
International Journal of Hybrid Systems. 1 (2001), No 1, pp. 33-50.

A New Class of Hybrid Dynamical Systems: State

Estimators with Bit-Rate Constraints

Nikolai G.Dokuchaev and Andrey V.Savkin

School of Electrical Engineering and Telecommunications, University of New South Wales,

Sydney, 2052, Australia

email: a.savkin@unsw.edu.au

ABSTRACT: This paper introduces a new class of hybrid dynamical systems. We

consider a state estimation problem involving bit-rate communication capacity con-

straints for a discrete-time partially observed system. The observation must be

coded and transmitted via a digital communication channel with a limited capacity.

A recursive coder-estimator is proposed and investigated. An upper bound for the

average estimation error is derived, and convergence properties are analyzed.
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1. INTRODUCTION

In classical �ltering theory (see e.g. Anderson and Moore [1]), the standard assumption

is that all data transmission required by the algorithm can be performed with in�nite

precision. However, in some new models, it is common to encounter situations where

observation and control signals are sent via a communication channel with a limited ca-

pacity. This problem may arise when a large number of mobile units need to be controlled

remotely by a single decision maker. Since the radio spectrum is limited, communica-

tion constraint are a real concern. In Stitwell and Bishop [7], the problem of design

of large-scale control systems for platoons of underwater vehicles highlights the need

for control strategies that address reduced communications, since communication band-

width is severely limited underwater. Another class of examples is o�ered by complex

networked sensor systems containing a very large number of low power sensors. Further-

more, nowadays, it is becoming more common to use networks in systems, especially in

those that are large-scale and physically distributed. All these new engineering applica-

tions motivate development of a new chapter of control and state estimation theory in

which control and communication issues are combined together, and all the limitations

of the communication channels are taken into account. Communications requirements,
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especially regarding bandwidth limits, are often challenging obstacles to control systems

design. In these problems, classical Kalman estimation theory cannot be applied since

the estimator only observes the transmitted sequence of �nite-valued symbols. In fact,

we need to design a hybrid dynamical system which consists of two subsystems. The

�rst subsystem, that is called Coder, receives real-valued measurements and converts

them into a �nite-valued symbolic sequence which is sent over the limited capacity com-

munication channel. The second subsystem (Decoder) receives this symbolic sequence

and converts it into a real-valued state estimate. In other words, such state estimators

with bit-rate constraints form an important subclass of so-called hybrid dynamical sys-

tems. In general, hybrid systems are those that combine continuous and discrete event

dynamics and involve both real and symbolic variables; e.g., see Matveev and Savkin [3].

A natural question to ask is how much communication capacity is needed to achieve

a speci�ed estimation accuracy. The problem studied in this paper was introduced by

Wong and Brockett [8], where some algorithms and models were proposed and inves-

tigated for the case of bounded random disturbances. A case of decreasing Gaussian

disturbances was studied by Nair and Evans [4], where the idea to code the Kalman

state estimate was proposed. However, the main results of these papers were restricted

to the case of scalar systems.

In this paper, we investigate a state estimation problem involving constraints on bit-

rate communication capacity for a discrete-time partially observed system of an arbitrary

order with non-decreasing Gaussian disturbances. It is assumed that the observation

must be coded and transmitted via a digital communication channel with a limited

capacity. A recursive estimation algorithm is proposed and investigated for the case

when system may be unstable. In this case, any large deviation of disturbances implies

increasing all the following values of the state vector. We show that our algorithm

provides state estimation with a bounded average error. Moreover, we obtain suÆcient

conditions of a convergence of the average error to zero as the digital communication

channel capacity increases. As in the paper of Nair and Evans [4], our recursive coder-

estimator includes the Kalman state estimator. It should be pointed out, that the

proposed state estimation method is di�erent from those described in literature; it is

computationally non-expansive and easy to implement in real time. The most restrictive

feature is that the algorithm is not adaptive to reducing of noise to zero, i.e. there is

a given minimal level of tracking error which remains �xed even if the noise dissipates

with time; we are not able to extend our proofs for a modi�cation of the algorithm

without this feature. (It can be added that we provided some numerical experiments

with such modi�cations, but it appears that they lost stability; moreover, we have not

found any proofs for other algorithms in literature for the case considered). However, the

algorithm is adaptive to changing (i.e. increasing or decreasing) of the noise level above

some minimal level which corresponds the minimal level of error. The obtained results

can be extended to the case of uncertain linear systems (see e.g. Savkin and Petersen
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[5], Savkin and Petersen [6]).

