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PREFACE.

In offering to the public an English translation of
the present work, the Editor does not feel himself
induced to make any apology, convinced that the
uncommon merit of the original, and the illustrious
reputation of its author, have rendered it a subject .
of wonder and regret, with the mathematicians of
our own country, that a translation should not have
been undertaken long since. To this may be added
the. very great. scarceness of the @nd, particu-
larly the French edition of it, the high price which
has for. many years been demanded for it, and the
avidity with which it has been sought after.

Provided, therefore, the Translator has executed
his task with. tolerable fidelity and skill, the ad-
mirers of EuLEr will feel themselves gratified and -
obliged ; for these Elements, we need not hwtate
to say, will ﬁ:mish the most beautiful examples
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" of analysis that modern Europe can boast of.
The mathematical student, whether he wishes to
direct his attention to the properties of whole
numbers, fractions, series, logarithms, the genesis
of equations, or the invention of the higher and
more complex formule, by which the Diophantine
Algebra has been systematised and illustrated,
will in these volumes find the profoundest re-
searches and the most satisfactory information.
He will be highly pleased also, if we mistake not,
with the wonderful simplicity and clearness of
this great Author's manner. He will discover ne
rhasm in the reasoning, no link broken or de-
ficient in the concatenation of his ideas, and
nothing taken for granted, that has not been
previously proved; defects which, in other writers, -
so often impede the progress of beginners, and
discourage them from prosecuting their studies:
but here, all is luminous, easy, and obvious. In
giving the ',most ‘difficult demonstrations, and in
~ illustrating the most abstruse subjects, the different
steps ‘of the rationale are so many axioms; and it
was BULER’s great talent to render their order
and dependence, in their progress through the
mind, clear and evident to the meanest ca[iacity.

N



PREFACE. v
But the reader will find a fuller estimate of hig
general character in the Memoirs of his Life.

-It only remains to say a few words on the pre-
sent undertaking. Though the public may be
pleased to find the present work of EuLer ac-
cessible to the English reader, yet some apology
may be expected from the present 't_ranslator, for
"attempting what others are much better qualified
to perform. He only regrets that they bave not
done it; and spared him a task, from which it is
easy to incur disgrace, and impossible to acquire
fame. o _ \

With respect to the language, it has been the
~object of the Translator te render it clear and
scientific, without sacrificing any of the ease and
familiarity of the original; but if the reader
should have the opportunity, and wishes to take
the trouble, of comparing the English translation
‘with the French, he will find that, for this very
purpose, a needless multiplication of words, a
redundancy of colloquial idiom, or a certain de-
gree of unnecessary wverbiage, has been silently.
dropped in almost every page.

That nothing might be omitted to gratify the
reasopable curiosity of the English reader, the

b2
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Advertisement of the Editors of the original,
and that of the French translator, are added;
which will give some account of the history of
the work and the different editions of it.

August 25, 1707.



ADVERTISEMENT

TO

THE SECOND EDITION,
| lb——

NoTtwiTnsranpine the care that was taken in
the first edition of this work, to avoid errors and
to correct those of the French translator; yet many
of the latter still remained uncorrected, and many
new ones were inadvertently admitted ; all of which
it has been the object of the present Editor to
remove: and he flatters himself that he has accom=
plished his design to a considerable extent. -Great
pains have also been taken to arrange the matter
in each page, so as to bring the algebraical formule
under one distinct' point of view, a circumstance
which ought always to be - attended: to in ele-
mentary works. :

In some few instances, the present Editor has
ventured to deviate a little from, the original form
of the author. In the course of the work, par-
ticylarly in the Multiplication and Division of Al-
gebraic quantities, a small number of examples have
been altered, for the sake of a more eligible arrange-
ment. Inoneortwo places, the symbols employed by
the author, have also been changed for others ‘which

o



vili ADVERTISEMENT.

are more commonly used by the best modern
writers. In chapters 9 and 10, Vol. I,, a little
alteration is likewise made in placing the terms of
_proportions ; and throughout both volumes, 2* has
been substituted for zs, o° for sax, &c. These
form the principal instances of deviations from the
ongmal and if it should be thought that the Editor
has thus exceeded his proper limits, he trusts that
the candour of the reader will do him the justice to
attribute these apparent innovations, to his anxious
desire of rendering the work unexceptionable to
the taste of modern algebraists, and not to any
want of tryly appreciating the transcendent abilities
of the justly celebrated Author. v
Such of the former notes as are retained (among
which are all those of the French translator), have
been placed at the bottorn of the pages to which
they refer, and several others have been added
where they were thought necessary, beside those
syhjoined to the 'second volume; in the latter of
which are demonstrated all the numerical proposi-
tions that the author has referred to, but not inves-
tigated, in the body of the work. These notes, as
far as coyld be done, are so arranged as to.form
a concise abstract of the Theory of Numbers, which,
being a subject that bas not much engaged the
attention of the English mathematicians, it is pre-
sumed, that those who have not an opportunity of
consulting foreign, writers on this branch of anmalysis, .
may there. find some useful information. A few
of these notes aye new, the others have been chiefly
derived from the works of Waring, Gauss, and -
Legendrec. :



ADVERTISEMENT, . ix

The Praxis which was given in the former edition
has been cancelled, having been found inadequate
to the purpose for which it was intended. The

young student to whom, certainly, a great variety

of examples is necessary to exercise him in the
different rules, and to whom only the Praxis was
useful, will find a much more valuable acquisition
in Bonnycastle’s Algebra; a work abounding with a

choice of examples, judiciously selected and me-
thodically arranged.

Royal Military Academy,
Woolwich,
March 14, 1810.






EULER.

Lizonarp EvLEr was the son of a clergyman in
the neighbourhood of Basil, and was born on the
15th of April, 1707. His natural turn for mathe-
matics soon appeared from the eagervess and fa-
cility with which he became master of the elements
under the. instructions of his father, by whom he
was sent to the university of Basil at an early age.
There, his abilities and his apphcatlon were $0
distinguished, that he vattracted the particular notice
of John Bernoulli. That excellent mathematician
seemed to look forward to the youth’s future a-
chievements in science, while his own kind care
strengthened the powers by which they were to
be accomplished. In order to superintend his
studies, which far outstripped the usual routine of
the public lecture, he gave him. a private lesson
regularly once a week; when they conversed to-
gether on the acquisitions which the pupil had been
making since their last interview, considered what-
ever difficulties. mlght have occurred in his progress,
and arranged the reading and exercises for the en-
suing week. Under such eminent advantages, the
capacity of Euler did not fail to make rapid im-
provements ; and in hlS seventeenth year, the degree
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of Master of Arts was conferred on him. On .this
occasion, he received high applause for his pro-
bationary discourse, the subject of which was a
comparison between the Cartesian and Newtonian
systems.

His father, baving all along intended hlm for his
successor, enjoined him now to relinquish his ma-
thematical studies, and to prepare himself by those
of theology and general erudition for the ministerial
functions.  After some fime, however, had been
consumed, this plan was given up. The father,
himself a man of learning and liberality, abandoned
his own views for those to which the inclination and
talents of his son were of themselves so powerfully
directed ; persuaded, that in thwarting the propen~
sities of genius, there is a sort of impiety against
nature, and that there would .be real injustice to
mankind in smothering those abilities which were
evidently destined to extend the boundaries of sci-
ence. LEoNARD was permitted, therefore, to re<
sume his favorite pursuits ; and, at the age of nine«

- teen, transmitting two dissertations to the Academy
of Sciences at Paris, one on the masting of ships,
and the other on the philosophy of sound, he com-
menced - that splendid career which continued, for
so long a period, the admiration and the glory of
Europe.

About the same time he stood candidate for a
vacant professorship in the university of Basil ; but
having lost the election, he resolved, in consequence-
of this disappointment, to leave his native country ;’

~ and in 1727 he set out for Petersburg, where his

friends, the young Bernoullis, had settled about two
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years before, and where he flattered 'himself with
prospects of literary preferment under the patronage
of Catherine I. Those prospects, however, were
not immediately realised ; nor was it till after he had
been frequently and long disappointed, that he ob-
tained any settlement. His first appears to have
been’ the chair of natural philosophy; and when
Daniel Bernoulli removed from Petersburg, EuvLex
succeeded him as professor of the mathematics.
In this situation he remained for several years, en-
gaged in the most laborious researches, enriching
the academical collections of the continent with
papers of the highest value, and producing almost
daily improvements in the various branches of phy-
sical, and more particularly analytical science. In
1741, he complied with a very pressing invitation
from Frederic the Great, and resided at Berlin till
1766. Throughout this period, he continued the
same literary labours, directed by the same won-
derful sagacity and comprehension of intellect. As
he advanced with his own discoveries and inventions,
the field of knowledge seemed to widen before his
view, and new subjects still multiplied on him for
farther speculation. The toils of intense study,
with him, seemed only to invigorate his future ex-

ertions. Nor did the energy of Euler’s powers
give way, even when the organs of the body were
overpowered : for in the year 1735, having com-
‘pleted in three days certain astronomical calculations;
which the academy called for in "haste, but which

several mathematicians of eminence ‘had declared
could not be performed within a shorter period than’
some months, the intense application threw him into
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a fever, in which he lost the sight of one eye.
Shortly after his return to Petersburg, in 1766, he
‘became totally blind. His passion for science,
“however, suffered no decline; the powers of his
mind were not impaired, and he continued as in-
, defatigable as ever. Though the distresses of age
likewise were crowding fast upon him, for he had
now passed his sixtieth year; yet it was in this
latter period of his life, under infirmity, bodily pain,
and loss of sight, 'that he produced some of the
most valuable works; such as command our asto-
~ nishment, independently of the situation of the
author, from the labour and originality which they
display. In fact, his habits of study and compo-
sition, his inventions and discoveries, closed only
with his life. The very day on which he died, he
had been engaged in calculating the orbit of Her-
schel’s planet, and the motions of aérostatic’ ma-
chines. His death happened suddenly in Septem-
'ber 1783, when he was in the seventy-snxth year of
his age.

Such is the short hlstory of this illustrious man.
The incidents of his life, like that of most other
laborious students, afford very scanty materials for
biography; little . more than a journal of studies
and a catalogue of publications; but curiosity may
find ample compensation in surveying the character
of bis mind. An object of such wagpitude, so far
elevated above the ordinary range of buman in-
tellect, cannot be approached without reverence,

- nor nearly inspected, perhaps, ‘without some degree
of presumption. Should an apology be necessary,
therefore, for attempting the following estimate: of
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EuLEr’s character, let it be considered, that we:
can neither feel that admiration, nor offer that:
homage, which is worthy of genius, unless, aiming
at something more  than the dazzled sensations of
mere wonder, we subject it to actual examination,:
and compare it with the standards of human nature
in general.

Whoever is acquainted with the memoirs of these
great men, to whon the human race is indebted for
the progress of knowledge, must have perceived that
while mathematical genius is distinct from the other
departments of intellectual excellence, it likewise’
admits in itself of much diversity. The subjects of
its speculation are become so extensive and so va-
rious, especially in modern times, and present so
many interesting aspects, that it -is natural for a
person whose talents are of this cast, to devote his’
principal cariosity and attention to particular views
of the science. When this happens, the faculties
of the mind acquire a superior facility of operation
with respect to the objects towards which they are
most frequently directed, and the invention becomes
habitually most active and most acute in that channel
of inquiry. The truth of these observations is,
strikingly illustrated by the character of EuLrks.
His studies and discoveries lay not- among the lines
and figures of geometry, those characters, to use
an expression of Galileo, in which the great book of
the universe is written; nor does he appear to have
had a turn for philosophising by experiment, and
advancing to discovery through the rules of inductive
investigation. The region, in which he delighted
to speculate, was that of pure intellect. He sur-
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veyed the properties and affections of quantity under
their most abstracted form. With the same rapidity
of perception, as a geometrician ascertains the re-
lative position of portions of extemsion, EuLER
ranges -among those of abstract quantity, unfolding
their most involved combinations, and tracing their
most intricate proportions. That admirable system
- of mathematical logic and language, which at once
teaches the rules of just inference, and furnishes an
instrument for prosecuting deductions, free from the
defects which obscure and often falsify our reason-
- ings on other subjects; the different species of
_quantity, whether formed in the understanding by
its own abstractions, or derived from modifications
of the representative system of signs; the investi-
gation of the various properties of these, tlieir laws
of genesis, the limits of comparison among the dif-
ferent species, and the method of applying all this
to the solution of physical problems: these were
the researches on which the mind of EvLEr de-
lighted to dwell, and in which he never engaged

without finding new objects of curiosity, Hetecting -

- sources of inquiry that had passed unobserved, and
- exploring fields of speculation before unknown."
The subjects, which we have here slightly enu-

merated, form, when taken together, what is called

the Modern Analysis; a science eminent for the
profound discoveries which it has revealed, for the
refined artifices that have been devised in order to
bring the most abstruse parts of mathematics with-
in the compass of our reasoning powers, and in
‘order to apply them in solving actual phenomena,
as well as for the remarkable degree of systematic



EULER. xvil

- simplicity with which the various methods of in-

‘vestigation that it employs may be combined so as
to confirm and throw light on one another. The
materials, indeed, had been collecting for years,
from about the middle of the seventeenth century; -
the foundations had been laid by Newton, Leibnitz,
the elder Bernoullis, and a few others; but EvLenr
raised the superstructore ; it was reserved for him
to work uppon. the materials, and to arrange this
noble monument of human industry and genius in
its present symmetry. Throngh the whole course
of his scientific labours, the ultimate and the cone
stent aim on which he set-his mind, was the per. -
fection of Calculus and Analysis. Whatever phy-
sical inquiry he began with, this always came in
view, and very frequently received more of his at-
tention than that which was professedly the main
subject. His ideas ran so naturally in this train,
that even in the perusal of Virgil's poetry he
met with images that would recall the associations
of bis more familiar studies, and lead him back,

‘from the féiry scenes of fiction, to the element,

more congenial to his nature, of mathematical ab-
straction. That the sources of analysis might be
ascertained in their full extent, as well as the va-

rious modifications of form and restrictions of rule

that become necessary in applying it to different
views of nature; he. appears to have nearly gone
through a complete course of - philospphy. .The
theory of rational mechanics, the whole range
of physical astronomy, the vibrations of elastic fluids,
as well as the movements of those which are in-
compressible, naval architecture and tactics, the
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doctrine of chances, probabilities, and political
arithmetic, were successively subjected to the ana-
Iytical method ; and all these sciences received fresh
confirmation and farther lmwvement

It cannot be denied that, in general, his attention
is more occupied with the analysis itself, than with
the subject to which he is applying it; he seems
more taken up with his instruments and tools, than
with the work which they are to assist him in exe-

cuting. But this can hardly be made a ground of

censure or regret, since it is the very circumstance
to which we owe the present perfection of those in-

struments; a perfection to which he could never have -

brought them but by the unremitted attention and en-
thusiastic preference which he paid his favorite ObJCCt

If he now and then exercised his ingenuity on a physi -

cal, or perhaps metaphysical, hypothesis, he must
have been aware as well as any one, that his conelu-
sions would perish of course with that from which they
were derived. What he regarded, was the means
of arriving at those conclusions, the new views of
" analysis which the investigation might open, and
the new expedients of calculus to which it might

give birth. This was his uniform pursuit, all other

inquiries were prosecuted with reference to it ; in
_ which, consisted the peculiar character of his ma-
thematical genius.

