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Stochastic Controls with Terminal Contingent Conditions
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Abstract

This paper considers a nonlinear stochastic control problem where the system

dynamics is a controlled nonlinear backward stochastic differential equation and

the state must coincide with a given random vector at the terminal time. A neces-

sary condition of optimality in the form of a global maximum principle as well as a

sufficient condition of optimality are presented. The general result is also applied

to a backward linear-quadratic control problem and an optimal control is obtained

explicitly as a feedback of the solution to a forward-backward equation. Finally, a

nonlinear problem with additional integral constraints is discussed and it is shown

that the duality gap is zero under the Slater condition.
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1 Introduction

Stochastic maximum principle has been extensively investigated since 1960s [7, 10,

2, 1, 8, 13, 16]. The research on the problem has mainly focused on the dynamic

systems governed by the Itô (forward) stochastic differential equations with initial states
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specified. However, in studying (among others) the derivative securities (or contingent

claims) which are now becoming increasingly popular financial tools for investment

and risk hedging, one typically encounters stochastic systems where the terminal states

are pre-determined, following the so-called backward stochastic differential equations

(BSDEs). A good example is the option pricing problem where the replication of the

option follows a backward equation. This calls for the research on evaluating and

optimizing the performance of backward stochastic systems.

Linear BSDEs was initially introduced by Bismut [3] when he was studying adjoint

equations associated with the stochastic maximum principle. The nonlinear extension

was introduced by Pardoux and Peng [13]. Research on BSDE theory and applications

has been very active in recent years. For a updated and systematic account of BSDE

theory, see [15, Chapter 7].

In this paper, we study an optimal control problem where the dynamics follows a

BSDE and therefore the terminal state must coincide with a prescribed random vector

contingent on the terminal situation. This sort of problems come out naturally when we

study a (forward) stochastic linear-quadratic control problem [4]. More interestingly, it

can be used to model some optimal control problem of contingent claims. For example,

part of the control may represent the rate of capital injection or withdrawal from a

replication of a claim in order to achieve certain goal.

A control problem for BSDEs was considered in [9], where a necessary condition of

optimality was obtained for a system with a state-linear drift. For a general controlled

nonlinear BSDE, a stochastic maximum principle in a local form was derived by Peng

[14]. In this paper, we attempt to prove the stochastic maximum principle in the global

form. Note that the major difficulty in doing this is that the state of a backward

system consists of two variables y(t) and z(t). The second one, z(t), is hard to handle

because there is no convenient pointwise (in t) estimation for it, as opposed to the

first variable y(t). This calls for a more delicate estimation of the variation of z(t) in

some Banach space when carrying out the spike variation approach that is typical for

deriving a necessary condition. After the maximum principle is derived, the result is

applied to a backward linear-quadratic (LQ) problem via a Riccati-like equation and an

optimal control is presented in a closed form. Then we investigate when the derived
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stochastic maximum principle becomes sufficient. Finally, we study a problem with

a finite number of additional integral constraints and show under the standard Slater

condition that the duality gap is zero. As a consequence, necessary and sufficient

conditions of optimality in a form of a duality equality are obtained.

The rest of the paper is organized as follows. In Section 2 the optimal control

problem with BSDE dynamics is formulated. Section 3 is devoted to the necessary

conditions of optimality (maximum principle). In Section 4 a linear-quadratic problem

is studied as a special case. Section 5 deals with the sufficient conditions of optimality.

In Section 6 a constrained problem is treated. Finally, Section 7 gives some concluding

remarks.

2 Problem Formulation and Preliminaries

Let T > 0 be fixed. Consider a standard probability space (Ω,F ,P) and a standard

d-dimensional Wiener process w(t) (with w(0) = 0) which generates the filtration Ft =

σ{w(r) : 0 ≤ r ≤ t} augmented by all the P-null sets in F .

Let ξ be an n-dimensional FT -measurable random vector. Consider the following

control problem:

Minimize J(u(·)) = Eg(y(0)) + E
∫ T

0
ϕ(t, y(t), z(t), u(t))dt, (2.1)

Subject to





dy(t) = f(t, y(t), z(t), u(t))dt + z(t)dw(t), t < T,

y(T ) = ξ.
(2.2)

Here u(t) = u(t, ω) is an m-dimensional control vector, y(t) = y(t, ω) an n-dimensional

vector, and z(t) = z(t, ω) an n × d matrix, ω ∈ Ω. The pair x(t) ≡ (y(t), z(t)) is the

state process.

In (2.1) and (2.2), f(t, y, z, u, ω) : R×Rn×Rn×d×Rm×Ω → Rn, ϕ(t, y, z, u, ω) :

R×Rn ×Rn×d ×Rm × Ω → R, and g(y) : Rn → R are given measurable functions.

Assumption 2.1 The random functions f(t, y, z, u, t) and ϕ(t, y, z, u, ω) are continu-

ous for fixed ω ∈ Ω and are progressively measurable with respect to Ft for fixed (y, z, u).

