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Introduction

We consider parabolic equations in nondivergent form with discontinuous coefficients at higher

derivatives. Their investigation is most complicated because, in general, in the case of discon-

tinuous coefficients, the uniqueness of a solution for nonlinear parabolic or elliptic equations can

fail, and there is no a priory estimate for partial derivatives of a solution. There are some condi-

tions that ensure regularity of solutions of boundary value problems for second order equations

and that are known as Cordes conditions (see Cordes (1956)). These conditions restricts the

scattering of the eigenvalues of the matrix of the coefficients at higher derivatives. Related con-

ditions from Talenti (1965), Koshelev (1982), Kalita (1989), Landis (1998), on the eigenvalues

are also called Cordes type conditions. Gihman and Skorohod (1975) obtained a closed condition

implicitly as a part of the proof of the uniqueness of a weak solution in Section 3 of Chapter 3.

Cordes (1956) considered elliptic equations. Landis (1998) considered both elliptic and parabolic

equations. Koshelev (1982) considered systems of elliptic equations of divirgent type and Hölder

property of solutions. Kalita (1989) considered union of divergent and nondivirgent cases.

Conditions from Cordes (1956) are such that they are not necessary satisfied even for

constant non-degenerate matrices b, therefore, the condition for b = b(x) means that the

corresponding inequalities are satisfied for all x0 for some non-degenerate matrix θ(x0) and
∗Differential equations (1997) 33 (4), English translation: pp. 433-442, in Russian: pp. 552-531. This is a

slightly upgraded version of the paper; some references are renewed.
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b̃(x) = θ(x0)T b(x)θ(x0), where x is from ε-neighborhood of x0 (ε > 0 is given). We found

another condition (Condition 1.1 below) that ensures solvability and uniqueness for first bound-

ary value problem for nondivirgent parabolic equation with discontinuous diffusion coefficients.

This condition ensures existence of L2-integrable derivatives for the solution for L2-integrable

free term. Prior estimate is proved, in contrast with the existing literature.

For discontinuous diffusions, uniqueness of a weak solution cannot be guarantied for the

general case (some cases of uniqueness are described in Gihman and Skorohod (1975), Krylov

(1980), Anulova et al (1998), Liptser and Shiryaev (2000). We obtain some new conditions of

uniqueness closed to conditions Gihman and Skorohod (1975) but sometimes less restrictive, as

is shown by an example.

Some definitions

Assume that we are given T > 0 and an open domain D ⊂ Rn such that either D = Rn or D is

bounded with the boundary ∂D that is either C2-smooth (or such as described in Chapter III.8

in Ladyzhenskaya and Ural’tseva (1968)).

We denote Euclidean norm as | · |, and D̄ denotes the closure of a region D.

We denote by ‖ · ‖X the norm in a linear normed space X, and (·, ·)X denotes the scalar

product in a Hilbert space X.

Introduce some spaces of functions. Let G ⊂ Rk be an open domain, then Wm
q (G) denotes

the Sobolev space of functions that belong Lq(G) together with first m derivatives, q ≥ 1.

Let H0 ∆= L2(D) be the Hilbert space of complex valued functions, and let H1 ∆=
0

W 1
2 (D) be

the closure in the W 1
1 (D)-norm of the set of all smooth functions that vanish in a neighborhood

of ∂D, k = 1, 2. Let H2 = W 2
2 (D) ∩H1 be the space equipped with the norm of W 2

2 (D).

Let `m denotes the Lebesgue measure in Rm, and let Bm be the σ–algebra of the Lebesgue

sets in Rm.

We shall use spaces

Xk = L2([0, T ], B̄1, `1,H
k), Ck = C([0, T ];Hk), k = 0, 1, 2, Y k = Xk ∩ Ck−1, k = 1, 2, with the

norm ‖v‖Y k = ‖v‖Xk + ‖v‖Ck−1 .
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1 Solvability of boundary value problem

Consider the domain D ⊂ Rn such as described above, n ≥ 1. Let Q
∆= D× [0, T ], where T > 0

is given.

Let

Av =
n∑

i,j=1

bij(x, t)
∂2v

∂xi∂xj
(x) +

n∑

i=1

fi(x, t)
∂v

∂xi
(x)− λ(x, t)v(x), (1.1)

where (x, t) ∈ Q.

We are studying the problem in Q





∂v
∂t + Av = −ϕ,

v(x, t)|x∈∂D = 0, v(x, T ) = Φ(x).
(1.2)

Here b(x, t) : Rn×R → Rn×n, f(x, t) : Rn×R → Rn, and λ(x, t) : Rn×R → C are measurable

bounded functions, bij , fi, and xj are the components of b, f , and x.

If D = Rn, then the boundary condition for ∂D vanish in (1.2).

We assume that b(x, t), f(x, t), λ(x, t) vanish for (x, t) /∈ D × [0, T ].

Let us state the main conditions imposed on the matrix b.

Condition 1.1 The matrix b = b> is symmetric and has the form b(x, t) = b̄(x, t) + b̂(x, t),

where b̄(x, t) = b̄(x, t)> is a continuous bounded matrix such that

δ
∆= inf

(x,t)∈Q, ξ∈Rn

ξT b̄(x, t)ξ
|ξ|2 > 0.