The faculties that are subservient to. invention
he possessed in a very remarkable degree. His
meimory was at once so retentive and so ready, that
lie had perfectly at command all those numerous
and complex formulee which enunciate the rules and

more important theorems of analysis. As is re--



EULER. Xix

ported of Leibnitz, he could also repeat the Aneid
from beginning to end; and could trust his recol-
lection for the first and last lines in every page of
the edition which he had been-: accustomed to use.
These are instances of g kind of memory, more
frequently Yo be found where the capacity is inferior -
to the ordinary standard, than accompanying ori-
ginal, scientific genius. But in EvLErk, they seem -
not to have been not so much®the result of natural
constitution, as of his most wonderful attention ; a
faculty, . which, if we consider the testimony 'of
Newton* sufficient evidence, is the great constituent
of mventwe power. It is that complete retirement
of the mind. within itself, durmg which the senses
are locked up; that -intense meditation, on which
1o extraneous idea can intrude ; that firm stralgbt-
forward progress of thought, deviating- into'no ir-
regular sally, whlch can, alone place ma.thematlcal
ob_)ects in a light sufficiently strong to illuminate
them fully, and preserve the perceptions of the
mind’s eye in the same order that it moves along.
“ Two of EULER’s pupils (we are told by M. Fuss,
a pupll himself) bhad calculated a converging'
“ series as far as the seventeenth term, but found,
“ on comparing the written results, that they difs
“ fered one unit at the fiftieth figure; they com-
“ municated this difference to their master, who -
“ went over the whole calculation by head, and his’
“ decision was found to be the true one.—For the
¢ purpose of exercising his little grandson in the -

* This opinion of, Sir Isaac Newton is recorded by Dr. Pem-"
berton. o ‘ .
VOL. L o <
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¢ extraction of roots, he has been known to form
“ to himself the table of the six first powers of all
-* numbers, from 1 to 100, aud- to have preserved
it actually in his memory.”

The dexteuty he had attained in analysns and cal-
culation, is remarkably exemplified by the manner
in which he manages formul® of the greatest length
and intricacy. He perceives, almost at a glance,
the factors from whieh they may have been com-
posed; the particular system of factors belonging
to the question under present cousideration; ‘the
various artifices by which that system may be sim-
- plified and reduced ; and the relation of the several
factors to the conditions of the hypothesis. . His
expertness in this particular probably resulted, in &'
great measure, from the ease with which he per-
formed mathematical investigations by head. He
" had always accustomed himself to that exereise ;
and having practised it with assiduity, even before
~ the loss of sight, which afterwards rendered it a
matter of necessity, he is an instance to what am
astonishing degree it may be acquired, and how
much it improves the intellectual powers, No other
“discipline is so effectual in strengthening the faculty -
of attention ; it gives a facility of apprehension, an
accyracy and steadiness to the conceptions; and
what is a still more valuable acquisition, it habituates
the mind to arrangement in its reasonings angd re-
flections. If the reader wants a farther comment-
* ary on its advantages, let him proceed to the work
of EuLER, of which we here offer a translation ;
and if he has any taste for the beauties of methad,
‘and of what_is properly called composition, we

-

-
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venturs to promise him the highest satisfaction and .
pleasure. The subject is so aptly divided, the order
-80 luminous, the connected parts seem so truly to
grow one out of the other, and are disposed al-
together in a manner so suitable to their relative
importance, and so conducive to- their mutual il-
lustration, that, when added to the precxston as
well as clearness with which every thing is ex-
plained, and the judicious selection of examples,
we do not hesitate to consider it, next to Euclid’s
Geometry, the most perfect model of elementary
writing of which the literary world is in possession.
When our reader shall have studied so much
of these volumes as to relish their admirable style,
be will be the better qualified to reflect on the
cireumstances under which they were composed.
They were drawn up sooa after our auther was
deprived of sight, and were dictated to his servant,
who had originally been a tailor's apprentice, and,
without being distinguished for more than ordinary
parts, was completely ignorant of mathematics.
But Euler, blind as he was, had a mind to teach
his amanuensis, as he went on with the subject.
Perhaps he undertook this task by way of exercise,
- with the view of eonforming the operation of his .
faculties to the -change. which the ‘loss of sight
had produced Whatever was the motive, his
treatise had the advantage of being composed
under an immediate experience of the method
best adapted to the natural progress of e learner’s
ideas : .from the want of which, men of the most
. profound knowledge' are often awkward and unsa-
c2 - v
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tisfactory when they attempt elementary instruction.
It is’ not improbable, that we may be farther in-
debted to the circumstance of our Author’s blinds
‘ness; for the loss of this sense is generally suc-
ceeded by the improvement of other faculties. As
the surviving organs, in particular, acquire a degree
of sensibility which 'tbey did not previously possess;
so the most charming visions of poetical fancy have
been the offspring - of _minds, on whom external
scenes had long been closed. And perhaps a’phi-
losopher, familiarly acquainted with Euler’s writings, -
' mlght trace some improvement in perspicuity of
" ‘method, and in the flowing progress of his deduc-
“tions, after this calamity had befallen him: which,
leaving “ an universal blank of nature’s works,”
favours that entire seclusion of the mind which con-
centrates the attention, and glves liveliness and vigour
to the conceptions. '

In men devoted to study, we are not to look for
those strong-complicated: passions,” which are con-
tracted amidst the vicissitudes and tumult of public
life. To delineate the character of EULER, requires
no contrasts of colouring. Sweetness of disposition, .

- moderation in the passions, simplicity of manners,
~were his leading features. Susceptible of the do-
_mestic affections, he 'was open to all their amiable
impressions, and was remarkably fond of children.
His manners were simple, without being singular,
and seemed to flow naturally fromn a heart that could
dispense with those habits. by which many must be
trained to‘artificial mildness, and with the forms that
are often necessary for concealinent. Nor did the
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equability and calmness of his temper indicate a*
defect of energy, but the serenity of a soul that
overlooked the frivolous provocations, the petulant
caprices, and jarring humours of ordinary mortals.
Possessing a miond of such wonderful comprehen-
sion, and dispositions so admirably formed t6 virtue
.and to happiness, EuLer found no difficulty in being
a Christian: accordingly “ his faith was unfeigned,”
and his love ‘‘ was that of a pure and undefiled heart.”
The advocates fer the truth of revealed religion,
therefore, may rejoice to add to the bright catalogue
which already claims a Bacon, a Newton, a Locke,
and a Hale, the illustrious name of EuLer. But
on this subject we shall permit,one of his learned
and grateful pupils * to sum up the character of his
venerable master. * His piety was rational and
“sincere ; his devotion was fervent: he was fully
‘ persuaded of the truth of Christianity—felt its im-
“ portance to the dignity and happiness of human
“ nature—and looked upon its detractors and op-
“ posers as the most pernicious enemies of man.”
The length to which this account has been ex-
tended may require some apology; but the cha-
racter of EULER is an object so interesting, that
it ‘is difficult to prescribe a limit to reflections,
" when they are once indulged. One is attracted
by a sentiment of admiration, that almost arises
to the emotion of sublimity; and curiosity becomes
. eager to examine what "talents and qualities and
habits belonged to a mind of such superior power.

* Mr. Fuss, Eology of M. L. Euler.
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‘We hope, therefore, the student will niot deem this-
an improper introduction to the work whith he is
about to peruse; as we trust he is prepare to efrter:
on it with that temper and disposition which will
open his mind both to the perception of excellence,

and to the ambition of emulating what he cannot
but admire. '



. ADVERTISEMENT

BY THE

EDITORS OF THE ORIGINAL.

We present to the lovers of Algebra a work, of
which a Russian translation appeared two years
ago. The object of the celebrated Author was
to compose an Elementary Treatise, by which a
beginner, without any other assistance, might make
. himself complete master of Algebra. The loss of
sight had suggested this idea to him, and his activity
of mind did not suffer him to defer the execution
. of it. Tor this purpose M. EvLEr pitched on a
young man whom he had engaged as.a servant on
his departure from Berlin, sufficiently master of
arithmetic, but in other respects without the least .
knowledge of mathematics. He had learned the -
trade of a tailor, and with regard to his capacity
was not above mediocrity. Thls young man, how-
ever, has not only retained what his illustrious
master taught and dictated to him, but in a short
tine was able to perform the most difficult alge-
braic calculations, and to resolve with readiness

. whatever analytxcal questions were proposed to
him.
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This fact must be a strong recommendation of
the manner in which ‘this work is composed, as
the young man who- wrote it down, who performed
the calculations, and whose 'proficiency was so
stnkmg, received no instructions whatever but from
this master, a superior one indeed, but deprived of
sight.

Independently of so great an advantage, men of
science will perceive, with pleasure and admiration,
.the manner in which the doctrine of logarithms is
explained, and its connexion with other branches
of calculus pomted out, as well as the methods
which are given for resolving equations of the third
and fourth degrees. ‘

Lastly, those who are fond of Diophantine pro-
blems, will be pleased tp find, in the last Section '
of the Second Part, all thesé problems reduced to
a system, and all the processes of calculation,
which are necessary for the solution of them, fully

explamed
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ADVERTISEMENT

BY THE

FRENCH TRANSLATOR.

ThuEe Treatise of Algebra, which I have undertaken
to translate, was published in German, 1770, by.
the Royal Academy of Sciences at Petersburg Ta
praise its merits, would almost be injurious to the
celebrated name of its author; it is sufficient to

‘read a few pages, to perceive, by the perspicuity

with which every thing is explained, what advantage
beginners may derive fromit. Other subjects are the
purpose of this advertisement.

-1 haye departed” from the division which is fol-
lowed in the original, by introducing, in the first
volume of the French translation, the first Section
-of the Second Volume of the original, because it
completes the analysis of determinate quantities. .
The reason for this change is obvious: it net
only favours the natural division of Algebra into
determinate and indeterminate analysns, but jt wasg
necessary to preserve some equality in the size of
the two volumes, on account of the additions wblch

are subjomed to the Second Part. -
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The reader will easily perccive that those ad-
ditions come from the pen of M. pE LA GRANGE;
indeed, -they, formed one of the principal reasons
that engaged me in this translation ; I am happy in
being the first to show more generally to. mathe-
maticians, to what a pitch of perfection two of our
most illustrious mathematicians have lately carried
‘a branch of analysis but little kiown, the re-
searches of which are attended with many diffi-
culties, and, on the confession even of these great
men, present the mcst dlfhcult problems that they
have ever resolved.
I have endeavoured to translate this algebra in
the style best suited to works of the kind; my chief
anxiety was to enter into the sense of the original,
and render it with the greatest perspicuity : perhaps
I may presume to give niy translation some su- -
periority over the original, because that work having
been dictated and admlttmg of no revision from
the author himself, it is easy to conceive that in
many passages it would stand in need of correction.
_If I have not submitted to translate literally, I
~ have not failed. to follow my author step by step ; I'
have preserved the sarne divisions in the articles,
and it is only in so few places that I have taken
the liberty of suppressing some details of calculation,
_rand inserting one or two lines of illustration in the
text, that I believe it unnecessary to enter into an
explanatxon of the reasons by whlch I was ]ustlﬁed
in doing so.

Nor shall I take any more notice of the notes

‘which I bave added to the first part; they are not
so numerous as to- make me fear the reproach of -



ADVERTISEMENT., xxix

having UnneCeséarily increased the volume; and they
may throw light on several points of mathematical
history, -as well as make known a great number of
tables that are of subsidiary utlllty

With respect to the correctness of the press,
I belieye it will not yield to that of the original;
I'have carefully compared all the calculations, and
having repeated a great number of them myself,
have by those means been enabled to correct se-
veral faults beside those which were indigated°in the
Errata. '
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" ELEMENTS-

A}

ALGEBRA.

PART 1.
Contazmng the Analysis qf Determmate Qmmtztzes

— .

 SECTION L.

of tlze different Methods of calculating qu)le
Quantities. -

i

CHAP. 1.’
Of Mathematics in general.

" ARTICLE 1.

Wnuzvnn is capable of increase or dlmmutlon, is
called magnitude, or quantity.

A sum of money therefore is a quantity, since we
may increase it and-diminish it.- It is the same with
a weight, and other things of this nature. _

2.  From this definition, it is evxdent, that the dif-
ferent kinds of magnitude must be so various as to
render it difficult to enumerate them: and this is

the origin of the dxﬂ'erent branches of the Mathe- -
YOL. 1. | B
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matics, each being employed on a particular kind of
magnitude. Mathamatics, in general, is the science
of quantity; or, the science which investigates the
means of measuring quantity.

3. Now we cannot measure or determme any
quantity, except by qonsidering dome other quantity
of the same kind as known, and pointing out their
mutual relation. _ If it were proposed, for example,
to determine the quantity of a sum of money, we
should take some known piece .of money, as a louis,

" a crown, a ducat, or some other coin, and show how
many of these pieces are contained in the given sum.
" In the same manner, if it were proposed to deter-
mine the quantity of a welght, we should take a cer-
tain known weight ;. for example, a pound, an ounce,
&c. aud then show how muay times one of these
" weights is contained in that which we are endeavour- -
~ing to ascertain. If we wished to measure any
length or extension, we should make use of some
_known length, such as a foot.