The function g(y) : Rn → Rn is continuous.
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Assumption 2.2 There exist continuous deriva-

tives ∂kg(y)/∂yk, ∂kf(t, y, z, u, ω)/∂yk, ∂kf(t, y, z, u, ω)/∂zk, ∂kϕ(t, y, z, u, ω)/∂yk and

∂kϕ(t, y, z, u, ω)/∂zk, k = 1, 2. Moreover, the following estimates hold:

|ϕ(t, y, z, u, ω)|+ |g(y)| ≤ C0(|y|2 + |z|2 + 1),

|f(t, y, z, u, ω)|+
∣∣∣∣
∂ϕ

∂y
(t, y, z, u, ω)

∣∣∣∣ +
∣∣∣∣
∂ϕ

∂z
(t, y, z, u, ω)

∣∣∣∣ +
∣∣∣∣
∂g

∂y
(y)

∣∣∣∣ ≤ C1(|y|+ |z|+ 1),

∣∣∣∣
∂f

∂y
(t, y, z, u, ω)

∣∣∣∣ +
∣∣∣∣
∂f

∂zi
(t, y, z, u, ω)

∣∣∣∣ +
∣∣∣∣
∂2f

∂y2
(t, y, z, u, ω)

∣∣∣∣ +
∣∣∣∣
∂2f

∂z2
i

(t, y, z, u, ω)
∣∣∣∣

+
∣∣∣∣
∂2ϕ

∂y2
(t, y, z, u, ω)

∣∣∣∣ +
∣∣∣∣
∂2ϕ

∂z2
i

(t, y, z, u, ω)
∣∣∣∣ +

∣∣∣∣
∂2g

∂y2
(y)

∣∣∣∣ ≤ C2,

where Ck > 0 are constants, k = 0, 1, 2, and zi are the columns of the matrix z,

i = 1, ..., d.

Assumption 2.3 There exists a number p > 2 such that ξ ∈ Lp(Ω,FT ,P;Rn).

Let ∆ be a given non-empty subset of Rm. Consider a right-continuous and non-

decreasing filtration At consisting of complete σ-algebras such that At ⊆ Ft.

Introduce a set U of admissible controls consisting of all functions u(t, ω) : [0, T ]×
Ω → Rm which are progressively measurable with respect to At, u(t, ω) ∈ ∆ a.e. a.s.,

and E
∫ T
0 |u(t, ω)|p < +∞, where the number p is defined in Assumption 2.3.

Notice that At 6= Ft allows one to consider some smaller but important classes of

controls. For example, the case when At is the completion of {Ω, ∅}, corresponds to

a problem when only deterministic controls are admissible. The case At = F(t−h)∨0

corresponds to the problem with a time delay h > 0 in control.

Let E be an Euclidean space and r > 1 be a number. Introduce the set M̃r(E) of

all functions ζ(t, ω) : [0, T ] × Ω → E which are progressively measurable with respect

to Ft and such that ‖ζ‖Mr(E) =
{
E

(∫ T
0 ‖ζ‖2

Edt

)r/2}1/r

< +∞. Let the Banach space

Mr(E) be the completion of M̃r(E). We also introduce the following space

Yr = Mr(Rn), Zr = Mr(Rn×d), X = Y2 × Z2, Cr = Lr(Ω,FT ,P; C([0, T ] → Rn)).

The following concerns the existence and uniqueness of solutions to the BSDE (2.2).

Theorem 2.1 ([9, p. 54]) For any u(·) ∈ U , there exist an unique pair (y(·), z(·)) ∈
(Yp ∩ Cp)× Zp such that (2.2) holds.
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3 Necessary Condition of Optimality

Assume that the process (x0(·), u0(·)) ≡ (y0(·), z0(·), u0(·)) is an optimal solution of the

control problem (2.1) and (2.2). Consider the following forward Ito equation:




dψ(t) =
{
−

(
∂f
∂y

)∗
0
(t)ψ(t) +

(
∂ϕ
∂y

)∗
0
(t)

}
dt +

∑d
i=1

{
−

(
∂f
∂zi

)∗
0
(t)ψ(t) +

(
∂ϕ
∂zi

)∗
0
(t)

}
dwi(t),

ψ(0) = ∂g
∂y (y0(0))∗.

(3.1)

Here and after we use the notation that (φ)0(t) ≡ φ(x0(t), u0(t)) for any function φ(·).
Furthermore, wi(t) are the components of the vector w(t), and zi(t) are the columns of

the matrix z(t).

Introduce the function Ĥ : [0, T ]×∆× Ω → R:

Ĥ(t, u) ∆= ψ(t)∗f(t, y0(t), z0(t), u)− ϕ(t, y0(t), z0(t), u).

Proposition 3.1 [1]. The conditional expectation H̃(t, u) = E
{
Ĥ(t, u)|At

}
ex-

ists, and there exists a variant H(t, u) : [0, T ] × ∆ × Ω → R of H̃(t, u) (i.e.,

P
(
H(t, u) = H̃(t, u), ∀(t, u)

)
= 1) such that the process H(t, u(t)) is At-adapted for

any u(·) ∈ U .

The function H(t, u, ω) is the so-called regular conditional expectation [6, 1]. We assume

from now on that H(t, u) = H(t, u, ω) is such as determined by Proposition 3.1.

Theorem 3.1 (Maximum Principle) The following inequality holds:

H(t, u0(t, ω), ω) = max
v∈∆

H(t, v, ω), a.e.t ∈ [0, T ], P-a.s. (3.2)

The rest of this section is devoted to the proof of Theorem 3.1. Let µ denotes an

arbitrary pair (t′, v′) ∈ (0, t]×L∞(Ω,At′ ,P;Rm) such that v′(ω) ∈ ∆ P-a.s. . For each

µ and ε ≥ 0, introduce the set Q(ε) = {t ∈ [0, T ] : |t − t′| ≤ ε/2}. Specify a number

εµ so small that Q(ε) ⊂ [0, T ]. Construct a variation u(·, ε|µ) of u0(·) in the following

way. Let u(·, 0|µ) ≡ u0(·). For ε ∈ (0, εµ], let

u(t, ε|µ) =

{
u0(t) if t /∈ Q(ε)

v′ if t ∈ Q(ε).
(3.3)