The matrix function b̂(x, t) ∈ L∞(Q;Rn×n) is symmetric and such that there exists a set N ⊆
{1, . . . , n} such that

b̂ij ≡ b̂ji ≡ 0 ∀i, j : i /∈ N , j /∈ N ,

and there exists a set {γk}k∈N such that γk ∈ (0, 2) for all k and

ν̂ =


 ∑

k∈N

1
2γk


 ess sup

x,t

∑

k∈N

(∑

i∈N
b̂ik(x, t)2 +4

∑

i/∈N
b̂ik(x, t)2+

γk

2− γk
b̂kk(x, t)2

)
<δ2.

Remark 1.1 If cardN < n, then Condition 1.1 allows bigger than for N = {1, . . . ., n} values

b̂ij for i ∈ N , j ∈ N . Different γk also make this condition less restrictive: for instance, if

b̂kk ≡ 0, then we can allow γk = 2− 0.
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In particular, the condition for ν̂ is satisfied if

ess sup
x,t

n∑

i,k=1

b̂ik(x, t)2 <
δ2

n
.

The next condition is not so principal, since it deals with low order coefficients and the

continuous part b̄.

Condition 1.2 There exists a domain D1 ⊆ Rn and functions b(ε)(x, t) : Rn × R → Rn×n,

f (ε)(x, t) : Rn ×R → Rn, λ(ε)(x, t) : Rn ×R → C, ε > 0, such that mes D1 < +∞,

νb(ε) = ‖b(ε) − b̄‖L∞(Q) → 0 as ε → 0,

ν̄b(ε) = ess sup
(x,t)∈Q

|∂b(ε)

∂x
(x, t)| < +∞ ∀ε > 0,

νf (ε) = ‖f (ε) − f‖Ln(Q1) + ess sup
(x,t)∈Q\Q1

|f (ε)(x, t)− f(x, t)| → 0 as ε → 0,

ν̄f (ε) = ess sup
(x,t)∈Q

|∂f (ε)

∂x
(x, t)| < +∞ ∀ε > 0,

νλ(ε) = ‖λ(ε) − λ‖Lr(Q1) + ess sup
(x,t)∈Q\Q1

|λ(ε)(x, t)− λ(x, t)| → 0 as ε → 0,

ν̄λ(ε) = ess sup
(x,t)∈Q

|∂λ(ε)

∂x
(x, t)| < +∞ ∀ε > 0

Here Q1
∆= D1 × (0, T ), r

∆= max(1, n/2).

Remark 1.2 Condition 1.2 is satisfied if f, b̄, λ are bounded and D is bounded. In that case, we

can take D1 = D and the Sobolev averages of the functions b̄, f, λ as b(ε), f (ε), λ(ε) respectively.

Note that Condition 1.2 implies that

‖f‖Ln(Q1) + ess sup
(x,t)∈Q\Q1

|f(x, t)| < +∞, ‖λ‖Lr(Q1) + ess sup
(x,t)∈Q\Q1

|λ(x, t)| < +∞.

We introduce the set of parameters

P ∆=
(

n, D, T, δ, N , {γk}k∈N ,

supx,t |b(x, t)|, supx,t |f(x, t)|, supx,t |λ(x, t|, ν̂, νb(·), ν̄b(·), νf (·), ν̄f (·), νλ(·), ν̄λ(·)
)

.

We have that P includes νb(·), hence P depends on the modulus of continuity of b̄.
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Theorem 1.1 Assume that Conditions 1.1–1.2 are satisfied. Then problem (1.2) has the unique

solution v ∈ Y2 for any ϕ ∈ L2(Q), Φ ∈ H1, and

‖v‖Y2 ≤ c(‖ϕ‖L2(Q) + ‖Φ‖H1), (1.3)

where c = c(P) is a constant that depends on P.

We shall need some auxiliary spaces to prove the theorem. Let Ĥ2 be the set of v ∈
W 2

2 (D) ∩H1 with the special norm

‖v‖
Ĥ2 =


 ∑

k∈N





n∑

i=1

∥∥∥∥∥
∂2v

∂xk∂xi

∥∥∥∥∥
2

H0

− γk

2

∥∥∥∥∥
∂2v

∂x2
k

∥∥∥∥∥
2

H0








1/2

+ α1‖v‖W 2
2 (D). (1.4)

Here α1 > 0 is some constant.

Introduce Banach spaces X̂2 = L2([0, T ], B̄1, `1, Ĥ
2) and Ŷ 2 = X̂2 ∩ C1 with the norm

‖v‖
Ŷ 2 = ‖v‖

X̂2 + α2‖v‖C1 . (1.5)

Here α2 > 0 is a constant.

Remark 1.3 Since γk ∈ (0, 2) for all k, (3.1.4) defines a norm, the norm Ĥ2 is equivalent to

the norm W 2
2 (D), and the norm Ŷ 2 is equivalent to the norm Y 2.

Therefore, to prove Theorem 1.1, it suffices to prove the following theorem.

Theorem 1.2 Assume that Conditions 1.1-1.2 are satisfied. Then problem (1.2) has an unique

solution v ∈ Ŷ 2 for any ϕ ∈ L2(Q) and Φ ∈ H1, and

‖v‖
Ŷ 2 ≤ c(‖ϕ‖L2(Q) + ‖Φ‖H1), (1.6)

where c > 0 is a constant that depends only on P and α1, α2.

