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Abstract. The existence of the local sojourn time on the surface is established for multi-
dimensional Itô processes, and equations are derived for probability distributions. An explicit formula
of the type of the Tanaka formula is obtained for local time. Local time continuity is established.
The limiting properties of the local time are investigated for degenerating diffusion.
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Introduction. A vast literature is dedicated to problems connected with the
probability distribution of functionals of local time (see [1], [2], [3] and references
therein). The local time of scalar Brownian motion has been studied most thoroughly.
It seems natural to have a description of the local time distribution for more general
processes than Brownian motion (for example, for diffusion processes with a control-
dependent drift) in order to include in the stochastic theory of optimal control new
problems in which it is required to minimize and maximize the local sojourn time in
sets of zero measure. The existence of a local sojourn time on smooth hypersurfaces
was established in [4] for general multi-dimensional semimartingales but the distribu-
tion of local time was not studied there. Using the tool of Kolmogorov equations, we
obtain below a description of local sojourn time of a general multi-dimensional Markov
diffusion process on a time-dependent “piecewise smooth” or even fractal hypersurface
(Example 4.1); we derive special analogues of Kolmogorov equations and establish the
solvability of these equations, as well as the convergence of random variables whose
limit is usually called local time. An explicit expression of a local time in terms of
a stochastic integral is found, i.e., an analogue of Tanaka’s formula is obtained. The
limiting properties of a local time are investigated when diffusion disappears and the
Itô equation transforms into an ordinary differential equation.

1. Statement of the problem. We consider on a probability space (Ω,F ,P) an
n-dimensional Wiener process w(t) with independent components such that w(0) = 0.
Consider a random n-vector a which is independent of w(t). Let a random process
y(t) of dimension n be a strong solution of the Itô stochastic equation

(1.1) dy(t) = f
(
y(t), t

)
dt + β

(
y(t), t

)
dw(t),

(1.2) y(0) = a.

The functions f(x, t): Rn ×R−→Rn, β(x, t): Rn ×R−→Rn×n are bounded and
measurable. It is assumed that the function β(x, t) is continuous, the derivative
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∂β(x, t)/∂x is bounded, and b(x, t) = 1
2 β(x, t)β(x, t)T = δI > 0 for some δ > 0

for all x, t.
As is known [8, section II.6], under such assumptions equations (1.1), (1.2) have a

weak solution (unique with respect to distribution). The collection (Ω,F ,P, w(t), y(t))
introduced here is thus one of such weak solutions.

Let D ⊂ Rn be some domain. It is assumed that either D = Rn or the domain
D is bounded and has a C

2-smooth boundary, a ∈ D a.s. .
Consider the first random exit times τD = inf{t: y(t) /∈ D}. Let a bounded

hypersurface Γ(t) ⊂ D of dimension n − 1 be given for almost all t ∈ [0, T ] and let
∂Γ(t) be its edge. We introduce the sets

Γ∗(t, ε) =
{

x ∈ D: inf
y∈Γ(t)

|x− y| < ε

2

}
,

Γ′(t, ε) =
{

x ∈ D: inf
y∈∂Γ(t)

|x− y| < ε

2

}
.(1.3)

(It can happen that ∂Γ(t) = ∅ and then Γ′(t, ε) = ∅.) For all t ∈ [0, T ], ε > 0 we give
arbitrarily Borel sets Γ(t, ε) such that

(1.4) Γ∗(t, ε)\Γ′(t, ε) ⊆ Γ(t, ε) ⊆ Γ∗(t, ε).

We will be interested in a local time spent by the process y(t) on Γ(t) (until its exit
from D), i.e., in the limits, as ε → +0, of the variables

(1.5) lε(t) =
1
ε

∫ τD∧t

0

Ind
{
y(s) ∈ Γ(s, ε)

}
ds.

For f, β, Γ(t) of a general form it will be shown that, for any t > 0, these variables
converge in the mean square to a random variable t̂(t). The convergence in distribution
is established in section 5 and the convergence in the mean square in section 6 (note
that the limit does not depend on the choice of Γ(t, ε) in (1.4)). An equation will be
found for the characteristic function

(1.6) φ(z) = E e
zt̂(t)

, z ∈ C.

Moreover, equations which are analogues of the backward Kolmogorov equation will
be derived (and their solvability shown in the respective classes of functions) for func-
tionals of the form

(1.7) φ1 = E t̂(T ), φ2 = E
∫ τD∧T

0

ϕ
(
y(t), t

)
e
t̂(t)

dt

for a given number T > 0 and the function ϕ.

2. Spaces and classes of functions. Let some number T > 0 be given. Denote
Q = D× (0, T ). Below, ‖ · ‖X denotes a norm in a space X, (·, ·)X is a scalar product
in a Hilbert space X.

We introduce the spaces of (complex-valued) functions. For integers k = 0, let

H
k =

◦
W

k

2(D) be Sobolev’s Hilbert spaces, and let H
−k be the space dual to H

k with
a norm ‖ · ‖H−1 such that, for u ∈ H

0, ‖u‖H−1 is the supremum (u, v)H0 with respect
to v ∈ H

0, ‖v‖Hk 5 1.
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Let `m denote the Lebesgue measure in Rm, and let Bm be a σ-algebra of Lebesgue
sets in Rm. We introduce the spaces Ck = C([0, T ] →H

k), X
k = L

2([0, T ],B1, `1,H
k),

Y
k = X

k ∩ Ck−1 with the norm ‖u‖Y k = ‖u‖Xk + ‖u‖Ck−1 .

The norm (u, v)H0 is assumed to be well defined for u ∈ H
−k, v ∈ H

k as well
(extending it in a natural manner from u ∈ H

0, v ∈ H
k).

Below let µ ∈ (1, 2) be an arbitrary number for the case n = 1,

(2.1) µ ∈
(

1,
n

n− 1

)
for the case n > 1.

We introduce the space W = W
(1)
µ (D) and its conjugate space W∗, as well as the

space X = L
∞([0, T ],B1, `1,W∗).

The following proposition is standard.
Proposition 2.1. (i) If D is a bounded domain, then W∗ ⊂ H

−1, ‖g‖H−1 5
c‖g‖W∗ , where c = c(n,D, µ) is a constant , and X ⊂ X

−1.
(ii) Let D = Rn, g ∈ W∗ and assume there exists a bounded domain D1 ⊂ Rn

such that 〈ξ, g〉 = 0 (∀ξ ∈ W: supp ξ ⊂ Rn\D1). Then g ∈ H
−1, ‖g‖H−1 5 c‖g‖W∗ ,

where c = c(n,D, µ) is a constant.
Lemma 2.1. For ξ ∈ H

1, η ∈ H
1, we have ξη ∈ W and ‖ξη‖W 5 c‖ξ‖H1‖η‖H1 ,

where c = c(n,D, µ) is a constant.
Proof. Let r = 2/µ, r

′ = r(r − 1)−1, p = µr
′, η ∈ H

0. We have p = µr
′ =

2µ(2− µ), µ(2− µ)−1
< n(n− 2)−1, p < 2n(n− 2)−1 for n > 2,

‖ξη‖Lµ(D) =
(∫

D

ξ
µ
η

µ
dx

)1/µ

5

((∫

D

ξ
µr′

dx

)1/r′ (∫

D

η
2
dx

)1/r
)1/µ

= ‖η‖H0

(∫

D

ξ
p
dx

)1/p

5 c‖η‖H0‖ξ‖H1 ,(2.2)

with the constant c = c(n,D, µ). The latter estimate is obtained using the embedding
theorems for Sobolev spaces (see [5, p. 78]). Applying (2.2) to (∂ξ/∂xi) η, (∂η/∂xi) ξ,
we obtain the required result.