The resulting set of curves in the space U is called a variation bundle. The parameter

µ enumerates the curves, and the bundle vertex is at u0(·).
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Let µ be fixed. Denote uε(·) = u(·, ε|µ) and xε(·) ≡ (yε(·), zε(·)) the corresponding

solution of (2.2). Furthermore, we shall employ the notation (φ)ε(t) ≡ φ(xε(t), uε(t))

for any function φ(·).
Introduce the set X̂ ⊂ X such that any x̂(·) ≡ (ŷ(·), ẑ(·)) ∈ X̂ is the solution of

(2.2) for some û(·) ∈ U . By definition, for any x(·) ≡ (y(·), z(·)) ∈ X̂, there exists a

process y(·) such that (y(·), z(·)) ∈ X and dy(t) = y(t)dt + z(t)dw(t). Introduce the

following functional L : X̂ × U → R:

L(x(·), u(·)) ∆= E
∫ T
0 ψ(t)∗

(
f(t, y(t), z(t), u(t))− y(t)

)
dt

−Eg(y(0))−E
∫ T
0 ϕ(t, y(t), z(t), u(t))dt.

(3.4)

Note that in the above definition x(·) is not necessarily the state corresponding the

control u(·). Then

J(x0(·), u0(·))− J(xε(·), uε(·)) = L(xε(·), uε(·))− L(x0(·), u0(·))
= L(xε(·), uε(·))− L(x0(·), uε(·))

+L(x0(·), uε(·))− L(x0(·), u0(·)).
Lemma 3.1 We have

1
ε
(L(xε(·), uε(·))− L(x0(·), uε(·))) → 0 as ε → 0 + .

Proof. Introduce the processes

ψ̂i(t)
∆=

(
∂f

∂zi

)∗

0
(t)ψ(t) +

(
∂ϕ

∂zi

)∗

0
(t), i = 1, ..., d. (3.5)

It can be easily seen from Ito’s formula that
∫ T

0
ψ(t)∗y(t)dt = ψ(T )∗y(T )− ψ(0)∗y(0)−

∫ T

0
dψ(t)∗y(t)−

∫ T

0
ψ(t)∗z(t)dw(t)

−
d∑

i=1

∫ T

0
ψ̂i(t)∗zi(t)dt.

Hence (3.4) can be rewritten as

L(x(·), u(·)) = E
{
−ψ(T )∗y(T ) + ψ(0)∗y(0) +

∫ T
0 dψ(t)∗y(t) +

∫ T
0 ψ(t)∗z(t)dw(t)

+
∑d

i=1

∫ T
0 ψ̂i(t)∗zi(t)dt +

∫ T
0 ψ(t)∗f(t, y(t), z(t), u(t))dt

}

−Eg(y(0))−E
∫ T
0 ϕ(t, y(t), z(t), u(t))dt.

(3.6)
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Let

h(t) ∆= yε(t)− y0(t), ĥ(t) ∆= zε(t)− z0(t),

and denote by ĥi the columns of the matrix ĥ. Then h(T ) = 0, and

L(xε, uε)−L(x0, uε) = E

{
ψ(0)∗h(0)−ψ(T )∗h(T )+

∫ T

0
dψ(t)∗h(t)+

∫ T

0
ψ(t)∗ĥ(t)dw(t)

+
d∑

i=1

∫ T

0
ψ̂i(t)∗ĥi(t)dt− g(yε(0)) + g(y0(0))

+
∫ T

0
ψ(t)∗

(
f(t, yε(t), zε(t), uε(t))− f(t, y0(t), z0(t), uε(t))

)
dt

−
∫ T

0

(
ϕ(t, yε(t), zε(t), uε(t))− ϕ(t, y0(t), z0(t), uε(t))

)
dt

}

= E

{
ψ(0)∗h(0) +

∫ T

0
dψ(t)∗h(t) +

∫ T

0
ψ(t)∗ĥ(t)dw(t)

+
d∑

i=1

∫ T

0
ψ̂i(t)∗ĥi(t)dt− ∂g

∂y
(y(0))h(0)+

∫ T

0

{
ψ(t)∗

(
∂f

∂y

)

0
(t)h(t)+

d∑

i=1

(
∂f

∂zi

)

0
(t)ĥi(t)

)
,

−
(

∂ϕ

∂y

)

0
(t)h(t)−

d∑

i=1

(
∂ϕ

∂zi

)

0
(t)ĥi(t)

}
dt− α0 + α1 − α2 = −α0 + α1 − α2,

where

α0
∆= E

(
g(yε(0)) + g(y0(0))− ∂g

∂y
(y(0))h(0)

)
,

α1
∆= E

∫ T

0
a1(t)dt, α2

∆= E
∫ T

0
a1(t)dt,

a1(t)
∆= ψ(t)∗

(
f(t, yε(t), zε(t), uε(t))− f(t, y0(t), z0(t), uε(t))

−
(

∂f

∂y

)

0
(t)h(t)−

d∑

i=1

(
∂f

∂zi

)

0
(t)ĥi(t)

)
,

a2(t)
∆= ϕ(t, yε(t), zε(t), uε(t))−ϕ(t, y0(t), z0(t), uε(t))−

(
∂ϕ

∂y

)

0
(t)h(t)−

d∑

i=1

(
∂ϕ

∂zi

)

0
(t)ĥi(t).

Let us now introduce the following proposition.