Remark 1.4 For D = Rn a closed to Theorem 1.1 was announced in Dokuchaev (1996), where,

however, the estimate was obtained for the derivatives with discontinuous coefficients only, just

to make the equation meaningful).
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2 Examples

Let b = b(x), and let λ1,. . . ,λn be its eigenvalues. The classic Cordes conditions from Cordes

(1956) was formulated for n ≥ 3 as

∃ε > 0 : (n− 1)
∑

i<j

(λi − λj)
2 < (1− ε)

(
n∑

i=1

λi

)2

. (2.1)

It was shown by Talenti (1965) that (2.1) is equivalent to

∃ε > 0 : (n− 1 + ε)
n∑

i=1

λ2
i = (n− 1 + ε)

n∑

i,j=1

b2
ij <

(
n∑

i=1

bii

)2

=

(
n∑

i=1

λi

)2

. (2.2)

This form (2.2) can be given also to the condition from Kalita (1989) for a system with one

nondivirgent equation.

Conditions from Landis (1998) has the form

∃ε > 0 :
n∑

i=1

λi < (n + 2− ε)min {λ1, . . . , λn} . (2.3)

The condition from Section 3, Chapter 3 from Gihman and Skorohod (1975) is such that in the

simplest case can be written as

∃ε > 0 : Tr ((b− I)2) < 1− ε. (2.4)

(In Gihman and Skorohod (1975), I was replaced for a smooth matrix function).

In our notations, the last condition can be rewritten as

b̄ ≡ I, ∃ε > 0 :
n∑

i,j=1

b̂2
ij < 1− ε. (2.5)

The regularity of the parabolic equation established by Gihman and Skorohod (1975) under

condition (2.4) is weaker than the regularity established by Theorem 1.1

Note that Gihman and Skorohod (1975) obtained the regularity that was just enough to

ensure the uniqueness of a weak solution of some Ito’s equation. In fact, conditions (2.4), (2.5)

are sufficient for Theorem 1.1 as well. We leave it without proof; note that there is a proof

similar to the proof given below and different from the one given in Gihman and Skorohod

(1975).
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In fact, Cordes conditions mean that inequalities (2.1)–(2.3) are satisfied for all x0 for some

non-degenerate matrix θ(x0) and for all matrices b̂(x) = θ(x0)T b(x)θ(x0) , where x is from the

ε-neighborhood of x0, and where ε > 0 is given. Similarly, condition (2.3) was adjusted in Landis

(1998), and condition (2.4) was adjusted in Gihman and Skorohod (1975).

Let n = 3, b(x, t) ≡ b(x),

b(x) =




1 α(x) β(x)

α(x) 1 0

β(x) 0 1


 , b̂(x) =




0 α(x) β(x)

α(x) 0 0

β(x) 0 0


 ,

where α(x),β(x) are arbitrary measurable functions, |α(x)| ≤ α = const , |β(x)| ≤ β = const ,

and functions α(x),β(x) are quite irregular.

It is easy to see that Condition 1.1 is satisfied if α2 + β2 < 1 for N = {1} and for some

γ1 < 2 being close enough to 2.

The spectrum of b is {1, 1−√
α(x)2 + β(x)2, 1 +

√
α(x)2 + β(x)2}. Then conditions (2.1),

(2.2) fails if (ᾱ2 + β̄2) ≥ 3/4, and (2.3) fails if (ᾱ2 + β̄2) ≥ 2/5. Conditions (2.4) and (2.5) fail

if ᾱ2 + β̄2 > 1/2.

Therefore, Condition 1.1 is less restrictive for this example than condition (2.5) or the condi-

tions from Cordes (1956), Gihman and Skorohod (1975), Kalita (1989), Koshelev (1982), Landis

(1998), Talenti (1965).

There may be opposite examples when condition (2.1) is satisfied, but Condition 1.1 fails.

3 Proof of Theorem 3.1.2.

The main idea is to prove theorem for some ε = ε(P) > 0 for u replaced with

uε(x, t) ∆= u(x, t) exp{K(ε)t}, (3.1)

where K(ε) > 0 is a function of ε such that K(ε) → +∞ as ε → +0.

Let λ̃(ε)(x, t) ∆= λ(ε)(x, t) + K(ε), and let

Aεu
∆=

n∑

i,j=1

b
(ε)
ij (x, t)

∂2u

∂xi∂xj
(x) +

n∑

i

f
(ε)
i (x, t)

∂u

∂xi
(x)− λ̃(ε)(x, t)u(x, t).

Consider the problem 



∂v
∂t + Aεv = −ϕ,

v(x, t)|x∈∂D = 0, v(x, T ) = Φ(x).
(3.2)
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Introduce the operators L(ε) : X0 → Ŷ 2, L(ε) : H1 → Ŷ 2 such that u
∆= L(ε)ϕ + L(ε)Φ is the

solution of (3.2). Let ‖L(ε)‖ denotes the norm of the operator L(ε) : X0 → Ŷ 2, and let ‖L(ε)‖
denotes the norm of the operator L(ε) : H1 → Ŷ 2.

Lemma 3.1 For any γ > 0, there exists a small enough ε∗ > 0, and a function K(ε) > 0

(increasing as ε → 0), and α1 > 0 and α2 > 0 in (1.4)-(1.5), such that ε∗ = ε∗(γ,P), K(·) =

K(·, γ,P), αi = αi(γ,P, ε), and

‖L(ε)‖ ≤ γ +
1
δ

( ∑

k∈N

1
2γk

)1/2

, ‖L(ε)‖ ≤ c0 ∀ε ∈ (0, ε∗], (3.3)

where c0 = c0(P, α1, α2) is a constant.

