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Abstract

The paper investigates the investment problem in a generic diffusion stochastic

market model. Volatilities and appreciation rates are allowed to be random and un-

known, with unknown prior distributions. We study ”universal” strategies that use

price observation only and do not require any knowledge on prior distributions of mar-

ket parameters, i.e., where market parameters are not available. We define bounded

risk strategies in this class that ensure a positive average gain for all random volatilities

and appreciation rates from a wide class. Moreover, the strategies ensure a strength-

ened form of asymptotic arbitrage as the diversification of the portfolio increases: a

given positive gain is ensured with probability arbitrarily close to 1.
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1 Introduction

The paper investigates the investment problem for a stochastic diffusion market model

that consists of the risk free bond or bank account and of risky stocks. It is assumed

that the dynamics of the stocks is given by continuous correlated random processes with

some standard deviations of the stock returns (the volatility coefficients, or volatilities).

The dynamics of bonds is deterministic and exponentially increasing with a given risk

free rate. Empirical research shows that the real volatility is time-varying, random and

correlated with stock prices (see Black and Scholes (1972)). A number of deterministic
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and stochastic equations for the volatility and the appreciation rates were proposed (see,

e.g., the bibliography in Dokuchaev and Savkin (2002)).

Consider now the optimal investment problem given some optimality criterion (i.e., an

utility function). Suppose that market parameters are allowed to be directly observed,

and that their evolution law (or the prior distribution, or the probability measure) is fixed

and known (i.e., the volatilities and the appreciation rates evolve according to known

equations). Then the optimal strategy (i.e., the current vector of stocks portfolio) is a

function of the current vector of the volatilities and the appreciation rates (see, e.g., Merton

(1969) and survey in Karatzas and Shreve (1998)). In fact, this strategy is optimal for a

given evolution law only. If this evolution law is changed, then the optimality property of

the strategy may disappear. In more realistic setting, the parameters of the market are

not supposed to be directly observed, but their evolution low is supposed to be known (see

again the bibliography in Dokuchaev and Savkin (2002) and Dokuchaev (2002)). Again,

the optimality of a strategy depends on the correctness of prior distributions. If one uses

dynamic programming method, then the solution of the corresponding Bellmann equation

depends on the future distributions of the random coefficients, because this equation must

be solved backward starting form terminal time where some Cauchy condition is imposed.

Even the myopic strategy that is optimal for log utility requires either direct observation of

the appreciation rate or correct prior distribution hypothesis to calculate the conditional

expectation of it. In fact, any ”optimal” strategy is optimal only for a given model of

price evolution, for a given probability measure (the prior distribution), and for a given

utility function.

On the other hand, strategies based on ”technical analysis” are model-free: they require

only historical data. This is why they are so popular among traders (see, e.g., survey and

discussion in Lo et al. (2000)). Our aim is to reduce the gap between model-free strategies

and strategies based on stochastic models.

The paper studies strategies which do not employ any distribution assumptions on

stocks evolution. Such a strategy was introduced first by Cover (1991) (the so-called

universal portfolio strategy). The algorithm asymptotically outperforms the best stock

in the market, under some conditions that in fact reflect the hypothesis that stock prices

oscillate around some stable values. But it is not a bounded risk algorithm, because the

wealth may tend to zero for some “bad” samples of stock prices. Some statistical analysis

of performance of this strategy for real data has been done in Blædel et al (1999). It

appears that the spectacular results of universal portfolios do not necessary materialize

for a given historical market. A possible reason is that the required condition of price

oscillations is too restrictive.
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Dokuchaev and Savkin (2002) and Dokuchaev (2002), Chapter 2, proposed bounded

risk strategies for a single stock discrete-time market that have some properties of Cover’s

”universal” strategy but ensure gain for a market with a trend rather than for a market

with stable oscillations.

The aim of the current paper is to obtain a continuous time analog of ”universal

portfolio strategy” that (i) uses only stock price observations and does not require any

knowledge about the appreciation rate, the volatility or other market parameters; (ii)

bounds risk closely to the risk-free investment; (iii) gives some additional positive in

average gain.