Proposition 3.2 For any r ∈ (1, p], ν ∈ (0, 1), there exists a constant C ′ = C ′(r, ν) >

0 such that

‖h‖Cr + ‖ĥ‖Zr ≤ C ′εν .
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Proof. As in the proof of [9, Theorem 5.1], for a small enough T > 0 it can be shown

that

‖h‖p
Cr

+ ‖ĥ‖p
Zr
≤ const

(∫ T

0

∣∣∣f(t, y0(t), z0(t), uε(t))− f(t, y0(t), z0(t), u0(t))
∣∣∣
p
dt

)pν

.

(To get this one only needs to slightly modify the proof in [9] by replacing the Cauchy-

Schwartz inequality by the Holder inequality.) By (3.3),

‖h‖p
Cr

+ ‖ĥ‖p
Zr
≤ const εpν , ∀ε ∈ [0, εµ).

The general case of an arbitrary T > 0 can be obtained by subdividing the interval

[0, T ] into a finite number of small intervals, using the flow property of the backward

equation (see [9, Proposition 2.5]). This completes the proof of Proposition 3.2. 2.

Lemma 4.1 then follows immediately from the following result.

Proposition 3.3 For i = 0, 1, 2, ε−1|αi| → 0 as ε → 0 + .

Proof. For a scalar random process θ(t), introduce the process

xθ(t) ∆= (1− θ(t))x0(t) + θ(t)xε(t).

Denote (φ)θ(t) ≡ φ(xθ(t), uε(t)) and (φ)γ(t) ≡ φ(xθ(t), u0(t)) for any function φ(·). It

can be easily obtained from the Mean-Value Theorem that there exists a process θ(t)

such that

|a1(t)| ≤
∣∣∣∣ψ(t)∗

{((
∂f

∂y

)

θ
(t)−

(
∂f

∂y

)

0
(t)

)
h(t) +

d∑

i=1

((
∂f

∂zi

)

θ
(t)−

(
∂f

∂zi

)

0
(t)

)
ĥi(t)

}∣∣∣∣.

Hence |a1(t)| ≤ |a1(t)|+ |a2(t)|, where

a1(t)
∆= ψ(t)∗

{((
∂f

∂y

)

θ
(t)−

(
∂f

∂y

)

γ
(t)

)
h(t) +

d∑

i=1

((
∂f

∂zi

)

θ
(t)−

(
∂f

∂zi

)

γ
(t)

)
ĥi(t)

}
,

a2(t)
∆= ψ(t)∗

{((
∂f

∂y

)

γ
(t)−

(
∂f

∂y

)

0
(t)

)
h(t) +

d∑

i=1

((
∂f

∂zi

)

γ
(t)−

(
∂f

∂zi

)

0
(t)

)
ĥi(t)

}
.

Furthermore, let r′ ∈ (2, p), ν ∈ (1/2, 1) be arbitrary, r = r′(r′ − 1)−1, and R = 2r. It

can be easily seen that ψ ∈ Cp for any p < p, hence ‖ψ‖Cr′ < +∞. By Proposition 3.2,

we have

E
∫ T

0
|a2(t)|dt ≤ C2‖ψ‖Cr′

{
E

(∫ T

0
(|h(t)|+ |ĥ(t)|)2dt

)r}1/r
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≤ const ‖ψ‖Cr′

(
‖h‖CR

+ ‖ĥ‖ZR

)2 ≤ const ‖ψ‖Cr′C
′(R, ν)ε2ν .

Hence
1
ε
E

∫ T

0
|a2(t)|dt → 0 as ε → 0 + .

Furthermore, one has

E
∫ T

0
|a1(t)|dt ≤ 2d‖ψ‖Cr′

{
E

(∫

Q(ε)
(|h(t)|+ |ĥ(t)|)d sup

t,ω

(∣∣∣∣
∂f

∂y

∣∣∣∣ +
∣∣∣∣
∂f

∂zi

∣∣∣∣
)

dt

)r}1/r

≤ 2dC2‖ψ‖Cr′

{
E

(∫

Q(ε)
(|h(t)|+ |ĥ(t)|)dt

)r}1/r

≤ const ‖ψ‖Cr′

{
E

(∫

Q(ε)
(|h(t)|+ |ĥ(t)|)2dt

)r/2(∫

Q(ε)
dt

)r/2}1/r

≤ const ‖ψ‖Cr′

(
‖h‖Yr + ‖ĥ‖Zr

)√
ε ≤ const εν+1/2 = o(ε).

Hence α1 = o(ε). This completes the proof of Proposition 3.3 for i = 1. The proof for

i = 0 and i = 2 is similar. This completes the proof of Proposition 3.3 and hence that

of Lemma 3.1. 2

Lemma 3.2 Let v ∈ ∆, t′ ∈ [0, T ), and Ωµ ∈ At′ be fixed. Let uε(·) ∆= u(·, ε|µ), where

µ = (t, v′) with

v′(ω) ∆=

{
u0(t′, ω) if ω /∈ Ωµ

v if ω ∈ Ωµ.

Then

1
ε
(L(x0(·), uε(·))−L(x0(·), u0(·))) → H(t′, u0(t′, ω), ω)−H(t′, v, ω) as ε → 0+, a.e.t′.

