{

x ∈ RD ; xd = K
}

for some constant K and some dimension d. The conve-
nient thing about a separated solution is that it is a product of D functions, and
only one of them is involved in satisfying this boundary condition.

For example, recall Example 16F.2 on page 370, which gave the separated so-
lution u(x, y) = eµx ·

(

cos(±µy) + i sin(±µy)
)

for the two-dimensional Laplace
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equation, where µ ∈ R. Suppose we want the solution to satisfy homogeneous
Dirichlet boundary conditions:

u(x, y) = 0 if x = 0, or y = 0, or y = π.

To satisfy these three conditions, we proceed as follows:

First, let u1(x, y) = eµx ·
(

cos(µy) + i sin(µy)
)

,

and u2(x, y) = eµx ·
(

cos(−µy) + i sin(−µy)
)

= eµx ·
(

cos(µy)− i sin(µy)
)

.

If we define v(x, y) = u1(x, y)− u2(x, y), then

v(x, y) = 2eµx · i sin(µy).

At this point, v(x, y) already satisfies the boundary conditions for {y = 0} and
{y = π}. To satisfy the remaining condition:

Let v1(x, y) = 2eµx · i sin(µy),
and v1(x, y) = 2e−µx · i sin(µy).

If we define w(x, y) = v1(x, y)− v2(x, y), then

w(x, y) = 4 sinh(µx) · i sin(µy)

also satisfies the boundary condition at {x = 0}.
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Chapter 17

Impulse-response methods

“Nature laughs at the difficulties of integration.” —Pierre-Simon Laplace

17A Introduction
A fundamental concept in science is causality: an initial event (an impulse)

at some location y causes a later event (a response) at another location x (Figure
17A.1A). In an evolving, spatially distributed system (e.g. a temperature dis-
tribution, a rippling pond, etc.), the system state at each location results from
a combination of the responses to the impulses from all other locations (as in
Figure 17A.1B).

If the system is described by a linear PDE, then we expect some sort of
‘superposition principle’ to apply (Theorem 4C.3 on page 65). Hence, we can
replace the word ‘combination’ with ‘sum’, and say:

The state of the system at x is a sum of the responses to the
impulses from all other locations.

(17A.1)

(See Figure 17A.1B). However, there are an infinite number —indeed, a contin-
uum —of ‘other locations’, so we are ‘summing’ over a continuum of responses.
But a ‘sum’ over a continuum is just an integral. Hence, statement (17A.1)
becomes:

In a linear PDE, the solution at x is an integral of the re-
sponses to the impulses from all other locations.

(17A.2)

The relation between impulse and response (i.e. between cause and effect) is
described by impulse-response function, Γ(y → x), which measures the degree
of ‘influence’ which point y has on point x. In other words, Γ(y→ x) measures
the strength of the response at x to an impulse at y. In a system which evolves
in time, Γ may also depend on time (since it takes time for the effect from y to
propagate to x), so Γ also depends on time, and is written Γt(y→ x).

Intuitively, Γ should have four properties:
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Figure 17A.1: (A) Γ(y → x) describes the ‘response’ at x to an ‘impulse’ at y.
(B) The state at x is a sum of its responses to the impulses at y1,y2, . . . ,y5.

(i) Influence should decay with distance. In other words, if y and x are close
together, then Γ(y → x) should be large; if y and x are far apart, then
Γ(y→ x) should be small (Figure 17A.2).

(ii) In a spatially homogeneous or translation invariant system (Figure 17A.3(A)),
Γ should only depend on the displacement from y to x, so that we can write
Γ(y→ x) = γ(x− y), where γ is some other function.

(iii) In an isotropic or rotation invariant system system (Figure 17A.3(B)), Γ
should only depend on the distance between y and x, so that we can write
Γ(y → x) = ψ

(

|x− y|
)

, where ψ is a function of one real variable, and
lim
r→∞

ψ(r) = 0.

(iv) In a time-evolving system, the value of Γt(y → x) should first grow as t
increases (as the effect ‘propagates’ from y to x), reach a maximum value,
and then decrease to zero as t grows large (as the effect ‘dissipates’ through
space) (see Figure 17A.4).

Thus, if there is an ‘impulse’ of magnitude I at y, and R(x) is the ‘response’
at x, then

R(x) = I · Γ(y→ x) (see Figure 17A.5A)

What if there is an impulse I(y1) at y1, an impulse I(y2) at y2, and an impulse
I(y3) at y3? Then statement (17A.1) implies:

R(x) = I(y1) ·Γ(y1 → x) + I(y2) ·Γ(y2 → x) + I(y3) ·Γ(y3 → x).

(see Figure 17A.5B). If X is the domain of the PDE, then suppose, for every y
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Figure 17A.2: The influence of y on x becomes small as the distance from y to
x grows large.
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Figure 17A.3: (A) Translation invariance: If y2 = y1 +v and x2 = x1 +v, then
Γ(y2 → x2) = Γ(y1 → x1). (B) Rotation invariance: If y1 and y2 are both
the same distance from x (i.e. they lie on the circle of radius r around x), then
Γ(y2 → x) = Γ(y1 → x).

t

Γ t
 (y

->
x)

Figure 17A.4: The time-dependent impulse-response function first grows large,
and then decays to zero.

Γ(y     x)

y y

y y y1 2 3 y y y1 2 3

32

1

x

x

(A)

(B)

Figure 17A.5: (A) An ‘impulse’ of magnitude I at y triggers a ‘response’ of
magnitude I · Γ(y → x) at x. (B) Multiple ‘impulses’ of magnitude I1, I2

and I3 at y1, y2 and y3, respectively, triggers a ‘response’ at x of magnitude
I1 · Γ(y1 → x) + I2 · Γ(y2 → x) + I3 · Γ(y3 → x).
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in X, that I(y) is the impulse at y. Then statement (17A.1) takes the form:

R(x) =
∑

y∈X
I(y) · Γ(y→ x). (17A.3)

But now we are summing over all y in X, and usually, X = RD or some subset, so
the ‘summation’ in (17A.3) doesn’t make mathematical sense. We must replace
the sum with an integral, as in statement (17A.2), to obtain:

R(x) =
∫

X
I(y) · Γ(y→ x) dy. (17A.4)

If the system is spatially homogeneous, then according to (ii), this becomes

R(x) =
∫

I(y) · γ(x− y) dy.

This integral is called a convolution, and is usually written as I ∗ γ. In other
words,

R(x) = I ∗ γ(x), where I ∗ γ(x) :=
∫

I(y) · γ(x− y) dy.

(17A.5)
Note that I ∗γ is a function of x. The variable y appears on the right hand side,
but as only an integration variable.

In a time-dependent system, (17A.4) becomes:

R(x; t) =
∫

X
I(y) · Γt(y→ x) dy.

while (17A.5) becomes:

R(x; t) = I ∗ γt(x), where I ∗ γt(x) =
∫

I(y) · γt(x− y) dy.

(17A.6)
The following surprising property is often useful:

Proposition 17A.1. If f, g : RD −→ R are integrable functions, then g∗f =
f ∗ g.

Proof. (Case D = 1) Fix x ∈ R. Then

(g ∗ f)(x) =
∫ ∞

−∞
g(y) · f(x− y) dy

(s)

∫ −∞

∞
g(x− z) · f(z) · (−1) dz

=
∫ ∞

−∞
f(z) · g(x− z) dz = (f ∗ g)(x).

Here, step (s) was the substitution z = x−y, so that y = x−z and dy = −dz.
Exercise 17A.1 Generalize this proof to the case D ≥ 2. 2

E©
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Remarks: (a) Depending on the context, impulse-response functions are some-
times called solution kernels, or Green’s functions or impulse functions.

(b) If f and g are analytic functions, then there is an efficient way to compute
f ∗ g using complex analysis; see Corollary 18H.3 on page 474.

17B Approximations of identity

17B(i) ...in one dimension

Prerequisites: §17A.

Suppose γ : R×R+ −→ R was a one-dimensional impulse response function,
as in equation (17A.6). Thus, if I : R −→ R is a function describing the initial
‘impulse’, then for any time t > 0, the ‘response’ is given by the function Rt
defined:

Rt(x) := I ∗ γt(x) =
∫ ∞

−∞
I(y) · γt(x− y) dy. (17B.1)

Intuitively, if t is close to zero, then the response Rt should be concentrated near
the locations where the impulse I is concentrated (because the energy has not
yet been able to propagate very far). By inspecting eqn.(17B.1), we see that this
means that the mass of γt should be ‘concentrated’ near zero. Formally, we say
that γ is an approximation of the identity if it has the following properties
(Figure 17B.1):

(AI1) γt(x) ≥ 0 everywhere, and
∫ ∞

−∞
γt(x) dx = 1 for any fixed t > 0.

(AI2) For any ε > 0, lim
t→0

∫ ε

−ε
γt(x) dx = 1.

Property (AI1) says that γt is a probability density. (AI2) says that γt
concentrates all of its “mass” at zero as t → 0. (Heuristically speaking, the
function γt is converging to the ‘Dirac delta function’ δ0 as t→ 0.)

Example 17B.1.

(a) Let γt(x) =
{

1
t if 0 ≤ x ≤ t;
0 if x < 0 or t < x.

(Figure 17B.2)

Thus, for any t > 0, the graph of γt is a ‘box’ of width t and height 1/t.
Then γ is an approximation of identity. (See Practice Problem # 11 on
page 413.)
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Figure 17B.1: γ is an approximation of the identity.
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2

1/2

1

1

1/2

2

1/3

3

1/4

4

γ2 γ1 γ1/2 γ1/3 γ1/4

Figure 17B.2: Example 17B.1(a)

(b) Let γt(x) =
{

1
2t if |x| ≤ t
0 if t < |x| .

Thus, for any t > 0, the graph of γt is a ‘box’ of width 2t and height 1/2t.
Then γ is an approximation of identity. (See Practice Problem # 12 on
page 413.) ♦

A function satisfying properties (AI1) and (AI2) is called an approximation
of the identity because of the following theorem:

Proposition 17B.2. Let γ : R× R+ −→ R be an approximation of identity.

(a) Let I : R −→ R be a bounded continuous function. Then for all x ∈ R,
lim
t→0
I ∗ γt(x) = I(x).

(b) Let I : R −→ R be any bounded integrable function. If x ∈ R is any
continuity-point of I, then lim

t→0
I ∗ γt(x) = I(x).

Proof. (a) Fix x ∈ R. Given any ε > 0, find δ > 0 such that,

For all y ∈ R,
(

|y − x| < δ
)

=⇒
( ∣

∣

∣I(y)− I(x)
∣

∣

∣ < ε
3

)

.

(Such an ε exists because I is continuous). Thus,
∣

∣

∣

∣

I(x) ·
∫ x+δ

x−δ
γt(x− y) dy −

∫ x+δ

x−δ
I(y) · γt(x− y) dy

∣

∣

∣

∣

=
∣

∣

∣

∣

∫ x+δ

x−δ

(

I(x)− I(y)
)

· γt(x− y) dy
∣

∣

∣

∣

≤
∫ x+δ

x−δ

∣

∣

∣I(x)− I(y)
∣

∣

∣ · γt(x− y) dy

<
ε

3

∫ x+δ

x−δ
γt(x− y) dy <

(AI1)

ε

3
. (17B.2)

(Here (AI1) is by property (AI1) of γt.)

Recall that I is bounded. Suppose |I(y)| < M for all y ∈ R; using (AI2), find

some small τ > 0 such that, if t < τ , then
∫ x+δ

x−δ
γt(y) dy > 1− ε

3M
; hence

∫ x−δ

−∞
γt(y) dy +

∫ ∞

x+δ
γt(y) dy =

∫ ∞

−∞
γt(y) dy −

∫ x+δ

x−δ
γt(y) dy
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<
(AI1)

1−
(

1− ε

3M

)

=
ε

3M
. (17B.3)

(Here (AI1) is by property (AI1) of γt.) Thus,
∣

∣

∣

∣

I ∗ γt(x) −
∫ x+δ

x−δ
I(y) · γt(x− y) dy

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ ∞

−∞
I(y) · γt(x− y) dy −

∫ x+δ

x−δ
I(y) · γt(x− y) dy

∣

∣

∣

∣

=
∣

∣

∣

∣

∫ x−δ

−∞
I(y) · γt(x− y) dy +

∫ ∞

x+δ
I(y) · γt(x− y) dy

∣

∣

∣

∣

≤
∫ x−δ

−∞

∣

∣

∣I(y) · γt(x− y)
∣

∣

∣ dy +
∫ ∞

x+δ

∣

∣

∣I(y) · γt(x− y)
∣

∣

∣ dy

≤
∫ x−δ

−∞
M · γt(x− y) dy +

∫ ∞

x+δ
M · γt(x− y) dy

≤ M ·
(∫ x−δ

−∞
γt(x− y) dy +

∫ ∞

x+δ
γt(x− y) dy

)

≤
(∗)

M · ε

3M
=

ε

3
. (17B.4)

(Here, (∗) is by eqn.(17B.3).) Combining equations (17B.2) and (17B.4) we
have:

∣

∣

∣

∣

I(x) ·
∫ x+δ

x−δ
γt(x− y) dy − I ∗ γt(x)

∣

∣

∣

∣

≤
∣

∣

∣

∣

I(x) ·
∫ x+δ

x−δ
γt(x− y) dy −

∫ x+δ

x−δ
I(y) · γt(x− y) dy

∣

∣

∣

∣

+
∣

∣

∣

∣

∫ x+δ

x−δ
I(y) · γt(x− y) dy − I ∗ γt(x)

∣

∣

∣

∣

≤ ε

3
+

ε

3
=

2ε
3
. (17B.5)

But if t < τ ,then
∣

∣

∣

∣

1−
∫ x+δ

x−δ
γt(x− y) dy

∣

∣

∣

∣

<
ε

3M
. Thus,

∣

∣

∣

∣

I(x) − I(x) ·
∫ x+δ

x−δ
γt(x− y) dy

∣

∣

∣

∣

≤ |I(x)| ·
∣

∣

∣

∣

1 −
∫ x+δ

x−δ
γt(x− y) dy

∣

∣

∣

∣

< |I(x)| · ε

3M
≤ M · ε

3M
=

ε

3
. (17B.6)

Combining equations (17B.5) and (17B.6) we have:

|I(x) − I ∗ γt(x)|
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≤
∣

∣

∣

∣

I(x) − I(x) ·
∫ x+δ

x−δ
γt(x− y) dy

∣

∣

∣

∣

+
∣

∣

∣

∣

I(x) ·
∫ x+δ

x−δ
γt(x− y) dy − I ∗ γt(x)

∣

∣

∣

∣

≤ ε

3
+

2ε
3
. = ε.

Since ε can be made arbitrarily small, we’re done.

(b) Exercise 17B.1 (Hint: imitate part (a)). 2
E©

In other words, as t→ 0, the convolution I ∗ γt resembles I with arbitrarily
high accuracy. Similar convergence results can be proved in other norms (e.g.
L2 convergence, uniform convergence).

Example 17B.3. Let γt(x) =
{

1
t if 0 ≤ x ≤ t
0 if x < 0 or t < x

, as in Example

17B.1(a). Suppose I : R −→ R is a continuous function. Then for any x ∈ R,

I∗γt(x) =
∫ ∞

−∞
I(y)·γt(x−y) dy =

1
t

∫ x

x−t
I(y) dy =

1
t

(

J (x)− J (x− t)
)

,

where J is an antiderivative of I. Thus, as implied by Proposition 17B.2,

lim
t→0
I ∗ γt(x) = lim

t→0

J (x)− J (x− t)
t (∗)

J ′(x)
(†)
I(x).

(Here (∗) is just the definition of differentiation, and (†) is because J is an antiderivative of

I.) ♦

17B(ii) ...in many dimensions

Prerequisites: §17B(i). Recommended: §17C(i).

A nonnegative function γ : RD×R+ −→ R 6− is called an approximation of
the identity if it has the following two properties:

(AI1)
∫

RD
γt(x) dx = 1 for all t ∈ [0,∞].

(AI2) For any ε > 0, lim
t→0

∫

B(0;ε)
γt(x) dx = 1.

Property (AI1) says that γt is a probability density. (AI2) says that γt con-
centrates all of its “mass” at zero as t→ 0.

Example 17B.4. Define γ : R2×R+ −→ R by γt(x, y) =
{

1
4t2

if |x| ≤ t and |y| ≤ t;
0 otherwise.

.

Then γ is an approximation of the identity on R2. (Exercise 17B.2 ) ♦ E©
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Proposition 17B.5. Let γ : RD × R+ −→ R be an approximation of the
identity.

(a) Let I : RD −→ R be a bounded continuous function. Then for every
x ∈ RD, we have lim

t→0
I ∗ γt(x) = I(x).

(b) Let I : RD −→ R be any bounded integrable function. If x ∈ RD is any
continuity-point of I, then lim

t→0
I ∗ γt(x) = I(x).

Proof. Exercise 17B.3 Hint: the argument is basically identical to that ofE©
Proposition 17B.2; just replace the interval (−ε, ε) with a ball of radius ε. 2

In other words, as t→ 0, the convolution I ∗ γt resembles I with arbitrarily
high accuracy. Similar convergence results can be proved in other norms (e.g.
L2 convergence, uniform convergence).

When solving partial differential equations, approximations of identity are
invariably used in conjunction with the following result:

Proposition 17B.6. Let L be a linear differential operator on C∞(RD;R).

(a) If γ : RD −→ R is a solution to the homogeneous equation “L γ = 0”, then
for any function I : RD −→ R, the function u = I ∗ γ satisfies: Lu = 0.

(b) If γ : RD × R+ −→ R satisfies the evolution equation “∂nt γ = L γ”, and
we define γt(x) := γ(x; t), then for any function I : RD −→ R, the function
ut = I ∗ γt satisfies: ∂nt u = Lu.

Proof. Exercise 17B.4 Hint: Generalize the proof of Proposition 17C.1 onE©
the facing page, by replacing the one-dimensional convolution integral with a D-
dimensional convolution integral, and by replacing the Laplacian with an arbitrary
linear operator L. 2

Corollary 17B.7. Suppose γ is an approximation of the identity and satisfies
the evolution equation “∂nt γ = L γ”. For any I : RD −→ R, define u : RD ×
R 6− −→ R by:

• u(x; 0) = I(x).

• ut = I ∗ γt, for all t > 0.

Then u is a solution to the equation “∂nt u = Lu”, and u satisfies the initial
conditions u(x, 0) = I(x) for all x ∈ RD.

Proof. Combine Propositions 17B.5 and 17B.6. 2
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We say that γ is the fundamental solution (or solution kernel, or Green’s
function or impulse function) for the PDE. For example, the D-dimensional
Gauss-Weierstrass kernel is a fundamental solution for the D-dimensional heat
equation.

17C The Gaussian convolution solution (heat equation)

17C(i) ...in one dimension

Prerequisites: §1B(i), §17B(i), §0G. Recommended: §17A, §20A(ii) .

Given two functions I,G : R −→ R, recall (from §17A) that their convolu-
tion is the function I ∗ G : R −→ R defined:

I ∗ G(x) :=
∫ ∞

−∞
I(y) · G(x− y) dy, for all x ∈ R.

Recall the Gauss-Weierstrass kernel from Example 1B.1 on page 6:

Gt(x) :=
1

2
√
πt

exp
(

−x2

4t

)

, for all x ∈ R and t > 0.

We will use Gt(x) as an impulse-response function to solve the one-dimensional
heat equation.

Proposition 17C.1. Let I : R −→ R be a bounded integrable function.
Define u : R× R+ −→ R by u(x; t) := I ∗ Gt(x) for all x ∈ R and t > 0. Then
u is a solution to the one-dimensional heat equation.

Proof. For any fixed y ∈ R, define uy(x; t) = I(y) · Gt(x− y).

Claim 1: uy(x; t) is a solution of the one-dimensional heat equation.

Proof. First note that ∂t Gt(x− y) = ∂2
x Gt(x− y) (Exercise 17C.1 ). E©

Now, y is a constant, so we treat I(y) as a constant when differentiating by
x or by t. Thus,

∂t uy(x, t) = I(y) · ∂t Gt(x− y) = I(y) · ∂2
x Gt(x− y)

= ∂2
x uy(x, t) = 4uy(x, t),

as desired. �
Claim 1

Now, u(x, t) = I ∗ Gt =
∫ ∞

−∞
I(y) · Gt(x− y) dy =

∫ ∞

−∞
uy(x; t) dy. Thus,

∂t u(x, t)
(∗)

∫ ∞

−∞
∂t uy(x; t) dy

(†)

∫ ∞

−∞
4uy(x; t) dy

(∗)
4 u(x, t).
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Figure 17C.1: Discrete convolution: a superposition of Gaussians
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)
t

(x)
I(x)

I
∞∑

n
=
−
∞
I
n
·G

(n
)

t
(x)

I ∗ Gt(x) =
∫

R
I(y) · Gt(x− y) dy = lim

ε→0
ε ·

∞
∑

n=−∞
I(nε) · Gt(x− nε)

Figure 17C.2: Convolution as a limit of ‘discrete’ convolutions.
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Here, (†) is by Claim 1, and (∗) is by Proposition 0G.1 on page 567.

(Exercise 17C.2 Verify that the conditions of Proposition 0G.1 are satisfied.) 2
E©

Remark. One way to visualize the ‘Gaussian convolution’ u(x; t) = I ∗Gt(x)
is as follows. Consider a finely spaced “ε-mesh” of points on the real line,

ε · Z = {nε ; n ∈ Z} .

For every n ∈ Z, define the function G(n)
t (x) = Gt(x − nε). For example,

G(5)
t (x) = Gt(x − 5ε) looks like a copy of the Gauss-Weierstrass kernel, but

centered at 5ε (see Figure 17C.1A).
For each n ∈ Z, let In = I(n · ε) (see Figure 17C.1C). Now consider the

infinite linear combination of Gauss-Weierstrass kernels (see Figure 17C.1D):

uε(x; t) = ε ·
∞
∑

n=−∞
In · G(n)

t (x).

Now imagine that the ε-mesh become ‘infinitely dense’, by letting ε→ 0. Define
u(x; t) = lim

ε→0
uε(x; t). I claim that u(x; t) = I ∗ Gt(x). To see this, note that

u(x; t) = lim
ε→0

ε ·
∞
∑

n=−∞
In · G(n)

t (x) = lim
ε→0

ε ·
∞
∑

n=−∞
I(nε) · Gt(x− nε)

(∗)

∫ ∞

−∞
I(y) · Gt(x− y) dy = I ∗ Gt(y),

as shown in Figure 17C.2.

Exercise 17C.3. Rigorously justify step (∗) in the previous computation. (Hint. E©
Use a Riemann sum.) �

Proposition 17C.2. The Gauss-Weierstrass kernel is an approximation of
identity (see §17B(i)), meaning that it satisfies the following two properties:

(AI1) Gt(x) ≥ 0 everywhere, and

∫ ∞

−∞
Gt(x) dx = 1 for any fixed t > 0.

(AI2) For any ε > 0, lim
t→0

∫ ε

−ε
Gt(x) dx = 1.

Proof. Exercise 17C.4 2
E©
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0

Figure 17C.3: The Heaviside step function H(x).

Corollary 17C.3. Let I : R −→ R be a bounded integrable function. Define
the function u : R× R 6− −→ R by

• u0(x) := I(x) for all x ∈ R (initial conditions).

• ut := I ∗ Gt, for all t > 0.

Then u is a solution to the one-dimensional heat equation. Furthermore:

(a) If I is continuous on R, then u is continuous on R× R 6−.

(b) Even if I is not continuous, the function u is still continuous on R × R+,
and u is also continuous at (x, 0) for any x ∈ R where I is continuous.

Proof. Propositions 17C.1 says that u is a solution to the heat equation.
Combine Proposition 17C.2 with Proposition 17B.2 on page 381 to verify the
continuity assertions (a) and (b). 2

The ‘continuity’ part of Corollary 17C.3 means that u is the solution to the
initial value problem for the heat equation with initial conditions I. Because
of Corollary 17C.3, we say that G is the fundamental solution (or solution
kernel, or Green’s function or impulse function) for the heat equation.

Example 17C.4: The Heaviside Step function

Consider the Heaviside step function H(x) =
{

1 if x ≥ 0
0 if x < 0

(see Fig-

ure 17C.3). The solution to the one-dimensional heat equation with initial
conditions u(x, 0) = H(x) is given by:

u(x, t)
(∗)
H ∗ Gt(x)

(†)
Gt ∗ H(x) =

∫ ∞

−∞
Gt(y) · H(x− y) dy

=
1

2
√
πt

∫ ∞

−∞
exp

(

−y2

4t

)

H(x− y) dy
(‡)

1
2
√
πt

∫ x

−∞
exp

(

−y2

4t

)

dy

(�)

1√
2π

∫ x/
√

2t

−∞
exp

(

−z2

2

)

dz = Φ
(

x√
2t

)

.

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



389

0

Figure 17C.4: ut(x) = (H ∗ Gt)(x) evaluated at several x ∈ R.

t=1

t=3

t=5

t=7

t=9
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t=5

t=7
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P
Sfrag

replacem
ents

Gt(x) ut(x)

Figure 17C.5: ut(x) = (H ∗ Gt)(x) for several t > 0.
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Here, (∗) is by Prop. 17C.1 on page 385; (†) is by Prop. 17A.1 on page 378;

(‡) is because H(x− y) =
{

1 if y ≤ x
0 if y > x

, and (�) is where we make the

substitution z = y√
2t

; thus, dy =
√

2t dz.

Here, Φ(x) is the cumulative distribution function of the standard normal
probability measure1, defined:

Φ(x) :=
1√
2π

∫ x

−∞
exp

(

−z2

2

)

dz.

(see Figure 17C.4). At time zero, u(x, 0) = H(x) is a step function. For t > 0,
u(x, t) looks like a compressed version of Φ(x): a steep sigmoid function. As
t increases, this sigmoid becomes broader and flatter. (see Figure 17C.5). ♦

When computing convolutions, you can often avoid a lot of messy integrals
by exploiting the following properties:

Proposition 17C.5. Let f, g : R −→ R be integrable functions. Then:

(a) If h : R −→ R is another integrable function, then f ∗ (g + h) = (f ∗ g) +
(f ∗ h).

(b) If r ∈ R is a constant, then f ∗ (r · g) = r · (f ∗ g).

(c) Suppose d ∈ R is some ‘displacement’, and we define f
�d(x) = f(x− d).

Then (f
�d ∗ g)(x) = (f ∗ g)(x− d). (i.e. (f

�d) ∗ g = (f ∗ g)
�d.)

Proof. See Practice Problems #2 and # 3 on page 411 of §17H. 2

Example 17C.6: A staircase function

Suppose I(x) =















0 if x < 0
1 if 0 ≤ x < 1
2 if 1 ≤ x < 2
0 if 2 ≤ x

(see Figure 17C.6A). Let Φ(x) be

the sigmoid function from Example 17C.4. Then

u(x, t) = Φ
(

x√
2t

)

+ Φ
(

x− 1√
2t

)

− 2·Φ
(

x− 2√
2t

)

(see Figure 17C.6B)

1This is sometimes called the error function or sigmoid function. Unfortunately, no
simple formula exists for Φ(x). It can be computed with arbitrary accuracy using a Taylor
series, and tables of values for Φ(x) can be found in most statistics texts.
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2

1

1 2 x

t

–0.5 0 0.5 1 1.5 2 2.5

x0

0.05

0.1

t

0

1

2

3

4

(A) (B)

Figure 17C.6: (A) A staircase function. (B) The resulting solution to the
heat equation.

To see this, observe that we can write:

I(x) = H(x) + H(x− 1) − 2 · H(x− 2) (17C.1)
= H + H

�1(x) − 2H
�2(x), (17C.2)

where eqn. (17C.2) uses the notation of Proposition 17C.5(c). Thus,

u(x; t)
(∗)
I ∗ Gt(x)

(†)

(

H + H
�1 − 2H

�2

)

∗ Gt(x)

(‡)
H ∗ Gt(x) + H

�1 ∗ Gt(x) − 2H
�2 ∗ Gt(x)

(�)
H ∗ Gt(x) + H ∗ Gt(x− 1) − 2H ∗ Gt(x− 2)

(¶)
Φ
(

x√
2t

)

+ Φ
(

x− 1√
2t

)

− 2Φ
(

x− 2√
2t

)

. (17C.3)

Here, (∗) is by Proposition 17C.1 on page 385; (†) is by eqn. (17C.2); (‡)
is by Proposition 17C.5(a) and (b); (�) is by Proposition 17C.5(c); and
(¶) is by Example 17C.4.

Another approach. Begin with eqn. (17C.1), and, rather than using Propo-
sition 17C.5, use instead the linearity of the heat equation, along with Theo-
rem 4C.3 on page 65, to deduce that the solution must have the form:

u(x, t) = u0(x, t) + u1(x, t) − 2 · u2(x, t), (17C.4)

where

• u0(x, t) is the solution with initial conditions u0(x, 0) = H(x),

• u1(x, t) is the solution with initial conditions u1(x, 0) = H(x− 1),

• u2(x, t) is the solution with initial conditions u2(x, 0) = H(x− 2),
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But then we know, from Example 17C.4 that

u0(x, t) = Φ
(

x√
2t

)

; u1(x, t) = Φ
(

x− 1√
2t

)

; and u2(x, t) = Φ
(

x− 2√
2t

)

;

(17C.5)
Now combine (17C.4) with (17C.5) to again obtain the solution (17C.3). ♦

Remark. The Gaussian convolution solution to the heat equation is revisited
in § 20A(ii) on page 530, using the methods of Fourier transforms.

17C(ii) ...in many dimensions

Prerequisites: §1B(ii), §17B(ii). Recommended: §17A, §17C(i).

Given two functions I,G : RD −→ R, their convolution is the function
I ∗ G : RD −→ R defined:

I ∗ G(x) :=
∫

RD
I(y) · G(x− y) dy.

Note that I ∗ G is a function of x. The variable y appears on the right hand
side, but as an integration variable.

Consider the the D-dimensional Gauss-Weierstrass kernel:

Gt(x) :=
1

(4πt)D/2
exp

(

−‖x‖2

4t

)

, for all x ∈ RD and t > 0.

(See Examples 1B.2(b,c) on page 8). We will use Gt(x) as an impulse-response
function to solve the D-dimensional heat equation.

Theorem 17C.7.
Suppose I : RD −→ R is a bounded continuous function. Define the function

u : RD × R 6− −→ R by:

• u0(x) := I(x) for all x ∈ RD (initial conditions).

• ut := I ∗ Gt, for all t > 0.

Then u is a continuous solution to the heat equation on RD with initial conditions
I.

Proof.

Claim 1: u(x; t) is a solution to the D-dimensional heat equation.

Proof. Exercise 17C.5 Hint: Combine Example 1B.2(c) on page 8 withE©
Proposition 17B.6(b) on page 384. �

Claim 1
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Claim 2: G is an approximation of the identity on RD.

Proof. Exercise 17C.6 �
Claim 2

E©

Now apply Corollary 17B.7 on page 384 2

Because of Theorem 17C.7, we say that G is the fundamental solution for
the heat equation.

Exercise 17C.7. In Theorem 17C.7, suppose the initial condition I had some E©
points of discontinuity in RD. What can you say about the continuity of the function
u? In what sense is u still a solution to the initial value problem with initial conditions
u0 = I? �

17D d’Alembert’s solution (one-dimensional wave equa-
tion)

“Algebra is generous; she often gives more than is asked of her.” —Jean le Rond d’Alembert

d’Alembert’s method provides a solution to the one-dimensional wave equa-
tion

∂2
t u = ∂2

x u (17D.1)

with any initial conditions, using combinations of travelling waves and ripples.
First we’ll discuss this in the infinite domain X = R, then we’ll consider a finite
domain like X = [a, b].

17D(i) Unbounded domain

Prerequisites: §2B(i). Recommended: §17A.

Lemma 17D.1. (Travelling Wave Solution)

Let f0 : R −→ R be any twice-differentiable function. Define the functions
wL , wR : R × R 6− −→ R by wL(x, t) := f0(x + t) and wR(x, t) := f0(x − t), for
any x ∈ R and any t ≥ 0 (see Figure 17D.1). Then wL and wR are solutions to
the wave equation (17D.1), with

Initial Position: wL(x, 0) = f0(x) = wR(x, 0),
Initial Velocities: ∂twL(x, 0) = f ′0(x); ∂twR(x, 0) = −f ′0(x).
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Define w : R×R 6− −→ R by w(x, t) :=
1
2

(

wL(x, t) + wR(x, t)
)

, for all x ∈ R and

t ≥ 0. Then w is a solution to the wave equation (17D.1), with Initial Position
w(x, 0) = f0(x) and Initial Velocity ∂tw(x, 0) = 0.

Proof. See Practice Problem # 5 on page 412. 2

Physically, wL represents a leftwards-travelling wave: take a copy of the
function f0 and just rigidly translate it to the left. Similarly, wR represents a
rightwards-travelling wave. (Näıvely, it seems that wL(x, t) = f0(x + t) should
be a rightwards travelling wave, while wR should be leftwards travelling wave.
Yet the opposite is true. Think about this until you understand it. It may
be helpful to do the following: Let f0(x) = x2. Plot f0(x), and then plot
wL(x, 5) = f(x+ 5) = (x+ 5)2. Observe the ‘motion’ of the parabola.)

f (x)0

w (x,t)
R

w(x,t) = w (x,t)
L

1
2

w (x,t)
R+

w (x,t)L

Figure 17D.1: The d’Alembert travelling wave solution; f0(x) = 1
x2+1

from Ex-
ample 17D.2.

Example 17D.2. (a) If f0(x) =
1

x2 + 1
, then w(x) =

1
2

(

1
(x+ t)2 + 1

+
1

(x− t)2 + 1

)

(Figure 17D.1)

(b) If f0(x) = sin(x), then

w(x; t) =
1
2

(

sin(x+ t) + sin(x− t)
)

=
1
2

(

sin(x) cos(t) + cos(x) sin(t) + sin(x) cos(t)− cos(x) sin(t)
)

=
1
2

(

2 sin(x) cos(t)
)

= cos(t) sin(x),

In other words, two sinusoidal waves, traveling in opposite directions, when
superposed, result in a sinusoidal standing wave.
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x x+t

f(x)

wL(x,t)

0

t

t

t

-1 1-1-t 1-t

Figure 17D.2: The travelling box wave wL(x, t) = f0(x + t) from Example
17D.2(c).

(c) (see Figure 17D.2) Suppose f0(x) =
{

1 if − 1 < x < 1
0 otherwise

. Then:

wL(x, t) = f0(x+t) =
{

1 if − 1 < x+ t < 1
0 otherwise

=
{

1 if − 1− t < x < 1− t;
0 otherwise.

(Notice that the solutions wL and wR are continuous (or differentiable) only
when f0 is continuous (or differentiable). But the formulae of Lemma 17D.1
make sense even when the original wave equation itself ceases to make sense,
as in Example (c). This is an example of a generalized solution of the wave
equation.) ♦

Lemma 17D.3. (Ripple Solution)

Let f1 : R −→ R be a differentiable function. Define the function v : R ×

R 6− −→ R by v(x, t) :=
1
2

∫ x+t

x−t
f1(y) dy, for any x ∈ R and any t ≥ 0. Then v

is a solution to the wave equation (17D.1), with

Initial Position: v(x, 0) = 0; Initial Velocity: ∂t v(x, 0) = f1(x).

Proof. See Practice Problem #6 in §17H. 2

Physically, v represents a “ripple”. You can imagine that f1 describes the
energy profile of an “impulse” which is imparted into the vibrating medium at
time zero; this energy propagates outwards, leaving a disturbance in its wake
(see Figure 17D.5).
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Figure 17D.3: The ripple solution with initial velocity f1(x) = 1
1+x2 (see Example

17D.4(a)).

Example 17D.4. (a) If f1(x) =
1

1 + x2
, then the d’Alembert solution to the

initial velocity problem is

v(x, t) =
1
2

∫ x+t

x−t
f1(y) dy =

1
2

∫ x+t

x−t

1
1 + y2

dy

=
1
2

arctan(y)
∣

∣

∣

y=x+t

y=x−t
=

1
2

(

arctan(x+ t)− arctan(x− t)
)

.

(see Figure 17D.3).

(b) If f1(x) = cos(x), then

v(x, t) =
1
2

∫ x+t

x−t
cos(y) dy =

1
2

(

sin(x+ t)− sin(x− t)
)

=
1
2

(

sin(x) cos(t) + cos(x) sin(t) − sin(x) cos(t) + cos(x) sin(t)
)

=
1
2

(

2 cos(x) sin(t)
)

= sin(t) cos(x).

(c) Let f1(x) =
{

2 if − 1 < x < 1
0 otherwise

(Figures 17D.4 and 17D.5). If

t > 2, then

v(x, t) =























0 if x+ t < −1;
x+ t+ 1 if − 1 ≤ x+ t < 1;

2 if x− t ≤ −1 < 1 ≤ x+ t;
t+ 1− x if − 1 ≤ x− t < 1;

0 if 1 ≤ x− t.
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xx-t x+t

1-1 xx-t x+t

xx-t x+t1-1

1-1

-1 1

-1 1x x+tx-t

x x+tx-t

-1 1x x+tx-t

-1 1-1-t 1-t t-1 t+1

 x <-1-t

-1-t< x < 1-t

1-t < x < t-1

t-1 < x < t+1

t+1 < x

-1-t 1-t t-1 t+1

u(x,t)

f (x)1

Figure 17D.4: The d’Alembert ripple solution from Example 17D.4(c), evaluated
for various x ∈ R, assuming t > 2.
f(x)

v(x,0.2)

v(x,0.7)

v(x,1.0)

v(x,1.5)

v(x,2.2)

1

Time

Figure 17D.5: The d’Alembert ripple solution from Example 17D.4(c), evolving
in time.
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f(x)
1

v(x,t) = g(x+t) - g(x-t)

g(x)

Figure 17D.6: The ripple solution with initial velocity: f1(x) = −2x
(x2+1)2 (Example

17D.4(d)).

=























0 if x < −1− t;
x+ t+ 1 if − 1− t ≤ x < 1− t;

2 if 1− t ≤ x < t− 1;
t+ 1− x if t− 1 ≤ x < t+ 1;

0 if t+ 1 ≤ x.

Exercise 17D.1 Verify this formula. Find a similar formula for when t < 2.E©

Notice that, in this example, the wave of displacement propagates outwards
through the medium, and the medium remains displaced. The model contains
no “restoring force” which would cause the displacement to return to zero.

(d) If f1(x) =
−2x

(x2 + 1)2
, then g(x) =

1
x2 + 1

, and v(x) =
1
2

(

1
(x+ t)2 + 1

− 1
(x− t)2 + 1

)

(see Figure 17D.6) ♦

Remark. If g : R −→ R is an antiderivative of f1 (i.e. g′(x) = f1(x), then
v(x, t) = g(x+t)−g(x−t). Thus, the d’Alembert “ripple” solution looks like the
d’Alembert “travelling wave” solution, but with the rightward travelling wave
being vertically inverted.

Exercise 17D.2. (a) Express the d’Alembert “ripple” solution as a convolution, asE©
described in § 17A on page 375. Hint: Find an impulse-response function Γt(x), such

that f1 ∗ Γt(x) =
1
2

∫ x+t

x−t
f1(y) dy.

(b) Is Γt an approximation of identity? Why or why not? �

Proposition 17D.5. (d’Alembert Solution on an infinite wire)
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0 L 2L 3L-L-2L-3L

Figure 17D.7: The odd 2L-periodic extension.

Let f0 : R −→ R be twice-differentiable, and f1 : R −→ R be differentiable.
Define the function u : R× R 6− −→ R by

u(x, t) :=
1
2

(

wL(x, t) + wR(x, t)
)

+ v(x, t), for all x ∈ R and t ≥ 0,

where wL , wR , and v are as in Lemmas 17D.1 and 17D.3. Then u satisfies the
wave equation, with

Initial Position: v(x, 0) = f0(x); Initial Velocity: ∂t v(x, 0) = f1(x).

Furthermore, all solutions to the wave equation with these initial conditions are
of this type.

Proof. This follows from Lemmas 17D.1 and 17D.3. 2

Remark. There is no nice extension of the d’Alembert solution in higher di-
mensions. The closest analogy is Poisson’s spherical mean solution to the
three-dimensional wave equation in free space, which is discussed in § 20B(ii) on
page 534.

17D(ii) Bounded domain

Prerequisites: §17D(i), §5C(i).

The d’Alembert solution in §17D(i) works fine if X = R, but what if X =
[0, L)? We must “extend” the initial conditions in some way. If f : [0, L) −→ R
is any function, then an extension of f is any function f : R −→ R such that
f(x) = f(x) whenever 0 ≤ x ≤ L. If f is continuous and differentiable, then we
normally require its extension to also be continuous and differentiable.

The extension we want is the odd, 2L-periodic extension, which is defined
as the unique function f : R −→ R with the following three properties (see Figure
17D.7):
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1

1

(A) (B)

(C) (D)

π

(E) (F)

π 2π 3π-π-2π-3π 0

0

0

0

1 2 3-1-2-3

1 2 3-1-2-3 0

0

Figure 17D.8: The odd, 2L-periodic extension.

1. f(x) = f(x) whenever 0 ≤ x ≤ L.

2. f is an odd function,2 meaning: f(−x) = −f(x) for all x ∈ R.

3. f is 2L-periodic, meaning f(x+ 2L) = f(x) for all x ∈ R.

Example 17D.6.

(a) Suppose L = 1, and f(x) = 1 for all x ∈ [0, 1) (Figure 17D.8A). Then the
odd, 2-periodic extension is defined:

f(x) =
{

1 if x ∈ . . . ∪ [−2,−1) ∪ [0, 1) ∪ [2, 3) ∪ . . .
−1 if x ∈ . . . ∪ [−1, 0) ∪ [1, 2) ∪ [3, 4) ∪ . . . (Figure 17D.8B)

(b) Suppose L = 1, and f(x) =
{

1 if x ∈
[

0, 1
2

)

0 if x ∈
[

1
2 , 1
) (Figure 17D.8C).

Then the odd, 2-periodic extension is defined:

f(x) =







1 if x ∈ . . . ∪
[

−2,−11
2

)

∪
[

0, 1
2

)

∪
[

2, 21
2

)

∪ . . .
−1 if x ∈ . . . ∪

[

−1
2 , 0
)

∪
[

11
2 , 2
)

∪
[

31
2 , 4
)

∪ . . .
0 otherwise

(Figure 17D.8D)

2See § 8C on page 168 for more information about odd functions.
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(c) Suppose L = π, and f(x) = sin(x) for all x ∈ [0, π) (Figure 17D.8E)
Then the odd, 2π-periodic extension is given by f(x) = sin(x) for all x ∈ R
(Figure 17D.8E).

Exercise 17D.3 Verify this. ♦ E©

We will now provide a general formula for the odd periodic extension, and
characterize its continuity and/or differentiability. First some terminology. If
f : [0, L) −→ R is a function, then we say that f is right-differentiable at 0
if the right-hand derivative f 〈(0) is well-defined (see page 201). We can usually
extend f to a function f : [0, L] −→ R by defining f(L−) := lim

x↗L
f(x), where

this denotes the left-hand limit of f at L, if this limit exists (see page 201 for
definition). We then say that f is left-differentiable at L if the left-hand
derivative f 〉(L) exists.

Proposition 17D.7. Let f : [0, L) −→ R be any function

(a) The odd, 2L-periodic extension of f is given:

f(x) =















f(x) if 0 ≤ x < L
−f(−x) if −L ≤ x < 0

f(x− 2nL) if 2nL ≤ x ≤ (2n+ 1)L, for some n ∈ Z
−f(2nL− x) if (2n− 1)L ≤ x ≤ 2nL, for some n ∈ Z

(b) f is continuous at 0, L, 2L etc. if and only if f(0) = f(L−) = 0.

(c) f is differentiable at 0, L, 2L, etc. if and only if it is continuous, f is
right-differentiable at 0, and f and left-differentiable at L.

Proof. Exercise 17D.4 2
E©

Proposition 17D.8. (d’Alembert solution on a finite string)

Let f0 : [0, L) −→ R and f1 : [0, L) −→ R be differentiable functions, and let
their odd periodic extensions be f0 : R −→ R and f1 : R −→ R.

(a) Define w : [0, L]× R 6− −→ R by

w(x, t) :=
1
2

(

f0(x− t) + f0(x+ t)
)

, for all x ∈ [0, L] and t ≥ 0.

Then w is a solution to the wave equation (17D.1) with initial conditions:

w(x, 0) = f0(x) and ∂tw(x, 0) = 0, for all x ∈ [0, L],
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and homogeneous Dirichlet boundary conditions:

w(0, t) = 0 = w(L, t), for all t ≥ 0.

The function w is continuous if and only if f0 satisfies homogeneous Dirich-
let boundary conditions (i.e. f(0) = f(L−) = 0). In addition, w is differen-
tiable if and only if f0 is also right-differentiable at 0 and left-differentiable
at L.

(b) Define v : [0, L]× R 6− −→ R by

v(x, t) :=
1
2

∫ x+t

x−t
f1(y) dy, for all x ∈ [0, L] and t ≥ 0.

Then v is a solution to the wave equation (17D.1) with initial conditions:

v(x, 0) = 0 and ∂t v(x, 0) = f1(x), for all x ∈ [0, L],

and homogeneous Dirichlet boundary conditions:

v(0, t) = 0 = v(L, t), for all t ≥ 0.

The function v is always continuous. However, v is differentiable if and
only if f1 satisfies homogeneous Dirichlet boundary conditions.

(c) Define u : [0, L]×R 6− −→ R by u(x, t) := w(x, t) + v(x, t), for all x ∈ [0, L]
and t ≥ 0. Then u(x, t) is a solution to the wave equation (17D.1) with
initial conditions:

u(x, 0) = f0(x) and ∂t u(x, 0) = f1(x), for all x ∈ [0, L],

and homogeneous Dirichlet boundary conditions:

u(0, t) = 0 = u(L, t), for all t ≥ 0.

Clearly, u is continuous (respectively, differentiable) whenever v and w are
continuous (respectively, differentiable).

Proof. The fact that u, w, and v are solutions to their respective initial
value problems follows from Proposition 17D.5 on page 398. The verification
of homogeneous Dirichlet conditions is Exercise 17D.5 . The conditions forE©
continuity/differentiability are Exercise 17D.6 . 2

E©
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(A) (B)

u(x,y)

b(x)

={(x,y); y > 0}H

H = R

Figure 17E.1: The Dirichlet problem on a half-plane.

17E Poisson’s solution (Dirichlet problem on half-plane)

Prerequisites: §1C, §5C, §0G, §17B(i). Recommended: §17A.

Consider the half-plane domain H :=
{

(x, y) ∈ R2 ; y ≥ 0
}

. The boundary
of this domain is just the x axis: ∂H = {(x, 0) ; x ∈ R}. Thus, we impose
boundary conditions by choosing some function b : R −→ R. Figure 17E.1
illustrates the corresponding Dirichlet problem: find a continuous function
u : H −→ R such that

1. u is harmonic —i.e. u satisfies the Laplace equation: 4u(x, y) = 0 for all
x ∈ R and y > 0.

2. u satisfies the nonhomogeneous Dirichlet boundary condition: u(x, 0) =
b(x), for all x ∈ R.

Physical Interpretation: Imagine that H is an infinite ‘ocean’, so that ∂H
is the beach. Imagine that b(x) is the concentration of some chemical which has
soaked into the sand of the beach. The harmonic function u(x, y) on H describes
the equilibrium concentration of this chemical, as it seeps from the sandy beach
and diffuses into the water3. The boundary condition ‘u(x, 0) = b(x)’ represents
the chemical content of the sand. Note that b(x) is constant in time; this
represents the assumption that the chemical content of the sand is large compared
to the amount seeping into the water; hence, we can assume the sand’s chemical
content remains effectively constant over time, as small amounts diffuse into the
water.

3Of course this an unrealistic model: in a real ocean, currents, wave action, and weather
transport chemicals far more quickly than mere diffusion alone.
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Figure 17E.2: Two views of the Poisson kernel Ky(x).

We will solve the half-plane Dirichlet problem using the impulse-response
method. For any y > 0, define the Poisson kernel Ky : R −→ R by:

Ky(x) :=
y

π(x2 + y2)
. (Figure 17E.2) (17E.1)

Observe that:

• Ky(x) is smooth for all y > 0 and x ∈ R.

• Ky(x) has a singularity at (0, 0). That is: lim
(x,y)→(0,0)

Ky(x) = ∞,

• Ky(x) decays near infinity. That is, for any fixed y > 0, lim
x→±∞

Ky(x) =

0, and also, for any fixed x ∈ R, lim
y→∞

Ky(x) = 0.

Thus, Ky(x) has the profile of an impulse-response function as described in § 17A
on page 375. Heuristically speaking, you can think of Ky(x) as the solution to
the Dirichlet problem on H, with boundary condition b(x) = δ0(x), where δ0 is
the infamous ‘Dirac delta function’. In other words, Ky(x) is the equilibrium
concentration of a chemical diffusing into the water from an ‘infinite’ concentra-
tion of chemical localized at a single point on the beach (say, a leaking barrel of
toxic waste).

Proposition 17E.1. Poisson Kernel Solution to Half-Plane Dirichlet problem
Let b : R −→ R be a bounded, continuous, integrable function. Define u : H −→
R as follows:

u(x, y) := b ∗ Ky(x) =
y

π

∫ ∞

−∞

b(z)
(x− z)2 + y2

dz,
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Figure 17E.3: Example 17E.2.

for all x ∈ R and y > 0, while for all x ∈ R, we define u(x, 0) := b(x). Then u is
the solution to the Laplace equation (4u = 0) which is bounded at infinity and
which satisfies the nonhomogeneous Dirichlet boundary condition u(x, 0) = b(x),
for all x ∈ R.

Proof. (sketch)

Claim 1: Define K(x, y) = Ky(x) for all (x, y) ∈ H, except (0, 0). Then the
function K : H −→ R is harmonic on the interior of H.

Proof. See Practice Problem # 14 on page 414 of §17H. �
Claim 1

Claim 2: Thus, the function u : H −→ R is harmonic on the interior of H.

Proof. Exercise 17E.1 Hint: Combine Claim 1 with Proposition 0G.1 on E©
page 567 �

Claim 2

Recall that we defined u on the boundary of H by u(x, 0) = b(x). It remains
to show that u is continuous when defined in this way.

Claim 3: For any x ∈ R, lim
y→0

u(x, y) = b(x).

Proof. Exercise 17E.2 Show that the kernel Ky is an approximation of the E©
identity as y → 0. Then apply Proposition 17B.2 on page 381 to conclude that
lim
y→0

(b ∗ Ky)(x) = b(x) for all x ∈ R. �
Claim 3

Finally, this solution is unique by Theorem 5D.5(a) on page 88. 2

Example 17E.2. LetA < B be real numbers. Let b(x) :=
{

1 if A < x < B;
0 otherwise.

.
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Then Proposition 20C.3 yields solution:

U(x, y)
(∗)

b ∗ Ky(x)
(†)

y

π

∫ B

A

1
(x− z)2 + y2

dz
(S)

y2

π

∫ B−x
y

A−x
y

1
y2w2 + y2

dw

=
1
π

∫ B−x
y

A−x
y

1
w2 + 1

dw =
1
π

arctan(w)
∣

∣

∣

w=B−x
y

w=A−x
y

=
1
π

arctan
(

B − x
y

)

− arctan
(

A− x
y

)

(T)

1
π

(

θB − θA
)

,

where θB and θA are as in Figure 17E.3. Here, (∗) is Proposition 20C.3; (†)
is eqn.(17E.1); (S) is the substitution w = z−x

y , so that dw = 1
y dz and

dz = y dw; and (T) follows from elementary trigonometry.

Note that, if A < x (as in Fig. 17E.3A), then A − x < 0, so θA is negative,
so that U(x, y) = 1

π

(

θB + |θA|
)

. If A > x, then we have the situation in Fig.
17E.3B. In either case, the interpretation is the same:

U(x, y) =
1
π

(

θB − θA
)

=
1
π

(

the angle subtended by interval [A,B], as
seen by an observer at the point (x, y)

)

.

This is reasonable, because if this observer moves far away from the interval
[A,B], or views it at an acute angle, then the subtended angle

(

θB − θA
)

will
become small —hence, the value of U(x, y) will also become small. ♦

Remark. We will revisit the Poisson kernel solution to the half-plane Dirichlet
problem in § 20C(ii) on page 539, where we will prove Proposition 17E.1 using
Fourier transform methods.

17F Poisson’s solution (Dirichlet problem on the disk)

Prerequisites: §1C, §0D(ii), §5C, §0G. Recommended: §17A, §14B(v).4

Let D :=
{

(x, y) ∈ R2 ;
√

x2 + y2 ≤ R
}

be the disk of radius R in R2.

Thus, D has boundary ∂D = S :=
{

(x, y) ∈ R2 ;
√

x2 + y2 = R
}

(the circle
of radius R). Suppose b : ∂D −→ R is some function on the boundary. The
Dirichlet problem on D asks for a continuous function u : D −→ R such that:

• u is harmonic—i.e. u satisfies the Laplace equation 4u ≡ 0.

4See § 14B(v) on page 289 for a different development of the material in this section, using
the methods of polar-separated harmonic functions. For yet another approach, using complex
analysis, see Corollary 18C.13 on page 445.
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Figure 17F.1: The Poisson kernel

• u satisfies the nonhomogeneous Dirichlet Boundary Condition u(x, y) =
b(x, y) for all (x, y) ∈ ∂D.

If u represents the concentration of some chemical diffusing into D from the
boundary, then the value of u(x, y) at any point (x, y) in the interior of the disk
should represent some sort of ‘average’ of the chemical reaching (x, y) from all
points on the boundary. This is the inspiration of Poisson’s Solution. We define
the Poisson kernel P : D× S −→ R as follows:

P(x, s) :=
R2 − ‖x‖2

‖x− s‖2
, for all x ∈ D and s ∈ S.

As shown in Figure 17F.1(A), the denominator, ‖x− s‖2, is just the squared-
distance from x to s. The numerator, R2−‖x‖2, roughly measures the distance
from x to the boundary S; if x is close to S, then R2−‖x‖2 becomes very small.
Intuitively speaking, P(x, s) measures the ‘influence’ of the boundary condition
at the point s on the value of u at x; see Figure 17F.2.

In polar coordinates (Figure 17F.1B), we can parameterize s ∈ S with a
single angular coordinate σ ∈ [−π, π), so that s =

(

R cos(σ), R sin(σ)
)

. If x
has coordinates (x, y), then Poisson’s kernel takes the form:

P(x, s) = Pσ(x, y) =
R2 − x2 − y2

(x−R cos(σ))2 + (y −R sin(σ))2 .

Proposition 17F.1. Poisson’s Integral Formula
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Figure 17F.2: The Poisson kernel P(x, s) as a function of x. (for some fixed
value of s). This surface illustrates the ‘influence’ of the boundary condition at
the point s on the point x. (The point s is located at the ‘peak’ of the surface.)

Let D =
{

(x, y) ; x2 + y2 ≤ R2
}

be the disk of radius R, and let b : ∂D −→ R
be continuous. The unique solution to the corresponding Dirichlet problem is
the function u : D −→ R defined as follows:

For any (x, y) on the interior of D u(x, y) :=
1

2π

∫ π

−π
b(σ) · Pσ(x, y) dσ,

while, for (x, y) ∈ ∂D, we define u(x, y) := b(x, y).

That is, for any x ∈ D, u(x) :=















1
2π

∫

S
b(s) · P(x, s) ds if ‖x‖ < R;

b(x) if ‖x‖ = R.

Proof. (sketch) For simplicity, assume R = 1 (the proof for R 6= 1 is similar).
Thus,

Pσ(x, y) =
1− x2 − y2

(x− cos(σ))2 + (y − sin(σ))2
.

Claim 1: Fix σ ∈ [−π, π). The function Pσ : D −→ R is harmonic on the
interior of D.

Proof. Exercise 17F.1 �
Claim 1

E©

Claim 2: Thus, the function u is harmonic on the interior of D.

Proof. Exercise 17F.2 Hint: Combine Claim 1 with Proposition 0G.1 onE©
page 567. �

Claim 2
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Recall that we defined u on the boundary S of D by u(s) = b(s). It remains
to show that u is continuous when defined in this way.

Claim 3: For any s ∈ S, lim
(x,y)→s

u(x, y) = b(s).

Proof. Exercise 17F.3 (Hard) E©
Hint: Write (x, y) in polar coordinates as (r, θ). Thus, our claim becomes lim

θ→σ
lim
r→1

u(r, θ) =

b(σ).
(a) Show that Pσ(x, y) = Pr(θ − σ), where, for any r ∈ [0, 1), we define

Pr(φ) =
1− r2

1− 2r cos(φ) + r2
, for all φ ∈ [−π, π).

(b) Thus, u(r, θ) =
1

2π

∫ π

−π
b(σ) ·Pr(θ−σ) dσ is a sort of ‘convolution on a circle’.