Proof. Let ϕ ∈ X0 be a smooth function with a compact support inside Q.

Let v = L(ε)ϕ. We have

1
2
‖v(·, t1)‖2

H0 =
1
2
‖v(·, T )‖2

H0 +
∫ T

t1
(v,Aεv + ϕ)H0ds. (3.4)

We shall use below the obvious inequality

2αβ ≤ εα2 + ε−1β2 ∀α, β, ε ∈ R, ε > 0.

In particular,

(v, ϕ)H0 ≤ 1
2ε1

‖v‖2
H0 +

ε1

2
‖ϕ‖2

H0 ∀ε1 > 0. (3.5)

We have the estimate

(v, Aεv + ϕ)H0 =
(

v,
n∑

i,j=1

b
(ε)
ij (·, t) ∂2v

∂xi∂xj
+

n∑

i=1

f
(ε)
i (·, t) ∂v

∂xi
− λ̃(ε)(·, t)v(·, t)

)

H0

=
n∑

i,j=1

{
−

(
v,

∂b
(ε)
ij

∂xj

∂v

∂xi

)

H0
−

(
∂v

∂xj
, b

(ε)
ij

∂v

∂xi

)

H0

}

−1
2

(
v2,

n∑

i=1

∂f
(ε)
i

∂xi

)

H0
− (v, λ(ε)v)H0 −K(ε)‖v‖2

H0 + (v, ϕ)H0

≤ (−δ + ν1)
n∑

j=1

∥∥∥∥
∂v

∂xj

∥∥∥∥
2

H0
−K(ε)‖v‖2

H0 + c1‖v‖2
H0 +

ε1

2
‖ϕ‖2

H0 ,

where ε1 > 0, ν1 > 0 can be arbitrarily small, and c1 depends on ε, ε1, ν1, P. Hence we have

that choosing K(ε) = K(ε, ν) > c1 for ν > 0 can ensure that

‖L(ε)ϕ‖
Ŷ 1 ≤ ν‖ϕ‖X0 ∀ε ∈ (0, ε∗], ∀ϕ ∈ X0. (3.6)
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We have that
∥∥∥∥

∂v

∂xk
(·, t1)

∥∥∥∥
2

H0

−
∥∥∥∥

∂v

∂xk
(·, T )

∥∥∥∥
2

H0

= 2
∫ T

t1

(
∂v

∂xk
,

∂

∂xk
(Aεv + ϕ)

)

H0

ds. (3.7)

Remind that ϕ has compact support inside Q. Then
(

∂v

∂xk
,

∂ϕ

∂xk

)

H0
≤ δγk

2

∥∥∥∥
∂2v

∂x2
k

∥∥∥∥
2

H0
+

1
2δγk

‖ϕ‖2
H0 . (3.8)

Note that if b(ε) ∈ C2 then
(

∂v
∂xk

,
∂b

(ε)
ij

∂xk

∂2v
∂xi∂xj

)

H0

= −
(

∂v
∂xk

,
∂2b

(ε)
ij

∂xi∂xk

∂v
∂xj

)

H0
−

(
∂2v

∂xi∂xk
,

∂b
(ε)
ij

∂xk

∂v
∂xj

)

H0
+

∫
∂D Ĵijkds

=
(

∂v
∂xk

,
∂b

(ε)
ij

∂xi

∂2v
∂xj∂xk

)

H0
+

(
∂2v
∂x2

k
,

∂b
(ε)
ij

∂xi

∂v
∂xj

)

H0
−

(
∂2v

∂xi∂xk
,

∂b
(ε)
ij

∂xk

∂v
∂xk

)

H0
+

∫
∂D J ′ijkds,

(3.9)

where

J ′ijk = Ĵijk − ∂v̄

∂xk

∂b
(ε)
ij

∂xi

∂v

∂xj
cos(n, ek), Ĵijk =

∂v̄

∂xk

∂b
(ε)
ij

∂xk

∂v

∂xj
cos(n, ei),

n = n(s) is the outward pointing normal to the surface ∂D at the point s ∈ ∂D, and ek is the

kth basis vector in the Euclidean space Rn = {x1, . . . , xn}.
If b(ε) is general, then the right hand and the left hand expressions in (3.9) are still equal.

Hence, we obtain
(

∂v
∂xk

,
∂b

(ε)
ij

∂xk

∂2v
∂xi∂xj

)

H0

≤ ε2

(∥∥∥∥ ∂2v
∂xk∂xj

∥∥∥∥
2

H0
+

∥∥∥∥ ∂2v
∂xk∂xi

∥∥∥∥
2

H0
+

∥∥∥∥ ∂2v
∂x2

k

∥∥∥∥
2

H0

)
+ c2

1
2ε2
‖v‖2

H1 +
∫
∂D J ′ijkds ∀ε2 > 0,

(3.10)

where the constant c2 depends only on P.