4. So that the determmatlon, or the measure of
magmtude of all kinds, is reduced to this: fix at
pleasure upon any one knowa magnitude of the same
specles with that which is to be determmed and con-
sider it as the measure or unit; then, determine the
proportxon of the Proposed magmtude to this known
measure. - This_ proportion is always expressed by
numbers; so that a number is nothing but the pro-
portion of one ma.omtude to another arbltranly as-
sumed as the unit.

5. From this it appears, that all magmtudes may
be expressed by numbers; and that the foundation
of all the Mathematlcal Sciences must be’ laxd ina
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* compiete treatise on the science of Numbers, and in
an accurste examination of the chﬁ'erent posslble
methods of calculation.

This fandamental part of mathcmatxcs is called
Analysis, or Algebra*, -

. 6. In Algebra. then we ' consider only numbers
whlch represent quantities, without regarding the dif-
ferent kinds of quantity. These are the sub_;ects of
other branches of the mathematics.

7. Arithmetic treats of numbers in particular, and
is the Science of - numbers properly so called ;- but this
.scienice extends only tocertain methods of calculation
which occur in common practice: Algebra, on the
contrary, comprehends in general all the cases which
calr exist in the doctrine and calculation of numbers.

Y

CHAP. IT.
Explanation of the Signs + Plus and, = Mmum
8. When we have to add one glven number to

another, this is indicated by the sign + which is
placed before the second number, and is read. plus.

* Several mathematical writers make a distinction betweéert
Analywis sad Algebra. By the term dnalysis, they understund
the methed of determining those genersl.rules which astist the ums
dentanding in all mathematical investigations; and by Algebra;
the instrument which this method employs for accom pllshmg that
énd. ‘This is the definition given by M. Bezout in thé pret‘ace to
ks Algebsn. F.T.

B 2
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Thus 5+ 3 signifies that we must add 3 to the num-
ber 5, in which case, every one knows that the re-
" sult is 8; in the same manner 1247 make 19;
95+ 16 make 41; the sum of 25441 is 66, &C.

© 9. We.also make use of the same sign + plus, to,
connect several numbers together; for example,
74549 signifies that to the number 7 we myst add
"5 and also 9, which make 21. The reader mlt
therefore understand what is mesnt by

8+5+134114+1+3+10,

viz. the sum of all these numbers, which is.51.

- 10. All this is evident; and we have only to men-
tion, that, in Algebra, in order to generalize numbers,’
we represent them by letters, as g, b, ¢, d, &c. Thus,
the expression &b, signifies the sum of two num-
bers, which we express by a and 5, and these num-
. bers may be either very great or very small. In the
same manner, f+m-+-bd+x, signifies the sum of the
numbers represented by these four letters.

If we know therefore the numbers that are repre-

sented by letters, we shall at all times be able to
find, by arithmetic, the sum or value of 'such ex- -

: pressnons

‘11, When it is required, on the contrary, to sub-
tract one given number from another, ‘this operatlon
is denoted by the sign —, which signifies minus, and
is placed before the number to be subtracted thus
85 sigpifies that the number 5 is to be taken from
the number 8; which being done, there remmin 8.
In like manner 12—7 is the same as 5; and 20— 14
is the same as 6, &c..

_ 12. Sometimes also we may have several numbers
to subtract’ from a single one; as; for . instance,
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50—1—3—5-—7—9. This signifies, first, take I
from 50, and there remain 49; take 8 from that re-
mainder, and there will remain 46 ; take away 5, and
41 remain ; take away 7, and’ 34 remam lastly. from -
that take 9, and there remain 25: this ‘last remainder *
is the value of the expression. But a3 the pumbers
1, 3, 5, 7, 9, are all to be subtracted, it is the same
thing if we subtract their sum, which is 25, at once
from 50, and the rémainder will be 25 as before.

- 18. Itis also easy to determine the value of simi-
lar expresslons, in which both the signs + plus and
— winus are found: for example ;

. 12—8~—5+42—1 is the sameas 5.

We have only to collect separately the sum of the
numbers that have the sign 4 before them, and sub-
tract from it the sum of those that have the sign —.
Thus, the sum of 12 and 2 is 14 ; and that of 3, 5, and
1,i3 9; hence 9 being taken from 14, there remain 5.

14.- It will be perceived from these examples that
the order in which we write the numbers is perfectly
indifferent and arbitrary, provided the proper sign of
each be preserved. We might with-equal propriety
have arranged the expression in the preceding article
thus; 1¢42—5—3—1, or 2—1—=3—5412, or
2+412—3—1—35, or in still different orders ; where
it must he observed, that in the expression proposed,
the sign +- is supposed to be placed before the num-
bet12. -

15. It will not be attended with any more diffi-
culty if, in order to generalize these operations, we
'make use of letters instead of real numbers. It is
evident, for example, that
: : a—b—c4d—e,
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" - signifies that we have numbers expressed by 4 and d,
- and that from these numbers, or from their sum, we
must subtract the numbers expressed by the letters
b, ¢, ¢, which havesbefore them the sign —. _ :
16. Hence it is absolutely necessary to consider
what sign is prefixed to each number: for in Alge-
bra, simple quantities are numbers considered with'
‘regard to the signs which precede, or affect them..
Farther, we call thase pasitive guantities, before
which the sign 4 is found; and those are called
’mgatwe quantities, which are affected by t.bc |
sign —. - |
17. The manner in which we aenerally caleulate
a person’s property, is an apt iHustration of what
bas just been said. For we denote whata man really |
possesses by positive numbers, using, or understand-
ing the sign 4 ; whereas his debts are represented
. by negative numbers, or by using the sign —.  Thus,
when it'is said of any one that he has 100 crowns,
‘but owes 50, ‘this means that his real possession’
't.monnu to 100—350; or, which is the same thing,
~+100—50, that is to say 50.
~18." As negative numbers, in like manner, may be
cansidered as debts, because positive numbers repee-
sent real possessions, we may say that negative num-
-bers are less than nothing. Thus, when a man has
nothmg of his own, and owes 50 crowns, it .is certain
that he has 50 crowns less than nothing ; for if any ane
were to make him a present of 50 crowns to pay his
. debts, he would still be only at the pmnt nothimg,
though really richer than hefore.
 19. In the same manner therefore as positive
. numbers are incqntestably greater than nothing,

!
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negative numbers are less than- nothing. Now we
obtain'positive numbers by adding 1 to 0, that is‘to
say, 1 to nothing; 1to 1, 1t0 2, kte 3, &c. This
s the origin of the series of numbers called natarel
sumbers ;' the following being the leading terms of
this series:

0,41, +8, +3, +4,+5, +6, 47,48, +9,+10,'
and s0 on to infinity.

-But if instead of continuing this series by suc-
cessive additions, we continued it in the opposite
direction, by perpetually subtracting umty,
should bave the series of pegative numbers:
0,—1,—9,—8, —4, ~5, =6 7, ~8, -9, —10,
and 30 on to infinity.

90. All these numbers, whether positive or negt-
tive; have the known appellation of whole numbers,
or integers, which consequently are either greater or
less than nothing. We call them integers, to' distin-
guish them from fractions, and from several other
kinds of numbers of which we shall hereafter speak.
For instance, 50 being greater by an entire unit than
49, it is easy to comprehend that there may be be-

~ tween 49 and 50 an infinity of intermediate numbgrs,

all greater than 49, and yet all. less than 50. We
need only imagine two lines, ane 50 feet, the ather.

-49 feet long, ‘and it is evident there may be drawn

an infinite number of lines all longer than 49 feet,
and yet shorter than 50,

21, It is of the utmost 1mportance thwough thc
whole of Algebra, that a precise idea be formed of
those negative quantities about which -we have been'
spta:lnng I shall, however, content miyself wath
remarking here, that all such expressions as
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. F1—1, +2—2, +3—3, 4+4—4, &c.

are equal to 0, or notbmg And that R
' +2—35 is equal to —3:
for if a person has'2 crowns, and owes 5, he has not
only nothing, but still owes 3 crowps. In the same.
manper
7—12 is equal to —§, and 25-40 is equal to —15.
22. The same observations hold true, when, to.

make the expression more general, letters are used

- instead of numbers; thus 0, or nothing, will always

be the value of +-a—a; butif we wisk to know the
value of +a—b, two cases are to be considered.
The first is when @ is greater than b; b must then

be subtracted from @, and the remainder (befm.'e ‘

~ -which s placed, or understood to be placed, the sign
" +) shows the value sought.

.- 'The second case is that in which a is less than 4 :
here a is to be subtracted from b, aud ‘the remainder -

being made negative, by placing before it4he sign —,
w;ll be the value soyght. :

, CHAP. 1II.. |
Of the Multiplication of Simple Quantities.

' @8. When there are two or more equal numbers |
to be added together, the expression of their sum

may be abridged: for example,
a+a is the same with 2Xaq,
atata - ---- - 3Xa,

a+a+a+a - - - - 4Xa, and 30 on; where X °
i's the sign of multiplication. In this manner we.
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' may form an ldca of multiplication; and it is to be

observed that, ,
2Xa s:gmﬁes 2 times, or twice @
3Xa -~ - < 8 times, or thrice ¢
aXa - -~ - 4 times a, &c. _

24. If therefore a number expressed. by a letter is
to be multiplied by any other number, we simply put
that number before the letter;” thus, :

a multiplied by 20 is expressed by 20, and

b multiplied by 30 gives - 305, &c.

Itis evident also that ¢ taken once, or l¢, is the same '

asc.

25. Fartber, it is extremely easy to multiply such
products again by other numbers; for_ example: -

@ times, or twice 34 makes 6a.
38 times, or thrice 45 makes 125..
5 times 72 makes 357, .

and these products may be still multiplied by other

numbers at pleasure.

26. When the number by which we are to mul-
tiply is also represented by a letter, we place it
immediately before the other letter; thus, in multi-

plying b by a, the product is written ab; and pg will

be the product of the multiplication of the number

-gbyp. Also, if we multiply this pg again by a, we

shall obtain apq.

- 27. It may be farther remarked here, that theor-
derin which the letters are joined together is indif-
ferent; thus ab is the same thing as ba; for 5 multi-
plied by a is the same as a multlplled by . To un-
derstand this, we have only to substitute for a and &
known numbers, as 3 and 4; and the truth will be
self-evident; for 3 times 4 is tbe same as 4 times 3.

-
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-.28. Tt mil not be diffjcult to. perceive, that when

~ we have to put numbers, in the place of letters joined
together, in the manner we have described, they can-
not be written in the same way by puttmg them one
- after the other. For if we were to write ‘34 for 3
‘times 4, we should. have 34 and not 12. When
therefore it is required to multiply common numbers;
- we must separate them by the sign X, or by a poiat :
thus, X4, or 3.4, ‘signifies 3 times 4, thatis 12.
So, 1X ¢ is equal to 2; and 1X2X3 makes 6. In

like manner 1X2X3X4X 56 makes 1344 ;- and

]X°X3X4X5X6X7X8X9X10 is equdlto

- 3628800, &c.
29. In the same manner we may " discover the

. value of an expression of this form, 5.7.8.abcd. Tt
shows that 5 mast be multiplied by 7, and that this /

product'is to be again multiplied by 8; that we are

. then to multiply. this product of the three numbers by

a, next by &, then by c, and lastly by d. It may be
observed also, that instead of 5.7.8 we may write
s value, 280; for we obtain this number when we
multiply the product of 5 by 7, or'35, by 8.
- 80. The results which arise from the multiplica-~
tion of two or inore nmumbers are called product: :
and the numbers, or mdnvndual letters, are called
factors
3t. Hitherto we have considered only positive
tmmbers, and there can be no doubt, but that the
: products which we have seen arise are positive also:
viz. 4-a by +b must necessarily give +ab. But we
must separately examine what the multiplication - of
+a by —b, and of —a by — b, will produce. '
- 32. Letus begm by muluplymo —a by 8 or +3,
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now since —a may be considered.as a debt, it is
. evident that if we take that debt three times, it must
thus become three times greater, and consequently
the required product is —3a. So if we multiply
—a.by 40, we shall obtain —ba, or, which is the
same thing, —ab. Hence we conclude, that if a
positive quantity be multiplied by a negative quan-
tity, the product will be negative; and it may be laid
down as arule, that 4 by + makes + or plus; and
that, on the contrary, + by —, or — by +, gives
— Or minus.

83. t.remains to resolve the ease in whlch — is
multiplied by — ; -or, for example, —a by —b. It
is evident, at first sight, with regard to the letters,
that the product will be ab; but it is doubtful whe-
ther the sign 4, or the sign —, is to be placed be-
fore the product; all we know is, that it must be one
or the other of these signs. Now I say that it can-
not be the sign —: for —a by +b gives —ab, and
=a by —b cannot produce the same result as —e
- by +4; but must produce a contrary result, that is
to say, +4-ab; consequently we have the following -
rde: — multiplied by — produces -, that i i, the
Mme as’ + multlphed by +"‘ ' : :

* As this conclusion is not so satisfactory a= could be wished,
we will endeavour to give another demonstration, founded upos
principles ‘which may be thbught less objectionable.

- First, we know that +-a multiplied by -5 gives the product
+4b; and if 4-a be multiplied by a quantity less than's, as d—c,
the product must necessarily be less than aB; i short, froms ab
'we must subtract the product of 4, multiplied by c; hence

éxb<c must be expressed by a¥—uc ; therefore it follows that
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" 34, The rules which we have explained are.ex-
pressed more briefly as folows : -
Like signs, multiplied together, give + ; unlike-or
contrary signs give —. Thus, when' it is required
to multiply the following numbers; +a, —b, -

ex —c glves the product —ac; that is < plus mto - mzm
;lve.s — minus,
If now we consider the product ansmg ‘from the multlpllcatton :

of the two quantities a— b, and c—d, we know that it is less than

thatof a—bxc, or of ac—bc; in short, from this sproduct we

must subtract that of —bx d; but the producta—bXc—d be-
comes ac—bc—ad, to which is to be annexed the product of
—bx —d, and the question is only what sign we must employ
for this purpose, whether <4 or —. Now we have seen that from

" the product ac—bc we must subtract the product of a—bxd,

~ that is, we must Bub&ract a quantity less thau ad; we have there-

fore_ subtracted already too much by the quantity d; this pro-
duct must therefore be added; that is, it must have the sign 4-

" prefixed ; hence we see that —bx —d gives -bd for a product ;

" or — wminus multiplied by — minus glves <+ plus.