The remainder of this paper proceeds as follows. In Section 2, we introduce the

class of systems under consideration and state the problem of estimation via limited

capacity communication channels. Section 3 contains some well-known properties of the

Kalman state estimator. In Section 4, we formulate the state estimation problem with

communication constraints for a fully-observed system. Section 5 presents our recursive

coding-estimation scheme. The main results of the paper are given in Section 6. Section

7 presents an illustrative example. Section 8 contains brief conclusions. The proofs of

all the results of Section 6 are given in Appendix.

2. PROBLEM STATEMENT

Consider the following discrete-time linear system8><>:
Xt+1 = At+1Xt +BtWt;

Yt = HtXt +DtWt;

(2.1)

where Xt 2 Rn is the state, Wt 2 Rd is the random disturbance input, Yt 2 Rm is the

measured output, t = 0; 1; 2; ::: .

We assume that the vectors X0 andWt are Gaussian, EjWtj2 � const (8t), EWt � 0,

and Wt does not depend on W0;W1; :::;Wt�1 and X0.

Suppose estimates of the current state are required at a distant location, and are to

be transmitted via a digital communication channel such that onlyM bits of data may be

sent at each time t. We consider a system which consists of the coder, the transmission

channel, and the decoder. Using an observation of Y1; :::; Yt, the coder produces a M -bit

word ht which is transmitted via the channel and then received by the decoder; the

decoder produces an estimate bXt which depends only on h1; ::::; ht.

Let A be the set A = fhg of words h =
�
h(1); ::::; h(M)

�
, such that h(i) 2 f0; 1g.

The set A consists of 2M elements.

Let ht 2 A be the signal which is produced by the coder, bXt be an estimate of Xt

which is produced by the decoder.

Introduce the following vector and matrix norms:

kxk �
= max

i=1;:::;n
jx(i)j for x 2 Rn; kAk �

= max
i=1;:::;n

nX
j=1

jA(i;j)j for A 2 Rn�n:

We consider this problem as a problem of choosing the deterministic measurable

functions �t : (R
m)t ! A, and Ft : (A)t ! Rn, t = 1; 2; ::: such that

ht = �t(Y1; Y2; :::; Yt) 2 A;bXt = Ft(h1; h2; :::; ht) 2 Rn;
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and the following estimate holds:

Ej bXt �Xtj � const (8t > 0):

Here j � j denotes the standard Euclidean norm. The main diÆculty of this estimation

problem is in a case of non-stable system, when any large deviation of disturbances

implies increasing all the following values jXtj.
It is well known that under some standard assumptions on At; Bt;Ht;Dt, there

exists so-called Kalman estimate XKE
t of Xt which minimizes the average error

EjXKE

T �XT j2.
In this paper we propose an estimation algorithm which involves the Kalman esti-

mation. The Kalman estimate is supposed to be computed, coded, transmitted via the

channel and then decoded. The block diagram of our state estimation system is shown

in Figure 2.1.

-
Wt

System -
Yt Kalman

Filter
-

X
(KE)
t

Coder -
ht

Channel
Decoder -

bXt

Figure 2.1: Block diagram of the estimator.

3. BASIC PROPERTIES OF THE KALMAN ESTIMATE

It is well known that the Kalman estimate XKE
t satis�es the following equations:8><>:

XKE
t = AtX

KE
t�1 + Vt;

XKE
0 = EX0;

(3.1)

where

Vt+1 = Pt (Yt �HtX
KE

t ) :

The matrix Pt is calculated recursively from the corresponding Riccati equation (see, e.g.,

Anderson and Moore [1]) and is uniformly bounded under some standard assumptions

on the system. The estimation error

�t
�
= Xt �XKE

t

is independent on XKE
t . The vectors XKE

t , �t are Gaussian, E�t � 0, Ej�tj2 � const

(see, e.g., Anderson and Moore [1]).

Let us discuss basic properties of Vt. We have that

Vt+1 = Pt (Yt +Ht�t �HtXt) = Pt (DtWt +Ht�t) :

Hence the vectors Vt+1 are Gaussian, EVt � 0, EjVtj2 � const (8t > 0).
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Furthermore,

�t+1 = At+1�t +BtWt � Vt+1

= At+1�t +BtWt + PtHtX
KE
t � PtYt

= At+1�t +BtWt + PtHt (Xt ��t)� PtYt:

Hence

�t+1 = (At+1 � PtHt)�t +BtWt � PtDWt:

By the assumptions onWt, we have that E(X
KE
s )0�t = E(XKE

s )0�s = 0 for s � t. Hence

XKE
s is independent on �t, and E(X

KE
s )0PtHt�t = 0. Moreover,

E(XKE
s )0PtDtWt = 0;

E(XKE
s )0Vt+1 = E(XKE

s )0PtHt�t +E(XKE
s )0PtDtWt = 0:

Then the vector Vt is independent on X
KE

1 ;XKE

2 ; :::;XKE

t�1. As stated earlier, the vectors

Vt+1 are Gaussian, EVt � 0, EjVtj2 � const (8t > 0).