We consider a market model which consist of risky stocks and a risk-free bond (or

bank account). We propose a strategy which differs from the strategy of Cover (1991)

and has the desired properties (i)-(iii). The additional gain is positive in average for any

case where the historical probability measure is not a risk-neutral measure, under some

mild additional assumptions on probability distributions. These conditions are such that

the market is still incomplete. The strategy itself does not use probability assumptions.

Thus, we obtain a strategy for someone who basically prefers risk-free investments but

accepts some bounded risk for the sake of an additional gain. The strategy is expressed

as an explicit function of historical prices.

In addition, we found that our strategies ensure asymptotic arbitrage as the diversifi-

cation of the portfolio increases.

A risk-free profitable strategy is said to be arbitrage. It is commonly recognized that

any reasonable market model must be arbitrage free. Harrison and Pliska (1981) have

shown that the arbitrage opportunity does not exist in the finite diffusion stochastic mar-

ket model if there exists a risk-neutral probability measure. But some opportunity of

arbitrage as a limit or asymptotic arbitrage does exist for some generic models. One defi-

nition of asymptotic arbitrage was introduced by Kabanov and Kramkov (1994). Another

related definition is that of so-called ”free lunch” (Harrison and Kreps (1979)). There

are many results on existence or nonexistence of ”free lunches” and asymptotic arbitrage

opportunities. For example, it is known that ”free lunches” do not exist in a diffusion

market model with sequences of strategies that are piecewise constant with a bounded

number of switching, and ”free lunches” do exist in the case of an unlimited number of

switching and unlimited borrowing (see e.g. Dalang et al (1990), Duffie and Huang (1986),

Frittelli and Lakner (1992), Harrison and Kreps (1979), Jouini and Kallal (1995), Jouini

(1996), Kreps (1981), Kabanov and Kramkov (1998), Klein and Schachermayer (1996)).

We show that there exist asymptotic arbitrage opportunity for a very generic diffusion

market for the class of strategies that does not require observations of market parameters
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as well as prior hypothesis on its distributions (we emphasize that the future distributions

cannot be estimated from current observations because there is no information available

that distributions are stationary or evolve under some given law). We propose a strategy

based on price observations only that ensures a strengthened form of the asymptotic

arbitrage of the first kind introduced by Kabanov and Kramkov (1994): a fixed positive

gain is ensured with probability 1 − ε for arbitrarily small ε > 0 for a wide class of

volatilities and appreciation rates that includes all bounded random volatilities. In Section

6, we compare this result with asymptotic arbitrage opportunity for the Merton’s strategies

applied for a large market.

Dokuchaev and Savkin (1997) also proposed some ”universal” strategies that ensure

asymptotic arbitrage, but only for a market model where all stocks are driven by indepen-

dent Brownian motions; in addition, these strategies are different from ones introduced

below, and they include volatility.

In Section 2 we present notation and definitions, and describe the model. A single-

stock universal strategy is presented in Section 3, and in Section 4 a multi-stock universal

strategy for the diffusion market is presented. In Section 5 we demonstrate that the

strategy ensures the asymptotic arbitrage opportunity. In Section 6 we compare our

strategy with Merton’s strategy. The proofs are given in the Appendix.

2 Definitions

Consider the diffusion model of a securities market consisting of the risk free bond or

bank account with the price B(t), t ≥ 0, and the risky stocks with prices Si(t), t ≥ 0,

i = 1, 2, . . . , N . We consider both cases of N < +∞ and N = +∞. The prices of the

stocks evolve according to the following stochastic differential equations

dSi(t) = Si(t)


ai(t)dt +

N∑

j=1

σij(t)dwj(t)


 , t > 0, (1)

where ai(t) is the appreciation rate, σij(t) is the volatility coefficient, wi(t) are standard

Wiener processes. The initial price Si(0) > 0 is a given non-random value. The price of

the bond evolves according to the following equation

B(t) = exp
(∫ t

0
r(s)ds

)
B(0), t ≥ 0, (2)

where r(t) ≥ 0 is a random process, and B(0) is a given constant.

We assume that wi(·) are independent processes.
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Set vector processes a(n)(t) ∆= (a1(t), . . . , an(t)), σ(n)(t) ∆= {σij(t)}N
i,j=1, w(n)(t) ∆=

(w1(t), . . . , wn(t)) and S(n)(t) ∆= (S1(t), . . . , Sn(t)). Furthermore, set processes a(t) ∆=

a(N)(t), σ(t) ∆= σ(N)(t), w(t) ∆= w(N)(t) and S(t) ∆= S(N)(t).