Lemma 2.2. For ξ ∈ H
1, g ∈ W∗ ∩H

0 we have

ξg ∈ H
−1 and ‖ξg‖H−1 5 c‖ξ‖H1‖g‖W∗ ,

where c = c(n,D, µ) is a constant.
Proof. We introduce the set BH

1 = {η ∈ H
1 ∩ L∞(D): ‖η‖H1 5 1}. Now

‖ξg‖H−1 = sup
η∈BH1

(η, ξg)H0 5 sup
η∈BH1

(ηξ, g)H0 5 sup
η∈BH1

‖ηξ‖W‖g‖W∗

5 c sup
η∈BH1

‖η‖H1‖ξ‖H1‖g‖W∗ 5 c‖ξ‖H1‖g‖W∗ ,(2.3)

where c is the constant from Lemma 2.1. Hence we obtain the required result.
We introduce the parameter

(2.4) P =

{
n, T, D, δ, sup

x,t

∣∣f(x, t)
∣∣, sup

x,t

∣∣β(x, t)
∣∣, sup

x,t,i

∣∣∣∣
∂β(x, t)

∂xi

∣∣∣∣
}

.

3. A parabolic equation with the coefficient from X . Let us introduce and
consider the parabolic equations which in what follows will be used to describe the
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evolution of functionals (1.6)–(1.7) and are analogues of the backward Kolmogorov
equation.

We introduce the operator A:

(3.1) AV =
n∑

i,j=1

bij(x, t)
∂

2
V

∂xi∂xj
(x) +

n∑

i=1

fi(x, t)
∂V

∂xi
(x).

Here bij , fi, xi are the components of the matrix b and the vectors f , x, respectively.
We shall consider the boundary value problem

(3.2)
∂V

∂t
+AV + gV = −ϕ, V (x, t) |x∈∂D = 0, V (x, T ) = R(x).

As is known (see [5]) for g ∈ L∞(Q), ϕ ∈ X
−1, R ∈ H

0 = L2(D) this problem is
uniquely solvable in the class Y

1.
Theorem 3.1. Let z ∈ C, h ∈ X , ϕ ∈ X

−1, R ∈ H
0 be given. Let gε ∈ L∞(Q),

g ∈ X , hε ∈ L∞(Q), ϕε ∈ L∞(Q), Rε ∈ H
0 be functions such that gε = zhε, g = zh,

‖hε − h‖X → 0, ‖ϕε − ϕ‖X−1 → 0, ‖Rε − R‖H0 → 0, ε → 0. Let Vε be the solutions
of problem (3.2), corresponding to g = gε, ϕ = ϕε. Then, for ε → +0 the sequence Vε

has a limit V in Y
1, which is uniform with respect to z: |z| 5 1, uniquely defined , and

(3.3) ‖V ‖Y 1 5 c
(‖ϕ‖X−1 + ‖R‖H0

)
,

where c > 0 is the constant depending on the parameters P, µ, ‖g‖X .
Note that in the theorem, V is assumed to depend linearly on ϕ, R for any given g.

Moreover, V = 0 if ϕ = 0, R = 0. Hence it follows that the operator assigning the
solution V to the pair (ϕ,R) ∈ X

−1×H
0 is also linear and homogeneous. We introduce

operators L(g), L(g) such that V = L(g)ϕ +L(g) R for the corresponding value of V

from Theorem 3.1. According to the theorem, L(g): X
−1 → Y

1, L(g): H
0 → Y

1 are
linear continuous operators; by Lemma 2.2, gV ∈ X

−1.
Definition 3.1. We say that V is a solution in the class Y

1 of problem (3.2)
with generalized g ∈ X .

Proof of Theorem 3.1. First we shall show that substituting g = gε into (3.2) the
constant in inequality (3.3), where V = Vε, does not increase for ε → +0.

Below we use the simple inequality

uv 5
u

2

2γ
+

v
2
γ

2
(∀u, v, γ ∈ R, γ > 0).

Let v ∈ H
1 ∩ C

2(D). For any t ∈ [0, T ] and the operator A = A(x, t) defined in (3.1)
we have the estimates

(v, Av)H0 =
(

v,

n∑

i,j=1

bij
∂

2
v

∂xi∂xj

)

H0

+
(

v,

n∑

i=1

fi
∂v

∂xi

)

H0

= −
n∑

i,j=1

(
∂v

∂xi
, bij

∂v

∂xj

)

H0

−
n∑

i,j=1

(
v,

∂bij

∂xi

∂v

∂xj

)

H0

+
n∑

i=1

(
v, fi

∂v

∂xi

)

H0

5 −δ

n∑

i=1

∥∥∥∥
∂v

∂xi

∥∥∥∥
2

H0
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+
n∑

i,j=1

‖v‖H0

∥∥∥∥
∂bij

∂xi

∥∥∥∥
L∞(Q)

∥∥∥∥
∂v

∂xj

∥∥∥∥
H0

+
n∑

i=1

‖v‖H0‖fi‖L∞(Q)

∥∥∥∥
∂v

∂xi

∥∥∥∥
H0

5 −δ

n∑

i=1

∥∥∥∥
∂v

∂xi

∥∥∥∥
2

H0

+
δ

4

n∑

i=1

∥∥∥∥
∂v

∂xi

∥∥∥∥
2

H0

+
C

δ

n∑

i,j=1

‖v‖2H0

(∥∥∥∥
∂bij

∂xi

∥∥∥∥
2

L∞(Q)

+ ‖fi‖2L∞(Q)

)
,(3.4)

with the constant C = C(n). Hence for any v ∈ H
1 and for any t ∈ [0, T ] we have

(3.5) (v, Av)H0 5 −3δ

4

n∑

i=1

∥∥∥∥
∂v

∂xi

∥∥∥∥
2

H0

+ C1‖v‖2H0 ,

where the constant C1 depends on the parameter P.
For any v ∈ H

1 and for any t ∈ [0, T ], we have

(
v, ϕε(·, t)

)
H0 5 ‖v‖2H1

∥∥ϕε(·, t)
∥∥2

H−1 5 CD

n∑

i=1

∥∥∥∥
∂v

∂xi

∥∥∥∥
H0

∥∥ϕε(·, t)
∥∥

H−1

5
δ

4

n∑

i=1

∥∥∥∥
∂v

∂xi

∥∥∥∥
2

H0

+ C2

∥∥ϕε(·, t)
∥∥2

H−1 ,(3.6)

where the constant CD depends on n, D and the constant C2 depends on P.
For any v ∈ H

1,

(v, gεv)H0 5 ‖v2‖W‖gε‖W∗ 5 C3‖v‖H1‖v‖H0‖gε‖W∗

5
δ

4

n∑

i=1

‖v‖2H1 + Ĉ3‖v‖2H0 5
δ

4

n∑

i=1

∥∥∥∥
∂v

∂xi

∥∥∥∥
2

H0

+ C3‖v‖2H0 ,(3.7)

where the constants Ĉ3, C3 depend on supε ‖gε‖X , δ, n, D.
By virtue of (3.5)–(3.7) we have, for the solution V = Vε of problem (3.2) with

g = gε, ϕ = ϕε, ε ∈ (0, ε1],
∥∥Vε(·, t)

∥∥2

H0 −
∥∥Vε(·, T )