It may be concluded that the initial problem of estimation Xt may be stated as

follows: Estimate the state of the fully-observed system (3.1) under bit-rate constraints

in the case of Gaussian disturbances Vt which do not depend on the previous states and

have bounded variance.

4. STATE ESTIMATION FOR THE FULLY-OBSERVED SYSTEM

Consider the process 8><>:
xt = Atxt�1 + bt + vt;

x0 = x0:

(4.1)

Here x0 is a deterministic vector, vt are random disturbances, t � 0, xt; vt; bt 2 Rn and

At 2 Rn�n. We assume that At, bt and x0 are known.

In this paper, b�c denotes the integer part of a real number � > 0, such that

b�c = maxfz 2 Z : z � �g:
Let

�
�
= 2M�1; �

�
=

�
�
1=n
�
; �

�
= �n; L

�
= sup

t�0
kAtk:

We suppose that the following assumptions hold:

Assumption 4.1 � � 1, � > L:

Assumption 4.2 Vectors vt are Gaussian, vt is independent on x1; x2; :::; xt�1,

Evt = 0; Ekvtk2 � Æ2 (8t � 0);

where Æ > 0 is a given constant.
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Also, we assume without a loss of generality that L > 1.

5. ESTIMATION ALGORITHM

The estimate bxt of the process xt will be found as a solution of the following equations:8><>:
bxt = Atbxt�1 + bt + ct; t > 0;

bx0 = x0;

(5.1)

Here

ct = Ct(h1; ::::; ht) 2 Rn; ht = �t(x1; :::; xt) 2 A: (5.2)

The words ht are to be calculated by the coder. The vectors ct are to be calculated by

the decoder. In (5.2), A is the set of words introduced in Section 2, Ct : At ! Rn,

�t : R
nt ! A are deterministic measurable functions. We consider the problem as a

problem of choosing the functions Ct(�), �t(�) such that Ekxt � bxtkr � const (8t > 0)

for a given constant r � 1.

We assume below that the set A is the set of pairs A = f(; s)g, where  = 0 or

 = 1, s 2 f1; ::::; ��g. Note that the set A consists of 2� = 2M elements and � � �.

Furthermore, let numbers l > 0, a > 1 and an integer R � 1 be given parameters.

For any � > 0, set D(�)
�
= fx 2 Rn : kxk � �g :

Consider a discrete subset eD(�) = fyj(�)g�j=1 � D(�) such that for any x 2 D(�)

there exists a vector y 2 eD(�) such that kx� yk � ���1. It can be easily seen that such

a subset eD(�) does exist.
For any � > 0, introduce the following maps S1(x; �) : R

n ! f1; ::::; �g, S2(x; �) :
Rn ! f1; ::::; �g and F (x; �) : Rn ! eD(�):

S1(x; �) = min

�
argmin j2f1;::::;�g kyj(�)� xk

�
;

S2(x; �) = max

�
k 2 f1; ::::; �g : x =2 D(�aR(k�1))

�
;

F (x; �) = yj(�); where j = S1(x; �):

Note that if x 2 D(�) and S(x; �) = j then kyj(�)� xk � kyi(�)� xk (8i = 1; :::; �)

and kyj(�)� xk � ���1. If x 2 D(�) then kF (x; �) � xk � ���1.

Introduce the following vectors:

ezt �
= xt �Atbxt�1 � bt; t � 1: (5.3)

Let l0
�
= l. Then the following sequence of ht, lt; ct is to be computed:

(i) The coder produces a word ht = (t; st) and a number lt, where

t =

(
0 if ezt 2 D(lt�1)
1 if ezt =2 D(lt�1) ; st =

(
S1(ezt; lt�1); if t = 0

S2(ezt; lt�1); if t = 1,
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lt =

8><>:
lt�1=a if t = 0, lt�1 > l=a

lt�1 if t = 0, lt�1 = l=a

lt = aRst lt�1 if t = 1.

(5.4)

(ii) The word ht is transmitted via the channel.

(iii) The decoder computes lt by the rule (5.4), and then it calculates

ct =

(
F (ht; lt�1) if t = 0

0 if t = 1.
(5.5)

(iv) Finally, the decoder computes bxt by the formula (5.1).

6. THE MAIN RESULTS

In this section we show how to choose parameters l; a;R of the state estimation algorithm

from Section 5 to guarantee that the average estimation error is bounded or converges

to zero.