Let Fn
t be a right-continuous monotonically increasing filtration of complete σ-algebras

of events such that the process w(n)(t) is progressively measurable with respect to Fn
t and

w(n)(t + τ)− w(n)(t) does not depend on Fn
t for all t ≥ 0 and τ > 0. Let Ft

∆= FN
t .

Note that we do not exclude a special case where Fn
t = σ{wi(s), s ≤ t, i = 1, . . . , n},

i.e., it is the filtration, generated by {wi(t)}n
i=1. We do not exclude also a case where Fn

t

generated by w(n)(·) and by processes independent of w(n)(·).
We consider a case where market is not specified perfectly, i.e., where parameters σ(·)

and a(·) are not fixed. However, it will be assumed that they are from a given set.

Let Σ be the set of all σ(·) such that σij(t) are random processes that are progressively

measurable with respect to Ft and
∑N

j=1 |σij(t)| ≤ C̃i a.s. for all t and i, where C̃i > 0 is

a given constant, i = 1, . . . , N .

Furthermore, let A be the set of all (a(·), r(·)) such that ai(t) and r(t) are random

processes that are progressively measurable with respect to Ft and |ai(t)| ≤ Ci, r(t) ∈
[0, C0] a.s. for all t and i, where Ci > 0 is a given constant, i = 0, 1, . . . , N .

Let B̄ be the set of (σ(·), a(·), r(·)) ∈ Σ × A such that the process
∑n

i=1(ai(t) − r(t))

does not depend on (σ(·), w(·)) for all n < +∞, n ≤ N .

Let X(0) > 0 be the initial wealth at time t = 0, X(t) be the wealth at time t > 0.

Without loss of generality, we assume that X(0) = 1. Though the number N of the

available assets may be infinite, we assume that only a finite number n ≤ N of them is

traded by the agent, and the wealth X(t) at time t ≥ 0 is

X(t) = β(t)B(t) +
n∑

i=1

γi(t)Si(t). (3)

Here n < +∞, β(t) is the quantity of the bond portfolio, γi(t) is the quantity of the ith

stock portfolio, γ(t) = (γ1(t), . . . , γn(t)), t ≥ 0. The pair (β(t), γ(t)) describes the state of

the bond-stocks securities portfolio at time t. We call these pairs strategies.

We consider the problem of investment or choosing a strategy.

Definition 2.1 The process X̃(t) ∆= exp
(
− ∫ t

0 r(s)ds
)

X(t) is called the normalized

wealth.

Clearly, X̃(0) = 1.

Let Gn
t be the filtration generated by (S(n)(t), B(t)).
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Definition 2.2 Let (σ(·), a(·), r(·)) ∈ Σ × A be fixed. A pair (β(t), γ(t)) =

(β(t), γ1(t), γ2(t), . . . , γn(t)) is said to be an admissible strategy if n < +∞, n ≤ N and

β(t), γi(t), γi(t)Si(t), i = 1, . . . , n, are random processes that are progressively measurable

with respect the filtration Gn
t and such that

E
∫ T

0
|β(t)|2dt < +∞, E

∫ T

0

(
|γ(t)|2 +

n∑

i=1

Si(t)2γi(t)2
)

dt < +∞ ∀T > 0. (4)

The main constraint in choosing a strategy is so-called condition of self-financing.

Definition 2.3 A pair (β(t), γ(t)) is said to be self-financing, if

dX(t) = β(t)dB(t) +
n∑

i=1

γi(t)dSi(t). (5)

Set S̃(t) ∆= exp
(
− ∫ t

0 r(s)ds
)

S(0). As known, (5) can be rewritten as

dX̃(t) =
n∑

i=1

γi(t)dS̃i(t). (6)

It will be convenient to define a class of strategies as deterministic functions of historical

prices.