_ There are some other circumstances in this chapter whlch |t._
may not be amiss to apprize the reader of, that he may be
guarded against receiving, as self-evident facts, things which re-

"quire demonstration. In article 27 it is assomed that c multiplied

by b is the same as b multiplied by a; ‘but this should be con-

. sidered rather as a propesition than as an axiom, for it is not one

1

of 'those truths that carries its own evidence along with it, which
is what properly constitutes an axiom, such as, Equals added to
gquals, the wholes are equal. Le Gendre, in his «“Essai sur la The-
¢rie des.Nombres,” has given it an elaborate demonstration, but.
it finally rests upon a truth which seems to require to be proved
pearly as much as the proposition he has endeavoured to establish,’
the difficulty in the demonstration naturally arising from the
simplicity of the truth to be demonstrated. The pnncxple upon
which M. Le Gendre has founded his demonstration is this: that -

) axln:bxa, if axl=lxga; t.he latter, he conceives, may be _
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+d; we have first +a multlphed by —-b which
makes —ab ; this by —c, gives +abc; and thls by.
+d, glves +abcd

35. The difficulties with respect to the s signs being
removed, we have only to show how to mulnp 3 '
numbers that are themselves products. If we were,
for instance, to multiply the number ab by the num-
ber cd, the product would be abcd, and it is obtained
by multiplying first ab by c, and then the result of
that multiplication by d. Or if we had to multiply
86 by 12; since 12 is equal to 3 times 4, we should
only multiply 36 first by 3, and then the product 108
by 4, in order to have the whole product of the
multiplication of 12 by 36, which is consequently
432.. .
36. But if we wished to wultiply 5ab by Scd, we -
might write 3cd X 5ab; however, as in the present -
instance the-order of the numbers to be muitiplied is
-indifferent, it will be better, as is also the custom, to
place the common nuinbers before the letters, and to
express the product b ;

So if we had to multnply |
obtain 12X7pqr.z;y, or 84pgrry. -

Cd

properly considered as an axiom; and it ‘is perhaps more ad-
missible as such than the former. Upon the whole, his demon-
stration, though not 5o clear as could be wished, is probably as
satisfactory as any that can be given. Eb.

TR,

o
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" CHAP. 1V.

Qf the J\latme of whole Numbers, or Integcrs, wzth
respect to their Factors.

* 87. We have observed that a product is general:ed
by the multiplication of two or more numbers to-
gether, and that these numbers are called factors.
~ Thus the numbers a, J, ¢, d, are the factors of tbe~
. product abed. :

38.- If, now, we conslder whole numbers only,
we shall soon find that some of them cannot result
from any multiplication, and consequently have no '
factors ; while others may be the products of two or
more- mulnplled together, and may consequently
have two or more factors. Thus 4 is produced by
2% 2; 6by 2X3; 8 by 2X2X3; or "7 by 3X3X3;
~and 10 by 2X35, &c. - '

39. But, on the other hand, the numbers ¢, 3, 5,
7, 11, 18, 17, &c. cannot be represented in the same
manner by factors, unless for that purpose we make
use of unity, and represent €, for instance, by 1 X 2.
" But the numbers which are multiplied by 1 remain-
ing the same, lt is not proper to reckon umty as a
factor,

Al mm)bers, tberefore, such as 2, 3, 57, ll, ].3,
17, &c. which cannot be represented by factors, are
called simple, or prime numbers; whereas others, as
4, 6, 8, 9, 10, 12, 14, 15, 16, 18, &c. which may be
represented by factors, are called composite numbers.

40. Simple or prime numbers deserve therefore
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particular attention, since they do not result from the

multiplication of two or more numbers. Itis also par-

ticularly worthy of observation, that if wé write these

numbers in successwn as they follow each ptber, ,

thus,

9, 3,5 7 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, 47, &c*

* All the prime numbers from 1 to 100000 are to be found in
_the tables of divisors, which I shall speak of in a sacceeding note:
" But patticular tables of the prime numbers from 1 to 101000
have been published at Halle, by M. Kruger, in a German work
entitled * Thoughts on Algebra;” M. Kruger had received them
from a person- called Peter Jaeger, who had calculated them.
M. Lambert has continued these tables as far as 102000, and re-
published them in his supplements to the logarithmic and trigo- .
nometrical tables, printed at Berlin in 1770; a work which .
contains likewise several tables that are of great use in the
different branches of mathematics, and explanations which it
would be too long to enumerate here.

The Royal Parisian Academy of Sciences is' in possession of
tables of prime mumbers, presented to ‘it by P. Mercastel de
YOvatoire, and by M. du Tour; but they have not beenpublnshed.
They are spoken of in Vol. V. of the Foreign Memaoirs, with a re-
ference to a memoir, contained in that volume, by M. Rallier dés
Oumes, Honorary Counsellor of the Presidial Court at Rennes,
in which the author. explainy an easy method of finding prime
mumbers,

In'the same volume we find another method by M. Rallier des
Curmeés, which is entitled, * A new Method for Division, witeh
the Dividend is a Multiple of the Divisor, and may therefore be
divided without a Remainder; and for the Exxraction'of Roots
when the Power is perfect.” 'This method, more curious, indéed,
than ugeful, is almost totally different from the commion one: it
iavery easy, and has this singularity, that, prov:ded we know as
maty ﬁgures on the right of the dividend, or the power, as there
are to be in the quotient, or the root, we may pass over the
figures wluch precede them, and thns obtain the quotient.
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_ we can trace no regular order; theirincrements being-
sometimes greater, sometimes less; and hitherto no
ene bas been able to discover whether they follow
~any certain law or not.

41. All composite numbers, which may be repre-
sented by factors, result from the prime numbers
above mentioned ; that is to say, all their factors are
.prime numbers. For, if we find a factor which is .
-pot'z prime number, it may always be decomposed
and represented by two or more prime numbers.
When we have represented for instance, the number
"30 by 5X6, it is evident that 6 not being a prime
number, but being producéd by 2X3, we might
have represented 30 by 5X2X3, or by 2X3X5;
that is to say, by facl:ors which are all piime
numbers.

~ 42. 1If we now consider those compoatte numbers.
which may be resolved into primé factors, we shall
observe a great difference amongthem ; thus we shall
'find that some have only two factors, that others
have three, and others a still greater number. We
bave already seen, for example, that : '

.4 is the sante as 2X2, | 6i is the same as 2)(3,
8 - - - 2X2X2, 9% - .. -3X 3,
10 - - - - 2eX5, {12 - - - 2X3X2
M- s - - eX7, |15 - - - - sxs’,
6. - - 2X2X2X2, |and soon.

_ 43. Hence it is easy to find a method for analys—~

1

M. Rallier des Ourmes was led to this new method by reﬂec'ting
on the numbers uermmatmg the pumerical expressions of pro.
duus or powers, a species of numbers which I have remarked
: also, on other occasions, it would be useful to conslder ‘F.T. ~

S
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ing any nunsher, or gsobving it into its simple factors.
Let there be propased, for inatance, the number 360;

- -we shall nepresent it first by 2X 180, Now 180 is

2qual to 2X 90, and
90 2% 45,

45}.\3 the same as{SXlS, angd lastly

15 - - IXKS

So that the siumber 360 may be represented by these

simple factors, 23X 2X2X8X3X5; singe all these

sumbers multipliad together pmdme 360*,

A4. This shows, that prime numbers capnot be -
divided by .other numbers, and, on the other hand, .
that the simple factars of compound numbers are
found most conveniently, and with the greatest cer-
tainty, by seeking the simple, or prime numbers, by
which those .compound numbers are divisible. But
for this dinision is necessary ; we shall therefore ex-
plain the rules of that operation in the following
chapter.  ("See Aﬂpmdw, ate 1 D

CHAP. V.
Of the Division of . Sin@k Quantities.

45. 'When a number is to be separated into two,
three, or more equal parts, it is done by means of

B " = v S wd

* There is @ tahle;at the end of a/German baok of arithmetic,
Published at Leipgic, by Poetiug, in 1728, jn which all the pum-
bers from 1 to 10Q00 are represented in this mauner by their
sigple factors. F. T.

VOL, 1. ' c
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. -dioision, which enables- us to determme the -magni-
tyde of one of those parts. When we wish, for ex-
ample, to separate the number 12 into three equal
parts, we find by division that each of those parts is
equal to 4.

"The following terms are made use of in this opera-
tion. The number which is to be decompounded,
‘or divided, is.called the dividend; the number of .
-equal parts sought is called the divisor; the magni-
tude of one of those parts, determined by the divi-
sion, ‘is called the quotient : t.hus, in the above ex-
ample, \
T : m is the dividend,

3 is the divisor, and
4 is the quotient.

.~ 46. It follows from this, . that if we divide a nuni-

~~ber by g, orinto two equal parts, one of those parts,
.or the quotient, taken twice, makes exactly:the mm-

ber proposed; and, in the same manner, if we have

. a number to divide by 3, the quotlent taken thrice

" must give the same number ‘again. * In general, the
multiplication “of the quotient by the divisor . must
always veproduce the dividend.

47. Tt is for this reason that division is said to be

a rule, which teaches us to find a number or quo-

_ tient, which, being multiplied by the divisor, will

‘gxactly produce the dividend. For example, if 35

“is to be divided by 5, we seek for a number which,
multiplied by 5, will produce 35. Now this number

" is 7, since 5 times 7 is 35. The manner of ex-

- pression employed in this reasoning, is; 5 in 35

_goes 7 times; and 5 times 7 make 85.

- 48. The dividend therefore may be considered as
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a prodact, of whlch one of the factors is the divisor,
and the other the quotient. Thus, supposing we
have 63 to divide by 7, we endeavour to find such a
product, that, taking 7 for one of its factors, the -
other factor multiplied by this may exactly give 63
Now 7X9 is such & product; and consequently 9 is
the quotient obtained when we divide 63 by 7.
49. In general, if we have to divide a- number.ab .
by a, it is evident that the quotient will be b; for a
multiplied by & gives the dividend ab. It is clear
also, that if we had to divide ab by b, the quotient
would be . And in all examples of - division that -
- can be proposed, if'we divide the dividend by the
quotient, we shall again obtain the divisor; for as
24 divided by 4 gives 6, so 24 divided by 6 will
give 4.
- §0. As the whole operation consists in represent-
ing the dividend. by two factors, of which 6ne may be
. equal to the divisor, and the other to the quotient, the
following examples will be easily understood. I say
first, ‘that the dividend abc, divided by @, gives bc;
for g, multiplied by bc, produces abc: in the same
manner abc, being divided by 5, we shall have ac ;
and abc, divided by ac, gives b. It is also plain, that
~ 12mn, divided by 8m, gives 4n; for 3m, multiplied
by 4n, makes 12mn. But if this same number 12mn
had been divided by 12, we should have obtained the _
quotient mn.

51. Since every number a may be expressed by’
14, or one a, it is evident that if we had to divide g,
or 1a, by 1, the quotient would be the same number
a. And, on the contrary, if the same number a, or
1a, isto be divided by a, the quotient w1ll be 1.

: : C2
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52. It often happens that we cannot represent the
dividend as the product of two factors, of which one
is equal to the divisor ; hence, in this case, the division
cannot be performed in the manner we have described.
" When we bave, for éxample, 24 to divide by 7, it -
is at first sight obvious, that the number 7 is not &

_ factor of 24; for the product of 7X 3 is only 21, and
- consequently too small ; and 74 makes 28, which
is greater than 24. We discover, however, from"
this, that the quotient must be greater than 3, and
less than 4. In order therefore to determine it ex-

actly, we employ another species of numbers, which =

are called fractions, and which we shail consider in
oue of the following chapters.

'53, Before we proceed to the use ofﬁaawas, itis
usual to be satisfied with the whole number which
approaches nearest to the true quotient, but at the
 ssme time paying attention to the remainder which
i left; thus we say, 7 in 24 goes 3 times, and the
Temainder is 3, because 3 thnes 7 produces only 21,
which is 3 less than 24. We may also consider the
following examples in the samie manner;

6)34(5, that is to say, the divisor is 6, the
30 dividend 34, the quotient 5, and the
‘remainder 4.

B ]

4

9)41(4, here the dmsor is 9, the dividend
36 41, the quotient 4, and‘ the remain-
der 5. ’

D ——

5

The ﬁollowmg rule is to be observed in euam(plcs
where there is a remainder.

154, Multlply the divisor by the quotient, and ID
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the product add the remainder, and the result will
be the dividend; this is the method of proving the
division, and- of dmvmng whether the calculation is
right or not. Thus, in the first of the two last ex.
amples, if we multiply 6 by 5, and to the product 30
add the remainder 4, we obtain 34, or the dividend.
And in the last example, if we multiply the divisor 9
by the quotient 4, and to the product 36 add the re-
mainder 5, we obtain the dividend 41,

55. Lastly, it is necessary to remark here, with
regard to the signs + plus and — minus, that -if we
divide 4-ab by +a, the quotient will be + 5, which
is evident. But if we divide +ab by —a«, the quo-
tient will be —&; because —aX ~b gives ab. If
the dividend is —ab, and is to be divided by. the .
divisor +-a, the quotient will be —b; because'it is
~—& which, multiplied by 4@, makes —ab. Lastly,
if we have to divide the dividend —ab by the divisor
—a, the quotient will be +5; for the dmdend —~ab
is the product of —a by +b.