Introduce the process of the estimation error

zt
�
= xt � bxt:

Theorem 6.1 Consider the system (4.1) and the estimation algorithm described in the

Section 5 with given parameters a > 1 and R � 1. Suppose that

L 2
�
�

a
; aR�

�
: (6.1)

Then for any r � 1 there exists a parameter l > 0 and a constant C� > 0 such that

EkzT kr � C� 8T > 0: (6.2)

Starting from now, we assume that r > 1 is �xed. To formulate suÆcient conditions

on l to guarantee (6.2) we need to introduce the following constants: Let r � 1 be a

given number, and

�
�
= minfi 2 f2; 4; 6; ::g : i > rg; (6.3)

h
�
=
� � La

�
; Gi

�
=

p
2n(i=2)!2i=2p

�
for i = 2; 4; ::: : (6.4)

Theorem 6.2 Suppose the assumptions (6.1) hold and the parameter l > 0 satis�es the

inequality

l� � Æ�G�

h�(1� a�r)(a��r � 1)
: (6.5)

Then there exists a constant C� such that the inequality (6.2) holds.
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To give an upper estimate of C� we need to introduce the following constants:

�
�
= aR�; C0

�
=

Æ2

(L� 1)2
; (6.6)

Furthermore, for any � � 1, introduce the following constants:

q�
�
= min

�
i 2 f2; 4; 6; ::g : i > �;

��Li

�i
< 1

�
; Q�

�
=
��Lq�

�q�
; (6.7)

Æ(�)
�
= sup

t�0
(Ekvtk�)1=� ; f(�)

�
= ��

0@1 + Gq��
2q�+�C

q�=2

0

lq�(� � L)q�
Q�

1�Q�

1A ; (6.8)

Theorem 6.3 Under the assumptions of Theorem 6.2, the inequality (6.2) holds with

C� =
lr

�r
+

 
3lf(r)1=r + 2f(r�0)1=r�

0 Æ(r�)

L� 1

!r
; (6.9)

where � > 1 is an arbitrary number, �0
�
= �(�� 1)�1.

The following theorem gives suÆcient condition for a convergence for the case of

increasing channel capacity M .

Theorem 6.4 Suppose a time T > 0 is �xed, and l�1 + l��1 ! 0, where � =
j
2
M�1
n

k
.

Then Ekztkr ! 0 uniformly on t � T .

The proofs of all the results of this section are given in Appendix.

7. ILLUSTRATIVE EXAMPLE

To illustrate the results of this paper, we consider a deconvolution problem similar to

those considered in Chen and Chen [2]. The block diagram of deconvolution system is

shown in Figure 7.1.

-
n
(1)
t 0:702z

z2�1:98z+1

Signal Model

-
ut

0:4
z�0:2

Channel Model

-
+

g

6+ n
(2)
t

-
Yt

State Estimator -
but

Figure 7.1: Deconvolution system.

Combining the signal model and the channel model, we obtain the following system:2666664
X

(1)

t+1

X
(2)

t+1

X
(3)

t+1

3777775 =

2666664
1:98 �1 0

1 0 0

0:4 0 0:2

3777775

2666664
X

(1)
t

X
(2)
t

X
(3)
t

3777775+
2666664
0:707

0

0

3777775n(1)t ;

Yt = X
(3)
t + n

(1)
t :
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In this state space description, X
(1)
t and X

(2)
t are the state variables of the signal model.

In addition, ut = X
(3)
t is the state variable of the channel model, Yt is the measured

signal. To apply our results to this deconvolution problem, we consider a corresponding

system of the form (2.1). In this case, the matrices At, Bt, Kt, Dt are given by

A =

2666664
1:98 �1 0

1 0 0

0:4 0 0:2

3777775 ; Bt =

2666664
0:707 0

0 0

0 0

3777775 ;

Kt =

�
0 0 1

�
; Dt =

�
0 1

�
:

Also, the constants n, d, L are given by n = 3, d = 2, L = 2:98.

To illustrate the performance of our coder-estimator, we consider the Gaussian noise

signal Wt = (n
(1)
t ; n

(2)
t ) with EWt � 0, EWtW

0
t � 0:8 � I. Also, we take initial condition

X0 = (1;�1; 1)0. We consider the system in the cases of a communication channel with

capacity M = 8 and M = 10 bits. We apply the estimation algorithm from Section 5

with the parameters l = 10:2, R = 20, and a = 1:3 for M = 8, a = 1:53 for M = 10.

Figure 7.2 shows the true value ut, the Kalman estimate, and the resulting estimates of

the signal ut for times t = 150; 200 in the cases of communication channel with capacity

M = 8 and M = 10 bits. Figure 7.3 shows the true value ut and the resulting estimate

of the signal ut for t = 1; 200 in the case of the communication channel with capacity

M = 10 bits.

