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Preface

This book is intended to be the basis for a problem-oriented course
on projective planes for students with a modicum of mathematical so-
phistication. It covers the basic definitions of affine and projective
planes, some methods of constructing them, the introduction of coor-
dinates, collineations, and the basics of the relationships between the
geometry of the plane, the algebraic properties of possible coordinate
systems, and the properties of its collineation group.

In keeping with the modified Moore-method, this book supplies
definitions, problems, and statements of results, along with some ex-
planations, examples, hints, and sample solutions. The intent is for the
students, individually or in groups, to learn the material by solving the
problems and proving the results for themselves. Besides constructive
criticism, it will probably be necessary for the instructor to supply fur-
ther hints or direct the students to other sources from time to time.
Just how this text is used will, of course, depend on the instructor and
students in question. However, it is probably not appropriate for a
conventional lecture-based course or for a large class.

The material presented in this volume is somewhat stripped-down.
Various concepts and topics are given very short shrift or omitted en-
tirely.1 Instructors might consider having students do projects on ad-
ditional material if they wish to to cover it.

Acknowledgements. Various people and institutions deserve credit
for this work:

• All the people who developed the subject.
• My teachers and colleagues, especially Prof. F.A. Sherk of

the University of Toronto, whose geometry courses, and an
NSERC summer research project he supervised, got me inter-
ested in this subject.

• The students at Trent University who suffered, suffer, and will
suffer through assorted versions of this text.

1Future versions of both volumes may include more – or less! – material. Feel
free to send suggestions, corrections, criticisms, and the like — I’ll feel free to ignore
them or use them.
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• Trent University and the taxpayers of the Province of Ontario,
who paid my salary.

• All the people and organizations who developed the software
and hardware with which this book was prepared.

• Anyone else I’ve missed.

Any blame properly accrues to the author.

Conditions. See the GNU Free Documentation License in Appen-
dix A for what you can do with this text. The gist is that you are free to
copy, distribute, and use it unchanged, but there are some restrictions
on what you can do if you wish to make changes.

Availability. The URL of the home page for A Problem Course on
Projective Planes , with links to LATEXand Portable Document Format
(pdf) files of the latest available release, is:

• http://euclid.trentu.ca/math/sb/pcpp/

Please note that in addition to LATEX you will need the AMS-LATEX
and AMSFonts packages to typeset and print the LATEX source.

If you have any problems, feel free to contact the author at the
addresses given on the title page, preferably by e-mail, for assistance.



CHAPTER 1

Basics

Incidence structures and configurations. The geometrical no-
tion that we will focus on, to the exclusion of notions like distance and
angle, is that of incidence, i.e. the relation of points being on lines or
lines passing through points.

Definition 1.1. An incidence structure is a triple (P ,L, I), con-
sisting of a set P of points , a set L of lines , and a relation I of incidence
between elements of P and elements of L.

If a point P ∈ P is incident with a line ℓ ∈ L, usually written as
PIℓ, P is often said to be on ℓ, and ℓ is often said to pass through P .
Two lines which are both incident with a particular point are usually
said to intersect , or to be coincident , at that point. Two points which
are both incident with the same line are sometimes said to be joined
or connected by that line.

Example 1.1. The geometry of points and great circles on a sphere
gives an incidence structure in which any two different lines intersect
in exactly two points. The points are the points on (the surface of) a
sphere and the lines are the great circles of the sphere; incidence works
in the obvious way. (See Figure 1.)

Example 1.2. Figure 2 illustrates a finite incidence structure, the
Fano configuration, with seven points and seven lines. The Fano con-
figuration is the smallest example of a projective plane and will occur
frequently as an example.

Note that the relation of incidence in a general incidence structure
may be completely arbitrary. Points may or may not be connected by
lines, lines may or may not intersect, there may be multiple points of
intersection for a given pair of lines, and there may be multiple lines
joining a given pair points. We will stick to incidence structures which
avoid some of these pathologies:

Definition 1.2. An configuration is an incidence structure (P ,L, I)
satisfying the following conditions:

• Any two distinct points are incident with at most one line.

1



2 1. BASICS

Figure 1. Points and great circles on a sphere

Figure 2. Fano configuration

• Any two distinct lines are incident with at most one point.

Interesting incidence structures that are not configurations do turn
up, such as the geometry of great circles on a sphere; we just won’t be
studying them. . .

Problem 1.1. Show that the geometry of points and great circles
on sphere (Example 1.1) is not a configuration.

Problem 1.2. Show that the Fano configuration (Example 1.2) is
a configuration.

Affine planes. The incidence structure most likely to turn up in
basic geometry is the Euclidean plane, which is an example of an affine
plane. Affine planes are of interest to us because of their close connec-
tions to projective planes.

Definition 1.3. An affine plane is an incidence structure (P ,L, I),
such that P and L are non-empty sets, and satisfying the following
axioms:
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Figure 3. A finite affine plane

AI: Any two distinct points are incident with an unique line.
AII: Given a point P and a line ℓ not incident with P , there

is an unique line m incident with P which has no point in
common with ℓ.

AIII: There exist three points which are not incident with the
same line.

Two lines in an affine plane are said to be parallel if they have no
point in common, i.e. if they do not intersect.

Example 1.3. Figure 3 illustrates a finite affine plane with four
points and six lines. This is the smallest example of an affine plane
and, as we shall see, it is closely related to the Fano configuration.

Problem 1.3. Draw an affine plane which has three points on every
line. How many points and lines does it have in total?

Example 1.4. The real affine plane or Euclidean plane can be
thought of as R2 with the usual Cartesian coordinate system and the
usual points, lines, and incidence relation. It is sometimes denoted by
AG(2, R).

Problem 1.4. Verify that the Euclidean plane is indeed an affine
plane.

Some key facts about affine planes are summarized in the following
result.

Proposition 1.5. Suppose (P ,L, I) is an affine plane. Then the
lines in L can be partitioned into parallel classes such that all the lines
in each class are mutually parallel, any two lines from different parallel
classes intersect, and any point P ∈ P is on exactly one line of each
parallel class.
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Projective planes. Of course, our object is to study projective
planes.

Definition 1.4. A projective plane is an incidence structure (P ,L, I),
such that P and L are non-empty sets, and satisfying the following ax-
ioms:

I: Any two distinct points are incident with an unique line.
II: Any two distinct lines are incident with an unique point.
III: There exist four points such that no three of them are inci-

dent with the same line.