We can write this: u(r, θ) = (b ? Pr)(θ).
(c) Show that the function Pr is an ‘approximation of the identity’ as r → 1,
meaning that, for any continuous function b : S −→ R, lim

r→1
(b ? Pr)(θ) = b(θ).

For your proof, borrow from the proof of Proposition 17B.2 on page 381 �
Claim 3

Finally, this solution is unique by Theorem 5D.5(a) on page 88. 2

17G ∗ Properties of convolution

Prerequisites: §17A. Recommended: §17C.

We have introduced the convolution operator to solve the Heat Equation,
but it is actually ubiquitous, not only in the theory of PDEs, but in other
areas of mathematics, especially probability theory, harmonic analysis, and group
representation theory. We can define an algebra of functions using the operations
of convolution and addition; this algebra is as natural as the one you would form
using ‘normal’ multiplication and addition.5

Proposition 17G.1. Algebraic Properties of Convolution

Let f, g, h : RD −→ R be integrable functions. Then the convolutions of f , g,
and h have the following relations:

Commutativity: f ∗ g = g ∗ f .

Associativity: f ∗ (g ∗ h) = (f ∗ g) ∗ h.

Distribution: f ∗ (g + h) = (f ∗ g) + (f ∗ h).

5Indeed, in a sense, it is the same algebra, seen through the prism of the Fourier transform;
see Theorem 19B.2 on page 494.
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Linearity: f ∗ (r · g) = r · (f ∗ g) for any constant r ∈ R.

Proof. Commutativity is just Proposition 17A.1. In the case D = 1, the proofs
of the other three properties are Practice Problems #1 and #2 in §17H. The
proofs for D ≥ 2 are Exercise 17G.1 . 2

E©

Remark. Let L1(RD) be the set of all integrable functions on RD. The proper-
ties of Commutativity, Associativity, and Distribution mean that the set L1(RD),
together with the operations ‘+’ (pointwise addition) and ‘∗’ (convolution), is a
ring (in the language of abstract algebra). This, together with Linearity, makes
L1(RD) an algebra over R.

Example 17C.4 on page 388 exemplifies the convenient “smoothing” proper-
ties of convolution. If we convolve a “rough” function with a “smooth” function,
then this “smooths out” the rough function.

Proposition 17G.2. Regularity Properties of Convolution

Let f, g : RD −→ R be integrable functions.

(a) If f is continuous, then so is f ∗ g (regardless of whether g is.)

(b) If f is differentiable, then so is f ∗ g. Furthermore, ∂d(f ∗ g) = (∂df) ∗ g.

(c) If f is N times differentiable, then so is f ∗ g, and

∂n1
1 ∂n2

2 . . . ∂nDD (f ∗ g) =
(

∂n1
1 ∂n2

2 . . . ∂nDD f
)

∗ g,

for any n1, n2, . . . , nD such that n1 + . . .+ nD ≤ N .

(d) More generally, if L is any linear differential operator of degree N or less,
with constant coefficients, then L (f ∗ g) = (L f) ∗ g.

(e) Thus, if f is a solution to the homogeneous linear equation “L f = 0”, then
so is f ∗ g.

(f) If f is infinitely differentiable, then so is f ∗ g.

Proof. Exercise 17G.2 2
E©

This has a convenient consequence: any function, no matter how “rough”,
can be approximated arbitrarily closely by smooth functions.
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Figure 17H.1: Problems #1(a), #1(b), #1(c) and #2(a).

Proposition 17G.3. Suppose f : RD −→ R is integrable. Then there
is a sequence f1, f2, f3, . . . of infinitely differentiable functions which converges
pointwise to f . In other words, for every x ∈ RD, lim

n→∞
fn(x) = f(x).

Proof. Exercise 17G.3 Hint: Use the fact that the Gauss-Weierstrass kernel isE©
infinitely differentiable, and is also an approximation of identity. Then use Part 6 of
the previous theorem. 2

Remarks. (a) We have formulated Proposition 17G.3 in terms of pointwise
convergence, but similar results hold for L2 convergence, L1 convergence, uniform
convergence, etc. We’re neglecting these to avoid technicalities.

(b) In § 10D(ii) on page 214, we discuss the convolution of periodic functions
on the interval [−π, π], and develop a theory quite similar to the theory developed
here. In particular, Lemma 10D.6 on page 214 is analogous to Proposition 17G.1,
Lemma 10D.7 on page 215 is analogous to Proposition 17G.2, and Theorem 10D.1
on page 207 is analogous to Proposition 17G.3, except that the convergence is
in L2 norm.

17H Practice problems
1. Let f, g, h : R −→ R be integrable functions. Show that f ∗ (g ∗ h) =

(f ∗ g) ∗ h.

2. Let f, g, h : R −→ R be integrable functions, and let r ∈ R be a constant.
Prove that f ∗ (r · g + h) = r · (f ∗ g) + (f ∗ h).

3. Let f, g : R −→ R be integrable functions. Let d ∈ R be some ‘displace-
ment’ and define f

�d(x) = f(x− d). Prove that (f
�d) ∗ g = (f ∗ g)

�d.

4. In each of the following, use the method of Gaussian convolutions to find
the solution to the one-dimensional heat equation ∂t u(x; t) = ∂2

x u(x; t)
with initial conditions u(x, 0) = I(x).

(a) I(x) =
{

−1 if −1 ≤ x ≤ 1
0 if x < −1 or 1 < x

. (see Figure 17H.1A).
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(In this case, sketch your solution evolving in time.)

(b) I(x) =
{

1 if 0 ≤ x ≤ 1
0 otherwise

(see Figure 17H.1B).

(c) I(x) =







−1 if −1 ≤ x ≤ 0
1 if 0 ≤ x ≤ 1
0 otherwise

(see Figure 17H.1C).

5. Let f : R −→ R be some differentiable function. Define v(x; t) =
1
2

(

f(x+ t) + f(x− t)
)

.

(a) Show that v(x; t) satisfies the one-dimensional wave equation ∂2
t v(x; t) =

∂2
x v(x; t)

(b) Compute the initial position v(x; 0).

(c) Compute the initial velocity ∂t v(x; 0).

6. Let f1 : R −→ R be a differentiable function. For any x ∈ R and any t ≥ 0,

define v(x, t) =
1
2

∫ x+t

x−t
f1(y) dy.

(a) Show that v(x; t) satisfies the one-dimensional wave equation ∂2
t v(x; t) =

∂2
x v(x; t)

(b) Compute the initial position v(x; 0).

(c) Compute the initial velocity ∂t v(x; 0).

7. In each of the following, use the d’Alembert method to find the solution to
the one-dimensional wave equation ∂2

t u(x; t) = ∂2
x u(x; t) with initial

position u(x, 0) = f0(x) and initial velocity ∂t u(x, 0) = f1(x).

In each case, identify whether the solution satisfies homogeneous Dirich-
let boundary conditions when treated as a function on the interval [0, π].
Justify your answer.

(a) f0(x) =
{

1 if 0 ≤ x < 1
0 otherwise

; and f1(x) = 0 (see Figure

17H.1B).

(b) f0(x) = sin(3x) and f1(x) = 0.

(c) f0(x) = 0 and f1(x) = sin(5x).

(d) f0(x) = cos(2x) and f1(x) = 0.

(e) f0(x) = 0 and f1(x) = cos(4x).

(f) f0(x) = x1/3 and f1(x) = 0.

(g) f0(x) = 0 and f1(x) = x1/3.
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(h) f0(x) = 0 and f1(x) = tanh(x) = sinh(x)
cosh(x) .

8. Let Gt(x) = 1
2
√
πt

exp
(

−x2

4t

)

be the Gauss-Weierstrass Kernel. Fix s, t > 0;
we claim that Gs ∗Gt = Gs+t. (For example, if s = 3 and t = 5, this means
that G3 ∗ G5 = G8).

(a) Prove that Gs ∗ Gt = Gs+t by directly computing the convolution
integral.

(b) Use Corollary 17C.3 on page 388 to find a short and elegant proof
that Gs ∗ Gt = Gs+t without computing any convolution integrals.

Remark. Because of this result, probabilists say that the set {Gt}t∈R+

forms a stable family of probability distributions on R. Analysts say that
{Gt}t∈R+ is a one-parameter semigroup under convolution.

9. Let Gt(x, y) =
1

4πt
exp

(

−(x2 + y2)
4t

)

be the 2-dimensional Gauss-Weierstrass

Kernel. Suppose h : R2 −→ R is a harmonic function. Show that h∗Gt = h
for all t > 0.

10. Let D be the unit disk. Let b : ∂D −→ R be some function, and let
u : D −→ R be the solution to the corresponding Dirichlet problem with
boundary conditions b(σ). Prove that

u(0, 0) =
1

2π

∫ π

−π
b(σ) dσ.

Remark. This is a special case of the Mean Value Theorem for Harmonic
Functions (Theorem 1E.1 on page 16), but do not simply ‘quote’ Theorem
1E.1 to solve this problem. Instead, apply Proposition 17F.1 on page 407.

11. Let γt(x) =
{

1
t if 0 ≤ x ≤ t;
0 if x < 0 or t < x.

(Figure 17B.2). Show that γ

is an approximation of identity.

12. Let γt(x) =
{

1
2t if |x| ≤ t
0 if t < |x| . Show that γ is an approximation of

identity.

13. Let D =
{

x ∈ R2 ; |x| ≤ 1
}

be the unit disk.

(a) Let u : D −→ R be the unique solution to the Laplace equation
(4u = 0) satisfying the nonhomogeneous Dirichlet boundary con-
ditions u(s) = 1, for all s ∈ S. Show that umust be constant: u(x) = 1
for all x ∈ D.
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(b) Recall that the Poisson Kernel P : D×S −→ R is defined by P(x, s) =
1−‖x‖2

‖x−s‖2 , for any x ∈ D and s ∈ S. Show that, for any fixed x ∈ D,
1

2π

∫

S
P(x, s) ds = 1.

(c) Let b : S −→ R be any function, and 4u = 0) satisfying the nonho-
mogeneous Dirichlet boundary conditions u(s) = b(s), for all s ∈ S.
Let m := min

s∈S
b(s), and M := max

s∈S
b(s). Show that:

For all x ∈ D, m ≤ u(x) ≤ M.

[ In other words, the harmonic function u must take its maximal and minimal

values on the boundary of the domain D. This is a special case of the Maximum

Principle for harmonic functions; see Corollary 1E.2 on page 17]

14. Let H :=
{

(x, y) ∈ R2 ; y ≥ 0
}

be the half-plane. Recall that the half-plane

Poisson kernel is the function K : H −→ R defined K(x, y) :=
y

π(x2 + y2)
for all (x, y) ∈ H except (0, 0) (where it is not defined). Show that K is
harmonic on the interior of H.
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Chapter 18

Applications of complex
analysis

“The shortest path between two truths in the real domain passes through the complex

domain.” —Jacques Hadamard

Complex analysis is one of the most surprising and beautiful areas of math-
ematics. It also has some unexpected applications to PDEs and Fourier theory,
which we will briefly survey in this chapter. Our survey is far from comprehen-
sive —that would require another entire book. Instead, our goal in this chapter
is to merely to sketch the possibilities. If you are interested in further explor-
ing the interactions between complex analysis and PDEs, we suggest [Asm02]
and [CB03], as well as [Asm05, Chapter 12], [Fis99, Chapters 4 and 5], [Lan85,
Chapter VIII], or the innovative and lavishly illustrated [Nee97, Chapter 12].

This chapter assumes no prior knowledge of complex analysis. However, the
presentation is slightly more abstract than most of the book, and is intended for
more ‘theoretically inclined’ students. Nevertheless, someone who only wants
the computational machinery of residue calculus can skip Sections 18B, 18E and
18F, and skim the proofs in Sections 18C, 18D, and 18G, proceeding rapidly to
Section 18H.

18A Holomorphic functions
Prerequisites: §0C, §1C.

Let U ⊂ C be a open set, and let f : U −→ C be a complex-valued function.
If u ∈ U, then the (complex) derivative of f at u is defined:

f ′(u) := lim
c→u
c∈C

f(c)− f(u)
c− u

, (18A.1)

where all terms in this formula are understood as complex numbers. We say that
f is complex-differentiable at u if f ′(u) exists.
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If we identify C with R2 in the obvious way, then we might imagine f as a
function from a domain U ⊂ R2 into R2, and assume that the complex derivate f ′

was just another way of expressing the (real-valued) Jacobian matrix of f . But
this is not the case. Not all (real-)differentiable functions on R2 can be regarded
as complex-differentiable functions on C. To see this, let fr := Re [f ] : U −→ R
and fi := Im [f ] : U −→ R be the real and imaginary parts of f , so that we can
write f(u) = fr(u) + fi(u)i for any u ∈ U. For any u ∈ U, let ur := Re [u] and
ui := Im [u], so that u = ur + uii. Then the (real-valued) Jacobian matrix of f
has the form

[

∂r fr ∂r fi
∂i fr ∂i fi

]

. (18A.2)

The relationship between the complex derivative (18A.1) and the Jacobian (18A.2)
is the subject of the following fundamental result:

Theorem 18A.1. (Cauchy-Riemann)

Let f : U −→ C and let u ∈ U. Then f is complex-differentiable at u if and
only if the partial derivatives ∂r fr(u), ∂r fi(u), ∂i fr(u) and ∂i fi(u) all exist, and
furthermore, satisfy the Cauchy-Riemann differential equations (CRDEs)

∂r fr(u) = ∂i fi(u) and ∂i fr(u) = −∂r fi(u). (18A.3)

In this case, f ′(u) = ∂r fr(u)− i∂i fr(u) = ∂i fi(u) + i∂r fi(u).

Proof. Exercise 18A.1 (a) Compute the limit (18A.1) along the ‘real’ axisE©

—that is, let c = u + ε where ε ∈ R, and show that lim
R3ε→0

f(u+ ε)− f(u)
ε

=

∂r fr(u) + i∂r fi(u).

(b) Compute the limit (18A.1) along the ‘imaginary’ axis —that is, let c = u + εi

where ε ∈ R, and show that lim
R3ε→0

f(u+ εi)− f(u)
εi

= ∂i fi(u)− i∂i fr(u).

(c) If the limit (18A.1) is well-defined, then it must be the same no matter the direction
from which c approaches u. Conclude that the results of (a) and (b) must be equal.
Derive equation (18A.3). 2

Thus, the complex-differentiable functions are actually a very special subclass
of the set of all (real-)differentiable functions on the plane. The function f is
called holomorphic on U if f is complex-differentiable at all u ∈ U. This is ac-
tually a much stronger requirement than merely requiring a real-valued function
to be (real-)differentiable everywhere in some open subset of R2. For example,
later we will show that every holomorphic function is analytic (Theorem 18D.1
on page 450). But one immediate indication of the special nature of holomorphic
functions is their close relationship to two-dimensional harmonic functions.
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Proposition 18A.2. Let U ⊂ C be an open set, and also regard U as a
subset of R2 in the obvious way. If f : U −→ C is any holomorphic function,
then fr : U −→ R and fi : U −→ R are both harmonic functions.

Proof. Exercise 18A.2 Hint: apply the Cauchy-Riemann differential equations E©
(18A.3) twice to get Laplace’s equation. 2

So, we can convert any holomorphic map into a pair of harmonic functions.
Conversely, we can convert any harmonic function into a holomorphic map. To
see this, suppose h : U −→ R is a harmonic function. A harmonic conjugate
for h is a function g : U −→ R which satisfies the differential equation:

∂2 g(u) = ∂1 h(u) and ∂1 g(u) = −∂2 h(u), for all u ∈ U. (18A.4)

Proposition 18A.3. Let U ⊂ R2 be a convex open set (e.g. a disk or a
rectangle). Let h : U −→ R be any harmonic function.

(a) There exist harmonic conjugates for h on U—that is, the equations (18A.4)
have solutions.

(b) Any two harmonic conjugates for h differ by a constant.

(c) If g is a harmonic conjugate to h, and we define f : U −→ C by f(u) =
h(u) + g(u)i, then f is holomorphic.

Proof. Exercise 18A.3 Hint: (a) Define g(0) arbitrarily, and then for any E©

u = (u1, u2) ∈ U, define g(u) = −
∫ u1

0

∂2 h(0, x) dx +
∫ u2

0

∂1 h(u1, y) dy. Show that

g is differentiable and satisfies eqn.(18A.4).

For (b), suppose g1 and g2 both satisfy eqn.(18A.4); show that g1 − g2 is a constant
by showing that ∂1(g1 − g2) = 0 = ∂2(g1 − g2).

For (c), derive the CRDEs (18A.3) from the harmonic conjugacy equation (18A.4).
2

Remark. (a) If h satisfies a Dirichlet boundary condition on ∂U, then its
harmonic conjugate satisfies an associated Neumann boundary condition on ∂U,
and vice versa; see Exercise 18A.7 on page 421. Thus, harmonic conjugation can
be used to convert a Dirichlet BVP into a Neumann BVP, and vice versa.

(b) The ‘convexity’ requirement in Proposition 18A.2 can be weakened to
‘simply connected’. However, Proposition 18A.2 is not true if the domain U is
not simply connected (i.e. has a ‘hole’); see Exercise 18C.16(e) on page 448. ♦
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Holomorphic functions have a rich and beautiful geometric structure, with
many surprising properties. The study of such functions is called complex anal-
ysis. Propositions 18A.2 and 18A.3 imply that every fact about harmonic func-
tions in R2 is also a fact about complex analysis, and vice versa.

Complex analysis also has important applications to fluid dynamics and elec-
trostatics, because any holomorphic function can be interpreted as sourceless,
irrotational flow, as we now explain. Let U ⊂ R2 and let ~V : U −→ R2 be a
two-dimensional vector field. Recall that the divergence of ~V is the scalar field
div ~V : U −→ R defined by div ~V(u) := ∂1V1(u) + ∂2V2(u) for all u ∈ U (see
§ 0E(ii) on page 558). We say ~V is locally sourceless if div ~V ≡ 0. If ~V
represents the two-dimensional flow of an incompressible fluid (e.g. water) in
U, then div ~V ≡ 0 means there are no sources or sinks in U. If ~V represents a
two-dimensional electric (or gravitational) field, then div ~V ≡ 0 means there are
no charges (or masses) inside U.

The curl of ~V is the scalar field curl ~V : U −→ R defined by curl ~V(u) :=
∂1V2(u)− ∂2V1(u) for all u ∈ U. We say ~V is locally irrotational if curl ~V ≡
0. If ~V represents a force field, then curl ~V ≡ 0 means that the net energy
absorbed by a particle moving around a closed path in ~V is zero (i.e. the field is
‘conservative’). If ~V represents the flow of a fluid, then curl ~V ≡ 0 means there
are no ‘vortices’ in U. (Note that this does not mean the fluid must move in
straight lines without turning. It simply means that the fluid turns in a uniform
manner, without turbulence).

Regard U as a subset of C, and let f : U −→ C be some function, with real
and imaginary parts fr : U −→ R and fi : U −→ R. The complex conjugate
of f is the function f : U −→ C defined by f(u) = fr(u)− ifi(u). We can treat
f as vector field ~V : U −→ R2, where V1 ≡ fr and V2 ≡ −fi.

Proposition 18A.4. (Holomorphic ⇐⇒ sourceless irrotational flow)

The function f is holomorphic on U if and only if ~V is locally sourceless and
irrotational on U.

Proof. Exercise 18A.4 2
E©

In §18B, we shall see that Proposition 18A.4 yields a powerful technique for
studying fluids (or electric fields) confined to a subset of the plane (see Proposi-
tion 18B.6 on page 430). In §18C, we shall see that Proposition 18A.4 is also the
key to understanding complex contour integration, through its role in the proof
of Cauchy’s Theorem 18C.5 on page 438.

To begin our study of complex analysis, we will verify that all the standard
facts about the differentiation of real-valued functions carry over to complex
differentiation, pretty much verbatim.
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Proposition 18A.5. (Closure properties of holomorphic functions)
Let U ⊂ C be an open set. Let f, g : U −→ C be holomorphic functions.

(a) The function h(u) := f(u) + g(u) is also holomorphic on U, and h′(u) =
f ′(u) + g′(u) for all u ∈ U.

(b) (Leibniz rule) The function h(u) := f(u) · g(u) is also holomorphic on U,
and h′(u) = f ′(u)g(u) + g′(u)f(u) for all u ∈ U.

(c) (Quotient rule) Let U∗ := {u ∈ U ; g(u) 6= 0}. The function h(u) :=
f(u)/g(u) is also holomorphic on U∗, and h′(u) = [g(u)f ′(u)−f(u)g′(u)]/g(u)2

for all u ∈ U∗.

(d) For any n ∈ N, the function h(u) := fn(u) is holomorphic on U, and
h′(u) = n fn−1(u) · f ′(u) for all u ∈ U.

(e) Thus, for any c0, c1, . . . , cn ∈ C, the polynomial function h(z) := cnz
n +

· · ·+ c1z + c0 is holomorphic on C.

(f) For any n ∈ N, the function h(u) := 1/gn(u) is holomorphic on U∗ :=
{u ∈ U ; g(u) 6= 0} and h′(u) = −ng′(u)/gn+1(u) for all u ∈ U∗.

(g) For all n ∈ N, let fn : U −→ C be a holomorphic function. Let f, F : U −→
C be two other functions. If unif−lim

n→∞
fn = f and unif−lim

n→∞
f ′n = F , then

f is holomorphic on U, and f ′ = F .

(h) Let {cn}∞n=0 be any sequence of complex numbers, and consider the power
series

∞
∑

n=0

cnz
n = c0 + c1z + c2z

2 + c3z
3 + c4z

4 + · · ·

Suppose this series converges on U to define a function f : U −→ C. Then
f is holomorphic on U. Furthermore, f ′ is given by the ‘formal derivative’
of the power series. That is:

f ′(u) =
∞
∑

n=1

ncnz
n−1 = c1 + 2c2z + 3c3z

2 + 4c4z
3 + · · ·

(i) Let X ⊂ R be open, let f : X −→ R, and suppose f is analytic at x ∈ X,
with a Taylor series1 Tx f which converges in the interval (x−R, x+R)
for some R > 0. Let D := {c ∈ C ; |c− x| < R} be the open disk of radius
R around x in the complex plane. Then the Taylor series Tx f converges
uniformly on D, and defines a holomorphic function F : D −→ C which
extends f (i.e. F (r) = f(r) for all r ∈ (x−R, x+R) ⊂ R).

1See § 0H(ii) on page 569.
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(j) (Chain rule) Let U,V ⊂ C be open sets. Let g : U −→ V and f : V −→ C
be holomorphic functions. Then the function h(u) = f ◦ g(u) = f [g(u)] is
holomorphic on U, and h′(u) = f ′[g(u)] · g′(u) for all u ∈ U.

(k) (Inverse function rule) Let U,V ⊂ C be open sets. Let g : U −→ V be a
holomorphic function. Let f : V −→ U be be an inverse for g —that is,
f [g(u)] = u for all u ∈ U. Let u ∈ U and v = g(u) ∈ V. If g′(u) 6= 0, then
f is holomorphic in a neighbourhood of v, and f ′(v) = 1/g′(u).

Proof. Exercise 18A.5 Hint: For each part, the proof from single-variable (real)E©
differential calculus generally translates verbatim to complex numbers. 2

Theorem 18A.5(i) implies that all the standard real-analytic functions have
natural extensions to the complex plane, obtained by evaluating their Taylor
series on C.

Example 18A.6. (a) We define exp : C −→ C by exp(z) =
∞
∑

n=0

zn

n!
for all z ∈ C.

The function defined by this power series is the same as the exponential func-
tion defined by Euler’s formula (0C) on page 551 in Appendix 0C. It satis-
fies the same properties as the real exponential function —that is, exp′(z) =
exp(z), exp(z1 + z2) = exp(z1) · exp(z2), etc. (See Exercise 18A.8 on the next
page.)

(b) We define sin : C −→ C by sin(z) =
∞
∑

n=0

(−1)nz2n+1

(2n+ 1)!
for all z ∈ C.

(c) We define cos : C −→ C by cos(z) =
∞
∑

n=0

(−1)nz2n

(2n)!
for all z ∈ C.

(d) We define sinh : C −→ C by sinh(z) =
∞
∑

n=0

z2n+1

(2n+ 1)!
for all z ∈ C.

(e) We define cosh : C −→ C by cosh(z) =
∞
∑

n=0

z2n

(2n)!
for all z ∈ C. ♦

The complex trigonometric functions satisfy the same algebraic relations and
differentiation rules as the real trigonometric functions (see Exercise 18A.9 on
page 422). We will later show that any analytic function on R has a unique ex-
tension to a holomorphic function on some open subset of C (see Corollary 18D.4
on page 453).
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Exercise 18A.6. Proposition 18A.2 says that the real and imaginary parts of anyE©
holomorphic function will be harmonic functions.

(a) Let r0, r1, . . . , rn ∈ R, and consider the real-valued polynomial f(x) = rnx
n +

· · · + r1x + r0. Proposition 18A.5(e) says that f extends to a holomorphic function
f : C −→ C. Express the real and imaginary parts of f in terms of the polar harmonic
functions {φn}∞n=0 and {ψn}∞n=0 introduced in § 14B on page 274.

(b) Express the real and imaginary parts of each of the holomorphic functions sin,
cos, sinh and cosh (from Example 18A.6) in terms of the harmonic functions introduced
in § 12A on page 240. �

Exercise 18A.7. (Harmonic conjugation of boundary conditions) E©
Let U ⊂ R2 be an open subset whose boundary ∂U is a smooth curve. Let γ :

[0, S] −→ ∂U be a clockwise, arc-length parameterization of ∂U. That is: γ is a differ-
entiable bijection from [0, S) into ∂U with γ(0) = γ(S), and |γ̇(s)| = 1 for all s ∈ [0, S].
Let b : ∂U −→ R be a continuous function describing a Dirichlet boundary condition on
U, and define B := b ◦ γ : [0, S] −→ R. Suppose B is differentiable; let B′ : [0, S] −→ R
be its derivative, and then define the function b′ : ∂U −→ R by b′(γ(s)) = B′(s) for all
s ∈ [0, S) (this defines b′ on ∂U because γ is a bijection). Thus, we can regard b′ as the
derivative of b ‘along’ the boundary of U.

Let h : U −→ R be a harmonic function, and let g : U −→ R be a harmonic conjugate
for h. Show that h satisfies the Dirichlet boundary condition2 h(x) = b(x) + C for all
x ∈ ∂U (where C is some constant) if and only if g satisfies the Neumann boundary
condition ∂⊥g(x) = b′(x) for all x ∈ ∂U.

Hint: For all s ∈ [0, S], let ~N(s) denote the outward unit normal vector of ∂U at
γ(s). Let R =

[

0 −1
1 0

]

(thus, left-multiplying the matrix R rotates a vector clockwise by
90o).

(a) Show that (∇g) ·R = ∇h. (Here we regard ∇h and ∇g as 2× 1 ‘row matrices’).
(b) Show that R · γ̇(s) = ~N(s) for all s ∈ [0, S] (Here we regard γ̇ and ~N as a 1× 2

‘column matrices’. Hint: recall that γ is a clockwise parameterization).
(c) Show that (h ◦ γ)′(s) = ∇h[γ(s)] · γ̇(s), for all s ∈ [0, S]. (To make sense of this,

recall that ∇h is 2× 1 matrix, while γ̇ is a 1× 2 matrix. Hint: use the chain rule).
(d) Show that (∂⊥g)[γ(s)] = (h ◦ γ)′(s) for all s ∈ [0, S]. (Hint: Recall that

(∂⊥g)[γ(s)] = (∇g)[γ(s)] · ~N(s)).
(e) Conclude that ∂⊥g[γ(s)] = b′[γ(s)] for all s ∈ [0, S] if and only if h[γ(s)] = b(s)+C

for all s ∈ [0, S] (where C is some constant). �

Exercise 18A.8. (a) Show that exp′(z) = exp(z) for all z ∈ C. E©
(b) Fix x ∈ R, and consider the smooth path γ : R −→ R2 defined by

γ(t) := [expr(x+ it), expi(x+ it)],

where expr(z) and expi(z) denote the real and imaginary parts of exp(z). Let R := ex;
note that γ(0) = (R, 0). Use (a) to show that γ satisfies the ordinary differential equation

[

γ̇1(t)
γ̇2(t)

]

=
[

−γ2(t)
γ1(t)

]

2See § 5C(i) on page 73 and § 5C(ii) on page 76.
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Conclude that γ(t) = [R cos(t), R sin(t)] for all t ∈ R.
(c) For any x, y ∈ R, use (b) to show that exp(x+ iy) = ex(cos(y) + i sin(y)).
(d) Deduce that exp(c1 + c2) = exp(c1) · exp(c2) for all c1, c2 ∈ C. �

Exercise 18A.9. (a) Show that sin′(z) = cos(z), cos′(z) = − sin(z), sinh′(z) =E©
cos(z), and cosh′(z) = − sinh(z), for all z ∈ C.

(b) For all z ∈ C, verify the Euler Identities:

sin(z) =
exp(zi)− exp(−zi)

2i
cos(z) =

exp(−zi) + exp(zi)
2

sinh(z) =
exp(z)− exp(−z)

2
cosh(z) =

exp(z) + exp(−z)
2

(c) Deduce that sinh(z) = i sin(iz) and cosh(z) = cos(iz).
(d) For all x, y ∈ R, prove the following identities:

cos(x+ yi) = cos(x) cosh(y)− i sin(x) sinh(y);
sin(x+ yi) = sin(x) cosh(y) + i cos(x) sinh(y).

(e) For all z ∈ C, verify the Pythagorean Identities:

cos(z)2 + sin(z)2 = 1 and cosh(z)2 − sinh(z)2 = 1.

(Later we will show that pretty much every ‘trigonometric identity’ which is true on
R will also be true over all of C; see Exercise 18D.4 on page 454.) �

18B Conformal maps

Prerequisites: §1B, §5C, §18A.

A linear map f : RD −→ RD is called conformal if it preserves the angles
between vectors. Thus, for example, rotations, reflections, and dilations are all
conformal maps.

Let U,V ⊂ RD be open subsets of RD. A differentiable map f : U −→ V
is called conformal if its derivative D f(x) is a conformal linear map, for every
x ∈ U. One way to interpret this is depicted in Figure 18B.1. Suppose two
smooth paths γ1 and γ2 cross at x, and their velocity vectors γ̇1 and γ̇2 form an
angle θ at x. Let α1 = f ◦γ1 and α2 = f ◦γ2, and let y = f(x). Then α1 and α2

are smooth paths, and cross at y, forming an angle φ. The map f is conformal
if, for every x, γ1, and γ2, the angles θ and φ are equal.

Complex analysis could be redefined as ‘the study of two-dimensional con-
formal maps’, because of the next result.
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Figure 18B.1: A conformal map preserves the angle of intersection between two paths.

Proposition 18B.1. (Holomorphic ⇐⇒ conformal)

Let U ⊂ R2 be an open subset, and let f : U −→ R2 be a differentiable function,
with f(u) = (f1(u), f2(u)) for all u ∈ U. Identify U with a subset ˜U of the plane
C in the obvious way, and define ˜f : ˜U −→ C by ˜f(x+ yi) = f1(x, y) + f2(x, y)i
—that is, ˜f is just the representation of f as a complex-valued function on C.

Then
(

f is conformal
)

⇐⇒
(

˜f is holomorphic
)

.

Proof. Exercise 18B.1 (Hint: The derivative D f is a linear map on R2. Show that E©
D f is conformal if and only if ˜f satisfies the Cauchy-Riemann differential equations
(18A.3) on page 416.). 2

If U ⊂ C is open, then Proposition 18B.1 means that every holomorphic map
f : U −→ C can be treated as a conformal transformation of U. In particular
we can often conformally identify U with some other domain in the complex
plane via a suitable holomorphic map. A function f : U −→ V is a conformal
isomorphism if f is conformal, invertible, and f−1 : V −→ U is also conformal.
Proposition 18B.1 says that this is equivalent to requiring f and f−1 to be
holomorphic.

Example 18B.2. (a) In Figure 18B.2, U = {x+ yi ; x ∈ R, 0 < y < π} is a bi-
infinite horizontal strip, and C+ = {x+ yi ; x ∈ R, y > 0} is the open upper
half-plane, and f(z) = exp(z). Then f : U −→ C+ is a conformal isomorphism
from U to C+.

(b) In Figure 18B.3, U = {x+ yi ; x > 0, y ∈ R} is the open right half of the
complex plane, and oD{ =

{

x+ yi ; x2 + y2 > 1
}

is the complement of the
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Figure 18B.2: Example 18B.2(a). The map f(z) = exp(z) conformally identifies a bi-infinite

horizontal strip with the upper half-plane.
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Figure 18B.3: Example 18B.2(b). The map f(z) = exp(z) conformally projects the right

half-plane onto the complement of the unit disk.

closed unit disk, and f(z) = exp(z). Then f : U −→ oD{ is not a conformal
isomorphism (because it is many-to-one). However, f is a conformal covering
map. This means that f is locally one-to-one: for any point u ∈ U, with
v = f(u) ∈ oD{, there is a neighbourhood V ⊂ oD{ of v and a neighbourhood
U ⊂ U of u such that f| : U −→ V is one-to-one. (Note that f is not globally
one-to-one because it is periodic in the imaginary coordinate).

(c) In Figure 18B.4, U = {x+ yi ; x < 0, 0 < y < π} is a left half-infinite
rectangle, and V =

{

x+ yi ; y > 1, x2 + y2 < 1
}

is the open half-disk, and
f(z) = exp(z). Then f : U −→ V is a conformal isomorphism from U to V.

(d) In Figure 18B.5, U = {x+ yi ; x > 0, 0 < y < π} is a right half-infinite
rectangle, and V =

{

x+ yi ; y > 1, x2 + y2 > 1
}

is the “amphitheatre”, and
f(z) = exp(z). Then f : U −→ V is a conformal isomorphism from U to V.
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Figure 18B.4: Example 18B.2(c). The map f(z) = exp(z) conformally identifies a left

half-infinite rectangle with the half-disk.

(e) In Figure 18B.6(A,B), U = {x+ yi ; x, y > 0} is the open upper right
quarter-plane, and C+ = {x+ yi ; y > 0} is the open upper half-plane, and
f(z) = z2. Then f is a conformal isomorphism from U to C+.

(f) Let C+ := {x+ yi ; y > 0} be the upper half-plane, and U := C+ \
{yi ; 0 < y < 1}; that is, U is is the upper half-plane with a vertical line-
segment of length 1 removed above the origin. Let f(z) = (z2 + 1)1/2; then f
is a conformal isomorphism from U to C+, as shown in Figure 18B.7(a).

(g) Let U := {x+yi ; either y 6= 0 or−1 < x < 1}, and let V :=
{

x+ yi ; −π2 < y < π
2

}

be a bi-infinite horizontal strip of width π. Let f(z) := i · arcsin(z); then f is
a conformal isomorphism from U to V, as shown in Figure 18B.7(b).

Exercise 18B.2 Verify each of examples (a)-(g). ♦ E©

Conformal maps are very useful for solving boundary value problems, because
of the following result:

Proposition 18B.3. Let X,Y ⊂ R2 be open domains with closures X and Y.
Let f : X −→ Y be a continuous surjection which conformally maps X into Y.
Let h : Y −→ R be some smooth function, and define H = h ◦ f : X −→ R .

(a) h is harmonic on X if and only if H is harmonic on Y.

(b) Let b : ∂Y −→ R be some function on the boundary of Y. Then B = b◦ f :
∂X −→ R is a function on the boundary of X. The function h satisfies
the nonhomogeneous Dirichlet boundary condition3 “h(y) = b(y) for all

3See § 5C(i) on page 73.
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Figure 18B.5: Example 18B.2(d). The map f(z) = exp(z) conformally identifies a right

half-infinite rectangle with the “amphitheatre”

y ∈ ∂Y” if and only if H satisfies the nonhomogeneous Dirichlet boundary
condition “H(x) = B(x)” for all x ∈ ∂X”.

(c) For all x ∈ ∂X, let ~NX(x) be the outward unit normal vector to ∂X at
x, let ~NY(x) be the outward unit normal vector to ∂Y at f(x), and let
Df(x) be the derivative of f at x (a linear transformation of RD). Then
Df(x)[~NX(x)] = φ(x) · ~NY(x) for some scalar φ(x) > 0.

(d) Let b : ∂Y −→ R be some function on the boundary of Y, and define
B : ∂X −→ R by B(x) := φ(x) · b[f(x)] for all x ∈ ∂X. Then h satisfies
the nonhomogeneous Neumann boundary condition4 “∂⊥h(y) = b(y) for all
y ∈ ∂Y” if and only if H satisfies the nonhomogeneous Neumann boundary
condition “∂⊥H(x) = B(x)” for all x ∈ ∂X”.

Proof. Exercise 18B.3 Hint: (a) Combine Propositions 18A.2, 18A.3, and 18B.1.E©
For (c), use the fact that f is a conformal map, so Df(x) is a conformal linear
transformation; thus, if ~NX(x) is normal to ∂X, then Df(x)[~NX(x)] must be normal
to ∂Y. To prove (d), use (c) and the chain rule. 2

We can apply Proposition 18B.3 as follows: given a boundary value problem
on some “nasty” domain X, find a “nice” domain Y (e.g. a box, a disk, or a
half-plane), and a conformal isomorphism f : X −→ Y. Solve the boundary
value problem in Y (e.g. using the methods from Chapters 12-17), to get a
solution function h : Y −→ R. Finally, “pull back” this solution to get a solution
H = h ◦ f : X −→ R to the original BVP on X. We can obtain a suitable

4See § 5C(ii) on page 76.
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Figure 18B.6: (A,B): Example 18B.2(e). The map f(z) = z2 conformally identifies the

quarter-plane (A) and the half-plane (B). The mesh of curves in (A) is the preimage of the

Cartesian grid in (B). Note that these curves always intersect at right angles; this is because

f is a conformal map. The solid curves are the streamlines: the preimages of horizontal grid

lines. The streamlines describe a sourceless, irrotational flow confined to the quarter-plane

(see Proposition 18B.6 on page 430). The dashed curves are the equipotential contours: the

preimages of vertical grid lines. The streamlines and equipotentials can be interpreted as the

level curves of two harmonic functions (by Proposition 18A.2). They can also be interpreted

as the voltage contours and field lines of an electric field in a quarter-plane bounded by perfect

conductors on the x and y axes. (C,D): Example 18B.4 on the following

page. The map f(z) = z2 can be used to ‘pull back’ solutions to BVPs from the half-plane to

the quarter-plane. Figure (C) shows a greyscale plot of the harmonic function H defined on

the quarter-plane by eqn.(18B.2). Figure (D) shows a greyscale plot of the harmonic function

h defined on the half-plane by eqn.(18B.1); the two functions are related by H = h ◦ f .
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Figure 18B.7: (A) Example 18B.2(f). The map f(z) = (z2+1)1/2 is a conformal isomorphism

from the set C+ \ {yi ; 0 < y < 1} to the upper half-plane C+. (B) Example 18B.2(g).

The map f(z) := i · arcsin(z) is a conformal isomorphism from the domain U := {x + yi ;

either y 6= 0 or −1 < x < 1} to a bi-infinite horizontal strip. In these figures, as in Figure

18B.6(A,B), the mesh is the preimage of a Cartesian grid on the image domain; the solid

lines are streamlines, and the dashed lines are equipotential contours. In Figure (A), we can

interpret these streamlines as the flow of fluid over an obstacle; in Figure (B); they represent

the flow of fluid through a narrow aperature between two compartments. Alternately, we can

interpret these curves as the voltage contours and field lines of an electric field, where the

domain boundaries are perfect conductors.

conformal isomorphism from X to Y using holomorphic mappings, by Proposition
18B.1.

Example 18B.4. Let X =
{

(x1, x2) ∈ R2 ; x1, x2 > 0
}

be the open upper right
quarter-plane. Suppose we want to find a harmonic function H : X −→ R
satisfying the nonhomogeneous Dirichlet boundary conditions H(x) = B(x)
for all x ∈ ∂X, where B : ∂X −→ R is defined:

B(x1, 0) =
{

3 if 1 ≤ x1 ≤ 2;
0 otherwise.

and B(0, x2) =
{

−1 if 3 ≤ x2 ≤ 4;
0 otherwise.

Identify X with the complex right quarter-plane U from Example 18B.2(e). Let
f(z) := z2; then f is a conformal isomorphism from U to the upper half-plane
C+. If we identify C+ with the real upper half-plane Y :=

{

(y1, y2) ∈ R2 ; y2 > 0
}

,
then we can treat f as a function f : X −→ Y, given by the formula f(x1, x2) =
(x2

1 − x2
2, 2x1x2).

Since f is bijective, the inverse f−1 : Y −→ X is well-defined. Thus, we can
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define a function b := B ◦ f−1 : ∂Y −→ R. To be concrete:

b(y1, 0) =







3 if 1 ≤ y1 ≤ 4;
−1 if −16 ≤ y1 ≤ −9;

0 otherwise.

Now we must find a harmonic function h : Y −→ R satisfying the Dirichlet
boundary conditions h(y1, 0) = b(y1, 0) for all y1 ∈ R. By adding together two
copies of the solution from Example 17E.2 on page 405, we deduce that

h(y1, y2) =
3
π

[

arcsin
(

4− y1

y2

)

− arcsin
(

1− y1

y2

)]

(18B.1)

− 1
π

[

arcsin
(

−9− y1

y2

)

− arcsin
(

−16− y1

y2

)]

,

for all (y1, y2) ∈ Y; see Figure 18B.6(D). Finally, define H := h ◦ f : X −→ R.
That is,

H(x1, x2) =
3
π

[

arcsin
(

4− x2
1 + x2

2

2x1x2

)

− arcsin
(

1− x2
1 + x2

2

2x1x2

)]

(18B.2)

− 1
π

[

arcsin
(

−9− x2
1 + x2

2

2x1x2

)

− arcsin
(

−16− x2
1 + x2

2

2x1x2

)]

,

for all (x1, x2) ∈ X; see Figure 18B.6(C). Proposition 18B.3(a) says that H is
harmonic on X, because h is harmonic on Y. Finally, h satisfies the Dirichlet
boundary conditions specified by b, and B = b ◦ f ; thus Proposition 18B.3(b)
says that H satisfies the Dirichlet boundary conditions specified by B, as
desired. ♦

For Proposition 18B.3 to be useful, we must find a conformal map from our
original domain X to some ‘nice’ domain Y where we are able to easily solve
BVPs. For example, ideally, Y should be a disk or a half-plane, so that we can
apply the Fourier techniques of Section 14B, or the Poisson kernel methods from
Sections 14B(v), 17F and 17E. If X is a simply connected open subset of the
plane, then a deep result in complex analysis says that it is always possible to
find such a conformal map. An open subset U ⊂ C is simply connected if any
closed loop in U can be continuously shrunk down to a point without ever leaving
U. Heuristically speaking, this means that U has no ‘holes’. (For example, the
open disk is simply connected, and so is the upper half-plane. However, the open
annulus is not simply connected.)

Theorem 18B.5. Riemann Mapping Theorem
Let U,V ⊂ C be two open, simply connected regions of the complex plane.

Then there is always a holomorphic bijection f : U −→ V.
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Proof. See [Lan85, Chapter XIV, pp.340-358]. 2

In particular, this means that any simply connected open subset of C is
conformally isomorphic to the disk, and also conformally isomorphic to the upper
half-plane. Thus, in theory, a technique like Example 18B.4 can be applied to
any such region.

Unfortunately, the Riemann Mapping Theorem does not tell you how to con-
struct the conformal isomorphism —it merely tells you that such an isomorphism
exists. This is not very useful when we want to solve a specific boundary value
problem on a specific domain. If V is a region bounded by a polygon, and U
is the upper half-plane, then it is possible to construct an explicit conformal
isomorphism from U to V using Schwarz-Christoffel transformations; see [Fis99,
§3.5, p.227] or [Asm05, §12.6]. For further information about conformal maps in
general, see [Fis99, §3.4], [Lan85, Chapter VII], or the innovatively visual [Nee97,
Chapter 12]. Older, but still highly respected references are [Neh75], [Bie53] and
[Sch79].

Application to fluid dynamics. Let U ⊂ C be an open connected set, and
let ~V : U −→ R2 be a two-dimensional vector field (describing a flow). De-
fine f : U −→ C by f(u) = V1(u) − iV2(u). Recall that Proposition 18A.4 on
page 418 says that ~V is sourceless and irrotational (e.g. describing a nontur-
bulent, incompressible fluid) if and only if f is holomorphic. Suppose F is a
complex antiderivative5 of f on U —that is F : U −→ C is a holomorphic map
such that F ′ ≡ f . Then F is called a complex potential for ~V. The function
φ(u) = Re [F (u)] is called the (real) potential of the flow. An equipotential
contour of F is a level curve of φ. That is, it is a set Ex = {u ∈ U; Re [F (u)] = x}
for some fixed x ∈ R. For example, in Figures 18B.6(A) and 18B.7(A,B), the
equipotential contours are the dashed curves. A streamline of F is a level curve
of the imaginary part of F . That is, it is a set Sy = {u ∈ U; Im [F (u)] = y}
for some fixed y ∈ R. For example, in Figures 18B.6(A) and 18B.7(A,B), the
streamlines are the solid curves.

A trajectory of ~V is the path followed by a particle carried in the flow
—that is, it is a smooth path α : (−T, T ) −→ U (for some T ∈ (0,∞]) such that
α̇(t) = ~V[α(t)] for all t ∈ (−T, T ). The flow ~V is confined to U if no trajec-
tories of ~V ever pass through the boundary ∂U. (Physically, ∂U represents an
‘impermeable barrier’). The equipotentials and streamlines of F are important
for understanding the flow defined by ~V, because the following result:

Proposition 18B.6. Let ~V : U −→ R2 be a sourceless, irrotational flow, and
let F : U −→ C be a complex potential for ~V.

5We will discuss how to construct complex antiderivatives in Exercise 18C.15 on page 447;
for now, just assume that F exists.
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(a) If φ = Re [F ], then ∇φ = ~V. Thus, particles in the flow can be thought
of as descending the ‘potential energy landscape’ determined by φ. In
particular, every trajectory of the flow cuts orthogonally through every
equipotential contour of F .

(b) Every streamline of F also cuts orthogonally through every equipotential
contour.

(c) Every trajectory of ~V parameterizes a streamline of F , and every stream-
line can be parameterized by a trajectory. (Thus, by plotting the stream-
lines of F , we can visualize the flow ~V).

(d) ~V is confined to U if and only if F conformally maps U to a bi-infinite
horizontal strip V ⊂ C, and maps each connected component of ∂U to a
horizontal line in V.

Proof. Exercise 18B.4 Hint: (a) Follows from the definitions of F and ~V. To E©
prove (b) use the fact that F is a conformal map. (c) follows by combining (a) and
(b), and then (d) follows from (c). 2

Thus, the set of conformal mappings from U onto such horizontal strips
describes all possible sourceless, irrotational flows confined to U. If ∂U is simply
connected, then we can assume F maps U to the upper half-plane and maps ∂U
to R (as in Example 18B.2(e)). Or, if we are willing to allow one ‘point source’
(or sink) p in ∂U, we can find a mapping from U to a bi-infinite horizontal strip,
which maps the half of the boundary on one side of p to the top edge of strip,
maps the other half of the boundary to the bottom edge, and maps p itself to∞
(as in Example 18B.2(a); in this case, the ‘point source’ is at 0).

Application to electrostatics. Proposition 18B.6 has another important
physical interpretation. The function φ = Im [f ] is harmonic (by Proposi-
tion 18A.2 on page 417). Thus, it can be interpreted as an electrostatic potential
(see Example 1D.2 on page 14). In this case, we can regard the streamlines of
F as the voltage contours of the resulting electric field; then the ‘equipotentials’
F of are the field lines (note the reversal of roles here). If ∂U is a perfect con-
ductor (e.g. a metal), then the field lines must always intersect ∂U orthogonally,
and the voltage contours (i.e. the ‘streamlines’) can never intersect ∂U —thus,
in terms of our fluid dynamical model, the ‘flow’ is confined to U. Thus, the
streamlines and equipotentials in Figures 18B.6(A) and 18B.7(A,B) portray the
(two-dimensional) electric field generated by charged metal plates.

For more about the applications of complex analysis to fluid dynamics and
electrostatics, see [Fis99, §4.2, pp.261-278] or [Nee97, §12.V, pp.527-540].
Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



432— DRAFT Chapter 18. Applications of complex analysis

Θ
1

V

-1+ πi

-1- πi

-1 00

V U
(a) (b) (c)

1

U
(e)

-1

U(d)

10 -1 1

i

-i

c
r

ba

Figure 18B.8: Exercise 18B.5.

Exercise 18B.5. (a) Let Θ ∈ (0, 2π], and consider the ‘pie-wedge’ domain V := E©
{r cis θ; 0 < r < 1, 0 < θ < Θ} (in polar coordinates); see Figure 18B.8(a). Find a con-
formal isomorphism from V to the left half-infinite rectangle U = {x+ yi ; x > 0, 0 < y < π}.

(b) Let U := {x+ yi ; −π < y < π} be a bi-infinite horizontal strip of width 2π, and
let V := {x + yi ; either y 6= ±i or x > −1}, as shown in Figure 18B.8(b). Show that
f(z) := z + exp(z) is a conformal isomorphism from U to V.

(c) Let C+ := {x+ yi ; y > 0} be the upper half-plane. Let U := {x + yi; either
y > 0 or −1 < x < 1}. That is, U is the complex plane with two lower quarter-planes
removed, leaving a narrow ‘chasm’ in between them, as shown in Figure 18B.8(c). Show
that f(z) = 2

π

(√
z2 − 1 + arcsin(1/z)

)

is a conformal isomorphism from C+ to U.

(d) Let C+ := {x+ yi ; y > 0} be the upper half-plane. Let U := {x+yi; either y > 0
or x < 1 or 1 < x}. That is, U is the complex plane with a vertical half-infinite rectangle
removed, as shown in Figure 18B.8(d). Show that f(z) = 2

π

(

z(1− z2)1/2 + arcsin(z)
)

is a conformal isomorphism from C+ to U.
(e) Let c > 0, let 0 < r < 1, and let U := {x+yi ; x2 +y2 < 1 and (x−c)2 +y2 < r2}.

That is, U is the ‘off-centre annulus’, obtained by removing from the unit disk a smaller
smaller disk of radius r centered at (c, 0), as shown in Figure 18B.8(e). Let a := c − r
and b := c+ r, and define

λ :=
1 + ab−

√

(1− a2)(1− b2)
a+ b

and R :=
1− ab−

√

(1− a2)(1− b2)
b− a

.

Let A := {x+ yi ; R < x2 + y2 < 1} be an annulus with inner radius R and outer radius

1, and let f(z) :=
z − λ
1− λz

. Show that f is a conformal isomorphism from U into A.

(f) Let U be the upper half-disk shown on the right side of Figure 18B.4, and let D be

the unit disk. Show that the function f(z) = −i
z2 + 2iz + 1
z2 − 2iz + 1

is a conformal isomorphism

from U into D.
(g) Let D =

{

x+ yi ; x2 + y2 < 1
}

be the open unit disk and let C+ = {x+ yi ; y > 0}
be the open upper half-plane. Define f : D −→ C+ by f(z) = i 1+z

1−z . Show that f is a
conformal isomorphism from D into C+. �

Exercise 18B.6. (a) Combine Example 18B.2(a) with Proposition 17E.1 onE©
page 404 (or Proposition 20C.1 on page 538) to propose a general method for solving
the Dirichlet problem on the bi-infinite strip U = {x+ yi ; x ∈ R, 0 < y < π}.
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(b) Now combine Exercise (a) with Exercise 18B.5(b) to propose a general method
for solving the Dirichlet problem on the domain portrayed in Figure 18B.8(b). (Note:
despite the fact that the horizontal barriers are lines of zero thickness, your method
allows you to assign different ‘boundary conditions’ to the two sides of these barriers.)
Use your method to find the equilibrium heat distribution when the two barriers are each
a different constant temperature. Reinterpret this solution as the electric field between
two charged electrodes.

(c) Combine Exercise 18B.5(c) with Proposition 17E.1 on page 404 (or Proposi-
tion 20C.1 on page 538) to propose a general method for solving the Dirichlet problem
on the ‘chasm’ domain portrayed in Figure 18B.8(c). Use your method to find the
equilibrium heat distribution when the boundaries on either side of the chasm are two
different constant temperatures. Reinterpret this solution as the electric field near the
edge of a narrow gap between two large, oppositely charged parallel plates.

(d) Combine Exercise 18B.5(d) with Proposition 17E.1 on page 404 (or Proposi-
tion 20C.1 on page 538) to propose a general method for solving the Dirichlet problem
on the domain portrayed in Figure 18B.8(d). Use your method to find the equilibrium
heat distribution when the left side of the rectangle has temperature −1, the right side
has temperature +1, and the top has temperature 0.

(e) Combine Exercise 18B.5(e) with Proposition 14B.10 on page 287 to propose a
general method for solving the Dirichlet problem on the off-centre annulus portrayed in
Figure 18B.8(e). Use your method to find the equilibrium heat distribution when the
inner and outer circles are two different constant temperatures. Reinterpret this solution
as an electric field between two concentric, oppositely charged cylinders.

(f) Combine Exercise 18B.5(f) with the methods of Sections 14B, 14B(v), and/or 17F
to propose a general method for solving the Dirichlet and Neumann problems on the half-
disk portrayed in Figure 18B.4. Use your method to find the equilibrium temperature
distribution when the semicircular top of the half-disk is one constant temperature, and
the base is another constant temperature.

(g) Combine Exercise 18B.5(g) with the Poisson Integral Formula on a disk (Propo-
sition 14B.11 on page 290 or Proposition 17F.1 on page 407) to obtain another solution
to the Dirichlet problem on a half-plane. Show that this is actually equivalent to the
Poisson Integral Formula on a half-plane (Proposition 17E.1 on page 404).

(h) Combine Example 18B.2(f) with Proposition 17E.1 on page 404 (or Proposi-
tion 20C.1 on page 538) to propose a general method for solving the Dirichlet problem
on the domain portrayed in Figure 18B.7(a). (Note: despite the fact that the vertical
obstacle is a line of zero thickness, your method allows you to assign different ‘boundary
conditions’ to the two sides of this line.) Use your method to find the equilibrium tem-
perature distribution when the ‘obstacle’ has one constant temperature and the the real
line has another constant temperature. Reinterpret this as the electric field generated
by a charged electrode protruding but insulated from a horizontal, neutrally charged
conducting barrier.

(i) Combine Exercise (a) with Example 18B.2(g) to propose a general method for
solving the Dirichlet problem on the domain portrayed in Figure 18B.7(b). (Note: de-
spite the fact that the horizontal barriers are lines of zero thickness, your method allows
you to assign different ‘boundary conditions’ to the two sides of these barriers.) Use
your method to find the equilibrium temperature distribution when the two horizon-
tal barriers have different constant temperatures. Reinterpret this as the electric field
between two charged electrodes. �

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



434— DRAFT Chapter 18. Applications of complex analysis

Exercise 18B.7. (a) Figure 18B.6(A) portrays the map f(z) = z2 from ExampleE©
18B.2(e). Show that in this case, the equipotential contours are all curves of the form
{x+ iy; y =

√
x2 − c} for some fixed c > 0. Show that the streamlines are all curves of

the form {x+ iy; y = c/x} for some fixed c > 0.
(b) Figure 18B.7(B) portrays the map f(z) = i arcsin(z) from Example 18B.2(f).

Show that in this case, the equipotential contours are all ellipses of the form
{

x+ iy ;
x2

cosh(r)2
+

y2

sinh(r)2
= 1
}

,

for some fixed r ∈ R. Likewise, show that the streamlines are all hyperbolas
{

x+ iy ;
x2

sin(r)2
− y2

cos(r)2
= 1
}

,

for some fixed r ∈ R. Hint: Use Exercises 18A.9(d,e) on page 422.
(c) Find an equation describing all streamlines and equipotentials of the conformal

map in Example 18B.2(a). Sketch the streamlines. (This describes a flow into a large
body of water, from a point source on the boundary).

(d) Fix Θ ∈ (−π, π), and consider the infinite wedge-shaped region U = {r cis θ;
r ≥ 0, 0 < θ < 2π−Θ}. Find a conformal isomorphism from U to the upper half-plane.
Sketch the streamlines of this map. (This describes the flow near the bank of a wide
river, at a corner where the river bends by angle of Θ).

(e) Suppose Θ = 2π/3. Find an exact equation to describe the streamlines and
equipotentials from question (d) (analogous to the equations “y =

√
x2 − c” and “y =

c/x” from question (a)).
(f) Sketch the streamlines and equipotentials defined by the conformal map in Ex-

ercise 18B.5(b). (This describes the flow out of a long pipe or channel into a large body
of water).

(g) Sketch the streamlines and equipotentials defined by the inverse of the confor-
mal map f in Exercise 18B.5(c). (In other words, sketch the f -images of vertical and
horizontal lines in C+). This describes the flow over a deep ‘chasm’ in the streambed.