8. CONCLUSIONS

This paper describes a new class of hybrid dynamical systems. It considers a state

estimation problem involving bit-rate communication capacity constraints for a discrete-

time partially observed system. The observation must be coded and transmitted via

a digital communication channel with a limited capacity. Classical estimation theory

cannot be applied since the estimator only observes the transmitted sequence of �nite-

valued symbols. A recursive estimation algorithm is proposed and investigated. We

show that our algorithm provides state estimation with a bounded average error which

converges to zero as the digital communication channel capacity increases. The proposed

state estimation method is computationally non-expansive and easy to implement in real-

time systems.
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APPENDIX: PROOFS

Let lt, ct and zt be computed by the algorithm, t = 1; 2; ::: .

Introduce a sequence fsi; �i; tig+1i=0 of triplets of integer random times, such that the

following conditions hold:

(i) s0 = �0 = 0, 1 � si � �i < ti < si+1 (8i � 1);

(ii) if s1 = 1 then t0 = 0; if s1 > 1 then t0 = 1;

(iii) if t =2 [i�1 fsi; si + 1; :::; ti � 1; tig and t > 0 then lt = l=a;

(iv) if t 2 [i�1 fsi; si + 1; :::; �i � 1; �ig then lt > l=a, t = 1;

(v) if t 2 [i�1 f�i + 1; :::; ti � 1g then lt > l=a, t = 0;

(vi) if t 2 [i�1 fti : ti < si+1 � 1g then lt = l=a, t = 0.
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Introduce the following random sequences:

�i
�
= �i � si + 1; �i

�
= ti � �i for i = 0; 1; 2; ::: ;

�0
�
= ��0; �i

�
= �i�1 + loga

l�i
lsi�1

; for i = 1; 2; ::: : (A.1)

We assume that

z�1 = 0; s�1 = ��1 = t�1 = 0; ��1 = 0; ��1 = 0; ��1 = 0:

Let T > 0 be a �xed deterministic integer number. Introduce random integer

variables m and k such that sm � T < sm+1 and k = m� 1. Let F 0 be the �-algebra of

random events which is generated by the random values f�k; �kg, and F 00 be the �-algebra

of random events which is generated by the random values f�k; �k; �m; sm; zsm�1g.
We will use the notation Ind for the indicator function.

Proposition A.1 If t = 0 then kztk � lt�1
�
� lt.

Proof. The equation (5.3) can be rewritten as follows:

ezt = Atxt�1 �Atbxt�1 + vt: (A.2)

Hence ezt = Atzt�1 + vt: (A.3)

We have that zt = ezt � ct,

zt = Atzt�1 + vt � ct; z0 = 0: (A.4)

Then kztk = k � lt�1=�, and � > a. Hence kztk � lt. This completes the proof.2

Proposition A.2 If �j � t < sj+1, j � 1, then lt � la�j��j^(t��j ). If sj � t � �j, j � 1,

then

la�j�1��j�1+R(�j^(t�sj+1)) � lt � la�j�1��j�1+R�(�j^(t�sj+1)); j = 1; 2; ::: :

Proof. Proposition A.2 follows immediately from the description of the algorithm.2

Proposition A.3 The random variable Ind fk � 1g is F 0
{measurable and F 00

{

measurable.

Proof. We have that k < 1 if and only if �k � 0, �k = 0. It means that Ind fk � 1g
is F 0{measurable. Furthermore, F 0 � F 00, hence Ind fk � 1g is F 00{measurable. This

completes the proof of Proposition.
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Proposition A.4 Let  =
�
 (1);  (2); :::;  (n)

�
be a Gaussian random n{dimensional

vector such that

jE (i)j � �; Var (i) � c2 8i = 1; :::; n;

where � � 0, c > 0 are �xed. Then the following estimate holds:

P(k k > u) � G�c
�

ju� �j� 8u > �; 8� = 2; 4; 6; ::;

where the constants G� are de�ned by (6.4).

Proof. (i) Let n = 1, E = 0, E 2 = 1. Then

P ( > u) = P ( < �u) = 1p
2�

R +1
u te�

t2

2 dt

= 1p
2�

R +1
u2=2 e

�ydy = 1p
2�
e�u

2=2 = 1p
2�

�P+1
i=0

1
i!

�
u2

2

�i��1
� 1p

2�

q!2q

u2q

for all q = 1; 2; ::: . This completes the proof of Proposition for this case.

(ii) Let n = 1, E = 0, E 2 = c2. Let  =c =  c. Then

P ( > u) = P ( < �u) = P

�
 c >

u

c

�
= P

�
 c < �u

c

�
� 1p

2�

q!2qc2q

u2q

for all q = 1; 2; ::: . This completes the proof of Proposition for this case.