Proof. By (3.4),

L(x0(·), uε(·))− L(x0(·), u0(·))
ε

=
1
ε
E

∫ T

0

{
ψ(t)(f(t, y0(t), z0(t), uε(t))−f(t, y0(t), z0(t), u0(t)))

−ϕ(t, y0(t), z0(t), uε(t)) + ϕ(t, y0(t), z0(t), u0(t))
}

dt

=
1
ε

∫ (t′+ε/2)∧T

(t′−ε/2)∨0

∫

Ωµ

P(dω)(H(u0(t, ω), t, ω)−H(v, t, ω)) →
∫

Ωµ

P(dω)(H(u0(t′, ω), t′, ω)−H(v, t′, ω)) as ε → 0+

for a.e. t′, P-a.s. This convergence holds for any Ωµ ∈ At′ . This completes the proof

of Lemma 3.2. 2

Theorem 3.1 then follows from Lemma 3.1 and Lemma 3.2.
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4 Application: A Linear-Quadratic Problem

In this section, we apply Theorem 3.1 to a linear-quadratic problem as a particular case

of the control problem (2.1)-(2.2).

Let T > 0, the probability space (Ω,F ,P) and the d-dimensional Wiener pro-

cess w(t) be such as defined in Section 2. Let p > 2 be a given number, and

ξ ∈ Lp(Ω,FT ,P;Rn) be a given random vector.

Consider the following control problem:

Minimize J(y(·), z(·), u(·)) =
1
2
E

(
y(0)∗Gy(0) +

∫ T

0
u(t)∗Γ(t)u(t)dt

)
, (4.1)

Subject to





dy(t) =
(
A(t)y(t) + B(t)u(t) +

∑d
i=1 Ci(t)zi(t)

)
dt + z(t)dw(t),

y(T ) = ξ.
(4.2)

Here u(t) = u(t, ω) is an m-dimensional control vector, y(t) = y(t, ω) is an n-

dimensional vector, z(t) = z(t, ω) is an n × d dimensional matrix with zi(t) being

the columns of z(t). The pair x(t) ≡ (y(t), z(t)) is the state process.

In (4.1) and (4.2), A(t) = A(t, ω) : [0, T ]×Ω → Rn×n, B(t) = B(t, ω) : [0, T ]×Ω →
Rn×m, Ci(t) = Ci(t, ω) : [0, T ] × Ω → Rn×n, Γ(t) = Γ(t, ω) : [0, T ] × Ω → Rm×m are

bounded matrix processes which are progressively measurable with respect to Ft, and

G ∈ Rn×n is a given (deterministic) matrix.

We assume that G = G∗ ≥ 0, Γ(t, ω) = Γ(t, ω)∗ ≥ δIm for all t, ω, where δ > 0, and

Im is the unit matrix in Rm.

Introduce a set U0 of admissible controls consisting of all functions u(t, ω) :

[0, T ] × Ω → Rm which are progressively measurable with respect to Ft and such

that E
∫ T
0 |u(t, ω)|pdt < +∞.

Let u0(·) be an optimal control, and (y0(·), z0(·)) be the corresponding state process.

Then the adjoint process ψ(·) is the solution of the following equations:



−dψ(t) = A(t)∗ψ(t)dt +

∑d
i=1 Ci(t)∗ψ(t)dwi(t),

ψ(0) = Gy0(0).
(4.3)

Theorem 4.1 There is a unique optimal control u0(·) for the problem (4.1)-(4.2) in

the class U0. Moreover, u0(·) has the following representation:

u0(t) = Γ(t)−1B(t)∗ψ(t). (4.4)
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Proof. The cost function (4.1) is a positive quadratic functional of controls because

of the assumptions on G and Γ(t). Hence by standard convex optimization theory an

optimal control exists. Moreover, in the present case, the adjoint equation (3.1) has

the form (4.3). By Theorem 3.1,

ψ(t)∗B(t)u0(t)− u0(t)∗Γ(t)u0(t) ≥ ψ(t)∗B(t)v − v∗Γ(t)v, ∀v ∈ Rm.

This implies (4.4). Hence (4.4) is the only control which satisfies the necessary condi-

tions of optimality. It then must be the optimal control. This completes the proof of

Theorem 4.1. 2

Assume now that there exist a random n × n matrix process P (t) = P (t, ω) with

the following properties:

(i) P (t) is progressively measurable with respect to Ft;

(ii) P ∈ L2([0, T ]× Ω);

(iii) the following equation holds:




dP (t) = − [
P (t)A(t) + A(t)∗P (t) + P (t)B(t)Γ(t)−1B(t)∗P (t)

]
dt−∑d

i=1 Ci(t)∗P (t)dwi(t),

P (0) = G.

(4.5)

This equation will play a role similar to the Riccati equation in forward LQ control

theory. Note however that this equation does not have the symmetric property and

the solvability of it in general remains open. However, the following gives a sufficient

condition for the existence of its solutions.

Lemma 4.1 Let Ci(t, ω) = ci(t, ω)In, where In is the unit matrix in Rn×n, and ci(t) =

ci(t, ω) : [0, T ]×Ω → R, are bounded scalar processes which are progressively measurable

with respect to Ft. Then there exists P (t) satisfying the conditions (i)-(iii) above.

Proof. Introduce the processes

q(t) = q(t, ω) = exp
{
−

d∑

i=1

∫ t

0
ci(s, ω)dwi(s)

}
, Γq(t) = Γq(t, ω) = q(t, ω)−1Γ(t, ω).

For fixed ω, let Q(t) = Q(t, ω) be the solution of the following conventional Riccati

equation




dQ
dt = −Q(t)A(t)−A(t)∗Q(t)−Q(t)B(t)Γq(t)−1B(t)∗Q(t)− 1

2

∑d
i=1 ci(t)Q(t),

Q(0) = G.

(4.6)
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This equation has a solution Q(t) = Q(t, ω) > 0. Furthermore, it can be easily seen

that

0 ≤ Q(t) ≤ G−
∫ t

0
[Q(s)A(s) + A(s)∗Q(s)− 1

2

d∑

i=1

ci(s)Q(s)]ds.