(h) Sketch the streamlines and equipotentials defined by the inverse of the confor-
mal map f in Exercise 18B.5(d). (In other words, sketch the f -images of vertical and
horizontal lines in C+). This describes the flow around a long rectangular peninsula in
an ocean. �

18C Contour integrals and Cauchy’s Theorem

Prerequisites: §18A.

A contour in C is a continuous function γ : [0, S] −→ C (for some S > 0)
such that γ(0) = γ(S), and such that γ does not ‘self-intersect’ —that is, γ :
[0, S) −→ C is injective.6. Let γr, γi : [0, S] −→ R be the real and imaginary
parts of γ (so γ(s) = γr(s) + γi(s)i, for all s ∈ R). For any s ∈ (0, S), we

6What we are calling a contour is sometimes called a simple, closed curve.
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Figure 18C.1: (A) The counterclockwise unit circle contour from Example 18C.1. (B)

The ‘D’ contour from Example 18C.3

define the (complex) velocity vector if γ at s by γ̇(s) := γ′r(s) + γ′i(s)i (if these
derivatives exist). We say that γ is smooth if γ̇(s) exists for all s ∈ (0, S).

Example 18C.1. Define γ : [0, 2π] −→ C by γ(s) = exp(is); then γ is a
counterclockwise parameterization of the unit circle in the complex plane, as
shown in Figure 18C.1(A). For any s ∈ [0, 2π], we have γ(s) = cos(s)+ i sin(s),
so that γ̇(s) = cos′(s) + i sin′(s) = − sin(s) + i cos(s) = iγ(s). ♦

Let U ⊆ C be an open subset, let f : U −→ C be a complex function, and
let γ : [0, S] −→ U be a smooth contour. The contour integral of f along γ is
defined:

∮

γ
f :=

∫ S

0
f [γ(s)] · γ̇(s) ds.

(Recall that γ̇(s) is a complex number, so f [γ(s)] · γ̇(s) is a product of two

complex numbers). Another notation we will sometimes use is
∮

γ
f(z) dz.

Example 18C.2. Let γ : [0, 2π] −→ C be the unit circle contour from Example
18C.1.

(a) Let U := C and let f(z) := 1, a constant function. Then

∮

γ
f =

∫ 2π

0
1 · γ̇(s) ds =

∫ 2π

0
− sin(s) + i cos(s) ds

= −
∫ 2π

0
sin(s) ds+ i

∫ 2π

0
cos(s) ds = −0 + i0 = 0.
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(b) Let U := C and let f(z) := z2. Then
∮

γ
f =

∫ 2π

0
γ(s)2 · γ̇(s) ds =

∫ 2π

0
exp(is)2 · i exp(is) ds

= i
∫ 2π

0
exp(is)3 ds = i

∫ 2π

0
exp(3is) ds

= i
∫ 2π

0
cos(3s) + i sin(3s) ds = i

∫ 2π

0
cos(3s) ds−

∫ 2π

0
sin(3s) ds

= i0− 0 = 0.

(c) More generally, for any n ∈ Z except n = −1, we have
∮

γ z
n dz = 0

(Exercise 18C.1).E©

(What happens if n = −1? See Example 18C.6 below).

(d) It follows that, if cn, . . . , c2, c1, c0 ∈ C, and f(z) = cnz
n+· · ·+c2z

2+c1z+c0

is a complex polynomial function, then
∮

γ f = 0. ♦

A contour γ : [0, S] −→ U ⊆ C is piecewise smooth if γ̇(s) exists for all s ∈
[0, S], except for perhaps finitely many points 0 = s0 ≤ s1 ≤ s2 ≤ . . . ≤ sN = S.
If f : U −→ C is a complex function, we define the contour integral

∮

γ
f :=

N
∑

n=1

∫ sn

sn−1

f [γ(s)] · γ̇(s) ds.

Example 18C.3. Fix R > 0, and define γR : [0, π + 2R] −→ C as follows:

γR(s) :=
{

R · exp(is) if 0 ≤ s ≤ π;
s− π −R if π ≤ s ≤ π + 2R.

(18C.1)

This contour looks like a ‘D’ turned on its side; see Figure 18C.1(B). The
first half of the contour parameterizes the upper half of the circle from R to
−R. The second half parameterizes a straight horizontal line segment from
−R back to R. It follows that

γ̇R(s) :=
{

Ri · exp(is) if 0 ≤ s ≤ π;
1 if π ≤ s ≤ π + 2R.

(18C.2)

(a) Let U := C and let f(z) := z. Then

∮

γR

f =
∫ π

0
γ(s) · γ̇(s) ds +

∫ π+2R

π
γ(s) · γ̇(s) ds

(∗)

∫ π

0
R exp(is) ·Ri exp(is) ds +

∫ π+2R

π
(s− π −R) ds
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= R2i
∫ π

0
exp(is)2 ds +

∫ R

−R
t dt

= R2i
∫ π

0
cos(2s) + i sin(2s) ds +

t2

2

∣

∣

∣

t=R

t=−R

=
R2i
2

(

sin(2s)− i cos(2s)
)s=π

s=0
+

1
2

(

R2 − (−R)2
)

=
R2i
2

(

(0− 0)− i(1− 1)
)

+ 0

= 0 + 0 = 0.

Here, (∗) is by equations (18C.1) and (18C.2).

(b) For generally, for any n ∈ Z, if n 6= −1, then
∮

γR
zn dz = 0 (Exercise 18C.2). E©

Thus, if f is any complex polynomial, then
∮

γR
f = 0. ♦

Any contour γ : [0, S] −→ C cuts the complex plane into exactly two pieces.
Formally the set C \ γ[0, S] has exactly two connected components, and ex-
actly one of these components (the one ‘inside’ γ) is bounded.7 The bounded
component is called the purview of γ; see Figure 18C.2(A). For example, the
purview of the unit circle is the unit disk. If G is the purview of γ, then clearly
∂G = γ[0, S]. We say that γ is counterclockwise if the outward normal vector
of G is always on the righthand side of the vector γ̇. We say γ is clockwise if
the outward normal vector of G is always on the lefthand side of the vector γ̇;
see Figure 18C.2(C).

The contour γ is called nullhomotopic in U if the purview of γ is entirely
contained in U; see Figure 18C.2(B). Equivalently: it is possible to continuously
‘shrink’ γ down to a point without the any part of the contour leaving U; this is
called a nullhomotopy of γ, and is portrayed in see Figure 18C.2(D). Heuris-
tically speaking, γ is nullhomotopic in U if and only if γ does not encircle any
‘holes’ in the domain U.

Example 18C.4. (a) The unit circle from Examples 18C.1 and the ‘D’ contour
from Example 18C.3 are both counterclockwise, and both are nullhomotopic
in the domain U = C.

(b) The unit circle is not nullhomotopic on the domain C∗ := C \ {0}. The
purview of γ (the unit disk) is not entirely contained in C∗, because the point 0
is missing. Equivalently, it is not possible to shrink γ down to a point without
passing the curve through 0 at some moment; at this moment the curve would
not be contained in U. ♦

The ‘zero’ outcomes of Examples 18C.2 and 18C.3 not accidents; they are
consequences of one of the fundamental results of complex analysis.

7This seemingly innocent statement is actually the content of the Jordan Curve Theorem,
which is a surprisingly difficult and deep result in planar topology.
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β
α

γ

(B)

(D)

U

U

γ

β

α
γ

(A)

β

α
γ

(C)

Figure 18C.2: (A) Three contours and their purviews. (B) Contour γ is nullhomotopic

in U, but contours α and β are not nullhomotopic in U. (C) Contour α is clockwise;

contours β and γ are counterclockwise. (D) A nullhomotopy of γ.

Theorem 18C.5. (Cauchy’s Theorem)
Let U ⊆ C be an open subset, and let f : U −→ C be holomorphic on U. If

γ : [0, S] −→ U is a contour which is nullhomotopic in U, then

∮

γ
f = 0.

Proof. Let G be the purview of γ. If γ is nullhomotopic in U, then G ⊆ U and
γ parameterizes the boundary ∂G. Treat U as a subset of R2. Let fr : U −→ R
and fi : U −→ R be the real and imaginary parts of f . The function f can
be expressed as a vector field ~V : U −→ R2 defined by V1(u) := fr(u) and
V2(u) := −fi(u). For any b ∈ ∂G, let ~N[b] denote the outward unit normal
vector to ∂G at b. We define

Flux(~V, γ) :=
∫ S

0

~V[γ(s)]•~N[γ(s)] ds, and Work(~V, γ) :=
∫ S

0

~V[γ(s)]•γ̇(s)] ds.
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The first integral is the flux of ~V across the boundary of G; this is just a
reformulation of equation (0E.1) on page 562 (see Figure 0E.1(B) on page
561). The second integral is the work of ~V along the contour γ.

Claim 1: (a) Re
[∮

γ
f

]

= Work(~V, γ) and Im
[∮

γ
f

]

= Flux(~V, γ).

(b) If div (~V) ≡ 0, then Flux(~V, γ) = 0.

(c) If curl (~V) ≡ 0, then Work(~V, γ) = 0.

Proof. (a) is Exercise 18C.3 . (b) is Green’s Theorem (Theorem 0E.3 on E©
page 562). (c) is Exercise 18C.4 (Hint: it’s a variant of Green’s Theorem). E©
�

Claim 1

Now, if f is holomorphic on U, then Proposition 18A.4 on page 418 says that

div (~V) ≡ 0 and curl (~V) ≡ 0. Then Claim 1 implies
∮

γ
f = 0.

(For other proofs, see [Fis99, Theorem 1, §2.3, p.107], [Lan85, §IV.3, p.137],
or [Nee97, §8.X, p.410]). 2

At this point you are wondering: what are complex contour integrals good
for, if they are always equal to zero? The answer is that

∮

γ f is only zero if the
function f is holomorphic in the purview of γ. If f has a singularity inside this
purview (i.e. a point where f is not complex-differentiable, or perhaps not even
defined), then

∮

γ f might be nonzero.

Example 18C.6. Let γ : [0, 2π] −→ C be the unit circle contour from Example
18C.1. Let C∗ := C \ {0}, and define f : C∗ −→ C by f(z) := 1/z. Then
∮

γ
f =

∫ 2π

0

γ̇(s)
γ(s)

ds =
∫ 2π

0

i exp(is)
exp(is)

ds =
∫ 2π

0
i ds = 2πi.

Notice that γ is not nullhomotopic on C∗. Of course, we could extend f to all
of C by defining f(0) in some arbitrary way. But no matter how we do this, f
will never be complex-differentiable at zero —in other words, 0 is a singularity
of f . ♦

If the purview of γ contains one or more singularities of f , then the value of
∮

γ f reveals important information about these singularities. Indeed, the value
of
∮

γ f depends only on the singularities within the purview of γ, and not on the
shape of γ itself. This is a consequence of the homotopy-invariance of contour
integration.

Let U ⊆ C be an open subset, and let γ0, γ1 : [0, S] −→ U be two contours.
We say that γ0 is homotopic to γ1 in U if γ0 can be ‘continuously deformed’
into γ1 without ever moving outside of U; see Figure 18C.3. (In particular, γ is
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γ0

γ1
α

β

γ0  is homotopic to  γ1, but not to α or β.
γ1  is homotopic to  γ0, but not to α or β.
α  is not homotopic to γ0, γ1, or β.    Likewise,  β  is not homotopic to γ0, γ1, or α.

γ0

γ1

A homotopy from  γ0  to  γ1.

(A) (B)

U U

Figure 18C.3: Homotopy

nullhomotopic if γ is homotopic to a constant path in U.) Formally, this means
there is a continuous function Γ : [0, 1]× [0, S] −→ U such that:

• For all s ∈ [0, S], Γ(0, s) = γ0(s).

• For all s ∈ [0, S], Γ(1, s) = γ1(s).

• For all t ∈ [0, 1], if we fix t and define γt : [0, S] −→ U by γt(s) := Γ(t, s)
for all s ∈ [0, S], then γt is a contour in U.

The function Γ is called a homotopy of γ0 into γ1. See Figure 18C.4(A).

Proposition 18C.7. (Homotopy invariance of contour integration)

Let U ⊆ C be an open subset, and let f : U −→ C be a holomorphic function.
Let γ0, γ1 : [0, S] −→ U be two contours. If γ0 is homotopic to γ1 in U, then
∮

γ0

f =
∮

γ1

f .

Before proving this result, it will be useful to somewhat extend our defini-
tion of contour integration. A chain is a piecewise-continuous, piecewise dif-
ferentiable function α : [0, S] −→ C (for some S > 0). (Thus, a chain α is
a contour if α is continuous, α(S) = α(0), and α is not self-intersecting). If
α : [0, S] −→ U ⊆ C is a chain, and f : U −→ C is a complex-valued function,
then the integral of f along α is defined

y
∫

α
f =

∫ S

0
f [α(s)] · α̇(s) ds. (18C.3)
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(0,0) (0,S)

(1,S)(1,0)

γ0

γ1

δ

γ0(0)

γ1(0)

Γ

(A)

γ∗

(D)

α α(B)

α   β

α

β

(C)

Figure 18C.4: (A) Γ is a homotopy from γ0 to γ1. (B) The reversal
←
α of α. (C)

The linking α � β. (D) The contour γ∗ defined by the ‘boundary’ of the homotopy map

Γ from Figure (A).

Here we define α̇(s) = 0 whenever s is one of the (finitely many) points where
α is nondifferentiable or discontinuous. (Thus, if α is a contour, then (18C.3) is
just the contour integral

∮

α f).
The reversal of chain α is the chain

←
α: [0, S] −→ C defined by

←
α (s) :=

α(S − s); see Figure 18C.4(B). If α : [0, S] −→ C and β : [0, T ] −→ C are two
chains, then the linking of α and β is the chain α � β : [0, S + T ] −→ C defined

α � β(s) :=
{

α(s) if 0 ≤ s ≤ S;
β(s− S) if S ≤ s ≤ S + T.

(Figure 18C.4(C))

Lemma 18C.8. Let U ⊆ C be an open set and let f : U −→ C be a complex-
valued function. Let α : [0, S] −→ U be a chain.
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(a) y
∫

←
α
f = −y

∫

α
f .

(b) If β : [0, T ] −→ C is another chain, then y
∫

α �β
f = y

∫

α
f + y

∫

β
f .

(c) α � β is continuous if and only if α and β are both continuous, and β(0) =
α(S).

(d) The linking operation is associative: that is, if γ is another chain, then
(α � β) � γ = α � (β � γ).

(Thus, we normally drop the brackets and just write α � β � γ).

Proof. Exercise 18C.5 2
E©

Proof of Proposition 18C.7. Define the continuous path δ : [0, 1] −→ C by

δ(t) := Γ(0, t) = Γ(S, t), for all t ∈ [0, 1].

Figure 18C.4(A) shows how δ traces the path defined by the homotopy Γ
from γ0(S) (= γ0(0)) to γ1(S) (= γ1(0)). We assert (without proof) that the
homotopy Γ can always be chosen such that δ is piecewise smooth; thus we
regard δ as a chain. Figure 18C.4(D) portrays the contour γ∗ := γ0 � δ �

←
γ1

�
←
δ , which traces the Γ-image of the four sides of the rectangle [0, 1]× [0, 2π].

Claim 1: γ∗ is nullhomotopic in U.

Proof. The purview of γ∗ is simply the image of the open rectangle (0, 1)×
(0, 2π) under the function Γ. But by definition, Γ maps (0, 1)× (0, 2π) into
U; thus the purview of γ∗ is contained in U, so γ∗ is nullhomotopic in U.
�

Claim 1

Thus, 0
(C)

∮

γ∗
f

(∗)

∮

γ0 � δ �
←
γ1 �
←
δ

f

(†)

∮

γ0

f + y
∫

δ
f −

∮

γ1

f − y
∫

δ
f =

∮

γ0

f −
∮

γ1

f.

Here (C) is by Cauchy’s Theorem and Claim 1, (∗) is by definition of γ, and
(†) is by Lemma 18C.8(a,b).

Thus, we have
∮

γ0

f −
∮

γ1

f = 0, which means
∮

γ0

f =
∮

γ1

f , as claimed.

2

Example 18C.6 is a special case of the following important result:
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Theorem 18C.9. (Cauchy’s Integral Formula)

Let U ⊆ C be an open subset, let f : U −→ C be holomorphic, let u ∈ U, and
let γ : [0, S] −→ U be any counterclockwise contour whose purview contains u

and is contained in U. Then f(u) =
1

2πi

∮

γ

f(z)
z − u

dz.

In other words: if U∗ := U \ {u}, and we define Fu : U∗ −→ C by Fu(z) :=
f(z)
z − u

for all z ∈ U∗, then f(u) =
1

2πi

∮

γ
Fu.

Proof. For simplicity, we will prove this in the case u = 0. We must show that
1

2πi

∮

γ

f(z)
z

dz = f(0).

Let G ⊂ U be the purview of γ. For any r > 0, let Dr be the disk of radius
r around 0, and let βr be a counterclockwise parameterization of ∂Dr (e.g.
βr(s) := reis for all s ∈ [0, 2π]). Let U∗ := U \ {0}.

Claim 1: If r > 0 is small enough, then Dr ⊂ G. In this case, γ is homotopic
to βr in U∗.

Proof. Exercise 18C.6 �
Claim 1

E©

Now, define φ : U −→ C as follows.

φ(u) :=
f(z)− f(0)

z
for all z ∈ U∗, and φ(0) := f ′(0).

Then φ is holomorphic on U∗. Observe that

1
(∗)

1
2πi

∮

βr

1
z
dz

(†)

1
2πi

∮

γ

1
z
dz. (18C.4)

where (∗) is by Example 18C.6 on page 439, and (†) is by Claim 1 and Propo-
sition 18C.7. Thus,

f(0)
(∗)

f(0)
2πi

∮

γ

1
z
dz =

1
2πi

∮

γ

f(0)
z

dz.

Thus,
1

2πi

∮

γ

f(z)
z

dz − f(0) =
1

2πi

∮

γ

f(z)
z

dz − 1
2πi

∫

γ

f(0)
z

dz

=
1

2πi

∮

γ

f(z)
z
− f(0)

z
dz

=
1

2πi

∮

γ

f(z)− f(0)
z

dz =
1

2πi

∮

γ
φ

(†)

1
2πi

∮

βr

φ, for any r > 0.
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Here, (∗) is by eqn.(18C.4), and (†) is again by Claim 1 and Proposition 18C.7.
Thus, we have

1
2πi

∮

γ

f(z)
z

dz − f(0) = lim
r→0

1
2πi

∮

βr

φ. (18C.5)

Thus, it suffices to show that lim
r→0

∮

βr

φ = 0. To see this, first note that φ

is continuous at 0 (because lim
z→0

φ(z) = f ′(0) by definition of the derivative),

and φ is also continuous on the rest of U (where φ is just another holomorphic
function). Thus, φ is bounded on G (because G is a bounded set whose closure
is inside U). Thus, if M := sup

z∈G
|φ(z)|, then M <∞. But then

∣

∣

∣

∣

∮

βr

φ

∣

∣

∣

∣

≤
(∗)

M · length(βr) = M · 2πr −−−−r→0−→ 0,

where (∗) is by Lemma 18C.10 (below).

Thus, lim
r→0

∮

βr

φ = 0, so eqn. (18C.5) implies that
1

2πi

∮

γ

f(z)
z

dz = f(0),

as desired. 2

If γ : [0, S] −→ C is a chain, then we define length(γ) :=
∫ S

0
|γ̇(s)| ds. The

proof of Theorem 18C.9 invoked the following useful lemma.

Lemma 18C.10. Let f : U −→ C and let γ be a chain in U. If M :=

sup
u∈U
|f(u)|, then

∣

∣

∣

∣

y
∫

γ
f

∣

∣

∣

∣

≤ M · length(γ).

Proof. Exercise 18C.7 2
E©

Exercise 18C.8. Prove the general case of Theorem 18C.9, for an arbitrary u ∈ C.E©
�

Corollary 18C.11. (Mean Value Theorem for holomorphic functions)
Let U ⊆ C be an open set and let f : U −→ C be holomorphic. Let r > 0 be

small enough that the circle S(r) of radius r around u is contained in U. Then

f(u) =
1

2π

∫

S(r)
f(s) ds =

1
2π

∫ 2π

0
f(u+ r eiθ) dθ.
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Proof. Define γ : [0, 2π] −→ U by γ(s) := u+reis for all s ∈ [0, 2π]; thus, γ is a
counterclockwise parameterization of S(r), and γ̇(s) = ireis for all s ∈ [0, 2π].
Then

f(u)
(∗)

1
2πi

∮

γ

f(z)
z − u

dz =
1

2πi

∫ 2π

0

f [γ(θ)]
γ(θ)− u

γ̇(θ) dθ

=
1

2πi

∫ 2π

0

f(u+ r eiθ)
reiθ

ireiθ dθ =
1

2π

∫ 2π

0
f(u+ r eiθ) dθ,

as desired. Here (∗) is by Cauchy’s Integral Formula. 2

Exercise 18C.9. Using Proposition 18C.11, derive another proof of the Mean Value E©
Theorem for harmonic functions on U (Theorem 1E.1 on page 16). (Hint: Use Proposi-
tion 18A.3 on page 417). �

Corollary 18C.12. (Maximum Modulus Principle)

Let U ⊆ C be an open set and let f : U −→ C be holomorphic. Then the
function m(z) := |f(z)| has no local maxima inside U.

Proof. Exercise 18C.10 Hint: Use the Mean Value Theorem. 2
E©

Exercise 18C.11. Let f : U −→ C be holomorphic. Show that the functions E©
R(z) := Re [f(z)] and I(z) := Im [f(z)] have no local maxima or minima inside U. �

Let oD := {z ∈ C ; |z| < 1} be the open unit disk in the complex plane, and
let S := ∂D be the unit circle. The Poisson kernel for D is the function
P : S× oD −→ R defined by

P(s, u) :=
1− |u|2

|s− u|2
, for all s ∈ S and u ∈ oD.

Corollary 18C.13. (Poisson Integral Formula for holomorphic functions)

Let U ⊆ C be an open subset containing the unit disk oD, and let f : U −→ C
be holomorphic. Then for all u ∈ oD,

f(u) =
1

2π

∫

S
f(s)P(s, u) ds =

1
2π

∫ 2π

0
f(eiθ)P(eiθ, u) dθ.
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Proof. If u ∈ oD, then u−1 is outside oD (because |u−1| = |u|−1 = |u|−1 > 1 if
|u| < 1). Thus, the set Cu := C \ {u−1} contains oD. Fix u ∈ oD and define
the function gu : Cu −→ C by

gu(z) :=
f(z) · u
1− uz

.

Claim 1: gu is holomorphic on Cu.

Proof. Exercise 18C.12 �
Claim 1

E©

Now, define Fu : U −→ C by Fu(z) :=
f(z)
z − u

, and let γ : [0, 2π] −→ S be the

unit circle contour from Example 18C.1 (i.e. γ(s) = eis for all s ∈ [0, 2π]).
Then

f(u) =
1

2πi

∮

γ
Fu by Cauchy’s Integral Formula (Theorem 18C.9),

and 0 =
1

2πi

∮

γ
gu by Cauchy’s Theorem (Theorem 18C.5),

Thus, f(u) =
1

2πi

∮

γ
(Fu + gu) =

1
2πi

∫ 2π

0

(

Fu[γ(θ)] + gu[γ(θ)]
)

γ̇(θ) dθ

=
1

2πi

∫ 2π

0

(

f(eiθ)
eiθ − u

+
f(eiθ) · u
1− ueiθ

)

ieiθ dθ

=
1

2π

∫ 2π

0
f(eiθ) ·

(

eiθ

eiθ − u
+

eiθu

1− ueiθ

)

dθ

(∗)

1
2π

∫ 2π

0
f(eiθ) · 1− |u|2

|eiθ − u|2
dθ =

1
2π

∫ 2π

0
f(eiθ)P(eiθ, u) dθ,

as desired. Here, (∗) uses the fact that, for any s ∈ S and u ∈ C,

s

s− u
+

su

1− us
=

s

s− u
+

ssu

s− uss
=

s

s− u
+
|s|2u

s− u|s|2

(∗)

s

s− u
+

u

s− u
=

s · (s− u) + u · (s− u)
(s− u) · (s− u)

=
|s|2 − su+ us− |u|2

(s− u) · (s− u)
=

|s|2 − |u|2

|s− u|2 (∗)

1− |u|2

|s− u|2
.

where both (∗) are because |s| = 1. 2
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Exercise 18C.13. Using Corollary 18C.13, derive yet another proof of the PoissonE©
Integral Formula for harmonic functions on D. (See Proposition 14B.11 on page 290,
and also Proposition 17F.1 on page 407.) Hint: Use Proposition 18A.3 on page 417. �

At this point, we have proved the Poisson Integral Formula three entirely
different ways: using Fourier series (Proposition 14B.11), using impulse-response
methods (Proposition 17F.1), and now, using complex analysis (Corollary 18C.13).
In § 18F on page 461 below, we will encounter the Poisson Integral Formula yet
again, while studying the Abel mean of a Fourier series.

An equation which expresses the solution to a boundary value problem in
terms of an integral over the boundary of the domain is called an integral repre-
sentation formula. For example, Poisson Integral Formula is such a formula, as
is Poisson’s solution to the Dirichlet problem on a half-space (Proposition 17E.1
on page 404). Cauchy’s Integral Formula provides an integral representation
formula for any holomorphic function on any domain in C which is bounded by
a contour. Our proof of Corollary 18C.13 shows how this can be used to obtain
integral representation formulae for harmonic functions on planar domains.

Exercise 18C.14. (Liouville’s Theorem) E©
Suppose f : C −→ C is holomorphic and bounded —i.e. there is some M > 0 such

that |f(z)| < M for all z ∈ C. Show that f must be a constant function.
Hint. Define g(z) := f(z)−f(0)

z .
(a) Show that g is holomorphic on C.
(b) Show that |g(z)| < 2M/|z| for all z ∈ C.
(c) Let z ∈ C. Let γ be a circle of radius R > 0 around 0, where R is large enough

that z is in the purview of γ. Use Cauchy’s Integral Formula and Lemma 18C.10 on

page 444 (below) to show that |g(z)| < 1
2π

2M
R

2πR
R− |z|

. Now let R→∞. �

Exercise 18C.15. (Complex antiderivatives) E©
Let U ⊂ C be an open connected set. We say that U is simply connected if

every contour in U is nullhomotopic. Heuristically speaking, this means U doesn’t have
any ‘holes’. For any u0, u1 ∈ U, a path in U from u0 to u1 is a continuous function
γ : [0, S] −→ U such that γ(0) = u0 and γ(S) = u1.

Let f : U −→ C be holomorphic. Pick a ‘basepoint’ b ∈ U, and define a function
F : U −→ C as follows.

For all u ∈ U, F (u) := y
∫

γ

f, where γ is any path in U from b to u. (18C.6)

(a) Show that F (u) is well-defined by expression (18C.6), independent of the path γ
you use to get from b to u.
(Hint. If γ1 and γ2 are two paths from b to u, show that γ1 �

←
γ2 is a contour.

Then apply Cauchy’s Theorem).

(b) For any u1, u2 ∈ U, show that F (u2) − F (u1) =
∫

γ
f , where γ is any path in U

from u1 to u2.
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(c) Show that F is a holomorphic function, and F ′(u) = f(u) for all u ∈ U.
(Hint. Write F ′(u) as the limit (18A.1) on page 415. For any c close to u let
γ : [0, 1] −→ U be the straight-line path linking u to c (i.e. γ(s) = sc+ (1− s)u.).

Deduce from part (b) that
F (c)− F (u)

c− u
=

1
c− u

y
∫

γ

f . Now take the limit as

c→ u.)

The function F is called a complex antiderivative of f , based at b. Part (c) is
the complex version of the Fundamental Theorem of Calculus.

(d) Let U = C, and let b ∈ U, and let f(u) = exp(u). Let F be the complex
antiderivative of f based at b. Show that F (u) = exp(u)− exp(b) for all u ∈ C.

(e) Let U = C, and let b ∈ U, and let f(u) = un for some n ∈ N. Let F be the
complex antiderivative of f based at b. Show that F (u) = 1

n+1 (un+1 − bn+1), for
all u ∈ C.

We already encountered one application of complex antiderivatives in Proposition 18B.6
on page 430. The next two exercises describe another important application. �

Exercise 18C.16. Complex logarithms (follows Exercise 18C.15).E©

(a) Let U ⊂ C be an open, simply connected set which does not contain 0. Define a
‘complex logarithm function’ log : U −→ C as the complex antiderivative of 1/z

based at 1. That is, log(u) :=y
∫

γ

1/z dz, where γ is any path in U from 1 to z. Show

that log is a right-inverse of the exponential function —that is, exp(log(u)) = u
for all u ∈ U.

(b) What goes wrong with part (a) if 0 ∈ U? What goes wrong if 0 6∈ U, but U
contains an annulus which encircles 0? (Hint. Consider Example 18C.6)
Remark: This is the reason why we required U to be simply connected in Exercise
18C.15.

(c) Suppose our definition of ‘complex logarithm’ is ‘any right-inverse of the complex
exponential function’ —that is, any holomorphic function L : U −→ C such that
exp(L(u)) = u for all u ∈ U. Suppose L0 : U −→ C is one such ‘logarithm’ function
(defined as in part (a), for example). Define L1 : U −→ C by L1(u) = L0(u)+2πi.
Show that L1 is also a ‘logarithm’. Relate this to the problem you found in part
(b).

(d) Indeed, for any n ∈ Z, define Ln : U −→ C by Ln(u) = L0(u) + 2nπi. Show that
Ln is also a ‘logarithm’ in the sense of part (c). Make a sketch of the surface
described by the functions Im [Ln] : C −→ R, for all n ∈ Z at once.

(e) Proposition 18A.2 on page 417 asserted that any harmonic function on a convex
domain U ⊂ R2 can be represented as the real part of a holomorphic function on
U, treated as a subset of C. The Remark following Proposition 18A.2 said that U
actually doesn’t need to be convex, but it does need to be simply connected. We
will not prove that simple-connectedness is sufficient, but we can now show that
it is necessary.
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Consider the harmonic function h(x, y) = log(x2 + y2) defined on R2 \ {0}. Show
that, on any simply connected subset U ⊂ C∗, there is a holomorphic function
L : U −→ C with h = Re [L]. However, show that there is no holomorphic function
L : C∗ −→ C with h = Re [L].

The functions Ln (for n ∈ Z) are called the branches of the complex logarithm
. This exercise shows that the ‘complex logarithm’ is a much more complicated object
than the real logarithm —indeed, the complex log is best understood as a holomorphic
‘multifunction’ which takes countably many distinct values at each point in C∗. The
surface in part (d) is an abstract representation of the ‘graph’ of this multifunction —it
is called a Riemann surface . �

Exercise 18C.17. Complex root functions (follows Exercise 18C.16). E©

(a) Let U ⊂ C be an open, simply connected set which does not contain 0, and let
log : U −→ C be any complex logarithm function, as defined in Exercise 18C.16.
Fix n ∈ N. Show that exp(n · log(u)) = un for all u ∈ N.

(b) Fix n ∈ N and now define n
√
• : U −→ C by n

√
u = exp(log(u)/n) for all u ∈ N.

Show that n
√
• is a complex ‘nth root’ function. That is, ( n

√
u)n = u for all u ∈ U.

Different branches of logarithm define different ‘branches’ of the nth root function.
However, while there are infinitely many distinct branches of logarithm, there are exactly
n distinct branches of the nth root function.

(c) Fix n ∈ N, and consider the equation zn = 1. Show that the set of all solutions to
this equation is Zn := {1, e2πi/n, e4πi/n, e6πi/n, . . . e2(n−1)πi/n}. (These numbers
are called the nth roots of unity). For example, Z2 = {±1} and Z4 = {±1,±i}.

(d) Suppose r1 : U −→ C and r2 : U −→ C are two branches of the square root
function (defined by applying the definition in part (b) to different branches of
the logarithm). Show that r1(u) = −r2(u) for all u ∈ U.

Sketch the Riemann surface for the complex square root function.

(e) More generally, let n ≥ 2, and suppose r1 : U −→ C and r2 : U −→ C are two
branches of the nth root function (defined by applying the definition in part (b)
to different branches of the logarithm). Show that there is some ζ ∈ Zn (the set
of nth roots of unity from part (c)) such that r1(u) = ζ · r2(u) for all u ∈ U.

Bonus: Sketch the Riemann surface for the complex nth root function. (Note that it is
not possible to embed this surface in three dimensions without some self-intersection).
�

18D Analyticity of holomorphic maps

Prerequisites: §18C, §0H(ii).
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In §18A, we said that the holomorphic functions formed a very special sub-
class within the set of all (real)-differentiable functions on the plane. One in-
dication of this was Proposition 18A.2 on page 417. Another indication is the
following surprising and important result.

Theorem 18D.1. (Holomorphic ⇒ Analytic)
Let U ⊂ C be an open subset. If f : U −→ C is holomorphic on U, then
f is infinitely (complex-)differentiable everywhere in U. Thus, the functions
f ′, f ′′, f ′′′, . . . are also holomorphic on U. Finally, for all u ∈ U, the (complex)
Taylor series of f at u converges uniformly to f in open disk around u.

Proof. Since any analytic function is C∞, it suffices to prove the last sentence,
and the rest of the theorem follows. Suppose 0 ∈ U; we will prove that f is
analytic at u = 0 (the general case u 6= 0 is similar).

Let γ be a counterclockwise circular contour in U centered at 0 (e.g. define
γ : [0, 2π] −→ U by γ(s) = reis for some r > 0). Let W ⊂ U be the purview of
γ (an open disk centered at 0). For all n ∈ N, let

cn :=
1

2πi

∮

γ

f(z)
zn+1

dz.

We will show that the power series
∞
∑

n=0

cnw
n converges to f for all w ∈W. For

any w ∈W, we have

f(w)
(∗)

1
2πi

∮

γ

f(z)
z − w

dz
(†)

1
2πi

∮

γ

f(z)
z
·
∞
∑

n=0

(w

z

)n
dz

=
1

2πi

∮

γ

∞
∑

n=0

f(z)
zn+1

· wn dz
(�)

∞
∑

n=0

(

1
2πi

∮

γ

f(z)
zn+1

dz

)

wn
(‡)

∞
∑

n=0

cnw
n,

as desired. Here, (∗) is Cauchy’s Integral Formula (Theorem 18C.9 on page 443),
and (‡) is by the definition of cn. Step (†) is because

1
z − w

=
(

1
z

)

·
(

1
1− w

z

)

=
1
z
·
∞
∑

n=0

(w

z

)n
. (18D.1)

Here, the last step is the geometric series expansion
1

1− x
=

∞
∑

n=1

xn (with

x := w/z), which is valid because |w/z| < 1 because |w| < |z| because w is
inside the disk W and z is a point on the boundary of W.

It remains to justify step (�). For any N ∈ N, observe that

1
2πi

∮

γ

∞
∑

n=0

f(z)
zn+1

·wn dz =
N
∑

n=0

(

1
2πi

∮

γ

f(z)
zn+1

dz

)

wn +
1

2πi

∮

γ

∞
∑

n=N+1

f(z)
zn+1

·wn dz

(18D.2)
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Thus, to justify (�), it suffices to show that the second term on the right hand
side of (18D.2) tends to zero as N →∞. Let L be the length of γ (i.e. L = 2πr
if γ describes a circle of radius r). The function z 7→ f(z)/z is continuous on

the boundary of W, so it is bounded. Let M := sup
z∈∂W

∣

∣

∣

∣

f(z)
z

∣

∣

∣

∣

. Fix ε > 0 and

find some N ∈ N such that

∣

∣

∣

∣

∣

∞
∑

n=N

(w

z

)n
∣

∣

∣

∣

∣

<
ε

LM
. (Such an N exists because

the geometric series (18D.1) converges because |w/z| < 1.) It follows that:

For all z ∈ ∂W,

∣

∣

∣

∣

∣

f(z)
z
·
∞
∑

n=N

(w

z

)n
∣

∣

∣

∣

∣

< M · ε

LM
=

ε

L
. (18D.3)

Thus
∣

∣

∣

∣

∣

∮

γ

∞
∑

n=N+1

f(z)
zn+1

· wn dz

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∮

γ

f(z)
z
·
∞
∑

n=N+1

(w

z

)n
dz

∣

∣

∣

∣

∣

≤
(∗)

ε

L
· L = ε.

Here, (∗) is by equation (18D.3) above and Lemma 18C.10 on page 444. This
works for any ε > 0, so we conclude that the second term on the right side of
(18D.2) tends to zero as N →∞. This justifies step (�), which completes the
proof. 2

Corollary 18D.2. (Case D = 2 of Proposition 1E.5 on page 18)
Let U ⊆ R2 be open. If h : U −→ R is a harmonic function, then h is analytic

on U.

Proof. Exercise 18D.1 Hint. Combine Theorem 18D.1 with Proposition 18A.3 E©
on page 417. Note that this is not quite as trivial as it sounds: you must show how to
translate the (complex) Taylor series of a holomorphic function on C into the (real)
Taylor series of a real-valued function on R2. 2

Because of Theorem 18D.1 and Proposition 18A.5(h), holomorphic functions
are also called complex-analytic functions (or even simply analytic functions)
in some books. Analytic functions are extremely ‘rigid’: for any u ∈ U, the
behaviour of f in a tiny neighbourhood around u determines the structure of f
everywhere on U, as we now explain. Recall that a subset U ⊂ C is connected if
it is not possible to write U as a union of two nonempty disjoint open subsets. A
subset X ⊂ C is perfect if, for every x ∈ X, every open neighbourhood around x
contains other points in X besides x. (Equivalently: every point in X is a cluster
point of X). In particular, any open subset of C is perfect. Also, R and Q are a
perfect subsets of C. Any disk, annulus, line segment, or unbroken curve in C is
both connected and perfect.
Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



452— DRAFT Chapter 18. Applications of complex analysis

Theorem 18D.3. (Identity Theorem)
Let U ⊂ C be a connected open set, and let f : U −→ C and g : U −→ C be

two holomorphic functions.

(a) Suppose there is some a ∈ U such that f(a) = g(a), f ′(a) = g′(a), f ′′(a) =
g′′(a), and in general, f (n)(a) = g(n)(a) for all n ∈ N. Then f(u) = g(u)
for all u ∈ U.

(b) Suppose there is a perfect subset X ⊂ U such that f(x) = g(x) for all
x ∈ X. Then f(u) = g(u) for all u ∈ U.

Proof. (a) Let h := f − g. It suffices to show that h ≡ 0. Let

W :=
{

u ∈ U ; h(u) = 0, and h(n)(u) = 0 for all n ∈ N
}

.

The set W is nonempty, because a ∈ W by hypothesis. We will show that
W = U; it follows that h ≡ 0.

Claim 1: W is an open subset of U.

Proof. Let w ∈W; we must show that there is a nonempty open disk around
w that is also in W. Now, h is analytic at w because f and g are analytic at
w. Thus, there is some nonempty open disk D centered at w such that the
Taylor expansion of h converges to h(z) for all z ∈ D. The Taylor expansion
of h at w is c0+c1(z−u)+c2(z−u)2+c3(z−u)3+· · ·, where cn := h(n)(w)/n!,
for all n ∈ N. But for all n ∈ N, cn = 0 because h(n)(w) = 0 because w ∈W.
Thus, the Taylor expansion is 0+0(z−w)+0(z−w)2+· · ·; hence it converges
to zero. Thus, h is equal to the constant zero function on D. Thus, D ⊂W.
This holds for any w ∈W; hence W is an open subset of C. �

Claim 1

Claim 2: W is a closed subset of U.

Proof. For all n ∈ N, the function h(n) : U −→ C is continuous (because
f (n) and g(n) are continuous, since they are differentiable). Thus, the set
Wn :=

{

u ∈ U ; h(n)(u) = 0
}

is a closed subset of U (because {0} is a closed
subset of C). But clearly W = W0 ∩W1 ∩W2 ∩ · · ·. Thus, W is also closed
(because it is an intersection of closed sets). �

Claim 2

Thus,W nonempty, and is both open and closed in U. Thus, the set V := U\W
is also open and closed in U, and U = V t W. If V 6= ∅, then we have
expressed U as a union of two nonempty disjoint open sets, which contradicts
the hypothesis that U is connected. Thus, V = ∅, which means W = U. Thus,
h ≡ 0. Thus, f ≡ g.

(b) Fix x ∈ X, and let {xn}∞n=1 ⊂ X be a sequence converging to x (which
exists because X is perfect).

Claim 3: f ′(x) = g′(x).
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Proof. Exercise 18D.2 Hint: Compute the limit (18A.1) on page 415 alongE©
the sequence {xn}∞n=1. �

Claim 3

This argument works for any x ∈ X; thus f ′(x) = g′(x) for all x ∈ X. Repeat-
ing the same argument, we get f ′′(x) = g′′(x) for all x ∈ X. By induction,
f (n)(x) = g(n)(x) for all n ∈ N and all x ∈ X. But then part (a) implies that
f ≡ g. 2

Remark. The Identity Theorem is true (with pretty much the same proof)
for any RM -valued, analytic function on any connected open subset U ⊂ RN ,
for any N,M ∈ N. (Exercise 18D.3 Verify this.) In particular, the Identity E©
Theorem holds for any harmonic functions defined on a connected open subset of
RN (for any N ∈ N). This result nicely complements Corollary 5D.4 on page 87,
which established the uniqueness of the harmonic function which satisfies spec-
ified boundary conditions. (Note that neither Corollary 5D.4 nor the Identity
Theorem for harmonic functions is a special case of the other; they apply to
distinct situations.) ♦

In Proposition 18A.5(i) and Example 18A.6 on pages 419 and 420, we showed
how the ‘standard’ real-analytic functions on R can be extended to holomorphic
functions on C in a natural way. We now show that these are the only holo-
morphic extensions of these functions. In other words, there is a one-to-one
relationship between real-analytic functions and their holomorphic extensions.

Corollary 18D.4. (Analytic extension)

Let X ⊆ R be an open subset, and let f : X −→ R be an analytic function.
There exists some open subset U ⊆ C containing X, and a unique holomorphic
function F : U −→ C such that F (x) = f(x) for all x ∈ X.

Proof. For any x ∈ X, Proposition 18A.5(i) says that the (real) Taylor series of
f around x can be extended to define a holomorphic function Fx : Dx −→ C,
where Dx ⊂ C is an open disk centered at x. Let U :=

⋃

x∈X
Dx; then U is an

open subset of C containing X. We would like to define F : U −→ C as follows:

F (u) := Fx(u), for any x ∈ X and u ∈ Dx. (18D.4)

But there’s a problem: what if u ∈ Dx and also u ∈ Dy for some x, y ∈ X. We
must make sure that Fx(u) = Fy(u) —otherwise F will not be well-defined by
equation (18D.4).

So, let x, y ∈ X, and suppose the disks Dx and Dy overlap. Then P := X ∩
Dx ∩ Dy is a nonempty open subset of R (hence perfect). The functions Fx

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



454— DRAFT Chapter 18. Applications of complex analysis

and Fy both agree with f on P; thus, they agree with each other on P. Thus,
the Identity Theorem says that Fx and Fy agree everywhere on Dx ∩ Dy.

Thus, F is well-defined by equation (18D.4). By construction, F is a holomor-
phic function on U which extends f . Furthermore, F is the only holomorphic
extension of f , by the Identity Theorem. 2

Exercise 18D.4. Let I : R × R −→ R be any real-analytic function, and sup-E©
pose I(sin(r), cos(r)) = 0 for all r ∈ R. Use the Identity Theorem to show that
I(sin(c), cos(c)) = 0 for all c ∈ C.

Conclude that any algebraic relation between sin and cos (i.e. any ‘trigonometric
identity’) which is true on R will also be true over all of C. �

18E Fourier series as Laurent series

Prerequisites: §18D, §8D. Recommended: §10D(ii).

For any r ≥ 0, let oD(r) := {z ∈ C ; |z| < r} be the open disk of radius r
around 0, and let oD{(r) := {z ∈ C ; |z| > r} be the open codisk of ‘coradius’
r. Let S(r) := {z ∈ C ; |z| = r} be the circle of radius r; then ∂oD(r) = S(r) =
∂oD{(r). Finally, for any R > r ≥ 0, let oA(r,R) := {z ∈ C ; r < |z| < R} be the
open annulus of inner radius r and outer radius R.

Let c0, c1, c2, . . . be complex numbers, and consider the complex-valued power
series:

∞
∑

n=0

cnz
n = c0 + c1z + c2z

2 + c3z
3 + c4z

4 + · · · (18E.1)

For any coefficients {cn}∞n=0, there is some radius of convergence R ≥ 0
(possibly zero) such that the power series (18E.1) converges uniformly on the
open disk oD(R) and diverges for all z ∈ oD{(R). (The series (18E.1) may or
may not converge on the boundary circle S(R)). The series (18E.1) then defines
a holomorphic function on oD(R). (Exercise 18E.1 Prove the preceding threeE©
sentences.) Conversely, if U ⊆ C is any open set containing 0, and f : U −→ C
is holomorphic, then Theorem 18D.1 on page 450 says that f has a power series
expansion like (18E.1) which converges to f in a disk of nonzero radius around
0.

Next, let c0, c−1, c−2, c−3 . . . be complex numbers, and consider the complex-
valued inverse power series

0
∑

n=−∞
cnz

n = c0 +
c−1

z
+

c−2

z2
+

c−3

z3
+

c−4

z4
+ · · · (18E.2)
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For any coefficients {cn}0n=−∞, there is some coradius of convergence r ≥ 0
(possibly infinity) such that the inverse power series (18E.2) converges uniformly
on the open codisk oD{(r) and diverges for all z ∈ oD(r). (The series (18E.2) may
or may not converge on the boundary circle S(r)). The series (18E.2) then defines
a holomorphic function on oD{(r). Conversely, if U ⊆ C is any open set, then
we say that U is a neighbourhood of infinity if U contains oD{(r) for some
r < ∞. If f : U −→ C is holomorphic, and lim

z→∞
f(z) exists and is finite, then

f has a inverse power series expansion like (18E.2) which converges to f in a
codisk of finite coradius (i.e. a nonempty ‘open disk around infinity’).8

Exercise 18E.2. Prove all statements in the paragraph above. Hint: Consider the E©
change of variables w := 1/z. Now use the results about power series from the paragraph
between equations (18E.1) and (18E.2). �

Finally, let . . . , c−2, c−1, c0, c1, c2, . . . be complex numbers, and consider the
complex-valued Laurent series:

∞
∑

n=−∞
cnz

n = · · · +
c−2

z2
+
c−1

z
+ c0 + c1z + c2z

2 + c3z
3 + · · · (18E.3)

For any coefficients {cn}∞n=−∞, there exist 0 ≤ r ≤ R ≤ ∞ such that the
Laurent series (18E.3) converges uniformly on the open annulus9 oA(r,R) and
diverges for all z ∈ oD(r) and all z ∈ oD{(R). (The series (18E.3) may or may
not converge on the boundary circles S(r) and S(R).) The series (18E.3) then
defines a holomorphic function on oA(r,R).

Exercise 18E.3. Prove all statements in the paragraph above. Hint: Combine E©
the results about power series and inverse power series from the from the paragraphs
between equations (18E.1) and (18E.3). �

Proposition 18E.1. Let 0 ≤ r < R ≤ ∞, and suppose the Laurent series
(18E.3) converges on oA(r,R) to define the function f : oA(r,R) −→ C. Let γ be
a counterclockwise contour in oA(r,R) which encircles the origin (for example, γ
could be a counterclockwise circle of radius r0, where r < r0 < R). Then for all
n ∈ Z,

cn =
1

2πi

∮

γ

f(z)
zn+1

dz.

8This is not merely fanciful terminology; see Remark 18G.4 on page 469.
9Note that oA(r,R) = ∅ if r = R.
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Proof. For all z ∈ oA(r,R), we have f(z) =
∞
∑

k=−∞
ckz

k. Thus, for any n ∈ Z,

f(z)
zn+1

=
1

zn+1

∞
∑

k=−∞
ckz

k =
∞
∑

k=−∞
ckz

k−n−1
(∗)

∞
∑

m=−∞
cm+n+1z

m,

where (∗) is the change of variables m := k− n− 1, so that k = m+ n+ 1. In
other words,

f(z)
zn+1

= · · ·+ cn−1

z2
+

cn
z

+ cn+1 + cn+2z + cn+3z
2 + · · · (18E.4)

Thus,
∮

γ

f(z)
zn+1 (∗)

· · ·+
∮

γ

cn−1

z2
+

∮

γ

cn
z

+
∮

γ

cn+1 +
∮

γ

cn+2z +
∮

γ

cn+3z
2 + · · ·

(†)
· · ·+ 0 + 2πi cn + 0 + 0 + 0 + · · ·

= 2πi cn, as desired.

Here, (∗) is because the series (18E.4) converges uniformly on oA(r,R) (be-
cause the Laurent series (18E.3) converges uniformly on oA(r,R)); thus, Propo-
sition 6E.10(b) on page 127 implies we can compute the contour integral of
series (18E.4) term-by-term. Next, (†) is by Examples 18C.2(c) and 18C.6
(pages 435 and 439). 2

Laurent series are closely related to Fourier series.

Proposition 18E.2. Suppose 0 ≤ r < 1 < R and suppose the Laurent series
(18E.3) converges to the function f : oA(r,R) −→ C. Define g : [−π, π] −→ C by
g(x) := f(eix) for all x ∈ [−π, π]. For all n ∈ Z, let

ĝn :=
1

2π

∫ π

−π
g(x) exp(−nix) dx (18E.5)

be the nth complex Fourier coefficient of g (see § 8D on page 172). Then:

(a) ĝn = cn for all n ∈ Z.

(b) For any x ∈ [−π, π], if z = eix ∈ S(1), then for all N ∈ N, the Nth partial
Fourier sum of g(x) equals the Nth partial Laurent sum of f(z); that is:

N
∑

n=−N
ĝn exp(nix) =

N
∑

n=−N
cnz

n.

Thus, the Fourier Series for g converges on [−π, π] in exactly the same
ways (i.e. uniformly, in L2, etc.), and at exactly the same speed, as the
Laurent series for f converges on S(1).
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Proof. (a) As in Example 18C.1 on page 435, define the ‘unit circle’ contour
γ : [0, 2π] −→ C by γ(s) := exp(is) for all s ∈ [0, 2π]. Then

cn
(∗)

1
2πi

∮

γ

f(z)
zn+1

=
1

2πi

∫ 2π

0

f [γ(s)])
γ(s)n+1

· γ̇(s) ds

=
1

2πi

∫ 2π

0

f(eis)
eis(n+1)

· ieis ds =
1

2π

∫ 2π

0
f(eis) · e−nis ds

(†)

1
2π

∫ π

−π
f(eix) · e−nix dx =

1
2π

∫ π

−π
g(x) · e−nix dx

(‡)
ĝn.

Here, (∗) is by Proposition 18E.1, and (†) is because the function s 7→ eis is
2π-periodic. Finally, (‡) is by equation (18E.5).

(b) follows immediately from (a), because if z = eix, then for all n ∈ Z we
have zn = exp(nix). 2

We can also reverse this logic: given the Fourier series for a function g :
[−π, π] −→ C, we can interpret it as the Laurent series of some hypothetical
function f defined on an open annulus in C (which may or may not contain
S(1)); then by studying f and its Laurent series, we can draw conclusions about
g and its Fourier series.

Let g : [−π, π] −→ C be some function, let {ĝn}∞n=−∞ be its Fourier co-
efficients, as defined by equation (18E.5), and consider the complex Fourier

series10
∞
∑

n=−∞
ĝnEn. If g ∈ L2[−π, π], then the Riemann-Lebesgue Lemma

(Corollary 10A.3 on page 197) says that lim
n→±∞

ĝn = 0; however, the sequence

{ĝn}∞n=−∞ might converge to zero very slowly, if g is nondifferentiable and/or
discontinuous. We would like the sequence {ĝn}∞n=−∞ to converges to zero as
quickly as possible, for two reasons:

1. The faster the sequence {ĝn}∞n=−∞ converges to zero, the easier it will be

to approximate the function g using a ‘partial sum’ of the form
N
∑

n=−N
ĝnEn,

for some N ∈ N. (This is important for numerical computations.)

2. The faster the sequence {ĝn}∞n=−∞ converges to zero, the more computa-
tions we can perform with g by ‘formally manipulating’ its Fourier series.
For example, if {ĝn}∞n=−∞ converges to zero faster than 1

nk
, then we can

compute the derivatives g′, g′′, g′′′, . . . , g(k−1) by ‘formally differentiating’
the Fourier series for g (see § 8B(iv) on page 168). This is necessary to
verify the ‘Fourier series’ solutions to I/BVPs which we constructed in
Chapters 11- 14.

10For all n ∈ Z, recall that En(x) := exp(nix) for all x ∈ [−π, π].
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We say the sequence {ĝn}∞n=−∞ has exponential decay if there is some a > 1
such that

lim
n→∞

an|ĝn| = 0 and lim
n→∞

an|ĝ−n| = 0.

This is an extremely rapid decay rate, which causes the partial sum
N
∑

n=−N
ĝnEn

to uniformly converge to g very quickly as N →∞. This means we can ‘formally
differentiate’ the Fourier series of g as many times as we want. In particular, any
‘formal solution to an I/BVP which we obtain through such formal differentiation
will converge to the correct solution.

Suppose g : [−π, π] −→ C has real and imaginary parts gr, gi : [−π, π] −→ R
(so that g(x) = gr(x) + gi(x)i for all x ∈ [−π, π]). We say that g is analytic
and periodic if the functions gr and gi are (real)-analytic everywhere on [−π, π],
and if we have g(−π) = g(π), g′(−π) = g′(π), g′′(−π) = g′′(π), etc. (where
g′(x) = g′r(x) + g′i(x)i, etc.).

Proposition 18E.3. Let g : [−π, π] −→ C have complex Fourier coefficients
{ĝn}∞n=−∞. Then
(

g is analytic and periodic
)

⇐⇒
(

The sequence {ĝn}∞n=−∞ decays exponentially
)

.

Proof. “=⇒” Define the function f : S(1) −→ C by f(eix) := g(x) for all
x ∈ [−π, π].

Claim 1: f can be extended to a holomorphic function F : A(r,R) −→ C,
for some 0 ≤ r < 1 < R ≤ ∞.

Proof. Let g̃ : R −→ C be the 2π-periodic extension of g (i.e. g̃(x+ 2nπ) :=
g(x) for all x ∈ [−π, π] and n ∈ Z). Then g̃ is analytic on R, so Corol-
lary 18D.4 on page 453 says that there is an open subset U ⊂ C containing
R and a holomorphic function G : U −→ C which agrees with g on R. With-
out loss of generality, we can assume that U is a horizontal strip of width 2W
around R, for some W > 0 —that is, U = {x+ yi ; x ∈ R, y ∈ (−W,W )}.
Claim 1.1: G is horizontally 2π-periodic (i.e. G(u + 2π) = E(u) for all
u ∈ U).

Proof. Exercise 18E.4 Hint: Use the Identity Theorem 18D.3 on page 452,E©
and the fact that g is 2π-periodic. 4

Claim 1.1

Define E : C −→ C by E(z) := exp(iz); thus, E maps R to the unit circle
S(1). Let r := e−W and R := eW ; then r < 1 < R. Then E maps the
strip U to the open annulus A(r,R) ⊆ C. Note that E is horizontally 2π-
periodic (i.e. E(u + 2π) = E(u) for all u ∈ U). Define F : A −→ C by
F (E(u)) := G(u) for all u ∈ U.
Claim 1.2: F is well-defined on A(r,R).
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Proof. Exercise 18E.5 Hint: use the fact that both G and E are 2π-periodic. E©
�

Claim 1

Claim 1.3: F is holomorphic on A(r,R).

Proof. Let a ∈ A(r,R); we must show that F is differentiable at a.
Suppose a = G(u) for some u ∈ U. There are open sets V ⊂ U (containing
u) and B ⊂ A(r,R) (containing a) such that E : V −→ B is bijective. Let
L : B −→ V be a local inverse of E. Then L is holomorphic on V by
Proposition 18A.5(k) on page 419 (because E′(v) 6= 0 for all v ∈ V). But
by definition, F (b) = G(L(b)) for all b ∈ B; Thus, F is holomorphic on B
by Proposition 18A.5(j) (the chain rule).
This argument works for any a ∈ A(r,R); thus, F is holomorphic on
A(r,R). 4

Claim 1.3

It remains to show that F is an extension of f . But by definition, f(E(x)) =
g(x) for all x ∈ [−π, π]. Since G is an extension of g, and F ◦ E = G, it
follows that F is an extension of f . �

Claim 1

Let {cn}∞n=−∞ be the Laurent coefficients of F . Then Proposition 18E.2 on
page 456 says that cn = ĝn for all n ∈ Z. However, the Laurent series (18E.3)
of F (on page 455) converges on A(r,R). Thus, if |z| < R, then the power
series (18E.1) on page 454 converges absolutely at z. This means that, if

1 < a < R, then
∞
∑

n=0

an|ĝn| is finite. Thus, lim
n→∞

an|ĝn| = 0.