If a point P is incident with a line ℓ, usually written as PIℓ, P is often
said to be on ℓ, and ℓ is often said to pass through P .

Example 1.5. The Fano configuration defined in Example 1.2 is a
projective plane.

Problem 1.6. Show that the Fano configuration is indeed a pro-
jective plane.

Problem 1.7. Draw a projective plane which has four points on
every line. How many points and lines does it have in total?

Example 1.6. Suppose R is the field of real numbers and R3 is
the three-dimensional vector space over R. The real projective plane,
sometimes denoted by PG(2, R), is the incidence structure (P ,L, I)
defined as follows:

• P is the set of one-dimensional subspaces of R3 (i.e. the lines
through the origin).

• L is the set of two-dimensional subspaces of R3 (i.e. the planes
through the origin).

• For all points P ∈ P and lines ℓ ∈ L, PIℓ if and only if P ⊂ L.

Problem 1.8. Show that the real projective plane is indeed a pro-
jective plane.

Degenerate planes. An incidence structure that satisfies axioms
I and II, but not III, for a projective plane is sometimes called a de-
generate plane. Figure 4 gives a couple of examples.

Problem 1.9. Find all the degenerate planes.

Some basic properties of projective planes.

Proposition 1.10. Suppose (P ,L, I) is a projective plane. Then:

(1) Every line in L is incident with at least three points in P.
(2) Every point in P is incident with at least three lines in L.
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Figure 4. A pair of degenerate planes

(3) Every projective plane has at least seven points and seven lines.

Note that this result means that the Fano configuration is as small
as a projective plane can get, i.e. it has as few points and lines as
possible.

Proposition 1.11. Every line of a projective plane is incident with
just as many points as any other line.

Definition 1.5. A projective plane (P ,L, I) is said to be finite if
P is finite. In this case, the plane is said to be of order n if every line
contains exactly n + 1 points. A projective plane is said to be infinite
if it is not finite.

Proposition 1.12. Suppose (P ,L, I) is a finite projective plane of
order n. Then:

(1) n + 1 lines pass through every point in P.
(2) P has exactly n2 + n + 1 points.
(3) L has exactly n2 + n + 1 lines.

Thanks to axiom II, there are no parallel lines in a projective plane.
However, the axioms for projective planes have one interesting property
that their counterparts for affine planes do not, namely duality . In
particular, we have the following:

Proposition 1.13. Suppose π = (P ,L, I) is a projective plane.
If we define I ′ ⊂ L × P by saying that ℓI ′P exactly when PIℓ, then
π′ = (L,P , I ′) is also a projective plane.

More generally, anything that can be proven from axioms I–III
about points and lines in a projective plane can also be proven if we
interchange the roles of lines and points.

Problem 1.14. Make the assertion in the previous paragraph pre-
cise and prove it.
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Homomorphisms and isomorphisms. From time to time we
will need to know when two incidence structures, especially two planes,
are essentially the same.

Definition 1.6. Suppose π1 = (P1,L1, I1) and π2 = (P2,L2, I2)
are incidence structures. A homomorphism from π1 to π2 is a function
ϕ : (P1 ∪ L1) → (P2 ∪ L2) such that

• for all P ∈ P1, ϕ(P ) ∈ P2,
• for all ℓ ∈ L1, ϕ(ℓ) ∈ L2, and
• for all P ∈ P1 and all ℓ ∈ L1, if PI1ℓ, then ϕ(P )I2ϕ(ℓ).

A homomorphism ϕ : π1 → π2 is an isomorphism if ϕ is also 1–1
and onto. π1 and π2 are then said to be isomorphic, often written as
π1

∼= π2.

Problem 1.15. PG(2, Q) is defined from the rational numbers in
the same way that PG(2, R) is defined from the real numbers. Show
that there is an 1–1 homomorphism of projective planes from PG(2, Q)
to PG(2, R), but that these projective planes are not isomorphic.

Problem 1.16. Suppose ϕ is an isomorphism of projective planes
from π1 = (P1,L1, I1) to π2 = (P2,L2, I2). Show that ϕ−1 is an iso-
morphism from π2 to π1.



CHAPTER 2

Some constructions

Affine planes via coordinates. The idea used in Example 1.4,
affine coordinates, can be readily generalized to any field, not just the
real numbers.

Problem 2.1. If F is a field, AG(2, F ) is the the incidence struc-
ture built from F in the same way that AG(2, R) is from R. Verify that
AG(2, F ) is an affine plane.

Problem 2.2. Show that if F = GF (2) is the two-element field,
then AG(2, F ) is isomorphic to the finite affine plane described in Ex-
ample 1.3.

In fact, affine coordinates still work even if F isn’t quite a field.

Problem 2.3. Suppose S is a skew field; that is, S satisfies all the
field axioms except possibly for commutativity of multiplication. Show
that AG(2, S) is an affine plane.

There are, however, affine planes which are not coordinatized by
fields or skew fields. One of the classic examples of such an affine plane
is the following:

Example 2.1. The Moulton plane is the affine plane (P ,L, I) de-
fined as follows:

(1) The points of P are the points of R2.
(2) The lines of L are sets of all points (x, y) satisfying one of the

following conditions:
(a) x = c for some fixed c ∈ R.
(b) y = c for some fixed c ∈ R.
(c) y = m(x − a) · f(y,m) + b for some fixed m, a, b ∈ R,

where

f(y,m) =

{

1 if m ≤ 0 or y ≤ 0
1

2
if m > 0 and y > 0

(3) Incidence is inclusion, i.e. PIℓ if P ∈ ℓ.

See Figure 1 for a picture of some lines in the Moulton plane.

7



8 2. SOME CONSTRUCTIONS

Figure 1. Lines in the Moulton plane

Problem 2.4. Verify that the Moulton plane is indeed an affine
plane.

This construction of the Moulton plane is an example of one ap-
proach to constructing examples and counterexamples: start with a
plane – in this case AG(2, R) – and redefine which sets of points are
the lines.

Projective planes via coordinates. As with its counterpart for
affine planes, Example 1.4, Example 1.6 can be readily generalized.