Definition 2.4 A function Γ(t, ·) : C([0, t];Rn+1) → Rn, t ≥ 0, is said to be an admis-

sible CL-strategy (closed-loop strategy) if the corresponding pair (β(t), γ(t)) defined from

the closed system

γ(t) = (γ1(t), γ2(t), . . . , γn(t)) = Γ
(
t, [S(n)(·), B(·)]|[0,t]

)
,

β(t) = X(t)−∑n
i=1 γi(t)Si(t)
B(t) ,

(7)

where

X(t) = X(0) +
n∑

i=1

∫ t

0
γi(s)dSi(s) +

∫ t

0

X(t)−∑n
i=1 γi(t)Si(t)

B(t)
dB(t), (8)

is an admissible self-financing strategy for any (σ(·), a(·), r(·)) ∈ Σ×A.

For the market model with a set of possible (σ(·), a(·), r(·)), it is more practical to use the

CL-strategies Γ(t, ·) rather then the random processes (β(t), γ(t)).

Note that for different (σ(·), a(·), r(·)), the random processes (β(t), γ(t)) with same

Γ(t, ·) in (7) may be different, as well as Γ(t, ·) in (7) may be different for same processes

γ(t). For instance, let n = N = 1, S(0) = 1, and Γ
(
t, [S(·), B(·)]|[0,t]

) ∆= ln S(t), then
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γ(t) = t/2 + w(t) for a market with a(t) ≡ 1, σ(t) ≡ 1, and γ(t) = t/4 + w(t)/2 for a

market with a(t) ≡ 1/2, σ(t) ≡ 1/2. Similarly, the process γ(t) ∆= t/2 + w(t) generates

Γ
(
t, [S(·), B(·)]|[0,t]

)
= lnS(t) for a market with a(t) ≡ 1, σ(t) ≡ 1, and it generates

Γ
(
t, [S(·), B(·)]|[0,t]

)
= lnS(t)2 for a market with a(t) ≡ 1/2, σ(t) ≡ 1/2.

Definition 2.5 Let T > 0 be fixed, and let C(t) be a random process such that C(t) ∈ (0, 1]

for all t a.s. An admissible CL-strategy Γ(t, ·) is said to be a bounded risk strategy with

the bound C(·) if

X̃(t) ≥ C(t) a.s. ∀t ∈ [0, T ] ∀(σ(·), a(·), r(·)) ∈ Σ×A.

The following definition is a particular case of the classical definition of arbitrage (see

Harrison and Pliska (1981)).

Definition 2.6 Let (σ(·), a(·), r(·)) ∈ Σ×A be fixed, let (β(t), γ(t)) be an admissible self-

financing strategy, let X̃(t) be the corresponding normalized wealth, and let T > 0 be a

given non-random time. If

P(X̃(T ) ≥ 1) = 1, P(X̃(T ) > 1) > 0,

then this strategy is said to be arbitrage.

The following definition is a particular case of the definition of asymptotic arbitrage

from Kabanov and Kramkov (1994), (1998).

Definition 2.7 Let (σ(·), a(·), r(·)) ∈ Σ × A and T > 0 be fixed, let (β(m)(t), γ(m)(t)),

m = 1, 2, . . . be a sequence of admissible self-financing strategies, let X(m)(t) be the cor-

responding total wealth, X(m)(0) = 1 (∀m). Let X̃(m)(t) be the corresponding normalized

wealth. Suppose that there exists real numbers κ > 1, p0 > 0 such that for any ε > 0 there

exists a number m̄ such that

X̃(m)(t) ≥ 1− ε a.s. ∀t ∈ [0, T ], P(X̃(m)(T ) ≥ κ) ≥ p0 ∀m ≥ m̄.

Then the sequence (β(m)(t), γ(m)(t)) is said to be asymptotic arbitrage of the first kind.

The following definition strengthen the requirements of Definitions 2.6–2.7; it assumes

a positive gain with probability arbitrarily close to 1.

Definition 2.8 Let B ⊆ Σ × A be a given subset of the set Σ × A. Let Γ(m)(t, ·), m =

1, 2, . . . be a sequence of admissible CL-strategies, and let X(m)(t) be the corresponding

total wealth, X(m)(0) = 1 (∀m). Let X̃(m)(t) be the corresponding normalized wealth.
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Let T > 0 be given. Suppose that there exists a real number κ > 1 such that for any

(σ(·), a(·), r(·)) ∈ Σ×A, ε > 0, ε1 > 0, ε2 > 0 there exists a number m̂ such that

X̃(m)(t) ≥ 1− ε a.s. ∀t ∈ [0, T ], P(X̃(m)(T ) ≥ κ− ε1) ≥ 1− ε2 ∀m ≥ m̂.