(iii) Let n = 1, E =  , j j � �. Let  0 =  �  , E 2
0 = c2. Then E 0 = 0, and

P (j j > u) = P
�
 0 < �u�  

�
+P

�
 0 > u�  

�
� 1p

2�

q!2qc2q

(u� )2q
+ 1p

2�

q!2qc2q

(u+ )2q
�

p
2p
�

q!2qc2q

(u��)2q

for all q = 1; 2; ::: . This completes the proof of Proposition for this case.

(iv) Let n > 1, then

P(k k > u) = P
�
9i :

��� (i)
��� > u

�
� n max

i=1;:::;n
P(k (i)k > u) �

p
2p
�

n q!2qc2q

(u� �)2q

for all q = 1; 2; ::: . This completes the proof of Proposition. 2

We assume below that a number r � 1 is �xed, and the number � is de�ned in (6.3).

We use the notations q, Q for the constants qr, Qr de�ned in (6.7) with � = r.

Lemma A.1 The following estimate holds:

Ind fk � 1g
�
ar�kE

�
a�r�k jF 0	� 1

�
� 0 a.s.

Proof. For j � 0, introduce random events


(j) �
= fkez�k+jk � l�k+j�1; kez�k+j+1k > l�k+ig : (A.5)

Substituting (5.5) into (A.4), we have that the event 
(j) implies

kz�k+jk �
l�k+j�1

�
; kA�k+j+1z�k+j + v�k+j+1k � l�k+j:
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Hence

kA�k+j+1z�k+jk �
Ll�k+j�1

�
� aLl�k+j

�
:

It follows that the event 
(j) implies

kv�k+j+1k � l�k+j

�
1� La

�

�
= l�k+jh: (A.6)

Furthermore,

P
�
�k = j jF 0� � P

�
kez�k+j+1k > l�k+i; kez�k+jk � l�k+j�1jF 0� ; j � 1:

Let !
�
= G�Æ

�h��. We have that

P
�
�k = j jF 0� � P

�
kv�k+j+1k � l�k+jhjF 0� :

It follows from Proposition A.4 that

P
�
�k = j jF 0� � G�Æ

�

l
�
�k+j

h�
=

!

l
�
�k+j

:

By (A.1), we have that l�k+j = ajl�k . Moreover, from Proposition A.2 we have that

l�k = a�k la�1: Hence

P
�
�k = j jF 0� � !a�j

l
�
�k

=
!

l�
a�j���k :

ThenP�k
j=1 a

�rjP (�k = jjF 0) � !
l�

P�k
j=1 a

�j���k�rj

� !
l�
a���k

P�k
j=1 a

j(��r) � !
l�
a���ka��r a

(�k�1)(��r)�1
a��r�1 � !

l�
a���k+��r+(�k�1)(��r)

a��r�1 � !
l�

a�r�k

a��r�1 :

Hence

Ind fk � 1gE fa�r�k jF 0g

� Ind fk � 1g
�P�k

j=1 a
�rjP (�k = j jF 0) + a�r�k�rP (�k � �k + 1jF 0)

�
� Ind fk � 1g

�
!
l�

a�r�k

a��r�1 + a�r�k�r
�
� Ind fk � 1ga�r�k

�
!
l�

1
a��r�1 + a�r

�
a.s.

The equation (6.5) implies that

!

l�
1

a��r � 1
+ a�r � 1:

This completes the proof of Lemma A.1.2

Introduce the following matrices:

A(t; s)
�
= AtAt�1 � � �As for s � t; A(t� 1; t)

�
= I: (A.7)

Here I is the unit matrix. Furthermore, introduce the following random vectors:

zt;m
�
= A(t; sm)zsm�1 +

tX
j=sm

A(t; j + 1)vj ; where t = sm + 1; sm + 2; ::: :
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Proposition A.5 For the conditional probabilistic measure P( � jF 00), the random vec-

tors zt;m are Gaussian, and the following inequalities hold:

E �zt;mjF 00	 � Lt�sm+1 lsm�1

�
a.s.; (A.8)

E
nzt;m �E

�
zt;mjF 00	2 jF 00

o
� C0L

2(t�sm+1)
a.s.; (A.9)

where C0 is de�ned by (6.6).

Proof. By Assumption 4.1, the vector vt+1 does not depend on xt; xt�1; :: for any deter-

ministic t. Moreover, (5.2) implies that there exist deterministic measurable functions

�t : R
nt ! Rn such that bxt = �t(x1; ::::; xt). We have that zt = xt � bxt. Hence vt+1

does not depend on zt; zt�1; ::: . Furthermore, the vectors vsm+i, i = 1; 2; ::, are Gaus-

sian and independent on zsm�1 for the conditional probabilistic measure P( � jF 00), and

E fzt;mjF 00g = A(t; sm)zsm�1.