56. With regard, therefore, te the signs -+ and ~,
division requires the same ‘rulesto be -observed tbat
we have seen take place in multiplication; viz.
© 4 by + makes +; + by ++ makes —;

= by + makes —; ~ by — makes 4 :
or, in few words, like sngns give plus, and unhbe signs
glve muws

57. Thus, when we divide 18pg by --Sp, thé quo- -
tient is —6¢. Farther; :

— 30zy divided by -6y gives —5z; and

~ 54abc divided by — 9b gives 46ac;
for, in this last example, —95 multiplied by +6aé
makes —6 X Oubc, or — 54abc. But enougli has been
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said on the division of snmple quantities ; we shall
therefore hasten to the explanation of fractions, after

‘having added some farther remarks on the nature of

numbers, with respect to their divisors. ’

P M:  CHAP. VI

Of the Properties of Integers, with respect to their

Dwzsors

58. As we. have seen that some numbers are di-

wvisible by certain divisors, while others are not so;
" it will be proper, in order that we may obtain a more -

particalar knowledge of numbers, that this difference
should be carefully observed, both by distinguishing

_the numbers that are divisible by divisors from those
which are not, and by considering the remainder that -
. is left in the division of the latter. For this purpose

let us examine the divisors;
2: 3’ 4', 5’ 6v' 7, 8’ g) IO’ &c.

59. First, let the divisor be 2; the numbers di-
visible by it are; 2, 4,6, 8,10, 12, 14, 16, 18, 20,
&c. which,. it appears, increase always by two.
These numbers, as far as they can be continued, are
called even numbers. But there are other numbers,
viz. - - )
-1, 8,%5,7,9, 11, 18, 15, 17, 19, &c.

which are uniformly less or greater than the former ‘

by unity, and which cannot be divided by 9, without
the remainder 1; these are called odd numbers.
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" The ‘even numbers are all comprebmded in the
general expression. 2a ; for they are, all obtained by-
successively substituting for a the integers 1, 2, 3, 4,
5,6, 7, &c. and hence it follows that the odd numbers
are all comprehended in the expression 2a+1, be-
cause 241 is greater by unity than the even num-
ber 2a. .

60. In the second place, let the number - 3 be the
divisor; the numbers divisible by-it are,

3,6,9, 12, 15, 18, 21, 24, 27, 30, and so on,
which numbers may be represented by the ex-
pression 3a for 3a, divided by 3, gives the quotient
a without a remainder. All other numbers which we,
would divide by 3, will give 1 or 2 for a remainder,
and are consequently of two kinds. - Thase which
after the division leave the remainder 1, are,

1, 4, 7, 10, 13, 16, 19, &c.
and are contained in the expresslon 3a+1; but the
other kind, where the numbers give the remainder 2,
are, , : :

2 5,8, l],.']‘l': 17, 20, &e. ’
‘which may be generally represented by 3a+4-2; so
that all numbers may be expressed either by 3a, or
by 3a+1, or by 3a+2. .

61. Let us now suppose that 4 is the divisor -
under consideration ; then the numbers which it di-
vides are, ‘"
4, 8 12, 16, 20, 24, &c
which increase uniformly by 4, and ate comprehended
inthe expression 4. All other numbers, that is, those
which are not divisible by 4, may either leave the Ye-
maimder 1, or be greater than the former by 1; as, *

1, 5,9 13, 17, 21, 25, &c.
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dhd conséquéntly thay be compreheided m the ex-
préssion 4a4-1: of they midy give the remamder
as, :
8, 6, 10, 14, 18, 92, 26, &c.
and be expressed by 4d+¢; or, Iastly, they may
give the remainder 3; ds,
: 3,7, 11, 15, 19, 23, 27, &c.
ind inay then be fepresented by the expressiotrad - 3.
All possible integer fiimbers dre therefore con-
tained in drie ot other of these four expressions;
da, da4: 1, 4642, 4d 43

69. Itis also nearly the same when the divisoris 55

for all numbers which can be divided by it aré com-
.prehended in- the expression 54, and those which
cannot be divided by 3, are reduciblé fo o‘ne of the
. following expressions: X

sa-+1, 5a-2, 5a43, 5a+4

and in the same manner we may continue, aud con-

sider any greater divisor.
" 63. Itis here proper to recollect what has been
- already said on the resolution of numbers into their
simple factors ; for évery number, among the factms
6f which is found -

' g, or 3, or 4, or 5, or 7,

br any othier number, will be divisible by thése hum-
Bers. For examplé ; 60 being equal to 2X2X 3% 5,
. it is evident that 60 is divisible by 9., and by 3, and
by 5*.

* There are somné numbers which it is edsy to perceive
whether they are divisors of a given number or not.

1. A giveh number is divisible by 2, if the last digit iseven; it
is divisible by 4, if the wo last digits are ditisible by 4 ; it is dx.
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.64, Parther, as the general expression atcd is not
enly divisible by a, and b, and c, and 4, bug also by
ab, ac, ad, be, bd, cd, and by
abe, abd, acd, bed, and lastly by
abed, that is to say, its own value;
it follows that 60, or 2X2X3X5, may be divided

" yisible by 8, if the three lass digits are divisible by 8; aad, ia

general, it.is divisible by 27, if the n last digits ase divisible
byer

2. Anumber is divisible by 3, if the sum of the diglts s dis
tisible by 3; it way be divided by 6, if, beside this, the last
digit is even; it is divisible by 9, if the sura of the dngm may
be divided by 9. ’

8. Every number that hias the Mdlgmo ot 5,48 divisible by &

4. A number is divisible by.1}, when the som of the firsty
third, fifth, &c. digits is equad to the sum. of the ‘ecdnd, fourth,
sixth, &c. digits.

It would be easy to explain the ressen of thebe ruids, dnd to -
extend them to the products of the dividors which we hawe just
now considered. Rules might be devised likewise for some dther
nambers, but the application, of them wdild in generat helonger
than an actual trial of the division.

For example, I say that the number 5370&6&92!3 is di'vxsible
by 7, becanse I find that the sum of the digits of tiie wambes
64004245433 is divisible by 7 ; and this second number s formed,
according o a very simple rule, from the remainders found after
dividing by 7 the numbers 10, 100, 1000, &c. 20, 200,200, &4
as far as 60, 600, 6000, &c. F.T.

It may not be amiss to explain to the reader the- pmclples
upen which these rules are founded,

1. Every number is divisible by 2", when the » Tast digts are
divisible by 2", which includes the other three particular cdaes.
. For every number may be expressed by the form 4 x 1074w,
where 3 represents the number expressed by the.n lask digits.
Thus, for example, 7846144784614 X 1044 278461 10°
444, =7846 X 10°144, =784 X 10*-4-014d, &e.. Now since
10 is divisible by 2, 10* ig divisible by 4, or 7 and genetally

Lo
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not only by these simple numbers, but also by those

which are composed of two of them ; that is to say,.

10" is divisible by 2", , And B is also divisible by 2” by the sup-

position ; consequently the” whole number Ax 10”48 must
necessarily be divisible by 27, because each of the parts of whick
it is composed is divisible by that number.

2. Any power of 10 when divided by 3, or 9, leaves a re- -

mainder 1, therefore if any power of 10, when multiplied by a
given number & (for-example 107g), be divided by. 3, or 9, it will

leave the same remainder as the number a singularly, divided by

either df those numbers. ,
Now every number may be expressed by 10"a+4-10™%%
+10"%c4-10"%d 4, &c., where q, b, ¢, d, &c. represent the

digits of which the number is composed. And since each of

those terms, when divided by 3 or 9, leaves the same remainder
@ its respective digit, therefore the sum of all those terms, that
is, the whole mumber, will leave the samme remainder as the sum of
. its digits a-b+c-d, &c. and consequently when the latter is
exactly divisible by 3, or 9, the former is s6 likewise, ©
> Als if the last digit be even, the number is divisible by 2, a2
well av by 3, or 9, and is therefore likgwis':e divisible by 6 or 18.
3. Ewery number ending in a 5, or 0, is of one of the form
104, or 10445 ; which is evidently in either case divisible by .

4. Every even power of 10, as 102%, whendivided by 11, leaves-

& remainder -1; and every odd power of 10, as 103+, leaves

a remaitder —1; therefore every number 10™s, when divided

. by 11, leaves aremainder ¢, and every number 10%*¥+'}, divided
" by the same, leaves 2 remainder —b. :

Now we have seen that every number is of the form of

10"a 410" 4-10""%c410"°d, &c. where the pawers of 10'are
alternately even and odd, and therefore thé remainders alter-
nately plus and minus; namely, +a—b+c—d, &c. or -d+b
—c+d, &c.; where q, b, ¢, d, &c. are the digits that compose
the given number, and when a+-c, &c. =b+d, &e. one side
being positive and the other negative, they destroy each othef,
‘and the whole number is divisible by 1.1.

The last rule for the number 7 is of no use whatever, but the
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by 4, 6, 10, 15: and also b.y’tho.se which are com-
posed of three simple factors, that is to say, by 12,
20 30, and lastly also, by 60 itself.

65. When, therefore, we have represented apy
number, assumed at pleasure, by its simple factors, it
will be very easy to exhibit all the numbers by which
itis divisible. For we have only, first, to take the
simple factors one by-one, and then to multiply them
together two by two, three by three, four by four, &c.
till we arrive at the number proposed.

66. It must here be particularly observed, that
every number is divisible by 1; and also, that every
number 1s divisible by itself; so that every number
has at least two factors, or divisors, the number itself
and unity : but every number which has no other
divisor than these two, belongs to the class of num-
bers which we have before called simple, or prime
numbers.

Except these simple numbers, all other numbers
have, beside unity and themselves, other divisors, as
may be seen from the following table, in which are
placéd under each number all its divisors *.

principle upon which it is founded is easily demonstrated ; it is .
besides very badly, expressed, for it is general for any number,
and not pecuhar to the number 7, as the other rules are for 3,9,
11, &ec. as it appears to be by the manner in wbnch it is an-
noanced.

By referring to the form 10"¢4-10""'4, 10" %, &c.. under
which every number may be expres:ed, it isevident that if each of
those terms, when divided by a given number g, leave respectively
theremainders p, ¢, 7, 5, &c., and also if the sum of these remainders
bedivisible by a, it follows that the whole number 10"2+410"—1¥
+10"%¢, &c. is divisible by a4 likewise. Eb.

* A similar table for all the divisors of the natural numbers,
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. TABLE.
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67. Lastly, it ought to be observed that 0, or zo-
thing, may be considered as a number which has the
property of being divisible by all possible numbers;
because by whatever number & we divide 0, the quo-
tient is always O; for it must be remarked; that the
multlphcatlon of any number by nothmg produces
nothing, and therefore O times a, or Og, is 0. .

CHAP. VIL
Qf Fractions in general.

66. When a number, as 7, for 'instancie, is said
not to be divisible by another number, let us suppose

2

from 1 to 10000, was published at Leyden, in 1767, by M. Henri
Anjema. We have likewise another table of divisors, which goes

- as far as 100000, but it gives only the least divisor of each num- -
ber. Itis to be found in Harris’s Lexicon Technicum, the Ency-
‘clopédie, and in M. Lambert’s Recueil, which we have quoted
in the note to p. 15. In this last work, it is continued as far as
Jo2000. F.T. ' .
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by 3, this only means, that the quotient cannot be
expressed by an integer number; and it must not be
thought by any means that it is nnposslble to form
an idea of that quotient. Only inagine a line'of 7
feet in length, and nobody can doubt the possibility of

‘dividing this line into 3 equal parts, and of forming a

notion of the length of one of those parts.

69. Since therefore we may form a precise idea of
the quotient obtained in similar cases, though that
quotient may nat be an mteger number, this leads us
1o consider a particular species of numbers, called
Jractions, or broken numbers; of which the instance -
adduced furnishes an illustration. For if we have to
divide 7 by 3, we easily conceive the quotient which
should result, and express it by 1; placing the divisor
wnder the dividead, and separating the two numtbers’
by a stroke, or line.

70. So, ia general, when the number 4 is to be
divided by the number J, we represent the quotiest

by ;, and call this form of expression a fraction.
Wecannot therefore give a better idea of a fraction )
;, than by saying that it expresses the quotient

resulting from the division of the upper aumber by
the lower. We must remember also, thatin all
fractions the lower number is called the dnnuunator
and that above the line the numerator. \
71. In the above fraction -}, which we read scuex
thirds, 7 is the numerator, and 3 the denominugor.
We omost -also read £, two thirds ; 4, three dourths;

"}, three eighths; -ﬁ,&;, twelve hundfedths, and 2,

we half, &c.
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. 72. In order.to dbtain a more perfect khov;'}edge
- of the nature of fractions, we shall begm by consider-
ing the case.in which the numerator is equal to the

a
denominator, as in - Now, since this expresses the

quotient obtained by dividing a by a, it is evi-
dent that this quotient is unity, and that conse-
1

. .a, <
quently the fraction o is equal to 1, or one integer;

- for the same réason, all the following fractions,
23 4 5 6 7 8 o
Py §y Z, 3$ 6’ ',}') ga &C..
are equal to one another, each being equal- to 1, or
one mteger

: 73. We have seen that a fraction whose numerator .

is equal to the denominator, is equal to unity.- AH
fractions™ therefore whose numerators are less than
‘the denominators, have a value less than unity.” For
if I have a number to" divide by another. which is
greater than itself, the result must necessarily be less
than 1: if we cut a line, for example, two feet long,

- into three parts, one of 'those parts will undoubtedly -

be shorter than a foot: it is evident then, that £ is
less than 1, for the same reason ; that is, the numera—
tor 2 is less than the denommator 3.

74. If the numerator, on the contrary,.be greater
- than the denominator, the value of the fraction is

greater than unity. Thus £ is greater than 1, for ¢ is’

- equal to .£ together with 3. Now % is exactly 1;
consequently 3 is equal to 144, thatis, to an in-
teger and a half. In the same manner 4 is equal to

14, § to 14, and § to . 24. And, in general it is
sufficient ‘in such -cases to divide the uppernumber '




s

CHAR. 7. OF ALGEBRA. 31

by the lower, and to add to the quétient a fraction,
baving the remainder for the.numerator and the di-
wvisor for the denominator. If the given fraction
. were, for example, 43, we should have for the quo-
tient 3, and 7 for the remainder; whence we. should
conclude that 43 is the same as 3% '

75. Thus we see - how fractions, whose numerators
are greater than the denominators, are resolved into
two members; one of which is an integer, and the
other a fractional number, having the numerator less
than the denominator. Such fractions as contain one
or. more integers, are called improper fractions, to
distinguish them from fractions properly so called,
which having the numerator léss than the denomi-
nator, are less than unity, or than an integer.