Problem 2.5. If F is an arbitrary field, PG(2, F ) is defined from F

in the same way that PG(2, R) is defined from R. Show that PG(2, F )
is a projective plane.

Problem 2.6. Show that if F = GF (2) is the two-element field,
then PG(2, F ) is essentially the Fano configuration.

As with the construction of AG(2, F ), the definition of PG(2, F )
still makes sense and gives a projective plane if F is skew field instead
of a field. One can also construct projective planes which are not
coordinatized by fields or skew fields, as we shall see a little later.

A standard method of building a projective plane from a field (or
something close to one) is to use projective coordinates. This is really
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the same technique used in Example 1.6 and above, just written out in
a different way.

Definition 2.1. Suppose F is a field. Define an incidence structure
(P ,L, I) as follows:

(1) P consists of triples (x, y, z) ∈ F 3 \ {(0, 0, 0)}, subject to the
condition that two triples (x, y, z) and (u, v, w) represent the
same point if there is a non-zero λ ∈ F such that x = λu,
y = λv, and z = λw.

(2) L consists of triples [a, b, c] ∈ F 3 \ {(0, 0, 0)}, subject to the
condition that two triples [a, b, c] and [d, e, f ] represent the
same line if there is a non-zero λ ∈ F such that a = λd,
b = λe, and c = λf .

(3) (x, y, z)I[a, b, c] ⇐⇒ ax + by + cz = 0.

Problem 2.7. Verify that the procedure given above does define a
projective plane and show that it is isomorphic to PG(2, F ) as previ-
ously defined.

Another way of using a field (or something close to one) to build a
projective plane by way of a coordinate system is an extension of the
method for building an affine plane via affine coordinates.

Definition 2.2. Suppose F is a field and ∞ is a symbol which is
not in F . Define an incidence structure (P ,L, I) as follows:

(1) The points in P include:
• all pairs (x, y) ∈ F 2,
• all singletons (m) for m ∈ F , and
• the singleton (∞).

That is, as a set, P = F 2 ∪ { (m) | a ∈ F } ∪ {(∞)}.
(2) The lines in L consist of the following sets of points:

• for each m and b in F , the line given by y = mx + b,
[m, b] = { (x, y) ∈ F 2 | y = mx + b } ∪ {(m)},

• for each c ∈ F , the line given by x = c, [c] = { (x, c) | x ∈
F } ∪ {(∞)}, and

• the line at infinity , [∞] = { (m) | m ∈ F } ∪ {(∞)}.
(3) PIℓ if and only if P ∈ ℓ.

Example 2.2. We can turn the Euclidean plane, AG(2, R), into a
projective plane by adding

• a point (m) for each m ∈ R where all the lines with slope m

meet,
• a point (∞) where all the vertical lines meet, and
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Figure 2. Extended affine coordinates

• a line at infinity, [∞], passing through all the new points (and
no others),

as in Figure 2.

Problem 2.8. Verify that the construction does define a projective
plane and that it is isomorphic to PG(2, F ).

This method of extended affine coordinates is an application of a
more general procedure of constructing affine and projective planes
from each other, described below. It is worth independent mention
in part because the method we will eventually use to construct a co-
ordinate system for an arbitrary projective plane creates an extended
affine coordinate system for that plane, though the coordinates do not
necessarily form anything close to a field.

Affine from projective planes and vice versa . It turns out
that one can easily construct an affine plane from a given projective
plane, or vice versa, simply by deleting, or adding, a line and all the
points on it.
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Theorem 2.9. Suppose (P ,L, I) is a projective plane and let ℓ be
any fixed line of L. Define an incidence structure (P ′,L′, I ′) as follows:

(1) P ′ = P \ ℓ, i.e. the points of P ′ are the points of P except for
those on ℓ.

(2) L′ = L \ {ℓ}, i.e. the lines of L′ are the lines of L except for
ℓ.

(3) I ′ = I ∩ (P ′ × L′), i.e. incidence doesn’t change, apart from
there being fewer points and lines.

Then (P ′,L′, I ′) is an affine plane.

Problem 2.10. Show that deleting a line and all the points on it
from the Fano configuration gives the affine plane of Example 1.3.

Theorem 2.11. Suppose (P ,L, I) is an affine plane. Define an
incidence structure (P∗,L∗, I∗) as follows:

(1) The points of P∗ are all the points of P, together with one
ideal point PC for each parallel class C of lines in L.

(2) The lines of L∗ are all the lines of L, plus one ideal line or
line at infinity, ℓ∞.

(3) I∗ is defined as follows:
(a) PI∗ℓ if PIℓ.
(b) PCI∗ℓ for every line ℓ in the parallel class C.
(c) For each parallel class C, PCI∗ℓ∞.

Then (P∗,L∗, I∗) is a projective plane.

Problem 2.12. Show that adding a line at infinity to the affine
plane of Example 1.3 gives the Fano configuration.

Problem 2.13. Show that if F is field, then AG(2, F ) and PG(2, F )
are corresponding affine and projective planes in the sense of the pro-
cedures given in the above theorems.

Free completion. The methods described so far all rely on hav-
ing a suitable algebraic structure or an affine plane in order to con-
struct a projective plane. There is a fairly elementary technique for
constructing a projective plane starting from nothing but a suitable
configuration.

Definition 2.3. Suppose C0 = (P0,L0, I0) is a configuration. For
each n ≥ 0, given a configuration Cn = (Pn,Ln, In), define the config-
uration Cn+1 = (Pn+1,Ln+1, In+1) as follows:

(1) Pn+1 includes all the points of Pn, together with a new and
distinct point of intersection for every pair of lines in Ln which
do not already have a common point of intersection in Cn.
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Figure 3. Free completion of a quadrangle

(2) Ln+1 includes all the lines of Ln, together with a new and
distinct line joining each pair of points in Pn which do not
already have a line joining them in Cn.

(3) In+1 is In, plus the incidences involving the added points and
lines described above.

Let P =
∞
⋃

n=0

Pn, L =
∞
⋃

n=0

Ln, and I =
∞
⋃

n=0

In. Then the incidence

structure π = (P ,L, I) is the free completion of the configuration C0 =
(P0,L0, I0).

To get a projective plane using this process, we need to assume a
little about the configuration to ensure that axiom III holds.

Definition 2.4. A quadrangle is a set of four points, no three of
which are incident with the same line, and a quadrilateral is a set of
four lines, no three of which are incident with a single point.