∥∥2

H0

= 2
∫ T

t

(
Vε(·, s), AVε(·, s) + gεVε(·, s) + ϕε(·, s)

)
H0 ds

5
∫ T

t

{
− δ

n∑

i=1

∥∥∥∥
∂Vε

∂xi
(·, s)

∥∥∥∥
2

H0

+ C4

(∥∥Vε(·, s)
∥∥2

H0 +
∥∥ϕε(·, s)

∥∥2

H−1

)}
ds,(3.8)

where the constant C4 depends on P, µ, ‖g‖X .
Hence we immediately obtain

(3.9) ‖Vε‖Y 1 5 C∗
(‖ϕε‖X−1 + ‖R‖H0

)
(∀ ε ∈ (0, ε1]),

where the constant C∗ depends on P, µ, ‖g‖X .
Let us show that the sequence {Vε} is a Cauchy sequence in Y

1. Let ε1 → 0,
ε2 → 0. Denote W = Vε1 − Vε2 . We have

(3.10)
∂W

∂t
+AW + ge1W = −ξ, W (x, t) |x∈∂D = 0, W (x, T ) = 0,
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where ξ = ϕε1 − ϕε2 + (gε1 − gε2)Vε2 . We obtain

(3.11) ‖ϕε1 − ϕε2‖X−1 −→ 0, ‖gε1 − gε2‖X −→ 0,

since {ϕεi
}, {gεi

} are the Cauchy sequences converging in the corresponding spaces.
By Lemma 2.2,

∥∥(gε1 − gε2) Vε2

∥∥
X−1 =

∫ T

0

∥∥(gε1 − gε2) Vε2(·, t)
∥∥

H−1 dt

5
∫ T

0

‖gε1 − gε2‖W∗
∥∥Vε2(·, t)

∥∥
H1 dt

5 ‖gε1 − gε2‖X
∫ T

0

∥∥Vε2(·, t)
∥∥

H−1 dt

= ‖gε1 − gε2‖X ‖Vε2‖X1 −→ 0(3.12)

for ε1 → 0, ε2 → 0, by virtue of (3.9), (3.11). Therefore, ‖ξ‖X−1 → 0. Applying
estimate (3.9) to the solution W of the boundary value problem (3.10), we obtain

(3.13) ‖W‖Y 1 5 C∗‖ξ‖X−1 −→ 0.

Hence it follows that the sequence {Vε}, ε = εi → 0, is Cauchy (and therefore converg-
ing) in the Banach space Y

1. Estimate (3.3) follows from (3.9), the latter estimate
implying the uniqueness of V .

We will show that the sequence {Vε} converges in Y
1 uniformly with respect to

z ∈ C: |z| 5 1. Let ε → 0. Denote W = Vε − V . We have

(3.14)
∂W

∂t
+AW + gεW = −ξ, W (x, t) |x∈∂D = 0, W (x, T ) = Rε −R,

where ξ = ϕε − ϕ + (gε − g)V . We have

(3.15) ‖ϕε − ϕ‖X−1 −→ 0, ‖gε − g‖X = z‖hε − h‖X −→ 0

uniformly with respect to |z| 5 1. By Lemma 2.2,

∥∥(gε − g) V
∥∥

X−1 =
∫ T

0

∥∥(gε − g)Vε2(·, t)
∥∥

H−1 dt 5
∫ T

0

‖gε − g‖W∗
∥∥V (·, t)

∥∥
H1 dt

5 ‖gε − g‖X
∫ T

0

∥∥V (·, t)
∥∥

H1 dt = ‖gε − g‖X ‖V ‖X1 −→ 0(3.16)

for ε → 0 and ‖ξ‖X−1 → 0 uniformly with respect to |z| 5 1. Applying estimate (3.3)
to the solution W of the boundary value problem (3.14), we obtain

‖W‖Y 1 5 C∗
(‖ξ‖X−1 + ‖Rε −R‖H0

)−→ 0.

Hence it follows that the sequence {Vε}, ε → 0, converges uniformly with respect to
|z| 5 1. Theorem 3.1 is proved.

4. On a class of hypersurfaces. It is natural to assume that to study func-
tionals of type (1.6)–(1.7) it is helpful to use equations (3.2) with g ∈ X , ϕ ∈ X

−1,
such that as functions gε, ϕε, appearing in Theorem 3.1, one can take the functions
ε
−1Ind{x ∈ Γ(t, ε)} for the hypersurface Γ(t) ⊂ D (the sets Γ(t, ε) are defined by

(1.3)–(1.4)). In what follows it will be shown that the limit of ε
−1Ind{x ∈ Γ(t, ε)}
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belongs to both X
−1 and X for Γ(t) from a sufficiently wide class of “piecewise C

1-
smooth” hypersurfaces.

By e
(j) we denote the jth unit vector in Rn.

Let Γ be some surface. Denote by N(x, j) the number of intersections of the hy-
persurface Γ by the ray from x = (x1, x2, . . . , xn) to (x1, . . . , xj−1,−∞, xj+1, . . . , xn),
the points x̂k(x, j) being the corresponding intersection points; it is assumed that
N(x, j) = +∞ if the ray is tangential to Γ.

We introduce functions γj : Γ → R such that γj(x) = | cos αj(x)|, where αj(x) is
the angle between e

(j) and the normal to Γ at the point x ∈ Γ if this normal is defined;
γj(x) = 0 (∀ j) if x is the point of violation of smoothness at which the normal is not
defined. Let us define the functions

(4.1) Gj(x) =
N(x,j)∑

k=1

γj

(
x̂k(x, j)

)
.

Assume that Gj(x) = +∞ if N(x, j) = +∞.
Theorem 4.1. Let a set Γ̂ ⊂ Rn be given, which is the union of a finite number N

of polyhedra Γ̂i of dimension n−1 with pairwise nonintersecting interiors, Γ̂ = ∪Ni=1Γ̂i.
Let B: Rn → Rn be some continuous bijective function, let the hypersurface Γ ⊂ D
be such that Γ = M(Γ̂). It is assumed that the functions B: Γ̂i → Rn are C

1-smooth
bijections, B(x) = x, if x is the vertex of some Γ̂i, |n(x) − ni| 5 δ0 if x belongs to
the interior part of Γi, i = 1, . . . ,N . Here Γi = B(Γ̂i), n(x) is the normal to Γ in
x, ni is the normal to Γ̂i, δ0 5 n

−2
/2 (the direction of the normals is fixed , |n(x)| = 1,

|ni| = 1). Then N(x, j) < +∞ for all j for almost all x. We define the generalized
functions

(4.2) g =
n∑

j=1

∂Gj

∂xj
.

Then g ∈ W∗ ∩ H
−1, the functions gε(x) = ε

−1Ind{x ∈ Γ(ε)} converge to g in the
metric of W∗ and H

−1, and assume

‖g‖W∗ 5 c

n∑

j=1

‖Gj‖Lν(D1), ‖g‖H−1 5 c

n∑

j=1

‖Gj‖L2(D1),

where ν = µ(µ − 1)−1, D1 is a bounded domain in Rn such that Γ ⊂ D1 ⊆ D,
c = c(n, D1) is a constant.

Remark 4.1. It is not difficult to note that the assumptions of Theorem 4.1 are
fulfilled for disks, spheres, and many other piecewise C

1-smooth (n − 1)-dimensional
surfaces.