Likewise, if r < |z|, then the inverse power series (18E.2) on page 454 converges

absolutely at z. This means that, if 1 < a < 1/r, then
∞
∑

n=0

an|ĝ−n| is finite.

Thus, lim
n→∞

an|ĝ−n| = 0.

“⇐=” Define cn := ĝn for all n ∈ Z, and consider the resulting Laurent series
(18E.3). Suppose there is some a > 1 such that

lim
n→∞

an|cn| = 0 and lim
n→∞

an|c−n| = 0. (18E.6)

Claim 2: Let r := 1/a and R := a. For all z ∈ A(r,R), the Laurent series
(18E.3) converges absolutely at z.

Proof. Let z+ := z/a; then |z+| < 1 because |z| < R := a. Also, let
z− := 1/az; then |z−| < 1, because |z| > r := 1/a. Thus,

∞
∑

n=1

|z−|n < ∞ and
∞
∑

n=0

|z+|n < ∞. (18E.7)
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Evaluating the Laurent series (18E.3) at z, we see that
∞
∑

n=−∞
cnz

n =
∞
∑

n=1

c−n
zn

+
∞
∑

n=0

cn z
n =

∞
∑

n=1

anc−n
(az)n

+
∞
∑

n=0

ancn (z/a)n

=
∞
∑

n=1

(anc−n) zn− +
∞
∑

n=0

ancn z
n
+.

Thus,
∞
∑

n=−∞
|cnzn| ≤

∞
∑

n=1

an |c−n| |z−|n +
∞
∑

n=0

an|cn| |z+|n <
(∗)
∞,

where (∗) is by equations (18E.6) and (18E.7). �
Claim 2

Claim 2 implies that the Laurent series (18E.3) converges to some holomorphic
function f : A(r,R) −→ C. But g(x) = f(eix) for all x ∈ [−π, π]; thus, g
is (real)-analytic on [−π, π], because f is (complex-)analytic on A(r,R), by
Theorem 18D.1 on page 450. 2

Exercise 18E.6. Let f : [−π, π] −→ R, and consider the real Fourier series for fE©
(see § 8A on page 161). Show that the real Fourier coefficients {An}∞n=0 and {Bn}∞n=0

have exponential decay if and only if f is analytic and periodic on [−π, π]. (Hint: Use
Proposition 8D.2 on page 174.) �

Exercise 18E.7. Let f : [0, π] −→ R, and consider the Fourier sine series and cosineE©
series for f (see § 7A(i) on page 137 and § 7A(ii) on page 141).

(a) Show that the Fourier cosine coefficients {An}∞n=0 have exponential decay if and
only if f is analytic on [0, π] and f ′(0) = 0 = f ′(π), and f (n)(0) = 0 = f (n)(π) for all
odd n ∈ N.

(b) Show that the Fourier sine coefficients {Bn}∞n=1 have exponential decay if and
only if f is analytic on [0, π] and f(0) = 0 = f(π), and f (n)(0) = 0 = f (n)(π) for all
even n ∈ N.

(c) Conclude that if both the sine and cosine series have exponential decay, then
f ≡ 0.

(Hint. Use the previous exercise and Proposition 8C.5 on page 171.) �

Exercise 18E.8. Let X = [0, L] be an interval, let f ∈ L2(X) be some initial tem-E©
perature distribution, and let F : X× R 6− −→ R be the solution to the one-dimensional
heat equation (∂t F = ∂2

x F ) with initial conditions F (x; 0) = f(x) for all x ∈ X, and
satisfying either homogeneous Dirichlet boundary conditions, or homogeneous Neumann
boundary conditions, or periodic boundary conditions on X, for all t > 0. Show that, for
any fixed t > 0, the function Ft(x) := F (x, t) is analytic on X. (Hint: Apply Propositions
11A.1 and 11A.3 on pages 225 and 227.)

This shows how the action of the heat equation can rapidly ‘smooth’ even a highly
irregular initial condition. �
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Exercise 18E.9. Compute the complex Fourier series of f : [−π, π] −→ C when f E©
is defined as follows:

(a) f(x) = sin(eix).
(b) f(x) = cos(e−3ix).
(c) f(x) = e2ix · cos(e−3ix).
(d) f(x) = (5 + e2ix) · cos(e−3ix).

(e) f(x) =
1

e2ix − 4
.

(f) f(x) =
eix

e2ix − 4
. �

Exercise 18E.10. (a) Show that the Laurent series (18E.3) can be written in the E©
form P+(z) + P−(1/z), where P+ and P− are both power series.

(b) Suppose P+ has radius of convergence R+, and P− has radius of convergence
R−. Let R := R+ and r := 1/R−, and show that the Laurent series (18E.3) converges
on A(r,R). �

18F ∗ Abel means and Poisson kernels

Prerequisites: §18E. Prerequisites (for proofs): §10D(ii).

Theorem 18E.3 showed that, if g : [−π, π] −→ C is analytic, then its Fourier
series

∑∞
n=−∞ ĝnEn will converge uniformly and extremely quickly to g. At

the opposite extreme, if g is not even differentiable, then
∑∞

n=−∞ ĝnEn might
not converge uniformly, or even pointwise, to g. To address this problem, we
introduce the Abel mean. For any r < 1, the rth Abel mean of the Fourier

series
∞
∑

n=−∞
ĝnEn is defined:

Ar[g] :=
∞
∑

n=−∞
r|n|ĝnEn.

As r ↗ 1, each summand r|n|ĝnEn in the Abel mean converges to the corre-
sponding summand ĝnEn in the Fourier series for g. Thus, we expect that Ar[g]
should converge to g as r ↗ 1. The goal of this section is to verify this intuition.

For any r ∈ [0, 1), we define the Poisson kernel Pr : [−2π, 2π] −→ R by

Pr(x) :=
1− r2

1− 2r cos(x) + r2
, for all x ∈ [−2π, 2π].

(See Figure 18F.1). Note that Pr is 2π-periodic (i.e. Pr(x+ 2π) = Pr(x) for all
x ∈ [−2π, 0]). For any function g : [−π, π] −→ C, the convolution of Pr and g
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Figure 18F.1: The Poisson kernels P0.7, P0.8, and P0.9, plotted on interval [−π, π]. Note

the increasing concentration of Pr near x = 0 as r ↗ 1. (In the terminology of Section 10D(ii),

the system {Pr}0<r<1 is like an approximation of the identity.)

is the function Pr ∗ g : [−π, π] −→ C defined by

Pr ∗ g(x) :=
1

2π

∫ π

−π
g(y) Pr(x− y) dy, for all x ∈ [−π, π].

The next result tells us that lim
r↗1

Ar[g](x) = g(x), whenever the function g is

continuous at x. Furthermore, for all r < 1, the functions Ar[g] : [−π, π] −→ C
are extremely smooth, and two-variable function G(x, r) := Ar[g](x) is also
extremely smooth.

Proposition 18F.1. Let g ∈ L2[−π, π].

(a) For any r ∈ [0, 1) and x ∈ [−π, π], Pr ∗ g(x) = Ar[g](x).

(b) For any x ∈ (−π, π), if g is continuous at x, then lim
r↗1

Ar[g](x) = g(x).

(c) Let D be the closed unit disk, and define f : D −→ C by

f(r eiθ) :=
{

Pr ∗ g(θ) if r < 1,
g(θ) if r = 1,

for all θ ∈ [−π, π] and r ∈ [0, 1].

Then f is holomorphic on oD.

(d) Thus, for any fixed r < 1, the function Ar[g] : [−π, π] −→ C is analytic.

(e) Let θ ∈ (−π, π) and let s = eiθ ∈ S. If g is continuous in a neighbourhood
of θ, then f is continuous at s —i.e. lim

u→s
u∈D

f(u) = f(s).

(f) If g is continuous on [−π, π] and g(−π) = g(π), then f is continuous on D.
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Proof. (a) Exercise 18F.1 (Hint: Use Lemmas 18F.2 and 18F.3 below).E©

(b) is Exercise 18F.2 (Hint: Use Lemma 18F.4 below, and Proposition 10D.9(b)E©
on page 219).

(e) and (f) follow immediately from (b), while (d) follows from (c).

(c) is Exercise 18F.3 Hint: (i) Let P : S × oD −→ R be the Poisson kernel E©
defined on page 445. For any s ∈ S and u ∈ oD, if s = eiy and u = r · eix, show that
P(s, u) = Pr(x− y).

(ii) Use this to show that Pr ∗ g(x) =
1

2π

∫ 2π

0

g(y)P(eiy, u) dy.

(ii) Now apply the Poisson Integral Formula for holomorphic functions (Corollary
18C.13). 2

To prove parts (a) and (b) of Proposition 18F.1, we require the following
three lemmas.

Lemma 18F.2. Fix r ∈ [0, 1). Then

Pr(x) = 1 + 2
∞
∑

n=1

rn cos(nx) =
∞
∑

n=−∞
r|n| exp(inx).

Thus, if {̂Pn
r }∞n=−∞ are the complex Fourier coefficients of the Poisson kernel

Pr, then ̂Pn
r = r|n| for all n ∈ Z.

Proof. Exercise 18F.4 2
E©

For any f, g : [−π, π] −→ C, recall the definition of the convolution f ∗g from
§ 10D(ii) on page 214. The passage from a function to its Fourier coefficients
converts the convolution operator into multiplication, as follows:11

Lemma 18F.3. Let f, g ∈ L2[−π, π] and suppose h = f ∗ g ∈ L2[−π, π] also.
Then for all n ∈ Z, we have ̂hn = ̂fn · ĝn.

Proof. Exercise 18F.5 2
E©

11For the corresponding result for Fourier transforms of functions on R, see Theorem 19B.2(b)
on page 494.
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Lemma 18F.4. The set of Poisson kernels {Pr}0≤r<1 is an approximation
of identity, in the following sense:

(AI1)
1

2π

∫ π

−π
Pr(x) dx = 1 for all r ∈ [0, 1).

(AI2) For any ε > 0, lim
r↗1

1
2π

∫ ε

−ε
Pr(x) dx = 1. (See Figure 10D.2 on

page 218).

Proof. Exercise 18F.6 2
E©

Exercise 18F.7. For all N ∈ N, the Nth Dirichlet kernel is the function DN :E©
[−π, π] −→ R defined by

DN (x) := 1 + 2
N
∑

n=1

cos(nx) (see Figure 10B.1 on page 198).

(a) Show that DN (x) =
N
∑

n=−N

exp(nxi).

(b) Let g : [−π, π] −→ C have complex Fourier series
∞
∑

n=−∞
ĝnEn. Use Lemma 18F.3

to show that DN ∗ g =
N
∑

n=−N

ĝnEn. (Compare this with Lemma 10B.1). �

18G Poles and the residue theorem
Prerequisites: §18D.

Let U ⊂ C be an open subset, let p ∈ U, and let U∗ := U \ {p}. Let f :
U∗ −→ C be a holomorphic function. We say that p is an isolated singularity
of f , because f is well-defined and holomorphic for all points near p, but not at
p itself.

Now, it might be possible to ‘extend’ f to a holomorphic function f : U −→ C
by defining f(p) in some suitable way. In this case, we say that p is a removable
singularity of f ; it is merely a point we ‘forgot’ when defining f on U∗. However,
sometimes there is no way to define f(p) such that the resulting function f :
U −→ C is complex-differentiable (or even continuous) at p; in this case, we say
that p is an indelible singularity. In this section, we will be concerned with a
particularly ‘nice’ class of indelible singularities, called poles.

Define F1 : U∗ −→ C by F1(u) = (p − u) · f(u). We say that p is a simple
pole of f if p is a removable singularity of F1 —i.e. if F1(p) can be defined
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such that F1 is complex-differentiable at p. Now, F1 is already holomorphic on
U∗ (because it is a product of two holomorphic functions f and z 7→ (z − u)).
Thus, if F1 is differentiable at p, then F1 is holomorphic on all of U. Then
Theorem 18D.1 on page 450 says that F1 is analytic at p —i.e. F1 has a Taylor
expansion near p:

F1(z) = a0 + a1(z − p) + a2(z − p)2 + a3(z − p)3 + a4(z − p)4 + · · ·

Thus,

f(z) =
F1(z)
z − p

=
a0

z − p
+ a1 + a2(z − p) + a3(z − p)2 + a4(z − p)3 + · · ·

This expression is called a Laurent expansion (of order 1) for f at the pole p.
The coefficient a0 is called the residue of f at the pole p, and denoted resp(f).

But suppose p is not a simple pole (i.e. it is not a removable singularity for
F1). Let n ∈ N, and define Fn : U∗ −→ C by Fn(u) = (p − u)n · f(u). We say
that p is a pole if there is some n ∈ N such that p is a removable singularity
of Fn —i.e. if Fn(p) can be defined such that Fn is complex-differentiable at p.
The smallest value of n for which this is true is called the order of the pole p.

Now, Fn is already holomorphic on U∗. Thus, if Fn is differentiable at p, then
Fn is holomorphic on all of U. Again, Theorem 18D.1 says that Fn is analytic
at p, with Taylor expansion

Fn(z) =
a0 + a1(z − p) + · · ·+ an−1(z − p)n−1 + an(z − p)n + an+1(z − p)n+1 + · · ·

Thus,

f(z) =
Fn(z)

(z − p)n
=

a0

(z − p)n
+

a1

(z − p)n−1
+ · · ·+ an−1

(z − p)
+ an + an+1(z − p) + · · ·

This expression is called a Laurent expansion (of order n) for f at the pole
p. The coefficient an−1 is called the residue of f at the pole p, and denoted
resp(f).

Let ̂C := C t {∞}, where the symbol “∞” represents a ‘point at infinity’.
If f : U∗ −→ C has a pole at p, then it is easy to check that lim

z→p
|f(z)| = ∞

(Exercise 18G.1). Thus, it is natural and convenient to extend f to a function E©
f : U −→ ̂C by defining f(p) = ∞. (Later, in Remark 18G.4 on page 469, we
will explain why this is not merely a cute notational device, but is actually the
‘correct’ thing to do). The extended function f : U −→ ̂C is called a meromorphic
function.
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Formally, if U ⊂ C is an open set, then a function f : U −→ ̂C is meromor-
phic if there is a discrete subset P ⊂ U (possibly empty) such that, if U∗ := U\P,
then:

1. f : U∗ −→ C is holomorphic.

2. Every p ∈ P is a pole of f (hence lim
z→p
|f(z)| =∞).

3. f(p) =∞ for all p ∈ P.

Example 18G.1. (a) Any holomorphic function is meromorphic, since it has no
poles.

(b) Let f : U −→ C be holomorphic, let p ∈ U, and define F : U −→ ̂C by
F (z) = f(z)/(z − p). Then F is meromorphic on U, with a single pole at p,
and resp(F ) = f(p).

(c) Fix y > 0, and define Ky : C −→ ̂C by

Ky(z) =
y

π(z2 + y2)
=

y

π(z + yi)(z − yi)
, for all z ∈ C.

Then Ky is meromorphic on C, with simple poles at z = ±yi. Observe that

Ky(z) =
f+(z)

(z − yi)
, where f+(z) :=

y

π(z + yi)
, for all z ∈ C.

Note that f+ is holomorphic near yi, so Example (b) says that resyi(Ky) =

f+(yi) =
y

π(2yi)
=

1
2πi

. Likewise,

Ky(z) =
f−(z)

(z + yi)
, where f−(z) :=

y

π(z − yi)
, for all z ∈ C.

Note that f− is holomorphic near −yi, so Example (b) says that res−yi(Ky) =

f−(−yi) =
y

π(−2yi)
=
−1
2πi

.

(d) More generally, let P (z) = (z − p1)n1(z − p2)n2 · · · (z − pJ)nJ be any com-
plex polynomial with roots p1, . . . , pn ∈ C. Let f : C −→ C be any other
holomorphic function (e.g. another polynomial), and define F : C −→ ̂C by
F (z) = f(z)/P (z) for all z ∈ C. Then F is a meromorphic function, whose
poles are located at {p1, p2, . . . , pJ}. For any j ∈ [1...J ], define Fj(z) :=
f(z)/(z − p1)n1 · · · (z − pj−1)nj−1(z − pj+1)nj+1 · · · (z − pJ)nJ . Then

respj (F ) =
F

(nj−1)
j (pj)
(nj − 1)!
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(i.e. the (nj − 1)th term in the Taylor expansion of Fj at pj). In particular, if
nj = 1 (i.e. pj is a simple pole), then respj (F ) = Fj(pj).

(e) Let g : U −→ ̂C be meromorphic and let p ∈ U. Suppose g has a simple
pole at p. If f : U −→ C is holomorphic, and f(p) 6= 0, then the function f · g
is meromorphic, with a pole at p, and resp(f · g) = f(p) · resp(g).

Exercise 18G.2 Verify Examples (d) and (e). ♦ E©

We now come to one of the most important results in complex analysis.
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Figure 18G.1: (A) The hypotheses of the Residue Theorem. (B) For all j ∈ [0...J ], γj is

a small, counterclockwise circular contour around the pole pj . (C) The paths α0, . . . , αJ ,

β0, . . . , βJ , and δ1, . . . , δJ . (D) The chain χ is a contour homotopic to γ

Theorem 18G.2. (Residue Theorem)
Let U ⊆ C be an open, simply-connected subset of the plane. Let f : U −→ ̂C

be meromorphic on U. Let γ : [0, S] −→ U be a counterclockwise contour
which is nullhomotopic in U, and suppose the purview of γ contains the poles
p0, p1, . . . , pJ ∈ U, and no other poles, as shown in Figure 18G.1(A). Then

∮

γ
f = 2πi

J
∑

j=0

respj (f).
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Proof. For all j ∈ [0...J ], let γj : [0, 2π] −→ U be a small, counterclockwise
circular contour around the pole pj , as shown in Figure 18G.1(B).

Claim 1: For all j ∈ [0...J ],
∮

γj

f = respj (f).

Proof. Suppose f has the following Laurent expansion around pj :

f(z) =
a−n

(z − pj)n
+

a1−n

(z − pj)n−1
+ · · ·+ a−1

(z − pj)
+ a0 + a1(z − pj) + · · ·

This series converges uniformly, so
∮

γj

f can integrated term-by-term to get:

∮

γj

a−n
(z − pj)n

+

∮

γj

a1−n

(z − pj)n−1
+ · · ·+

∮

γj

a−1

(z − pj)
+

∮

γj

a0 +

∮

γj

a1(z − pj) + · · ·

(†)
0 + 0 + · · ·+ a−1 · 2πi + 0 + 0 + · · ·

= 2πi a−1
(‡)

2πi · respj (f).

Here, (†) is by Examples 18C.2(c) and 18C.6 on pages 435 and 439. Mean-
while, (‡) is because a−1 = respj (f) by definition. �

Claim 1

Figure 18G.1(C) portrays the smooth paths αj : [0, π] −→ U and βj : [0, π] −→
U defined by

αj(s) := γj(s) and βj(s) := γj(s+ π), for all s ∈ [0, π].

That is: αj and βj parameterize the ‘first half’ and the ‘second half’ of γj ,
respectively, so that

γj = αj � βj . (18G.1)

For all j ∈ [0...J ], let xj := αj(0) = βj(π). and let yj := αj(π) = βj(0). For
all j ∈ [1...J ], let δj : [0, 1] −→ U be a smooth path from yj−1 to xj . For all
i ∈ [0...J ], we can assume that δj is drawn so as not to intersect αi or βi, and
for all i ∈ [1...J ], i 6= j, we can likewise assume that δj does not intersect δi.
Figure 18G.1(D) portrays the chain

χ := α0 � δ1 �α1 � δ2 � · · · � δJ � γJ �
←
δ J �βJ−1 �

←
δ J−1 � · · · �

←
δ 3 �β2 �

←
δ 2 �β1 �

←
δ 1 �β0.

(18G.2)
The chain χ is actually a contour, by Lemma 18C.8(c) on page 441.

Claim 2: γ is homotopic to χ in U.

Proof. Exercise 18G.3 (Not as easy as it looks) �
Claim 2

E©
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Thus,
∮

γ
f

(∗)

∮

χ
f

(†)
y
∫

α0

f + y
∫

δ1

f + y
∫

α1

f + y
∫

δ2

f + · · ·+ y
∫

δJ

f +
∮

γJ

f − y
∫

δJ

f + y
∫

βJ−1

f

− y
∫

δJ−1

f + · · · − y
∫

δ3

f + y
∫

β2

f − y
∫

δ2

f + y
∫

β1

f − y
∫

δ1

f + y
∫

β0

f.

= y
∫

α0

f + y
∫

α1

f + · · ·+ y
∫

αJ−1

f +
∮

γJ

f + y
∫

βJ−1

f + · · ·+ y
∫

β1

f + y
∫

β0

f.

(@)
y
∫

α0 �β0

f + y
∫

α1 �β1

f + · · ·+ y
∫

αJ−1 �βJ−1

f +
∮

γJ

f

(‡)

∮

γ0

f +
∮

γ1

f + · · ·+
∮

γJ−1

f +
∮

γJ

f

(�)
2πi · resp0(f) + 2πi · resp1(f) + · · · + 2πi · respJ−1(f) + 2πi · respJ (f),

as desired. Here, (∗) is by Claim 2 and Proposition 18C.7 on page 440. (†)
is by eqn.(18G.2) and Lemma 18C.8(a,b) on page 441, and (@) is again by
Lemma 18C.8(b). Finally, (‡) is by eqn.(18G.1), and (�) is by Claim 1. 2

Example 18G.3. (a) Suppose f is holomorphic inside the purview of γ. Then
it has no poles, so the residue-sum in the Residue Theorem is zero. Thus,

we get
∮

γ
f = 0, in agreement with Cauchy’s Theorem (Theorem 18C.5 on

page 438).

(b) Suppose f(z) = 1/z, and γ encircles 0. Then f has exactly one pole in the
purview of γ (namely, at 0), and res0(f) = 1 (because the Laurent expansion

of f is just 1/z). Thus, we get
∮

γ
f = 2πi, in agreement with Example 18C.6

on page 439.

(c) Suppose f is holomorphic inside the purview of γ. Let p be in the purview
of γ and define F (z) := f(z)

z−p . Then F has exactly one pole in the purview
of γ (namely, at p), and resp(F ) = f(z), by Example 18G.1(b). Thus, we

get
∮

γ
F = 2πi f(z), in agreement with Cauchy’s Integral Formula (Theo-

rem 18C.9 on page 443). ♦

Remark 18G.4: (The Riemann Sphere) Earlier we introduced the notational
convention of defining f(p) =∞ whenever p was a pole of a holomorphic function
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Figure 18G.2: The identification of the complex plane C with the Riemann sphere ̂C.

f : U \ {p} −→ C, thereby extending f to a ‘meromorphic’ function f : U −→ ̂C,
where ̂C = C t {∞}. We will now explain how this cute notation is actually
quite sensible. The Riemann sphere is the topological space ̂C constructed by
taking the complex plane C and adding a ‘point at infinity’, denoted by “∞”.
An open set U ⊂ C is considered a ‘neighbourhood of ∞’ if there is some r > 0
such that U contains the codisk D{(r) := {c ∈ C ; |c| > r}. See Figure 18G.2.

Now, let U∗ := U \ {p} and suppose f : U∗ −→ C is a continuous function
with a singularity at p. Suppose we define f(p) = ∞, thereby extending f to
a function f : U −→ ̂C. If lim

z→p
|f(p)| = ∞ (e.g. if p is a pole of f), then this

extended function will be continuous at p, with respect to the topology of the
Riemann sphere. In particular, any meromorphic function f : U −→ ̂C is is a
continuous mapping from U into ̂C.

If f : C −→ ̂C is meromorphic, and L := lim
c→∞

f(c) is well-defined, then

we can extend f to a continuous function f : ̂C −→ ̂C by defining f(∞) :=
L. We can then even define the complex derivatives of f at ∞; f effectively
becomes a complex-differentiable transformation of the entire Riemann sphere.
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Many of ideas in complex analysis are best understood by regarding meromorphic
functions in this way. ♦

Remark. Not all indelible singularities are poles. Suppose p is a singularity of
f , and the Laurent expansion of f at p has an infinite number of negative-power
terms (i.e. it looks like the Laurent series (18E.3) on page 455). Then p is called
a essential singularity of f . The Casorati-Weierstrass Theorem says that, if
B is any open neighbourhood of p, however tiny, then the image f [B] is dense in
C. In other words, the value of f(z) wildly oscillates all over the complex plane
infinitely often as z → p. This is a much more pathological behaviour than a
pole, where we simply have f(z)→∞ as z → p. ♦

Exercise 18G.4. Let f(z) = exp(1/z). E©
(a) Show that f has an essential singularity at 0.
(b) Verify the conclusion of the Casorati-Weierstrass Theorem for this function. In

fact, show that, for any ε > 0, if D(ε) is the disk of radius ε around 0, then f [D(ε)] =
C \ {0}. �

Exercise 18G.5. For each of the following functions, find all poles and compute E©
the residue at each pole. Then use the Residue Theorem to compute the contour integral
along a counterclockwise circle of radius 1.8 around the origin.

(a) f(z) =
1

z4 + 1
. (Hint: z4 + 1 = (z − eπi/4)(z − e3πi/4)(z − e5πi/4)(z − e7πi/4).)

(b) f(z) =
z3 − 1

z4 + 5z2 + 4
. (Hint: z4 + 5z2 + 4 = (z2 + 1)(z2 + 4).)

(c) f(z) =
z4

z6 + 14z4 + 49z2 + 36
. (Hint: z6 + 14z4 + 49z2 + 36 = (z2 + 1)(z2 +

4)(z2 + 9).)

(d) f(z) =
z + i

z4 + 5z2 + 4
. (Careful!)

(e) f(z) = tan(z) = sin(z)/ cos(z).
(f) f(z) = tanh(z) = sinh(z)/ cosh(z). �

Exercise 18G.6. (For algebraists) E©
(a) Let H be the set of all holomorphic functions f : C −→ C. (These are sometimes

called entire functions). Show that H is an integral domain under the operations of
pointwise addition and multiplication. That is: if f, g ∈ H, then the functions (f + g)
and (f · g) are in H. (Hint: Use Proposition 18A.5(a,b) on page 18A.5). Also, if
f 6= 0 6= g, then f · g 6= 0. (Hint: Use the Identity Theorem 18D.3 on page 452).

(b) Let M be the set of all meromorphic functions f : C −→ ̂C. Show that M is a
field under the operations of pointwise addition and multiplication. That is: if f, g ∈M,
then the functions (f + g) and (f · g) are in M, and if g 6≡ 0, then the function (f/g) is
also in M.
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(c) Suppose f ∈M has only a finite number of poles. Show that f can be expressed
in the form f = g/h, where g, h ∈ H. (Hint: you can make h a polynomial).

(d) (hard) Show that any function f ∈ M can be expressed in the form f = g/h,
where g, h ∈ H. (Thus, M is related to H the same way the field of rational functions is
related to the ring of polynomials, and the same way that the field of rational numbers
is related to the ring of integers. Technically, M is the field of fractions of H.). �

18H Improper integrals and Fourier transforms

Prerequisites: §18G. Recommended: §17A, §19A.

The Residue Theorem is a powerful tool for evaluating contour integrals in
the complex plane. We shall now see that it is also useful for computing improper
integrals over the real line, such as convolutions and Fourier transforms. First
some notation. Let C+ := {c ∈ C ; Im [c] > 0} and C− := {c ∈ C ; Im [c] < 0}
be the upper and lower halves of the complex plane. If F : C −→ ̂C is some
meromorphic function, then we say that F uniformly decays at infinity on
C+ with order o(1/z) if,12 for any ε > 0, there is some r > 0 such that:

For all z ∈ C+,
(

|z| > r
)

=⇒
(

|z| · |F (z)| < ε
)

. (18H.1)

In other words, lim
C+3z→∞

|z| · |F (z)| = 0, and this convergence is ‘uniform’ as

z → ∞ in any direction in C+. We define uniform decay on C− in the same
fashion.

Example 18H.1. (a) The function f(z) = 1/z2 uniformly decays at infinity on
both C+ and C− with order o(1/z).

(b) However, the function f(z) = 1/z does not uniformly decays at infinity
with order o(1/z) (it decays just a little bit too slowly).

(c) The function f(z) = exp(−iz)/z2 uniformly decays at infinity with order
o(1/z) on C+, but does not decay on C−.

(d) If P1, P2 : C −→ C are two complex polynomials of degree N1 and N2

respectively, and N2 ≥ N1 + 2, then the rational function f(z) = P1(z)/P2(z)
uniformly decays with order o(1/z) on both C+ and C−. ♦

Exercise 18H.1. Verify Examples 18H.1(a-d). �E©

12This is pronounced, ‘small oh of 1/z’.
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Proposition 18H.2. (Improper integrals of analytic functions)
Let f : R −→ C be an analytic function, and let F : C −→ ̂C be an extension

of f to a meromorphic function on C.

(a) Suppose that F uniformly decays with order o(1/z) on C+. If p1, p2, . . . , pJ ∈
C+ are all the poles of F in C+, then

∫ ∞

−∞
f(x) dx = 2πi

J
∑

j=1

respj (F ).

(b) Suppose that F uniformly decays with order o(1/z) on C−. If p1, p2, . . . , pJ ∈
C− are all the poles of F in C−, then

∫ ∞

−∞
f(x) dx = −2πi

J
∑

j=1

respj (F ).

Proof. (a) Note that F has no poles on the real line R, because f is analytic
on R. For any R > 0, let γR be the ‘D’-shaped contour of radius R from
Example 18C.3 on page 436. If R is made large enough, then γR encircles all
of p1, p2, . . . , pJ . Thus, the Residue Theorem 18G.2 on page 467 says that

∮

γR

F = 2πi
J
∑

j=1

respj (F ). (18H.2)

But by definition,
∮

γR

F =
∫ π+R

0
F [γR(s)] γ̇R(s)

(∗)

∫ π

0
F (Reis) ·Ri eis ds +

∫ R

−R
f(x) dx,

where (∗) is by equations (18C.1) and (18C.2) on page 436. Thus,

lim
R→∞

∮

γR

F = lim
R→∞

∫ π

0
F (Reis) ·Rieis ds + lim

R→∞

∫ R

−R
f(x) dx

(∗)

∫ ∞

−∞
f(x) dx. (18H.3)

Now combine equations (18H.2) and (18H.3) to prove part (a).

In equation (18H.3), step (∗) is because

lim
R→∞

∫ R

−R
f(x) dx =

∫ ∞

−∞
f(x) dx, (18H.4)

while lim
R→∞

∣

∣

∣

∣

∫ π

0
F (Reis) ·Rieis ds

∣

∣

∣

∣

= 0 (18H.5)
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Equation (18H.4) is just the definition of an improper integral. To see equation
(18H.5), note that
∣

∣

∣

∣

∫ π

0
F (Reis)Rieis ds

∣

∣

∣

∣

≤
(4)

∫ π

0

∣

∣

∣F (Reis)Rieis
∣

∣

∣ ds =
∫ π

0
R
∣

∣

∣F (Reis)
∣

∣

∣ ds,

(18H.6)
where (4) is just the triangle inequality for integrals. But for any ε > 0, we
can find some r > 0 satisfying equation (18H.1). Then for all R > r, and all
s ∈ [0, π], we have R ·

∣

∣F (Reis)
∣

∣ < ε, which means

∫ π

0
R ·
∣

∣

∣F (Reis)
∣

∣

∣ ds ≤
∫ π

0
ε = πε. (18H.7)

Since ε > 0 can be made arbitrarily small, equations (18H.6) and (18H.7)
imply (18H.5).

Exercise 18H.2 Prove part (b) of the theorem. 2
E©

If f, g : R −→ C are integrable functions, recall that their convolution is
the function f ∗ g : R −→ R defined by f ∗ g(r) :=

∫∞
−∞ f(x) g(r − x) dx,

for any r ∈ R. Chapter 17 showed how to solve I/BVPs by convolving with
‘impulse-response’ functions like the Poisson kernel.

Corollary 18H.3. (Convolutions of analytic functions)

Let f, g : R −→ C be analytic functions, with meromorphic extensions F,G :
C −→ ̂C. Suppose the function z 7→ F (z) · G(−z) uniformly decays with order
o(1/z) on C+. Suppose F has simple poles p1, p2, . . . , pJ ∈ C+, and no other
poles in C+. Suppose G has simple poles q1, q2, . . . , qK ∈ C−, and no other poles
in C−. Then for all r ∈ R,

f ∗ g(r) = 2πi
J
∑

j=1

G(r − pj) · respj (F ) − 2πi
K
∑

k=1

F (r − qk) · resqj (G).

Proof. Fix r ∈ R, and consider the function H(z) := F (z)G(r − z). For all
j ∈ [1...J ], Example 18G.1(e) on page 466 says that H has a simple pole at
pj ∈ C+, with residue G(r − pj) · respj (F ). For all k ∈ [1...K], the function
z 7→ G(r − z) has a simple pole at r − qk, with residue −resqk(G). Thus,
Example 18G.1(e) says that H has a simple pole at r−qk, with residue −F (r−
qk) · resqk(G). Note that (r − qk) ∈ C+, because qk ∈ C− and r ∈ R. Now
apply Proposition 18H.2. 2
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Example 18H.4. For any y > 0, recall the half-plane Poisson kernel Ky : R −→
R from §17E, defined by

Ky(x) :=
y

π(x2 + y2)
, for all x ∈ R.

Let H :=
{

(x, y) ∈ R2 ; y ≥ 0
}

(the upper half-plane). If b : R −→ R is
bounded and continuous, then Proposition 17E.1 on page 404 says that the
function h(x, y) := Ky ∗ b(x) is the unique continuous harmonic function on H
which satisfies the Dirichlet boundary condition h(x, 0) = b(x) for all x ∈ R.
Suppose b : R −→ R is analytic, with a meromorphic extension B : C −→ ̂C
which is asymptotically bounded near infinity in C− —that is, there exist
K,R > 0 such that |B(z)| < K for all z ∈ C− with |z| > R. Then the
function Ky · B asymptotically decays near infinity with order o(1/z) on C+,
so Corollary 18H.3 is applicable.

In Example 18G.1(c) on page 466, we saw that Ky has a simple pole at yi,
with resyi(Ky) = 1/2πi, and no other poles in C+. Suppose B has simple poles
q1, q2, . . . , qK ∈ C−, and no other poles in C−. Then setting f := Ky, g := b,
J := 1 and p1 := yi in Corollary 18H.3, we get for any (x, y) ∈ H,

h(x, y) = 2πiB(x− yi) · resyi(Ky)
︸ ︷︷ ︸

=1/2πi

− 2πi
K
∑

k=1

Ky(x− qk) · resqk(B)

= B(x− yi) − 2yi
k
∑

k=1

resqk(B)
(x− qk)2 + y2

. ♦

Exercise 18H.3. (a) Show that, in fact, h(x, y) = Re [B(x− yi)]. (Thus, if we E©
could compute B, then the BVP would already be solved, and we actually wouldn’t
need to apply Proposition 17E.1).

(b) Deduce that Im [B(x− yi)] = 2y
K
∑

k=1

resqk(B)
(x− qk)2 + y2

. �

Exercise 18H.4. Let f : R −→ R be a bounded analytic function, with meromor- E©
phic extension F : C −→ ̂C. Let u : R × R 6− −→ R be the unique solution to the
one-dimensional heat equation (∂t u = ∂2

x u) with initial conditions u(x; 0) = f(x) for
all x ∈ R. Combine Proposition 18H.3 with Proposition 17C.1 on page 385 to find a
formula for u(x; t) in terms of the residues of F . �

Exercise 18H.5. For any t ≥ 0, let Γt : R −→ R be the d’Alembert kernel: E©

Γt(x) =
{

1
2 if −t < x < t;
0 otherwise.
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Let f1 : R −→ R be an analytic function. Lemma 17D.3 on page 395 says that we
can solve the initial velocity problem for the one-dimensional wave equation by defining
v(x; t) := Γt∗f1(x). Explain why Proposition 18H.3 is not suitable for computing Γt∗f1.
�

If f : R −→ C is an integrable function, then its Fourier transform is the
function ̂f : R −→ C defined by

̂f(µ) :=
1

2π

∫ ∞

−∞
exp(−µxi)f(x) dx, for all µ ∈ R.

(See §19A for more information). Proposition 18H.2 can also be used to compute
Fourier transforms, but it is not quite the strongest result for this purpose. If
F : C −→ ̂C is some meromorphic function, then we say that F uniformly
decays at infinity with order O(1/z) if13 there exists some M > 0 and some
r > 0 such that:

For all z ∈ C,
(

|z| > r
)

=⇒
(

|F (z)| < M/|z|
)

. (18H.8)

In other words, the function |z · F (z)| is uniformly bounded (by M) as z → ∞
in any direction in C.

Example 18H.5. (a) The function f(z) = 1/z uniformly decays at infinity
with order O(1/z).

(b) If f uniformly decays at infinity on C± with order o(1/z), then it also
uniformly decays at infinity with order O(1/z). (Exercise 18H.6 VerifyE©
this).

(c) In particular, if P1, P2 : C −→ C are two complex polynomials of degree
N1 and N2 respectively, and N2 ≥ N1 + 1, then the rational function f(z) =
P1(z)/P2(z) uniformly decays at infinity with order O(1/z). ♦

Thus, decay with order O(1/z) is a slightly weaker requirement than decay
with order o(1/z).

Proposition 18H.6. (Fourier transforms of analytic functions)
Let f : R −→ C be an analytic function. Let F : C −→ ̂C be an exten-

sion of f to a meromorphic function on C which uniformly decays with order
O(1/z). Let p−K , . . . , p−2, p−1, p0, p1, . . . , pJ be all the poles of F in C, where
p−K , . . . , p−2, p−1 ∈ C− and p0, p1, . . . , pJ ∈ C+. Then:

̂f(µ) = i
J
∑

j=0

respj (Eµ · F ), for all µ < 0, (18H.9)

and ̂f(µ) = −i
−K
∑

k=−1

respk(Eµ · F ), for all µ > 0,

13This is pronounced, ‘big oh of 1/z’.
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Figure 18H.1: (A) The square contour in the proof of Proposition 18H.6. (B) The

contour in Exercise 18H.12 on page 480

where Eµ : C −→ C is the holomorphic function defined Eµ(z) := exp(−µ · z · i)
for all z ∈ C. In particular, if all the poles of F are simple, then

̂f(µ) = i
J
∑

j=0

exp(−µpj i) · respj (F ), for all µ < 0, (18H.10)

and ̂f(µ) = −i
−K
∑

k=−1

exp(−µpk i) · respk(F ), for all µ > 0.

Proof. We will prove the theorem for µ < 0. Fix µ < 0 and define G : C −→ C
by G(z) := exp(−µz i) · F (z). For any R > 0, define the chains βR, ρR, τr,
and λR as shown in Figure 18H.1(A):

For all s ∈ [−R,R], βR(s) := s so that β̇R(s) = 1.
For all s ∈ [0, 2R], ρR(s) := R+ si so that ρ̇R(s) = i.

For all s ∈ [−R,R], τR(s) := s+ 2Ri so that τ̇R(s) = 1.
For all s ∈ [0, 2R], λR(s) := −R+ si so that λ̇R(s) = i.

(18H.11)
(Mnemonic: βottom, ρight, τop, λeft.) Thus, if γ = β � ρ � ←τ �

←
λ , then γR

traces a square in C+ of sidelength 2R. If R is made large enough, then γR
encloses all of p0, p2, . . . , pJ . Thus, for any large enough R > 0,

2πi
J
∑

j=0

respj (G)
(∗)

∮

γR

G
(†)

y
∫

βR

G + y
∫

ρR

G − y
∫

τR

G − y
∫

λR

G

(18H.12)
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where (∗) is by the Residue Theorem 18G.2 on page 467, and where (†) is by
Lemma 18C.8(a,b) on page 441.

Claim 1: lim
R→∞

y
∫

βR

G = 2π ̂f(µ).

Proof. Exercise 18H.7 �
Claim 1

E©

Claim 2: (a) lim
R→∞

y
∫

ρR

G = 0 and (b) lim
R→∞

y
∫

λR

G = 0.

Proof. (a) By hypothesis, f decays with order O(1/z). Thus, we can find
some r > 0 and M > 0 satisfying eqn.(18H.8). If R > r, then for all
s ∈ [0, 2R],

|G(R+ si)| = |exp[−µi(R+ si)]| · |F (R+ si)|

≤
(∗)
|exp(µs− µRi)| · M

|R+ si|
≤ eµs · M

R
, (18H.13)

where (∗) is by equation (18H.8). Thus,
∣

∣

∣

∣

y
∫

ρR

G

∣

∣

∣

∣ (�)

∣

∣

∣

∣

∫ 2R

0
G(R+ si) i ds

∣

∣

∣

∣

≤
∫ 2R

0
|G(R+ si)| ds ≤

(∗)

M

R

∫ 2R

0
eµs ds

=
M

µR
eµs

∣

∣

∣

s=2R

s=0
=

M

−µR
(1− e2µR) ≤

(†)

M

−µR
−−−−R→∞−→ 0,

as desired. Here, (�) is by eqn.(18H.11), (∗) is by eqn.(18H.13), and (†) is
because µ < 0. This proves (a). The proof of (b) is similar. �

Claim 2

Claim 3: lim
R→∞

y
∫

τR

G = 0.

Proof. Again find r > 0 and M > 0 satisfying eqn.(18H.8). If R > r, then
for all s ∈ [−R,R],

|G(s+ 2Ri)| = |exp[−µi(s+ 2Ri)]| · |F (s+ 2Ri)|

≤
(∗)
|exp(2Rµ− sµi)| · M

|s+ 2Ri|

≤ e2Rµ · M
2R

, (18H.14)

where (∗) is by equation (18H.8). Thus,
∣

∣

∣

∣

y
∫

τR

G

∣

∣

∣

∣

≤
(∗)

e2Rµ · M
2R
· length(τR) = e2Rµ · M

2R
· 2R = Me2Rµ −−−−(†)

R→∞−→ 0,

as desired. Here, (∗) is by eqn.(18H.14) and Lemma 18C.10 on page 444,
while (†) is because µ < 0. �

Claim 3
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Now we put it all together:

2πi
J
∑

j=0

respj (G)
(∗)

lim
R→∞

(

y
∫

βR

G + y
∫

ρR

G − y
∫

τR

G − y
∫

λR

G

)

(†)
2π ̂f(µ) + 0 + 0 + 0 = 2π ̂f(µ).

Now divide both sides by 2π to get eqn.(18H.9). Here, (∗) is by eqn.(18H.12),
and (†) is by Claims 1-3.

Finally, to see eqn.(18H.10), suppose all the poles p0, . . . , pJ are simple. Then
respj (G) = exp(−iµpj) · respj (F ) for all j ∈ [0...J ], by Example 18G.1(e) on
page 466. Thus,

i
J
∑

j=0

respj (G) = i
J
∑

j=0

exp(−µpj i) · respj (F ),

so eqn.(18H.10) follows from (18H.9). 2

Exercise 18H.8. Prove Proposition 18H.6 in the case µ > 0. � E©

Example 18H.7. Define f : R −→ R by f(x) := 1/(x2 + 1) for all x ∈ R. The
meromorphic extension of f is simply the complex polynomial F : C −→ ̂C
defined

F (z) :=
1

z2 + 1
=

1
(z + i)(z − i)

, for all z ∈ C.

Clearly F has simple poles at ±i, with resi(F ) =
1
2i

and res−i(F ) =
−1
2i

.
Thus, Proposition 18H.6 says

If µ < 0, then ̂f(µ) = i exp(−µi · i) 1
2i

=
eµ

2
=

e−|µ|

2
.

If µ > 0, then ̂f(µ) = −i exp(−µi · (−i))
−1
2i

=
e−µ

2
=

e−|µ|

2
.

We conclude that ĝ(µ) =
e−|µ|

2
for all µ ∈ R. ♦
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Exercise 18H.9. Compute the Fourier transforms of the following rational func- E©
tions

(a) f(x) =
1

x4 + 1
. (Hint: x4 + 1 = (x− eπi/4)(x− e3πi/4)(x− e5πi/4)(x− e7πi/4).)

(b) f(x) =
x3 − 1

x4 + 5x2 + 4
. (Hint: x4 + 5x2 + 4 = (x2 + 1)(x2 + 4).)

(c) f(x) =
x4

x6 + 14x4 + 49x2 + 36
. (Hint: x6 + 14x4 + 49x2 + 36 = (x2 + 1)(x2 +

4)(x2 + 9).)

(d) f(x) =
x+ i

x4 + 5x2 + 4
. (Careful!) �

Exercise 18H.10. Why is Proposition 18H.6 not suitable to compute the FourierE©
transforms of the following functions?

(a) f(x) =
1

x3 + 1
.

(b) f(x) =
sin(x)
x4 + 1

.

(c) f(x) =
1

|x|3 + 1
.

(d) f(x) =
3
√
x

x3 + 1
. �

Exercise 18H.11. Let f : R −→ R be an analytic function whose meromorphicE©
extension F : C −→ ̂C decays with order O(1/z).

(a) State and prove a general formula for ‘trigonometric integrals’ of the form
∫ ∞

−∞
cos(nx) f(x) dx and

∫ ∞

−∞
sin(nx) f(x) dx

(Hint: Use Proposition 18H.6 and the formula exp(µx) = cos(µx) + i sin(µx)).
Use your method to compute the following integrals:

(b)
∫ ∞

−∞

sin(x)
x2 + 1

dx.

(c)
∫ ∞

−∞

cos(x)
x4 + 1

dx.

(d)
∫ ∞

−∞

sin(x)2

x2 + 1
dx. (Hint: 2 sin(x)2 = 1− cos(2x).) �

Exercise 18H.12. Proposition 18H.2 requires the function f to have no poles onE©
the real line R. However, this is not really necessary.

(a) Let R := {r1, . . . , rN} ⊂ R. Let f : R \ R −→ R be an analytic function whose
meromorphic extension F : C −→ ̂C decays with order o(1/z) on C+, and has poles
p1, . . . , pJ ∈ C+, and also has simple poles at r1, . . . , rN . Show that

∫ ∞

−∞
f(x) dx = 2πi

J
∑

j=1

respj (F ) + πi
N
∑

n=1

resrn(F ).
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Hint: For all ε > 0 and R > 0, let γR,ε be the contour shown in Figure 18H.1(B) on
page 477. This is like the ‘D’ contour in the proof of Propositions 18H.2, except that it
makes a little semicircular ‘detour’ of radius ε around each of the poles r1, . . . , rN ∈ R.
Show that the integral along each of these ε-detours tends to −πi · resrn(F ) as ε → 0,
while the integral over the remainder of the real line tends to

∫∞
−∞ f(x) dx as ε→ 0 and

R→∞.

(b) Use your method to compute
∫ ∞

−∞

exp(iµx)
x2

dx. �

Exercise 18H.13. (a) Let R := {r1, . . . , rN} ⊂ R. Let f : R \ R −→ R be an E©
analytic function whose meromorphic extension F : C −→ ̂C decays with order O(1/z)
and has poles p1, . . . , pJ ∈ C+ and also has a simple poles at r1, . . . , rN . Show that, for
any µ < 0,

̂f(µ) = i
J
∑

j=1

exp(−µpji) · respj (F ) +
i
2

N
∑

n=1

exp(−µrji) · resrn(F ).

(If µ > 0, it’s a similar formula, only summing over the residues in C− and multiplying
by −1). Hint. Combine the method from Exercise 18H.12 with the proof technique from
Proposition 18H.6.

(b) Use your method to compute ̂f(µ) when f(x) =
1

x(x2 + 1)
. �

Exercise 18H.14. The Laplace inversion integral is defined by equation (19H.3) E©
on page 518. State and prove a formula similar to Theorem 18H.6 for the computation
of Laplace inversion integrals. �

18I ∗ Homological extension of Cauchy’s theorem
Prerequisites: §18C.

We have defined ‘contours’ to be non-self-intersecting curves only so as to
simplify the exposition in Section 18C.14 All of the results of Section 18C are
true for any piecewise smooth closed curve in C . Indeed, the results of Section
18C can be even extended to integrals on chains, as we now discuss.

Let U ⊆ C be a connected open set, and let G1,G2, . . . ,GN be the connected
components of the boundary ∂U. Suppose each Gn can be parameterized by
a piecewise smooth contour γn, such that the outward normal vector field of
Gn is always on the right-hand side of γ̇n. The chain γ := γ1 � γ2 � · · · � γn
is called the positive boundary of U. Its reversal

←
γ is called the negative

boundary of U. Both the negative and positive boundaries of a set are called
14To be precise, it made it simpler for us to define the ‘purview’ of the contour, by invoking the

Jordan Curve Theorem. It also made it simpler to define ‘clockwise’ versus ‘counterclockwise’
contours.
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oriented boundaries. For example, any contour γ is the oriented boundary
of the purview of γ. Theorem 18C.5 on page 438 now extends to the following
theorem.

Theorem 18I.1. Cauchy’s Theorem on oriented boundaries

Let U ⊆ C be any open set, and let f : U −→ C be holomorphic on U. If α is

an oriented boundary of U, then y
∫

α
f = 0. 2

Let α1, α2, . . . , αN : [0, 1] −→ C be continuous, piecewise smooth curves in C
(not necessarily closed), and consider the chain α = α1 � α2 � · · ·αN (note that
any chain can be expressed in this way). Let’s refer to the paths α1, . . . , αN as
the the ‘links’ of the chain α. We say that α is a cycle if the endpoint of each
link is the starting point of exactly one other link, and the starting point of each
link is the endpoint of exactly one other link. In other words, for all m ∈ [1..N ],
there exists a unique `, n ∈ [1...C] such that α`(1) = αm(0) and αm(1) = αn(0).

Example 18I.2. (a) Any contour is a cycle.

(b) If α and β are two cycles, then α � β is also a cycle.

(c) Thus, if γ1, . . . , γN are contours, then γ1 � · · · � γN is a cycle.

(d) In particular, the oriented boundary of an open set is a cycle.

(e) If α is a cycle, then
←
α is a cycle. ♦

Not all cycles are oriented boundaries. For example, let γ1 and γ2 be two
concentric counterclockwise circles around the origin; then γ1 � γ2 is not an
oriented boundary. (Although γ1 �

←
γ2 is.)

Let U ⊆ C be an open set. Let α and β be two cycles in U. We say that α is

homologous to β in U if the cycle α �
←
β is the oriented boundary of some open

subset V ⊆ U. We then write “α
Ũ
β”

Example 18I.3. (a) Let α be a clockwise circle of radius 1 around the origin,
and let β be a clockwise circle of radius 2 around the origin. Then α is

homologous to β in C∗, because α �
←
β is the positive boundary of the annulus

A := {c ∈ C ; 1 < |c| < 2} ⊆ C∗.

(b) If γ0 and γ1 are contours, then they are cycles. If γ0 is homotopic to γ1 in
U, then γ0 is also homologous to γ1 in U. To see this, let Γ : [0, 1]× [0, S] −→ C
be a homotopy from γ0 to γ1, and let V := Γ((0, 1) × [0, S]). Then V is an
open subset of U, and γ1 �

←
γ2 is an oriented boundary of V. ♦

Thus, homology can be seen as a generalization of homotopy. Proposi-
tion 18C.7 on page 440 can be extended as follows:
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Proposition 18I.4. (Homology invariance of chain integrals)

Let U ⊆ C be any open set, and let f : U −→ C be holomorphic on U. If α and

β are two cycles which are homologous in U, then y
∫

α
f = y

∫

β
f . 2

Proof. Exercise 18I.1 Hint: Use Theorem 18I.1. 2
E©

The relation “
Ũ

” is an equivalence relation. That is, for all cycles α, β, and
γ,

• α
Ũ
α;.

• If α
Ũ
β, then β

Ũ
α;

• If α
Ũ
β, and β

Ũ
γ, then α

Ũ
γ.

(Exercise 18I.2 Verify these three properties.) E©
For any cycle α, let [α]U denote its equivalence class under “

Ũ
” (this is

called a homology class). Let H1(U) denote the set of all homology classes
of cycles. In particular, let [∅]U denote the homology class of the empty cycle
—then [∅]U contains all cycles which are oriented boundaries of subsets of U.

Corollary 18I.5. Let U ⊆ C be any open set.

(a) If α1 Ũ
α2 and β1 Ũ

β2, then (α1 � β1)
Ũ

(α2 � β2). Thus, we can define
an operation ⊕ on H1(U) by [α]U ⊕ [β]U := [α � β]U.

(b) H1(U) is an abelian group under the operation ⊕.

(c) If f : U −→ C is holomorphic, then the function [α]U 7→y
∫

α
f is a group

homomorphism from (H1(U),⊕) to the group (C,+) of complex numbers
under addition.

Proof. (a) is Exercise 18I.3 . Verify the following: E©

(i) The operation ⊕ is commutative. That is, for any cycles α and β, we have
α � β

Ũ
β � α; thus, [α]U ⊕ [β]U = [β]U ⊕ [α]U.

(ii) The operation⊕ is associative. That is, for any cycles α, β, and γ, we have
α � (β � γ)

Ũ
(α � β) � γ; thus, [α]U⊕([β]U⊕ [γ]U) = ([α]U⊕ [β]U)⊕ [γ]U.

(iii) The cycle [∅]U is an identity element. For any cycle α, we have [α]U ⊕
[∅]U = [α]U.

(iv) For any cycle α, the class [
←
α]U is an additive inverse for [α]U. That is:

[α]U ⊕ [
←
α]U = [∅]U.
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(b) follows immediately from (a). (c) follows from Proposition 18I.4 and
Lemma 18C.8(a,b). 2

The group H1(U) is called the first homology group of U. In general,
H1(U) is a free abelian group of rank R, where R is the number of ‘holes’ in
U. One can similarly define homology groups for any subset U ⊆ RN for any
N ∈ N (e.g. a surface or a manifold), or even for more abstract spaces. The alge-
braic properties of the homology groups of U encode the ‘large-scale’ topological
properties of U (e.g. the presence of ‘holes’ or ‘twists’). The study of homology
groups is one aspect of a vast and beautiful area in mathematics called algebraic
topology. Surprisingly, the algebraic topology of a differentiable manifold indi-
rectly influences the behaviour of partial differential equations defined on this
manifold; this is content of deep results such as the Atiyah-Singer Index Theo-
rem. For an elementary introduction to algebraic topology, see [Hen94]. For a
comprehensive text, see the beautiful book [Hat02].
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VI Fourier transforms on
unbounded domains

In Part III, we saw that trigonometric functions like sin and cos formed
orthogonal bases of L2(X), where X was one of several bounded subsets of RD.
Thus, any function in L2(X) could be expressed using a Fourier series. In Part
IV we used these Fourier series to solve initial/boundary value problems on X.

A Fourier transform is similar to a Fourier series, except that now X is an
unbounded set (e.g. X = R or RD). This introduces considerable technical
complications. Nevertheless, the underlying philosophy is the same; we will
construct something analogous to an orthogonal basis for L2(X), and use this to
solve partial differential equations on X.

It is technically convenient (although not strictly necessary) to replace sin
and cos with the complex exponential functions like exp(xi) = cos(x) + i sin(x).
The material on Fourier series in Part III could have also been developed using
these complex exponentials, but in that context, this would have been a needless
complication. In the context of Fourier transforms, however, it is actually a
simplification.
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Chapter 19

Fourier transforms

“There is no branch of mathematics, however abstract, which may not someday be applied

to the phenomena of the real world.” —Nicolai Lobachevsky

19A One-dimensional Fourier transforms
Prerequisites: §0C. Recommended: §6C(i), §8D.

Fourier series help us to represent functions on a bounded domain, like
X = [0, 1] or X = [0, 1] × [0, 1]. But what if the domain is unbounded, like
X = R? Now, instead of using a discrete collection of Fourier coefficients like
{A0, A1, B1, A2, B2, . . .} or { ̂f−1, ̂f0, ̂f1, ̂f2, . . .}, we must use a continuously pa-
rameterized family.

For every µ ∈ R, we define the function Eµ : R −→ C by Eµ(x) := exp(µix).
You can visualize this function as a helix which spirals with frequency µ around
the unit circle in the complex plane (see Figure 19A.1). Indeed, using Euler’s
Formula (see page 551), it is not hard to check that Eµ(x) = cos(µx)+ i sin(µx)
(Exercise 19A.1). In other words, the real and imaginary parts of Eµ(x) act E©
like a cosine wave and a sine wave, respectively, both of frequency µ.

Heuristically speaking, the (continuously parameterized) family of functions
{Eµ}µ∈R acts as a kind of ‘orthogonal basis’ for a certain space of functions

Figure 19A.1: Eµ(x) := exp(−µ · x · i) as a function of x.
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from R into C (although making this rigorous is very complicated). This is the
motivating idea behind the Fourier transform.