Therefore,
(

∂v

∂xk
,

∂

∂xk
(Aεv + ϕ)

)

H0

=
(

∂v

∂xk
,

∂

∂xk

{ n∑

i,j=1

b
(ε)
ij (·, t) ∂2v

∂xi∂xj
+

n∑

i=1

f
(ε)
i (·, t) ∂v

∂xi
− λ̃(ε)(·, t)v(·, t) + ϕ(·, t)

})

H0

=
n∑

i,j=1

{(
∂v

∂xk
,
∂b

(ε)
ij

∂xk

∂2v

∂xi∂xj

)

H0
−

(
∂2v

∂xk∂xi
, b

(ε)
ij

∂2v

∂xk∂xj

)

H0

}

+
n∑

i=1

{(
∂v

∂xk
,
∂f (ε)

∂xk

∂v

∂xi

)

H0
+

(
∂v

∂xk
, f

(ε)
i

∂2v

∂xk∂xi

)

H0

}

9



−
(

∂v

∂xk
,
∂λ(ε)

∂xk
v + λ(ε) ∂v

∂xk

)

H0
−K(ε)

∥∥∥∥
∂v

∂xk

∥∥∥∥
2

H0
+

(
∂v

∂xk
,

∂ϕ

∂xk

)

H0
+

∫

∂D
Jijkds

≤ (−δ + ν2 + 2ε3)
n∑

j=1

∥∥∥∥
∂2v

∂xk∂xj

∥∥∥∥
2

H0
+

(
δγk

2
+ ε3

) ∥∥∥∥
∂2v

∂x2
k

∥∥∥∥
2

H0
+c2‖v‖2

H1

+
n∑

i,j=1

∫

∂D
Jijkds +

(
1

2δk
+

ε1

2

)
‖ϕ‖2

H0 −K(ε)
∥∥∥∥

∂v

∂xk

∥∥∥∥
2

H0

, (3.11)

where the constant c2 depends only on P, constants ε3 > 0 and ν2 > 0 can be arbitrarily small,

Jijk = J ′ijk + J ′′ijk, J ′′ijk =
∂v̄

∂xk
b
(ε)
ij

∂2v

∂xi∂xj
cos(n, ek).

Let us estimate
∫
∂D Jijk. It vanishes if D = Rn (as well as all integrals over the boundary

∂D). For a bounded domain D, we mainly follow the approach from Section 3.8 Ladyzhenskaya

and Ural’tseva (1968). Let x0 = {x0
i }n

i=1 ∈ ∂D be an arbitrary point. In its neighborhood, we

introduce local Cartesian coordinates ym =
∑n

k=1 cmk(xk − x0
k) such that the axis yn is directed

along the outward normal n = n(x0) and {cmk} is an orthogonal matrix.

Let yn = ω(y1, . . . , yn−1) be an equation determining the surface ∂D in a neighborhood of the

origin. By the properties of the surface ∂D, the first order and second order derivatives of the

function ω are bounded. Since {cmk} is an orthogonal matrix, we have xk − x0
k =

∑n
m=1 ckmym.

Therefore, cos(n, em) = cnm, m = 1, . . . , n. Then

J ′ijk =
n∑

m=1

cmk
∂v̄

∂ym

n∑

p=1

cpi
∂v

∂yp

( n∑

q=1

∂b
(ε)
ij

∂yq
cqkcni −

n∑

r=1

∂b
(ε)
ij

∂yr
crkcnk

)
,

J ′′ijk =
n∑

m=1

cmk
∂v̄

∂ym
bijcnk

n∑

p,q=1

cpicqi
∂2v

∂yp∂yq
. (3.12)

The boundary condition v(x, t)|x∈∂D = 0 has the form

v(y1, . . . , yn−1, ω(y1, . . . , y
n−1), t) = 0

identically with respect to y1, . . . , yn−1 near the point y1 = . . . = yn−1 = 0. Let us differentiate

this identity with respect to yp and yq, p, q = 1, . . . , n− 1, and take into account that

∂ω

∂yp
= 0 (p = 1, . . . , n− 1).

at x0. Then

∂v

∂yp
= 0,

∂2v

∂yp∂yq
= − ∂v

∂yn

∂2ω

∂yp∂yq
= − ∂v

∂n
∂2ω

∂yp∂yq
(p, q = 1, . . . , n− 1).

10



Hence

∫
∂D Jijkds ≤ ĉ1

∫
∂D

∣∣∣∣ ∂v
∂n

∣∣∣∣
2

ds

≤ ε4
∑n

i,j=1

∫
D

∣∣∣∣ ∂2v
∂xi∂xj

(x)
∣∣∣∣
2

dx + ĉ2(1 + ε−1
4 )‖v‖2

H1 ∀ε4 > 0
(3.13)

for some constants ĉi = ĉi(ε,P). The last estimate follows from the estimate (2.38) in Chapter

2 from Ladyzhenskaya and Ural’tseva (1968).

As mentioned above, for a suitable choice of the functions K(ε) = K(ε, ν) and for an arbi-

trarily small ν > 0, one can provide the estimate ‖L(ε)ϕ‖Y1 ≤ ν‖ϕ‖X0 (∀ε ∈ (0, ε∗], ∀ϕ ∈ X0).