Proof of Theorem 4.1. Denote S0 = ∪∂Γi; we have `n(S0) = 0. Consider a set
of open domains Di ⊆ D such that D = ∪Ni=1Di, Di ∩Dj = ∅ if i 6= j, Γi = Γ ∩Di

(Di, D denote the closures of domains). Denote Γi(ε) = Γ(ε) ∩ Di. Denote by
Pj(x) the straight line passing through x and parallel to e

(j). We consider func-
tions ψ(·, ε): Γ(ε)−→Γ\S0 such that ψ(x) ∈ Γi if x ∈ Γi(ε), |ψ(x, ε) − x| 5 cε,
with constants c such that these functions exist for all ε 5 ε∗ for some small ε∗ > 0.
We consider functions G

ε
j(x), x = (x1, . . . , xn). These functions are assumed to be

continuous in xj . The functions G
ε
j(x) are assumed to be constant on each seg-

ment Pj(x) that lies in D\Γ(ε) (each segment has its own constants), G
ε
j(x) = 0 if
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(x1, . . . , xj−1, yj , xj+1, . . . , xn) /∈ Γ(ε) (∀ yj < xj), and ∂G
ε
j(x)/∂xj = ε

−1
γ

2
j (ψ(x, ε)),

x ∈ Pj(x) ∩ Γ(ε). These conditions define G
ε
j(x) uniquely.

We have
∑n

j=1 γ
2
j (x) = 1 (∀x ∈ Γ\S0). Then,

n∑

j=1

∂G
ε
j

∂xj
(x) =

1
ε

n∑

j=1

γ
2
j

(
ψ(x, ε)

)
=

1
ε
, x ∈ Γ(ε),

n∑

j=1

∂G
ε
j

∂xj
(x) = 0, x /∈ Γ(ε),

n∑

j=1

∂G
ε
j

∂xj
(x) = gε(x), x ∈ D.

We have `n(x ∈ Rn: Pj(x) ∩ S0 6= ∅) = 0, j = 1, . . . , n.
By Proposition 2.1 [7], N(j, x) < +∞ is fulfilled for almost all x (we can assume

the ray to be a solution of a trivial ordinary differential equation; then Proposition
2.1 [7] can be reformulated for this case). By the piecewise C

1-smoothness of Γ we
have N(x, j) 5 const. for almost all x.

LetN = 1, Γ = Γ1 be such that n1 = (n(1)
1 , . . . ,n(n)

1 ), |n(j)
1 | = n

−1/2, j = 1, . . . , n;
then γj(x) = δ1 (∀x ∈ Γ\S0) for some δ1 > 0. Denote by µj(x, ε) the length of
a minimal segment that lies in Γ(ε), with ends in ∂Γ(ε), passes through x, and is
parallel to e

(j). We have ε
−1

µj(x, ε)−→ γ
−1
j (x). By the continuity of the normal on

the given C
1-smooth surface Γ = Γ1 we conclude that G

ε
i (x) → Gi(x) for ε → +0 for

almost all x, i = 1, . . . , n,

sup
x

∣∣Gε
j(x)

∣∣ 5 ε
−1

µj(x, ε) sup
x

γ
2
j

(
ψ(x, ε)

)
5 c,

where x ∈ Pj(x)∩Γ(ε), the constant c depending on Γ. Therefore, ‖Gε
i−Gi‖Lν(D) → 0

as ε → +0 (∀ ν > 1, i = 1, . . . , n), or gε =
∑n

j=1 ∂G
ε
j/∂xj(x)−→ g in W∗. Let

u ∈ C
2(D) ∩W∗ ∩H

1. We have

〈gε − g, u〉 =
n∑

j=1

∫

∂D

(
G

ε
j(x)−Gj(x)

)
u(x) cos

(
n(x), ej

)
dx

−
n∑

j=1

∫

D

(
G

ε
j(x)−Gj(x)

) ∂u

∂xj
(x) dx

= −
n∑

j=1

∫

D

(
G

ε
j(x)−Gj(x)

) ∂u

∂xj
(x) dx,

since G
ε
j ≡ Gj on ∂D (when D = Rn, the integrals on ∂D in the second expression

vanish). Thus, for ν = µ(µ− 1)−1, we have

∣∣〈gε − g, u〉
∣∣ 5

n∑

j=1

(
G

ε
j −Gj

)
Lν(D)

‖u‖W .

Hence gε =
∑n

j=1 ∂G
ε
j/∂xj(x)−→ g in W∗. Theorem 4.1 in the above particular case

is proved.
Let N = 1 and let the normal n1 have an arbitrary direction. We introduce

new coordinates x̃j =
∑n

k=1 θjkxk, where θ ∈ Rn×n is a matrix such that θ
T =

θ
−1 and |ñ(j)

1 | = n
−1/2, n(j)

1 ñ(j)
1 = 0, j = 1, . . . , n, where ñ1 = (ñ(1)

1 , . . . , ñ(n)
1 ) is

the corresponding normal to θΓ̂ in terms of the new coordinates. We denote by
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Ñ(x, j) the number of intersections of the hypersurface Γ̃ = θΓ by the ray from
x̃ = (x̃1, x̃2, . . . , x̃n) to (x̃1, . . . , x̃j−1,−∞, x̃j+1, . . . , x̃n), the points x̃

′
k(x, j) being the

corresponding intersection points; it is assumed that Ñ(x, j) = +∞ if the ray is
tangential to Γ. Then, Ñ(x, j) < +∞ for all j for almost all x. We define the

functions G̃j(x̃) =
∑Ñ(x̃,j)

k=1 γj(x̃
′
k(x̃, j)). Here γ̃j(x̃) are the corresponding functions

constructed by the rule indicated before the formulation of the theorem but in terms
of the new coordinates. Denote g̃ =

∑n
j=1 ∂G̃j/∂x̃j . As above, we obtain g̃ε(x̃) =

Ind{x = θ
−1

x̃ ∈ Γ(ε)}−→ g̃ in W∗. Denote by ∆Gj(x) a jump of the function Gj

in x on the straight line Pj(x) with respect to the order of growth of xj . We have
∆Gj(x) = γj(x). Denote by ∆G̃j(x̃) analogous jumps in terms of the new coordinates.
The fact that the transformation of coordinates is actually a rotation implies that
∆G̃j(x̃) =

∑n
k=1 θjk∆Gk(θ−1

x̃) if N(x, j) < +∞, x ∈ Γ\S0. Thus 〈ξ̃, g̃〉 = 〈ξ, g〉 for
ξ̃ ∈ W , ξ(x) = ξ̃(θx). Therefore, Theorem 4.1 is proved for this case.

Let N > 1, g
(i)
ε (x) = Ind{x ∈ Γi(ε)}. We have gε =

∑N
i=1 g

(i)
ε , g

(i)
ε (x)−→ g

(i) ∈
W∗ in W∗, g

(i) =
∑n

j=1 ∂G
(i)
j /∂xj , where G

(i)
j are constructed in the same way as

in the formulation of Theorem 4.1 for the corresponding Γ = Γi. We have Gj(x) =∑N
i=1 G

(i)(x). Hence we obtain the proof of Theorem 4.1.
We shall give an example of the surface Γ = Γ(t) which changes in time, approach-

ing a fractal, and g = g(t) ∈ X
−1 holds for g(t) defined for each t in Theorem 4.1.

Example 4.1. Let n = 2, T = 2,

Γ(t) =
{

(x1, x2): x2 = sin
(
x1(1− t)−1/3

)
, x1 ∈ [−1, 1]

}
;

then g = g(t) ∈ X
−1.