76. The nature of fractions is frequently considered
in another way, which may throw additional light on
the subject. If we consider, for example, the frac-
‘tion 4, it is evident that it is three times greater than 4.
Now this fraction } means, that if we divide 1 into
4 equal parts, this will be the value of one of those
parts; it is obvious then, that by taking 3 of those
parts. we shall have the value of the fraction .

In the same manner we may consider every other
_fraction; far example, ;%; if we divide unjty into

12 equal parts, 7 of those parts will be equal to the..
- fraction proposed. '

77. From this manner of.considering fractions,
the expressions .numerator and denominator are de-
- xived. For, as in.the preceding fraction. {7y, the
number under the line shows that 12 is the number
of ‘parts inta which unity is to be .divided; and as it

1 -
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) "maybesctdtodeuotc or name, thepam,nlmsmt‘

improperly been called the derominator.

Farther, as the upper number, viz. 7, shows that,
in order to have the value of the fraction, we .must
take, or collect, 7 of those parts, and therefore may
' .be said to reckon or number tliem, it has been
thought proper to call the number above the line the
aumerator.

78. Asitis easy to understand what £ is, when we

know the signification .of ;}, we may consider the
fractions whose numerator is unity, as the foundauon
of ail others. - Such are the fractions,
'}o 3 "1" é‘s "i" % *) '}, '{16" 'IL7 '1"‘!': &C.

, and lt is ‘obiservable that these fractions go on eon-
 tinually diminishing: for the more you divide an iu.
teger, or the greater the number of parts into which
you distribute it, the less does each of those parts

;  become. Thus 145 is less than 3; & is less

. than 143 and +sdv is less than 5%, &c. -

- 79. Aswe have seen that the more we increase the

denominator of such fractions the less their values

become, it may be asked, whether it is not possible te
.make the denominator so great that the fraction shali
be reduced to nothing?. 1 answer, no; for inte what-
ever number of parts unity (the lengb of a foot, for
- instance) is divided ; let those parts be cver so small,
they will still preserve a certain magnitude, and
therefore can never be absolutely reduced to Jno-
- thing,

80. It'is true, if we divide the length of a foot
toto 1000 parts, those parts will not easily fall under

the cognizance of our senses; but view them through
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a good microscope, and each of them: will appear
large enough-to be still subdmded mto more: than :
100 parts. '

At present, however, we have notbmg to do with
what depends on ourselves, or with ‘what we are
capable of performing, and what our eyes can per-
ceive; the question is rather what is pessible in ite.
seif: and, in thig sense of the word, it is certain,
that however great we suppose the denominator, the
fraction will never entirely vanish, or become equa}
t0. 0.

81. -We can never therefore arrive completely at 0y
or nothing, however great the denominator may be ;
and consequently as those fractions must always pre-
serve a certain quantity, we mey continue the scries
of fractions in the 78th article without interruption.
This circumstance has introduced the expression, thet
the denominator must be infinite, or infinitely: gveat,
in order that the fraction may be reducedto 0, or to
rothing; hence the word ugﬁnatc in reality signifies
here; that we can never arrive at the end of the
series of the abovementioned fracgwns. : :

82. To express this idea, according to the sense
of it abovementioned, we make use of the sign o,

~which consequently indicates a number infinitely

great; and we may therefore say, that this fraction -
is in reality nothing; because a fraction cannot be
reduced to nothing, until the denommator has been

-~ increased to infinity..

83. It is the more necessary to pay attention tq
this idea of infinity, as it is derived from the very
foundation of our knowledge of this subJect, and

VOL. 1. : D
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more- parttcularly as it will:be of the greatest im--

portance in the following part of this treatise.
We may here deduce from it a few consequences
that are extremely curious and worthy of attention.

The fraction & represents the quotient resulting from-

the division of the dividend 1 by the divisor oo ..
Now we know, that if we divide the dividend 1 by the
-quouent , which is equal to nothing, we obtain
“again the dmsor o : hence we acquire a new idea
of infinity ; and leam that it arises from the division
of 1by 0; so that we are thence entitled to say, that
1 divided by 0 expresses a number infinitely great,
oF ®.

84. It may be necessary also in  this place to cor-
rect the mistake of those who assert that asnumber
mﬁmtely great is not susceptible of increase. This
opinion is inconsistent with the just principles which
we have laid down; for sagmfymc a number in-

. finitely great, and & being incontestably the double
of %-,-it' is evident tl}at a number, though infinitely
great, may still become twice, thnce, or any number

. of times greater*.: .

* There are other propemes of nothmg and mﬁmty whlch it

may be proper to notice in this place.
~ 1. Nothing, added to or subtracted from any quanmy, makes
it neither greater nor less.
2. Any quantity multiplied by o, that is,” a quanmy taken no
times, gives O for a product; or a x 0=0.
3. a¥=1, whatever be the numeral value of a. For a° xa

R ’ a°+'—a'=¢, but 1 x a==a likewise; therefore a®=1.

- 4, Smce a_o s therefore 0 X = ==a; that is, nothmg multi-

" plied by infinity ptoduces a firiite quantity.
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. CHAP. ViIl.
Of the Propertjcs of Fractions.-

85. We have already seen, that each of the frac-
tions, ‘
s:, H ’3” He b "'1 &c.

makes an integer, and that consequently they are all
equal'to one another. The same equality prevails
in the following fractions, '

"%» +4HL Y 2 &e.
each of thein making two integers; for the numerator
of each, divided by its denominator, give2. So all
.the fractions

HbeHH W ‘lp»' &c. :
are equal to one another, since 3 is their common
value,

5. Since a X 0=0, therefore gza s that is, nothi:fg divided by

nothing gives for a quotient some finite quantity. :
The above subject has been a grand stumbhng-block to mathe-
maticians for a considerable time past, and various dlsputes and
controversies have been held in support. of this or that opinion.
But this is not a proper place to enter into a metaphysical discus-
sion upon the subject ; we shall only observe, that having once
agreed upon certain symbols forthe representation of nothing and
infinity, howevér we may be at a loss to comprehend that which
we have represented, yet still, in a mathematical point of view,
those symbols are subject to the same laws, in the operations of
multiplication, division, &c. as others which represent quantities
that are evident to our senses; the business of the lpathematlcmn '
being not so much the consideration of qdantmes themselves, as
the relation subsisting between them, or betweerr those symbols
which, by common consent, are made their representatives. Ep.

D2
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86. We may likewise. represent the value of any
fraction in an infinite variety of ways. For if we
multiply both the numerafor and the denominator of
a fraction by the same number, which mnay be as-
sumed at pleasure, this fraction will still preserve the
same value. For this reason all the fractions

%‘""%‘, %‘9 %’ 107 To'z" 'iJT’ 'igﬁ 182 soy &e.

" are equal, the value of each being é Also

%’ 6’%’ 129 159 18?7 219 24 21’ E) ’&c

"are equal fractions, the value of each of which is §.
‘The fractlons

L BheTeInihib i &e.
have likewise all the same value. Hence we may

conclude, in ge‘neral that the fraction gmay be re-
presented by any of the following expresslons, each

of which is equal to 2 '3 viz.

a % 3a 4a 5o 62 70
b eb 36 4b 56 6b 78
87. To be convinced of this, we have only to write

&ec. .

for the value of the fraction ‘1!; a certain letter c, re-

. presentmg by this letter ¢ the quotlent of the division
of a by b; and to recollect that the multiplication of
the quotient ¢ by the divisor & must give the dividend.
For sinee ¢ multiplied by & gives g, it is evident that
¢ multiplied by 26 will give 2a, that ¢ multiplied by
3b will give 3, and that, in general, ¢ multiplied by |
"mb will give.ma. Now changing this into an ex-

ample of division, and dividing "the product ma by
mb, one of the factors, the quotient must be equal to
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the other fnctor cs but ma divided by mb gWee also

the fraction Py which is consequently ‘equal to ¢
which is what was to be proved: for ¢ having been

assumed as the value of the fraction %, it is evident

that this fraction is equal to the fraction 7% mb’ “bat-

‘ever be the value of .

88. We have thus seen that every fraction may bQ '
represented in an infinite number of forms each of

~ which contains the same value ; and it is evident that .

of all these forms, that which is compgsed of the
least numbers, will be most easily understood. For
example, we might substitute mstead of % the follows
ing fractions, .
T’%':J:ﬁ 12, 15 &e,

but of all these expressions §- is that of which it is
easiest to form an idea. Here therefore a problem -
arises, how a fraction, such as -&, which is not exs
pressed by the least possible numbers, may be reduced
to its simplest form, or to its least terms, that is tq
say, in our present example, to $.

89, It will be easy to resolve this problem, 1f we
consider, that a fraction still preserves its value, when
we multiply both its terms, or its numerator and der
nominator, by the same number. For from this it
also follows, that if we divide the numerator and deno-
minator of a fraction by the same number, the frac,
tion will still pregerve the sdéme value. This ismade
more qvident by means of the general expression

P

mb’ for if we dmde both the numerator ma and the
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denominiator mb by the number m, we obtain the frac-
~ tion g, which, as was before proved, is equal to Em%
~ 90. In order therefore to reduce & given fraction

to its least terms, it is required to find a pumber by
which both the numerator and denominator may be
.divided. Such anumber is called a common divisor,
- and as long as we can find a common divisor to the
numeratar and the denominator, it is certain that the
fraction may be reduced to alower form; but, on the
contrary, when we see that, except unity, no other

common divisor can be found, this shows that the .

fraction is already in its simplest form. ‘

- 91. To make this more clear, let us consider the -

fraction %. We see immediately that both the
terms are divisible by 2, and that there results the
fraction §4. Also, that it may again be divided by
2, and reduced to 14; and as this likewise has 2 for
a common divisor, it is evident that’it may, be re-
duced to -%~ But now we easily perceive that the
numerator and denominator are still divisible by 3;
therefore performing this division, we obtain the frac-
.tion £, which is equal to the fraction proposed, and
gives the simplest expression to which it can be re-
' duced for 2 and 5 have no common divisor but 1,
which cannot diminish these numbers any farther.

92. This property of fractions ‘preserving an in-

variable value, whether we divide or multiply the

numerator and denominator by the same number, is

of the greatest importance, and is the principal.

foundation of the doctrine of fractions. For ex-
ample, we can seldom- add together two fractions,
or subtract them from each other, before we have, by
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means of this property, reduced them to other forms,
that js to say, to expressions whose denominators.
are equal.  Of this we shall treat in the following
chapter.- -

93. It is necessary however, before we conclude,
to remark, that all integers may also be represented
by fragtions. For example, 6 is the same as 4 be-
cause 6 divided by 1 makes 6; we may also, in the
same manner, express the number 6 by the fractions
12 18 24 36 and an infinite number of others
which have tbe same value,

CHAP. IX. ‘
Of the Addition and Subtraction of Fractions.

94. When fractions have equal denominators,
. there is no difficulty in adding and subtracting them;
'for§+§~ is equel to g and g-g- is equal to ?. In
this case, therefore, either for addition or subtraction,
we alter only the numerators, and place the common

denominator under the line; thus,

12 15 . 20 9
100+100 100~ T0p 100 * el to 155
u 7 12 31 36 18

— ual to —,
5030 50"'50 is equal to =5, or g5
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16 8 11 14. 16 4

430‘?27)"35"'90 s equal to gy 07 3

also §+§15 equal tog, or 1, that is to say, an in-
teger; and - = .
2 8 1,

__.__|.. is equal to that is to say, nothing, or 0.

95. But when fractlons have not equal -denomi-
_nators, we can always change them into other frac-
tions that have the same denominator.  For ex-
- ample, when it is proposed to add together the frac-
tions 4 and %, we must consider that 4 is the same
as 4, and that 1 is equivalent to £; we have there-
fore, instead of the two fractions proposed, the two, -

,‘ ' ‘follpwihg ones, g+§, the sum of which is 3, And

6
if the twq fractions were united by the sign minus, as .
_ -;——:%, we should have %—% or -(I):

* As another example, let the fractions proposed be

$ 5 . . 8, 6 . -
S4-—; then since — is the same as —,
f.&+ 3 B3 this value may

be substatuted for i lt, and we may say 6+ makes

8

~orl 8., | ,

. Suppose farther, that the sum of 1 and 1 were re-

' quired, 1 say that it is i%;; for 1 makes %, and 3

makes 3. - :
96. If we have a greater number of fractlons

‘to reduce to a common denomisator ; for example,

8’
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hhbhb in this case the whole depends on find- -
ing a number that shall be divisible by all the de- -
nominators of those fractions. In this instance 60is
the number which has that property, and which con-
sequently becomes the common denominator. We
shall therefore have 33 instead of 4; 4§ instead of

£, 44 instead of 3; 42 instead of £; and 4% instead

of £. If sow it be required to add together all

these fractions $§, 43, 44, #1, and §§; wehave only
to add all the numerators, and under the sum place
the common denominator 60; that is to say, wéshull
have %, or 3 1.

97. The whole of this operatlon consists, as s we
before stated, in changing fractions whose deno-
minators are unequal into others: whose denomina-
tors are equal In order therefore to perform it

generally, let - 5 2 and P be the fractions proposed.

First, multiply the two terms of the first fraction by
-d, and we shiall have i;he fraction % equal to ‘1—:; next

-multiply the two terms of the second fraction by 5,
and we shall have an equivalent value of it expressed

by bd’ thus the two denominators are become equal.