Hence any solution Q(t) = Q(t, ω) of (4.6) is uniformly bounded, and it can be easily

seen that Q(t) is progressively measurable with respect to Ft. Let P (t) = q(t)Q(t). It

can be verified directly that this matrix process satisfies (i)-(iii). This completes the

proof of Lemma 4.1. 2

Theorem 4.2 Assume that there exists P (t) such that the conditions (i)-(iii) above

hold. Then the optimal control u0(·) for the problem (4.1)-(4.2) can be represented as

u0(t) = Γ(t)−1B(t)∗P (t)ỹ(t), (4.7)

where ỹ(t) is the solution of the equation




d
dt ỹ(t) =

[
A(t) + B(t)Γ−1B(t)∗P (t)

]
ỹ(t),

ỹ(0) = y0(0).
(4.8)

Proof. Let ψ̃(t) ∆= P (t)ỹ(t). We have

dψ̃(t) = dP (t)ỹ(t) + P (t)dỹ(t)

=
{
−

(
P (t)A(t) + A(t)∗P (t) + P (t)B(t)Γ(t)−1B(t)∗P (t)

)
dt−

d∑

i=1

Ci(t)∗P (t)dwi(t)
}

ỹ(t)

+P (t)
(
A(t) + B(t)Γ−1B(t)∗P (t)

)
ỹ(t)

= −
{

A(t)∗P (t)−
d∑

i=1

Ci(t)∗P (t)dwi(t)
}

ỹ(t) = −A(t)∗ψ̃(t)dt−
d∑

i=1

Ci(t)∗ψ̃(t)dwi(t).

So ψ̃(t) satisfies the same equations as ψ(t). Hence ψ̃(·) = ψ(·) by the uniqueness. This

completes the proof of Theorem 4.2. 2

Note that (ỹ(·), y0(·), z0(·)) satisfies the following so-called forward-backward

stochastic differential equation (FBSDE):




d
dt ỹ(t) =

[
A(t) + B(t)Γ−1B(t)∗P (t)

]
ỹ(t),

dy0(t) =
(
A(t)y0(t) + B(t)Γ(t)−1B(t)∗P (t)ỹ(t) +

∑d
i=1 Ci(t)zi(t)

)
dt + z(t)dw(t),

ỹ(0) = y0(0), y0(T ) = ξ.

(4.9)
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Therefore, the optimal control (4.7) is a “feedback” of the solution to the equation

(4.9).

The following result is straightforward.

Corollary 4.1 If Ci ≡ 0 (∀i) and A(t), B(t) are deterministic, then the matrix P (t)

is deterministic and ỹ(t) = Ey0(t).

5 Sufficient Condition of Optimality

In this section, we examine when the necessary condition of optimality (3.2) becomes

sufficient. We assume that At ≡ Ft. Let u0(·) be an admissible control and x0(·) ≡
(y0(·), z0(·)) be the corresponding state process. Introduce the function H : [0, T ] ×
Rn ×Rn×d ×Rm × Ω → R:

H(t, y, z, u, ω) ∆= ψ(t)∗f(t, y, z, u, ω)− ϕ(t, y, z, u, ω).

(Note the natural relationship between H and Ĥ that appears in the maximum princi-

ple.)

Before stating the main result, we need to have some more notation. Let v : X → R

be a locally Lipschitz continuous function, where X is a convex set in Rn. The Clarke

generalized gradient of v at x̂ ∈ X , denoted by ∂xv(x̂), is a set defined by

∂xv(x̂) ∆= {p ∈ Rn : p∗ξ ≤ v0(x̂; ξ), ∀ξ ∈ Rn},

where

v0(x̂; ξ) ∆= lim supx∈X , x+hξ∈X ,x→x̂,h→0

v(x + hξ)− v(x)
h

.

Theorem 5.1 Let ∆ be either an open set or a convex set in Rm. Assume that the

function g(·) is convex, and the function H(t, y, z, u, ω) is concave and Lipschitz con-

tinuous in (y, z, u) for fixed (t, ω). Then u0(·) is an optimal control of the problem

(2.2)–(2.1) if it satisfies (3.2).

Proof. Let u(·) be an arbitrary admissible control, x(·) ≡ (y(·), z(·)) be the corre-

sponding state process, and

h(t) = y(t)−y0(t), ĥ(t) = z(t)−z0(t), ∆f(t) = f(y(t), z(t), u(t), t)−f(y0(t), z0(t), u0(t), t).
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We have h(T ) = 0, and

ψ(T )∗h(T )− ψ(0)∗h(0) =
∫ T

0
(dψ(t)∗h(t) + ψ(t)∗dh(t) +

d∑

i=1

ψ̂i(t)∗ĥi(t)dt),

where ĥi(t) is the columns of the matrix ĥ(t), and the processes ψ̂i(t) is defined in (3.5).

Hence

−Eψ(0)∗h(0) = E
∫ T

0

{
−ψ(t)∗

(
∂f

∂y

)

0
(t)h(t) +

(
∂ϕ

∂y

)

0
(t)h(t)

+ψ(t)∗∆f(t)−
d∑

i=1

(
ψ(t)∗

(
∂f

∂zi

)

0
(t)−

(
∂ϕ

∂zi

)

0
(t)

)
ĥi(t)

}
dt,

or

−Eψ(0)∗h(0) = E
∫ T

0

{
−

(
∂H
∂y

)

0
(t)h(t)−

d∑

i=1

(
∂H
∂zi

)

0
(t)ĥi(t) + ψ(t)∗∆f(t)

}
dt.