5. Probability interpretation of a solution of a parabolic equation for
generalized g, ϕ. Below it is assumed that the assumptions of section 1 are fulfilled
for the process y(t) and equations (1.1)–(1.2). In addition, it is assumed that an initial
random vector a = y(0) has a distribution density ρ ∈ H

0 = L2(D). It is assumed
that for almost all t ∈ [0, T ] the hypersurface Γ(t) is given, for which the assumptions
of Theorem 4.1 are fulfilled, g(t) are the corresponding elements of W∗ ∩H

−1 defined
by Theorem 4.1, and g is the corresponding element of X

−1.
Let Γ(t, ε) be defined by (1.3)–(1.4), and let lε(t) be the variables given by (1.5).
Theorem 5.1. Let ρ ∈ L2(D), g ∈ X .
(a) For any t > 0 there exists a random variable t̂(t) such that lε(t) → t̂(t) in

distribution as ε → +0.
(b) Let z ∈ C. We introduce the generalized function g1 = zg. Let V1 = L(g1)g,

V = zV1 (in other words, V = zL(zg)g). Then V ∈ Y
1,

(5.1) 1 +
(
V (·, 0), ρ

)
H0 = lim

ε→+0
E exp

{
z lε(T )

}
= E exp

{
z t̂(T )

}
,

where the limit exists uniformly with respect to z ∈ C: |z| 5 1.
Corollary 5.1. Under the assumptions of Theorem 5.1,

E e
kt̂(t)

< +∞, E t̂(t)k
< +∞ (∀ k > 0).

Remark 5.1. The existence of a local time of general multi-dimensional Itô pro-
cesses on a smooth hypersurface was in principle established in [4]. More precisely,
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in this paper the existence was proved of continuous nondecreasing processes t̂(t) in-
creasing only on hypersurfaces and such that they can be obtained as a limit a.s. of
the variables l̂ε(t) =

∫ t

0
ĝε(y(t)) dt, where ĝε are some nonnegative functions; however,

the question of whether, in the general case, one can take ĝε = gε (an indicator of the
hypersurface neighborhood with a normalizing multiplier) was left open.

In what follows, t̂(t) are the variables given in Theorem 5.1.
Theorem 5.2. Let the assumptions of Theorem 5.1 be fulfilled , z ∈ C, ϕ ∈ X

−1,
the function R ∈ L2(D) be measurable, ϕε ∈ L2(Q) be measurable functions such as
those of Theorem 3.1 for a given ϕ, V = L(zg) ϕ + L(zg)R. Then,

(
V (·, 0), ρ

)
H0 = lim

ε→+0
E

{
R

(
y(T )

)
Ind {τD > T} exp{ z lε(T )}

+
∫ τD∧T

0

exp
{

z lε(t)
}

ϕε

(
y(t), t

)
dt

}
.(5.2)

Proof of Theorem 5.2. We introduce functions Rε ∈ C
2(D) such that ‖Rε −

R‖H0 → 0. We introduce the functions gε(x, t) = ε
−1Ind {x ∈ Γ(t, ε)}, Vε =

L(zgε) ϕ + L(zgε) Rε. By virtue of [5, section IV.9] we have Vε ∈ W
2,1
q (Q) ∀ q > 1.

We introduce the function

W (t) = Vε

(
y(t), t

)
exp

{
z

∫ t

0

gε

(
y(r), r

)
dr

}
.

We have

dtW (t) = exp
{

z

∫ t

0

gε

(
y(r), r

)
dr

}
dtVε

(
y(t), t

)
+ zgε

(
y(r), r

)
W (t) dt.

Since Vε ∈ W
2,1
q (Q) ∀ q > 1, we can apply the Itô formula [8, section II.10] to

dtVε(y(t), t). Using this formula, we obtain

E
(
W (τD ∧ T )−W (0)

)
= E

(
W (τD ∧ T )− Vε(y(0), 0)

)

= −E
∫ τD∧T

0

exp
{

z

∫ t

0

gε

(
y(r), r

)
dr

}
ϕε

(
y(t), t

)
dt.

Therefore,

EVε

(
y(0), 0

)
=

(
Vε(·, 0), ρ

)
H0

= E

{
Rε

(
y(T )

)
Ind {τD > T} exp

(
z

∫ τD∧T

0

gε

(
y(t), t

)
dt

)

+
∫ τD∧T

0

exp
{

z

∫ t

0

gε

(
y(r), r

)
dr

}
ϕε

(
y(t), t

)
dt

}
.(5.3)

By Theorem 3.1, we have Vε → V in Y
1. Hence we obtain the required result.

Proof of Theorem 5.1. Let us first prove part (b). Let

gε(x, t) = ε
−1Ind

{
x ∈ Γ(t, ε)

}
, Vε = zL(zgε) gε.

This means that Vε is a solution of the problem

(5.4)
∂Vε

∂t
+AVε + zgεVε = −zgε, Vε(x, t) |x∈∂D = 0, Vε(x, T ) = 0.
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Similarly to (5.3), by the Itô formula [8, section II.10] we have

Vε(a, 0) = E
∫ τD∧T

0

gε

(
y(t), t

)
exp

(
z

∫ t

0

gε

(
y(r), r

)
dr

)
dt

= E exp

(
z

∫ τD∧T

0

gε

(
y(t), t

)
dt

)
− 1.(5.5)

Therefore,

(5.6) φε(z) =
(
Vε(·, 0), ρ

)
H0 + 1 = E exp

{
z lε(T )

}
.

Hence we obtain statement (b) of Theorem 5.1.
Let us prove statement (a). By Theorem 3.1, we have Vε → V in Y

1 uniformly
with respect to z ∈ C: |z| 5 1. We introduce the function φ(z) = (V (·, 0), ρ)H0 + 1.
As has been proved, φε(z) → φ(z) uniformly with respect to z ∈ C: |z| 5 1. By Levy’s
theorem this means that φ(z) is the characteristic function of some random variable
t̂(T ), to which the variables lε(T ) converge in distribution. Theorem 5.1 is proved.

Theorem 5.3. Let g ∈ X
−1, V = L(0)g; then (V (·, 0), ρ)H0 = E t̂(T ).

Proof. We have E lε = (ρ, Vε(·, 0))H0 , where Vε = L(0) gε, gε(x, t) = ε
−1Ind {x ∈

Γ(t, ε)}. By Theorem 5.1, E lε(T ) → E t̂(T ) as ε → +0, and, by Theorem 3.1, Vε → V

in Y
1. Hence we obtain the required result.
Remark 5.2. Using the approach of [9], [10], it is possible to obtain analogues

of Theorems 5.1–5.3 for non-Markov Itô processes y(t) under the assumptions of [9]
(i.e., when βdw(t) = β̃dw̃(t) + β̂dŵ(t), where β̃, β̂ are random functions which are
nonanticipative with respect to ŵ(t), β̃ β̃

T = δI > 0).

6. An explicit formula for local time and a strong convergence. Let
the assumption of section 5 be fulfilled. We retain all the notation of section 5 (in
particular, for g, lε(T ), gε).

Below let βj , j = 1, . . . , n, be the columns of the matrix β in (1.1), Ft be the
flow of σ-algebras of events generated by {a, w(s), s 5 t}. Let M(g): X

−1 → H
0 be

the operator assigning the value V (x, t) |t=0 = M(g)ϕ to the function ϕ ∈ X
−1.