Now if the sum of the two proposed fractions be re-
quired, we may immediately answer that it is

v adl-;bc, and if their difference be asked, we say that

od b
Z; €. If the fracuons 3 3 and’ g » for example

ltls
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‘were proposed, ‘we should obtain in. their stead
%‘; and %; of which the '_s.ut'n is —l,;(-:?l, and the differ-
: 11,
ence 2% -
- 98, To this part of the subject belongs also the
questlon, Of .two proposed fi ctions which is the
greater or the less? for, to.resolve this, we have only
to reduce the two fractions to the same denominator, _
Let us take, for example, the two fractions £ and &
-when reduced. to the same denominator, the first be-
comes 14, and the second 1§, whereit is evident that
the second, or 4, is the greater, and exceeds ‘the
. fonner by
Again, if the two fractions $ and £ be proposed
“‘we shall have to substitute for them 4% and $$;
whence we may conclude that § exceeds § only
by <5 ‘
99. When it is required to subtract a fraction from
_ an integer, it is sufficient to change one of the units
of that integer into a fraction which has the same de-
nominator as that which is to be subtracted ; then in
‘the rest of the aperation thereis no difficulty. If it be
required, for example, to subtract § from 1, we write

al

* The rule for reducing fractions to a common denominator,
.may be concisely expressed thus. Multiply each numerator
into every denominator except its own, for a new numerator,
and all the denominators -together for the common depomi-
nator. When this operation has been performed, it will appear
that the numerator and denominator of each fraction have been
.lmnluphed by the same.quantity, and consequently ;etam the
same value,
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§ instead of 1, and say that £ taken from § leaves the
remainder 4. So.4%;, subtracted from 1, leaves 1.
If it were required to subtract 4 from 2, we should
write 1 and 4 instead of 2, and should then imme-
dlately see that after the subtractlon there must re~

' main 13. A
100. It happens also sometimes, that having added

two or more fractions together, we obtain more than
an integer; that is to say, a numerator greater than
the denominator: this is a case which has already
otcurred, and deserves attention.

We found, for example, article 96, that the sum.of
the five fractions 1, £, 3, &, and §-was %, and .

remarked that the vialue of this sum was 333}

8 9 17
or 311, Likewise + e or — 12+ 12 makes — 12 or 1
% We have therefore only to perform the actual

division of the numerator by the denommator, to see_ '

how many integers there are for the quotlent, ‘and to
set down the remainder. :

" Nearly. the same must be done to add together
numbers compounded of integers and fractions; we
first add the fractions, and if the sum produces one
or more integers, these are added to the other inte-
gers. If it be proposed, for example, to- add 3}
and 2%; we first take the sum of 1 and £, or of }
and'4, which is £ or 14; and thus ﬁnd the total sum
to be 6. :
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, CHAP. X. .
. Qf the Multiplication and Division of Fractiohs.

101. The rule for the multiplication of a fraction
, by an integer, or whole number, is to multiply the
pumerator only, by the given number, and not to
¢hange the denominator: thus,

9 times, or twiée% makes g, or 1 integer;

9 times, or twice % makes %; and
3 times, or thrice%
5 20 8 2
.4 tlmes 13 makes Tha 1— 19 O 15.

, But, instead of this rule, we may use that of di-
ﬁding the denominator by the given integer, which
is preferable, when it can be done, because it
shortens the operation. Let it be required, for-ex-
ample, to multiply § by 3; if we multiply the nu-
merator by the given integer we obtain %#, which
product we must reduce to $. But if we do not
change the numerator, and divide the denominator
by the integer, we find immediately 4 or 2% for the
given product and in the same ma,nner multl-.
plied by 6 gives 12, or 3.

102. In genexal therefore, the product of the .

makes %, or %;

‘multiplication of a fraction 3 by c is -z-; and here it

may be rgmarked, when the integer is exactly equal to -

\
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the denominator, that the product must be -equal to
the numerator. - ,

r,-;-fta.ke‘n twice, gives 1;

. So that < % taken thrice, gives 2;

3 taken 4'times,~ gives 3.

And, in general, if we muluply the fractron 3 by

the number b the product ‘must be a, as we have

already shown; for since 7 expresses the quotient re-

b
sulting from the division of the dividend & by the di-
visor b, and because ithas been demonstrated that the '
quotient multiplied by the divisor will give the di-
vidend, it is evident that ‘—;'multipli‘ed by & must pro-
duce a. o o

103. Having thus shown how a fraction is to be
multiplied by an integer ; let us now consider also how
a fraction is to be divided by an integer; this inquiry
is necessary before we proceed to the multiplication
of fractions by fractions. Itis evident, if we have to
divide the fraction % by 2, that the result must be §;
and that the quotient of ¢ divided by 3 is 2. The
rule therefore is, to divide the numerator by the in-
teger without changing the denominator. Thus: '

12 .. . . 6
25 divided by 2 gives 5

12 4 Y N
-2—5-div1ded by ?gl_vé’én—s" and
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23 2 divided by 4 gwes o5 &c.

. ~104. Thls rule may be easily. pra«.tlsed provnded
the numerator be divisible by the number proposed;

but very often it is not: it must therefore be ob-
served that a fraction may be transformed into an
infinite number of other expressions,.and in that
number there must be some by which the numerator
might be divided by the given integer. If it were re-
quired, for example, to divide 3 by 2, we should
change the fraction into 4, and then. dividing the nu-

. merator by 2, we should 1mmed1ately have § for the

quotient sought. -
In general if it be proposed to divide the fraction

=, and then dividing the nu-
b lzc

merator ac by ¢, write 7o “ for the quotient sought.

105. When therefore a fraction ’z’ is to be divided |

\ by an intéger ¢, we have only to multiply the deno-

minator by that number, and leave the numerator as
itis. Thus § divided by 3 gives %, and % dmded -
by 5 5_1ves oo

This operation becomes easier when the nuinerator
itself is divisible by the integer, as we have supposed
in.article 103. For example, 1% divided by 8 would

give, according to our. last rule, % ; but by the first

rule, which is applicable here, we obtain 1%, an ex-
pression equivalent to 5%, but more simple. :
106. We shall now be able to understand how one

fraction g may be multiplied. by another fraction %
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. d
means that ¢ is divided by d; and on this principle

we sbali first muitip]y the fractiop %by c which pro-

duces tbe result 7 after whlch we shall divide by a'

W c
Hence the following rule for multxplymg fractions.

which nges

~ Multiply the numerators together for a numerator,

and the denominators together for a denommator

Thus = by glves the product & or;
8 .
= by makes 13

3 by — produces 15 , OF -1—6- &ec..

107. 1t now remams to sbow how one fraction may

~ be divided by another. Here we remark first, that if

the two fractions have the same number for a denomi-
nator, the divisien takes place only with respect to
the numerators; for it is evident, that -3; are con-
tained as many times in' % as 3 is contained in- 9;

that is to say, three times ; and, in the same manner, . .

in order to divide -2 by %, we have only to dmde 8
by 9, which gives 3. We shall also have % ini$, 8
times: +15 in %%, 7 times; % in &, £, &c. -
. 108. But-when the fractions have not equal de-
nominators, we must have recourse to the method
already mentioned for reducmg them to a common
denominator. Let there be, for example, the frac-

tion & 3 to be divided by the fraction 5 we ﬁrst reduce.
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"them to the same denominator, and there results ‘Z%l to
be divided by ZZ, it is now evident that the quotient
must be represented snnply by the division of ad by

bc; .which gives %‘g ‘

Hence the following rule : Multiply the numerator =
of the dividend .by the denominator of the divisor,

" and the denominator of the dividend by the nu-

" merator of the divisor; then the first produc; will be

. the numerator of the quotient, and the second will be
" its denominator.

© 109. Applying this rule to the division of £ by z,
we shall have the quotlent 135 ‘also the dmslon of 3
-by 4+ will | give $ or 3, or 14; and £§ by 4 will give

Heorg

110. This rule for division is often expressed in a
manner that is more easily remembered, as follows:
TInvert the terms of the divisor, so that the denomi-

‘nator may be in the place of the numerator, and

‘the latter be written under the line; then multiply
the fraction, which is the dividend by this iaverted,

* fraction, and the product will be the quotient sought.
Thus 4 divided by 4 is the same as $ multiplied by £,
which makes ¢, or 1}. Also £ divided by £ is the
same as £ multnplned by 4, which is 1%; or %% di-
vided by % gives the same as $§ multiplied by %, the

product of which is 343, or §.

We see then, in general, that to divide by the frac-
tion 4 is the same as to multiply by %, or 2; and
that dividing by 4+ amounts to multlplymg by 4,

by 3 &c
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111. The number 100 divided by 4 will give 200;
- and 1000 divided by % will give 3000., Farther, if
. it were required to divide 1 by +4, the quotient

would be 1000 ; and dividing 1 by 1%+, the quo- - -

tient is 100000. This enables us to conceive that,
when any number is divided by 0, the result must be
a number indefinitely great; for even the division of 1
by the small fraction 555555555 gives for the quo-
tient the very great iumber 1000000000. -
112. Every number when divided by itself pro-
ducing unity, it is evident that a fraction divided by
itself must also give 1 for the quotient ; and the same - .
follows from our rule: for, in arder to divide $ by 3,
we must multiply 4 by 4, in which case we obtam 1g,

or 1; and-if it be required to divide 3 by 7 e m_ul_-

tiply% by g;- whén‘e the pmduct% is also equal to 1.

113. We have still to explain an expression which
is frequently used. It may be asked, for example,
- what is the half of §; this means, that we must mul-
tiply 3 by 1; so likewise, if the value of % of £ were
required, we should multiply £ by %, which produces
1%; and § of % is the same as % multiplied by ¢,
which produces —i—"

114. Lastly, we must here observe, with respect
to the sigus -+ and —, the same rules that we before

laid down for integers. Thus +— multiplied by *..-,

makes —1; and -3 multlphed by --—, gives +_,,

6)
VOL, I. . "E

~
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'.Farther . dmded by + makes — :é, and _Z

ldlv;ded by -Z’ makes +'-—, or 41.

— CHAP. XI. -
.0f Square Numbers.

115. The product of a nymber, when multlplled
by itself, is called a square; and, for this reason, the
* pumber, considered in relation to such a product, is.
‘called @ square rost, For example, when we myl-
tiply 12 by 19, the product 144 is a square, of which
the root is 12.

The origin of this term is borrowed from geonwtry, ~

.which teaches us that the content of a_square is
found by multiplying its side by itself. -+
116. Square numbers are found therefore by mul-
tlphcatlon thatis to say, by multxplymo the root by
* itself; thws 1 is.the square of 1, since 1 multiplied
by 1 makes 1; likewise, 4 is the square of 2; and 9
. the square of 3; 2 also’is the rqot of 4, and 3 is the
root of 9.
" We shall begin by consndermg the squares of
the nagyral numbers, and for this purpose shall give
© the following small table, on the first line of which
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several nombers, or roots, are: ranged, and on the'
second their squares*.

- [Numbers- ] T[ 23] 4] 5] 6} 7| 8] 9] 10] 11]

19 1| -
Squares. | 1] 4|0 |16]25|3649l64|81|100]121|144|169

117. Here it will be readily perceived that the series
of square numbers thus arranged has a singular pro-
perty; mamely, that if each of them be subtracted
from that which lmmednately follows, the remainders
always increase by 2, and form this series;

3,5 7, 9 11, 13, 15, 17, 19, 21, &c.
which is that of the odd numbers.

- 118. The squares of fractions are found in the
same manner, by multrplymg any glven fraction by

itself, Fm example, the square of — lsl

4
(1 L
3 . 9
. - 3 4,
- The square of < ?; is ‘?
3 9
L&) 16 ke.

We have ouly therefore to dmde the square of

* We have very comp]ete tables for the squares of natural
numbers, published under the title « Tetragonomema Tabularis,
&c. Auet. J. Jobo Ludelfo, Amstelodami, 1690, in 4to”’ These
tables are continued from 1 to 100000, not only for finding those
squares, but also the products of any two numbers less than
100000 ; not to mention several other uses which are explamed
in the mtroducnon ta the work F.T. ° .

E2
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. the numerator by the square of the denommator, and

the fraction which expresses. that division, will be
‘ . . 25 .
the square of -the ,given fraction; thus, o is the

' 25
square of - —; and recnpnocally, is the root of 62

119. W hen the square of a mtxed number, or a’
_number coposed of an mteger and a fraction, is re-
quired, we have only to reduce it to a single frac-
tion, and then take the square of that fraction. Let
it be required, for example, to find the square of 24
we first express this number by £, and taking the
square of that fraction, we have %-5 or 61, for the
value of the square of 247 also to obtain the square
" of 3}, we say 3% is equal to 12?; therefore its square
is equal to 189, orto 10y%. The squares of the
nambers between 3 and 4, supposing them to in-
‘crease by one fourth, are as follows :

Numbers. [3] 3% | 34| 3% | 4
Squares. | 9] 10% | 124 | 14:% | 16

From this small table we may iofer, that if a root
contain a fractien, its square also contains one. Let
the root, for example, be 15 its square is 282 or
9+%15; that is to say, a little greater than the in-
tegel Q. ’

1£0. Let us now proceed to general expressions.
First when the root is @, the square must be ag; if
the root be 2a, the square is 4¢a; which shows that by
doubling the root, the square becomes 4 times greater; -
also if the root be 3a, the square is 9aa; and if the
root be 4a, the square is 1Gaa.” Farther, if the root be
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ab, the square is agbb; and if the root be abc, the
square is aabbcc. .

121. Thus, when the root is composed of two, or
more factors, we multiply their squares together;
and reciprocally, if a square be composed of two, or -
mere factors, of which each is a square, we have
only to multiply together the roots of those squares,
te obtain the complete root of the square proposed; -
thus, 2304 is equal to 4X 16X 36, the square root
of which is 2)XX4X6, or 48; and 48 is found to
be the true square root of 2304, because 48)(48
gives 2304.

199, Let us now consxdcr what must be observed o

on this subject with _reggrd to the signs 4+ and ~,
First, it is evident that if the root has the sign +,
that is to say, is a positive number, its square must
necessarily be a positive number also, because 4+ mul-
tiplied by + makes 4- : hence the square of +awijll

be 4-aa : but if the root be a negatlve number, as —a, . .

the square is still posmve for it is 4-aa; we maythere-
fore conclude, that 4-aa is the square both of 4@ and
of —a, and that consequently every square has two
roots, one positive and the other negative : the square
- oot of 5, for example, is both +5 and —5, be- -
cause — 5 multiplied by —5 gives 25, as wel] as +5
by +5. . |
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CHAP. XII

Qf Square Roots, and of Trrational’ Numbers
resulting from them.