Example 2.3. The first two configurations obtained in the process
of freely completing a quadrangle are shown in Figure 3.

Theorem 2.14. The free completion of a configuration containing
either a quadrangle or a quadrilateral is a projective plane.

Problem 2.15. Show that the free completion of a (non-empty)
configuration which does not contain either a quadrangle or a quadri-
lateral need not be a projective plane.

Subplanes and Completion. If a given configuration is con-
tained in a projective plane, one can also complete it using the incidence
relation of the plane, in which case its completion is a projective plane
contained within the original one. To consider this properly we first
need to introduce the notion of a subplane of a projective plane.

Definition 2.5. Suppose π = (P ,L, I) is a projective plane. A
subplane of π is a structure π0 = (P0,L0, I0) where

(1) P0 ⊆ P,
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(2) L0 ⊆ L,
(3) I0 = I ∩ (P0 × L0), and
(4) π0 is itself a projective plane.

Problem 2.16. Show that PG(2, Q) is a subplane of PG(2, R).

Definition 2.6. Suppose π = (P ,L, I) is a projective plane and
C ⊆ P ∪L is a configuration in π. (Points and lines of C are incident in
C exactly as they are incident with each other in π.) Define a sequence
of configurations, Cn for n ∈ N, as follows:

• C0 = C
• Cn+1 = Cn, together will all lines in L joining pairs of points

in Cn and all points in P where two line of Cn intersect.

Then the structure C′ = (P ′,L′, I ′), where

(1) P ′ = P ∩
⋃

∞

n=0
Cn,

(2) L′ = L ∩
⋃

∞

n=0
Cn, and

(3) I ′ = I ∩ (P ′ × L′),

is the completion of C in π.

The procedure described above can, of course, be carried out within
any incidence structure, but we will stick to doing so within projective
planes.

Problem 2.17. Show that if C is a quadrangle within the Fano
configuration, then its completion is the whole Fano configuration.

Proposition 2.18. Suppose C is a configuration in a projective
plane π which contains a quadrangle or a quadrilateral. Then the com-
pletion of C in π is a subplane of π. (It is usually called the subplane
generated by C.)

Problem 2.19. Find a quadrangle in PG(2, R) whose completion
is PG(2, Q).

Homomorphisms supply another reason for considering subplanes.

Proposition 2.20. Suppose ϕ is a 1–1 homomorphism of projec-
tive planes from π1 to π2. Then the image of ϕ is a subplane of π2.

Problem 2.21. Suppose ϕ is a homomorphism of projective planes
from π1 to π2. If ϕ is not 1–1, does the image of ϕ still have to be a
subplane of π2?





CHAPTER 3

Collineations

Collineations. A lot of the real action in the study of projective
planes involves the isomorphisms from a plane to itself, that is, the
automorphisms or collineations of a plane. As we shall see in later
chapters, the properties of the automorphisms of a plane are intimately
tied to the geometrical properties of the plane and to the properties of
any algebraic stucture which can be used to coordinatize the plane.

Definition 3.1. A collineation of a projective plane is an isomor-
phism of the plane to itself. (That is, a collineation is an automorphism
of a projective plane.)

It is common to write the image of a point, γ(P ), under the collineation
γ as P γ, and similarly for lines. (i.e. γ(P ) = P γ and γ(ℓ) = ℓγ.) A
collineation γ is said to fix a point P (respectively, a line ℓ) if P γ = P

(respectively, ℓγ = ℓ. γ is the identity collineation of a projective plane
if it fixes every point and every line of the projective plane.

Note. The notation for collineations described above occasionally
causes confusion when more than one collineation is being used. In
particular, it should be noted that if γ and δ are both collineations of
some projective plane, then P γδ means (P γ)δ = δ (γ(P )). That is, γδ

is δ ◦ γ. This change in the order of γ and δ between the “exponential
product” and “composition of functions” notations can be hard to keep
straight.

One can, of course, extend the notion of collineation to affine planes
and other incidence structures.

Example 3.1. We can define a collineation α of PG(2, R) which is
not the identity as follows in terms of homogeneous coordinates.

• For each point (x, y, z) of PG(2, R), let (x, y, z)α = (y, x, z),
and

• for each line [a, b, c] of PG(2, R), let [a, b, c]α = [b, a, c].

It is pretty easy to check that α preserves incidence. Note that α fixes
precisely those points and lines which have homogeneous coordinates
of the forms (x, x, z) and [a, a, c] respectively.

15



16 3. COLLINEATIONS

Example 3.2. We can define another collineation, β, of PG(2, R)
which is not the identity as follows in terms of affine coordinates (see
Definition 2.2). Let c ∈ R be a constant.

• For each point (x, y) of PG(2, R), let (x, y)β = (x + c, y),
• for each point (m) of PG(2, R), let (m)β = (m), and
• for the point (∞) of PG(2, R), let (∞)β = (∞).

Note that every point on the line at infinity is fixed by β, and hence so
is the line itself.

Problem 3.1. Work out how all the other lines of PG(2, R) are
moved by the collineation β defined in Example 3.2.

Problem 3.2. Work out how, in terms of homogeneous coordi-
nates, points and lines of PG(2, R) are moved by the collineation β

defined in Example 3.2.

Example 3.3. Suppose F is a field and A ∈ M3(F ) is an invertible
3×3 matrix over F . We can define a collineation δ of PG(2, F ), in terms

of homogeneous coordinates, by letting (x, y, z)δ =
(

A(x, y, z)T
)T

.

Problem 3.3. Verify that the δ of Example 3.3 is indeed a collineation
of PG(2, F ).

Some properties of collineations. First, a trivial observation:

Proposition 3.4. The identity collineation of a projective plane is
indeed a collineation of that plane.

It will sometimes be convenient to know just how much of a projec-
tive plane must be fixed by a given collineation before we can conclude
it is actually the identity collineation. Here are a couple of shortcuts:

Proposition 3.5. Suppose π = (P ,L, I) is a projective plane, ℓ is
a line of L, and Q and R are points of P which are not incident with
ℓ. If γ is a collineation of π that fixes Q, R, and every point P on ℓ,
then γ is the identity.

Proposition 3.6. Suppose π = (P ,L, I) is a projective plane and
γ is a collineation of π that fixes all the points of a quadrangle. Then
γ fixes the subplane generated by the quadrangle.