Then the sequence Γ(m)(t, ·) is said to be asymptotic arbitrage that almost guarantees the

gain κ for the class B.

3 A strategy for a single stock market

In this Section, we assume that N = n = 1. Set

ψ(y) ∆= ey − y.

Clearly, ψ(0) = 1, ψ(y) > 1 (∀y 6= 0). Set v(t) ∆= 1
2

∫ t
0 σ(s)2ds.

Theorem 3.1 Let

X̃(t) ∆= ψ[log S̃(t)]− v(t), X(t) ∆= exp
(∫ t

0 r(s)ds
)

X̃(t),

γ(t) ∆= 1
S(0) − S̃(t)−1, β(t) ∆= X(t)−γ(t)S(t)

B(t) .
(9)

Then, for any (σ(·), a(·), r(·)) ∈ Σ × A, the pair (β(t), γ(t)) is an admissible and self-

financing strategy with the corresponding wealth X(t) and normalized wealth X̃(t). The

process (β(t), γ(t)) does not depend on the distributions of the parameters. Furthermore,

there exist a function Γ(t, ·) : C([0, t];R) → R such that γ(t) = Γ(t, S̃(·)|[0,t]). The function

Γ(t, ·) does not depend on (σ(·), a(·), r(·)), and it is an admissible bounded risk CL-strategy

with the bound C(t) = 1− v(t):

X̃(t) ≥ 1− v(t) a.s. ∀t ≥ 0 ∀(σ(·), a(·), r(·)) ∈ Σ×A.

Moreover, if (σ(·), a(·), r(·)) ∈ B̄, then

EX̃(t) = Eψ

(∫ t

0
[a(s)− r(s)]ds

)
∀t ≥ 0,

and

EX̃(t) > 1 if and only if P
(∫ t

0
[a(s)− r(s)]ds 6= 0

)
> 0.

Note that
∫ t
0 [a(s)− r(s)]ds = 0 (∀t > 0) if and only if a(s) ≡ r(s).
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Remark 3.1. Let (σ(·), a(·), r(·)) ∈ Σ × A and let σ(·) does not depend on w(·). If

P
(∫ t

0 [a(s)− r(s)]ds 6= 0
)

> 0 and σ ≡ 0, then EX̃(t) > 1 and X̃(t) ≥ 1 a.s., i.e. the

strategy defined in Theorem 3.1 is arbitrage. Let P(v(t) > 0) > 0, then P(S(t) ∈ I) > 0

for any interval I ⊂ R+. In that case, it follows from (9) that P(X̃(t) < 1) > 0. Thus, the

strategy defined in Theorem 3.1 is arbitrage if and only if P (a(·) 6= r(·)) > 0 and σ ≡ 0.

Note that for the single-stock discrete-time market a strategy with similar features was

studied in Dokuchaev and Savkin (2002).

4 A strategy for a multi-stock market

In this section, we assume that 1 ≤ n < +∞, n ≤ N ≤ +∞. Introduce the following

functions

vj(t)
∆=

∫ t

0

(
n∑

i=1

σij(s)2
)

ds, ν(t) ∆=
1

2n2

N∑

i=1

vi(t). (10)

Set

αi(t)
∆=

∫ t

0
[ai(s)− r(s)]ds, An(t) ∆=

1
n

n∑

i=1

αi(t), (11)

ηi(t)
∆=

N∑

j=1

∫ t

0
σij(s)dwj(s), η̄(t) ∆=

1
n

n∑

i=1

ηi(t). (12)

Theorem 4.1 Let the process Ỹ (t) evolves as





dỸ (t) ∆= 1
n Ỹ (t)

∑n
i=1

dS̃i(t)

S̃t(t)
,

Ỹ (0) = 1.
(13)

Let

X̃(t) ∆= ψ (An(t) + η̄(t)− ν(t))− ν(t), X(t) ∆= exp
(∫ t

0
r(s)ds

)
X̃(t), (14)

γi(t)
∆=

Ỹ (t)

nS̃i(t)
− 1

nS̃i(t)
, (15)

γ(t) ∆= (γ1(t), . . . , γn(t)), β(t) ∆=
X(t)−∑n

i=1 γi(t)Si(t)
B(t)

. (16)

Then, for any (σ(·), a(·), r(·)) ∈ Σ × A, the pair (β(t), γ(t)) is an admissible and self-

financing strategy with the corresponding wealth X(t) and the normalized wealth X̃(t).