Denote (∂(x,u)H)0(t), etc., be the Clarke generalized gradients of H evaluated at

(x0(t), u0(t)) ≡ (y0(t), z0(t), u0(t)). The maximum principle (3.2) yields 0 ∈ (∂uH)0(t),

a.e.t, P-a.s.. By [17, Lemma 2.3], ((∂xH)0(t), 0) ∈ (∂(x,u)H)0(t) for a.e. t, P-a.s. It

then follows from [17, Lemma 2.2(4)] that

H(y(t), z(t), u(t), t)−H(y0(t), z0(t), u0(t), t) ≤ (∂yH)0(t)h(t) +
d∑

i=1

(∂ziH)0(t)ĥi(t).

Hence

−Eψ(0)h(0) ≤ E
∫ T

0
(−H(y(t), z(t), u(t), t) +H(y0(t), z0(t), u0(t), t) + ψ(t)∗∆f(t))dt

= E
∫ T

0
(ϕ(t, y(t), z(t), u(t))− ϕ(t, y0(t), z0(t), u0(t)))dt.

Furthermore,

g(y(0))− g(y0(0)) ≥
(

∂g

∂y

)

0
h(0) = ψ(0)∗h(0).

due to the convexity assumption on g(·). Therefore,

E(g(y(0))− g(y0(0))) + E
∫ T

0
(ϕ(t, y(t), z(t), u(t))− ϕ(t, y0(t), z0(t), u0(t)))dt ≥ 0.

This completes the proof of Theorem 5.1. 2
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6 Problem with Integral Constraints

In this section, we assume that σ{w1(s), s ≤ t} ⊆ At (∀t), where w1(t) is the first

component of the Wiener process w(t) in (2.2). In particular, this assumption excludes

the case of only deterministic controls.

Consider the following functionals

Φi(u(·)) = Egi(y(0)) + E
∫ T

0
ϕi(t, y(t), z(t), u(t))dt, i = 0, 1, 2, ..., N, (6.1)

where u(·) ∈ U is a control, and the pair x(t) ≡ (y(t), z(t)) is the state process which

evolves correspondingly to the equation (2.2). We assume that the functions gi and ϕi

have similar properties as specified in Assumptions 2.1 and 2.2.

Consider the following problem:




Minimize Φ0(u(·)) over u(·) ∈ U,

Subject to Φ1(u(·)) ≤ 0, ...,ΦN (u(·)) ≤ 0.
(6.2)

We assume the following Slater condition:

∃u(·) ∈ U : Φ1(u(·)) < 0, ...,ΦN (u(·)) < 0. (6.3)

Set

U1 = {u(·) ∈ U : Φ1(u(·)) ≤ 0, ...,ΦN (u(·)) ≤ 0},

and introduce the Lagrangian

ÃL(u(·), µ) = Φ0(u(·)) +
N∑

i=1

µiΦi(u(·)),

where µ = (µ1, ..., µn) ∈ Rn. We write µ ≥ 0 if µi ≥ 0, ∀i = 1, · · · , n.

Theorem 6.1 (i) The following relation holds:

inf
u(·)∈U1

Φ0(u(·)) = inf
u(·)∈U

sup
µ≥0

ÃL(u(·), µ) = sup
µ≥0

inf
u(·)∈U

ÃL(u(·), µ). (6.4)

(ii) The supremum on the right-hand side of (6.4) is achievable for a finite µ.

(iii) Each pair (µ, u(·)) achieving sup inf in (6.4) with

u(·) ∈ U1,
N∑

i=1

µiΦi(·) = 0 (6.5)
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is a saddle point of the problem, i.e., it is the solution of the problem inf sup as well

as the solution of the minimization problems with constraints (6.2).

(iv) For each optimal control u(·) of the problem (6.2), there exists a finite µ ≥ 0

so that (µ, u(·)) is the solution of the problem

sup
µ≥0

inf
u(·)∈U

ÃL(u(·), µ), (6.6)

and (6.5) holds.

The proof of this theorem will be given later in this section. Notice that the second

equality in (6.4) shows that the so-called “duality gap” is zero for the constrained

problem (6.2). Theorem 6.1 not only establishes the existence of Lagrange multipliers,

but also shows how to calculate them. Moreover, Theorem 6.1 gives necessary and

sufficient conditions of optimality as well as a sufficient condition of optimality (items

(iv) and (iii) respectively).

Corollary 6.1 Let û(·) be an optimal control for the problem (6.2). Then there exists

µ ≥ 0 such that the following hold:

(i) µ is a solution of the problem (6.6).

(ii) (6.5) holds with u(·) = û(·).
(iii) The maximum principle (3.2) holds with H(·), ψ(·) defined for the following

g(·), ϕ(·):

g(y) = g0(y) +
N∑

i=1

µigi(y), ϕ(t, y, z, u, ω) = ϕ0(t, y, z, u, ω) +
N∑

i=1

µiϕi(t, y, z, u, ω).

To prove Theorem 6.1, we employ the method which was originally proposed in

[5] for optimal stopping with constraints. To start with , let us introduce the vector

function Φ(u(·)) ∆= (Φ0(u(·)), Φ1(u(·)), ...,ΦN (u(·)).

Lemma 6.1 For any u1(·) ∈ U , u2(·) ∈ U and δ > 0, there exists u(·) ∈ U such that

|2Φ(u(·))− Φ(u1(·))− Φ(u2(·))| ≤ δ. (6.7)

Proof. For ε > 0, let

u1,ε(·) ∆= u1(·), u2,ε(t, ω) ∆=

{
u2(t, ω) if t ≥ ε

u1(t, ω) if t < ε.
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It can be easily seen that

Φ(u2,ε(·)) → Φ(u2(·)) as ε → 0 + .