It is important to know that a composition of collineations gives
another collineation. . .

Proposition 3.7. If γ and δ are collineations of some projective
plane, then γδ (i.e. δ ◦ γ) is also a collineation of the plane.

. . . and that the inverse function of a collineation is also a collineation. . .
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Proposition 3.8. If γ is a collineation of some projective plane,
then γ−1 is also a collineation of the plane.

. . . because it follows that:

Proposition 3.9. The set of all the collineations of a projective
plane forms a group under composition.

Unfortunately, even a small plane may have a pretty large collineation
group.

Problem 3.10. Find all the collineations of the Fano configura-
tion.1

With some effort, one can use free completion to construct planes
with only the identity as a collineation.

We will study how groups of collineations act on the plane, i.e. how
the collineations in these groups fix and/or move points and lines, in
the next chapter.

Axial and central collineations. The most important collineations
for our purposes will be those that fix all the points on a line or all the
lines through a point.

Definition 3.2. A collineation γ of a projective plane is

(1) an axial collineation if it fixes all points on some line ℓ (the
axis), i.e. P γ = P for every point P such that PIℓ, and is

(2) a central collineation if it fixes all lines through of some point
P (the centre), i.e. ℓγ = ℓ for every line ℓ such that PIℓ.

Problem 3.11. Since the collineation β of PG(2, R) given in Ex-
ample 3.2 fixes every point on the line at infinity, it is axial. Show that
it is also central.

Example 3.4. We can define a collineation γ of PG(2, R) which
is neither axial nor central as follows in terms of homogeneous coordi-
nates.

• For each point (x, y, z) of PG(2, R), let (x, y, z)γ = (z, x, y),
and

• for each line [a, b, c] of PG(2, R), let [a, b, c]γ = [c, a, b].

As in Example3.1, it is pretty easy to check that γ preserves inci-
dence. Note that γ fixes only the point with homogeneous coordinates
(1, 1, 1) and the line with homogeneous coordinates [1, 1, 1]. Since every
other point and line is moved by γ, it is neither an axial nor a central
collineation.

1If you feel really ambitious – or masochistic – you can also work out the group
table of the collineation group of the Fano configuration.
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Problem 3.12. Is the collineation α of PG(2, R) given in Exam-
ple 3.1 central or axial?

Problem 3.13. Find all the axial and central collineations of the
Fano configuration.

A key fact about axial and central collineations is that the two
definitions actually coincide.

Theorem 3.14. A collineation γ of a projective plane is an axial
collineation if and only if it is a central collineation.

This justifies the first part of the following definition.

Definition 3.3. A central collineation with centre P and axis ℓ is
often referred to as a (P, ℓ)-central collineation or a (P, ℓ)-collineation.
It is said to be

(1) an elation if PIℓ, and
(2) a homology if P 6 Iℓ.

For example, the collineation given in Example 3.2 is an elation, as
you should have found that its centre is a point on the line at infinity
in Problem 3.11.

Problem 3.15. Find a homology of PG(2, R).

Some properties of (P, ℓ)-central collineations. A (P, ℓ)-central
collineation fixes P and ℓ, as well as every line through P and every
point on ℓ, by definition, but (unless it is the identity) it will move
other points and lines, albeit with some restrictions. The following
lemma gives those restrictions and can also serve as an useful tool in
locating the centre and/or the axis.

Lemma 3.16. Suppose γ is a (P, ℓ)-central collineation. If Q is
a point that is not fixed by γ, then Q and Qγ are collinear with P .
Similarly, if m is a line that is not fixed by γ, then m and mγ are
coincident with ℓ.

It will be useful later on to know that for a given point P and line
ℓ, the (P, ℓ)-central collineations form a group under composition.

Proposition 3.17. If γ and δ are (P, ℓ)-central collineations, then
γδ (i.e. δ ◦ γ) is also a (P, ℓ)-central collineation.

Proposition 3.18. If γ is a (P, ℓ)-central collineation, then γ−1 is
also a (P, ℓ)-central collineation.
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Theorem 3.19. If π = (P ,L, I) is a projective plane, G is any
group of collineations of π, P ∈ P, and ℓ ∈ L, then the (P, ℓ)-central
collineations of π which are in G form a subgroup of G. (This subgroup
of G is usually denoted by G(P, ℓ).)

Problem 3.20. Is a product of two central collineations, not nec-
essarily with the same centre and axis, necessarily a central colineation
too?

We will develop further properties of central collineations in the
next chapter.





CHAPTER 4

Transitivity and Desargues’ Theorem

In this chapter we will establish a connection between the central
collineations of a plane and its geometrical properties.

Transitivity. We will be particularly interested if the (P, ℓ)-central
collineations, taken collectively, move points about with no further re-
strictions than those imposed by Lemma 3.16.

Definition 4.1. Suppose π = (P ,L, I) is a projective plane, P ∈
P , and ℓ ∈ L. π is said to be (P, ℓ)-transitive if, given any two points
A and B which are collinear with but different from P and which are
not on ℓ, there is a (P, ℓ)-central collineation γ of π such that Aγ = B.

Example 4.1. PG(2, R), equipped with extended affine coordi-
nates, is ((0), [∞])-transitive. If (a, b) is a point of PG(2, R) not on
[∞], then any other point on the line joining it to (0) (other than (0)
itself) has coordinates (z, b) for some z. Let (e, b) be such a point. The
((0), [∞]) -central collineation given by (x, y)γ = (x + e − a, y) moves
(a, b) to (a + e − a, b) = (e, b) (see Example 3.2 and set c = e − a).

Problem 4.1. Show that PG(2, R) is also ((0, 0), [∞])-transitive.

The following proposition is often useful in checking that a plane is
transitive at many point-line pairs.

Proposition 4.2. Suppose π = (P ,L, I) is a projective plane
which is (P, ℓ)-transitive for some point P ∈ P and line ℓ ∈ L, and
suppose α is any collineation of π. Then π is also (Pα, ℓα)-transitive.

Problem 4.3. Show that the Fano configuration is (P, ℓ)-transitive
for every point-line pair (P, ℓ).

In fact, every plane coordinatized by a skew field is transitive for
every point-line pair.