The process (β(t), γ(t)) does not depend on the future values of volatility. Furthermore,

there exist a function Γ(t, ·) : C([0, t];Rn) → Rn such that γ(t) = Γ(t, S̃(·)|[0,t]). The
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function Γ(t, ·) does not depend on (σ(·), a(·), r(·)), and it is an admissible bounded risk

CL-strategy with the bound C(t) = 1− ν(t):

X̃(t) ≥ 1− ν(t) a.s. ∀t > 0 ∀(σ(·), a(·), r(·)) ∈ Σ×A. (17)

Moreover, if (σ(·), a(·), r(·)) ∈ B̄, then

EX̃(t) = Eψ (An(t)) ∀t > 0, (18)

and

EX̃(t) > 1 if and only if P(An(t) 6= 0) > 0. (19)

For T > 0, v̄ > 0, introduce the class Σ(v̄, T ) ⊂ Σ of all σ(·) such that

1
n

N∑

j=1

vj(T ) ≤ v̄ a.s. ∀n, (20)

where vi(t) are defined in (10).

Note that the condition (20) is not restrictive. For example, let |σij(t)| ≤ const and

K(i, t) ≤ const , where K(i, t) is the number of j such that σij(t) 6= 0. Then (20) is

satisfied.

Remark 4.1 By (18), the performance of the strategy is better for An(t) > 0 than

for An(t) < 0, because the shape of ψ is asymmetric. Using similar approach, we can

find strategies to ensure (18) for ψ’s with other shape, for instance, ψ(x) = e−x + x, or

ψ(x) = (ex + e−x)/2.

Corollary 4.1 For any T > 0, v̄ > 0,

X̃(t) ≥ 1− v̄/2n = 1− εn a.s. ∀t ∈ [0, T ] ∀(σ(·), a(·), r(·)) ∈ Σ(v̄, T )×A, (21)

where εn
∆= v̄/(2n) → 0 as n → +∞. In other words, the maximum loss for the strategies

defined in Theorem 4.1 converges to zero as the number n of the traded stocks increases.

We cannot conclude yet that (19) and (21) ensure asymptotic arbitrage as it defined in

Definitions 2.7–2.8 because a lower boundary of gain is not established. In the following

section, we give some sufficient conditions that ensure asymptotic arbitrage.

5 Asymptotic arbitrage

In this section, we assume that N = +∞. Let T > 0 be a fixed time.
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For θ > 0 and p ∈ (0, 1], introduce the set A(θ, p, T ) ⊂ A such that for any (a(·), r(·)) ∈
A(θ, p, T ) there exists a number n̂ = n̂(a(·), r(·)) such that

P (|An(T )| ≥ θ) ≥ p ∀n > n̂, (22)

where An(T ) ∆= 1
n

∑n
i=1

(∫ T
0 [ai(s)− r(s)]ds

)
.

Let χ denote the indicator function.

Theorem 5.1 Let T > 0, v̄ > 0, θ > 0, and p ∈ (0, 1] be fixed. Consider the sequence of

the strategies (β(t), γ(t)) = (β(n)(t), γ(n)(t)), defined in Theorem 4.1. Let X̃(n)(t) be the

corresponding normalized wealth. Then

(i) For any (σ(·), a(·), r(·)) ∈ (Σ(v̄, T )×A(θ, p, T )) ∩ B̄, ε > 0, there exists a number n̄

such that

X̃(n)(t) ≥ 1− ε a.s. ∀t ∈ [0, T ],

EX̃(n)(T ) ≥ pψ(−θ) + P (|An(T )| < θ)E{ψ(An(T ))
∣∣ |An(T )| < θ} ≥ pψ(−θ)

(23)

for all n ≥ n̄.