The constants ε3 > 0, ε4 > 0, and ν2 > 0 can be arbitrarily small, and the constant c1 depends

on ε, ε1, ν1, γk and , P. Combining (3.6) with (3.11) and (3.13), we see that for some function

K(ε) we have

∑

k∈N

(∫ T

0
dt

∫

D

{
(δ − ν2 − 2ε3)

n∑

i=1

∣∣∣∣∣
∂2v

∂xk∂xi
(x, t)

∣∣∣∣∣
2

−
(

δγk

2
+ε3

) ∣∣∣∣∣
∂2v

∂x2
k

(x, t)

∣∣∣∣∣
2}

dx

+
1
2

sup
t

∥∥∥∥
∂v

∂xk
(·, t)

∥∥∥∥
2

H0

)

≤
∑

k∈N

(
c2‖v‖2

X1 +
(

1
2δγk

+
ε1

2

)
‖ϕ‖2

X0

)
≤

∑

k∈N

(
νc2 +

1
2δγk

+
ε1

2

)
‖ϕ‖2

X0 . (3.14)

Therefore,

∑

k∈N

(∫ T

0

∫

D
dt

{
(δ − ε5)

n∑

i=1

∣∣∣∣∣
∂2v

∂xk∂xi
(x, t)

∣∣∣∣∣
2

− δγk

2

∣∣∣∣∣
∂2v

∂x2
k

(x, t)

∣∣∣∣∣
2}

dx

+
1
2

sup
t

∥∥∥∥
∂v

∂xk
(·, t)

∥∥∥∥
2

H0

)
≤

∑

k∈N

(
1

2δγk
+ ε6

)
‖ϕ‖2

X0

for some sufficiently small εi = εi(ε,P) > 0, i = 5, 6. (Here ν2, ε3 are from (3.11)). Take the

sum in (3.14) with respect to k = 1, . . . , n and choose a sufficiently small number α1 = α1(ε).

This, together with (3.14), yields the first estimate in (3.3).

In a similar way, taking into account the initial condition in (3.14) and taking the sum in

(3.14) with respect to k = 1, . . . , n, we obtain the estimate

‖v‖
Ŷ 2 ≤ c̃‖Φ‖H1

for v = L(ε)Φ, where c̃ = c̃(P) is a constant. Then we obtain the assertion of Lemma 3.1. 2
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Introduce the operator R(ε) : Ŷ 2 → Ŷ 2

R(ε)v = L(ε)
{ n∑

i,j=1

b̂ij
∂2v

∂xi∂xj
+

n∑

i,j=1

[b̄ij − b
(ε)
ij ]

∂2v

∂xi∂xj
+

n∑

i=1

[fi− f
(ε)
i ]

∂v

∂xi
− [λ− λ(ε)]v

}
. (3.15)

Lemma 3.2 There exists a number ε̄ = ε̄(P) > 0 such that the norm of the operator R(ε) :

Ŷ 2 → Ŷ 2 can be estimated as ‖R(ε)‖ < 1 (∀ε ∈ (0, ε̄]).

Proof. We have
∣∣∣∣∣∣

n∑

i,j=1

b̂ij(x, t)
∂2v

∂xi∂xj
(x, t)

∣∣∣∣∣∣

2

=
∣∣∣∣
∑

k∈N

(∑

i∈N
b̂ki(x, t)

∂2v

∂xk∂xi
(x, t) + 2

∑

i/∈N
b̂ki(x, t)

∂2v

∂xk∂xi
(x, t)

)∣∣∣∣
2

≤
∣∣∣∣
∑

k∈N

{( ∑

i∈N ,i 6=k

b̂ki(x, t)2 + 4
∑

i/∈N
b̂ki(x, t)2 +

[
1− γk

2

]−1

b̂kk(x, t)2
)1/2

×
( ∑

i=1,...,n, i 6=k

∣∣∣∣∣
∂2v

∂xk∂xi
(x, t)

∣∣∣∣∣
2

+
[
1− γk

2

] ∣∣∣∣∣
∂2v

∂x2
k

(x, t)

∣∣∣∣∣
2)1/2}∣∣∣∣

2

≤
∑

k∈N

( ∑

k∈N ,i6=k

b̂ki(x, t)2 + 4
∑

i/∈N
b̂ki(x, t)2 +

[
1− γk

2

]−1

b̂kk(x, t)2
)

×
∑

k∈N

( ∑

i=1,...,n, i 6=k

∣∣∣∣∣
∂2v

∂xk∂xi
(x, t)

∣∣∣∣∣
2

+
[
1− γk

2

] ∣∣∣∣∣
∂2v

∂x2
k

(x, t)

∣∣∣∣∣
2)

. (3.16)

Hence ∥∥∥∥∥∥

n∑

i,j=1

b̂ij
∂2v

∂xi∂xj

∥∥∥∥∥∥

2

X0

≤ ν̂

( ∑

k∈N

1
2γk

)−1

‖v‖2
X̂2

<δ2
( ∑

k∈N

1
2γk

)−1

‖v‖2
X̂2

.

In addition, Condition 1.2 and the embedding theorems for Sobolev spaces imply the estimates
∥∥∥∥

n∑

i,j=1

(b̄ij − b
(ε)
ij )

∂2v

∂xi∂xj

∥∥∥∥
X0

+
∥∥∥∥

n∑

i=1

(fi − f
(ε)
i )

∂v

∂xi

∥∥∥∥
X0

+
∥∥∥(λ− λ(ε))v

∥∥∥
X0

≤ C(νb(ε) + νf (ε) + νλ(ε))‖v‖
X̂2 ,

where the constant C depends only on n. This proves Lemma 3.2. 2

Let us now complete the proof of Theorem 1.2. By Lemma 3.2, (I − R(ε))−1 : Ŷ 2 → Ŷ 2 is

a continuous operator. Let

ϕε(x, t) ∆= ϕ(x, t)eK(ε)t. (3.17)

The function u(x, t) is the desired solution of problem (1.2), if relation (3.1) holds, where

uε = (I −R(ε))−1[L(ε)ϕε + L(ε)Φ] (3.18)
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because we have

uε
∆= L(ε)ϕε + L(ε)Φ + R(ε)uε.

in view of (3.17)–(3.18). Therefore,

‖uε‖Ŷ 2 ≤ (1− ‖R(ε)‖)−1(‖L(ε)‖ ‖ϕε‖L2(Q) + ‖L(ε)‖‖Φ‖H1).