Let f : R −→ C be some function. The Fourier transform of f is the
function ̂f : R −→ C defined:

̂f(µ) :=
1

2π

∫ ∞

−∞
f(x)Eµ(x) dx =

1
2π

∫ ∞

−∞
f(x) · exp(−µ · x · i) dx,

for any µ ∈ R. (In other words, ̂f(µ) :=
1

2π
〈f, Eµ〉, in the notation of § 6C(i)

on page 109). Notice that this integral may not converge, in general. We need
f(x) to “decay fast enough” as x goes to ±∞. To be precise, we need f to be
an absolutely integrable function, meaning that

∫ ∞

−∞
|f(x)| dx < ∞.

We indicate this by writing: “f ∈ L1(R)”.
The Fourier transform ̂f(µ) plays the same role that the complex Fourier

coefficients {. . . ̂f−1, ̂f0, ̂f1, ̂f2, . . .} play for a function on an interval (see § 8D
on page 172). In particular, we can express f(x) as a sort of generalized “Fourier
series”. We would like to write something like:

“ f(x) =
∑

µ∈R

̂f(µ)Eµ(x). ”

However, this expression makes no mathematical sense, because you can’t sum
over all real numbers (there are too many). Instead of summing over all Fourier
coefficients, we must integrate. For this to work, we need a technical condition.
We say that f is piecewise smooth if there is a finite set of points r1 < r2 <
· · · < rN in R such that f is continuously differentiable on the open intervals
(−∞, r1), (r1, r2), (r1, r2), . . . , (rN−1, rN ), and (rN ,∞), and furthermore, the
left-hand and right-hand limits1 of f and f ′ exist at each of the points r1, . . . , rN .

Theorem 19A.1. Fourier Inversion Formula
Suppose that f ∈ L1(R) is piecewise smooth. For any x ∈ R, if f is continuous

at x, then

f(x) = lim
M→∞

∫ M

−M
̂f(µ) · Eµ(x) dµ = lim

M→∞

∫ M

−M
̂f(µ) · exp(µ · x · i) dµ.

(19A.1)
If f is discontinuous at x, then we have

lim
M→∞

∫ M

−M
̂f(µ) · Eµ(x) dµ =

1
2

(

lim
y↘x

f(y) + lim
y↗x

f(y)
)

.

1See page 201 for definition.
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Proof. See [Wal88, Theorem 5.17, p.244], [Kör88, Theorem 61.1, p.300], or
[Fis99, §5.2, p.335-342]. 2

It follows that, under mild conditions, a function can be uniquely identified
from its Fourier transform:

Proposition 19A.2. Suppose f, g ∈ C(R) ∩ L1(R) are continuous and inte-

grable. Then
(

̂f = ĝ
)

⇐⇒
(

f = g
)

.

Proof. “⇐=” is obvious. The proof of “=⇒” is Exercise 19A.2 (Hint. (a) If E©
f and g are piecewise smooth, then show that this follows immediately from Theorem
19A.1.

(b) In the general case (where f and g might not be piecewise smooth), proceed as
follows. Let h ∈ C(R) ∩ L1(R). Suppose ̂h ≡ 0; show that we must have h ≡ 0. Now
let h := f − g; then ̂h = ̂f − ĝ ≡ 0 (because ̂f = ĝ). Thus h = 0; thus, f = g.) 2
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Figure 19A.2: (A) Example 19A.3. (B) The Fourier transform ̂f(x) =
sin(µ)
πµ from Example 19A.3.

Example 19A.3. Suppose f(x) =
{

1 if − 1 < x < 1;
0 otherwise

[see Figure

19A.2(A)]. Then

For all µ ∈ R, ̂f(µ) =
1

2π

∫ ∞

−∞
f(x) exp(−µ · x · i) dx =

1
2π

∫ 1

−1
exp(−µ · x · i) dx

=
1

−2πµi
exp

(

− µ · x · i
)x=1

x=−1
=

1
−2πµi

(

e−µi − eµi
)

=
1
πµ

(

eµi − e−µi

2i

)

(Eu)

1
πµ

sin(µ) [see Fig.19A.2(B)]
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where (Eu) is Euler’s Formula (see page 551).

Thus, the Fourier Inversion Formula says, that, if −1 < x < 1, then

lim
M→∞

∫ M

−M

sin(µ)
πµ

exp(µ · x · i) dµ = 1,

while, if x < −1 or x > 1, then lim
M→∞

∫ M

−M

sin(µ)
πµ

exp(µ · x · i) dµ = 0. If

x = ±1, then the Fourier inversion integral will converge to 1
2 . ♦
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Figure 19A.3: (A) Example 19A.4. (B) The real and imaginary parts of the
Fourier transform ̂f(x) = 1−e−µi

2πµi from Example 19A.4.

Example 19A.4. Suppose f(x) =
{

1 if 0 < x < 1;
0 otherwise

[see Figure 19A.3(A)].

Then ̂f(µ) = 1−e−µi

2πµi [see Figure 19A.3(B)]; the verification of this is practice
problem # 1 on page 523 of §19I. Thus, the Fourier inversion formula says,
that, if 0 < x < 1, then

lim
M→∞

∫ M

−M

1− e−µi

2πµi
exp(µ · x · i) dµ = 1,

while, if x < 0 or x > 1, then lim
M→∞

∫ M

−M

1− e−µi

2πµi
exp(µ · x · i) dµ = 0. If

x = 0 or x = 1, then the Fourier inversion integral will converge to 1
2 . ♦
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Figure 19A.4: (A) The symmetric exponential tail function f(x) = e−α·|x|

from Example 19A.7. (B) The Fourier transform ̂f(x) = a
π(x2+a2)

of the
symmetric exponential tail function from Example 19A.7.

In the Fourier Inversion Formula, it is important that the positive and neg-
ative bounds of the integral go to infinity at the same rate in the limit (19A.1).

In particular, it is not the case that f(x) = lim
N,M→∞

∫ M

−N
̂f(µ) exp(µ · x · i) dµ;

in general, this integral may not converge. The reason is this: even if f is ab-
solutely integrable, its Fourier transform ̂f may not be. If we assume that ̂f is
also absolutely integrable, then things become easier.

Theorem 19A.5. Strong Fourier Inversion Formula
Suppose that f ∈ L1(R), and that ̂f is also in L1(R). If x ∈ R, and f is

continuous at x, then f(x) =
∫ ∞

−∞
̂f(µ) · exp(µ · x · i) dµ.

Proof. See [Kör88, Theorem 60.1, p.296], [Wal88, Theorem 4.11, p.236], [Fol84,
Theorem 8.26, p. 243], or [Kat76, §VI.1.12, p.126]. 2

Corollary 19A.6. Suppose f ∈ L1(R), and there exists some g ∈ L1(R) such
that f = ĝ. Then ̂f(µ) = 1

2πg(−µ) for all µ ∈ R.

Proof. Exercise 19A.3 2
E©

Example 19A.7. Let α > 0 be a constant, and suppose f(x) = e−α·|x|. [see
Figure 19A.4(A)]. Then

2π ̂f(µ) =
∫ ∞

−∞
e−α·|x| exp(−µxi) dx

=
∫ ∞

0
e−α·x exp(−µxi) dx +

∫ 0

−∞
eα·x exp(−µxi) dx

=
∫ ∞

0
exp(−αx− µxi) dx +

∫ 0

−∞
exp(αx− µxi) dx
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=
1

−(α+ µi)
exp

(

−(α+ µi) · x
)x=∞

x=0
+

1
α− µi

exp
(

(α− µi) · x
)x=0

x=−∞

(∗)

−1
α+ µi

(0− 1) +
1

α− µi
(1− 0) =

1
α+ µi

+
1

α− µi
=

α− µi + α+ µi
(α+ µi)(α− µi)

=
2α

α2 + µ2
.

Thus, we conclude: ̂f(µ) =
α

π(α2 + µ2)
. [see Figure 19A.4(B)].

To see equality (∗), recall that
∣

∣

∣exp
(

−(α+ µi) · x
)∣

∣

∣ = e−α·x. Thus,

lim
µ→∞

∣

∣

∣exp
(

−(α+ µi) · x
)∣

∣

∣ = lim
µ→∞

e−α·x = 0.

Likewise, lim
µ→−∞

∣

∣

∣exp
(

(α− µi) · x
)∣

∣

∣ = lim
µ→−∞

eα·x = 0. ♦

Example 19A.8. Conversely, suppose α > 0, and g(x) =
1

(α2 + x2)
. Then

ĝ(µ) =
1

2α
e−α·|µ|; the verification of this is practice problem # 6 on page 523

of §19I. ♦

Remark. Proposition 18H.6 on page 476 provides a powerful technique for
computing the Fourier transform of any analytic function f : R −→ C, using
residue calculus.

19B Properties of the (one-dimensional) Fourier trans-
form

Prerequisites: §19A, §0G.

Theorem 19B.1. Riemann-Lebesgue Lemma

Let f ∈ L1(R).

(a) The function ̂f is continuous and bounded. To be precise: IfB :=
∫ ∞

−∞
|f(x)| dx,

then, for all µ ∈ R, we have
∣

∣

∣

̂f(µ)
∣

∣

∣ < B.

(b) ̂f asymptotically decays near infinity. That is, lim
µ→±∞

∣

∣

∣

̂f(µ)
∣

∣

∣ = 0.
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Proof. (a) Exercise 19B.1 Hint: Boundedness follows from applying the triangleE©
inequality to the integral defining ̂f(µ). For continuity, fix µ1, µ2 ∈ R, and define
E : R −→ R by E(x) := exp(−µ1xi)− exp(−µ2xi). For any X > 0, we can write

̂f(µ1)− ̂f(µ2) =
1

2π

(

∫ −X

−∞
f(x) · E(x) dx

︸ ︷︷ ︸

(A)

+
∫ X

−X
f(x) · E(x) dx

︸ ︷︷ ︸

(B)

+
∫ ∞

X

f(x) · E(x) dx
︸ ︷︷ ︸

(C)

)

.

(i) Show that, if X is large enough, then the integrals (A) and (C) can be made
arbitrarily small, independent of the values of µ1 and µ2. (Hint. Recall that f ∈
L1(R). Observe that |E(x)| ≤ 2 for all x ∈ R.)

(ii) Fix X > 0. Show that, if µ1 and µ2 are close enough, then integral (B) can also
be made arbitrarily small (Hint: if µ1 and µ2 are ‘close’, then |E(x)| is ‘small’ for all
x ∈ R.)

(iii) Show that, if µ1 and µ2 are close enough, then
∣

∣

∣

̂f(µ1)− ̂f(µ2)
∣

∣

∣ can be made
arbitrarily small. (Hint: Combine (i) and (ii), using the triangle inequality). Hence,
̂f is continuous.

(b) (if f is continuous) Exercise 19B.2 Hint. For any X > 0, we can write E©

̂f(µ) =
1

2π

(

∫ −X

−∞
f(x) · Eµ(x) dx

︸ ︷︷ ︸

(A)

+
∫ X

−X
f(x) · Eµ(x) dx

︸ ︷︷ ︸

(B)

+
∫ ∞

X

f(x) · Eµ(x) dx
︸ ︷︷ ︸

(C)

)

.

(i) Show that, if X is large enough, then the integrals (A) and (C) can be made
arbitrarily small, independent of the value of µ. (Hint. Recall that f ∈ L1(R).
Observe that |Eµ(x)| = 1 for all x ∈ R.)

(ii) Fix X > 0. Show that, if µ is large enough, then integral (B) can also be made
arbitrarily small (Hint: f is uniformly continuous on the interval [−X,X] (why?).
Thus, for any ε > 0, there is some M such that, for all µ > M , and all x ∈ [−X,X],
we have |f(x)− f(x+ π/µ)| < ε. But Eµ(x+ π/µ) = −Eµ(x)).

(iii) Show that, if µ is large enough, then
∣

∣

∣

̂f(µ)
∣

∣

∣ can be made arbitrarily small. (Hint:
Combine (i) and (ii), using the triangle inequality).

For the proof of (b) when f is an arbitrary (discontinuous) element of L1(R),
see [Fol84, Theorem 8.22(f), p.241] or [Fis99, Exercise 15, §5.2, p.343] or
[Kat76, Theorem 1.7, p.123]. 2

Recall that, if f, g : R −→ R are two functions, then their convolution is
the function (f ∗ g) : R −→ R defined:

(f ∗ g)(x) :=
∫ ∞

−∞
f(y) · g(x− y) dy.

(see § 17A on page 375 for a discussion of convolutions). Similarly, if f has
Fourier transform ̂f and g has Fourier transform ĝ, we can convolve ̂f and ĝ to
Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009
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get a function ( ̂f ∗ ĝ) : R −→ R defined:

( ̂f ∗ ĝ)(µ) :=
∫ ∞

−∞
̂f(ν) · ĝ(µ− ν) dν.

Theorem 19B.2. Algebraic Properties of the Fourier Transform
Suppose f, g ∈ L1(R) are two functions.

(a) If h := f + g, then for all µ ∈ R, we have ̂h(µ) = ̂f(µ) + ĝ(µ).

(b) If h := f ∗ g, then for all µ ∈ R, we have ̂h(µ) = 2π · ̂f(µ) · ĝ(µ).

(c) Conversely, suppose h := f · g. If ̂f, ĝ and ̂h are in L1(R), then for all
µ ∈ R, we have ̂h(µ) = ( ̂f ∗ ĝ)(µ).

Proof. See practice problems #11 to # 13 on page 524. 2

This theorem allows us to compute the Fourier transform of a complicated
function by breaking it into a sum/product of simpler pieces.

Theorem 19B.3. Translation and Phase Shift

Suppose f ∈ L1(R).

(a) If τ ∈ R is fixed, and g ∈ L1(R) is defined by: g(x) := f(x + τ), then for
all µ ∈ R, we have ĝ(µ) = eτµi · ̂f(µ).

(b) Conversely, if ν ∈ R is fixed, and g ∈ L1(R) is defined: g(x) := eνxif(x),
then for all µ ∈ R, we have ĝ(µ) = ̂f(µ− ν).

Proof. See practice problems #14 and # 15 on page 524. 2

Thus, translating a function by τ in physical space corresponds to phase-
shifting its Fourier transform by eτµi, and vice versa. This means that, via a
suitable translation, we can put the “center” of our coordinate system wherever
it is most convenient to do so.

Example 19B.4. Suppose g(x) =
{

1 if − 1− τ < x < 1− τ ;
0 otherwise

. Thus,

g(x) = f(x + τ), where f(x) is as in Example 19A.3 on page 489. We know

that ̂f(µ) =
sin(µ)
πµ

; thus, it follows from Theorem 19B.3 that ĝ(µ) =

eτµi · sin(µ)
πµ

. ♦
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Figure 19B.1: Plot of ̂f (black) and ĝ (grey) in Example 19B.6, where g(x) =
f(x/3).

Theorem 19B.5. Rescaling Relation

Suppose f ∈ L1(R). If α > 0 is fixed, and g is defined by: g(x) = f
(x

α

)

, then

for all µ ∈ R, ĝ(µ) = α · ̂f(α · µ).

Proof. See practice problem # 16 on page 525. 2

In Theorem 19B.5, the function g is the same as function f , but expressed
in a coordinate system “rescaled” by a factor of α.

Example 19B.6. Suppose g(x) =
{

1 if − 3 < x < 3;
0 otherwise

. Thus, g(x) =

f(x/3), where f(x) is as in Example 19A.3 on page 489. We know that ̂f(µ) =
sin(µ)
µπ

; thus, it follows from Theorem 19B.5 that ĝ(µ) = 3 · sin(3µ)
3µπ

=

sin(3µ)
µπ

. See Figure 19B.1. ♦

A function f : R −→ C is continuously differentiable if f ′(x) exists for
all x ∈ R, and the function f ′ : R −→ C is itself continuous. Let C1(R) be the
set of all continuously differentiable functions from R to C. For any n ∈ N let
f (n)(x) := dn

dxn f(x). The function f is n times continuously differentiable if
f (n)(x) exists for all x ∈ R, and the function f (n) : R −→ C is itself continuous.
Let Cn(R) be the set of all n-times continuously differentiable functions from R
to C.
Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



496— DRAFT Chapter 19. Fourier transforms
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Figure 19B.2: Smoothness vs. asymptotic decay in the Fourier Transform.

Theorem 19B.7. Differentiation and Multiplication

Suppose f ∈ L1(R).

(a) Suppose f ∈ C1(R) and lim
x→±∞

|f(x)| = 0. Let g(x) := f ′(x). If g ∈ L1(R),

then for all µ ∈ R, we have ĝ(µ) = iµ · ̂f(µ).

(b) More generally, suppose f ∈ Cn(R) and lim
x→±∞

|f (n−1)(x)| = 0. Let g(x) :=

f (n)(x). If g ∈ L1(R), then for all µ ∈ R, we have ĝ(µ) = (iµ)n · ̂f(µ).

Thus, ̂f(µ) asymptotically decays faster than
1
µn

as µ → ±∞. That is,

lim
µ→±∞

µn ̂f(µ) = 0.

(c) Conversely, let g(x) := xn · f(x), and suppose that f decays “quickly
enough” that g is also in L1(R) [for example, this happens if lim

x→±∞
xn+1f(x) =

0]. Then the function ̂f is n times differentiable, and, for all µ ∈ R,

ĝ(µ) = in · d
n

dµn
̂f(µ).

Proof. (a) is practice problem # 17 on page 525 of §19I.

(b) is just the result of iterating (a) n times.

(c) is Exercise 19B.3 (Hint: either ‘reverse’ the result of (a) using the FourierE©
Inversion Formula (Theorem 19A.1 on page 488), or use Proposition 0G.1 on page 567
to directly differentiate the integral defining ̂f(µ).) 2

This theorem says that the Fourier transform converts differentiation-by-
x into multiplication-by-µi. This implies that the smoothness of a function f
is closely related to the asymptotic decay rate of its Fourier transform. The
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19B. Properties of the (one-dimensional) Fourier transform 497

“smoother” f is (i.e. the more times we can differentiate it), the more rapidly
̂f(µ) decays as µ→∞ (see Figure 19B.2).

Physically, we can interpret this as follows. If we think of f as a “signal”,
then ̂f(µ) is the amount of “energy” at the “frequency” µ in the spectral decom-
position of this signal. Thus, the magnitude of ̂f(µ) for extremely large µ is the
amount of “very high frequency” energy in f , which corresponds to very finely
featured, “jaggy” structure in the shape of f . If f is “smooth”, then we expect
there will be very little of this “jagginess”; hence the high frequency part of the
energy spectrum will be very small.

Conversely, the asymptotic decay rate of f determines the smoothness of its
Fourier transform. This makes sense, because the Fourier inversion formula can
be (loosely) intepreted as saying that f is itself a sort of “backwards” Fourier
transform of ̂f .

One very important Fourier transform is the following:

Theorem 19B.8. Fourier Transform of a Gaussian

(a) If f(x) = exp
(

−x2
)

, then ̂f(µ) =
1

2
√
π
· f
(µ

2

)

=
1

2
√
π
· exp

(

−µ2

4

)

.

(b) Fix σ > 0. If f(x) =
1

σ
√

2π
exp

(

−x2

2σ2

)

is a Gaussian probability distri-

bution with mean 0 and variance σ2, then

̂f(µ) =
1

2π
exp

(

−σ2µ2

2

)

.

(c) Fix σ > 0 and τ ∈ R. If f(x) =
1

σ
√

2π
exp

(

−|x− τ |2

2σ2

)

is a Gaussian

probability distribution with mean τ and variance σ2, then

̂f(µ) =
e−iτµ

2π
exp

(

−σ2µ2

2

)

.

Proof. We’ll start with part (a). Let g(x) = f ′(x). Then by Theorem
19B.7(a),

ĝ(µ) = iµ · ̂f(µ). (19B.1)

However direct computation says g(x) = −2x · f(x), so
−1
2
g(x) = x · f(x), so

Theorem 19B.7(c) implies

i
2
ĝ(µ) = ( ̂f)′(µ). (19B.2)
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Combining (19B.2) with (19B.1), we conclude:

( ̂f)′(µ)
(19B.2)

i
2
ĝ(µ)

(19B.1)

i
2
· iµ · ̂f(µ) =

−µ
2
̂f(µ). (19B.3)

Define h(µ) = ̂f(µ) · exp
(

µ2

4

)

. If we differentiate h(µ), we get:

h′(µ)
(dL)

̂f(µ) · µ
2

exp
(

µ2

4

)

− µ

2
̂f(µ)

︸ ︷︷ ︸

(∗)

· exp
(

µ2

4

)

= 0.

Here, (dL) is differentiating using the Leibniz rule, and (∗) is by eqn.(19B.3).

In other words, h(µ) = H is a constant. Thus,

̂f(µ) =
h(µ)

exp (µ2/4)
= H · exp

(

−µ2

4

)

= H · f
(µ

2

)

.

To evaluate H, set µ = 0, to get

H = H · exp
(

−02

4

)

= ̂f(0) =
1

2π

∫ ∞

−∞
f(x) dx =

1
2π

∫ ∞

−∞
exp

(

−x2
)

=
1

2
√
π
.

(where the last step is Exercise 19B.4 ). Thus, we conclude: ̂f(µ) =
1

2
√
π
·E©

f
(µ

2

)

.

Part (b) follows by setting α :=
√

2σ in Theorem 19B.5 on page 495.

Part (c) is Exercise 19B.5 (Hint: Apply Theorem 19B.3 on page 494). 2
E©

Loosely speaking, Theorem 19B.8 says, “The Fourier transform of a Gaussian
is another Gaussian”2. However, notice that, in Part (b) of the theorem, as
the variance of the Gaussian (that is, σ2) gets bigger, the “variance” of it’s
Fourier transform (which is effectively 1

σ2 ) gets smaller (see Figure 19B.3). If
we think of the Gaussian as the probability distribution of some unknown piece
of information, then the variance measures the degree of “uncertainty”. Hence,
we conclude: the greater the uncertainty embodied in the Gaussian f , the less
the uncertainty embodied in ̂f , and vice versa. This is a manifestation of the
so-called Heisenberg Uncertainty Principle (see Theorem 19G.2 on 513).

2This is only loosely speaking, however, because a proper Gaussian contains the multiplier
“ 1

σ
√

2π
” to make it a probability distribution, whereas the Fourier transform does not.
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Figure 19B.3: The Uncertainty Principle.

Proposition 19B.9. Inversion and Conjugation
For any z ∈ C, let z denote the complex conjugate of z. Let f ∈ L1(R).

(a) For all µ ∈ R, we have ̂f(µ) = ̂f(−µ). In particular,
(

f purely real-valued
)

⇐⇒
(

for all µ ∈ R, we have ̂f(−µ) = ̂f(µ)
)

.

(b) Suppose g(x) = f(−x) for all x ∈ R. Then for all µ ∈ R, ĝ(µ) = ̂f(−µ).

In particular, if f purely real-valued, then ĝ(µ) = ̂f(µ). for all µ ∈ R.

(c) If f is real-valued and even (i.e. f(−x) = f(x)), then ̂f is purely real-
valued.

(d) If f is real-valued and odd (i.e. f(−x) = −f(x)), then ̂f is purely imaginary-
valued.

Proof. Exercise 19B.6 2
E©

Example 19B.10: Autocorrelation and Power Spectrum

If f : R −→ R, then the autocorrelation function of f is defined by

Af(x) :=
∫ ∞

−∞
f(y) · f(x+ y) dy.

Heuristically, if we think of f(x) as a “random signal”, then Af(x) measures
the degree of correlation in the signal across time intervals of length x —i.e.
it provides a crude measure of how well you can predict the value of f(y + x)
given information about f(x). In particular, if f has some sort of “T -periodic”
component, then we expect Af(x) to be large when x = nT for any n ∈ Z.

If we define g(x) = f(−x), then we can see that Af(x) = (f ∗ g)(−x)
(Exercise 19B.7). Thus, E©
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̂Af(µ)
(∗)

f̂ ∗ g (µ)
(†)

̂f(µ) · ĝ(µ)

(∗)
̂f(µ) · ̂f(µ) = ̂f(µ) · ̂f(µ) =

∣

∣

∣

̂f(µ)
∣

∣

∣

2
.

Here, both (∗) are by Proposition 19B.9(b), while (†) is by Theorem 19B.2(b).

The function
∣

∣

∣

̂f(µ)
∣

∣

∣

2
measures the absolute magnitude of the Fourier transform

of ̂f , and is sometimes called the power spectrum of ̂f . ♦

Evil twins of the Fourier transform. Unfortunately, the mathematics lit-
erature contains at least four different definitions of the Fourier transform. In
this book, the Fourier transform and its inversion are defined with the integrals

̂f(µ) :=
1

2π

∫ ∞

−∞
f(x) exp(−ixµ) dµ and f(x) =

∫ ∞

−∞
̂f(x) exp(ixµ) dµ.

Some books (e.g. [Kat76, Kör88, Fis99, Hab87]) instead use what we will call
the opposite Fourier transform:

f̌(µ) :=
∫ ∞

−∞
f(x) exp(−ixµ) dx,

with inverse transform

f(x) =
1

2π

∫ ∞

−∞
f̌(µ) exp(ixµ) dµ.

Other books (e.g. [Asm05]) instead use what we will call the symmetric Fourier
transform:

_
f(µ) :=

1√
2π

∫ ∞

−∞
f(x) exp(−ixµ) dx,

with inverse transform

f(x) =
1√
2π

∫ ∞

−∞

_
f(µ) exp(ixµ) dµ.

Finally, some books (e.g. [Fol84, Wal88]) use what we will call the canonical
Fourier transform:

˜f(µ) :=
∫ ∞

−∞
f(x) exp(−2πixµ) dx,

with inverse transform

f(x) =
∫ ∞

−∞
˜f(µ) exp(2πixµ) dµ.
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All books use the symbol “ ̂f” to denote the Fourier transform of f —we are
using four different ‘accents’ simply to avoid confusing the four definitions. It is
easy to translate the Fourier transform in this book into its evil twins. For any
f ∈ L1(R) and any µ ∈ R, we have:

f̌(µ) = 2π ̂f(µ) and ̂f(µ) =
1

2π
f̌(µ);

_
f(µ) =

√
2π ̂f(µ) and ̂f(µ) =

1√
2π

_
f(µ);

˜f(µ) = 2π ̂f(2π µ) and ̂f(µ) =
1

2π
˜f
( µ

2π

)

.

(19B.4)

(Exercise 19B.8 Check this.) All of the formulae and theorems we have derived E©
in this section are still true under these alternate definitions, except that one must
multiply or divide by 2π or

√
2π at certain key points, and replace ei with e2πi

(or vice versa) at others.

Exercise 19B.9. (Annoying) Use the identities (19B.4) to reformulate all the for- E©
mulae and theorems in this chapter in terms of (a) The opposite Fourier transform f̌ ;
or (b) The symmetric Fourier transform _

f ; or (c) The canonical Fourier transform ˜f . �

Each of the four definitions has advantages and disadvantages; some formu-
lae become simpler, others become more complex. Clearly, both the ‘symmetric’
and ‘canonical’ versions of the Fourier transform have some appeal because the
Fourier transform and its inverse have ‘symmetrical’ formulae using these defi-
nitions. Furthermore, in both of these versions, the ‘2π’ factor disappears from
Parseval’s and Plancherel’s Theorems (see §19C below) —in other words, the
Fourier transform becomes an isometry of L2(R). The symmetric Fourier trans-
form has the added advantage that it maps a Gaussian distribution into another
Gaussian (no scalar multiplication required). The canonical Fourier transform
has the added advantage that f̃ ∗ g = ˜f · g̃ (without the 2π factor required in
Theorem 19B.2(a)), while simultaneously, ˜f · g = ˜f ∗ g̃ (unlike the symmetric
Fourier transform).

The definition used in this book (and also in [Pin98, CB87, Pow99, Bro89,
McW72], among others) has none of these advantages. Its major advantage is
that it will yield simpler expressions for the abstract solutions to partial differ-
ential equations in Chapter 20. If one uses the ‘symmetric’ Fourier transform,
then every one of the solution formulae in Chapter 20 must be multiplied by
some power of 1√

2π
. If one uses the ‘canonical’ Fourier transform, then every

spacetime variable (i.e. x, y, z, t) in every formula must by multiplied by 2π or
sometimes by 4π2, which makes all the formulae look much more complicated.3

3Of course, when you actually apply these formulae to solve specific problem, you will end
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We end with a warning. When comparing or combining formulae from two or
more books, make sure to first compare their definitions of the Fourier transform,
and make the appropriate conversions using formulae (19B.4), if necessary.

Further reading. Almost any book on PDEs contains a discussion of Fourier
transforms, but for greater depth (and rigour) it is better to seek a text dedi-
cated to Fourier analysis. Good introductions to Fourier transforms and their
applications can be found in [Wal88, Chapter 6-7] and [Kör88, Part IV]. (In addi-
tion to a lot of serious mathematical content, Körner’s book contains interesting
and wide-ranging discussions about the history of Fourier theory and its many
scientific applications, and is written in a delightfully informal style).

19C ∗ Parseval and Plancherel

Prerequisites: §19A. Recommended: §6C(i), §6F.

Let L2(R) be the set of all square-integrable complex-valued functions on R
—that is, all integrable functions f : R −→ C such that ‖f‖2 < ∞, where we
define

‖f‖2 :=
(∫ ∞

−∞
|f(x)|2 dx

)1/2

(see §6C(i) for more information).

Note that L2(R) is neither a subset nor a superset of L1(R); however, the two
spaces do overlap. If f, g ∈ L2(R), then we define

〈f, g〉 :=
∫ ∞

−∞
f(x) g(x) dx.

The following identity is useful in many applications of Fourier theory, especially
quantum mechanics. It can be seen as the ‘continuum’ analog of Parseval’s
equality for an orthonormal basis (Theorem 6F.1 on page 132).

Theorem 19C.1. Parseval’s Equality for Fourier Transforms

If f, g ∈ L1(R) ∩ L2(R), then 〈f, g〉 = 2π
〈

̂f, ĝ
〉

.

Proof. Define h : R −→ R by h(x) := f(x)g(x). Then h ∈ L1(R) because
f, g ∈ L2(R). We have

̂h(0) =
1

2π

∫ ∞

−∞
f(x) · g(x) · exp(−i0x) dx

(∗)

1
2π

∫ ∞

−∞
f(x) · g(x) dx =

〈f, g〉
2π

, (19C.1)

up with exactly the same solution no matter which version of the Fourier transform you use
—why?
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where (∗) is because exp(−i0x) = exp(0) = 1 for all x ∈ R. But we also have

̂h(0)
(∗)

̂f ∗ ̂g(0) =
∫ ∞

−∞
̂f(ν) · ̂g(−ν) dν

(†)

∫ ∞

−∞
̂f(ν) · ĝ(ν) dν =

〈

̂f, ĝ
〉

. (19C.2)

Here, (∗) is by Theorem 19B.2(c), because h = f · g so ̂h = ̂f ∗ ̂g. Meanwhile,
(†) is by Proposition 19B.9(a).

Combining (19C.1) and (19C.2) yields
〈

̂f, ĝ
〉

= ̂h(0) = 〈f, g〉 /2π. The result
follows. 2

Corollary 19C.2. Plancherel’s Theorem

Suppose f ∈ L1(R) ∩ L2(R). Then ̂f ∈ L1(R) ∩ L2(R) also, and ‖f‖2 =
√

2π
∥

∥

∥

̂f
∥

∥

∥

2
.

Proof. Set f = g in the Parseval equality. Recall that ‖f‖2 =
√

〈f, f〉. 2

In fact, the Plancherel Theorem says much more than this. Define the linear
operator F1 : L1(R) −→ L1(R) by F1(f) :=

√
2π ̂f for all f ∈ L1(R); then the

full Plancherel Theorem says that F1 extends uniquely to a unitary isomorphism
F2 : L2(R) −→ L2(R) —that is, a bijective linear transformation from L2(R) to
itself such that ‖F2(f)‖2 = ‖f‖2 for all f ∈ L2(R). For any p ∈ [1,∞), let Lp(R)
be the set of all integrable functions f : R −→ C such that ‖f‖p <∞, where

‖f‖p :=
(∫ ∞

−∞
|f(x)|p dx

)1/p

.

For any p ∈ [1, 2], let p̂ ∈ [2,∞] be the unique number such that
1
p

+
1
p̂

= 1 (for

example, if p = 3/2, then p̂ = 3). Then, through a process called Riesz-Thorin
interpolation, it is possible to extend the Fourier transform even further, to get
a linear transformation Fp : Lp(R) −→ Lp̂(R). For example, one can define a
Fourier transform F3/2 : L3/2(R) −→ L3(R). All these transformations agree on
the overlaps of their domains, and satisfy the Hausdorff-Young inequality:

‖Fp(f)‖p̂ ≤ ‖f‖p , for any p ∈ [1, 2] and f ∈ Lp(R).

However, the details are well beyond the scope of this text. For more information,
see [Fol84, Chapter 8] or [Kat76, Chapter VI].
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19D Two-dimensional Fourier transforms

Prerequisites: §19A. Recommended: §9A.

Let L1(R2) be the set of all functions f : R2 −→ C which are absolutely
integrable on R2, meaning that

∫

R2

|f(x, y)| dx dy < ∞.

If f ∈ L1(R2), then the Fourier transform of f is the function ̂f : R2 −→ C
defined:

̂f(µ, ν) :=
1

4π2

∫

R2

f(x, y) · exp
(

− (µx+ νy) · i
)

dx dy,

for all (µ, ν) ∈ R2.

Theorem 19D.1. Strong Fourier Inversion Formula
Suppose that f ∈ L1(R2), and that ̂f is also in L1(R2). For any (x, y) ∈ R2, if
f is continuous at (x, y), then

f(x, y) =
∫

R2

̂f(µ, ν) · exp
(

(µx+ νy) · i
)

dµ dν.

Proof. [Fol84, Theorem 8.26, p. 243] or [Kat76, §VI.1.12, p.126]. 2

Unfortunately, not all the functions one encounters have the property that
their Fourier transform is in L1(R2). In particular, ̂f ∈ L1(R2) only if f agrees
‘almost everywhere’ with a continuous function (thus, Theorem 19D.1 is inap-
plicable to step functions, for example). We want a result analogous to the
‘weak’ Fourier Inversion Theorem 19A.1 on page 488. It is surprisingly diffi-
cult to find clean, simple ‘inversion theorems’ of this nature for multidimen-
sional Fourier transforms. The result given here is far from the most gen-
eral one in this category, but it has the advantage of being easy to state and
prove. First, we must define an appropriate class of functions. Let ̂L1(R2) :=
{

f ∈ L1(R2) ; ̂f ∈ L1(R2)
}

; this is the class considered by Theorem 19D.1. Let
˜L1(R) be the set of all piecewise smooth functions in L1(R) (the class considered
by Theorem 19A.1). Let F(R2) be the set of all functions f ∈ L1(R2) such that
there exist f1, f2 ∈ ˜L1(R) with f(x1, x2) = f1(x1) · f2(x2) for all (x1, x2) ∈ R2.
Let H(R2) denote the set of all functions in L1(R2) which can be written as a
finite sum of elements in F(R2). Finally, we define

˜L1(R2) :=
{

f ∈ L1(R2) ; f = g + h for some g ∈ ̂L1(R2) and h ∈ H(R2)
}

.
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1

Y

-Y
-X X

Figure 19D.1: Example 19D.4

Theorem 19D.2. 2-dimensional Fourier Inversion Formula
Suppose f ∈ ˜L1(R2). If (x, y) ∈ R2 and f is is continuous at (x, y), then

f(x, y) = lim
M→∞

∫ M

−M

∫ M

−M
̂f(µ, ν) · exp

(

(µx+ νy) · i
)

dµ dν. (19D.1)

Proof. Exercise 19D.1 (a) First show that eqn.(19D.1) holds for any element of E©
F(R2). (Hint. If f1, f2 ∈ ˜L1(R), and f(x1, x2) = f1(x1) · f2(x2) for all (x1, x2) ∈ R2,
then show that ̂f(µ1, µ2) = ̂f1(µ1) · ̂f2(µ2). Substitute this expression into the right
hand side of eqn.(19D.1); factor the integral into two one-dimensional Fourier inversion
integrals, and then apply Theorem 19A.1 on page 488.)

(b) Deduce that eqn.(19D.1) holds for any element of H(R2). (Hint. The Fourier
transform is linear.)

(c) Now combine (b) with Theorem 19D.1 to conclude that eqn.(19D.1) holds for any
element of ˜L1(R2). 2

Proposition 19D.3. If f, g ∈ C(R2) ∩ L1(R2) are continuous, integrable

functions, then
(

̂f = ĝ
)

⇐⇒
(

f = g
)

. 2

Example 19D.4. LetX,Y > 0, and let f(x, y) =







1 if −X ≤ x ≤ X
and − Y ≤ y ≤ Y ;

0 otherwise.
(Figure 19D.1) Then:

̂f(µ, ν) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
f(x, y) · exp

(

− (µx+ νy) · i
)

dx dy

=
1

4π2

∫ X

−X

∫ Y

−Y
exp(−µxi) · exp(−νyi) dx dy
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=
1

4π2

(∫ X

−X
exp(−µxi) dx

)

·
(∫ Y

−Y
exp(−νyi)dy

)

=
1

4π2
·
(

−1
µi

exp
(

− µxi
)x=X

x=−X

)

·
(

1
νi

exp
(

− νyi
)y=Y

y=−Y

)

=
1

4π2

(

eµXi − e−µXi

µi

)(

eνY i − e−νY i

νi

)

=
1

π2µν

(

eµXi − e−µXi

2i

)(

eνY i − e−νY i

2i

)

(Eu)

1
π2µν

sin(µX) · sin(νY ),

where (Eu) is by double application of Euler’s formula (see page 551). Note
that f is in F(R2) (why?), and thus, in ˜L1(R2). Thus, Theorem 19D.2 says,
that, if −X < x < X and −Y < y < Y , then

lim
M→∞

∫ M

−M

∫ M

−M

sin(µX) · sin(νY )
π2 · µ · ν

exp
(

(µx+ νy) · i
)

dµ dν = 1,

while, if (x, y) 6∈ [−X,X]× [−Y, Y ], then

lim
M→∞

∫ M

−M

∫ M

−M

sin(µX) · sin(νY )
π2 · µ · ν

exp
(

(µx+ νy) · i
)

dµ dν = 0.

At points on the boundary of the box [0, X] × [0, Y ], however, the Fourier
inversion integral will converge to neither of these values. ♦

Example 19D.5. If f(x, y) =
1

2σ2π
exp

(

−x2 − y2

2σ2

)

is a two-dimensional

Gaussian distribution, then ̂f(µ, ν) =
1

4π2
exp

(

−σ2

2
(

µ2 + ν2
)

)

.

(Exercise 19D.2 ) ♦E©

Exercise 19D.3. State and prove 2-dimensional versions of all results in §19B. �E©

19E Three-dimensional Fourier transforms
Prerequisites: §19A. Recommended: §9B, §19D.

In three or more dimensions, it is cumbersome to write vectors as an explicit
list of coordinates. We will adopt a more compact notation. Bold-face letters
will indicate vectors, and italic letters, their components. For example:

x = (x1, x2, x3), y = (y1, y2, y3), µ = (µ1, µ2, µ3), and ν = (ν1, ν2, ν3)
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We define the inner product x • y := x1 · y1 + x2 · y2 + x3 · y3. Let L1(R3) be
the set of all functions f : R3 −→ C which are absolutely integrable on R3,
meaning that

∫

R3

|f(x)| dx < ∞.

If f ∈ L1(R3), then we can define
∫

R3

f(x) dx :=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2, x3) dx1 dx2 dx3,

where this integral is understood to be absolutely convergent. In particular if
f ∈ L1(R3), then the Fourier transform of f is the function ̂f : R3 −→ C
defined:

̂f(µ) :=
1

8π3

∫

R3

f(x) · exp (−x • µ · i) dx,

for all µ ∈ R3. Define ˜L1(R3) in a manner analogous to the definition of ˜L1(R2)
on page 505.

Theorem 19E.1. 3-dimensional Fourier Inversion Formula

(a) Suppose f ∈ ˜L1(R3). For any x ∈ R3, if f is continuous at x, then

f(x) = lim
M→∞

∫ M

−M

∫ M

−M

∫ M

−M
̂f(µ) · exp (µ • x · i) dµ.

(b) Suppose f ∈ L1(R3), and ̂f is also in L1(R3). For any x ∈ R3, if f is

continuous at x, then f(x) =
∫

R3

̂f(µ) · exp(µ • x · i) dµ.

Proof. (a) Exercise 19E.1 (Hint: Generalize the proof of Theorem 19D.2 on E©
page 505. You may assume (b) is true.)

(b) See [Fol84, Thm 8.26, p. 243] or [Kat76, §VI.1.12, p.126]. 2

Proposition 19E.2. If f, g ∈ C(R3) ∩ L1(R3) are continuous, integrable

functions, then
(

̂f = ĝ
)

⇐⇒
(

f = g
)

. 2

Example 19E.3: A Ball

For any x ∈ R3, let f(x) =
{

1 if ‖x‖ ≤ R;
0 otherwise.

. Thus, f(x) is nonzero

on a ball of radius R around zero. Then

̂f(µ) =
1

2π2

(

sin(µR)
µ3

− R cos(µR)
µ2

)

,

where µ := ‖µ‖. ♦
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Exercise 19E.2. Verify Example 19E.3. Hint: Argue that, by spherical symme-E©
try, we can rotate µ without changing the integral, so we can assume that µ = (µ, 0, 0).
Switch to the spherical coordinate system (x1, x2, x3) = (r · cos(φ), r · sin(φ) sin(θ), r · sin(φ) cos(θ)),
to express the Fourier integral as

1
8π3

∫ R

0

∫ π

0

∫ π

−π
exp (µ · r · cos(φ) · i) · r sin(φ) dθ dφ dr.

Use Claim 1 from Theorem 20B.6 on page 534 to simplify this to
1

2π2µ

∫ R

0

r·sin (µ · r) dr.
Now apply integration by parts. �

Exercise 19E.3 The Fourier transform of Example 19E.3 contains the termsE©
sin(µR)
µ3

and
cos(µR)
µ2

, both of which go to infinity as µ → 0. However, these

two infinities “cancel out”. Use l’Hôpital’s rule to show that lim
µ→0

̂f(µ) =
1

24π3
.

Example 19E.4: A spherically symmetric function

Suppose f : R3 −→ R was a spherically symmetric function; in other words,
f(x) = φ (‖x‖) for some function φ : R 6− −→ R. Then for any µ ∈ R3,

̂f(µ) =
1

2π2

∫ ∞

0
φ(r) · r · sin (‖µ‖ · r) dr.

(Exercise 19E.4 ) ♦E©

D-dimensional Fourier transforms. Fourier transforms can be defined in
an analogous way in higher dimensions. Let L1(RD) be the set of all functions
f : RD −→ C such that

∫

RD |f(x)| dx < ∞. If f ∈ L1(RD), then the Fourier
transform of f is the function ̂f : RD −→ C defined:

̂f(µ) :=
1

(2π)D

∫

RD
f(x) · exp (−x • µ · i) dx,

for all µ ∈ RD. Define ˜L1(RD) in a manner analogous to the definition of ˜L1(R2)
on page 505.

Theorem 19E.5. D-dimensional Fourier Inversion Formula

(a) Suppose f ∈ ˜L1(RD). For any x ∈ RD, if f is continuous at x, then

f(x) = lim
M→∞

∫ M

−M

∫ M

−M
· · ·
∫ M

−M
̂f(µ) · exp (µ • x · i) dµ.
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(b) Suppose f ∈ L1(RD), and ̂f is also in L1(RD). For any x ∈ RD, if f is

continuous at x, then f(x) =
∫

RD
̂f(µ) · exp(µ • x · i) dµ.

Proof. (a) Exercise 19E.5 E©

(b) See [Fol84, Thm 8.26, p. 243] or [Kat76, §VI.1.12, p.126]. 2

Exercise 19E.6. State and prove D-dimensional versions of all results in §19B. � E©

Evil twins of multidimensional Fourier transform. Just as with the one-
dimensional Fourier transform, the mathematics literature contains at least four
different definitions of multidimensional Fourier transform. Instead of the trans-
form we have defined here, some books use what we will call the opposite Fourier
transform:

f̌(µ) :=
∫

RD
f(x) exp(−i x • µ) dx,

with inverse transform

f(x) =
1

(2π)D

∫

RD
f̌(µ) exp(i x • µ) dµ.

Other books instead use the symmetric Fourier transform:
_
f(µ) :=

1
(2π)D/2

∫

RD
f(x) exp (−i x • µ) dx,

with inverse transform

f(x) =
1

(2π)D/2

∫

RD

_
f(µ) exp (i x • µ) dµ,

Finally, some books use the canonical Fourier transform:

˜f(µ) :=
∫

RD
f(x) exp (−2πi x • µ) dx,

with inverse transform

f(x) =
∫

RD
˜f(µ) exp (2πi x • µ) dµ,

For any f ∈ L1(RD) and any µ ∈ RD, we have:

f̌(µ) = (2π)D ̂f(µ) and ̂f(µ) =
1

(2π)D
f̌(µ);

_
f(µ) = (2π)D/2 ̂f(µ) and ̂f(µ) =

1
(2π)D/2

_
f(µ);

˜f(µ) = (2π)D ̂f(2πµ) and ̂f(µ) =
1

(2π)D
˜f
( µ

2π

)

.

(19E.1)
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(Exercise 19E.7 Check this.) When comparing or combining formulae fromE©
two or more books, always compare their definitions of the Fourier transform,
and make the appropriate conversions using formulae (19E.1), if necessary.

19F Fourier (co)sine Transforms on the half-line
Prerequisites: §19A. Recommended: §7A, §8A.

In §8A, to represent a function on the symmetric interval [−π, π], we used a
real Fourier series (with both “sine” and “cosine” terms). However, to represent
a function on the interval [0, π], we found in §7A that it was only necessary to
employ half as many terms, using either the Fourier sine series or the Fourier
cosine series. A similar phenomenon occurs when we go from functions on the
whole real line to functions on the positive half-line.

Let R 6− := {x ∈ R ; x ≥ 0} be the half-line: the set of all nonnegative real
numbers. Let

L1(R 6−) :=
{

f : R 6− −→ R ;
∫ ∞

0
|f(x)| dx <∞

}

be the set of absolutely integrable functions on the half-line.
The “boundary” of the half-line is just the point 0. Thus, we will say that

a function f satisfies homogeneous Dirichlet boundary conditions if f(0) = 0.
Likewise, f satisfies homogeneous Neumann boundary conditions if f ′(0) = 0.

If f ∈ L1(R 6−), then the Fourier Cosine Transform of f is the function
̂fcos : R 6− −→ R defined:

̂fcos(µ) :=
2
π

∫ ∞

0
f(x) · cos(µx) dx, for all µ ∈ R 6−.

The Fourier Sine Transform of f is the function ̂fsin : R 6− −→ R defined:

̂fsin(µ) :=
2
π

∫ ∞

0
f(x) · sin(µx) dx, for all µ ∈ R 6−.

In both cases, for the transform to be well-defined, we require f ∈ L1(R 6−).

Theorem 19F.1. Fourier (co)sine Inversion Formula
Suppose that f ∈ L1(R 6−) be peicewise smooth. Then for any x ∈ R+ such that
f is continuous at x,

f(x) = lim
M→∞

∫ M

0

̂fcos(µ) · cos(µ · x) dµ,

and f(x) = lim
M→∞

∫ M

0

̂fsin(µ) · sin(µ · x) dµ,
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The Fourier cosine series also converges at 0. If f(0) = 0, then the Fourier sine
series converges at 0.

Proof. Exercise 19F.1 Hint: Imitate the methods of §8C. 2
E©

19G ∗ Momentum representation & Heisenberg uncer-
tainty

“Anyone who is not shocked by quantum theory has not understood it.” —Niels Bohr

Prerequisites: §3B, §6B, §19C.

Let ω : R3 × R −→ C be the wavefunction of a quantum particle (e.g. an
electron). Fix t ∈ R, and define the ‘instantaneous wavefunction’ ωt : R3 −→ C
by ωt(x) = ω(x; t) for all x ∈ R3. Recall from §3B that ωt encodes the probability
distribution for the classical position of the particle at time t. However, ωt seems
to say nothing about the classical momentum of the particle. In Example 3B.2
on page 42, we stated (without proof) the wavefunction of a particle with a
particular known velocity. Now we make a more general assertion:

Suppose a particle has instantaneous wavefunction ωt : R3 −→ C.
Let ω̂t : R3 −→ C be the (3-dimensional) Fourier transform of ωt,
and define ω̃t := ω̂t

(p
~

)

for all p ∈ R3. Then ω̃t is the wavefunction
for the particle’s classical momentum at time t. That is: if we define
ρ̃t(p) := |ω̃t|2(p)/ ‖ω̃t‖22 for all p ∈ R3, then ρ̃t is the probability
distribution for the particle’s classical momentum at time t.

Recall that we can reconstruct ωt from ω̂t via the inverse Fourier transform.
Hence, the (positional) wavefunction ωt implicitly encodes the (momentum)
wavefunction ω̃t, and conversely the (momentum) wavefunction ω̃t implicitly
encodes the (positional) wavefunction ωt. This answers the question we posed
on page 38 of §3A. The same applies to multi-particle quantum systems:

Suppose an N -particle quantum system has instantaneous (posi-
tion) wavefunction ωt : R3N −→ C. Let ω̂t : R3N −→ C be the
(3N -dimensional) Fourier transform of ωt, and define ω̃t := ω̂t

(p
~

)

for all p ∈ R3N . Then ω̃t is the joint wavefunction for the clas-
sical momenta of all the particles at time t. That is: if we define
ρ̃t(p) := |ω̃t|2(p)/ ‖ω̃t‖22 for all p ∈ R3N , then ρ̃t is the joint prob-
ability distribution for the classical momenta of all the particles at
time t.
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Because the momentum wavefunction contains exactly the same information
as the positional wavefunction, we can reformulate the Schrödinger equation in
momentum terms. For simplicity, we will only do this in the case of a single
particle. Suppose the particle is subjected to a potential energy function V :

R3 −→ R. Let ̂V be the Fourier transform of V , and define ˜V :=
1
~3
̂V
(p
~

)

for all p ∈ R3. Then the momentum wavefunction ω̃ evolves according to the
momentum Schrödinger Equation:

i∂t ω̃(p; t) =
~2

2m
|p|2 · ω̃t(p) + (˜V ∗ ω̃t)(p). (19G.1)

(here, if p = (p1, p2, p3), then |p|2 := p2
1 + p2

2 + p2
3). In particular, if the potential

field is trivial, we get the free momentum Schrödinger equation:

i∂t ω̃(p1, p2, p3; t) =
~2

2m
(p2

1 + p2
2 + p2

3) · ω̃(p1, p2, p3; t).

Exercise 19G.1. Verify eqn.(19G.1) by applying the Fourier transform to the (po-E©
sitional) Schrödinger equation eqn.(3B.3) on page 41. Hint: Use Theorem 19B.7 on
page 496 to show that ̂4ωt(p) = −|p|2 · ω̂t(p). Use Theorem 19B.2(c) to show that
(V̂ · ωt)(p/~) = ˜V ∗ ω̃t(p). �

Exercise 19G.2. Formulate the momentum Schrödinger equation for an single par-E©
ticle confined to a 1-dimensional or 2-dimensional environment. Be careful how you
define ˜V . �

Exercise 19G.3. Formulate the momentum Schrödinger equation for an N -particleE©
quantum system. Be careful how you define ˜V . �

Recall that Theorem 19B.8 said: if f is a Gaussian distribution, then ̂f
is also a ‘Gaussian’ (after multiplying by a scalar), but the variance of ̂f is
inversely proportional to the variance of f . This is an example of a general
phenomenon, called Heisenberg’s Inequality. To state this formally, we need
some notation. Recall from §6B that L2(R) is the set of all square-integrable
complex-valued functions on R —that is, all integrable functions f : R −→ C
such that ‖f‖2 <∞, where

‖f‖2 :=
(∫ ∞

−∞
|f(x)|2 dx

)1/2

.

If f ∈ L2(R), and x ∈ R, then define the uncertainty of f around x to be

•4x (f) :=
1
‖f‖22

∫ ∞

−∞
|f(y)|2 · |y − x|2 dy.
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(In most physics texts, the uncertainty of f is denoted by 4x f ; however, we will
not use this symbol because it looks too much like the Laplacian operator.)

Example 19G.1. (a) If f ∈ L2(R), then ρ(x) := f(x)2/ ‖f‖22 is a probability
density function on R (why?). If x is the mean of the distribution ρ (i.e.
x =

∫∞
−∞ x ρ(x) dx), then

•4x (f) =
∫ ∞

−∞
ρ(y) · |y − x|2 dy

is the variance of the distribution. Thus, if ρ describes the probability density
of a random variable X ∈ R, then x is the expected value of X, and •4x (ω)
measures the degee of ‘uncertainty’ we have about the value of X. If •4x (ω)
is small, then the distribution is tightly concentrated around x, so we can be
fairly confident that X is close to x. If •4x (ω) is large, then the distribution
is broadly dispersed around x, so we really have only a vague idea where X
might be.

(b) In particular, suppose f(x) = exp
(

−x2

4σ2

)

. Then f2/‖f‖22 = 1
σ
√

2π
exp

(

−x2

2σ2

)

is a Gaussian distribution with mean 0 and variance σ2. It follows that
•40 (f) = σ2.

(c) Suppose ω : R×R −→ C is a one-dimensional wavefunction, and fix t ∈ R;
thus, the function ρt(x) = |ωt|2(x)/ ‖ωt‖2 is the probability density for the
classical position of the particle at time t in a one-dimensional environment
(e.g. an electron in a thin wire). If x is the mean of this distribution, then
•4x(ωt) is the variance of the distribution; this reflects our degree of uncertainty
about the particle’s classical position at time t. ♦

Why the subscript x in •4x (f)? Why not just measure the uncertainty
around the mean of the distribution as in Example 19G.1? Three reasons. First,
because the distribution might not have a well-defined mean (i.e. the integral
∫∞
−∞ x ρ(x) dx might not converge). Second, because it is sometimes useful to

measure the uncertainty around other points in R besides the mean value. Third,
because we do not need to use the mean value to state the next result.

Theorem 19G.2. Heisenberg’s Inequality
Let f ∈ L2(R) be a nonzero function, and let ̂f be its Fourier transform. Then

for any x, µ ∈ R, we have •4x (f) · •4µ ( ̂f) ≥ 1
4

.

Example 19G.3. (a) If f(x) = exp
(

−x2

4σ2

)

, then ̂f(p) =
σ√
π

exp
(

−σ2p2
)

(Exercise 19G.4).4 Thus, ̂f(p)2/
∥

∥

∥

̂f
∥

∥

∥

2

2
=

2σ√
2π

exp(−2σ2p2) is a Gaussian E©

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



514— DRAFT Chapter 19. Fourier transforms

distribution with mean 0 and variance 1/4σ2. Thus, Example 19G.1(b) says
that •40 (f) = σ2 and •40 ( ̂f) = 1/4σ2. Thus,

•40 (f) · •40 ( ̂f) =
σ2

4σ2
=

1
4
.

(b) Suppose ωt ∈ L2(R) is the instantaneous wavefunction for the position of a
particle at time t, so that ω̃t(p) = ω̂t (p/~) is the instantaneous wavefunction
for the momentum of the particle at time t. Then Heisenberg’s Inequality
becomes Heisenberg’s Uncertainty Principle: For any x, p ∈ R,

•4x (ωt) ≥ ~2

4 · •4p (ω̃t)
and •4p(ω̃t) ≥ ~2

4 · •4x (ωt)

(Exercise 19G.5). In other words: if our uncertainty •4µ (ω̃t) about theE©
particle’s momentum is small, then our uncertainty •4x (ωt) about its position
must be big. Conversely, if our uncertainty •4x(ωt) about the particle’s position
is small, then our uncertainty •4µ (ω̃t) about its momentum must be big.

In physics popularizations, the Uncertainty Principle is usually explained as
a practical problem of measurement precision: any attempt to measure an
electron’s position (e.g. by deflecting photons off of it) will impart some un-
predictable momentum into the particle. Conversely, any attempt to measure
its momentum disturbs its position. However, as you can see, Heisenberg’s Un-
certainty Principle is actually an abstract mathematical theorem about Fourier
transforms —it has nothing to do with the limitations of experimental equip-
ment or the unpredictable consequences of photon bombardment. ♦

Proof of Heisenberg’s Inequality. For simplicity, assume lim
x→±∞

x |f(x)|2 = 0.