(ii) For any (σ(·), a(·), r(·)) ∈ Σ(v̄, T )×A(θ, p, T ), ε > 0, ε1 > 0, ε2 > 0, there exists a

number n̄ such that

X̃(n)(t) ≥ 1− ε a.s ∀t ∈ [0, T ], P
(
X̃(n)(T ) ≥ ψ(−θ)− ε1

)
≥ p− ε2 (24)

for all n ≥ n̄.

(iii) Let Au ⊂ A(θ, p, T ) be a set such that there exists a number n̂ such that (22) holds

for all (a(·), r(·)) ∈ Au. Then for any ε > 0, ε1 > 0, ε2 > 0, there exists a number

n̄ such that (24) holds for all (σ(·), a(·), r(·)) ∈ Σ(v̄, T )×Au and n ≥ n̄.

Corollary 5.1 (i) For any p ∈ (0, 1] and (σ(·), a(·), r(·)) ∈ Σ(v̄, T ) × A(θ, p, T ), the

sequence of strategies in Theorem 5.1 is asymptotic arbitrage of the first kind (Defi-

nition 2.7) if pψ(−θ) > 1.

(ii) This sequence is asymptotic arbitrage that almost guarantees the gain ψ(θ) for the

class Σ(v̄, T )×A(θ, 1, T ) (Definition 2.8).

(iii) Property (24) is ensured for large n uniformly in (σ(·), a(·), r(·)) ∈ Σ(v̄, T )×Au.

Remark 5.1. The strategy (β(n)(t), γ(n)(t)) can be approximated by strategies

(β(n,m)(t), γ(n,m)(t)), m = 1, 2, 3, . . ., that are constant at the intervals (lT/m, (l+1)T/m),
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l = 0, 1, . . . , m − 1, and such that E|X(n,m)(T ) − X(n)(T )|2 → 0 as m → +∞ for the

corresponding values of wealth. Hence the second inequalities in (23)–(24) may be ensured

as a limit for these piecewise constant strategies, but the first inequalities there can be

guaranteed only with probability that is close to 1, but not almost surely.

6 Comparison with Merton’s strategies

Let us consider limit properties of the Merton’s strategy for the market with a large number

of stocks.

Let n = N < +∞, let the matrix σ(t)σ(t)> be invertible, and let Q(t) ∆= (σ(t)σ(t)>)−1.

Consider the following closed-loop strategy:

γM (t)> ∆= â(t)>S(t)−1Q(t)XM (t). (25)

This is a special case of the Merton’s strategy, and it is optimal for the problem of maxi-

mizing E ln X̃(T ) in the class of Ft-adapted strategies.

Here XM (t) is the corresponding wealth, â(t) ∆= E{ã(t)|Ft}, ã(t) ∆= a(t) − r(t)1, 1 =

(1, 1, . . . , 1)> ∈ Rn, S(t) is the diagonal matrix in Rn×n with the diagonal S1(t), . . . , Sn(t).

Let X0 = 1 and (σ(·), a(·), σ(·)) ∈ Σ̄ × A(θ, p, T ) for some θ > 0 and p ∈ (0, 1]. For

strategy (25,

E ln X̃M (T ) =
1
2
E

∫ T

0
â(t)>Q(t)â(t)dt → +∞ as n →∞

under some mild conditions, where X̃M (t) is the corresponding normalized wealth. (For

details regarding this strategy see, e.g., Dokuchaev (2002)). However, the Merton’s strategy

(25) does require the prior distribution of a(t) to calculate â(t), and if â(t) in (25) is replaced

for an estimation of ã(t) based on a wrong hypothesis about the prior distribution of

a(t), then E ln X̃M (T ) can be negative. Moreover, it can be shown that for any given

hypothesis on the prior distribution of (σ(·), a(·), r(·)) and for any ξ < 0, there exists

(σ(·), a(·), r(·)) ∈ Σ̄×A(θ, p, T ) such that this hypothesis is wrong and there exists n > 0

such that E ln X̃M (T ) ≤ ξ for the Merton’s type strategy based on this hypothesis. On

the other hand, our strategy (15) is a bounded risk strategy: X̃(T ) ≥ 1−ν and ln X̃(T ) ≥
ln(1− ν), and it does not use any hypothesis on the prior distributions.