Theorem 6.1. Let the initial vector a have a distribution density ρ ∈ L∞(D),
g ∈ X

−1, and let the matrix β(x, t) be continuous. Let V = L(0)g. Then V ∈ Y
1 and

E |lε(T ) → t̂(T )|2 → 0 for ε → 0, with the random variable

(6.1) t̂(T ) = V (a, 0) +
n∑

j=1

∫ τD∧T

0

∂V

∂x

(
y(t), t

)
βj

(
y(t), t

)
dwj(t).

Here, by ∂V/∂x we understand a Borel-measurable function which is a representative
of the equivalence class ∂V/∂x ∈ L2(Q). The functions

ξj(t) =
∂V

∂x

(
y(t), t

)
βj

(
y(t), t

)

are such that E
∫ T

0
|ξj(t)|2dt < +∞ (∀ j), and for some sequence random time func-

tions ξε,j(t), ε = εk → 0, that are progressively measurable with respect to the flow Ft

we have

E
∫ T

0

∣∣ξj,ε(t)− ξj(t)
∣∣2 dt−→ 0, sup

ε
E

∫ T

0

∣∣ξj,ε(t)
∣∣2 dt < +∞ (∀ j).
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Corollary 6.1. Let p(x, t) be the distribution density of the process y(t) that
has a break on ∂D (i.e., p = M(0)∗ρ). Then, using the assumptions and notation of
Theorem 6.1, we have

E t̂(T )2 =
∫

D

∣∣V (x, 0)
∣∣2 ρ(x) dx +

n∑

j=1

∫

Q

∣∣∣∣
∂V

∂x
(x, t)βj(x, t)

∣∣∣∣
2

p(x, t) dx dt.

Lemma 6.1. Let , under the assumptions of Theorem 6.1, Vε = L(0)gε,

ξj,ε(t) =
∂Vε

∂x

(
y(t), t

)
βj

(
y(t), t

)
.

Then

(6.2) `ε(T ) = Vε(a, 0) +
n∑

j=1

∫ τD∧T

0

ξj,ε(t) dwj(t)

and E |lε(T )− t̂(T )|2−→ 0 for ε → 0.
Proof of Lemma 6.1. Let p be the same as in Corollary 6.1. Note that p ∈ L∞(Q).

Denote

`
x,0
ε (T ) =

∫ τD∧T

0

gε

(
y

x,0(t), t
)
dt.

For Vε = L(0)gε we have gε = −∂Vε/∂t − AVε. By Theorem 9.1 of [5, section IV.9]
Vε ∈ W

2,1
q (Q) (∀ q > 1). For x ∈ D the Itô formula [8, section II.10] implies that

−Vε(a, 0) = Vε

(
y(τD ∧ T ), τD ∧ T

)− Vε(a, 0)

= −
∫ τD∧T

0

gε

(
y(t), t

)
dt +

n∑

j=1

∫ τD∧T

0

ξj

(
y(t), t

)
dwj(t).

Therefore,

`ε(T ) = Vε(a, 0) +
n∑

j=1

∫ τD∧T

0

∂Vε

∂x

(
y(t), t

)
βj

(
y(t), t

)
dwj(t).

Hence we obtain (6.2). The function ∂Vε(x, t)/∂x is continuous and thus we conclude
that the functions ξε,j(t) are progressively measurable with respect to the flow Ft.

Denote Wε = Vε − V . We have

E
∫ τD∧T

0

∣∣ξj,ε(t)− ξj(t)
∣∣2 dt 5 cE

∫ τD∧T

0

∣∣∣∣
∂Wε

∂x

(
y(t), t

)∣∣∣∣
2

dt

5 c

∫

Q

∣∣∣∣
∂Wε

∂x
(x, t)

∣∣∣∣
2

p(x, t) dx dt

5 c‖p‖L∞(Q)‖Wε‖Y 1 −→ 0,(6.3)

E
∣∣Vε(a, 0)− V (a, 0)

∣∣2 5 c

∫

D

∥∥Wε(x, 0)
∥∥2

ρ(x) dx

5 c‖ρ‖L∞(D)‖Wε‖Y 1 −→ 0(6.4)

by Theorem 3.1 (c > 0 is some constant). Lemma 6.1 is proved.
The proof of Theorem 6.1 immediately follows from Lemma 6.1 and (6.2)–(6.4).
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We shall derive an analogue of Tanaka’s formula for the case with stationary
coefficients (see [1], [2], [11], [12]).

Theorem 6.2. Let ρ ∈ L∞(D), β(x, t) ≡ β(x), f(x, t) ≡ f(x), Γ(t) ≡ Γ be time
independent , and let the function β(x) be continuous. Let F (x) be a solution of the
problem AF = g, F |∂D = 0 in the class H

1. Then, F ∈ C(D) and (a.s.)

(6.5) t̂(T ) = F (y(τD ∧ T ))− F (a)−
n∑

j=1

∫ τD∧T

0

∂F

∂x

(
y(t)

)
βj

(
y(t)

)
dwj(t).

By ∂F/∂x we understand here a Borel measurable function which is a representative
of the equivalence class ∂F/∂x ∈ L2(D). The functions

ξ̂j(t) =
∂F

∂x

(
y(t)

)
βj

(
y(t)

)

are such that E
∫ T

0
|ξ̂j(t)|2 dt < +∞ (∀ j) and E

∫ T

0
|ξ̂j,ε(t)− ξ̂j(t)|2 dt−→ 0 for some

sequence of functions ξ̂j,ε(t), ε = εk → 0, progressively measurable with respect to the
flow Ft and such that

sup
ε

E
∫ T

0

∣∣ξ̂j,ε(t)
∣∣2 dt < +∞ (∀ j).

Proof. Let Fε be a solution of the problem AFε = gε, Fε|∂D = 0 in the class
H

1. We assume that (4.1), (4.2) hold for g. By Theorem III.14.1 of [6], F ∈ C(D),
Fε ∈ C(D), and

(6.6) ‖Fε − F‖C(D)−→ 0, ‖Fε − F‖H1 −→ 0.

Let Vε = L(0)g, Uε = Vε + Fε. We have

(6.7)
∂Uε

∂t
(x, t) +AUε(x, t) = 0, Uε(x, t) |x∈∂D = 0, Uε(T, x) = F (x).

Denote

(6.8) ξ̂j,ε(t) =
∂Vε

∂x

(
y(t), t

)
βj

(
y(t)

)
, ξ̂j,ε(t) =

∂Fε

∂x

(
y(t)

)
βj

(
y(t)

)
.

By Lemma 6.1,

(6.9) `ε(T ) = Uε(a, 0)− Fε(a) +
n∑

j=1

∫ τD∧T

0

ξj,ε(t) dwj(t).

We have

ξj,ε(t) =
∂Uε

∂x

(
y(t), t

)
βj

(
y(t)

)− ξ̂j,ε(t),(6.10)

Fε

(
y(τD ∧ T )

)
= Uε

(
y(τD ∧ T ), τD ∧ T

)
.(6.11)

By the Itô formula [8, section II.10] and (6.7),

(6.12) Uε

(
y(τD ∧ T ), τD ∧ T

)
= Uε(a, 0) +

n∑

j=1

∫ τD∧T

0

∂Uε

∂x

(
y(t), t

)
βj

(
y(t)

)
dwj(t).

Relations (6.6)–(6.12) yield the proof of Theorem 6.2.
Remark 6.1. One can obtain an analogue of Theorem 6.2 for D = Rn. In that

case, (6.5) is fulfilled for the function F which is a solution of the equation AF = g in
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the class of functions of polynomial order of growth. The well-known Tanaka formula
for Brownian local time can be written in the form (6.5), where n = 1, D = R,
y(t) = a + w(t), Γ = {0}, F (x) = 2x

+.