Furthermore,

kezsm�1k � lsm�1

�
; kA(t; j)k � Lt�j+1:

Hence (A.8) holds. Further,

E

�
kzt;m �E fzt;mjF 00gk2

����F 00
�
= E

��Pt
j=sm

A(t; j + 1)vj

�2
jF 00

�
�
�Pt

j=sm

�
kA(t; j + 1)kE

�
kvjk2jF 00	�1=2�2

� Æ2
�Pt

j=sm
Lt�j

�2
= Æ2

�Pt�sm
j=0 Lt�j�sm

�2
� Æ2

�
Lt�sm

Pt�sm
j=0 L�j

�2
� Æ2

�
Lt�sm 1

1�L�1

�2
� Æ2 L

2(t�sm+1)

(L�1)2 = C0L
2(t�sm+1):

Hence (A.9) holds. This completes the proof of Proposition.

Proposition A.6 The following estimate holds:

P
�
�m � i+ 1jF 00� � Gq

Liq�2qC
q=2
0

lq�iq(� � L��1)q
8i � 1; 8q = 2; 4; 6; :::

Proof. After substituting (5.5) into (A.4), we obtain that

ecsm+i = 0; zsm+i = zsm+i;m = ezsm+i for i = 0; :::; �m � sm: (A.10)

Moreover, it can be easily seen, that

P
�
�m � i+ 1jF 00� � P

�
kzsm+ik > lsm+i�1jF 00� ; i � 1:

Furthermore, if sm � i � �m then

lsm�1 � l
a
; lsm+i�1 � lsm�1�

i;

lsm+i�1 � lsm�1

�
Li � lsm�1

�
�i � Li

�

�
� l!1�

(i�1)

a
� l!1�

i�2;
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where

!1
�
= � � L:

By Propositions A.4-A.5 and (A.10), it follows that

P
�
�m � i+ 1jF 00� � GqL

iqC
q=2
0

(lsm+i�1 � lsm�1L
i=�)

q �
Gq�

2qLiqC
q=2
0

!
q
1l
q�iq

8q = 2; 4; 6; :::

This completes the proof of Proposition A.6.

Lemma A.2 The following estimate holds:

E
n
�r�m jF 00

o
� f(r) a.s.;

where f(�) de�ned by (6.8).

Proof of Lemma A.2. We have that P (�m � 1jF 00) � 1 and

E
n
�r�m jF 00

o
� �r +

+1X
i=1

�(i+1)rP
�
�m = i+ 1jF 00� � �r +

Gq�
2q+rC

q=2
0

lq!
q
1

+1X
i=1

Qi;

where Q = Qr. Then

E
n
�r�m jF 00

o
� �r +

Gq�
2q+rC

q=2
0

lq!
q
1

Q

1�Q
;

where q = qr. This completes the proof of Lemma A.2.

Proof of Theorem 6.1{6.3. Let m and k be the random numbers de�ned above for

the integer T > 0. Consider the following random events:


0
�
= fT < s1g ; 
1

�
= fs1 � T � �1g ; 
2

�
= f�1 < T < s2g ; 
3

�
= fs2 � Tg :

(A.11)

It is easy to see that

P
�
[3i=0
i

�
= 1; P (
i \ 
j) = 0; i 6= j; i; j = 0; 3;


0 = fm = 0g ; 
1 [
2 [ 
3 = fm = 1g ; 
3 = fm � 2g = fk � 1g :

We have that

EkzT kr � E fkzT krj
0gP(
0) +
3X
i=1

E Ind f
igkzT kr:

If T < s1 then kzT k � l=�, hence

E fkzT krj
0g �
lr

�r
: (A.12)

Set

V
�
=

TX
j=sm

A(T; j + 1)vj :
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If sm � T � �m, then zT = A(T; sm)zsm�1 + V; where A(T; j) is de�ned by (A.7). By

(6.1),

kA(T; sm)k � LT�sm+1 � aR�m�;

kV k �PT
j=sm

LT�jkvjk � LT�sm+1
PT
j=sm

Lsm�j�1kvjk:
(A.13)

Consider the random event 
0
�
= fsm � T � �mg: We have that

E Ind f
0gkV kr � E

�
Ind f
0gLT�sm+1

PT
j=sm

Lsm�j�1kvjk
�r

�
�
E Ind f
0gLr�0(T�sm)

�1=�0 �
E

�PT
j=sm

Lsm�j�1kvjk
�r��1=�

�
�
ELr�

0�m
�1=�0 �PT

j=sm
Lsm�j�1 (Ekvjkr�)1=r�

�r
� f(r�0)1=�

0 Æ(r�)r

(L�1)r :

(A.14)

Further, we have that kztk � l=� for t � s1 � 1 and 
1 � 
0. Clearly,�
E Ind f
1gkzT kr