This, together with (3.1) yields the estimate (1.6) and the assertion of Theorem 1.2. 2

4 Uniqueness of a weak solution of Itô’s equation

Consider the n-dimensional vector Itôs equation




dy(t) = f(y(t), t)dt + β(y(t), t)dw(t),

y(s) = a.
(4.1)

By ya,s(t) we denote a solution of this equation, 0 ≤ s ≤ t ≤ T .

In (4.1), w(t) is a Wiener process of dimension n, f(x, t) : Q → Rn, β(x, t) : Q → Rn×n,

Q = Rn × (0, T ) are measurable functions.

Denote

b(x, t) ∆=
1
2
β(x, t)β(x, t)T.

We assume that the functions f(x, t), β(x, t), b(x, t) are bounded and that the function b satisfies

Condition 1.1.

Let (Ω0,F0,P0) be a probability space.

Theorem 4.1 (Krylov (1980), Chapter 2). For any random variable a ∈ L2(Ω0,F0,P0,Rn),

there exists a set {
(Ω,F ,P), (w(t),Ft), ya,s(t)

}
,

where (Ω,F ,P) is a probability space such that a ∈ L2(Ω,F ,P), (w(t),Ft) is a Wiener process

of dimension n on (Ω,F ,P), Ft ⊆ F is a filtration of σ-algebras of events such that w(t)−w(s)

do not depend on a and on Fs for t > s, and ya,s(t) is the solution of (4.1) for w(t).

(In the cited book, the proof was given for non-random a, which is unessential).

We assume that Q = D × (0, T ), where either or D = Rn or D ⊆ Rn is a bounded simply

connected domain with C2-smooth boundary.
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Introduce a bounded measurable function λ(x, t) : Q → C. We assume the following condi-

tion.

Condition 4.1 The functions b, f, λ are such that the conclusion of Theorem 1.1 is valid.

Remark 4.1 It follows from Theorem 1.1 that Condition 4.1 is satisfied if Condition 1.1 is

satisfied for b, and Condition 1.2 is satisfied for f and λ.

Let χ denotes the indicator function.

Theorem 4.2 Let a be a random vector with the probability density function ρ(x), let a ∈ D a.s.,

ρ ∈ H−1, and E|a|2 < +∞. Let functions f(x, t), β(x, t), b(x, t) be measurable and bounded, and

let Condition 4.1 be satisfied. Let ya,s(t) be a weak solution of (4.1), τa,s ∆= inf{t : ya,s(t) /∈ D}.
For the functions ϕ ∈ L2(Q) and Φ ∈ H1, set

Fa,s
∆= EΦ(ya,s(T )) exp

{
− ∫ τa,s∧T

s λ(ya,s(r), r)dr

}
χ{τa,s≥T}

+ E
∫ τa,s∧T
s ϕ(ya,s(t), t) exp

{
− ∫ t

s λ(ya,s(r), r)dr

}
dt.

(4.2)

Then

Fa,s = (v(·, s), ρ)H0 , (4.3)

where v ∈ Y 2 is a (unique) solution of problem (1.2) for the operator A given by formula (1.1)

with the above functions f, b and λ, and

|Fa,s| ≤ c‖ρ‖H−1(‖ϕ‖L2(Q) + ‖Φ‖H1),

where c = c(P) is a constant occurring in Theorem 1.2.

Corollary 4.1 (The Maximum Principle). Assume that conditions of Theorem 4.2 are satisfied

and, in addition, that λ is a real function, ϕ(x, t) ≥ 0 for a.e. x, t, and Φ(x) ≥ 0 for a.e. x.

Then the solution v of problem (1.2) is such that v(x, t) ≥ 0 for all t for a.e. x.

Introduce operators Ls,t : L2(D × (s, t)) → H1, Ls,t : H1 → H1 such that v(·, s) = Ls,tϕ +

Ls,tΦ is the solution of the problem




∂v
∂r (x, r) + Av(x, r) = −ϕ(x, r), r < t,

v(x, r)|x∈∂D = 0, v(x, t) = Φ(x).
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at the instant s, where s < t. By Theorem 1.1, these linear operators are continuous. The

conjugate operators

L∗s,t : H−1 → L2(D × [s, t]), L∗s,t : H−1 → H−1

are also linear and continuous.

Theorem 4.3 Under the assumptions of Theorem 4.2 (with D = Rn), the weak solution ya,0(t)

of Eqn. (4.1) with s = 0 has the probability density function p(·, t) ∈ H0 for a.e. t. Moreover,

p ∈ L2(Q), p(·, t) ∈ H−1 for all t, p(·, t) = L∗0,tρ and p = L∗0,T ρ for the operators L∗0,t, L∗0,T

defined for λ ≡ 0 (i.e., the probability density function p(·, t) is uniquely defined as an element

of L2(Q) and is uniquely defined as an element of H−1) for all t.