Case x = µ = 0. Define ξ : R −→ R by ξ(x) := x for all x ∈ R. Thus,
ξ′(x) := 1 for all x ∈ R. Observe that

‖f · ξ‖22 =
∫ ∞

−∞
|f · ξ|2(x) dx =

‖f‖22
‖f‖22

∫ ∞

−∞
|f(x)|2|x|2 dx

= ‖f‖22 •40 (f). (19G.2)

Also, Theorem 19B.7 implies that

̂(f ′) = i · ξ · ̂f. (19G.3)

Now,

‖f‖22 :=
∫ ∞

−∞
|f |2(x) dx

(¶)
ξ(x) · |f(x)|2

∣

∣

∣

x=∞

x=−∞
−
∫ ∞

−∞
ξ(x) · (|f |2)′(x) dx

4Hint: set α := 2σ in Theorem 19B.5 on page 495, and then apply it to Theorem 19B.8(a)
on page 497.
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(†)
−
∫ ∞

−∞
x · (|f |2)′(x) dx

(∗)
−
∫ ∞

−∞
x · 2 Re

[

f ′(x)f(x)
]

dx

= −2 Re
[∫ ∞

−∞
x f(x)f ′(x) dx

]

(19G.4)

Here, (¶) is integration by parts, because ξ′(x) = 1. Next, (†) is because
lim

x→±∞
x |f(x)|2 = 0. Meanwhile, (∗) is because |f |2(x) = f(x)f(x), so that

(|f |2)′(x) = f ′(x)f(x) + f(x)f ′(x) = 2 Re
[

f ′(x)f(x)
]

, where the last step
uses the identity z + z = 2 Re [z], with z = f ′(x)f(x). Thus,

1
4
‖f‖42 (‡)

22

4
Re
[∫ ∞

−∞
x f(x)f ′(x) dx

]2

≤
∣

∣

∣

∣

∫ ∞

−∞
x f(x)f ′(x) dx

∣

∣

∣

∣

2

=
∣

∣

〈

ξ f, f ′
〉∣

∣

2 ≤
(CBS)

∥

∥ξ f
∥

∥

2

2
·
∥

∥f ′
∥

∥

2

2
= ‖ξ f‖22 ·

∥

∥f ′
∥

∥

2

2

(∗)
•40 (f) · ‖f‖22 ·

∥

∥f ′
∥

∥

2

2 (Pl)
•40(f) · ‖f‖22 · (2π)

∥

∥

∥

̂(f ′)
∥

∥

∥

2

2

(†)
2π •40(f) · ‖f‖22 ·

∥

∥

∥iξ ̂f
∥

∥

∥

2

2
= 2π •40(f) · ‖f‖22 ·

∥

∥

∥ξ ̂f
∥

∥

∥

2

2

(∗)
2π •40(f) · ‖f‖22 · •40 ( ̂f) ·

∥

∥

∥

̂f
∥

∥

∥

2

2 (Pl)
•40(f) · ‖f‖22 · •40 ( ̂f) · ‖f‖22

= •40 (f) · •40 ( ̂f) · ‖f‖42 .

Cancelling ‖f‖42 from both sides of this equation, we get 1
4 ≤ •40 (f) · •40 ( ̂f),

as desired.

Here, (‡) is by eqn.(19G.4), while (CBS) is the Cauchy-Bunyakowski-Schwarz
inequality (Theorem 6B.5 on page 108). Both (∗) are by eqn.(19G.2). Both
(Pl) are by Plancharel’s theorem (Corollary 19C.2 on page 503) . Finally, (†)
is by eqn.(19G.3).

Case x 6= 0 and/or µ 6= 0. Exercise 19G.6 (Hint: Combine the case x = µ = 0 E©
with Theorem 19B.3). 2

Exercise 19G.7. State and prove a form of Heisenberg’s Inequality for a function E©
f ∈ L1(RD) for D ≥ 2. Hint: You must compute the ‘uncertainty’ in one coordinate at
a time. Integrate out all the other dimensions to reduce the D-dimensional problem to
a one-dimensional problem, and then apply Theorem 19G.2. �

19H ∗ Laplace transforms

Recommended: §19A, §19B.
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The Fourier transform ̂f is only well-defined if f ∈ L1(R), which implies
that lim

t→±∞
|f(t)| = 0 relatively ‘quickly’.5 This is often inconvenient in physical

models where the function f(t) is bounded away from zero, or even grows without
bound as t → ±∞. In some cases, we can handle this problem using a Laplace
transform, which can be thought of as a Fourier transform ‘rotated by 90o in the
complex plane’. The price we pay is that we must work on the half-infinite line
R 6− := [0,∞), instead of the entire real line.

Let f : R 6− −→ C. We say that f has exponential growth if there are
constants α ∈ R and K > 0 such that

|f(t)| ≤ K eαt, for all t ∈ R 6−. (19H.1)

If α > 0, then inequality (19H.1) even allows lim
t→∞

f(t) = ∞, as long as f(t)

doesn’t grow ‘too quickly’. (However, if α < 0, then inequality (19H.1) requires
lim
t→∞

f(t) = 0 exponentially fast). The exponential order of f is the infimum

of all α satisfying inequality (19H.1). Thus, if f has exponential order α0, then
(19H.1) is true for all α > α0 (but may or may not be true for α = α0).

Example 19H.1. (a) Fix r ≥ 0. If f(t) = tr for all t ∈ R 6−, then f has
exponential order 0.

(b) Fix r < 0 and t0 > 0. If f(t) = (t + t0)r for all t ∈ R 6−, then f has
exponential order 0. (However, if t0 ≤ 0, then f(t) does not have exponential
growth, because in this case lim

t→−t0
f(t) = ∞, so inequality (19H.1) is always

false near −t0).

(c) Fix α ∈ R. If f(t) = eαt for all t ∈ R 6−, then f has exponential order α.

(d) Fix µ ∈ R. If f(t) = sin(µt) or f(t) = cos(µt), then f has exponential
order 0.

(e) If f : R 6− −→ C has exponential order α, and r ∈ R is any constant, then
r f also has exponential order α. If g : R 6− −→ C has exponential order β,
then f + g has exponential order at most max{α, β}, and f · g has exponential
order α+ β.

(f) Combining (a) and (e): any polynomial f(t) = cnt
n + · · · c2t

2 + c1t + c0

has exponential order 0. Likewise, combining (d) and (e): any trigonometric
polynomial has exponential order 0.

Exercise 19H.1 Verify examples (a-f). ♦E©

If c = x + yi is a complex number, recall that Re [c] := x. Let Hα :=
{c ∈ C ; Re [c] > α} be the half of the complex plane to the right of the vertical

5Actually, we can define ̂f if f ∈ Lp(R) for any p ∈ [1, 2], as discussed in §19C. However,
this isn’t really that much of an improvement; we still need lim

t→±∞
|f(t)| = 0 ‘quickly’.
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line {c ∈ C ; Re [c] = α}. In particular, H0 := {c ∈ C ; Re [c] > 0}. If f has
exponential order α, then the Laplace transform of f is the function L[f ] :
Hα −→ C defined as follows:

For all s ∈ Hα, L[f ](s) :=
∫ ∞

0
f(t) e−ts dt. (19H.2)

Lemma 19H.2. If f has exponential order α, then the integral (19H.2) con-
verges for all s ∈ Hα. Thus, L[f ] is well-defined on Hα.

Proof. Exercise 19H.2 2
E©

Example 19H.3. (a) If f(t) = 1, then f has exponential order 0. For all s ∈ H0,

L[f ](s) =
∫ ∞

0
e−ts dt =

−e−ts

s

∣

∣

∣

t=∞

t=0 (∗)

−(0− 1)
s

=
1
s
.

Here (∗) is because Re [s] > 0.

(b) If α ∈ R and f(t) = eαt, then f has exponential order α. For all s ∈ Hα,

L[f ](s) =
∫ ∞

0
eαt e−ts dt =

∫ ∞

0
et(α−s) dt

= =
et(α−s)

α− s

∣

∣

∣

t=∞

t=0 (∗)

(0− 1)
α− s

=
1

s− α
.

Here (∗) is because Re [α− s] < 0 because Re [s] > α because s ∈ Hα.

(c) If f(t) = t, then f has exponential order 0. For all s ∈ H0,

L[f ](s) =
∫ ∞

0
t e−ts dt

(p)

−t e−ts

s

∣

∣

∣

t=∞

t=0
−
∫ ∞

0

−e−ts

s
dt

=
(0− 0)
s

− e−ts

s2

∣

∣

∣

t=∞

t=0
=

−(0− 1)
s2

=
1
s2
,

where (p) is integration by parts.

(d) Suppose f : R 6− −→ C has exponential order α < 0. Extend f to a
function f : R −→ C by defining f(t) = 0 for all t < 0. Then the Fourier
transform ̂f of f is well-defined, and for all µ ∈ R, we have 2π ̂f(µ) = L[f ](µi)
(Exercise 19H.3). E©

(e) Fix µ ∈ R. If f(t) = cos(µt), then L[f ] =
s

s2 + µ2
. If f(t) = sin(µt), then

L[f ] =
µ

s2 + µ2
.

Exercise 19H.4 Verify (e). Hint: recall that exp(iµt) = cos(µt) + i sin(µt). ♦ E©

Example 19H.3(d) suggests that most properties of the Fourier transform
should translate into properties of the Laplace transform, and vice versa. First,
like Fourier, the Laplace transform is invertible.
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Theorem 19H.4. Laplace Inversion Formula
Suppose f : R 6− −→ C has exponential order α, and let F := L[f ]. Then for

any fixed sr > α, and any t ∈ R 6−, we have

f(t) =
1

2πi

∫ ∞

−∞
F (sr + sii) exp(tsr + tsii) dsi. (19H.3)

In particular, if g : R 6− −→ C, and L[g] = L[f ] on any infinite vertical strip in
C, then we must have g = f .

Proof. Exercise 19H.5 (Hint: Use an argument similar to Example 19H.3(d) toE©
represent F as a Fourier transform. Then apply the Fourier Inversion Formula.) 2

The integral (19H.3) is called the Laplace inversion integral, and is de-
noted by L−1[F ]. The integral (19H.3) is sometimes written

f(t) =
1

2πi

∫ sr+∞i

sr−∞i
F (s) exp(ts) ds.

The integral (19H.3) is can be treated as a contour integral along the vertical
line {c ∈ C ; Re [c] = sr} in the complex plane, and evaluated using residue cal-
culus6. However, in many situations, it is neither easy nor particularly necessary
to explicitly compute (19H.3); instead, we can determine the inverse Laplace
transform ‘by inspection’, by simply writing F as a sum of Laplace transforms
of functions we recognize. Most books on ordinary differential equations contain
an extensive table of Laplace transforms and their inverses, which is useful for
this purpose.

Example 19H.5. Suppose F (s) =
3
s

+
5

s− 2
+

7
s2

. Then by inspecting

Example 19H.3(a,b,c), we deduce that f(t) = L−1[F ](t) = 3 + 5e2t + 7t. ♦

Most of the results about Fourier transforms from Section 19B have equiva-
lent formulations for Laplace transforms.

Theorem 19H.6. Properties of the Laplace transform
Let f : R 6− −→ C have exponential order α.

(a) (Linearity) Let g : R 6− −→ C have exponential order β, and let γ =
max{α, β}. Let b, c ∈ C. Then bf + cg has exponential order at most γ,
and for all s ∈ Hγ , L[bf + cg](s) = bL[f ](s) + cL[g](s).

6See § 18H on page 472 for a discussion of residue calculus and its application to improper
integrals. See [Fis99, §5.3] for some examples of computing Laplace inversion integrals using
this method.
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(b) (Transform of a derivative)

(i) Suppose f ∈ C1(R 6−) (i.e. f is continuously differentiable on R 6−) and
f ′ has exponential order β. Let γ = max{α, β}. Then for all s ∈ Hγ ,

L[f ′](s) = sL[f ](s)− f(0).

(ii) Suppose f ∈ C2(R 6−), f ′ has exponential order α1 and f ′′ has expo-
nential order α2. Let γ = max{α, α1, α2}. Then for all s ∈ Hγ ,

L[f ′′](s) = s2L[f ](s)− f(0)s− f ′(0).

(iii) Let N ∈ N, and suppose f ∈ CN (R 6−). Suppose f (n) has exponential
order αn for all n ∈ [1...N ]. Let γ = max{α, α1, . . . , αN}. Then for
all s ∈ Hγ ,

L[f (N)](s) = sNL[f ](s)−f(0)sN−1−f ′(0)sN−2−f ′′(0)sN−3−· · ·−f (N−2)(0) s−f (N−1)(0).

(c) (Derivative of a transform) For all n ∈ N, the function gn(t) = tnf(t) also
has exponential order α.

If f is piecewise continuous, then the function F = L[f ] : Hα −→ C is
(complex)-differentiable,7 and for all s ∈ Hα, F ′(s) = −L[g1](s), F ′′(s) =
L[g2](s), and in general F (n)(s) = (−1)nL[gn](s).

(d) (Translation) Fix T ∈ R 6−, and define g : R 6− −→ C by g(t) = f(t− T ) for
t ≥ T and g(t) = 0 for t ∈ [0, T ). Then g also has exponential order α. For
all s ∈ Hα, L[g](s) = e−Ts L[f ](s).

(e) (Dual translation) For all β ∈ R, the function g(t) = eβtf(t) has exponen-
tial order α+ β. For all s ∈ Hα+β, L[g](s) = L[f ](s− β).

Proof. Exercise 19H.6 (Hint: Imitate the proofs of Theorems 19B.2(a), 19B.7 E©
and 19B.3.) 2

Exercise 19H.7. Show by a counterexample that Theorem 19H.6(d) is false if E©
T < 0. �

Corollary 19H.7. Fix n ∈ N. If f(t) = tn for all t ∈ R 6−, then L[f ](s) =
n!
sn+1

for all s ∈ H0.

Proof. Exercise 19H.8 (Hint: Combine Theorem 19H.6(c) with Example E©
19H.3(a).) 2
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Exercise 19H.9. Combine Corollary 19H.7 with Theorem 19H.6(b) to get a for- E©
mula for the Laplace transform of any polynomial. �

Exercise 19H.10. Combine Theorem 19H.6(c,d) with Example 19H.3(a) to get aE©

formula for the Laplace transform of f(t) =
1

(1 + t)n
for all n ∈ N. �

Corollary 19H.7 does not help us to compute the Laplace transform of f(t) =
tr when r is not an integer. To do this, we must introduce the gamma function
Γ : R 6− −→ C, which is defined

Γ(r) :=
∫ ∞

0
tr−1e−t dt, for all r ∈ R 6−.

This is regarded as a ‘generalized factorial’ because of the following properties.

Lemma 19H.8.

(a) Γ(1) = 1.

(b) For any r ∈ R 6−, Γ(r + 1) = r · Γ(r).

(c) Thus, for any n ∈ N, Γ(n+ 1) = n!. (For example, Γ(5) = 4! = 24.)

Proof. Exercise 19H.11 2
E©

Exercise 19H.12. (a) Show that Γ(1/2) =
√
π.E©

(b) Deduce that Γ(3/2) =
√
π/2 and Γ(5/2) = 3

4

√
π. �

The gamma function is useful when computing Laplace transforms because
of the next result.

Proposition 19H.9. Laplace transform of f(t) = tr

Fix r > −1, and let f(t) := tr for all t ∈ R 6−. Then L[f ](s) =
Γ(r + 1)
sr+1

for all

s ∈ H0.

Proof. Exercise 19H.13 2
E©

Remark. If r < 0, then technically, f(t) = tr does not have exponential
growth, as noted in Example 19H.1(b). Hence Lemma 19H.2 does not apply.
However, the Laplace transform integral (19H.2) converges in this case anyways,

7See §18A on page 415 for more about complex differentiation.
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because although lim
t↘0

tr = ∞, it goes to infinity ‘slowly’, so that the integral
∫ 1

0
tr dt is still finite.

Example 19H.10. (a) If r ∈ N and f(t) = tr, then Proposition 19H.9 and

Lemma 19H.8(c) together imply L[f ](s) =
r!
sr+1

, in agreement with Corollary
19H.7.

(b) Let r = 1/2. Then f(t) =
√
t, and Proposition 19H.9 says L[f ](s) =

Γ(3/2)
s3/2

=
√
π

2s3/2
, where the last step is by Exercise 19H.12(b).

(c) Let r = −1/2. Then f(t) =
1√
t
, and Proposition 19H.9 says L[f ](s) =

Γ(1/2)
s1/2

=
√

π

s
, where the last step is by Exercise 19H.12(a). ♦

Theorems 19B.2(c) showed how the Fourier transform converts function con-
volution into multiplication. A similar property holds for the Laplace transform.
Let f, g : R 6− −→ C be two functions. The convolution of f, g is the function
f ∗ g : R 6− −→ C defined

f ∗ g(T ) :=
∫ T

0
f(T − t)g(t) dt, for all T ∈ R 6−.

Note that f ∗g(T ) is an integral over a finite interval [0, T ]; thus it is well-defined
no matter how fast f(t) and g(t) grow as t→∞.

Theorem 19H.11. Let f, g : R 6− −→ C have exponential order. Then L[f ∗
g] = L[f ] · L[g] wherever all these functions are defined.

Proof. Exercise 19H.14 2
E©

Theorem 19H.6(b) makes the Laplace transform a powerful tool for solving
linear ordinary differential equations.

Proposition 19H.12. Laplace solution to linear ODE

Let f, g : R 6− −→ C have exponential order α and β respectively, and let
γ = max{α, β}. Let F := L[f ] and G := L[g]. Let c0, c1, . . . , cn ∈ C be
constants. Then f and g satisfies the linear ODE

g = c0f + c1f
′ + c2f

′′ + · · ·+ cnf
(n) (19H.4)
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if and only if F and G satisfy the algebraic equation

G(s) =
(

c0 + c1s+ c2s
2 + c3s

3 + · · · + cns
n
)

F (s)

−
(

c1 + c2s
1 + c3s

2 + · · ·+ cns
n−1
)

f(0)

−
(

c2 + c3s + · · ·+ cns
n−2
)

f ′(0)
. . .

...
...

...

− (cn−1 + cns) f (n−2)(0)
− cn f (n−1)(0).

for all s ∈ Hγ . In particular, f satisfies ODE (19H.4) and homogeneous boundary
conditions f(0) = f ′(0) = f ′′(0) = · · · = f (n−1)(0) = 0 if and only if

F (s) =
G(s)

c0 + c1s+ c2s2 + +c3s3 + · · ·+ cnsn

for all s ∈ Hγ

Proof. Exercise 19H.15 (Hint: Apply Theorem 19H.6(b), then reorder terms.)E©
2

Laplace transforms can also be used to solve partial differential equations.
Let X ⊆ R be some one-dimensional domain, let f : X × R 6− −→ C, and write
f(x; t) as fx(t) for all x ∈ X. Fix α ∈ R. For all x ∈ X suppose that fx has
exponential order α, so that L[fx] is a function Hα −→ C. Then we define
L[f ] : X×Hα −→ C by L[f ](x; s) = L[fx](s) for all x ∈ X and s ∈ Hα.

Proposition 19H.13. Suppose ∂x f(x, t) is defined for all (x, t) ∈ int (X)×R+.
Then ∂x L[f ](x, s) is defined for all (x, s) ∈ int (X) × Hα, and ∂x L[f ](x, s) =
L[∂x f ](x, s).

Proof. Exercise 19H.16 (Hint: Apply Theorem 0G.1 (on page 567) to the LaplaceE©
transform integral (19H.2).) 2

By iterating Proposition 19H.13, we have ∂nx L[f ](x, s) = L[∂nx f ](x, s) for
any n ∈ N. Through Proposition 19H.13 and Theorem 19H.6(b), we can convert
a PDE about f into an ODE involving only the x-derivatives of L[f ].

Example 19H.14. Let f : X× R 6− −→ C and let F := L[f ] : X×Hα −→ C.

(a) (heat equation) Define f0(x) := f(x, 0) for all x ∈ X (the ‘initial tem-
perature distribution’). Then f satisfies the one-dimensional heat equation
∂t f(x, t) = ∂2

x f(x, t) if and only if, for every s ∈ Hα, the function Fs(x) =
F (x, s) satisfies the second-order linear ODE

∂2
x Fs(x) = s Fs(x)− f0(x), for all x ∈ X.
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(b) (wave equation) Define f0(x) := f(x, 0) and f1(x) := ∂t f(x, 0) for all x ∈ X
(the ‘initial position’ and ‘initial velocity’, respectively). Then f satisfies the
one-dimensional wave equation ∂2

t f(x, t) = ∂2
x f(x, t) if and only if, for every

s ∈ Hα, the function Fs(x) = F (x, s) satisfies the second-order linear ODE

∂2
x Fs(x) = s2 Fs(x)− s f0(x)− f1(x), for all x ∈ X.

(Exercise 19H.17 Verify examples (a) and (b).) ♦ E©

We can then use solution methods for ordinary differential equations to solve
for Fs for all s ∈ Hα, obtain an expression for the function F , and then apply
the Laplace Inversion Theorem 19H.4 to obtain an expression for f . We will
not pursue this approach further here; however, we will develop a very similar
approach in the Chapter 20 using Fourier transforms. For more information, see
[Asm05, Chapt.8], [Fis99, §5.3-5.4], [Hab87, Chapt.13], or [Bro89, Chapt.5]

19I Practice problems

1. Suppose f(x) =
{

1 if 0 < x < 1;
0 otherwise

, as in Example 19A.4 on page 490.

Check that ̂f(µ) =
1− e−µi

2πµi

2. Compute the one-dimensional Fourier transforms of g(x), when:

(a) g(x) =
{

1 if −τ < x < 1− τ ;
0 otherwise

,

(b) g(x) =
{

1 if 0 < x < σ;
0 otherwise

.

3. Let X,Y > 0, and let f(x, y) =
{

1 if 0 ≤ x ≤ X and 0 ≤ y ≤ Y ;
0 otherwise.

.

Compute the two-dimensional Fourier transform of f(x, y). What does the
Fourier Inversion formula tell us?

4. Let f : R −→ R be the function defined: f(x) =
{

x if 0 ≤ x ≤ 1
0 otherwise

(Fig.19I.1) Compute the Fourier Transform of f .

5. Let f(x) = x · exp
(

−x2

2

)

. Compute the Fourier transform of f .

6. Let α > 0, and let g(x) =
1

α2 + x2
. Example 19A.8 claims that ĝ(µ) =

1
2αe
−α|µ|. Verify this. Hint: Use the Fourier Inversion Theorem.
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1 2 3-1

1

Figure 19I.1: Problem #4

7. Fix y > 0, and let Ky(x) =
y

π(x2 + y2)
(this is the half-space Poisson

Kernel from §17E and §20C(ii)). Compute the one-dimensional Fourier

transform ̂Ky(µ) =
1

2π

∫ ∞

−∞
Ky(x) exp

(

− µix
)

dµ.

8. Let f(x) =
2x

(1 + x2)2
. Compute the Fourier transform of f .

9. Let f(x) =
{

1 if −4 < x < 5;
0 otherwise.

Compute the Fourier transform

̂f(µ).

10. Let f(x) =
x cos(x)− sin(x)

x2
. Compute the Fourier transform ̂f(µ).

11. Let f, g ∈ L1(R), and let h(x) = f(x) + g(x). Show that, for all µ ∈ R,
̂h(µ) = ̂f(µ) + ĝ(µ).

12. Let f, g ∈ L1(R), and let h = f ∗ g. Show that for all µ ∈ R, ̂h(µ) =
2π · ̂f(µ) · ĝ(µ).

Hint: exp (−iµx) = exp (−iµy) · exp
(

− iµ(x− y)
)

.

13. Let f, g ∈ L1(R), and let h(x) = f(x) · g(x). Suppose ̂h is also in L1(R).
Show that, for all µ ∈ R, ̂h(µ) = ( ̂f ∗ ĝ)(µ).

Hint: Combine problem #12 with the Strong Fourier Inversion Formula
(Theorem 19A.5 on page 491).

14. Let f ∈ L1(R). Fix τ ∈ R, and define g : R −→ C by: g(x) = f(x + τ).
Show that, for all µ ∈ R, ĝ(µ) = eτµi · ̂f(µ).

15. Let f ∈ L1(R). Fix ν ∈ R and define g : R −→ C by g(x) = eνxif(x).
Show that, for all µ ∈ R, ĝ(µ) = ̂f(µ− ν).
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16. Suppose f ∈ L1(R). Fix σ > 0, and define g : R −→ C by: g(x) = f
(x

σ

)

.

Show that, for all µ ∈ R, ĝ(µ) = σ · ̂f(σ · µ).

17. Suppose f : R −→ R is differentiable, and that f ∈ L1(R) and g := f ′ ∈
L1(R). Assume that lim

x→±∞
f(x) = 0. Show that ĝ(µ) = iµ · ̂f(µ).

18. Let Gt(x) = 1
2
√
πt

exp
(

−x2

4t

)

be the Gauss-Weierstrass kernel. Recall that
̂Gt(µ) = 1

2πe
−µ2t. Use this to construct a simple proof that, for any

s, t > 0, Gt ∗ Gs = Gt+s.
(Hint: Use problem #12. Do not compute any convolution integrals, and
do not use the ‘solution to the heat equation’ argument from Problem # 8
on page 413.)

Remark. Because of this result, probabilists say that the set {Gt}t∈R+

forms a stable family of probability distributions on R. Analysts say that
{Gt}t∈R+ is a one-parameter semigroup under convolution.
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Chapter 20

Fourier transform solutions to
PDEs

“Mathematics compares the most diverse phenomena and discovers the secret analogies

that unite them.” —Jean Joseph Fourier

We will now see that the ‘Fourier series’ solutions to the PDEs on a bounded
domain (Chapters 11-14) generalize to ‘Fourier transform’ solutions on the un-
bounded domain in a natural way.

20A The heat equation

20A(i) Fourier transform solution

Prerequisites: §1B, §19A, §5B, §0G. Recommended: §11A, §12B, §13A, §19D, §19E.

Proposition 20A.1. Heat equation on an infinite rod
Let F : R −→ R be a bounded function (of µ ∈ R).

(a) Define u : R× R+ −→ R by

u(x; t) :=
∫ ∞

−∞
F (µ) · exp(µxi) · e−µ2t dµ, (20A.1)

for all t > 0 and all x ∈ R. Then u is a smooth function and satisfies the
heat equation.

(b) In particular, suppose f ∈ L1(R), and ̂f(µ) = F (µ). If we define u(x; 0) :=
f(x) for all x ∈ R, and define u(x; t) by eqn.(20A.1), when t > 0, then u is
continuous on R × R 6−, and is a solution to the heat equation with initial
conditions u(x; 0) = f(x).

Proof. Exercise 20A.1 (Hint: Use Proposition 0G.1 on page 567.) 2
E©



528— DRAFT Chapter 20. Fourier transform solutions to PDEs

Example 20A.2. Suppose f(x) =
{

1 if − 1 < x < 1;
0 otherwise.

We know

from Example 19A.3 on page 489 that ̂f(µ) =
sin(µ)
πµ

. Thus,

u(x, t) =
∫ ∞

−∞
̂f(µ) · exp(µxi) · e−µ2t dµ =

∫ ∞

−∞

sin(µ)
πµ

exp(µxi) · e−µ2t dµ.

(Exercise 20A.2 Verify that u satisfies the one-dimensional heat equation and theE©
specified initial conditions.) ♦

Example 20A.3: The Gauss-Weierstrass kernel

For all x ∈ R and t > 0, define the Gauss-Weierstrass Kernel: Gt(x) :=
1

2
√
πt

exp
(

−x2

4t

)

(see Example 1B.1(c) on page 6). Fix t > 0; then setting

σ =
√

2t in Theorem 19B.8(b), we get

̂Gt(µ) =
1

2π
exp

(

−(
√

2t)2µ2

2

)

=
1

2π
exp

(

−2tµ2

2

)

=
1

2π
e−µ

2t.

Thus, applying the Fourier Inversion formula (Theorem 19A.1 on page 488),
we have:

G(x, t) =
∫ ∞

−∞
̂Gt(µ) exp(µxi) dµ =

1
2π

∫ ∞

−∞
e−µ

2t exp(µxi) dµ,

which, according to Proposition 20A.1, is a smooth solution of the heat equa-
tion, where we take F (µ) to be the constant function: F (µ) = 1/2π. Thus, F
is not the Fourier transform of any function f . Hence, the Gauss-Weierstrass
kernel solves the heat equation, but the “initial conditions” G0 do not cor-
respond to a function, but instead a define more singular object, rather like
an infinitely dense concentration of mass at a single point. Sometimes G0 is
called the Dirac delta function, but this is a misnomer, since it isn’t really
a function. Instead, G0 is an example of a more general class of objects called
distributions. ♦

Proposition 20A.4. Heat equation on an infinite plane

Let F : R2 −→ C be some bounded function (of (µ, ν) ∈ R2).

(a) Define u : R2 × R+ −→ R by

u(x, y; t) :=
∫

R2

F (µ, ν) · exp
(

(µx+ νy) · i
)

· e−(µ2+ν2)t dµ dν, (20A.2)

for all t > 0 and all (x, y) ∈ R2. Then u is continuous on R3 × R+ and
satisfies the two-dimensional heat equation.
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(b) In particular, suppose f ∈ L1(R2), and ̂f(µ, ν) = F (µ, ν). If we define
u(x, y, 0) := f(x, y) for all (x, y) ∈ R2, and define u(x, y, t) by eqn.(20A.2)
when t > 0, then u is continuous on R2×R 6−, and is a solution to the heat
equation with initial conditions u(x, y, 0) = f(x, y).

Proof. Exercise 20A.3 (Hint: Use Proposition 0G.1 on page 567.) 2
E©

Example 20A.5. Let X,Y > 0 be constants, and consider the initial conditions:

f(x, y) =
{

1 if −X ≤ x ≤ X and − Y ≤ y ≤ Y ;
0 otherwise.

From Example 19D.4 on page 505, the Fourier transform of f(x, y) is given:

̂f(µ, ν) =
sin(µX) · sin(νY )

π2 · µ · ν
.

Thus, the corresponding solution to the two-dimensional heat equation is:

u(x, y, t) =
∫

R2

̂f(µ, ν) · exp
(

(µx+ νy) · i
)

· e−(µ2+ν2)t dµ dν

=
∫

R2

sin(µX) · sin(νY )
π2 · µ · ν

· exp
(

(µx+ νy) · i
)

· e−(µ2+ν2)t dµ dν . ♦

Proposition 20A.6. Heat equation in infinite space

Let F : R3 −→ C be some bounded function (of µ ∈ R3).

(a) Define u : R3 × R+ −→ R by

u(x; t) :=
∫

R3

F (µ) · exp
(

µ • x · i
)

· e−‖µ‖
2t dµ, (20A.3)

for all t > 0 and all x ∈ R3, (where ‖µ‖2 := µ2
1 + µ2

2 + µ2
3). Then u is

continuous on R3 × R+ and satisfies the three-dimensional heat equation.

(b) In particular, suppose f ∈ L1(R3), and ̂f(µ) = F (µ). If we define
u(x, 0) := f(x) for all x ∈ R3, and define u(x, t) by eqn.(20A.3) when
t > 0, then u is continuous on R3 × R 6−, and is a solution to the heat
equation with initial conditions u(x, 0) = f(x).

Proof. Exercise 20A.4 (Hint: Use Proposition 0G.1 on page 567.) 2
E©
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Example 20A.7: A ball of heat

Suppose the initial conditions are: f(x) =
{

1 if ‖x‖ ≤ 1;
0 otherwise.

Setting R = 1 in Example 19E.3 (p.507) yields the three-dimensional Fourier
transform of f :

̂f(µ) =
1

2π2

(

sin ‖µ‖
‖µ‖3

−
cos ‖µ‖
‖µ‖2

)

.

The resulting solution to the heat equation is:

u(x; t) =
∫

R3

̂f(µ) · exp
(

µ • x · i
)

· e−‖µ‖
2t dµ

=
1

2π2

∫

R3

(

sin ‖µ‖
‖µ‖3

−
cos ‖µ‖
‖µ‖2

)

· exp
(

µ • x · i
)

· e−‖µ‖
2t dµ. ♦

20A(ii) The Gaussian convolution formula, revisited

Prerequisites: §17C(i), §19B, §20A(i).

Recall from § 17C(i) on page 385 that the Gaussian Convolution formula
solved the initial value problem for the heat equation by “locally averaging” the
initial conditions. Fourier methods provide another proof that this is a solution
to the heat equation.

Theorem 20A.8. Gaussian convolutions and the heat equation

Let f ∈ L1(R), and let Gt(x) be the Gauss-Weierstrass kernel from Example
20A.3. For all t > 0, define Ut := f ∗ Gt; in other words, for all x ∈ R,

Ut(x) :=
∫ ∞

−∞
f(y) · Gt(x− y) dy.

Also, for all x ∈ R, define U0(x) := f(x). Then U is continuous on R×R 6−, and
is a solution to the Heat Equation with initial conditions U(x, 0) = f(x).

Proof. U(x, 0) = f(x) by definition. To show that U satisfies the heat equation,
we will show that it is in fact equal to the Fourier solution u described in
Theorem 20A.1 on page 527. Fix t > 0, and let ut(x) = u(x, t); recall that, by
definition

ut(x) =
∫ ∞

−∞
̂f(µ) · exp(µxi) · e−µ2t dµ =

∫ ∞

−∞
̂f(µ)e−µ

2t · exp(µxi) dµ
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Thus, Proposition 19A.2 on page 489 says that

ût(µ) = ̂f(µ) · e−tµ2

(∗)
2π · ̂f(µ) · ̂Gt(µ). (20A.4)

Here, (∗) is because Example 20A.3 on page 528 says that e−tµ
2

= 2π · ̂Gt(µ).

But remember that Ut = f ∗ Gt, so, Theorem 19B.2(b) on page 494 says

̂Ut(µ) = 2π · ̂f(µ) · ̂Gt(µ). (20A.5)

Thus (20A.4) and (20A.5) mean that ̂Ut = ût. But then Proposition 19A.2 on
page 489 implies that ut(x) = Ut(x). 2

For more discussion and examples of the Gaussian convolution approach to
the heat equation, see § 17C(i) on page 385.

Exercise 20A.5. State and prove a generalization of Theorem 20A.8 to solving the E©
D-dimensional heat equation, for D ≥ 2. �

20B The wave equation

20B(i) Fourier transform solution

Prerequisites: §2B, §19A, §5B, §0G. Recommended: §11B, §12D, §19D, §19E, §20A(i).

Proposition 20B.1. Wave equation on an infinite wire

Let f0, f1 ∈ L1(R) be twice-differentiable, and suppose f0 and f1 have Fourier
transforms ̂f0 and ̂f1, respectively. Define u : R× R 6− −→ R by

u(x, t) =
∫ ∞

−∞

(

̂f0(µ) cos(µt) +
̂f1(µ)
µ

sin(µt)

)

· exp(µxi) dµ.

Then u is a solution to the one-dimensional wave equation with initial position
u(x, 0) = f0(x), and initial velocity ∂t u(x, 0) = f1(x), for all x ∈ R.

Proof. Exercise 20B.1 (Hint: Show that this solution is equivalant to the E©
d’Alembert solution of Proposition 17D.5 on page 398.) 2
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Example 20B.2. Fix α > 0, and suppose we have initial position f0(x) := e−α|x|

for all x ∈ R, and initial velocity f1 ≡ 0. From Example 19A.7 on page 491,

we know that ̂f0(µ) =
2α

(α2 + µ2)
. Thus, Proposition 20B.1 says:

u(x, t) =
∫ ∞

−∞
̂f0(µ) · exp(µxi) · cos(µt) dµ

=
∫ ∞

−∞

2α
(α2 + µ2)

· exp(µxi) · cos(µt) dµ.

(Exercise 20B.2 Verify that u satisfies the one-dimensional wave equation andE©
the specified initial conditions.) ♦

Proposition 20B.3. Wave equation on an infinite plane
Let f0, f1 ∈ L1(R2) be twice differentiable functions, whose Fourier transforms
̂f0 and ̂f1 decay fast enough that

∫

R2

(µ2 + ν2) ·
∣

∣

∣

̂f0(µ, ν)
∣

∣

∣ dµ dν < ∞

and

∫

R2

√

µ2 + ν2 ·
∣

∣

∣

̂f1(µ, ν)
∣

∣

∣ dµ dν < ∞.

(20B.6)

Define u : R2 × R 6− −→ R by

u(x, y, t) =
∫

R2

̂f0(µ, ν) cos
(
√

µ2 + ν2 · t
)

· exp
(

(µx+ νy) · i
)

dµ dν.

+
∫

R2

̂f1(µ, ν)
√

µ2 + ν2
sin
(
√

µ2 + ν2 · t
)

· exp
(

(µx+ νy) · i
)

dµ dν.

Then u is a solution to the two-dimensional wave equation with initial position
u(x, y, 0) = f0(x, y), and initial velocity ∂t u(x, y, 0) = f1(x, y), for all (x, y) ∈
R2.

Proof. Exercise 20B.3 (Hint: Equation (20B.6) makes the integral absolutelyE©
convergent, and also enables you to apply Proposition 0G.1 on page 567 to compute
the relevant derivatives of u.) 2

Example 20B.4. Let α, β > 0 be constants, and suppose we have initial

position f0 ≡ 0, and initial velocity f1(x, y) =
1

(α2 + x2)(β2 + y2)
for all

(x, y) ∈ R2. By adapting Example 19A.8 on page 492, one can check that

̂f1(µ, ν) =
1

4αβ
exp

(

− α · |µ| − β · |ν|
)

.
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Thus, Proposition 20B.3 says

u(x, y, t) =
∫

R2

̂f1(µ, ν)
√

µ2 + ν2
sin
(
√

µ2 + ν2 · t
)

· exp
(

(µx+ νy) · i
)

dµ dν

=
∫

R2

sin
(
√

µ2 + ν2 · t
)

· exp
(

(µx+ νy) · i− α · |µ| − β · |ν|
)

4αβ
√

µ2 + ν2
dµ dν.

(Exercise 20B.4 Verify that u satisfies the two-dimensional wave equation and E©
the specified initial conditions.) ♦

Proposition 20B.5. Wave equation in infinite space

Let f0, f1 ∈ L1(R3) be twice differentiable functions whose Fourier transforms
̂f0 and ̂f1 decay fast enough that

∫

R3

‖µ‖2 ·
∣

∣

∣

̂f0(µ)
∣

∣

∣ dµ < ∞

and

∫

R3

‖µ‖ ·
∣

∣

∣

̂f1(µ)
∣

∣

∣ dµ < ∞.

(20B.7)

Define u : R3 × R 6− −→ R by

u(x, t) :=
∫

R3

(

̂f0(µ) cos (‖µ‖ · t) +
̂f1(µ)
‖µ‖

sin (‖µ‖ · t)

)

· exp (µ • xi) . dµ

Then u is a solution to the three-dimensional wave equation with initial position
u(x, 0) = f0(x) and initial velocity ∂t u(x, 0) = f1(x), for all x ∈ R3.

Proof. Exercise 20B.5 (Hint: Equation (20B.7) makes the integral absolutely E©
convergent, and also enables you to apply Proposition 0G.1 on page 567 to compute
the relevant derivatives of u.) 2

Exercise 20B.6. Show that the decay conditions (20B.6) or (20B.7) are satisfied if E©
f0 and f1 are asymptotically flat in the sense that lim

|x|→∞
|f(x)| = 0 and lim

|x|→∞
|∇f(x)| =

0, while (∂i ∂j f) ∈ L1(R2) for all i, j ∈ {1, ..., D} (where D = 2 or 3).
Hint. Apply Theorem 19B.7 on page 496 to compute the Fourier transforms of the

derivative functions ∂i ∂j f ; conclude that the function ̂f must itself decay at a certain
speed. �
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20B(ii) Poisson’s spherical mean solution; Huygen’s principle

Prerequisites: §17A, §19E, §20B(i). Recommended: §17D, §20A(ii).

The Gaussian Convolution formula of §20A(ii) solves the initial value problem
for the heat equation in terms of a kind of “local averaging” of the initial con-
ditions. Similarly, d’Alembert’s formula (§17D) solves the initial value problem
for the one-dimensional wave equation in terms of a local average.

There is an analogous result for higher-dimensional wave equations. To ex-
plain it, we must introduce the concept of spherical averages. Let f : R3 −→ R
be some integrable function. If x ∈ R3 is a point in space, and R > 0, then the
spherical average of f at x, of radius R, is defined:

MR f(x) :=
1

4πR2

∫

S(R)
f(x + s) ds.

Here, S(R) :=
{

s ∈ R3 ; ‖s‖ = R
}

is the sphere around 0 of radius R. The
total surface area of the sphere is 4πR2; we divide by this quantity to obtain
an average. We adopt the notational convention that M0 f(x) := f(x). This is
justified by the next exercise.

Exercise 20B.7. Suppose f is continuous at x. Show that lim
R→0

M
R
f(x) = f(x).E©

�

Theorem 20B.6. Poisson’s Spherical Mean Solution to wave equation

(a) Let f1 ∈ L1(R3) be twice-differentiable, and such that ̂f1 satisfies eqn.(20B.7)
on page 533. Define v : R3 × R 6− −→ R by

v(x; t) := t ·Mt f1(x), for all x ∈ R3 and t ≥ 0.

Then v is a solution to the wave equation with

Initial Position: v(x, 0) = 0; Initial Velocity: ∂t v(x, 0) = f1(x).

(b) Let f0 ∈ L1(R3) be twice-differentiable and such that ̂f0 satisfies eqn.(20B.7)
on page 533. For all x ∈ R3 and t > 0, define W (x; t) := t ·Mt f0(x), and
then define w : R3 × R 6− −→ R by

w(x; t) := ∂tW (x; t), for all x ∈ R3 and t ≥ 0.

Then w is a solution to the wave equation with

Initial Position: w(x, 0) = f0(x); Initial Velocity: ∂tw(x, 0) = 0.
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(c) Let f0, f1 ∈ L1(R3) be as in (a) and (b), and define u : R3 × R 6− −→ R by

u(x; t) := w(x; t) + v(x; t), for all x ∈ R3 and t ≥ 0,

where w is as in Part (b) and v is as in Part (a). Then u is the unique
solution to the wave equation with

Initial Position: u(x, 0) = f0(x); Initial Velocity: ∂t u(x, 0) = f1(x).

Proof. We will prove Part (a). First we will need a certain calculation.

Claim 1: For any R > 0, and any µ ∈ R3,
∫

S(R)
exp

(

µ • si
)

ds =
4πR · sin (‖µ‖ ·R)

‖µ‖
.

Proof. By spherical symmetry, we can rotate the vector µ without affecting
the value of the integral, so rotate µ until it becomes µ = (µ, 0, 0), with
µ > 0. Thus, ‖µ‖ = µ, and, if a point s ∈ S(R) has coordinates (s1, s2, s3)
in R3, then µ • s = µ · s1. Thus, the integral simplifies to:

∫

S(R)
exp (µ • si) ds =

∫

S(R)
exp (µ · s1 · i) ds

We will integrate using a spherical coordinate system (φ, θ) on the sphere,
where 0 < φ < π and −π < θ < π, and where

(s1, s2, s3) = R · (cos(φ), sin(φ) sin(θ), sin(φ) cos(θ)) .

On the sphere of radius R, the surface area element is ds = R2 sin(φ) dθ dφ.
Thus,
∫

S(R)
exp (µ · s1 · i) ds =

∫ π

0

∫ π

−π
exp (µ ·R · cos(φ) · i) ·R2 sin(φ) dθ dφ

(∗)
2π
∫ π

0
exp (µ ·R · cos(φ) · i) ·R2 sin(φ) dφ

(�)
2π
∫ R

−R
exp (µ · s1 · i) ·R ds1

=
2πR
µi

exp
(

µ · s1 · i
)s1=R

s1=−R

= 2
2πR
µ
·
(

eµRi − e−µRi

2i

)

(†)

4πR
µ

sin (µR) .

(∗) The integrand is constant in the θ coordinate. (�) Making substitution
s1 = R cos(φ), so ds1 = −R sin(φ) dφ. (†) By Euler’s Formula (see page
551). �

Claim 1
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Now, by Proposition 20B.5 on page 533, a solution to the three-dimensional
wave equation with zero initial position and initial velocity f1 is given by:

u(x, t) =
∫

R3

̂f1(µ)
sin (‖µ‖ · t)
‖µ‖

exp (µ • xi) dµ. (20B.8)

However, if we set R = t in Claim 1, we have:

sin (‖µ‖ · t)
‖µ‖

=
1

4πt

∫

S(t)
exp (µ • si) ds.

Thus,

sin (‖µ‖ · t)
‖µ‖

· exp (µ • xi) = exp (µ • xi) · 1
4πt

∫

S(t)
exp (µ • si) ds

=
1

4πt

∫

S(t)
exp

(

µ • xi + µ • si
)

ds

=
1

4πt

∫

S(t)
exp

(

µ • (x + s) i
)

ds.

Substituting this into (20B.8), we get:

u(x, t) =
∫

R3

̂f1(µ)
4πt

·

(

∫

S(t)
exp

(

µ • (x + s) i
)

ds

)

dµ

(∗)

1
4πt

∫

S(t)

∫

R3

̂f1(µ) · exp
(

µ • (x + s) i
)

dµ ds

(�)

1
4πt

∫

S(t)
f1(x + s) ds = t · 1

4πt2

∫

S(t)
f1(x + s) ds

= t ·Mt f1(x).

(∗) We simply interchange the two integrals1. (�) This is just the Fourier
Inversion Theorem 19E.1 on page 507.

Part (b) is Exercise 20B.8 . Part (c) follows by combining Part (a) andE©
Part (b). 2

Corollary 20B.7. Huygen’s principle
Let f0, f1 ∈ L1(R3), and suppose there is some bounded region K ⊂ R3 such

that f0 and f1 are zero outside of K —that is: f0(y) = 0 and f1(y) = 0 for all
y 6∈ K (see Figure 20B.1A). Let u : R3 × R 6− −→ R be the solution to the wave
equation with initial position f0 and initial velocity f1, and let x ∈ R3 .

1This actually involves some subtlety, which we will gloss over.
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t R

x

K K K K

x x
x

R

(1) Wave originates
inside K at time t=0

(2) If t<R, wave 
hasn’t yet reached x

(3) Wave reaches 
x around t R.

(4) For t >>R, wave
 has completely
 passed by x.

≅

≅t<R t>>Rt=0

Figure 20B.1: Huygen’s principle.

(a) Let R be the distance from K to x. If t < R then u(x; t) = 0 (Figure
20B.1B).

(b) If t is large enough that K is entirely contained in a ball of radius t around
x, then u(x; t) = 0 (Figure 20B.1D).

Proof. Exercise 20B.9 2
E©

Part (a) of Huygen’s Principle says that, if a sound wave originates in the
region K at time 0, and x is of distance R then it does not reach the point x
before time R. This is not surprising; it takes time for sound to travel through
space. Part (b) says that the soundwave propagates through the point x in a
finite amount of time, and leaves no wake behind it. This is somewhat more
surprising, but corresponds to our experience; sounds travelling through open
spaces do not “reverberate” (except due to echo effects). It turns out, however,
that Part (b) of the theorem is not true for waves travelling in two dimensions
(e.g. ripples on the surface of a pond).

20C The Dirichlet problem on a half-plane

Prerequisites: §1C, §19A, §5C, §0G. Recommended: §12A, §13B, §19D, §19E.

In §12A and §13B, we saw how to solve Laplace’s equation on a bounded
domain such as a rectangle or a cube, in the context of Dirichlet boundary con-
ditions. Now consider the half-plane domain H :=

{

(x, y) ∈ R2 ; y ≥ 0
}

. The
boundary of this domain is just the x axis: ∂H = {(x, 0) ; x ∈ R}; thus, bound-
ary conditions are imposed by choosing some function b : R −→ R. Figure 17E.1
on page 403 illustrates the corresponding Dirichlet problem: find a continuous
function u : H −→ R such that
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1. u satisfies the Laplace equation: 4u(x, y) = 0 for all x ∈ R and y > 0.

2. u satisfies the nonhomogeneous Dirichlet boundary condition: u(x, 0) =
b(x) for all x ∈ R.

20C(i) Fourier solution

Heuristically speaking, we will solve the problem by defining u(x, y) as a con-
tinuous sequence of horizontal “fibres”, parallel to the x axis, and ranging over
all values of y > 0. Each fibre is a function only of x, and thus, has a one-
dimensional Fourier transform. The problem then becomes determining these
Fourier transforms from the Fourier transform of the boundary function b.

Proposition 20C.1. Fourier Solution to Half-Plane Dirichlet problem

Let b ∈ L1(R). Suppose that b has Fourier transform ̂b, and define u : H −→ R
by

u(x, y) :=
∫ ∞

−∞
̂b(µ) · e−|µ|·y · exp

(

µix
)

dµ, for all x ∈ R and y ≥ 0.

Then u is the solution to the Laplace equation (4u = 0) which is bounded at
infinity and which satisfies the nonhomogeneous Dirichlet boundary condition
u(x, 0) = b(x), for all x ∈ R.

Proof. For any fixed µ ∈ R, the function fµ(x, y) = exp
(

− |µ| · y
)

exp
(

− µix
)

is harmonic (see practice problem # 10 on page 543). Thus, Proposition 0G.1
on page 567 implies that the function u(x, y) is also harmonic. Finally, no-
tice that, when y = 0, the expression for u(x, 0) is just the Fourier inversion
integral for b(x). 2

Example 20C.2. Suppose b(x) =
{

1 if − 1 < x < 1;
0 otherwise.

We already

know from Example 19A.3 on page 489 that ̂b(µ) =
sin(µ)
πµ

.

Thus, u(x, y) =
1
π

∫ ∞

−∞

sin(µ)
µ
· e−|µ|·y · exp

(

µix
)

dµ. ♦

Exercise 20C.1. Note the ‘boundedness’ condition in Proposition 20C.1. FindE©
another solution to the Dirichlet problem on H which is unbounded at infinity. �
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20C(ii) Impulse-response solution

Prerequisites: §20C(i). Recommended: §17E.

For any y > 0, define the Poisson kernel Ky : R −→ R by:

Ky(x) :=
y

π(x2 + y2)
. (see Figure 17E.2 on page 404) (20C.9)

In §17E, we used the Poisson kernel to solve the half-plane Dirichlet problem
using impulse-response methods (Proposition 17E.1 on page 404). We can now
use the ‘Fourier’ solution to provide another proof Proposition 17E.1.

Proposition 20C.3. Poisson Kernel Solution to Half-Plane Dirichlet problem
Let b ∈ L1(R). Define u : H −→ R by

U(x, y) = b ∗ Ky(x) =
y

π

∫ ∞

−∞

b(z)
(x− z)2 + y2

dz, (20C.10)

for all y > 0 and x ∈ R. Then U is the solution to the Laplace equation (4U = 0)
which is bounded at infinity and which can be continuously extended to satisfy
the nonhomogeneous Dirichlet boundary condition U(x, 0) = b(x) for all x ∈ R.

Proof. We’ll show that the solution U in eqn. (20C.10) is actually equal to
the ‘Fourier’ solution u from Proposition 20C.1.

Fix y > 0, and define Uy(x) = U(x, y) for all x ∈ R. Equation (20C.10) says
Uy = b ∗ Ky; hence Theorem 19B.2(b) (p.494) says:

̂Uy = 2π ·̂b · ̂Ky. (20C.11)

Now, by practice problem # 7 on page 524 of §19I, we have:

̂Ky(µ) =
e−y|µ|

2π
, (20C.12)

Combine (20C.11) and (20C.12) to get:

̂Uy(µ) = e−y|µ| ·̂b(µ). (20C.13)

Now apply the Fourier inversion formula (Theorem 19A.1 on page 488) to eqn
(20C.13) to obtain:

Uy(x) =
∫ ∞

−∞
̂U(µ) · exp(µ · x · i) dµ =

∫ ∞

−∞
e−y|µ| ·̂b(µ) exp(µ · x · i) dµ

= u(x, y),

where u(x, y) is the solution from Proposition 20C.1. 2
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20D PDEs on the half-line

Prerequisites: §1B(i), §19F, §5C, §0G.

Using the Fourier (co)sine transform, we can solve PDEs on the half-line.

Theorem 20D.1. The heat equation; Dirichlet boundary conditions

Let f ∈ L1(R 6−) have Fourier sine transform ̂fsin , and define u : R 6− ×R 6− −→ R
by:

u(x, t) :=
∫ ∞

0

̂fsin(µ) · sin(µ · x) · e−µ2t dµ

Then u(x, t) is a solution to the heat equation, with initial conditions u(x, 0) =
f(x), and satisfies the homogeneous Dirichlet boundary condition: u(0, t) = 0.

Proof. Exercise 20D.1 (Hint: Use Proposition 0G.1 on page 567.) 2
E©

Theorem 20D.2. The heat equation; Neumann boundary conditions

Let f ∈ L1(R 6−) have Fourier cosine transform ̂fcos , and define u : R 6−×R 6− −→ R
by:

u(x, t) :=
∫ ∞

0

̂fcos(µ) · cos(µ · x) · e−µ2t dµ

Then u(x, t) is a solution to the heat equation, with initial conditions u(x, 0) =
f(x), and the homogeneous Neumann boundary condition: ∂x u(0, t) = 0.

Proof. Exercise 20D.2 (Hint: Use Proposition 0G.1 on page 567.) 2
E©

20E General solution to PDEs using Fourier transforms

Prerequisites: §16F, §18A, §19A, §19D, §19E.

Recommended: §20A(i), §20B(i), §20C, §20D.

Most of the results of this chapter can be subsumed into a single abstraction,
which makes use of the polynomial formalism developed in § 16F on page 369.

Theorem 20E.1. Fix D ∈ N, and let L be a linear differential operator on
C∞(RD;R) with constant coefficients. Suppose L has polynomial symbol P.

(a) If f ∈ L1(RD) has Fourier Transform ̂f : RD −→ R, and g = L f , then g
has Fourier transform: ĝ(µ) = P(iµ) · ̂f(µ), for all µ ∈ RD.
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(b) If q ∈ L1(RD) has Fourier transform q̂ ∈ L1(RD), and f ∈ L1(RD) has
Fourier transform

̂f(µ) =
q̂(µ)
P(iµ)

, for all µ ∈ RD,

then f is a solution to the Poisson-type nonhomogeneous equation “L f =
q.”

Let u : RD × R 6− −→ R be another function, and, for all t ≥ 0, define
ut : RD −→ R by ut(x) := u(x, t) for all x ∈ RD. Suppose ut ∈ L1(RD), and let
ut have Fourier transform ût.

(c) Let f ∈ L1(RD), and suppose ût(µ) = exp (P(iµ) · t) · ̂f(µ), for all µ ∈ RD
and t ≥ 0. Then u is a solution to the first-order evolution equation

∂t u(x, t) = Lu(x, t), for all x ∈ RD and t > 0,

with initial conditions u(x, 0) = f(x), for all x ∈ RD.

(d) Suppose f ∈ L1(RD) has Fourier transform ̂f which decays fast enough

that

∫

RD

∣

∣

∣P(iµ) · cos
(
√

−P(iµ) · t
)

· ̂f(µ)
∣

∣

∣ dµ < ∞, for all t ≥ 0.2

Suppose ût(µ) = cos
(

√

−P(iµ) · t
)

· ̂f(µ), for all µ ∈ RD and t ≥ 0.

Then u is a solution to the second-order evolution equation

∂2
t u(x, t) = Lu(x, t), for all x ∈ RD and t > 0,

with initial position u(x, 0) = f(x) and initial velocity ∂t u(x, 0) = 0, for all
x ∈ RD.

(e) Suppose f ∈ L1(RD) has Fourier transform ̂f which decays fast enough

that

∫

RD

∣

∣

∣

√

P(iµ) · sin
(
√

−P(iµ) · t
)

· ̂f(µ)
∣

∣

∣ dµ < ∞, for all t ≥ 0.

Suppose ût(µ) =
sin
(

√

−P(iµ) · t
)

√

−P(iµ)
· ̂f(µ), for all µ ∈ RD and t ≥ 0. Then

the function u(x, t) is a solution to the second-order evolution equation

∂2
t u(x, t) = Lu(x, t), for all x ∈ RD and t > 0,

with initial position u(x, 0) = 0 and initial velocity ∂t u(x, 0) = f(x), for all
x ∈ RD.

Proof. Exercise 20E.1 (Hint: Use Proposition 0G.1 on page 567. In each case, E©
be sure to verify that convergence conditions of Proposition 0G.1 are satisfied.) 2

2See Example 18A.6(b,c) on page 420 for the definitions of complex sine and cosine functions.
See Exercise 18C.17 on page 449 for a discussion of complex square roots.

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



542— DRAFT Chapter 20. Fourier transform solutions to PDEs

Exercise 20E.2. Go back through this chapter and see how all of the differentE©
solution theorems for the heat equation (§20A(i)) wave equation (§20B(i)), and Poisson
equation (§20C) are special cases of this result. What about the solution for the Dirichlet
problem on a half-space in §20D? How does it fit into this formalism? �

Exercise 20E.3. State and prove a theorem analogous to Theorem 20E.1 for solvingE©
a D-dimensional Schrödinger equation using Fourier transforms. �

20F Practice problems

1. Let f(x) =
{

1 if 0 < x < 1;
0 otherwise.

, as in Example 19A.4 on page 490

(a) Use the Fourier method to solve the Dirichlet problem on a half-space,
with boundary condition u(x, 0) = f(x).

(b) Use the Fourier method to solve the heat equation on a line, with
initial condition u0(x) = f(x).