Lemma 4.4. Suppose F is a skew field. Then PG(2, F ) is ((0), [∞])-
and ((0, 0), [∞])-transitive.

Lemma 4.5. Suppose F is a skew field, and P and Q are points and
ℓ and m are lines of PG(2, F ) such that either PIℓ & QIm or P 6 Iℓ &
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Q 6 Im. Then there is a collineation α of PG(2, F ) such that Pα = Q

and ℓα = m.

Proposition 4.6. Suppose F is a skew field. Then PG(2, F ) is
(P, ℓ)-transitive for every point-line pair (P, ℓ).

Not every projective plane is transitive at every point-line pair. For
example, as we shall see below, the projective version of the Moulton
plane described in Example 2.1 is not transitive for some point-line pair
(P, ℓ). We will also use free completion to construct a plane which is
not (P, ℓ)-transitive for any point-line pair (P, ℓ) whatsoever.

Desargues’ Theorem. It turns out that a plane is (P, ℓ)-transitive
exactly when a suitable geometrical condition holds. You may have
seen some variation of the following result:

Theorem 4.7 (Desargues’ Theorem). Suppose ABC and DEF are
triangles in a projective plane. Then they are in perspective from a
point, i.e. the lines AD, BE, and CF intersect in a common point, if
and only if they are in perspective from a line, i.e. the points AB∩DE,
AC ∩ DF , and BC ∩ EF are collinear.

A restricted version of Desargues’ Theorem turns out to be equiv-
alent to (P, ℓ)-transitivity.

Definition 4.2. Suppose π = (P ,L, I) is a projective plane, P ∈
P , and ℓ ∈ L. π is (P, ℓ)-Desarguesian if whenever any two triangles
ABC and DEF of π are in perspective from P , i.e. AD, BE, and CF

all intersect in P , and both AB ∩ DE and BC ∩ EF are on ℓ, then
AC ∩ DF is also on ℓ.

That is, π is (P, ℓ)-Desarguesian if whenever two triangles are in
perspective from P and ought also to be in perspective from ℓ, they
really are in perspective from ℓ. See Figure 1 for a diagram of the
configuration involved.

Lemma 4.8. Desargues’ Theorem holds in a projective plane π =
(P ,L, I) if and only if π is (P, ℓ)-Desarguesian for every point P ∈ P
and line ℓ ∈ L.

Theorem 4.9. Suppose π = (P ,L, I) is a projective plane, P ∈
P, and ℓ ∈ L. Then π is (P, ℓ)-transitive if and only if π is (P, ℓ)-
Desarguesian.

One consequence of this is to make it easier to check when tran-
sitivity fails, since it is usually far easier to find a specific failure of
Desargues’ Theorem than to check that no (P, ℓ)-collineation will move
some point to some other point.
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P
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B
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D

E F

ℓ

Figure 1. Desargues’ configuration

Problem 4.10. Show that the Moulton plane is not (P, ℓ)-Desarguesian
(and hence is not (P, ℓ)-transitive) for some point-line pair (P, ℓ).

Problem 4.11. Show that the free completion of a quadrangle is
not (P, ℓ)-Desarguesian, and hence is not (P, ℓ)-transitive, for every
point-line pair (P, ℓ).





CHAPTER 5

Coordinatization

In this chapter we will show how, given nothing but a projective
plane as an incidence structure, one can introduce a coordinate system
in a projective plane and define a suitable algebraic structure for the
coordinates. We will then establish various relationships between the
geometric properties of the plane and the algebraic properties of its
coordinate system.

Introducing coordinates. There are several methods available to
construct a coordinate system for a projective plane, starting only with
its incidence structure. They differ in their details, but ultimately give
the same principal results. The method we will use is due to G. Pickert
and constructs a system of extended affine coordinates that comes as
near as possible in general to making the lines (which ought to be) of
the form y = mx + b work in familiar ways.

The basic idea is to start with some set of symbols R (including 0
and 1) to be used as coordinates, pick a quadrangle of points that will
be assigned the coordinates (0, 0), (1, 1), (0), and (∞), and then assign
the rest of the symbols in some arbitrary way to the points on the line
which will have the equation y = x. One can then use the incidence
structure of the plane, together the usual interaction of “horizontal”
and “vertical” lines with affine cordinates, to determine the coordinates
of all affine points, after which finding the coordinates of the remaining
points on the line at infinity is pretty easy. Finally, once one has the
coordinates of all the points nailed down, nailing down the coordinates
of all the lines is pretty easy.

Definition 5.1. Suppose that π = (P ,L, I) is a projective plane
and that R is a set of symbols, including 0 and 1, which is just large
enough to assign a symbol from R to each point of some line in the
affine plane corresponding to π. (That is, |P| = |R| + 1.)

Choose a quadrangle OEUV in π (the fundamental quadrangle of
the coordinate system) and declare their coordinates to be O = (0, 0),
E = (1, 1), U = (0), and V = (∞), as in Figure 1. Give every other
point on the line OE coordinates of the form (a, a) for some distinct a

in R \ {0, 1}.
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O = (0,0)

I = (1)

U = (0)

V  = (•) 

E = (1,1)

(a,a)

Figure 1. The fundamental quadrangle

(b,b)

(a,a)

(0,0)

(1)

(0)

(•) 

(1,1)

(a,b)

Figure 2. Coordinates of affine points

For any point X not incident with OE or UV , we can assign coordi-
nates by setting X = (a, b) if XV ∩OE = (a, a) and XU ∩OE = (b, b),
as in Figure 2.

Finally, give each point Y on UV , other than U or V , coordinates
by setting Y = (m) if OY ∩ EV = (1,m), as in Figure 3.
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(0,0)

(1)

(0)

(•) 

(1,1)

(1,m)

(m)

Figure 3. Coordinates of ideal points

Problem 5.1. Complete the definition of how coordinates are in-
troduced by working out what the coordinates of the various lines ought
to be, at least if we wish to have affine coordinates work as usual.

Note. On a point of notation, recall that the line (which ought to
be) described by the equation y = mx + b is often denoted by [m, k],
the line x = c by [c], and the line at infinity by [∞]. As we shall see
below, we will not always be able to define operations of + and · on
our coordinates so as to ensure that the set of points (x, y) satisfying
y = mx + b is always a line.