�1=r
�
�
E Ind f
1gkA(T; s1)zs1�1kr

�1=r
+

�
E Ind f
1gkV kr

�1=r
:

Then (A.13) and Lemma A.2 imply that�
E Ind f
1gkzT kr

�1=r
� l

�

�
E Ind f
1gLr�1

�1=r
+ f(r�0)1=r�

0 Æ(r�)

L�1

� l
�
f(r)1=r + f(r�0)1=r�

0 Æ(r�)

L�1 :

(A.15)

If �1 < T � s2, then kzT k � lt � l��1 , hence

E Ind f
2gkzT kr � lrE Ind f
2g��1 = lrE Ind f
2g��m � lrf(r): (A.16)

By the de�nitions, it follows that

kzT k � la�m�1a��m�1aR��m if T > �m; m � 2;

kzT k � kA(T; sm)zsm�1k+ kV k if T � �m; m � 2:

In other words,

(1� Ind f
0g) Ind f
3gkzT k � (1� Ind f
0g) Ind f
3gla�m�1a��m�1��m ;

Ind f
0g Ind f
3gkzT k � Ind f
0g Ind f
3g
�
kA(T; sm)zsm�1k+ kV k

�
:

Note that L < � = aR�, and if Ind f
3g 6= 0 then m � 2. From (A.13), we have that

Ind f
3g kzsm�1k � Ind f
3gla�m�1a��m�1 ;

Ind f
3g kA(T; sm)zsm�1k � Ind f
3gla�m�1a��m�1��m :

It means that

Ind f
3gkzT k � Ind f
3g
�
la�m�1a��m�1��m + Ind f
0gkV k

�
:
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Hence�
E Ind f
3gkzT kr

�1=r
� E

�
Ind f
3glrar�m�1a�r�m�1�r�m

�1=r
+E

�
Ind f
3\
0gkV kr

�1=r
:

In other words, �
E Ind f
3gkzT kr

�1=r
� K

1=r
1 +K

1=r
2 ; (A.17)

where

K1
�
= lrE Indf
3gar�m�1a�r�m�1�r�m ; K2

�
= E Ind f
3 \ 
0gkV kr:

By (A.14), it follows that

K2 � E Ind f
0gkV kr � f(r�0)1=�
0 Æ(r�)r

(L� 1)r
: (A.18)

By Proposition A.3, the random variable Ind f
3g = Ind fm � 2g is F 0- measurable

and F 00- measurable; Ind fk � 1g = Ind fm � 2g. By Lemma A.1 and Lemma A.2, it

follows that

K1 � E Ind f
3gkzT kr = EE
n
lrar�m�1a�r�m�1�r�m Ind f
3gjF 0

o
= E

�
lr Ind f
3gar�m�1E

n
a�r�m�1�r�m jF 0

o�
= E

�
lr Ind fm � 2gar�m�1E

�
a�r�m�1E

n
�r�m jF 00

o ����F 0
��

� f(r)lrE
�
ar�m�1 Ind fk � 1gE fa�r�m�1 jF 0g

�
� lrf(r):

(A.19)

By (A.12)-(A.19), it follows the inequality (6.2) for the constant (6.9). This completes

the proof of Theorems 6.1{ 6.3.2

Proof of Theorem 6.4. Let l > 0 be such that (6.5) holds for l = l. Introduce random

events 
0;t
�
= ft < s1g, t = 1; :::; T . Let "t

�
= 1 � P(
0;t). We have that kztk � l=� for

t � s1. Let C� = C�(�) be the constant de�ned in Theorem 6.3 with r = �. By Theorem

6.3, it follows that if l � l, l=� � 1, � > La+ 1 then

Ekztkr � lr

�r
P(
0;t) +E(1� Ind f
0;tg)kztkr

� lr

�r
P(
0;t) +

�
Ekztk2r

�1=2 �
E(1� Ind f
0;tg)2

�1=2
� lr

�r
P(
0;t) + C�(2r)

1=2 (1�P(
0;t))
1=2 = lr

�r
(1� "t) + C�(2r)

1=2"
1=2
t :

Let �
�
= minfi 2 f2; 4; :::g : i > 2rg. Similarly the proof of Lemma A.1, we obtain

that

"t � P

�
9i � t : kezi+1k > l; kezik � l

�
� tmax

i�t
P (kvik > lh) � t

G�Æ
�

l�h�
:

By (6.9), it follows that there exists a constant c1 > 0 such that C�(�) � c1(l
� + 1) for

all l > l, � > max(La+ 1; l), � 2 [r; 2r]. Hence

"tC�(2r) �
TG�Æ

�

l�h�
c1(l

2r + 1)! 0 as M ! +1; l! +1;
l

�
! 0:

This completes the proof of Theorem 6.4.