Hence it suffices to prove that for any ε > 0, δ > 0 there exists u(·) ∈ U such that

|2Φ(u(·))− Φ(u1,ε(·))− Φ(u2,ε(·))| ≤ δ. (6.8)

Now fix ε > 0. Consider the random number ξ
∆= w1(ε), where w1(t) is the

first component of the process w(t). Set ϕ(·) ∆= (ϕ0(·), ϕ1(·), ..., ϕN (·)), g(·) ∆=

(g0(·), g1(·), ..., gN (·)). Let

Γ(u(·)) ∆= g(y(0)) +
∫ T

0
ϕi(t, y(t), z(t), u(t))dt, (6.9)

where u(·) ∈ U , and the pair x(t) ≡ (y(t), z(t)) is the state process corresponding to

u(·).
Let Zi(x) : R → RN+1 be defined as

Zi(x) ∆= E {Γ(ui,ε(·))|ξ = x} ρ(x), i = 1, 2, (6.10)

where ρ(x) is the probability density function of w1(ε). In view of our assumptions,

Zi ∈ L1(R).

Consider the (2N + 2)-dimensional function Z(x) ∆= [Z1(x), Z2(x)]. By [5, Lemma

5.1], there exists a set D ⊂ R such that

∣∣∣∣2
∫

D
Z1(x)dx−

∫

R
Z1(x)dx

∣∣∣∣ ≤
δ

2
,

∣∣∣∣∣2
∫

R\D
Z2(x)dx−

∫

R
Z2(x)dx

∣∣∣∣∣ ≤
δ

2
. (6.11)

Set

u(t, ω) ∆=

{
u1,ε(t, ω) if ξ ∈ D,

u2,ε(t, ω) if ξ /∈ D,
for t ∈ [0, T ].

Then u(t, ω) = u1,ε(t, ω) for t < ε, hence u(t, ω) is progressively measurable with

respect to At, and u(·) ∈ U . Furthermore,

Φ(u(·)) =
∫

R
E {Γ(u(·))|ξ = x} ρ(x)dx =

∫

D
E {Γ(u(·))|ξ = x} ρ(x)dx

+
∫

R\D
E {Γ(u(·))|ξ = x} ρ(x)dx =

∫

D
Z1(x)dx +

∫

R\D
Z2(x)dx, (6.12)
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and

Φ(ui,ε(·)) =
∫

R
Zi(x)dx. (6.13)

Then (6.11)-(6.13) yields (6.8). This completes the proof of Lemma 6.1. 2

Let us denote by Φ(U) the closure of the set Φ(U) ≡ {Φ(u(·)) : u(·) ∈ U} ⊂ RN+1.

Lemma 6.2 The set Φ(U) is convex.

Proof. Let z1, z2 ∈ Φ(U), α ∈ (0, 1) be arbitrary. It is suffices to prove that for any

δ > 0 there exists u(·) ∈ U such that

|αz1 + (1− α)z2 − Φ(u(·))| ≤ δ. (6.14)

By definition of a closure, there exist ui(·) ∈ U such that

|Φ(ui(·))− zi| ≤ δ

4
, i = 1, 2. (6.15)

Let α =
∑+∞

i=1 ci2−i, where ci ∈ {0, 1}. Introduce the numbers αq
∆=

∑q
i=1 ci2i, q =

1, 2, · · ·. We have αq → α as q → +∞. Let k be such that

|αk − α| (|Φ(u1(·))|+ |Φ(u2(·))|) ≤ δ

4
. (6.16)

Introduce the sets

Am
∆=

{
α̂ ∈ (0, 1) : â =

m∑

i=1

ĉi2−i, ci ∈ {0, 1}
}

,

Ẑm
∆=

{
z ∈ RN+1 : z = α̂Φ(u1(·)) + (1− α̂)Φ(u2(·)), α̂ ∈ Am

}
, m = 1, 2, ..., k.

Any element of Ẑm can be presented as either the middle or one of the edges of an

interval connecting points which belong to Ẑm−1. The number of elements in Ẑk is finite.

It can be easily seen from Lemma 6.1 that for any z ∈ Ẑk there exists u(·) ≡ u(·, z) ∈ U

such that |Φ(u(·, z))− z| ≤ δ/4. Hence there exists u(·) ∈ U such that

|αkΦ(u1(·)) + (1− αk)Φ(u2(·))− Φ(u(·))| ≤ δ

4
(6.17)

By (6.15)-(6.17), the inequality (6.14) holds for this u(·). This completes the proof of

Lemma 6.2. 2

Consequently, Theorem 6.1 follows from Lemma 6.2 and [5, Theorem 1.1] (see also

[11, Theorem 0.1]).

Remark. It can be seen that the proof of Theorem 6.1 does not really depend on

the specific structure of the equation (2.2). Hence this approach can be easily extended

for a wide class of stochastic optimization problems with constraints.
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7 Concluding Remarks

Study on controls of BSDE systems remains a relatively new endeavor and many re-

search problems are open. For example, for the backward LQ problem we derived a

Riccati-like equation which however lacks the symmetry property. What is a more

appropriate Riccati equation? Can we have an optimal state feedback control in the

conventional sense (i.e., the control is a function of the state (y, z))? Also, possible ap-

plications to contingent claims in finance promise great potential of the BSDE control

problems.
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