Problem 5.2. Begin with the Fano configuration, choose a funda-
mental quadrangle, and work out the coordinates of all the points and
lines. How do these compare with those obtained in the construction
the Fano configuration from the two-element field F = GF (2) using
extended affine coordinates?

Ternary rings. The algebraic structure which we can be sure of
getting when we introduce coordinates in a projective plane is not
usually as nice as a field or skew field. We can only guarantee, in
particular, that we get a structure in which the key operation is ternary
(i.e. three-place).

Definition 5.2. If coordinates (using symbols from a set R) are
introduced in a projective plane π as above, the corresponding ternary
operation T : R3 → R is defined by

y = T (m,x, b) ⇐⇒ (x, y)I[m, k] .
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In the familiar case that π is defined using a (skew) field, the lines
are given by y = mx + b, so the corresponding ternary operation is
T (m,x, b) = mx + b. In general, though, what we can guarantee in
general is summed up in the following theorem.

Theorem 5.3. If coordinates (using symbols from a set R) are
introduced in a projective plane π as above, then the corresponding
ternary operation T : R3 → R satisfies the following conditions:

(1) For all x, b ∈ R, T (x, 0, b) = T (0, x, b) = b.
(2) For all x ∈ R, T (1, x, 0) = T (x, 1, 0) = x.
(3) For all x, y, u, v ∈ R with x 6= u, there is an unique ordered

pair (m, b) ∈ R2 such that y = T (m,x, b) and v = T (m,u, b).
(4) For all x, y,m ∈ R, there is an unique b ∈ R with y =

T (m,x, b).
(5) For all m, b, n, c ∈ R with m 6= n, there is an unique x ∈ R

with T (m,x, b) = T (n, x, c).

Definition 5.3. A planar ternary ring (occasionally called a pla-
nar ternary field) is a set R, including the symbols 0 and 1, together
with a ternary operation T : R3 → R satisfying the conditions 1–5 of
Theorem 5.3.

Given a planar ternary ring, we can construct the corresponding
projective plane quite readily.

Theorem 5.4. Suppose (R, T ) is a planar ternary ring. Define an
incidence structure π = (P ,L, I) as follows:

• P = { (x, y) | x, y ∈ R } ∪ { (m) | m ∈ R } ∪ {(∞)}
• L = { [m, b] | m, b ∈ R } ∪ { [c] | c ∈ R } ∪ {[∞]}
• Incidence is defined as follows:

– (x, y)I[m, b] ⇐⇒ y = T (m,x, b)
– (x, y)I[c] ⇐⇒ x = c

– (x, y) 6 I[∞]
– (n)I[m, b] ⇐⇒ n = m

– (n) 6 I[c]
– (n)I[∞]
– (∞) 6 I[m, b]
– (∞)I[c]
– (∞)I[∞]

Then π is a projective plane.

Some basic properties of ternary rings. We can use a planar
ternary ring (R, T ) to define operations of addition and multiplication
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on R, though, unfortunately, these will not necessarily be terribly well-
behaved.

Definition 5.4. Suppose (R, T ) is a planar ternary ring. + and
· on R are defined by setting, for a, b ∈ R, a + b = T (1, a, b) and
a · b = T (a, b, 0)

Definition 5.5. A non-empty set G with a binary operation ◦ is
a loop if it satisfies the following conditions.

• For all a, b ∈ G, there is an unique x ∈ G such that a ◦ x = b.
• For all a, b ∈ G, there is an unique y ∈ G such that y ◦ a = b.
• G has an identity element e for ◦, i.e. x ◦ e = e ◦ x = x for all

x ∈ G.

Proposition 5.5. If (R, T ) is a planar ternary ring, then (R, +)
and (R \ {0}, ·) are loops.

Unfortunately, this proposition is about as much as we can say
without additional assumptions about the ternary ring or the plane it is
defined from. Indeed, we cannot even assume that T (m,x, b) = mx+ b

without additional assumptions.

Proposition 5.6. Suppose π is the free completion of a quadrangle
and (R, T ) is the planar ternary ring defined from π using the original
quadrangle as the fundamental quadrangle. Then

• T (m,x, b) 6= mx + b for some m,x, b ∈ R.
• + is not associative.
• · is not associative.
• + is not commutative.
• · is not commutative.
• The distributive laws for + and · fail.

It follows from the first item in the proposition above that not every
line that ought to be is of the form y = mx + b; it follows from the
other items that (R, +) and (R, ·) are not groups, and that (R, +, ·) is
not a ring, much less a skew field or a field.
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Geometric vs. algebraic properties

The geometric properties of a projective plane and the algebraic
properties of the ternary ring coordinatizing it are closely tied together.
A few of the most basic connections are established below. In what fol-
lows, we will suppose that π = (P ,L, I) is a projective plane and (R, T )
is the ternary ring coordinatizing π with respect to the fundamental
quadrangle OEUV .

First, however, a small fact from algebra:

Lemma 6.1. Suppose (G, ◦) is a loop and the binary operation ◦ is
associative. Then (G, ◦) is a group.

Linearity. One nice property that we would like to have a ternary
ring (R, T ) satisfy is that addition and multiplication behave well enough
to ensure that T (m,x, b) = mx + b.

Definition 6.1. A ternary ring (R, T ) is linear if T (m,x, b) =
mx + b for all m,x, b ∈ R.

It turns out that (R, T ) is linear exactly when the projective plane
it coordinatizes satisfies a highly restricted version of Desargues’ The-
orem, even more restricted than the (P, ℓ)-Desargues’ Theorem.

Proposition 6.2. (R, T ) is linear if and only if whenever ABC

and DEF are triangles of π which are

(1) in perspective from V so that
(2) A and D are incident with OV ,
(3) AB ∩ DE and AC ∩ DF are incident with UV , and
(4) BC is incident with U ,

it also the case that EF is incident with U .

It follows that very modest amounts of transitivity in π with respect
to point-line pairs in the fundamental quadrangle suffice to ensure that
(R, T ) is linear.

Corollary 6.3. If π is (V, UV )-transitive, then (R, T ) is linear.

Proposition 6.4. If π is (U,OV )-transitive, then (R, T ) is linear.
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Additive properties. A modest amount of transitivity will also
ensure that addition is fairly well-behaved.

Definition 6.2. A ternary ring (R, T ) is a Cartesian group if it is
linear and (R, +) is associative.