Proof of Theorems 4.2–4.3. It suffices to consider s = 0.

(i) Let ϕ and Φ be such that

v
∆= Lϕ + LΦ ∈ C2,1(Q).

Here L : X0 → Y 2, L : H1 → Y 2 are operators such that v = Lϕ+LΦ is the solution of problem




∂v
∂t + Av = −ϕ,

v(x, t)|x∈∂D = 0, v(x, T ) = Φ(x)
(4.4)

(or the corresponding Cauchy problem for D = Rn). In this case relation (4.3) follows from the

Itô formula.

(ii) Let ϕ ∈ X0 and Φ ∈ H1 be arbitrary. Introduce the sets

S1
∆= {ϕ ∈ X0 : Lϕ ∈ C2,1(Q)}, S2

∆= {Φ ∈ H1 : LΦ ∈ C2,1(Q)}.

By Theorem 1.1, arbitrary functions ϕ ∈ X0 and Φ ∈ H1 can be approximated in these spaces

by ϕε
∆= −∂u(ε)/∂t−Au(ε) and Φε

∆= u(ε)(·, T ) respectively, where u(ε) is the Sobolev average of

the functions u = Lϕ or u = LΦ respectively: by Theorem 1.1, ϕε → ϕ in X0 and Φε → Φ in

H1 as ε → 0. Hence, the sets S1 and S2 are dense in X0 and in H1, respectively.

Let p̄
∆= L∗0,T ρ. This is an element of X0, and p̄(·, t) = L∗0,tρ ∈ H−1 for all t. Let p(x, t) be

the probability density function of the process ya,0(t) being killed at ∂D if D 6= Rn and being

killed inside D with the rate λ. The density p(x, t) exists by the estimates from Section 2.3 from

Krylov (1980). As was proved above for ϕ ∈ S1 and Φ ∈ S2, we have

(v(·, 0), ρ)H0 = (ϕ, p)X0 + (p(·, T ), Φ)H0 = (p̄, ϕ)X0 + (p̄(·, T ), Φ)H0 .
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Therefore, p = p̄ and p ∈ X0, p(·, T ) = p̄(·, T ) ∈ H−1.

Let ϕ ∈ X0 and Φ ∈ H1 be arbitrary, and let v
∆= Lϕ +LΦ. Let v(ε) be the Sobolev average

of the function v in Rn ×R, let ϕε
∆= −∂v(ε)∂t − Av(ε), and let Φε

∆= v(ε)(·, T ). By Theorem

1.1, ϕε → ϕ in X0 and Φε → Φ in H1 as ε → 0. We finally obtain the assertion of the theorem

from the relation

(v(·, 0), ρ)H0 = limε→0(v(ε)(·, 0), ρ)H0 = limε→0((ϕε, p)X0 + (p(·, T ), Φε)H0)

= (p, ϕ)X0 + (p(·, T ), Φ)H0 = Fa,0.

2

Theorem 4.4 Let a be a random vector, let E|a|2 < +∞, and let ρ be the probability density

function of a, ρ ∈ H−1. Assume that Condition 4.1 is satisfied if f is replaced for f ≡ 0, an

assume that the function f is measurable and bounded. Then problem (4.1) has a unique weak

solution (i.e., the solution of (4.1) is univalent with respect to the probability distribution).

Proof. It suffices to prove the uniqueness of the distribution of the process

z(t)> = [arctg ya,0
1 (t), . . . , arctg ya,0

n (t)],

because the function arctg : R → (−π, π) is one-to-one. We consider z(t) as a generalized

random process defined in Hida (1980) with the parameter space L2([0, T ], B̄1, `1,Rn). As is

shown in Hida (1980), the distribution of the process z(·) is uniquely defined by the values of

the functional

F̃a,0(ξ)
∆= E exp

{
−

∫ T

0
iξ(t)>z(t)dt

}
.

on the set ξ ∈ L2([0, T ], B̄1, `1,Rn) or on the set of functions C([0, T ];Rn), which is dense in

L2((0, T ), B̄1, `1,Rn). Here i =
√−1.

It is easy to see that

F̃a,0(ξ) = 1− iE
∫ T

0
ξ(t)>z(t) exp

{
−

∫ t

0
iξ(r)Tz(r)dr

}
dt.

We first assume that f ≡ 0. By Theorem 4.2,

F̃a,0(ξ) = 1− i(V, ρ)H0 ,

where V = Lϕ for

ϕ(x, t) ≡ ξ(t)>[arctg x1, . . . , arctg xn]>, λ(x, t) ≡ iϕ(x, t).
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Hence F̃a,0 is unique for ξ ∈ C((0, T );Rn), and the weak solution is unique if f ≡ 0.

Let f be an arbitrary measurable bounded function. We apply Girsanov theorem. Consider

the equation 



dỹ(t) = β(ỹ(t), t)dw(t),

ỹ(0) = a.

As proved above, it has a unique weak solution. By Theorem 2 from Chapter 3 of Gihman

and Skorohod (1975), the distribution of the solution ya,0(t) is uniquely determined by the

distribution of ỹ(t). Hence, the distribution of ya,0(t) is defined uniquely. This completes the

proof. 2
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