Further, let us modify the strategy (25) such that

γM (t)> ∆=
1
n

â(t)>S(t)−1Q(t)XM (t). (26)

12



Now E ln X̃M (T ) is bounded for large n if â is bounded. This strategy is not optimal for

log utility anymore. It is optimal for the problem of minimizing EX̃(T )ν with δ
∆= 1− n,

but only in the case of for non-random and known (Q, ã), i.e., for the case that is out of

our interests for now. However, we shall consider performance of the strategy for random

coefficients without concern about optimality. Again, the resulting wealth for this strategy

very depends on the correctness of the hypothesis on the prior distributions, and in that

sense the performance of this strategy is worse than for the strategy (15). For instance,

for any given hypothesis on the prior distribution of (σ(·), a(·), r(·))Σ̄×A(θ, 1, T )∩ B̄ and

for any ε > 0, there exist n > 0, and (σ(·), a(·), r(·)) ∈ Σ̄ × A(θ, 1, T ) ∩ B̄ such that

E ln X̃M (T ) ≤ −ζ + ε, where ζ is the value of E ln X̃(T ) calculated with the correct prior

distribution.

In addition, our strategy does not require that the matrix σ(t)σ(t)> is invertible and

does not include Q(t).

7 Appendix: Proofs

Proof of Theorem 4.1. Let

Ȳ (t) ∆= exp (An(t) + η̄(t)− ν(t)) .

By Itô’s formula,

dȲ (t) =
1
n

Ȳ (t)
n∑

i=1

dS̃i(t)

S̃i(t)
.

Hence Ȳ (t) = Ỹ (t), and X̃(t) = Ỹ (t)−An(t)− η̄(t). Thus, X̃(t) is the normalized wealth

defined by strategy (15)–(16). Further, (14) implies (17)-(18), and (18) implies (19). This

completes the proof. ¤
Theorem 3.1 is a special case of Theorem 4.1.

Proof of Theorem 5.1. The first inequalities in (23)-(24) for large n are ensured by

Corollary 4.1. The function ψ(y) is increasing in y > 0 and decreasing in y < 0. Then

EX̃(n)(T ) = Eψ(An(T ))

= P (|An(T )| ≥ θ)Eψ(An(T ))
∣∣ |An(T )| ≥ θ}

+ P (|An(T )| < θ)E{ψ(An(T ))
∣∣ |An(T )| < θ}

≥ pψ(−θ) + P (|An(T )| < θ)E{ψ(An(T ))
∣∣ |A(T )| < θ}

≥ pψ(−θ)

for n > n̄. This completes the proof of Theorem 5.1 (i).
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Furthermore,

X̃(n)(T ) = ψ(An(T ) + η̄(T )− ν(T ))− ν(T ).

By (20),

ν(T ) → 0 as n → +∞, (A.27)

and

E|η̄(T )|2 = 1
n2 E

∣∣∣∣
∑n

i=1

∑n
j=1

∫ T
0 σij(t)dwj(t)

∣∣∣∣
2

= 1
n2 E

∣∣∣∣
∑N

j=1

∫ T
0

∑n
i=1 σij(t)dwj(t)

∣∣∣∣
2

= 1
n2

∑N
j=1 vj(t) ≤ v̄

n → 0 as n → +∞.

(A.28)

Given ε1 and ε2 from statements (ii) and (iii) of Theorem 5.1, let n̄ > 0 and ε3 ∈ (0, θ)

be such that

ψ(−θ + δ) ≥ ψ(−θ)− ε1
2 ∀δ ∈ (−ε3, ε3),

ν(T ) ≤ min
(

ε3
2 , ε1

2

)
, P

(|η̄(T )| ≥ ε3
2

)
< ε2, P(|An(T )| ≥ θ) ≥ p ∀n > n̄.

These n̄ and ε3 do exist by (A.27)-(A.28). For Theorem 5.1 (ii), n̄ depends on a(·). For

Theorem 5.1 (iii), n̄ depends on Au. We have that

P
(
X̃(n)(T ) ≥ ψ(−θ)− ε1

)
= P

(
ψ[An(T ) + η̄(T )− ν(T )]− ν(T ) ≥ ψ(−θ)− ε1

)

≥ P
(|η̄(T )| < ε3

2 , |An(T )| ≥ θ
)

≥ p− ε2 ∀n > n̄.

This completes the proof of Theorem 5.1. ¤
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