2. Solve the two-dimensional heat equation, with initial conditions

f(x, y) =
{

1 if 0 ≤ x ≤ X and 0 ≤ y ≤ Y ;
0 otherwise.

where X,Y > 0 are constants. (Hint: See problem # 3 on page 523 of
§19I)

3. Solve the two-dimensional wave equation, with

Initial Position: u(x, y, 0) = 0,

Initial Velocity: ∂t u(x, y, 0) = f1(x, y) =
{

1 if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1;
0 otherwise.

.

(Hint: See problem # 3 on page 523 of §19I)

4. Let f : R −→ R be the function defined: f(x) =
{

x if 0 ≤ x ≤ 1
0 otherwise

(see Figure 19I.1 on page 524). Solve the heat equation on the real
line, with initial conditions u(x; 0) = f(x). (Use the Fourier method; see
problem # 4 on page 523 of §19I)

5. Let f(x) = x · exp
(

−x2

2

)

. (See problem # 5 on page 523 of §19I.)

(a) Solve the heat equation on the real line, with initial conditions
u(x; 0) = f(x). (Use the Fourier method.)
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(b) Solve the wave equation on the real line, with initial position u(x; 0) =
f(x) and initial velocity ∂tu(x, 0) = 0. (Use the Fourier method.)

6. Let f(x) =
2x

(1 + x2)2
. (See problem # 8 on page 524 of §19I.)

(a) Solve the heat equation on the real line, with initial conditions
u(x; 0) = f(x). (Use the Fourier method.)

(b) Solve the wave equation on the real line, with initial position u(x, 0) =
0 and initial velocity ∂tu(x, 0) = f(x). (Use the Fourier method.)

7. Let f(x) =
{

1 if −4 < x < 5;
0 otherwise.

(See problem # 9 on page 524 of

§19I.) Use the ‘Fourier Method’ to solve the one-dimensional heat equation
(∂t u(x; t) = 4u(x; t)) on the domain X = R, with initial conditions
u(x; 0) = f(x).

8. Let f(x) =
x cos(x)− sin(x)

x2
. (See problem # 10 on page 524 of

§19I.) Use the ‘Fourier Method’ to solve the one-dimensional heat equa-
tion (∂t u(x; t) = 4u(x; t)) on the domain X = R, with initial conditions
u(x; 0) = f(x).

9. Suppose f : R −→ R had Fourier transform ̂f(µ) =
µ

µ4 + 1
.

(a) Find the solution to the one-dimensional heat equation ∂t u = 4u,
with initial conditions u(x; 0) = f(x) for all x ∈ R.

(b) Find the solution to the one-dimensional wave equation ∂2
t u = 4u,

with

Initial position u(x; 0) = 0, for all x ∈ R.
Initial velocity ∂t u(x; 0) = f(x), for all x ∈ R.

(c) Find the solution to the two-dimensional Laplace Equation4u(x, y) =
0 on the half-space H = {(x, y) ; x ∈ R, y ≥ 0}, with boundary con-
dition: u(x, 0) = f(x) for all x ∈ R.

(d) Verify your solution to question (c). That is: check that your solution
satisfies the Laplace equation and the desired boundary conditions.

10. Fix µ ∈ R, and define fµ : R2 −→ C by fµ(x, y) := exp
(

− |µ| · y
)

exp
(

− µix
)

.

Show that f is harmonic on R2.

(This function appears in the Fourier solution to the half-plane Dirichlet
problem; see Proposition 20C.1 on page 538.)
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Chapter 0

Appendices

0A Sets and functions
Sets: A set is a collection of objects. If S is a set, then the objects in S are
called elements of S; if s is an element of S, we write “s ∈ S. A subset of
S is a smaller set R such that every element of R is also an element of S. We
indicate this by writing “R ⊂ S”.

Sometimes we can explicitly list the elements in a set; we write “S = {s1, s2, s3, . . .}”.

Example 0A.1.

(a) In Figure 0A.1(A), S is the set of all cities in the world, so Toronto ∈ S. We
might write S = {Toronto, Beijing, London, Kuala Lampur, Nairobi, Santiago,
Pisa, Sidney, . . .}. If R is the set of all cities in Canada, then R ⊂ S.

(b) In Figure 0A.1(B), the set of natural numbers is N := {0, 1, 2, 3, 4, . . .}.
The set of positive natural numbers is N+ := {1, 2, 3, 4, . . .}.
Thus, 5 ∈ N, but π 6∈ N and −2 6∈ N.

(c) In Figure 0A.1(B), the set of integers is Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, 4, . . .}.
Thus, 5 ∈ Z and −2 ∈ Z, but π 6∈ Z and 1

2 6∈ Z. Observe that N+ ⊂ N ⊂ Z.

(d) In Figure 0A.1(B), the set of real numbers is denoted by R. It is best
visualised as an infinite line. Thus, 5 ∈ R, −2 ∈ R, π ∈ R and 1

2 ∈ R.
Observe that N ⊂ Z ⊂ R.

(e) In Figure 0A.1(B), the set of nonnegative real numbers is denoted by
[0,∞) or R 6−. It is best visualised as a half-infinite line, including zero.
Observe that [0,∞) ⊂ R.

(f) In Figure 0A.1(B), the set of positive real numbers is denoted by (0,∞)
or R+. It is best visualised as a half-infinite line, excluding zero. Observe
that R+ ⊂ R 6− ⊂ R.
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Figure 0A.1: (A) R is a subset of S (B) Important Sets: N+,N,Z,R,R 6− :=
[0,∞) and R+ := (0,∞). (C) R2 is two-dimensional space. (D) R3 is
three-dimensional space.

(g) Figure 0A.1(C) depicts two-dimensional space: the set of all coordinate
pairs (x, y), where x and y are real numbers. This set is denoted by R2,
and is best visualised as an infinite plane.

(h) Figure 0A.1(D) depicts three-dimensional space: the set of all coordi-
nate triples (x1, x2, x3), where x1, x2, and x3 are real numbers. This set is
denoted by R3, and is best visualised as an infinite void.

(i) If D is any natural number, then D-dimensional space is the set of all
coordinate triples (x1, x2, . . . , xD), where x1, . . . , xD are all real numbers.
This set is denoted by RD. It is hard to visualize when D is bigger than
3. ♦

Cartesian Products: If S and T are two sets, then their Cartesian product
is the set of all pairs (s, t), where s is an element of S, and t is an element of T .
We denote this set by S × T .

Example 0A.2.

(a) R×R is the set of all pairs (x, y), where x and y are real numbers. In other
words, R× R = R2.
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Figure 0A.2: (A) f(C) is the first letter of city C. (B) p(t) is the position of
the fly at time t.

(b) R2 × R is the set of all pairs (w, z), where w ∈ R2 and z ∈ R. But if w is
an element of R2, then w = (x, y) for some x ∈ R and y ∈ R. Thus, any
element of R2 × R is an object

(

(x, y), z
)

. By suppressing the inner pair

of brackets, we can write this as (x, y, z). In this way, we see that R2 × R
is the same as R3.

(c) In the same way, R3 ×R is the same as R4, once we write
(

(x, y, z), t
)

as

(x, y, z, t). More generally, RD × R is mathematically the same as RD+1.

Often, we use the final coordinate to store a ‘time’ variable, so it is useful
to distinguish it, by writing

(

(x, y, z), t
)

as (x, y, z; t). ♦

Functions: If S and T are sets, then a function from S to T is a rule which
assigns a specific element of T to every element of S. We indicate this by writing
“f : S −→ T ”.

Example 0A.3.

(a) In Figure 0A.2(A), S is the cities in the world, and T = {A,B,C, . . . , Z}
is the letters of the alphabet, and f is the function which is the first letter
in the name of each city. Thus f(Peterborough) = P , f(Santiago) = S,
etc.

(b) if R is the set of real numbers, then sin : R −→ R is a function: sin(0) = 0,
sin(π/2) = 1, etc. ♦

Two important classes of functions are paths and fields.
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Figure 0A.3: (A) A height function describes a landscape. (B) A density distribution in

R2.

Paths: Imagine a fly buzzing around a room. Suppose you try to represent
its trajectory as a curve through space. This defines a a function p from R into
R3, where R represents time, and R3 represents the (three-dimensional) room,
as shown in Figure 0A.2(B). If t ∈ R is some moment in time, then p(t) is the
position of the fly at time t. Since this p describes the path of the fly, we call p
a path.

More generally, a path (or trajectory or curve) is a function p : R −→ RD,
where D is any natural number. It describes the motion of an object through
D-dimensional space. Thus, if t ∈ R, then p(t) is the position of the object at
time t.

Scalar Fields: Imagine a three-dimensional topographic map of Antarctica.
The rugged surface of the map is obtained by assigning an altitude to every
location on the continent. In other words, the map implicitly defines a function
h from R2 (the Antarctic continent) to R (the set of altitudes, in metres above
sea level). If (x, y) ∈ R2 is a location in Antarctica, then h(x, y) is the altitude
at this location (and h(x, y) = 0 means (x, y) is at sea level).

This is an example of a scalar field. A scalar field is a function u : RD −→ R;
it assigns a numerical quantity to every point in D-dimensional space.

Example 0A.4.

(a) In Figure 0A.3(A), a landscape is represented by a height function h :
R2 −→ R.

(b) Figure 0A.3(B) depicts a concentration function on a two-dimensional
plane (e.g. the concentration of bacteria on a petri dish). This is a function
ρ : R2 −→ R 6− (where ρ(x, y) = 0 indicates zero bacteria at (x, y)).
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(c) The mass density of a three-dimensional object is a function ρ : R3 −→
R 6− (where ρ(x1, x2, x3) = 0 indicates vacuum).

(d) The charge density is a function q : R3 −→ R (where q(x1, x2, x3) = 0
indicates electric neutrality)

(e) The electric potential (or voltage) is a function V : R3 −→ R.

(f) The temperature distribution in space is a function u : R3 −→ R (so
u(x1, x2, x3) is the “temperature at location (x1, x2, x3)”) ♦

A time-varying scalar field is a function u : RD × R −→ R, assigning a
quantity to every point in space at each moment in time. Thus, for example,
u(x; t) is the “temperature at location x, at time t”

Vector Fields: A vector field is a function ~V : RD −→ RD; it assigns a
vector (i.e. an “arrow”) at every point in space.

Example 0A.5.

(a) The electric field generated by a charge distribution (denoted by ~E).

(b) The flux of some material flowing through space (often denoted by ~F). ♦

Thus, for example, ~F(x) is the “flux” of material at location x.

0B Derivatives —notation

If f : R −→ R, then f ′ is the first derivative of f ; f ′′ is the second deriva-
tive,... f (n) the nth derivative, etc. If x : R −→ RD is a path, then the velocity
of x at time t is the vector

ẋ(t) =
[

x′1(t), x′2(t), . . . , x′D(t)
]

If u : RD −→ R is a scalar field, then the following notations will be used
interchangeably:

for all j ∈ [1...D], ∂j u :=
∂u

∂xj

If u : R2 −→ R (i.e. u(x, y) is a function of two variables), then we will also write

∂x u :=
∂u

∂x
and ∂y u :=

∂u

∂y
.

Multiple derivatives will be indicated by iterating this procedure. For example,

∂3
x∂

2
y u :=

∂3

∂x3

∂2u

∂y2
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A useful notational convention (which we rarely use) is multiexponents. If
γ1, . . . , γD are positive integers, and γ = (γ1, . . . , γD), then

xγ := xγ1
1 x

γ2
2 . . . , xγDD

For example, if γ = (3, 4), and z = (x, y) then zγ = x3y4.

This generalizes to multi-index notation for derivatives. If γ = (γ1, . . . , γD),
then

∂γ u := ∂γ1
1 ∂γ2

2 . . . ∂γDD u

For example, if γ = (1, 2), then ∂γ u =
∂

∂x

∂2u

∂y2
.

Remark. Many authors use subscripts to indicate partial derivatives. For
example, they would write

ux := ∂x u, uxx := ∂2
x u, uxy := ∂x∂y u, etc.

This notation is very compact and intuitive, but it has two major disadvantages:

1. When dealing with an N -dimensional function u(x1, x2, . . . , xN ) (where N
is either large or indeterminate), you have only two options. You can either
either use awkward ‘nested subscript’ expressions like

ux3 := ∂3 u, ux5x5 := ∂2
5 u, ux2x3 := ∂2∂3 u, etc.,

or you must adopt the ‘numerical subscript’ convention that

u3 := ∂3 u, u55 := ∂2
5 u, u23 := ∂2∂3 u, etc.

But once ‘numerical’ subscripts are reserved to indicate derivatives in this
fashion, they can no longer be used for other purposes (e.g. indexing
a sequence of functions, or indexing the coordinates of a vector-valued
function). This can create further awkwardness.

2. We will often be considering functions of the form u(x, y; t), where (x, y)
are ‘space’ coordinates and t is a ‘time’ coordinate. In this situation, it is
often convenient to fix a value of t and consider the two-dimensional scalar
field ut(x, y) := u(x, y; t). Normally, when we use t as a subscript, it will
be indicate a ‘time-frozen’ scalar field of this kind.

Thus, in this book, we will never use subscripts to indicate partial derivatives.
Partial derivatives will always be indicated by the notation “∂xu” or “∂u∂x” (almost
always the first one). However, when consulting other texts, you should be aware
of the ‘subscript’ notation for derivatives, because it is used quite frequently.
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0C Complex numbers
Complex numbers have the form z = x + yi, where i2 = −1. We say that x

is the real part of z, and y is the imaginary part; we write: x = Re [z] and
y = Im [z].

If we imagine (x, y) as two real coordinates, then the complex numbers form
a two-dimensional plane. Thus, we can also write a complex number in polar
coordinates (see Figure 0C.1) If r > 0 and 0 ≤ θ < 2π, then we define

r cis θ = r · [cos(θ) + i sin(θ)]

Addition: If z1 = x1 + y1i, z2 = x2 + y2i, are two complex numbers, then
z1 + z2 = (x1 + x2) + (y1 + y2)i. (see Figure 0C.2)

Multiplication: If z1 = x1 + y1i, z2 = x2 + y2i, are two complex numbers,
then z1 · z2 = (x1x2 − y1y2) + (x1y2 + x2y1) i.

Multiplication has a nice formulation in polar coordinates; If z1 = r1 cis θ1

and z2 = r2 cis θ2, then z1 · z2 = (r1 · r2) cis (θ1 + θ2). In other words,
multiplication by the complex number z = r cis θ is equivalent to dilating the
complex plane by a factor of r, and rotating the plane by an angle of θ. (see
Figure 0C.3)

Exponential: If z = x+ yi, then exp(z) = ex cis y = ex · [cos(y) + i sin(y)].
(see Figure 0C.4) In particular, if x ∈ R, then

• exp(x) = ex is the standard real-valued exponential function.

• exp(yi) = cos(y) + sin(y)i is a periodic function; as y moves along the
real line, exp(yi) moves around the unit circle. (This is Euler’s formula.)

The complex exponential function shares two properties with the real exponential
function:

• If z1, z2 ∈ C, then exp(z1 + z2) = exp(z1) · exp(z2).

• If w ∈ C, and we define the function f : C −→ C by f(z) = exp(w · z),
then f ′(z) = w · f(z).

Consequence: If w1, w2, . . . , wD ∈ C, and we define f : CD −→ C by

f(z1, . . . , zD) = exp(w1z1 + w2z2 + . . . wDzD),

then ∂df(z) = wd · f(z). More generally,

∂n1
1 ∂n2

2 . . . ∂nDD f(z) = wn1
1 · w

n2
2 · . . . w

nD
D · f(z). (0C.1)
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Figure 0D.1: Some domains in R3.

For example, if f(x, y) = exp(3x+ 5iy), then

fxxy(x, y) = ∂2
x ∂y f(x, y) = 45 i · exp(3x+ 5iy).

If w = (w1, . . . , wD) and z = (z1, . . . , zD), then we will sometimes write:

exp(w1z1 + w2z2 + . . . wDzD) = exp 〈w, z〉 .

Conjugation and Norm: If z = x + yi, then the complex conjugate of z
is z = x− yi. In polar coordinates, if z = r cis θ, then z = r cis (−θ).

The norm of z is |z| =
√

x2 + y2. We have the formula:

|z|2 = z · z.

0D Coordinate systems and domains

Prerequisites: §0A.

Boundary Value Problems are usually posed on some “domain” —some region
of space. To solve the problem, it helps to have a convenient way of mathemati-
cally representing these domains, which can sometimes be simplified by adopting
a suitable coordinate system. We will first give a variety of examples of ‘domains’
in different coordinate systems in §0D(a,b,c,d). Then in §0D(e) we will give a
formal definition of the word ‘domain’.
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0D(i) Rectangular coordinates

Rectangular coordinates in R3 are normally denoted (x, y, z). Three common
domains in rectangular coordinates:

• The slab X =
{

(x, y, z) ∈ R3 ; 0 ≤ z ≤ L
}

, where L is the thickness of the
slab (see Figure 0D.1D).

• The unit cube: X = {(x, y, z) ∈ R3; 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and 0 ≤
z ≤ 1} (see Figure 0D.1C).

• The box: X = {(x, y, z) ∈ R3; 0 ≤ x ≤ L1, 0 ≤ y ≤ L2, and 0 ≤ z ≤
L3}, where L1, L2, and L3 are the sidelengths (see Figure 0D.1A).

• The rectangular column: X =
{

(x, y, z) ∈ R3 ; 0 ≤ x ≤ L1 and 0 ≤ y ≤ L2

}

(see Figure 0D.1E).

0D(ii) Polar coordinates on R2

r

x

y

θ

Figure 0D.2: Polar coordinates

Polar coordinates (r, θ) on R2 are defined by the transformation:

x = r · cos(θ) and y = r · sin(θ).

with reverse transformation:

r =
√

x2 + y2 and θ = Arctan (y, x) .

Here, the coordinate r ranges over R 6−, while the variable θ ranges over [−π, π).
Finally we define

Arctan(y, x) :=







arctan (y/x) if x > 0;
arctan (y/x) + π if x < 0 and y > 0;
arctan (y/x)− π if x < 0 and y < 0.

Three common domains in polar coordinates are:

• D = {(r, θ) ; r ≤ R} is the disk of radius R (see Figure 0D.3A).
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(E) Infinite
   Cylinder

Rmin

Rmax

R

Figure 0D.3: Some domains in polar and cylindrical coordinates.

• D{ = {(r, θ) ; R ≤ r} is the codisk of inner radius R.

• A = {(r, θ) ; Rmin ≤ r ≤ Rmax} is the annulus, of inner radius Rmin and
outer radius Rmax (see Figure 0D.3B).

0D(iii) Cylindrical coordinates on R3

Cylindrical coordinates (r, θ, z) on R3, are defined by the transformation:

x = r · cos(θ), y = r · sin(θ) and z = z

with reverse transformation:

r =
√

x2 + y2, θ = Arctan (y, x) and z = z.

Five common domains in cylindrical coordinates are:

• X = {(r, θ, z) ; r ≤ R} is the (infinite) cylinder of radius R (see Figure
0D.3E).

• X = {(r, θ, z) ; Rmin ≤ r ≤ Rmax} is the (infinite) pipe of inner radius
Rmin and outer radius Rmax (see Figure 0D.3D).

• X = {(r, θ, z) ; r > R} is the wellshaft of radius R.
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z
π

0 φ 

x

y
θcos(φ)

Figure 0D.4: Spherical coordinates

• X = {(r, θ, z) ; r ≤ R and 0 ≤ z ≤ L} is the finite cylinder of radius R
and length L (see Figure 0D.3C).

• In cylindrical coordinates on R3, we can write the slab as {(r, θ, z) ; 0 ≤ z ≤ L}.

0D(iv) Spherical coordinates on R3

Spherical coordinates (r, θ, φ) on R3 are defined by the transformation:

x = r · sin(φ) · cos(θ), y = r · sin(φ) · sin(θ)
and z = r · cos(φ).

with reverse transformation:

r =
√

x2 + y2 + z2, θ = Arctan (y, x)

and φ = Arctan
(
√

x2 + y2, z
)

.

In spherical coordinates, the set B = {(r, θ, φ) ; r ≤ R} is the ball of radius
R (see Figure 0D.1B).

0D(v) What is a ‘domain’?

Formally, a domain is a subset X ⊆ RD which satisfies three conditions:

(a) X is closed. That is, X must contain all its boundary points.

(b) X has a dense interior. That is, every point in X is a limit point of a
sequence {xn}∞n=1 of interior points of X. (A point x ∈ X is an interior
point if B(x, ε) ⊂ X for some ε > 0).
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(c) X is connected. That is, we cannot find two disjoint closed subsets X1 and
X2 such that X = X1 t X2.

Observe that all of the examples in §0D(a,b,c,d) satisfy these three conditions.
Why conditions (a), (b), and (c)? We are normally interested in finding a

function f : X −→ R which satisfies a certain partial differential equation on
X. However, such a PDE only makes sense on the interior of X (because the
derivatives of f at x are only well-defined if x is an interior point of X). Thus,
first X must have a nonempty interior, and second, this interior must fill ‘most’
of X. This is the reason for condition (b). We often represent certain physical
constraints by requiring f to satisfy certain boundary conditions on the boundary
of X. (That’s what a ‘boundary value problem’ means). But this cannot make
sense unless X satisfies condition (a). Finally, we don’t actually need condition
(c). But if X is disconnected, then we could split X into two or more disconnected
pieces and solve the equations separately on each piece. Thus, we can always
assume without loss of generality that X is connected.

0E Vector calculus
Prerequisites: §0A, §0B.

0E(i) Gradient

....in two dimensions:

Suppose X ⊂ R2 was a two-dimensional region. To define the topography of a
“landscape” on this region, it suffices1 to specify the height of the land at each
point. Let u(x, y) be the height of the land at the point (x, y) ∈ X. (Technically,
we say: “u : X −→ R is a two-dimensional scalar field.”)

The gradient of the landscape measures the slope at each point in space. To
be precise, we want the gradient to be an arrow pointing in the direction of most
rapid ascent. The length of this arrow should then measure the rate of ascent.
Mathematically, we define the two-dimensional gradient of u by:

∇u(x, y) =
[

∂u

∂x
(x, y),

∂u

∂y
(x, y)

]

The gradient arrow points in the direction where u is increasing the most rapidly.
If u(x, y) was the height of a mountain at location (x, y), and you were trying
to climb the mountain, then your (naive) strategy would be to always walk in
the direction ∇u(x, y). Notice that, for any (x, y) ∈ X, the gradient ∇u(x, y) is
a two-dimensional vector —that is, ∇u(x, y) ∈ R2. (Technically, we say “∇u :
X −→ R2 is a two-dimensional vector field”.)

1Assuming no overhangs!
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....in many dimensions:

This idea generalizes to any dimension. If u : RD −→ R is a scalar field, then
the gradient of u is the associated vector field ∇u : RD −→ RD, where, for any
x ∈ RD,

∇u(x) =
[

∂1u, ∂2u, . . . , ∂Du
]

(x)

Proposition 0E.1. Algebra of gradients

Let X ⊂ RD be a domain. Let f, g : X −→ R be differentiable scalar fields, and
let (f + g) : X −→ R and (f · g) : X −→ R denote the sum and product of f and
g.

(a) (Linearity) For all x ∈ X, and any r ∈ R,

∇(rf + g)(x) = r∇f(x) + ∇g(x).

(b) (Leibniz rule) For all x ∈ X,

∇(f · g)(x) = f(x) ·
(

∇g(x)
)

+ g(x) ·
(

∇f(x)
)

.

Proof. Exercise 0E.1 2
E©

0E(ii) Divergence

....in one dimension:

Imagine a current of ‘fluid’ (e.g. air, water, electricity) flowing along the real
line R. For each point x ∈ R, let V (x) describe the rate at which fluid is
flowing past this point. Now, in places where the fluid slows down, we expect
the derivative V ′(x) to be negative. We also expect the fluid to accumulate
(i.e. become ‘compressed’) at such locations (because fluid is entering the region
more quickly than it leaves). In places where the fluid speeds up, we expect the
derivative V ′(x) to be positive, and we expect the fluid to be depleted (i.e. to
decompress) at such locations (because fluid is leaving the region more quickly
than it arrives).

If the fluid is incompressible (e.g. water), then we can assume that the quan-
tity of fluid at each point is constant. In this case, the fluid cannot ‘accumulate’
or ‘be depleted’. In this case, a negative value of V ′(x) means that fluid is some-
how being ‘absorbed’ (e.g. being destroyed or leaking out of the system) at x.
Likewise, a positive value of V ′(x) means that fluid is somehow being ‘generated’
(e.g. being created, or leaking into the system) at x.
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In general, positive V ′(x) may represent some combination of fluid depletion,
decompression, or generation at x, while negative V ′(x) may represent some
combination of local accumulation, compression or absorption at x. Thus, if
we define the divergence of the flow to be the rate at which fluid is being de-
pleted/decompressed/generated (if positive) or being accumulated/compressed/absorbed
(if positive), then mathematically speaking,

div V (x) = V ′(x).

This physical model yields an interesting interpretation of the Fundamental The-
orem of Calculus. Suppose a < b ∈ R, and consider the interval [a, b]. If
V : R −→ R describes the flow of fluid, then V (a) is the amount of fluid flowing
into the left end of the interval [a, b] (or flowing out, if V (a) < 0). Likewise,
V (b) is the amount of fluid flowing out of the right end of the interval [a, b] (or
flowing in, if V (b) < 0). Thus, V (b)−V (a) is the net amount of fluid flowing out
through the endpoints of [a, b] (or flowing in, if this quantity is negative). But
the Fundamental Theorem of Calculus asserts that

V (b)− V (a) =
∫ b

a
V ′(x) dx =

∫ b

a
div V (x) dx.

In other words, the net amount of fluid instantaneously leaving/entering through
the endpoints of [a, b] is equal to the integral of the divergence over the interior.
But if div V (x) is the amount of fluid being instantaneously ‘generated’ at x (or
‘absorbed’ if negative) this integral can be interpreted as the saying:

The net amount of fluid instantaneously leaving the endpoints of
[a, b] is equal to the net quantity of fluid being instantaneously gener-
ated throughout the interior of [a, b].

From a physical point of view, this makes perfect sense; it is simply ‘con-
servation of mass’. This is the one-dimensional form of the Divergence Theorem
(Theorem 0E.4 on page 563 below).

....in two dimensions:

Let X ⊂ R2 be some planar region, and consider a fluid flowing through X. For
each point (x, y) ∈ X, let ~V(x, y) be a two-dimensional vector describing the
current at that point2.

Think of this two-dimensional current as a superposition of a horizontal cur-
rent V1 and a vertical current V2. For each of the two currents, we can reason
as in the one-dimensional case. If ∂x V1(x, y) > 0, then the horizontal current is
accelerating at (x, y), so we expect it to deplete the fluid at (x, y) (or, if the fluid

2Technically, we say “~V : X −→ R2 is a two-dimensional vector field”.
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is incompressible, we interpret this to mean that additional fluid is being gener-
ated at (x, y)). If ∂x V1(x, y) < 0, then the horizontal current is decelarating, we
expect it to deposit fluid at (x, y) (or, if the fluid is incompressible, we interpret
this to mean that fluid is being absorbed or destroyed at (x, y)).

The same reasoning applies to ∂y V2(x, y). The divergence of the two-
dimensional current is thus just the sum of the divergences of the horizontal
and vertical currents

div ~V(x, y) = ∂xV1(x, y) + ∂yV2(x, y).

Notice that, although ~V(x, y) was a vector, the divergence div ~V(x, y) is a scalar3.
Just as in the one-dimensional case, we interpret div ~V(x, y) to be the the instan-
taneous rate at which fluid is being depleted/decompressed/generated at (x, y) (if
positive) or being accumulated/compressed/absorbed at (x, y) (if negative).

For example, suppose R2 represents the ocean, and ~V : R2 −→ R2 is a vector
field representing ocean currents. If div ~V(x, y) > 0, this means that there is a
net injection of water into the ocean at the point (x, y) —e.g. due to rainfall
or a river outflow. If div ~V(x, y) < 0, this means that there is a net removal of
water from the ocean at the point (x, y) —e.g. due to evaporation or hole in the
bottom of the sea.

....in many dimensions:

We can generalize this idea to any number of dimensions. If ~V : RD −→ RD is
a vector field, then the divergence of ~V is the associated scalar field div ~V :
RD −→ R, where, for any x ∈ RD,

div ~V(x) = ∂1V1(x) + ∂2V2(x) + . . .+ ∂DVD(x).

If ~V represents the flow of some fluid through RD, then div ~V(x) represents the
instantaneous rate at which fluid is being depleted/decompressed/generated at x
(if positive) or being accumulated/compressed/absorbed at x (if negative). For
example, if ~E is the electric field, then div ~E(x) is the amount of electric field
being “generated” at x —that is, div ~E(x) = q(x) is the charge density at x.

Proposition 0E.2. Algebra of Divergences
Let X ⊂ RD be a domain. Let ~V, ~W : X −→ RD be differentiable vector fields,

and let f : X −→ R be a differentiable scalar field, and let (f · ~V) : X −→ RD
represent the product of f and ~V.

(a) (Linearity) For all x ∈ X, and any r ∈ R,

div (r ~V + ~W)(x) = r div ~V(x) + div ~Wg(x).

3Technically, we say “div ~V : X −→ R2 is a two-dimensional scalar field”.

Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



0E. Vector calculus 561

N(x)

V(x)

V(x)   N(x)

x

L

X X
V

(A) (B)
Figure 0E.1: (A) Line segment L is tangent to ∂X at x. Vector ~N(x) is normal to ∂X

at x. If ~V(x) is another vector based at x, then the dot product ~V(x) • ~N(x) measures the

orthogonal projection of ~V(x) onto ~N(x) —that is, the ‘part of ~V(x) which is normal to ∂X’.

(B) Here ~V : R2 −→ R2 is a differentiable vector field, and we portray the scalar field ~V • ~N
along the curve ∂X (although we have visualized it as a ‘vector field’, to help your intuitions).

The flux of ~V across the boundary of X is obtained by integrating ~V • ~N along ∂X.

(b) (Leibniz rule) For all x ∈ X,

div (f · ~V)(x) = f(x) ·
(

div ~V(x)
)

+
(

∇f(x)
)

• ~V(x).

Proof. Exercise 0E.2 2
E©

Exercise 0E.3. Let ~V, ~W : X −→ RD be differentiable vector fields, and consider E©
their dot product (~V • ~W) : X −→ RD (a differentiable scalar field). State and prove a
Leibniz-like rule for ∇(~V • ~W).... (a) In the case D = 3; ....(b) In the case D ≥ 4. �

0E(iii) The Divergence Theorem.

...in two dimensions

Let X ⊂ R2 be some domain in the plane, and let ∂X be the boundary of
X. (For example, if X is the unit disk, then ∂X is the unit circle. If X is a
square domain, then ∂X is the four sides of the square, etc.). Let x ∈ ∂X. A
line segment L through x is tangent to ∂X if L touches ∂X only at x; that is,
L ∩ ∂X = {x} (see Figure 0E.1(A)). A unit vector ~N is normal to ∂X at x if
there is a line segment through x which is orthogonal to ~N and which is tangent
to ∂X. We say ∂X is piecewise smooth if there is a unique unit normal vector
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~N(x) at every x ∈ ∂X, except perhaps at finitely many points (the ‘corners’
of the boundary). For example, the disk, the square, and any other polygonal
domain have piecewise smooth boundaries. The function ~N : ∂X −→ R2 is then
called the normal vector field for ∂X.

If ~V = (V1, V2) and ~N = (N1, N2) are two vectors, then define ~V • ~N :=
V1N1 + V2N2. If ~V : R2 −→ R2 is a vector field, and X ⊂ R2 is a domain with a
smooth boundary ∂X, then we can define the flux of ~V across ∂X as the integral:

∫

∂X
~V(s) • ~N(s) ds. (see Figure 0E.1(B)). (0E.1)

Here, by ‘integrating over ∂X’, we are assuming that ∂X can be parameterized
as a smooth curve or a union of smooth curves; this integral can then be com-
puted (via this parameterization) as one or more one-dimensional integrals over
intervals in R. The value of integral (0E.1) is independent of the choice of param-
eterization you use. If ~V describes the flow of some fluid, then the flux (0E.1)
represents the net quantity of fluid flowing across the boundary of ∂X.

On the other hand, if div ~V(x) represents the instantaneous rate at which
fluid is being generated/destroyed at the point x, then the two-dimensional in-
tegral

∫

X
div ~V(x) dx

is the net rate at which fluid is being generated/destroyed throughout the interior
of the region X. The next result then simply says that the total ‘mass’ of the
fluid must be conserved when we combine these two processes:

Theorem 0E.3. (Green’s Theorem)
If X ⊂ R2 is an bounded domain with a piecewise smooth boundary, and ~V :

X −→ R2 is a continuously differentiable vector field, then

∫

∂X
~V(s)• ~N(s) ds =

∫

X
div ~V(x) dx.

Proof. See any introduction to vector calculus; see e.g. [Ste08, §16.5, p.1067]
2

...in many dimensions

Let X ⊂ RD be some domain, and let ∂X be the boundary of X. (For example,
if X is the unit ball, then ∂X is the unit sphere). If D = 2, then ∂X will be
a 1-dimensional curve. If D = 3, then ∂X will be a 2-dimensional surface. In
general, if D ≥ 4, then ∂X will be a (D−1)-dimensional hypersurface.

Let x ∈ ∂X. A (hyper)plane segment P through x is tangent to ∂X if P
touches ∂X only at x; that is, P ∩ ∂X = {x}. A unit vector ~N is normal to ∂X
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at x if there is a (hyper)plane segment through x which is orthogonal to ~N and
which is tangent to ∂X. We say ∂X is smooth if there is a unique unit normal
vector ~N(x) at each x ∈ ∂X.4 The function ~N : ∂X −→ RD is then called the
normal vector field for ∂X.

If ~V = (V1, . . . , VD) and ~N = (N1, . . . , ND) are two vectors, then define
~V • ~N := V1N1 + · · ·+VDND. If ~V : RD −→ RD is a vector field, and X ⊂ RD is
a domain with a smooth boundary ∂X, then we can define the flux of ~V across
∂X as the integral:

∫

∂X
~V(s) • ~N(s) ds. (0E.2)

Here, by ‘integrating over ∂X’, we are assuming that ∂X can be parameterized as
a smooth (hyper)surface or a union of smooth (hyper)surfaces; this integral can
then be computed (via this parameterization) as one or more (D−1)-dimensional
integrals over open subsets of RD−1. The value of integral (0E.2) is independent
of the choice of parameterization you use. If ~V describes the flow of some fluid,
then the flux (0E.2) represents the net quantity of fluid flowing across the bound-
ary of ∂X.

On the other hand, if div ~V(x) represents the instantaneous rate at which
fluid is being generated/destroyed at the point x, then theD-dimensional integral

∫

X
div ~V(x) dx

is the net rate at which fluid is being generated/destroyed throughout the interior
of the region X. The next result then simply says that the total ‘mass’ of the
fluid must be conserved when we combine these two processes:

Theorem 0E.4. (Divergence Theorem)

If X ⊂ RD is a bounded domain with a piecewise smooth boundary, and

~V : X −→ RD is a continuously differentiable vector field, then

∫

∂X
~V(s) •

~N(s) ds =
∫

X
div ~V(x) dx.

Proof. If D = 1, this just a restates the Fundamental Theorem of Calculus.

If D = 2, this just a restates of Green’s Theorem (Theorem 0E.3).

For the case D = 3, this result can be found in any introduction to vector
calculus; see e.g. [Ste08, §16.9, p.1099]. This theorem is often called Gauss’s

4More generally, ∂X is piecewise smooth if there is a unique unit normal vector ~N(x) at
‘almost every’ x ∈ ∂X, except perhaps for a subset of dimension (D−2). For example, a surface
in R3 is piecewise smooth if it has a normal vector field everywhere except at some union of
curves, which represent the ‘edges’ between the smooth ‘faces’ the surface. In particular, a
cube, a cylinder, or any other polyhedron is has a piecewise smooth boundary.
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Theorem (after C.F. Gauss) or Ostrogradsky’s Theorem (after Mikhail Ostro-
gradsky).

For the case D ≥ 4, this is a special case of the Generalized Stokes Theorem,
one of the fundamental results of modern differential geometry, which unifies
the classic (2-dimensional) Stokes theorem, Green’s theorem, Gauss’ theorem,
and the Fundamental Theorem of Calculus. A statement and proof can be
found in any introduction to differential geometry or tensor calculus. See e.g.
[BG80, Theorem 4.9.2, p.196].

Some texts on partial differential equations also review the Divergence Theo-
rem, usually in an appendix. See for example [Eva91, Appendix C.2, p. 627].
2

Green’s formulae. Let u : RD −→ R be a scalar field. If X is a domain, and
s ∈ ∂X, then the outward normal derivative of u at s is defined

∂⊥u(s) := ∇u(s) • ~N(s).

(see §5C(ii) for more information). Meanwhile, the Laplacian of u is defined by

4u = div (∇(u)).

(see §1B(ii) on page 7 for more information). The Divergence Theorem then has
the following useful consequences.

Corollary 0E.5. (Green’s Formulae)
Let X ⊂ RD be a bounded domain, and let u : X −→ R be a scalar field which

is C2 (i.e. twice continuously differentiable). Then

(a)
∫

∂X
∂⊥u(s) ds =

∫

X
4u(x) dx.

(b)
∫

∂X
u(s) · ∂⊥u(s) ds =

∫

X
u(x)4 u(x) + |∇u(x)|2 dx.

(c) For any other C2 function w : X −→ R,
∫

X

(

u(x)4 w(x)− w(x)4 u(x)
)

dx =
∫

∂X

(

u(s) · ∂⊥w(s)− w(s) · ∂⊥u(s)
)

ds.

Proof. (a) is Exercise 0E.4 . To prove (b), note thatE©

2
∫

∂X
u(s) · ∂⊥u(s) ds

(†)

∫

∂X
∂⊥(u2)(s) ds

(∗)

∫

X
4(u2)(x) dx.

(�)
2
∫

X
u(x)4 u(x) + |∇u(x)|2 dx.
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Here, (†) is because ∂⊥(u2)(s) = 2u(s) · ∂⊥u(s), by the Leibniz rule for nor-
mal derivatives (Exercise 0E.6 below), while (�) is because 4(u2)(x) =
2 |∇u(x)|2 + 2u(x) · 4u(x) by the Leibniz rule for Laplacians (Exercise
1B.4 on page 9). Finally, (∗) is by part (a). The result follows.

(c) is Exercise 0E.5 . 2
E©

Exercise 0E.6. Prove the Leibniz rule for normal derivatives: if f, g : X −→ R are E©
two scalar fields, and (f · g) : X −→ R is their product, then for all s ∈ ∂X,

∂⊥(f · g)(s) =
(

∂⊥f(s)
)

· g(s) + f(s) ·
(

∂⊥g(s)
)

.

Hint: Use the Leibniz rules for gradients (Propositions 0E.1(b) on page 558) and the
linearity of the dot product. �

0F Differentiation of function series
Recommended: §6E(iii), §6E(iv).

Many of our methods for solving partial differential equations will involve
expressing the solution function as an infinite series of functions (e.g. Taylor
series, Fourier series, etc.). To make sense of such solutions, we must be able to
differentiate them.

Proposition 0F.1. Differentiation of Series
Let −∞ ≤ a < b ≤ ∞. For all n ∈ N, let fn : (a, b) −→ R be a differentiable

function, and define F : (a, b) −→ R by

F (x) =
∞
∑

n=0

fn(x), for all x ∈ (a, b).

(a) Suppose that

∞
∑

n=0

fn converges uniformly5 to F on (a, b), and that

∞
∑

n=0

f ′n

also converges uniformly on (a, b). Then F is differentiable, and F ′(x) =
∞
∑

n=0

f ′n(x) for all x ∈ (a, b).

(b) Suppose there is a sequence {Bn}∞n=1 of positive real numbers such that

•
∞
∑

n=1

Bn <∞.

5See §6E(iii) and §6E(iv) for the definition of ‘uniform convergence’ of a function series.
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• For all x ∈ (a, b), and all n ∈ N, |fn(x)| ≤ Bn and |f ′n(x)| ≤ Bn.

Then F is differentiable, and F ′(x) =
∞
∑

n=0

f ′n(x) for all x ∈ (a, b).

Proof. (a) follows immediately from Proposition 6E.10(c) on page 127.

(b) follows from (a) and the Weierstras M -test (Proposition 6E.13 on page
129).

For a direct proof, see [Asm05, Theorems 1 and 5, p.87 and p.92 of §2.9] or
[Fol84, Theorem 2.27(b), p.54]. 2

Example 0F.2. Let a = 0 and b = 1. For all n ∈ N, let fn(x) =
xn

n!
. Thus,

F (x) =
∞
∑

n=0

fn(x) =
∞
∑

n=0

xn

n!
= exp(x),

(because this is the Taylor series for the exponential function). Now let B0 = 1
and let Bn = 1

(n−1)! for n ≥ 1. Then for all x ∈ (0, 1), and all n ∈ N,
|fn(x)| = 1

n!x
n < 1

n! < 1
(n−1)! = Bn and |f ′n(x)| = n

n!x
n−1 =

(n−1)!x
n−1 < 1

(n−1)! = Bn. Also,

∞
∑

n=1

Bn =
∞
∑

n=1

1
(n− 1)!

< ∞.

Hence the conditions of Proposition 0F.1(b) are satisfied, so we conclude that

F ′(x) =
∞
∑

n=0

f ′n(x) =
∞
∑

n=0

n

n!
xn−1 =

∞
∑

n=1

xn−1

(n− 1)! (c)

∞
∑

m=0

xm

m!
= exp(x),

where (c) is the change of variables m = n− 1. In this case, the conclusion is
a well-known fact. But the same technique can be applied to more mysterious
functions. ♦

Remarks: (a) The series
∞
∑

n=0

f ′n(x) is sometimes called the formal derivative

of the series
∞
∑

n=0

fn(x). It is ‘formal’ because it is obtained through a purely

symbolic operation; it is not true in general that the ‘formal’ derivative is re-
ally the derivative of the series, or indeed, if the formal derivative series even
Linear Partial Differential Equations and Fourier Theory Marcus Pivato DRAFT January 31, 2009



0G. Differentiation of integrals 567

converges. Proposition 0F.1 essentially says that, under certain conditions, the
‘formal’ derivative equals the true derivative of the series.

(b) Proposition 0F.1 is also true if the functions fn involve more than one
variable and/or more than one index. For example, if fn,m(x, y, z) is a function
of three variables and two indices, and

F (x, y, z) =
∞
∑

n=0

∞
∑

m=0

fn,m(x, y, z), for all (x, y, z) ∈ (a, b)3.

then under similar hypothesis, we can conclude that ∂y F (x, y, z) =
∞
∑

n=0

∞
∑

m=0

∂y fn,m(x, y, z),

for all (x, y, z) ∈ (a, b)3.

0G Differentiation of integrals

Recommended: §0F.

Many of our methods for solving partial differential equations will involve
expressing the solution function F (x) as an integral of functions; i.e. F (x) =
∫ ∞

−∞
fy(x) dy, where, for each y ∈ R, fy(x) is a differentiable function of the

variable x. This is a natural generalization of the ‘solution series’ mentioned
in §0F. Instead of beginning with a discretely paramaterized family of functions
{fn}∞n=1, we begin with a continuously paramaterized family, {fy}y∈R. Instead

of combining these functions through a summation to get F (x) =
∞
∑

n=1

fn(x), we

combine them through integration, to get F (x) =
∫ ∞

−∞
fy(x) dy. However, to

make sense of such integrals as the solutions of differential equations, we must
be able to differentiate them.

Proposition 0G.1. Differentiation of Integrals

Let −∞ ≤ a < b ≤ ∞. For all y ∈ R, let fy : (a, b) −→ R be a differentiable
function, and define F : (a, b) −→ R by

F (x) =
∫ ∞

−∞
fy(x) dy, for all x ∈ (a, b).

Suppose there is a function β : R −→ R 6− such that

(a)
∫ ∞

−∞
β(y) dy < ∞.

(b) For all y ∈ R and for all x ∈ (a, b), |fy(x)| ≤ β(y) and
∣

∣f ′y(x)
∣

∣ ≤ β(y).
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Then F is differentiable, and, for all x ∈ (a, b), F ′(x) =
∫ ∞

−∞
f ′y(x) dy.

Proof. See [Fol84, Theorem 2.27(b), p.54]. 2

Example 0G.2. Let a = 0 and b = 1. For all y ∈ R and x ∈ (0, 1), let

fy(x) =
x|y|+1

1 + y4
. Thus,

F (x) =
∫ ∞

−∞
fy(x) dy =

∫ ∞

−∞

x|y|+1

1 + y4
dy.

Now, let β(y) =
1 + |y|
1 + y4

. Then

(a)
∫ ∞

−∞
β(y) dy =

∫ ∞

−∞

1 + |y|
1 + y4

dy < ∞ (check this).

(b) For all y ∈ R and all x ∈ (0, 1), |fy(x)| =
x|y|+1

1 + y4
<

1
1 + y4

<

1 + |y|
1 + y4

= β(y), and
∣

∣f ′n(x)
∣

∣ =
(|y|+ 1) · x|y|

1 + y4
<

1 + |y|
1 + y4

= β(y).

Hence the conditions of Proposition 0G.1 are satisfied, so we conclude that

F ′(x) =
∫ ∞

−∞
f ′n(x) dy =

∫ ∞

−∞

(|y|+ 1) · x|y|

1 + y4
dy. ♦

Remarks: Proposition 0G.1 is also true if the functions fy involve more than
one variable. For example, if fv,w(x, y, z) is a function of five variables, and

F (x, y, z) =
∫ ∞

−∞

∫ ∞

−∞
fu,v(x, y, z) du dv for all (x, y, z) ∈ (a, b)3.

then under similar hypothesis, we can conclude that ∂2
y F (x, y, z) =

∫ ∞

−∞

∫ ∞

−∞
∂2
y fu,v(x, y, z) du dv,

for all (x, y, z) ∈ (a, b)3.

0H Taylor polynomials

0H(i) Taylor polynomials in one dimension

Let X ⊂ R be an open set and let f : X −→ R be an N -times differentiable
function. Fix a ∈ X. The Taylor polynomial of order N for f around a is
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the function

TNa f(x) := f(a) + f ′(a) · (x− a) +
f ′′(a)

2
(x− a)2 +

f ′′′(a)
6

(x− a)3

+
f (4)(a)

4!
(x− a)4 + · · · +

f (N)(a)
N !

(x− a)N . (0H.1)

Here, f (n)(a) denotes the nth derivative of f at a [e.g. f (3)(a) = f ′′′(a)], and n!
(pronounced ‘n factorial’) is the product n · (n− 1) · · · 4 · 3 · 2 · 1. For example,

T 0
a f(x) = f(a) (a constant);
T 1
a f(x) = f(a) + f ′(a) · (x− a) (a linear function);

T 2
, a f(x) = f(a) + f ′(a) · (x− a) + f ′′(a)

2 (x− a)2 (a quadratic function);

Note that T 1
a f(x) parameterizes the tangent line to the graph of f(x) at the point

(a, f(a)) —that is, the best linear approximation of f in a neighbourhood of a.
Likewise, T 2

a f(x) is the best quadratic approximation of f in a neighbourhood
of a. In general TNa f(x) is the polynomial of degree N which provides the best
approximation of f(x) if x is reasonably close to N . The formal statement of
this is Taylor’s theorem, which states that

f(x) = TNa f(x) + O(|x− a|N+1).

Here “O(|x − a|N+1)” means some function which is smaller than a constant
multiple of |x− a|N+1. In other words, there is a constant K > 0 such that

∣

∣f(x)− TNa f(x)
∣

∣ ≤ K · |x− a|N+1.

If |x − a| is large, then |x − a|N+1 is huge, so this inequality isn’t particularly
useful. However, as |x−a| becomes small, |x−a|N+1 becomes really, really small.
For example, if |x− a| < 0.1, then |x− a|N+1 < 10−N−1. In this sense, TNa f(x)
is a very good approximation of f(x) if x is close enough to a.

Further reading. More information about Taylor polynomials can be found
in any introduction to single-variable calculus; see e.g. [Ste08, p.253-254].

0H(ii) Taylor series and analytic functions

Prerequisites: §0H(i), §0F.

Let X ⊂ R be an open set, let f : X −→ R, let a ∈ X, and suppose f is
infinitely differentiable at a. By letting N → ∞ in equation (0H.1), we obtain
the Taylor series (or power series) for f at a:

T∞a f(x) := f(a) + f ′(a)·(x−a) +
f ′′(a)

2
(x−a)2 + · · · =

∞
∑

n=0

f (n)(a)
n!

(x−a)n.

(0H.2)
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Taylor’s Theorem suggests that T∞a f(x) = f(x) if x is close enough to a. Un-
fortunately, this is not true for all infinitely differentiable functions; indeed, the
series (0H.2) might not even converge for any x 6= a. However, we have the
following result:

Proposition 0H.1. Suppose the series (0H.2) converges for some x 6= a.
In that case, there is some R > 0 such that the series (0H.2) converges uni-
formly to f(x) on the interval (a−R, a+R). Thus, T∞a f(x) = f(x) for all
x ∈ (a−R, a+R). On the other hand, (0H.2) diverges for all x ∈ (−∞, a−R)
and all x ∈ (a+R,∞). 2

The R > 0 in Proposition 0H.1 is called the radius of convergence of
the power series (0H.2), and the interval (a−R, a+R) is the interval of con-
vergence. (Note that Proposition 0H.1 says nothing about the convergence of
(0H.2) at a ± R; this varies from case to case). When the conclusion of Propo-
sition 0H.1 is true, we say that f is analytic at a.

Example 0H.2. (a) All the ‘basic’ functions of calculus are analytic every-
where on their domain: all polynomials, all rational functions, all trigonomet-
ric functions, the exponential function, the logarithm, and any sum, product,
or quotient of these functions.

(b) More generally, if f and g are analytic at a, then (f + g) and (f · g) are
analytic at a. If g(a) 6= 0, then f/g is analytic at a.

(c) If g is analytic at a, and g(a) = b, and f is analytic at b, then f ◦ g is
analytic at a. ♦

If f is infinitely differentiable at a = 0, then we can compute the Taylor series

T∞0 f(x) := c0 + c1x+ c2x
2 + c3x

3 + · · · =
∞
∑

n=0

cnx
n. (0H.3)

where cn :=
f (n)(0)
n!

, for all n ∈ N. This special case of the Taylor series (with

a = 0) is sometimes called a Maclaurin series.

Differentiating a Maclaurin series. If f is analytic at a = 0, then there
is some R > 0 such that f(x) = T∞0 f(x) for all x ∈ (−R,R). It follows that
f ′(x) = (T∞0 f)′(x), and f ′′(x) = (T∞0 f)′′(x), and so on, for all x ∈ (−R,R).
Proposition 0F.1 says that we can compute (T∞0 f)′(x), (T∞0 f)′′(x) etc. by
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‘formally differentiating’ the Maclaurin series (0H.3). Thus, we get:

f(x) = c0 + c1x + c2x
2 + c3x

3 + c4x
4 + · · · =

∞
∑

n=0

cnx
n;

f ′(x) = c1 + 2c2x + 3c3x
2 + 4c4x

3 + · · · =
∞
∑

n=1

ncnx
n−1;

f ′′(x) = 2c2 + 6c3x + 12c4x
2 + · · · =

∞
∑

n=1

n(n− 1)cnxn−2;

f ′′′(x) = 6c3 + 24c4x + · · · =
∞
∑

n=1

n(n− 1)(n− 2)cnxn−3;

(0H.4)
etc.

Further reading. More information about Taylor series can be found in any
introduction to single-variable calculus; see e.g. [Ste08, §11.10, p.734].

0H(iii) Taylor series to solve ordinary differential equations

Prerequisites: §0H(ii).

Suppose f is an unknown analytic function (so the coefficients {c0, c1, c2, . . .}
are unknown). An ordinary differential equation in f can be reformulated in
terms of the Maclaurin series in (0H.4); this yields a set of equations involving
the coefficients {c0, c1, c2, . . .}. For example, let A,B,C ∈ R be constants. The
second-order linear ODE

Af(x) + Bf ′(x) + Cf ′′(x) = 0 (0H.5)

can be reformulated as a power-series equation

0 = Ac0 + Ac1x + Ac2x
2 + Ac3x

3 + Ac4x
4 + · · ·

+ Bc1 + 2Bc2x + 3Bc3x2 + 4Bc4x3 + · · ·
+ 2Cc2 + 6Cc3x + 12Cc4x2 + · · ·

(0H.6)

When we collect like terms in the x variable, this becomes:

0 = (Ac0+Bc1+2Cc2)+(Ac1+2Bc2+6Cc3)x+(Ac2+3Bc3+12Cc4)x2+· · ·
(0H.7)

This yields an (infinite) system of linear equations

0 = Ac0 + Bc1 + 2Cc2;
0 = Ac1 + 2Bc2 + 6Cc3;
0 = Ac2 + 3Bc3 + 12Cc4;
...

...
. . . . . . . . . . . . . . .

(0H.8)
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If we define c̃n := n! cn for all n ∈ N, then the system (0H.8) reduces to the
simple linear recurrence relation:

Ac̃n + Bc̃n+1 + Cc̃n+2 = 0, for all n ∈ N. (0H.9)

[Note the relationship between (0H.9) and (0H.5); this is because, if f is analytic
and has Maclaurin series (0H.3), then c̃n = f (n)(0) for all n ∈ N.]

We can then solve the linear recurrence relation (0H.9) using standard meth-
ods (e.g. characteristic polynomials), and obtain the coefficients {c0, c1, c2, . . .}.
If the resulting power series converges, then it is a solution of the ODE (0H.5)
which is analytic in a neighbourhood of zero.

This technique for solving an ordinary differential equation is called the Power
Series Method. It is not necessary to work in a neighbourhood of zero to apply
this method; we assumed a = 0 only to simplify the exposition. The Power
Series Method can be applied to a Taylor expansion around any point in R.

We used the constant-coefficient linear ODE (0H.5) just to provide a sim-
ple example. In fact, there are much easier ways to solve these sorts of ODEs
(e.g. characteristic polynomials, matrix exponentials). However, the Power Se-
ries Method is also applicable to linear ODEs with nonconstant coefficients. For
example, if the coefficients A, B, and C in equation (0H.5) were themselves ana-
lytic functions in x, then we would simply substitute the Taylor series expansions
of A(x), B(x) and C(x) into the power series equation (0H.6). This would make
the simplification into equation (0H.7) much more complicated, but we would
still end up with a system of linear equations in {cn}∞n=0, like (0H.8). In general,
this will not simplify into a neat linear recurrence relation like (0H.9). But it
can still be solved one term at a time.

Indeed, the Power Series Method is also applicable to nonlinear ODEs. In
this case, we may end up with a system of nonlinear equations in {cn}∞n=0 instead
of the linear system (0H.8). For example, if the ODE (0H.5) contained a term
like f(x) · f ′′(x), then the system of equations (0H.8) would contain quadratic
terms like c0c2, c1c3, c2c4, etc.

Our analysis is actually incomplete, because we didn’t check that the power
series (0H.3) had a nonzero radius of convergence when we obtained the sequence
{c̃n}∞n=0 as solutions to (0H.9). If (0H.9) is a linear recurrence relation (as in the
example here), then the sequence {cn}∞n=0 will grow subexponentially, and it is
easy to show that the radius of convergence for (0H.3) will always be nonzero.
However, in the case of nonconstant coefficients or a nonlinear ODE, the power
series (0H.3) may not converge; this needs to be checked. For most of the second-
order linear ODEs we will encounter in this book, convergence is assured by the
following result.

Theorem 0H.3. (Fuchs)
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Let a ∈ R, let R > 0, and let I := (a − R, a + R). Let p, q, r : I −→ R be
analytic functions whose Taylor series at a all converges everywhere in I. Then
every solution of the ODE

f ′′(x) + p(x)f ′(x) + q(x)f(x) = r(x) (0H.10)

is an analytic function, whose Taylor series at a converges on I. The coefficients
of this Taylor series can be found using the Power Series Method.

Proof. See [RB69, Chapter 3]. 2

If the conditions for Fuchs’ theorem are satisfied (i.e. if p, q, r are all analytic
at a), then a is called an ordinary point for the ODE (0H.10). Otherwise, if one
of p, q, r is not analytic at a, then a is called a singular point for ODE (0H.10).
In this case, we can sometimes use a modification of the Power Series Method:
the Method of Frobenius. For simplicity, we will discuss this method in the
case a = 0. Consider the homogeneous linear ODE

f ′′(x) + p(x)f ′(x) + q(x)f(x) = 0. (0H.11)

Suppose that a = 0 is a singular point —i.e. either p or q is not analytic at 0.
Indeed, perhaps p and/or q are not even defined at zero (e.g. p(x) = 1/x). We
say that 0 is a regular singular point if there are functions P (x) and Q(x)
which are analytic at 0, such that p(x) = P (x)/x and q(x) = Q(x)/x2 for all
x 6= 0. Let p0 := P (0) and q0 := Q(0) (the zeroth terms in the Maclaurin series
of P and Q), and consider the indicial polynomial

x(x− 1) + p0x+ q0.