7. Local time continuity.
Theorem 7.1. Let the assumptions of Theorem 6.1 be fulfilled and let the nota-

tion of this theorem be retained. Let there exist a collection of hypersurfaces {Γ(t)} =
{Γh(t)}, Γh(t) = Γ0(t) + h, h ∈ ∆, where ∆ ⊂ Rn is some open set , Γh(t) ⊂ D (∀h),
0 ∈ ∆. Let t̂(T ) = t̂(T, h) be the corresponding variables for Γ(t) = Γh(t), h ∈ ∆.
Then E |t̂(T, h)− t̂(T, 0)|2−→ 0 for h → 0.

Proof. Let g(t) = g
h(t), G

h
j (x, t) be the corresponding functions (4.2), V

h =
L(0)gh, W

h = V
h − V

0. We have

g
h(t) =

n∑

j=1

∂G
h
j

∂xj
(x, t).

Obviously, G
h
j (x, t) ≡ G

0
j (x− h, t), ‖Gh

j −G
0
j‖L2(Q)−→ 0 as h → 0, j = 1, . . . , n, then

‖gh − g
0‖X−1 → 0. By Theorems 3.1 and 6.1,

E
∣∣t̂(T, h)− t̂(T, 0)

∣∣2 5 cE
∣∣V h(a, 0)− V

0(a, 0)
∣∣2 + cE

∫ τD∧T

0

∣∣∣∣∣
∂W

h

∂x

(
y(t), t

)
∣∣∣∣∣

2

dt

5 c

∫

D

∥∥W
h(x, 0)

∥∥2
ρ(x) dx + c

∫

Q

∣∣∣∣∣
∂W

h

∂x
(x, t)

∣∣∣∣∣

2

p(x, t) dx dt

5 c ‖p‖L∞(Q)‖Wh‖Y 1 5 c‖p‖L∞(Q)‖gh − g
0‖X−1 −→ 0

for some constant c > 0. Theorem 7.1 is proved.
Theorem 7.2. Let the assumptions and notation of Theorem 6.1 be retained. Let

T0 ∈ [0, T ], T1 ∈ [0, T ]. Then E |t̂(T1)− t̂(T0)|2−→ 0 for T1 → T0.
Proof. Let ϕ0 ∈ X

−1, ϕ1 ∈ X
−1, ϕi(t) = g(t) for t 5 Ti, ϕi(t) = 0 for t > Ti,

i = 0, 1. Let Vi = L(0) ϕi, W = V1 − V0. Obviously, ‖ϕ1 − ϕ0‖X−1 −→ 0. By
Theorem 3.1, ‖W‖Y 1 → 0. From here on, the proof of Theorem 7.2 is similar to that
of Theorem 7.1.

Theorem 7.3. Let the assumptions of Theorem 6.2 be fulfilled. Then there exists
a version of t̂(T ) a.s. continuous with respect to T .

The proof is an immediate corollary of (6.5).

8. Diffusion degeneration. The author’s papers [7], [13] deal with a number of
questions connected with the limiting properties of processes under diffusion degener-
ation (including distributions of functionals of nonsmooth functions [13] and moments
of the first exit from the domain [7]). Here the approach of [7], [13] is applied to the
limiting properties of a local time in the case of diffusion tending to zero. It is estab-
lished that the local time of random paths tends in a certain sense toward the local
time of the limiting smooth function after averaging over the initial values (although
the paths always remain stochastically nonsmooth and no averaging is performed with
respect to the Wiener process).

Let us consider the collection of diffusion coefficients

(8.1) β = βδ, βδ(x, t) ≡
√

δB(x, t),
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where the number δ = 0, B(x, t): Rn ×Rn−→Rn×n is a matrix function such that
B(x, t) B(x, t)T = I. We assume that, for δ > 0, all the assumptions of section 1
are fulfilled, D = Rn, the derivatives ∂

m
f(x, t)/∂x

m, ∂
m

β(x, t)/∂x
m are bounded,

m = 1, 2, 3, 4, a random initial vector a has a distribution density ρ ∈ L∞(Rn),
and B(x, t) is a continuous function. It is assumed that the hypersurface Γ(t) ⊂ Rn

depends on time and the assumptions of Theorem 5.1 are fulfilled for it, g(t) is the
same element W∗ as in Theorem 4.1, and g ∈ X

−1.
For δ > 0 we denote by t̂δ(T ) the variable introduced in Theorem 6.1 and use the

notation yδ(t), Lδ(0), Mδ(0) for the corresponding processes y(t) and the operators
L(0), M(0) introduced in sections 3 and 6.

In particular, the operator Mδ(0): X
0−→H

0 assigns the function V (·, 0) ∈ H
1,

where V = Lδ(0) ϕ, δ > 0, to the function ϕ. Passing from parabolic equations to first
order equations, we introduce similar operators for δ = 0. By Theorem 4.2.1 of [14]
(referring to more general equations), the operator M∗

0(0): H
1 → X

1 is continuous.
We define the operator M0(0): X

−1 → H
−1 as its conjugate.

Similarly, by Theorem 4.2.1 of [14] the operators L
∗
δ(0): X

k → X
k,M∗

δ(0): H
k →

X
k are continuous and their norms are bounded with respect to δ ∈ [0, 1], k = 0, 1, 2.

For the conjugate operators this implies the following.
Proposition 8.1. The operators Lδ(0): X

−k → X
−k, Mδ(0): X

−k → H
−k are

continuous and their norms are bounded with respect to δ ∈ [0, 1], k = 0, 1, 2.
Let gε(x, t) = Ind{x ∈ Γ(t, ε)} as above. We denote

(8.2) uδ,ε = Mδ(0) gε, uδ,0 = Mδ(0) g.

Lemma 8.1. (a) The norms ‖uδ,ε‖H−1 are bounded uniformly with respect to
ε ∈ (0, 1], δ ∈ [0, 1].

(b) For Vδ,ε = Lδ(0) gε, Vδ = Lδ(0) g the norms ‖Vδ,ε(·, t)‖H−1 , ‖Vδ(·, t)‖H−1 are
bounded uniformly in t ∈ [0, T ], ε ∈ (0, 1], δ ∈ [0, 1].

Proof. For fixed t = 0 statements (a) and (b) follow immediately from Proposition
8.1; statement (b) for all t is obtained by a change of the initial time.

Denote by y
x,0
0 (t) a solution of equations (1.1), (1.2) with β ≡ 0 and the initial

condition y(0) = x, x ∈ Rn.
Proposition 8.2. The equality

1
ε

∫ T

0

Ind
{
y

x,0
0 (t) ∈ Γ(ε, t)

}
dt = u0,ε(x) = V0,ε(x, 0)

holds in H
0 = L2(R

n). Moreover , for δ > 0 we have

1
ε

E
∫ T

0

Ind
{
yδ(t) ∈ Γ(ε, t)

}
dt = (ρ, uδ,ε)H0 .

(Here the first equality follows from Theorem 1.1 of [13], the second one from our
Theorem 5.3.)

Theorem 8.1. uδ,ε → u0,0 weakly in H
−1 as δ → 0, ε → 0.

By Proposition 8.1 and Theorem 8.1 it is evident that the following definition is
natural.