It follows from Lemma 6.1 that if (R, T ) is a Cartesian group, then
(R, +) is a group.

Theorem 6.5. (R, T ) is a Cartesian group if and only if π is
(V, UV )-transitive.

A little more transitivity will also get addition to interact even
better with multiplication.

Definition 6.3. A ternary ring (R, T ) satisfies the left distributive
law if a(b + c) = ab + ac for all a, b, c ∈ R.

Theorem 6.6. (R, T ) is a Cartesian group satisfying the left dis-
tributive law if and only if π is (V, UV )-transitive and (U,UV )-transitive.

Multiplicative properties. The results above relating transitiv-
ity in the fundamental quadrangle to properties of addition have close
counterparts relating transitivity in the fundamental quadrangle to
properties of multiplication.

Theorem 6.7. (R, T ) is linear and (R, ·) is associative if and only
if π is (U,OV )-transitive.

It follows from Lemma 6.1 that if (R, T ) has associative multiplica-
tion, then (R \ {0}, ·) is a group. Again, a little more transitivity will
get multiplication to interact better with addition.

Theorem 6.8. (R, T ) is linear with associative multiplication and
satisfies the left distributive law if and only if π is (U,OV )-transitive
and (V,OU)-transitive.

Problem 6.9. How little transitivity relative to the fundamental
quadrangle OEUV is required to ensure that the resulting ternary ring
is at least a skew field? How much more transitivity follows in such a
case?
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GNU Free Documentation License

Version 1.2, November 2002

Copyright c©2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of

this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or
other functional and useful document “free” in the sense of freedom:
to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of “copyleft”, which means that derivative
works of the document must themselves be free in the same sense.
It complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for
free software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can
be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and
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is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work contain-
ing the Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter sec-
tion of the Document that deals exclusively with the relationship of
the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connec-
tion with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose ti-
tles are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to
be designated as Invariant. The Document may contain zero Invari-
ant Sections. If the Document does not identify any Invariant Sections
then there are none.

The “Cover Texts” are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable
copy, represented in a format whose specification is available to the
general public, that is suitable for revising the document straightfor-
wardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage sub-
sequent modification by readers is not Transparent. An image format
is not Transparent if used for any substantial amount of text. A copy
that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format,
SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG.
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Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in formats
which do not have any title page as such, “Title Page” means the text
near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Docu-
ment whose title either is precisely XYZ or contains XYZ in paren-
theses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as “Ac-
knowledgements”, “Dedications”, “Endorsements”, or “History”.) To
“Preserve the Title” of such a section when you modify the Document
means that it remains a section “Entitled XYZ” according to this def-
inition.

The Document may include Warranty Disclaimers next to the no-
tice which states that this License applies to the Document. These
Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other im-
plication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, ei-
ther commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use tech-
nical measures to obstruct or control the reading or further copying of
the copies you make or distribute. However, you may accept compen-
sation in exchange for copies. If you distribute a large enough number
of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above,
and you may publicly display copies.
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3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly
have printed covers) of the Document, numbering more than 100, and
the Document’s license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document num-
bering more than 100, you must either include a machine-readable
Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a computer-network location from which the gen-
eral network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take reason-
ably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessi-
ble at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

It is requested, but not required, that you contact the authors of
the Document well before redistributing any large number of copies,
to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document
under the conditions of sections 2 and 3 above, provided that you re-
lease the Modified Version under precisely this License, with the Modi-
fied Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:
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A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous ver-
sions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a
previous version if the original publisher of that version gives
permission.

B. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in the
Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Mod-
ified Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license no-

tice giving the public permission to use the Modified Version
under the terms of this License, in the form shown in the Ad-
dendum below.

G. Preserve in that license notice the full lists of Invariant Sec-
tions and required Cover Texts given in the Document’s license
notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and

add to it an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sen-
tence.

J. Preserve the network location, if any, given in the Document
for public access to a Transparent copy of the Document, and
likewise the network locations given in the Document for pre-
vious versions it was based on. These may be placed in the
”History” section. You may omit a network location for a work
that was published at least four years before the Document it-
self, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section
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all the substance and tone of each of the contributor acknowl-
edgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered
in their text and in their titles. Section numbers or the equiv-
alent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorse-
ments” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appen-
dices that qualify as Secondary Sections and contain no material copied
from the Document, you may at your option designate some or all of
these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles
must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it con-
tains nothing but endorsements of your Modified Version by various
parties–for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text,
and a passage of up to 25 words as a Back-Cover Text, to the end
of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by
(or through arrangements made by) any one entity. If the Document
already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old
one.

The author(s) and publisher(s) of the Document do not by this
License give permission to use their names for publicity for or to assert
or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released un-
der this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them
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all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License,
and multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the
same adjustment to the section titles in the list of Invariant Sections
in the license notice of the combined work.

In the combination, you must combine any sections Entitled “His-
tory” in the various original documents, forming one section Enti-
tled “History”; likewise combine any sections Entitled “Acknowledge-
ments”, and any sections Entitled “Dedications”. You must delete all
sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual copies
of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a copy
of this License into the extracted document, and follow this License in
all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other sep-
arate and independent documents or works, in or on a volume of a
storage or distribution medium, is called an “aggregate” if the copy-
right resulting from the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individual works permit.
When the Document is included an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of the
entire aggregate, the Document’s Cover Texts may be placed on cov-
ers that bracket the Document within the aggregate, or the electronic
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equivalent of covers if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may dis-
tribute translations of the Document under the terms of section 4. Re-
placing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some
or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License, and
all the license notices in the Document, and any Warrany Disclaimers,
provided that you also include the original English version of this Li-
cense and the original versions of those notices and disclaimers. In case
of a disagreement between the translation and the original version of
this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Ded-
ications”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided for under this License. Any other attempt
to copy, modify, sublicense or distribute the Document is void, and
will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of
the GNU Free Documentation License from time to time. Such new ver-
sions will be similar in spirit to the present version, but may differ in de-
tail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License ”or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.



Bibliography

[1] D.R. Hughes and F.C. Piper, Projective Planes, Graduate Texts in Mathemat-
ics 6, Springer-Verlag, New York, 1973, ISBN 0-387-90044-6.

[2] Peter Dembowski, Finite Geometries, Springer-Verlag, Berlin, 1968, ISBN 3-
540-61786-8.

41