The roots r1 ≥ r2 of the indicial polynomial are called the indicial roots of the
ODE (0H.11).

Theorem 0H.4. (Frobenius)

Suppose x = 0 is a regular singular point of the ODE (0H.11), and let I be
the largest open interval of 0 where the Taylor series of both P (x) and Q(x)
converge. Let I∗ := I \ {0}. Then there are two linearly independent functions
f1, f2 : I∗ −→ R which satisfy the ODE (0H.11), and which depend on the
indicial roots r1 ≥ r2 as follows:

(a) If r1 − r2 is not an integer, then f1(x) = |x|r1
∞
∑

n=0

bnx
n and f2(x) =

|x|r2
∞
∑

n=0

cnx
n.
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(b) If r1 = r2 = r, then f1(x) = |x|r
∞
∑

n=0

bnx
n and f2(x) = f1(x) ln |x| +

|x|r
∞
∑

n=0

cnx
n.

(c) If r1 − r2 ∈ N, then f1(x) = |x|r
∞
∑

n=0

bnx
n and f2(x) = k · f1(x) ln |x| +

|x|r2
∞
∑

n=0

cnx
n, for some k ∈ R.

In all three cases, to obtain explicit solutions, substitute the expansions for f1

and f2 into the ODE (0H.11), along with the power series for P (x) and Q(x), to
obtain recurrence relations characterizing the coefficients {bn}∞n=0, {cn}∞n=0.

Proof. See [Asm05, Appendex A.6]. 2

Example 0H.5: (Bessel’s equation)

For any n ∈ N, the (2-dimensional) Bessel equation of order n is the
ordinary differential equation

x2f ′′(x) + xf ′(x) + (x2 − n2)f(x) = 0. (0H.12)

To put this in the form of ODE (0H.11), we divide by x2, to get

f ′′(x) +
1
x
f ′(x) +

(

1− n2

x2

)

f(x) = 0.

Thus, we have p(x) = 1
x and q(x) =

(

1− n2

x2

)

; hence 0 is a singular point of
ODE (0H.12), because p and q are not defined (and hence not analytic) at
zero. However, clearly p(x) = P (x)/x and q(x) = Q(x)/x2, where P (x) = 1
and Q(x) = (x2 − n2) are analytic at zero; thus 0 is a regular singular point
of ODE (0H.12). We have p0 = 1 and q0 = −n2, so the indicial polynomial
is x(x − 1) + 1x − n2 = x2 − n2, which has roots r1 = n and r2 = −n. Since
r1 − r2 = 2n ∈ N, we apply Case (c) of Frobenius’ Theorem, and look for
solutions of the form

f1(x) = |x|n
∞
∑

n=0

bnx
n and f2(x) = k · f1(x) ln |x|+ |x|−n

∞
∑

n=0

cnx
n,

(0H.13)
To identify the coefficients {bn}∞n=0, {cn}∞n=0, we substitute the power series
(0H.13) into ODE (0H.12) and simplify. The resulting solutions are called the
Bessel functions of types 1 and 2, respectively. The details can be found in
the proof of Proposition 14G.1 on page 305 of §14G. ♦
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Finally, we remark that a multivariate version of the Power Series Method
can be applied to a multivariate Taylor series, to obtain solutions to partial
differential equations. (However, this book provides many other, much nicer
methods for solving linear PDEs with constant coefficients).

Further reading. More information about the power series method and the
method of Frobenius can be found in any introduction to ordinary differential
equations. See e.g. [Cod89, §3.9,p.138 and §4.6,p.162]. Some books on partial
differential equations also contain this information (usually in an appendix); see
e.g. [Asm05, Appendix A.5-A.6].

0H(iv) Taylor polynomials in two dimensions

Prerequisites: §0B. Recommended: §0H(i).

Let X ⊂ R2 be an open set and let f : X −→ R be an N -times differentiable
function. Fix a = (a1, a2) ∈ X. The Taylor polynomial of order N for f
around a is the function

TNa f(x1, x2) := f(a) + ∂1 f(a) · (x1 − a1) + ∂2 f(a) · (x2 − a2)

+
1
2

(

∂2
1 f(a) · (x1 − a1)2 + 2 ∂1∂2 f(a) · (x1 − a1)(x2 − a2) + ∂2

2 f(a) · (x2 − a2)2
)

+
1
6

(

∂3
1 f(a) · (x1 − a1)3 + 3 ∂2

1∂2 f(a) · (x1 − a1)2(x2 − a2)

+ 3 ∂1∂
2
2 f(a) · (x1 − a1)(x2 − a2)2 + ∂3

2 f(a) · (x1 − a1)3
)

+
1
4!

(

∂4
1 f(a) · (x1 − a1)4 + 4 ∂3

1∂2 f(a) · (x1 − a1)3(x2 − a2)

+ 6 ∂2
1∂

2
2 f(a) · (x1 − a1)2(x2 − a2)2

+ 4 ∂1∂
3
2 f(a) · (x1 − a1)(x2 − a2)2 + ∂4

2 f(a) · (x1 − a1)4
)

+ · · · · · ·

· · · · · · +
1
N !

N
∑

n=0

(

N
n

)

∂
(N−n)
1 ∂n2 f(a) · (x1 − a1)N−n(x2 − a2)n.

For example, T 0
a f(x1, x2) = f(a) is just a constant, while

T 1
a f(x1, x2) = f(a) + ∂1 f(a) · (x1 − a1) + ∂2 f(a) · (x2 − a2)

is an affine function which parameterizes the tangent plane to the surface graph
of f(x) at the point (a, f(a)) —that is, the best linear approximation of f in a
neighbourhood of a. In general, TNa f(x) is the 2-variable polynomial of degree
N which provides the best approximation of f(x) if x is reasonably close to N .
The formal statement of this is multivariate Taylor’s theorem, which states that

f(x) = TNa f(x) + O(|x− a|N+1).
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For example, if we set N = 1, we get:

f(x1, x2) = f(a) + ∂1 f(a) · (x1− a1) + ∂2 f(a) · (x2− a2) + O(|x− a|2).

0H(v) Taylor polynomials in many dimensions

Prerequisites: §0E(i). Recommended: §0H(iv).

Let X ⊂ RD be an open set and let f : X −→ R be an N -times differentiable
function. Fix a = (a1, . . . , aD) ∈ X. The Taylor polynomial of order N for
f around a is the function

TNa f(x) := f(a) +∇f(a)† · (x− a) +
1
2

(x− a)† · D2f(a) · (x− a) + · · ·

· · ·+ 1
N !

∑

n1+···+nD=N

(

N
n1 . . . nD

)

∂n1
1 ∂n2

2 · · · ∂
nD
D f(a) · (x1 − a1)n1(x2 − a2)n2 · · · (xD − aD)nD .

Here, we regard x and a as column vectors, and the transposes x†, a† etc. as row
vectors. ∇f(a)† := [∂1 f(a), ∂2 f(a), . . . , ∂D f(a)] is the (transposed) gradient
vector of f at a, and

D2f :=











∂2
1f ∂1∂2f . . . ∂1∂Df

∂2∂1f ∂2
2f . . . ∂2∂Df

...
...

. . .
...

∂D∂1f ∂D∂2f . . . ∂2
Df











is the Hessian derivative matrix of f . For example, T 0
a f(x) = f(a) is just a

constant, while
T 1

a f(x) = f(a) +∇f(a)† · (x− a)

is an affine function which paramaterizes the tangent hyperplane to the hypersur-
face graph of f(x) at the point (a, f(a)) —that is, the best linear approximation
of f in a neighbourhood of a. In general TNa f(x) is the multivariate polynomial
of degree N which provides the best approximation of f(x) if x is reasonably
close to N . The formal statement of this is multivariate Taylor’s theorem, which
states that

f(x) = TNa f(x) + O(|x− a|N+1).

For example, if we set N = 2, we get

f(x) = f(a)+∇f(a)† ·(x−a) +
1
2

(x−a)† ·D2f(a) ·(x−a) + O
(

|x− a|3
)

.
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Index

d’Alembert
ripple solution (initial velocity), 395
solution to wave equation, 398, 401, 531
travelling wave solution (initial position),

393
Abel mean, 461
Abel sum, 176
Abel’s test, 130
Abelian group, 177
Absolute convergence

of Fourier series, 174
Absolutely integrable function

on half-line R 6− = [0,∞), 510
on the real line R, 488
on the two-dimensional plane R2, 504
on the two-dimensional plane R3, 507

Airy’s equation, 67, 99
Algebraic topology, 484
Analytic

harmonic functions are, 18
Analytic extension, 453
Analytic function

definition, 570
Fourier coefficient decay rate, 207

Analytic functions
convolutions of, 474
Fourier transform of, 476
improper integral of, 473

Annulus, 274
Antiderivative, complex, 448
Approximation of identity

definition (on R), 379
definition (on RD), 383
Gauss-Weierstrass Kernel

many-dimensional, 393
one-dimensional, 387

on [−π, π], 199, 218
Poisson kernel (on disk), 409
Poisson kernel (on half-plane), 405
use for smooth approximation, 411

Atiyah-Singer Index Theorem, 484
Autocorrelation Function, 499

Baguette example, 252

Balmer, J.J, 54
BC, see Boundary conditions
Beam equation, 67, 99
Bernstein’s theorem, 175
Bessel functions, 574

and eigenfunctions of Laplacian, 292
definition, 292
roots, 296

Bessel’s Equation, 292
Bessel’s equation, 574
Bessel’s inequality, 195
Big ‘O’ notation, see Order O(1/z)
Bilinearity, 107
Binary expansion, 115
Borel-measurable set, 110
Borel-measurable subset, 211
Boundary

definition of, 71
examples (for various domains), 71

∂X, see Boundary
Boundary Conditions

definition, 72
Homogeneous Dirichlet, see Dirichlet Bound-

ary Conditions, Homogeneous
Homogeneous Mixed, see Mixed Bound-

ary Conditions, Homogeneous
Homogeneous Neumann, see Neumann Bound-

ary Conditions, Homogeneous
Homogeneous Robin, see Mixed Bound-

ary Conditions, Homogeneous
Nonhomogeneous Dirichlet, see Dirichlet

Boundary Conditions, Nonhomoge-
neous

Nonhomogeneous Mixed, see Mixed Bound-
ary Conditions, Nonhomogeneous

Nonhomogeneous Neumann, see Neumann
Boundary Conditions, Nonhomoge-
neous

Nonhomogeneous Robin, see Mixed Bound-
ary Conditions, Nonhomogeneous

Periodic, see Periodic Boundary Condi-
tions

Boundary conditions



and harmonic conjugacy, 421
Boundary value problem, 72
Bounded variation, 175
Branches

of complex logarithm, 449
of complex roots, 449

Brownian Motion, 21
Burger’s equation, 67, 99
BVP, see Boundary value problem

C1[0, L], 145
C1[0, π], 137
C1 interval, 138, 145
Casorati-Weierstrass Theorem, 471
Cauchy problem, see Initial value problem
Cauchy Residue Theorem, see Residue Theo-

rem
Cauchy’s Criterion, 130
Cauchy’s integral formula, 443
Cauchy’s Theorem

on contours, 438
on oriented boundaries, 482

Cauchy-Bunyakowski-Schwarz Inequality
for complex functions, 109
for sequences in l2(N), 204
in L2, 108

Cauchy-Euler Equation
as Sturm-Liouville equation, 344
polar eigenfunctions of 4 (2 dimensions),

314
zonal eigenfunctions of 4 (3 dimensions),

361
Cauchy-Riemann differential equations, 416
Cauchy-Schwarz inequality, see Cauchy-Bunyakowski-

Schwarz Inequality
CBS inequality, see Cauchy-Bunyakowski-Schwarz

Inequality
Cesáro sum, 176
Character (of a group), 177
Chasm in streambed (flow), 434
Chebyshev polynomial, 278
Codisk, 273
Compact abelian topological group, 177
Complex nth root, 449
Complex antiderivative, 448

as complex potential, 430
Complex derivative, 415
Complex logarithm, 449
Complex numbers

addition, 551
conjugate, 553
exponential, 551

derivative of, 551

multiplication, 551
norm, 553
polar coordinates, 551

Complex potentials, 430
Complex-analytic, see Holomorphic function
Complex-differentiable, 415
Componentwise addition, 57
Conformal

⇔ holomorphic, 423
Conformal isomorphism, 423
Conformal map

definition, 422
Riemann Mapping Theorem, 429

Connected
definition, 451

Conservation of energy
in wave equation, 92

Continuously differentiable, 137, 144
Contour, 434

piecewise smooth, 436
purview of, 437
smooth, 435

Contour integral, 435, 436
Convergence

as “approximation”, 117
in L2, 118
of complex Fourier series, 173
of Fourier cosine series, 142, 146
of Fourier series; Bernstein’s Theorem, 175
of Fourier sine series, 138, 145
of function series, 129
of multidimensional Fourier series, 187
of real Fourier series, 162
of two-dimensional Fourier (co)sine series,

183
of two-dimensional mixed Fourier series,

185
pointwise, 120
pointwise =⇒ L2, 120
semiuniform, 128
uniform, 125
Uniform =⇒ pointwise, 127
Uniform =⇒ L2, 127

Convolution
=⇒ multiplication of Fourier coefficients,

463
of 2π-periodic functions, 214
of analytic functions, 474
with the Dirichlet kernel, 197, 464
with the Poisson kernel, 462

convolution
continuity of, 410
definition of (f ∗ g), 17, 378



differentiation of, 410
Fourier transform of, 494
is associative (f ∗ (g ∗ h) = (f ∗ g) ∗ h),

409
is commutative (f ∗ g = g ∗ f), 378, 409
is distributive (f ∗ (g + h) = (f ∗ g) +

(f ∗ h)), 409
use for smooth approximation, 411

Convolution ring, 217
Coordinates

cylindrical, 555
polar, 554
rectangular, 554
spherical, 556

Cosine series, see Fourier series, cosine
Coulomb potential (electrostatics), 14
Coulomb’s Law (electrostatics), 15
Countour integral

is homotopy-invariant, 440
Curl, 418
Cycle (in homology), 482
Cylindrical coordinates, 555

4, see Laplacian
d’Alembert

ripple solution (initial velocity), 395
solution to wave equation, 398, 401, 531
travelling wave solution (initial position),

393
Davisson, C.J., 37
de Broglie, Louis

‘matter wave’ hypothesis, 37
de Broglie wavelength, 43

Decay at∞ of order O(1/z), see Order O(1/z)
Decay at ∞ of order o(1/z), see Order o(1/z)
Decaying gradient condition, 283
Dense subspace of L2[−π, π], 207
∂X, see Boundary
∂⊥ u, see Outward normal derivative
Difference operator, 60
Differentiation as linear operator, 61
Diffraction of ‘matter waves’, 37
Dirac delta function δ0, 379, 404
Dirac delta function δ0, 528
Dirichlet Boundary Conditions

Homogeneous
2-dim. Fourier sine series, 183
definition, 73
Fourier sine series, 138
multidim. Fourier sine series, 187
physical interpretation, 73

Nonhomogeneous
definition, 75

Dirichlet kernel, 197, 464
Dirichlet problem

around chasm, 433
definition, 75
on a half-disk, 433
on annulus

Fourier solution, 287
on bi-infinite strip, 432
on codisk

Fourier solution, 284
on cube

nonconstant, nonhomog. Dirichlet BC,
270

one constant nonhomog. Dirichlet BC,
270

on disk
definition, 406
Fourier solution, 278
Poisson (impulse-response) solution, 290,

407
on half-plane

definition, 403, 537
Fourier solution, 538
physical interpretation, 403
Poisson (impulse-response) solution, 404,

539
on half-plane with vertical obstacle, 433
on interval [0, L], 76
on off-centre annulus, 433
on quarter-plane

conformal mapping solution, 428
on square

four constant nonhomog. Dirichlet BC,
243

nonconstant nonhomog. Dirichlet BC,
244

one constant nonhomog. Dirichlet BC,
241

two compartments separated by aperture,
433

unique solution of, 87
Dirichlet test, 130
Distance

L2, 117
L∞, 124
uniform, 124

Divergence (div V )
in many dimensions, 560
in one dimension, 558
in two dimensions, 559

Divergence theorem, 563
Dot product, 103
Drumskin



round, 302
square, 259, 261

ε-tube, 124
Eigenfunction

definition, 63
of differentiation operator, 158, 168
of Laplacian, 63, 67

polar-separated, 292
polar-separated; homog. Dirichlet BC,

296
Eigenfunctions

of ∂2
x, 345

of self-adjoint operators, 345
of the Laplacian, 347

Eigenvalue
definition, 63
of Hamiltonian as energy levels, 46

Eigenvector
definition, 63
of Hamiltonian as stationary quantum states,

46
Eikonal equation, 67, 99
Electric field, 15
Electric field lines, 431
Electrostatic potential, 14, 431
Elliptic differential equation, 98

motivation: polynomial formalism, 371
two-dimensional, 96

Elliptic differential operator
definition, 96, 98
divergence form, 349
self-adjoint

eigenvalues of, 349
if symmetric, 349

symmetric, 349
Entire function, 471
Equipotential contour, 430
Error function Φ, 390
Essential singularity, 471
Euler’s formula, 551
Even extension, 170
Even function, 168
Even-odd decomposition, 169
Evolution equation, 69
Extension

even, see Even extension
odd, see Odd extension
odd periodic, see Odd Periodic Extension

Φ (‘error function’ or ‘sigmoid function’), 390
Factorial, 569

gamma function, 520

Field of fractions, 472
Flow

along river bank, 434
around peninsula, 434
confined to domain, 430
irrotational, 418
out of pipe, 434
over chasm, 434
sourceless, 418
sourceless and irrotational, 418, 430

Fluid
incompressible and nonturbulent, 430

Fluid dynamics, 430
Flux across boundary

in R2, 562
in RD, 563

Fokker-Plank equation, 19
is homogeneous linear, 64
is parabolic PDE, 98

Forced heat equation
unique solution of, 91

Forced wave equation
unique solution of, 94

Fourier (co)sine transform
definition, 510
inversion, 510

Fourier cosine series, see Fourier series, cosine
Fourier series

absolute convergence, 174
convergence; Bernstein’s theorem, 175
failure to converge pointwise, 175

Fourier series, (co)sine
of derivative, 158
of piecewise linear function, 156
of polynomials, 148
of step function, 153
relation to real Fourier series, 171

Fourier series, complex
coefficients, 172
convergence, 173
definition, 172
relation to real Fourier series, 174

Fourier series, cosine
coefficents

on [0, π], 141
on [0, L], 146

convergence, 142, 146
definition

on [0, π], 141
on [0, L], 146

is even function, 169
of f(x) = cosh(αx), 143
of f(x) = sin(mπx/L), 146



of f(x) = sin(mx), 143
of f(x) = x, 148
of f(x) = x2, 148
of f(x) = x3, 148
of f(x) ≡ 1, 143, 146
of half-interval, 154

Fourier series, multidimensional
complex, 191
convergence, 187
cosine

coefficients, 186
series, 186

Derivatives of, 192
mixed

coefficients, 187
series, 187

sine
coefficients, 186
series, 186

Fourier series, real
coefficents, 161
convergence, 162
definition, 161
of f(x) = x, 164
of f(x) = x2, 164
of derivative, 168
of piecewise linear function, 167
of polynomials, 163
of step function, 165
relation to complex Fourier series, 174
relation to Fourier (co)sine series, 171

Fourier series, sine
coefficents

on [0, π], 137
on [0, L], 144

convergence, 138, 145
definition

on [0, π], 137
on [0, L], 144

is odd function, 169
of f(x) = cos(mπx/L), 145
of f(x) = cos(mx), 140
of f(x) = sinh(απx/L), 145
of f(x) = sinh(αx), 140
of f(x) = x, 148
of f(x) = x2, 148
of f(x) = x3, 148
of f(x) ≡ 1, 140, 145
of tent function, 155, 159

Fourier series, two-dimensional
convergence, 183
cosine

coefficients, 182

definition, 182
sine

coefficients, 179
definition, 179
of f(x, y) = x · y, 179
of f(x, y) ≡ 1, 182

Fourier series, two-dimensional, mixed
coefficients, 185
convergence, 185
definition, 185

Fourier sine series, see Fourier series, sine
Fourier transform

D-dimensional
inversion, 508

asymptotic decay, 492
convolution, 494
D-dimensional

definition, 508
derivative of, 496
evil twins of, 500
is continuous, 492
of analytic function, 476
one-dimensional

definition, 488
inversion, 488, 491
of box function, 489
of Gaussian, 497
of Poisson kernel (on half-plane), 539
of rational functions, 479
of symmetric exponential tail function,

491
rescaling, 495
smoothness vs. asymptotic decay, 497
three-dimensional

definition, 507
inversion, 507
of ball, 507

translation vs. phase shift, 494
two-dimensional

definition, 504
inversion, 504, 505
of box function, 505
of Gaussian, 506

Fourier’s Law of Heat Flow
many dimensions, 4
one-dimension, 4

Fourier-Bessel series, 296
Frequency spectrum, 53
Frobenius, method of, 573

to solve Bessel equation, 306
Fuchs power series solution to ODE, 573
Fuel rod example, 255
Functions as vectors, 58



Fundamental solution, 385
heat equation (many-dimensional), 393
heat equation (one-dimensional), 388

Fundamental theorem of calculus, 559
as special case of Divergence Theorem,

563

∇2, see Laplacian
Gamma function, 520
Gauss theorem, see Divergence theorem
Gauss’s Law (electrostatics), 15
Gauss-Weierstrass Kernel

convolution with, see Gaussian Convolu-
tion

many-dimensional
definition, 8
is approximation of identity, 393

one-dimensional, 385, 528
definition, 6
is approximation of identity, 387

two-dimensional, 8
Gaussian

one-dimensional
cumulative distribution function of, 390
Fourier transform of, 497
integral of, 390

stochastic process, 21
two-dimensional

Fourier transform of, 506
Gaussian Convolution, 388, 392, 530
General Boundary Conditions, 82
Generation equation, 12

equilibrium of, 13
Generation-diffusion equation, 12
Germer, L.H, 37
Gibbs phenomenon, 140, 145, 152
Gradient ∇u

many-dimensional, 558
two-dimensional, 557

Gradient vector field
many-dimensional, 558
two-dimensional, 557

Gravitational potential, 14
Green’s function, 379
Green’s Theorem, 562

as special case of Divergence Theorem,
563

Guitar string, 71

Hölder continuous, 174
Haar basis, 115
Hamiltonian operator

eigenfunctions of, 46

in Schrödinger equation, 41
is self-adjoint, 343

Harmonic ⇒ locally holomorphic, 417
Harmonic analysis, 177

noncommutative, 350
Harmonic conjugate, 417

swaps Neumann and Dirichlet BC, 421
Harmonic function

‘saddle’ shape, 10
analyticity, 18
convolution against Gauss-Weierstrass, 413
definition, 10
Maximum Principle, 17
Mean value theorem, 16, 316, 413
separated (Cartesian), 356
smoothness properties, 18
two-dimensional

separated (Cartesian), 354
two-dimensional, separated (polar coordi-

nates), 274
Harp string, 231
Hausdorff-Young inequality, 503
HDBC, see Dirichlet Boundary Conditions, Ho-

mogeneous
Heat equation

definition, 8
derivation and physical interpretation

many dimensions, 7
one-dimension, 5

equilibrium of, 9
fundamental solution of, 388, 393
Initial conditions: Heaviside step func-

tion, 388
is evolution equation., 69
is homogeneous linear, 64
is parabolic PDE, 96, 98
norm decay, 89
on 2-dim. plane

Fourier transform solution, 528
on 3-dim. space

Fourier transform solution, 529
on cube; Homog. Dirichlet BC

Fourier solution, 266
on cube; Homog. Neumann BC

Fourier solution, 268
on disk; Homog. Dirichlet BC

Fourier-Bessel solution, 300
on disk; Nonhomog. Dirichlet BC

Fourier-Bessel solution, 301
on interval; Homog. Dirichlet BC

Fourier solution, 225
on interval; Homog. Neumann BC

Fourier solution, 227



on real line
Fourier transform solution, 527
Gaussian Convolution solution, 388, 530

on square; Homog. Dirichlet BC
Fourier solution, 247

on square; Homog. Neumann BC
Fourier solution, 249

on square; Nonhomog. Dirichlet BC
Fourier solution, 251

on unbounded domain
Gaussian Convolution solution, 392

unique solution of, 91
Heaviside step function, 388
Heisenberg Uncertainty Principle, see Uncer-

tainty Principle
Heisenberg, Werner, 513
Helmholtz equation, 67, 99

as Sturm-Liouville equation, 344
is not evolution equation., 70

Hermitian, 109
Hessian derivative, 26
Hessian derivative matrix, 576
HNBC, see Neumann Boundary Conditions,

Homogeneous
Holomorphic

⇔ conformal, 423
⇔ sourceless irrotational flow, 418
⇒ complex-analytic, 450
⇒ harmonic, 417
function, 416

Homogeneous Boundary Conditions
Dirichlet, see Dirichlet Boundary Condi-

tions, Homogeneous
Mixed, see Mixed Boundary Conditions,

Homogeneous
Neumann, see Neumann Boundary Con-

ditions, Homogeneous
Robin, see Mixed Boundary Conditions,

Homogeneous
Homogeneous linear differential equation

definition, 64
superposition principle, 65

Homologous (cycles), 482
Homology group, 484
Homology invariance (of chain integrals), 483
Homotopic (contours), 439
Homotopy invariance

of contour integration, 440
Huygen’s Principle, 536
Hydrogen atom

Balmer lines, 53
Bohr radius, 52
energy spectrum, 53

frequency spectrum, 53
ionization potential, 52
Schrödinger equation, 42
Stationary Schrödinger equation, 51

Hyperbolic differential equation, 98
motivation: polynomial formalism, 371
one-dimensional, 96

I/BVP, see Initial/Boundary value problem
Ice cube example, 267
Identity Theorem, 452
Imperfect Conductor (Robin BC), 81
Impermeable barrier (Homog. Neumann BC.,

77
Improper integral

of analytic functions, 473
Impulse function, 379
Impulse-response function

four properties, 375
interpretation, 375

Impulse-response solution
to Dirichlet problem on disk, 290, 407
to half-plane Dirichlet problem, 404, 539
to heat equation, 392
to heat equation (one dimensional), 388
to wave equation (one dimensional), 398

Indelible singularity, 464
indicial polynomial, 573
indicial roots, 573
∞, see Point at infinity
Initial conditions, 70
Initial position problem, 230, 259, 302, 393
Initial value problem, 70
Initial velocity problem, 232, 261, 302, 395
Initial/Boundary value problem, 72
Inner product

of complex functions, 109
of functions, 105, 107
of functions (complex-valued), 172
of vectors, 103

int (X), see Interior
Integral domain, 471
Integral representation formula, 447
Integration as linear operator, 62
Integration by parts, 147
Interior (of a domain), 71
Irrotational flow, 418
IVP, see Initial value problem

Jordan Curve Theorem, 437

Kernel
convolution, see Impulse-response func-

tion



Gauss-Weierstrass, see Gauss-Weierstrass
Kernel

Poisson
on disk, see Poisson Kernel (on disk)
on half-plane, see Poisson Kernel (on

half-plane)
Kernel of linear operator, 63

L2 norm (‖f‖2), see Norm, L2

L2-convergence, see Convergence in L2

L2-distance, 117
L2-norm, 118
L2-space, 40, 106, 107
L∞-convergence, see Convergence, uniform
L∞-distance, 124
L∞-norm (‖f‖∞), 123
L1(R 6−), 510
L1(R), 488
L1(R2), 504
L1(R3), 507
L1(RD), 508
L2(X), 40, 106, 107
L2

even
[−π, π], 169

L2
odd

[−π, π], 169
Landau big ‘O’ notation, see Order O(1/z)
Landau small ‘o’ notation, see Order o(1/z)
Laplace equation

definition, 9
is elliptic PDE, 96, 98
is homogeneous linear, 64
is not evolution equation., 70
nonhomogeneous Dirichlet BC, see Dirich-

let Problem
on codisk

physical interpretation, 283
on codisk; homog. Neumann BC

Fourier solution, 285
on disk; homog. Neumann BC

Fourier solution, 280
one-dimensional, 10
polynomial formalism, 370
quasiseparated solution, 369
separated solution (Cartesian), 356
separated solution of, 12
three-dimensional, 11
two-dimensional, 10

separated solution (Cartesian), 354, 370
separated solution (polar coordinates),

274
unique solution of, 86

Laplace transform, 515
Laplace-Beltrami operator, 21, 350
Laplacian, 7

eigenfunctions (polar-separated), 292
eigenfunctions (polar-separated) homog.

Dirichlet BC, 296
eigenfunctions of, 347
in polar coordinates, 274
is linear operator, 62
is self-adjoint, 342
spherical mean formula, 16, 25

Laurent expansion, 465
Lebesgue integral, 110, 211
Lebesgue’s Dominated Convergence Theorem,

121
Left-hand derivative (f 〉(x)), 201
Left-hand limit (limy↗x f(y)), 201
Legendre Equation, 361
Legendre equation

as Sturm-Liouville equation, 344
Legendre polynomial, 362
Legendre series, 368
Leibniz rule

for divergence, 561
for gradients, 558
for Laplacians, 9
for normal derivatives, 565

limy↗x f(y), see Left-hand limit
limy↘x f(y), see Right-hand limit
Linear differential operator, 62
Linear function, see Linear operator
Linear operator

definition, 60
kernel of, 63

Linear transformation, see Linear operator
Liouville’s equation, 19
Liouville’s theorem, 447
Logarithm, complex, 449
Lp norm

on [−π, π], 175
on R, 503

Lp(R), 503
Lp[−π, π], 175

Maclaurin series, 570
derivatives of, 570

Maximum Principle, 17
Mean Value Theorem

for harmonic functions, 445
for holomorphic functions, 444

Mean value theorem, 316, 413
for harmonic functions, 16

Meromorphic function, 466
Method of Frobenius, see Frobenius, method

of
Minkowski’s Inequality, 213



Mixed Boundary Conditions
Homogeneous

definition, 81
Nonhomogeneous

as Dirichlet, 81
as Neumann, 81
definition, 81

Mollifier, 220
Monge-Ampère equation, 67, 99
Multiplication operator

continuous, 62
discrete, 61

∇2, see Laplacian
Negative definite matrix, 96, 98
Neumann Boundary Conditions

Homogeneous
2-dim. Fourier cosine series, 183
definition, 77
Fourier cosine series, 142
multidim. Fourier cosine series, 187
physical interpretation, 77

Nonhomogeneous
definition, 80
physical interpretation, 80

Neumann Problem
definition, 80

Neumann problem
unique solution of, 87

Newton’s law of cooling, 81
Nonhomogeneous Boundary Conditions

Dirichlet, see Dirichlet Boundary Condi-
tions, Nonhomogeneous

Mixed, see Mixed Boundary Conditions,
Nonhomogeneous

Neumann, see Neumann Boundary Con-
ditions, Nonhomogeneous

Robin, see Mixed Boundary Conditions,
Nonhomogeneous

Nonhomogeneous linear differential equation
definition, 65
subtraction principle, 66

Norm
L2 (‖f‖2), 40, 106, 107, 109
of a vector, 104
uniform (‖f‖∞), 123

Norm decay
in heat equation, 89

Normal derivative, see Outward normal deriva-
tive

Normal vector
in RD, 562

Normal vector field

in R2, 562
Nullhomotopic, 437

O(1/z), see Order O(1/z)
o(1/z), see Order o(1/z)
Ocean pollution, 403
Odd extension, 170
Odd function, 169
Odd periodic extension, 399
One-parameter semigroup, 413, 525
Open source, xiii
Order

of differential equation, 70
of differential operator, 70

Order O(1/z), 476
Order o(1/z), 472
ordinary point for ODE, 573
Oriented boundary (of a subset of C), 482
Orthogonal

basis, see Orthogonal basis
eigenfunctions of self-adjoint operators, 345
functions, 112
set, see Orthogonal set
set of functions, 112
trigonometric functions, 112, 113
vectors, 103

Orthogonal basis
eigenfunctions of Laplacian, 347
for L2([0, X]× [0, Y ]), 183, 185
for L2([0, X1]× ...× [0, XD]), 187
for L2(D), using Fourier-Bessel functions,

297
for L2[−π, π]

using (co)sine functions, 162
for L2[0, π]

using cosine functions, 142
using sine functions, 138

for even functions Leven[−π, π], 170
for odd functions Lodd[−π, π], 170
of functions, 131

Orthogonal set
of functions, 131

Orthonormal basis
for L2[−L,L]

using exp(inx) functions, 173
of functions, 131
of vectors, 104

Orthonormal set of functions, 112
Ostrogradsky’s Theorem, see Divergence the-

orem
Outward normal derivative

definition in special cases, 76
Outward normal derivative (∂⊥ u)



examples (various domains), 76
Outward normal derivative (∂⊥ u)

physical interpretation, 76
Outward normal derivative∂⊥ u)

abstract definition, 564

Parabolic differential equation, 98
motivation: polynomial formalism, 371
one-dimensional, 96

Parseval’s equality
for Fourier transforms, 502
for orthonormal bases, 132
for vectors, 104

∂X, see Boundary
∂⊥ u, see Outward normal derivative
Peninsula (flow), 434
Perfect Conductor (Homog. Dirichlet BC., 73
Perfect Insulator (Homog. Neumann BC., 77
Perfect set

definiton, 451
Periodic Boundary Conditions

complex Fourier series, 173
definition

on cube, 84
on interval, 82
on square, 83

interpretation
on interval, 82
on square, 83

real Fourier series, 162
Φ (‘error function’ or ‘sigmoid function’), 390
Piano string, 71
Piecewise C1, 138, 145
Piecewise continuously differentiable, 138, 145
Piecewise linear function, 155, 167
Piecewise smooth boundary, 85

in R2, 561
in RD, 563

Pipe into lake (flow), 434
Plancherel’s theorem, 503
Plucked string problem, 230
Point at infinity, 465
Pointwise convergence, see Convergence, point-

wise
Poisson equation

definition, 13
electrostatic potential, 14
is elliptic PDE, 98
is nonhomogeneous, 66
on cube; Homog. Dirichlet BC

Fourier solution, 272
on cube; Homog. Neumann BC

Fourier solution, 272

on disk; Homog. Dirichlet BC
Fourier-Bessel solution, 298

on disk; nonhomog. Dirichlet BC
Fourier-Bessel solution, 299

on interval; Homog. Dirichlet BC
Fourier solution, 235

on interval; Homog. Neumann BC
Fourier solution, 235

on square; Homog. Dirichlet BC
Fourier solution, 255

on square; Homog. Neumann BC
Fourier solution, 257

on square; Nonhomog. Dirichlet BC
Fourier solution, 258

one-dimensional, 13
unique solution of, 88

Poisson Integral Formula
for harmonic functions on disk, 290
for holomorphic functions on disk, 445

Poisson kernel
and Abel mean of Fourier series, 462
Fourier series of, 463

Poisson kernel (on disk)
definition, 290, 407
in complex plane, 445
in polar coordinates, 290, 407
is approximation of identity, 409, 464
picture, 407

Poisson kernel (on half-plane)
definition, 404, 539
Fourier transform of, 539
is approximation of identity, 405
picture, 404

Poisson solution
to Dirichlet problem on disk, 290, 407
to half-plane Dirichlet problem, 404, 433,

539
to three-dimensional wave equation, 534

Poisson’s equation
is not evolution equation., 70

Polar coordinates, 554
Pole, 465

simple, 464
Pollution, oceanic, 403
Polynomial formalism

definition, 369
elliptic, parabolic & hyperbolic, 371
Laplace equation, 370
telegraph equation, 371, 372

Polynomial symbol, 370
Positive definite matrix, 96, 97
Positive-definite

inner product is, 107, 109



Potential, 14
complex, 430
Coulomb, 14
electrostatic, 14, 431
gravitational, 14
of a flow, 430

Potential fields and Poisson’s equation, 14
Power series, 569
Power series method, 571

to solve Legendre equation, 364
Power spectrum, 500
Punctured plane, 273
Purview (of a contour), 437
Pythagorean formula

in RN , 104
in L2, 131

Quantization of energy
hydrogen atom, 53
in finite potential well, 48
in infinite potential well, 50

Quantum numbers, 50
Quasiseparated solution, 369

of Laplace equation, 369

Reaction kinetic equation, 19
Reaction-diffusion equation, 20, 67, 99

is nonlinear, 66
Rectangular coordinates, 554
regular singular point for ODE, 573
Removable singularity, 464
Residue, 465
Residue Theorem, 467
Riemann integrable function, 209
Riemann integral

of bounded function on [−π, π], 209
of step function on [−π, π], 208
of unbounded function on [−π, π], 210

Riemann Mapping Theorem, 429
Riemann Sphere, 469
Riemann surface, 449
Riemann-Lebesgue Lemma

for Fourier series, 197
for Fourier transforms, 492

Riesz-Thorin interpolation, 503
Right-hand derivative (f 〈(x)), 201
Right-hand limit (limy↘x f(y)), 200
River bank (flow), 434
Robin Boundary Conditions

Homogeneous, see Mixed Boundary Con-
ditions, Homogeneous

Nonhomogeneous, see Mixed Boundary
Conditions, Nonhomogeneous

Rodrigues Formula, 365
Root, complex, 449
Roots of unity, 449
Rydberg, J.R, 54

Scalar conservation law, 67, 99
Schrödinger Equation

abstract, 41
is evolution equation, 99
is linear, 67
momentum representation, 512
positional, 41

Schrödinger Equation, Stationary, 46
Schrödinger Equation

abstract, 64
is evolution equation., 69
of electron in Coulomb field, 41
of free electron, 41

solution, 42
of hydrogen atom, 42

Schrödinger Equation, Stationary, 70
hydrogen atom, 51
of free electron, 46
potential well (one-dimensional)

finite voltage, 47
infinite voltage, 49

potential well (three-dimensional), 50
Sectionally smooth, see Piecewise smooth
Self-adjoint

∂2
x, 341

multiplication operators, 341
Self-adjoint operator

definition, 340
eigenfunctions are orthogonal, 345
Laplacian, 342
Sturm-Liouville operator, 343

Semidifferentiable, 201
separation constant, 354, 356
Separation of variables

boundary conditions, 373
bounded solutions, 372
description

many dimensions, 355
two dimensions, 353

Laplace equation
many-dimensional, 356
two-dimensional, 354, 370

telegraph equation, 371, 372
Sesquilinearity, 109
Sigmoid function Φ, 390
Simple closed curve, see Contour
Simple function, 211
Simple pole, 464



Simply connected, 429, 447
Sine series, see Fourier series, sine
singular point for ODE, 573
Singularity

essential, 471
indelible, 464
of holomorphic function, 439
pole, 464
removable, 464

Small ‘o’ notation, see Order o(1/z)
Smooth approximation (of function), 411
Smooth boundary, 85

in RD, 563
Smooth graph, 85
Smooth hypersurface, 85
Smoothness vs. asymptotic decay

of Fourier coefficients, 206
of Fourier transform, 497

Soap bubble example, 279
Solution kernel, 379
Sourceless flow, 418
Spectral signature, 54
Spectral theory, 350
Spherical coordinates, 556
Spherical harmonics, 350
Spherical mean

definition, 24
formula for Laplacian, 16, 25
Poisson soln. to wave equation, 534
solution to 3-dim. wave equation, 534

spherically symmetric, 17
Stable family of probability distributions, 413,

525
Standing wave

one-dimensional, 30
two-dimensional, 32

Stationary Schrödinger equation
as Sturm-Liouville equation, 344

Step[−π, π], see Step function
Step function, 153, 164, 208
Stokes theorem, see Divergence theorem
Streamline, 430
Struck string problem, 232
Sturm-Liouville equation, 344
Sturm-Liouville operator

is self-adjoint, 343
self-adjoint

eigenvalues of, 348
Subtraction principle for nonhomogeneous lin-

ear PDE, 66
Summation operator, 60
Superposition principle for homogeneous lin-

ear PDE, 65

Tangent (hyper)plane, 562
Tangent line, 561
Taylor polynomial

many-dimensional, 576
one-dimensional, 569
two-dimensional, 575

Taylor series, 569
Taylor’s theorem

many-dimensional, 576
one-dimensional, 569
two-dimensional, 575

Telegraph equation
definition, 34
is evolution equation., 69
polynomial formalism, 371, 372
separated solution, 371, 372

Tent function, 155, 159
Thompson, G.P, 37
Topological group, 177
Torus, 83
Total variation, 175
Trajectory

of flow, 430
Transport equation, 18
Travelling wave

one-dimensional, 31
two-dimensional, 33

Trigonometric orthogonality, 112, 113

Uncertainty Principle
Examples

electron with known velocity, 44
Normal (Gaussian) distribution, 498,

513
Uniform convergence, see Convergence, uni-

form
Abel’s test, 130
Cauchy’s Criterion, 130
Dirichlet test, 130
of continuous functions, 127
of derivatives, 127
of integrals, 127
Weierstrass M -test, 129

Uniform distance, 124
Uniform norm (‖f‖∞), 123
Unique solution

of forced heat equation, 91
of forced wave equation, 94
of heat equation, 91
of Laplace equation, 86
of Poisson equation, 88
of wave equation, 94
to Dirichlet Problem, 87



to Neumann Problem, 87

Vector addition, 57
Velocity vector

of a contour in C, 435
Vibrating string

initial position, 230
initial velocity, 232

Violin string, 95
Voltage contour, 431

Wave equation
conservation of energy, 92
definition, 34
derivation and physical interpretation

one dimension, 30
two dimensions, 32

is evolution equation., 69
is homogeneous linear, 64
is hyperbolic PDE, 96, 98
on 2-dim. plane

Fourier transform solution, 532
on 3-dim. space

Fourier transform solution, 533
Huygen’s principle, 536
Poisson’s (spherical mean) solution, 534

on disk
Fourier-Bessel solution, 302

on interval
d’Alembert solution, 401

on interval; Initial position
Fourier solution, 230

on interval; Initial velocity
Fourier solution, 232

on real line
d’Alembert solution, 398, 531
Fourier transform solution, 531

on real line; initial position
d’Alembert (travelling wave) solution,

393
on real line; initial velocity

d’Alembert (ripple) solution, 395
on square; Initial position

Fourier solution, 259
on square; Initial velocity

Fourier solution, 261
unique solution of, 94

Wave vector
many dimensions, 34
two dimensions, 33

Wavefunction
phase, 44
probabilistic interpretation, 40

Wavelet basis, 115
convergence in L2, 118
pointwise convergence, 123

Weierstrass M -test, 129
Wind instrument, 95

∂X, see Boundary
Xylophone, 233



Notation

Sets and domains:
A(r,R): The 2-dimensional closed annulus of inner radius r and outer radius R: the set of

all (x, y) ∈ R2 such that r ≤ x2 + y2 ≤ R.
oA(r,R): The 2-dimensional open annulus of inner radius r and outer radius R: the set of all

(x, y) ∈ R2 such that r < x2 + y2 < R.

B: A D-dimensional closed ball (often the unit ball centred at the origin).

B(x, ε): The D-dimensional closed ball; of radius ε around the point x; the set of all y ∈ RD
such that ‖x− y‖ < ε.

C: The set of complex numbers of the form x+ yi, where x, y ∈ R, and i is the square root
of −1.

C+: The set of complex numbers x+ yi with y > 0.

C−: The set of complex numbers x+ yi with y < 0.

̂C = C t {∞}, the Riemann Sphere (the range of a meromorphic function).

D: A 2-dimensional closed disk (usually the unit disk centred at the origin).

D(R): A 2-dimensional closed disk of radius R, centred at the origin: the set of all (x, y) ∈ R2

such that x2 + y2 ≤ R.
oD(R): A 2-dimensional open disk of radius R, centred at the origin: the set of all (x, y) ∈ R2

such that x2 + y2 < R.

D{(R): A 2-dimensional closed codisk of coradius R, centred at the origin: the set of all
(x, y) ∈ R2 such that x2 + y2 ≥ R.

oD{(R): A 2-dimensional open codisk of coradius R, centred at the origin: the set of all
(x, y) ∈ R2 such that x2 + y2 > R.

H: A half-plane. Usually H =
{

(x, y) ∈ R2 ; y ≥ 0
}

(the upper half-plane).

N: = {0, 1, 2, 3, . . .}, the set of natural numbers.

N+: = {1, 2, 3, . . .}, the set of positive natural numbers.

ND: The set of all n = (n1, n2, . . . , nD), where n1, . . . , nD are natural numbers.

∅: The empty set, also denoted {}.
Q: The rational numbers: the set of all fractions n/m, where n,m ∈ Z, and m 6= 0.

R: The set of real numbers (e.g. 2, −3,
√

7 + π, etc.)

R+ := (0,∞) = {r ∈ R ; r ≥ 0}.
R 6− := [0,∞) = {r ∈ R ; r ≥ 0}.
R2: The 2-dimensional infinite plane —the set of all ordered pairs (x, y), where x, y ∈ R.

RD: D-dimensional space —the set of all D-tuples (x1, x2, . . . , xD), where x1, x2, . . . , xD ∈ R.
Sometimes we will treat these D-tuples as points (representing locations in physical
space); normally points will be indicated in bold face, eg: x = (x1, . . . , xD). Sometimes
we will treat the D-tuples as vectors (pointing in a particular direction); then they will
be indicated with arrows, eg: ~V = (V1, V2, . . . , VD).

RD × R: The set of all pairs (x; t), where x ∈ RD is a vector, and t ∈ R is a number. (Of
course, mathematically, this is the same as RD+1, but sometimes it is useful to regard
the last dimension as “time”.)

R× R 6−: The half-space of all points (x, y) ∈ R2, where y ≥ 0.

S: The 2-dimensional unit circle; the set of all (x, y) ∈ R2 such that x2 + y2 = 1.



SD−1(x;R): The D-dimensional sphere; of radius R around the point x; the set of all y ∈ RD
such that ‖x− y‖ = R

U, V, W usually denote open subsets of RD or C.

X, Y: usually denote domains —closed connected subsets of RD with dense interiors.

Z: The integers {. . . ,−2,−1, 0, 1, 2, 3, . . .}.
ZD: The set of all n = (n1, n2, . . . , nD), where n1, . . . , nD are integers.

[1...D] = {1, 2, 3, . . . , D}.
[0, π]: The closed interval of length π; the set of all real numbers x where 0 ≤ x ≤ π.

(0, π): The open interval of length π; the set of all real numbers x where 0 < x < π.

[0, π]2: The (closed) π × π square; the set of all points (x, y) ∈ R2 where 0 ≤ x, y ≤ π.

[0, π]D: The D-dimensional unit cube; the set of all points (x1, . . . , xD) ∈ RD where 0 ≤ xd ≤
1 for all d ∈ [1...D].

[−L,L]: The interval of all real numbers x with −L ≤ X ≤ L.

[−L,L]D: The D-dimensional cube of all points (x1, . . . , xD) ∈ RD where −L ≤ xd ≤ L for
all d ∈ [1...D].

Set operations:
int (X) The interior of the set X (i.e. all points in X not on the boundary of X).
⋂

Intersection. If X and Y are sets, then X ∩Y := {z ; z ∈ X and z ∈ Y}. If X1, . . . ,XN are

sets, then
N
⋂

n=1

Xn := X1 ∩ X2 ∩ · · · ∩ XN .

⋃

Union. If X and Y are sets, then X ∪ Y := {z ; z ∈ X or z ∈ Y}. If X1, . . . ,XN are sets,

then
N
⋃

n=1

Xn := X1 ∪ X2 ∪ · · · ∪ XN .

⊔

Disjoint union. If X and Y are sets, then X t Y means the same as X ∪ Y, but conveys

the added information that X and Y are disjoint —i.e. X ∩ Y = ∅. Likewise,
N
⊔

n=1

Xn :=

X1 t X2 t · · · t XN .

\ Difference. If X and Y are sets, then X \ Y = {x ∈ X ; x 6∈ Y}.

Spaces of Functions:
C∞: A vector space of (infinitely) differentiable functions. Some examples:

• C∞[R2; R]: The space of differentiable scalar fields on the plane.

• C∞[RD; R]: The space of differentiable scalar fields on D-dimensional space.

• C∞[R2; R2]: The space of differentiable vector fields on the plane.

C∞0 [0, 1]D: The space of differentiable scalar fields on the cube [0, 1]D satisfying Dirichlet
boundary conditions: f(x) = 0 for all x ∈ ∂[0, 1]D.

C∞⊥ [0, 1]D: The space of differentiable scalar fields on the cube [0, 1]D satisfying Neumann

boundary conditions: ∂⊥f(x) = 0 for all x ∈ ∂[0, 1]D.

C∞h [0, 1]D: The space of differentiable scalar fields on the cube [0, 1]D satisfying mixed bound-

ary conditions:
∂⊥f

f
(x) = h(x) for all x ∈ ∂[0, 1]D.

C∞per [−π, π]: The space of differentiable scalar fields on the interval [−π, π] satisfying periodic
boundary conditions.



L1(R) : The set of all functions f : R −→ R such that
∫∞
−∞ |f(x)| dx < ∞.

L1(R2) : The set of all functions f : R2 −→ R such that
∫∞
−∞

∫∞
−∞ |f(x, y)| dx dy < ∞.

L1(R3) : The set of all functions f : R3 −→ R such that
∫

R3 |f(x)| dx < ∞.

L2(X) : The set of all functions f : X −→ R such that ‖f‖2 =
(∫

X |f(x)|2 dx
)1/2

<∞.

L2(X;C) : The set of all functions f : X −→ C such that ‖f‖2 =
(∫

X |f(x)|2 dx
)1/2

<∞.

Derivatives and Boundaries:

∂kf = df
dxk

.

∇f = (∂1f, ∂2f, . . . , ∂Df), the gradient of scalar field f .

div f = ∂1f1 + ∂2f2 + . . . + ∂DfD, the divergence of vector field f .

∂⊥f is the derivative of f normal to the boundary of some region. Sometimes this is written
as ∂f

∂n
or ∂f

∂ν
, or as ∇f · n.

4f = ∂2
1f + ∂2

2f + . . .+ ∂2
Df . Sometimes this is written as ∇2f .

L f sometimes means a general linear differential operator L being applied to the function
f .

SLs,q(φ) = s · ∂2φ + s′ · ∂φ + q · φ. Here, s, q : [0, L] −→ R are predetermined functions, and
φ : [0, L] −→ R is the function we are operating on by the Sturm-Liouville operator
SLs,q.

γ̇ = (γ′1, . . . , γ
′
D) is the velocity vector of the path γ : R −→ RD.

∂ X: If X ⊂ RD is some region in space, then ∂X is the boundary of that region. For example:

• ∂ [0, 1] = {0, 1}.

• ∂ B2 (0; 1) = S2(0; 1).

• ∂ BD (x;R) = SD(x;R).

• ∂ (R× R 6−) = R× {0}.

Norms and Inner products:

‖x‖: If x ∈ RD is a vector, then ‖x‖ =
√

x2
1 + x2

2 + . . .+ x2
D is the norm (or length) of x.

‖f‖2: Let X ⊂ RD be a bounded domain, with volume M =
∫

X 1dx. If f : X −→ R is an

integrable function, then ‖f‖2 =
1

M

(∫

X
|f(x)| dx

)1/2

is the L2-norm of f .

〈f, g〉: If f, g : X −→ R are integrable functions, then their inner product is given by:

〈f, g〉 =
1

M

∫

X
f(x) · g(x) dx.

‖f‖1: Let X ⊆ RD be any domain. If f : X −→ R is an integrable function, then ‖f‖∞ =
∫

X
|f(x)| dx is the L1-norm of f .

‖f‖∞: Let X ⊆ RD be any domain. If f : X −→ R is a bounded function, then ‖f‖∞ =
sup
x∈X
|f(x)| is the L∞-norm of f .



Other Operations on Functions:
An: normally denotes the nth Fourier cosine coefficient of a function f on [0, π] or [−π, π].

That is, An := 2
π

∫ π

0
f(x) cos(nx) dx or An := 1

π

∫ π

−π f(x) cos(nx) dx.

An,m: normally denotes a 2-dimensional Fourier cosine coefficient, while An normally denotes
a D-dimensional Fourier cosine coefficient.

Bn: normally denotes the nth Fourier cosine coefficient of a function f on [0, π] or [−π, π].
That is, An := 2

π

∫ π

0
f(x) sin(nx) dx or An := 1

π

∫ π

−π f(x) sin(nx) dx.

Bn,m: normally denotes a 2-dimensional Fourier sine coefficient, while Bn normally denotes a
D-dimensional Fourier sine coefficient.

f ∗ g: If f, g : RD −→ R, then their convolution is the function f ∗ g : RD −→ R defined by

(f ∗ g)(x) =

∫

RD
f(y) · g(x− y) dy.

̂f(µ) =
1

(2π)D

∫

RD
f(x) exp(iµ•x) dx is the Fourier transform of the function f : RD −→ C.

It is defined for all µ ∈ RD.

̂fn =
1

2π

∫ π

−π
f(x) exp(inx) dx is the nth complex Fourier coefficient of a function f :

[−π, π] −→ C (here n ∈ Z).

y
∫

γ

f : =
∫ S

0
f [γ(s)] · γ̇(s) ds is a chain integral. Here, f : U −→ C is some complex-valued

function and γ : [0, S] −→ U is a chain (a piecewise-continuous, piecewise differentiable
path).

∮

γ

f : A contour integral. The same definition as the chain integral y
∫

γ

f , but γ is a contour.

α � β : If α and β are two chains, then α � β represents the linking of the two chains.

L[f ] =

∫ ∞

0

f(t) e−ts dt is the Laplace transform of the function f : R 6− −→ C; it is defined

for all s ∈ C with Re [s] > α, where α is the exponential order of f .

MR u(x) =
1

4πR2

∫

S(R)

f(x + s) ds is the spherical average of f at x, of radius R. Here,

x ∈ R3 is a point in space, R > 0, and S(R) =
{

s ∈ R3 ; ‖s‖ = R
}

.

Special functions.:
Cn(x) = cos(nx) for all n ∈ N and x ∈ [−π, π].

Cn,m(x) = cos(nx) · cos(my) for all n,m ∈ N and (x, y) ∈ [π, π]2.

Cn(x) = cos(n1x1) · · · cos(nDxD) for all n ∈ ND and x ∈ [π, π]D.

DN (x) = 1 + 2
∑N
n=1 cos(nx) is the nth Dirichlet kernel, for all n ∈ N and x ∈ [−2π, 2π].

En(x) = exp(inx) for all n ∈ Z and x ∈ [−π, π].

Eµ(x) = exp(iµx) for all µ ∈ R and x ∈ [−π, π].

G(x; t) = 1

2
√
πt

exp
(

−x2

4t

)

is the (one-dimensional) Gauss-Weierstrass kernel.

G(x, y; t) = 1
4πt

exp
(

−x2−y2

4t

)

is the (two-dimensional) Gauss-Weierstrass kernel.

G(x; t) = 1

(4πt)D/2 exp
(

−‖x‖2

4t

)

is the (D-dimensional) Gauss-Weierstrass kernel.

Jn is the nth Bessel function of the first kind.

Ky(x) = y
π(x2+y2)

is the half-plane Poisson kernel, for all x ∈ R and y > 0.



~N(x) is the outward unit normal vector to a domain X at a point x ∈ ∂X.

P(x, s) =
R2 − ‖x‖2

‖x− s‖2
is the Poisson kernel on the disk, for all x ∈ D and s ∈ S.

Pr(x) =
1− r2

1− 2r cos(x) + r2
is the Poisson kernel in polar coordinates, for all x ∈ [−2π, 2π]

and r < 1.

Φn, φn, Ψn and ψn refer to the harmonic functions on the unit disk which separate in polar
coordinates. Φ0(r, θ) = 1 and φ0(r, θ) = log(r), while for all n ≥ 1, we have Φn(r, θ) =

cos(nθ) · rn, Ψn(r, θ) = sin(nθ) · rn, φn(r, θ) =
cos(nθ)

rn
, and ψn(r, θ) =

sin(nθ)

rn
.

Φn,λ, Ψn,λ, φn,λ, and ψn,λ refer to eigenfunctions of the Laplacian on the unit disk which
separate in polar coordinates. For all n ∈ N and λ > 0, Φn,λ(r, θ) = Jn(λ · r) · cos(nθ),
Ψn,λ(r, θ) = Jn(λ · r) · sin(nθ), φn,λ(r, θ) = Yn(λ · r) · cos(nθ), and ψn,λ(r, θ) =
Yn(λ · r) · sin(nθ)

Sn(x) = sin(nx) for all n ∈ N and x ∈ [π, π].

Sn,m(x) = sin(nx) · sin(my) for all n,m ∈ N and (x, y) ∈ [π, π]2.

Sn(x) = sin(n1x1) · · · sin(nDxD) for all n ∈ ND and x ∈ [π, π]D.

Yn is the nth Bessel function of the second kind.
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