Definition 8.1. For the collection of paths {yx,0
0 (t)}x∈Rn , we call u0,0 ∈ H

−1 a
local sojourn time on Γ up to time T .
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Note that if u0,0 ∈ H
0 is fulfilled, then u0,0 = u0,0(x) is a Lebesgue measurable

function of x. We shall give an example in which u0,0 ∈ H
0; the local time is given

for any x = y
x,0
0 (0) and is not a generalized but a bounded measurable function of x.

Example 8.1. Let n = 1, D = R, Γ(t) ≡ {0}. It is assumed that the func-
tions f(x, t), B(x, t) are measurable and bounded together with all derivatives with
respect to x, |B(x, t)| = 1, the number δ = 0, the function f(·, t): [0, T ] → C

1(R) is
piecewise-continuous, |f(0, t)| = c1 (∀ t), where c1 > 0 is a constant. Then u0,0(x) =∑N

k=1 s(θk) |f(0, θk)|−1, where N is the number of visits of zero by the process y
x,0
0 (t)

for t ∈ [0, T ], θk are visit times, k = 1, . . . , N , s(t) = 1 for t ∈ (0, T ), s(0) = s(T ) = 1
2 .

Proof of Theorem 8.1.
Lemma 8.2. The sequence uδ,0 converges weakly to u0,0 as δ → 0 in the space H

−1.
Proof. We introduce the set B

+ = {ξ ∈ H
1 : ξ(x) = 0, ‖ξ‖L1(Rn) = 1}. For

ξ ∈ B
+ denote pδ = M∗

δ(0)ξ. Note that the function pδ(x, t) is the distribution
density of the solution y(t) = yδ(t) of equations (1.1), (1.2) provided that the vector
y(0) has the distribution density ξ(x) with (8.1) taken into account. As is known,
E supt |yδ(t)−y0(t)|2−→ 0. Hence it follows that pδ → p0 weakly in X

0 as δ → 0. By
Proposition 8.1, ‖pδ‖X1 5 const. (∀ δ ∈ [0, 1]). Therefore,

(8.3) pδ → p0 weakly in X
1 as δ → 0.

Hence it follows that

(8.4) (uδ,0 − u0,0, ξ)H0 = (g, pδ − p0)X0 −→ 0

holds for any ξ ∈ B
+. The linear span of B

+ is dense in H
1; hence, by Lemma 8.1

and relation (8.4), we obtain Lemma 8.2.
Let us continue the proof of Theorem 8.1. By virtue of Lemma 8.1 it is sufficient

to prove that uδ,ε → u0,0 weakly in H
−2 as δ → 0, ε → 0. Let ξ ∈ H

2, uδ,1, uδ,0 be
given by (8.2). We have

(uδ,ε − u0,0, ξ)H0 = R1(δ) + R2(δ, ε),

where
R1(δ) = (uδ,0 − u0,0, ξ)H0 , R2(δ, ε) = (uδ,ε − uδ,0, ξ)H0 .

We have R1(δ) → 0 for δ → 0 by Lemma 8.1,

R2(δ, ε) =
(Mδ(0) (gε − g), ξ

)
H0 =

(
gε − g, M∗

δ(0) ξ
)
H0

5 ‖gε − g‖X−1

∥∥M∗
δ(0) ξ

∥∥
X1 5 const. ‖gε − g‖X−1‖ξ‖H1 .

Theorem 8.1 is proved.
Let Fa, FW be the σ-algebras of events generated by the initial vector a in (1.1)

and the Wiener process w(s), s ∈ [0, T ], respectively; let (Ω,F ,P) be the initial
probability space, Ω = {ω}.

Let Vδ = Lδ(0)g, β
(j)
δ be the columns of the matrix βδ. By Theorem 6.1 we have

(8.5) t̂δ(T ) = Vδ(a, 0) +
n∑

j=1

∫ T

0

∂Vδ

∂x

(
yδ(t), t

)
β

(j)
δ

(
yδ(t), t

)
dwj(t).

Denote

(8.6) ηδ = t̂δ(T )−E
{
t̂δ(T ) | Fa

}
, ηδ = E

{
ηδ | FW

}
.
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From (8.5) we have

(8.7) ηδ =
n∑

j=1

∫ T

0

∂Vδ

∂x

(
yδ(t), t

)
β

(j)
δ

(
yδ(t), t

)
dwj(t).

Theorem 8.2. (a) For any ρ ∈ H
1 we have

(8.8) E t̂δ(T )−→(u0,0, ρ)H0 as δ → 0.

(b) Let ρ ∈ H
2. Then,

(8.9) E |ηδ|2 5 δ · const. .

Proof. Relation (8.8) follows from (8.5) and Lemma 8.2. Let us prove (8.9). Let
p(x, t, ω) be a density of conditional (given FW ) distribution of the process yδ(t), i.e.,
for any domain G ⊂ Rn,

∫

G

p(x, t, ω) dx = P
{
yδ(t) ∈ G

}
.

Recall that Ck = C([0, T ] → H
k).

Proposition 8.3. Let the vector a = yδ(0) be independent of w(t) and have a
distribution density ρ ∈ H

0. Then there exists a density of conditional (given FW )
distribution of the process yδ(t): p = p(x, t, ω) ∈ L

2(Ω,F ,P, C0).
If ρ ∈ H

k, then p(x, t, ω) ∈ L
2(Ω,F,P, Ck), and

E
∥∥p(·, ω)

∥∥2

C2 5 const.E ‖ρ‖2Hk , k = 0, 1, 2.

This proposition follows from Theorem 2.2 of [10]; the latter estimate holds by
Theorem 4.2.1 of [14] due to the properties of the parabolic equation for p derived in
Theorem 5.3.1 of [14].

Let us continue the proof of Theorem 8.2. We have

ηδ =
n∑

j=1

∫ T

0

dwj(t)
∫

Rn

∂Vδ

∂x
(x, t)β

(j)
δ (x, t) p(x, t, ω) dx,

E |ηδ|2 = E
n∑

j=1

∫ T

0

dt

∫

Rn

∣∣∣∣
∂Vδ

∂x
(x, t)β

(j)
δ (x, t) p(x, t, ω)

∣∣∣∣
2

dx

5 const. E
n∑

j=1

∫ T

0

∥∥Vδ(·, t)
∥∥2

H−1

∥∥β
(j)
δ (x, t) p(x, t, ω)‖2H2 dt

5 δ const. E
∥∥p(·, ω)

∥∥2

X2 5 δ const. E ‖ρ‖2H2 .

The inequality preceding the last one is fulfilled by virtue of (8.1) and Lemma 8.1 (a).
Theorem 8.2 is proved.

Remark 8.1. Let ρ ∈ W
k
2 (Rn), k > n/2 + 2, δ > 0 be fixed, the derivatives

∂
m

f/∂x
m, ∂

m
β/∂x

m be bounded, m = 1, . . . , k + 2. By the approach used above for
Theorem 8.2 one can prove that for ε → +0 there exists in the space L

2(Ω,F ,P) a
limit of the variables lε(x, t), where x ∈ Rn, t > 0,

lε(x, t) = E
{
lε(x, t) | FW

}
, lε(x, t) =

1
ε

n

∫ t

0

Ind
{∣∣y(r)− x

∣∣ < ε
}

dr.
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(Note that for n > 1 no limit of the variables lε(x, t) exists without conditional av-
eraging, since, as is known, there does not exist a local time of a multi-dimensional
process at this point.)

To conclude, we would like to note that, based on Theorem 3.1, control problems
with functionals depending on a local time were solved in [15], [16]. Moreover, The-
orems 4.1 and 5.1 enable one to interpret the problems solved in [17] as local time
control problems.
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