123. What we have said in the preceding chapter
amounts to this; that the square root of a given
number ‘is that number whose square is equal to
the given number ; and that we may put before those
roots either the positive or'the negative sign.,

124. So that when a square number is given, pro-
vided we retain in our memory a sufficient number
of square numbers, it is easy to find itsroot ; thus, if
196, for exampie, be the given number, we know that
its square root is 14.

FPractions, likewise, are easily managed in the-same

way; it is evident, for example,;ihat; ,i&':the. square
rdot of z—g; to be convinged of which, we bave only ‘
to take the square root of the numerator and that

of the denominator. -
If the number proposed be a mixed number,

121 we reduce it to a single fractmn, whxch here is

" ? and from this we immediately perceive that -g

or 3-2 must be the square root of 121..

125. But when the given number is not a square, °
as 12, for example, it is not possible to extract its.
-square root, or to find a number which; 'multiplied
by itself, will give the product 12. We know, how-
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ever, that the square roetof 12 niust be greater than
3, becausé 3X 3 produces only 9; ard less than 4,
because 4X 4 produces 16, which is more than 12;

we know also, that this root is less than 3%, for we

have seen that the squareof 3 org-’is 12%;‘ and’

we may approach still nearer to this root, by com-
paring it with 31 for the square of 31, or of

52 2704 4 o’
is =— 19——; so that t f action is ‘stilk
15 g5 °F 2225’ at this fr Y

greater than the root required, though but very little.

80, as the dnfference of the two squales is only —4-5 _

126. We may suppose that as 3— and 315 are -

’ numbers greater than the root of 12, lt mxghtbe pos- -

sible to add to 3 a fraction & Little less than "17:5" and

_ precisely such, that the square of the sum would be
equal to 12.

Let us therefore try with 3—7~, siﬁce'; is a’little- l‘ess '

: than T75 ., Now 3; is equal to -g-;—', the s'qu.are of
. ) L 12 L
which is i .and consequently less by yr: than 12,

which may .be expressed by %‘i ‘I is" therefore, -

proved that 3? is less, and that;}{g is érea,tér' than - ,.

>
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- the root required Let us then try a number alittle
greater than 3; “but yet less than 313 7 for example,

3»15—1; this number, which is equal to ﬁ’ has for
its 5‘1“51'34%4;4—; and, by reducing 12 to this de-

" nominator, we obtain

1452 hich shows that 3> is
21 ST
‘still less than the root of 12, viz. by I—ZT; let us

- therefore substitute for % the fraction%, whichisa
little greater, and see what will be the result of the
comparison of the square of 3% with the proposed

6 2025

number 12. Here the square of 3
. 169

and 12

" reduced to the same denominator is ?1265’_;; so that

| s% is still-too’ small, though only by _1%, whilst

7 has been found too great.

127. It is evident, therefore, that whatever frac-
tion be joined to 3, the square of that sum must al-
ways contain a fraction, and can never be exactly
equal ‘to the integer 12; thus, -although we know

 that the square root of 12 is greater than 3—% and

less' than 3%, yet we are unable to assign an inter- .
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mediate fraction betweén these two, which, at the
same time, if added to 3, would express exactly the
square root of 12; but notwithstanding this, we are
not to assert that the square root of 12 is absolutely

and in itself indeterminate ; it only follows from what

has been said, that this root, though it necessarily has

a determinate magmtude, cannot ‘be expressed by

fractions. (2.)

128. There is therefore a sort of numbers which
cannot be assigned by fractions, and which are never-.
theless determinate quantities ; as, for instance, the
square root of 12; and we call.this new species of
numbers, irrational numbers ; they occur whenever we
endeavour to find the square root of a number which
is not a square ; thus, 2 not being a perfect square,
the square root of 2, or the number which, multi-
plied by itself, would produce 2, is an irrational
quantity. These numbers are also called surd quan-
tities, or incommensurables.

129. These irrational quantities, though they can-
not be expressed by fractions, are nevertheless mag-
nitudes of which we may form an accurate idea;
for however concealed the square root of 12, for
example, may appear we are not lgnorant that it
must be a number which, when multiplied by itself,
would exactly produce 12; and this property is suf-
ficient to give us an idea of the number, since it is in our *
power to approxlmate towards its value continually.

130. As we are therefore sufficiently acquainted
with the nature of the irrational numbers, under our
present ‘consideration, a particular sign has been
agreed on to express the square roots of all numbers
that are not perfect squares; which sign is written
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 thus v/, and is read square root. -Thus, v/ 12 repre-
_ sents the square root of 12, or the number which,
maultiplied by itself, produces 12; and +/2 represents’
the.square root of 2; +3 the square root of 3;

‘s/ 2 that of 2 3 and, in general va represents the

square root.of the number a. Whenever, therefore,
we would express the square root of a number which’
is: not a square, we need only make use of the mark
+ by placing it before the number.

131. The explanation which we have given of ir-
rational numbers will readily enable us to apply to
them the known methods of caleulation. For know-
ing that the square root of ¢, multiplied by itself,
must produce 2; we know also, that the multiplica-
‘tion of +/2 by +/2 must necessarily produce €; that,
in the same matiner, the multiplication of /3 by v/3:

‘must” give 3; that V5 by V5 makes 5; that ~/~

| by s/— makw 3 and in general that a/a mnlu-

plied by va produces a.

132. But when it is requued to muluply «/ a.
by +b, the product is +/ab; for we have already
shown, that if a square has two or more factors, its”
root must be composed of the roots of those factors ;
we therefore find the square root of the product ab
which is +/ab, by multiplying the square root of a,
" or v/a, by the square root of b, or vb; &e. It is
evident from this, that if 5 were equal to @, we should
have +/aa for the product of +a by vb. But vaa
is evndently a, since aq is the square of a.
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\ 188, In division, if i it were required, for example,

to divide \/ a, by vb, 'we obtain ;; and in this io-

stance the 1rmt|onahty may vamsh in the quotient; -
thus, having to divide +/18 by +/'8) the quotient is

«/ }E, which is reduced to s/g-: and

lethe square of-

sequently to’

) - because
2

154. When the number before which we have
placed the radical sign v/, is itself, a square, its root
is expressed in the usual way ; thus +/4 is the same
a5 2; /9 is the same as 3; ./36 the same as 6 and
«/122 the same as g, or 33. In these instances the
irrationality is only apparent, and vanishes of course.”
. 135: It is easy also to multiply irrational numbers .

" by ordinary numbers ; thus for example, 2 multiplied -
by v5'makes 2+/5; and 3 times +/2 makes 3v2;
in the second example, however, as 3 is equal to v/9,
we may also express 3 times ,/2 by +/9 multiplied
by v, or by +/18; also 2+ a is the same as v/4q,
and 3va' the same ag v/9a; and, in general, bv/a
has the same value as the square root of bba, or
¥bba; whence we infer reciprocally,. that when the
number which is preceded by the-radical sign con-
tains a square, we may take the root of that square
and put it before the sign, as we should do in writing.

" bv/a instead of «/bba. . After this, the following ve-.
ductions will be easily understood :
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~¥/8, or V3.4 ' ‘ r '2~/2;-
V12, or V34 R 2/3
V18, 0rvgg |. [ 3vV2;
V24, or Via s equalto+ 2vg;
V32, or v/9.16 we;
V75, 0r v3.25) SI4H
and so on.

136. Divisionis founded on the same principles, as

;/a_ divided by b gives :; i s/ 7. . Inthe same

_* manner,
ﬁ? (\’g, or v4, or 2;
V2 ‘
Vi1t .
7—:§ +is equal to< 122, or ~/9, or3;
s/SJ‘ 3. or V4, or 2..
Lo 2 (V4 3
lj‘g_tthﬂ ~s v or M—, orvg;
3!, v . 9
75 risequaltoq ikl ¢~, or ~'/3-
‘12 . Vv 144 144
—= < V24,
V6 Ty

or V6X4, or lastly 2v6.

137. There is nothing in partlcular to be observed
in addition and subtraction, because we only connect.
the numbers by the signs 4 and — : for example,
- /2 added to /3 is written +/2+4-+/3; and +/3 sub-
tracted from /5 is written /5—4/3. .

138. We may observe lastly, that in order to di-
. stinguish the irrational numbers, wé call all other.
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numbers, -both integral and-fractional, rational num-

bers ; so that, whenever we speak of rational num-
bers; we understand integers or fractions. '

N

CHAP. XIII,

Of Impossible, or TImaginary Quantztzes, which arise
Jrom the same source.

139. We have already seen that the squares of
numbers, negative as well as positive, are always
positive, or affected by.the sign 4 ; having shown
that —a multiplied by —a gives -+aq, the same as
the product of 4-a by +a; wherefore, in the pre-
ceding chapter, we supposed that all the numbers, of
which it was required to extract the square: roots,”
were positive.

140. When it is required, therefore, to extract
the root of a. negatlve number, a great difficulty
arises; since there is no, a351gnable number, the
square of which would be a negative quantity ; sup-
pose, for example, that we wished to extract the root
of —4; we here require such a number as, when
multiplied by itself, would produce —4; now " this
number is neither 4-2 nor —2, because the square .

~ both of 4-2 and of —2, is +4, and not —4.

141. We must therefore conclude, that the square
root of a negative number cannot be either a positive
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number or a negative number;. since the squares of
negative numbers also take the sign plus; conse-
quently the root' in question must belong to an en-
tirely distinct species of numbers ; since it cannot be
ranked either among positive or among negatlve

_numbers. .

142. Now we before remarked, that posmve num-
bers are all greater than nothing, or 0, and that nega-

* tive numbers are all less than nothing, or 0; so that

whatever exceeds O is expressed by positive numbers,

and whatever is less than 0 is expressed by negative

" numbers: the square roots of negative numbers,
therefore, are neither greater nor less than nothing;
yet we cannot say, that they are 0; for 0 multiplied

‘by 0 produces 0, and’ consequently does not gwe a
negative humber. -

143. And, since all numbers whxch it is possxblo
to conceive are either greater or less than 0, or are 0

itsélf, it is evident ‘that we cannot. rank the square

root of a negative number amongst possnble numbers;
énd wé must therefore say that it is an impossible
quantity. In this manner we are led to the idea of

numbers ‘which from their nature are impossible,

-which numbers are usually called imaginary quanti-
ties, because they exist merely in the imagination.-
144. All such expressionsas v/ —1; v/ —9, v/ =3,
+ —4, &c. are consequently impossible, or imagimy
numbers, since they represent roots of negative.quan-
- tities: and of such numbers we may truly assert that,
they are neither nothing, nor greater than nothing,
nor less than nothing; which necessarily constitites
them imaginary, or impossible.
345. But notwithstanding this; these nutnbers pre-
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sent tbemselves to the mind; they exist in .our
lmagmatlon, and we still have a sufficient idea of
them; since we know. that by v —4 is ‘meant a num-
bér which, 'multiplied by itself, pxoduces —; for
this reason also, nothing prevents us from makmg use
of these imaginary numbers, and employing them in
calculation. - ‘

146. The ﬁrst idea that occurs on the present
subject is, that the square of +/ — 3, for example; of-
the product of +/—3 by +/—3, must be —3; that
the product of ,/—1 by +/—1is —1; and, in gene-
ral, that by multiplying v/ —a by v'—a, or by ta.l\mg i
the square of v/ —a we obtain —a. -

147. Now, as —a is equal to +a multxphed by

=1, and as the square root of a product is found

by multiplying together the roots of its factors, it
follows that the root of ¢ times —1, or +/—a, i3

equal to /¢ mltiplied by v—1; but Ve is a

possible or real number, consequently the whole im-
possibility of an imaginary quantity may be alw ‘ays

-reduced to +/—1; for this reason, +'—4 is equal
10 +/4 multiplied by +/—1, or equal to 2v —1,

because +/4 is equal to 2; likewise —9 is reduced
to «/9)(«/-1, or 3/ ~1; and ¥/ —16 is equal to.
4 =1

148. Moreover, as va mulnplled by v makes\
vab, we shall have v 6 for the value of v/ —2 mul-
tiplied by o/ — 3 ; and /4, or 2, for the value of the
product of +/~1 by /' —4; thus wé see, therefore, -
that two_imaginary. numbers, multiplied together,
Produce a real, or possible one.

But, on’ the contrary, a possible numben, muln~
phed by an impossible number, gives always an
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- imaginary ploduct. thus, «/—3 by «/+5 gives
v =15.
149. . It is the same wnh regard to dmsnon for

v/a" divided by +/6 making V3 7 it is evident that

v —4 divided by +'—1 will make v +4, or 2;
that +/+3 divided by +—3 will give v —1; and
that 1 divided by v/—1 gives v':_'_'_;,‘ ar v/~ 1; be-
cause 1 is equal to v/ +1.
'150. We have before observed, that the square
~ root of any number has always two values, one posi-
tive and the other negative; that'+/4, for example,
is both +2 and'—2, and that, in general, we may
‘take —+/a as well as ++a for the square root of a.
This remark applies also to imaginary numbers; the
square root of —a is both 4+ —a ‘and —v/ —a;
but we must not confound the signs 4 and —, which
are before the radical sign v/, wnth the sign which
comes after it. -
151. It still remains for us to remove any doubt
which may be entertained concerning the utility of the

numbers of which we have been speaking ; for those
numbers bcmo impossible, it would not be surprising

if they were thought entirely useless, and the objeet
only of an unfounded speculation; this, however.
-would be a mistake ; for the calculation of imaginary
quantmes is of the greaté¢st importance, as questions
frequently arise, of which we cannot immediately say
whether they include any thing real and- possible, or
not; but when the solution of such a question

leads to imaginary numbers, we are certain that. what

is required is impossible.
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In order¥d Wllasfrate what we Bave'said by anex-
ample, suppose it were propused to divide the num.’
ber 12 into two such parts, that the product of those
parts inay be 40.  If we resolve this question by the
ordinary rules, we find for the parts sought 64-v'—4
and 6—+' —4; but these numbers being imaginary,
we conclude, tha.t it is 1mpossnble to resolve the
question.

The difference will be easily perceived, if we'sup-
pose the question had been to divide 12" into two
parts which multiplied together would produce 35;
for it is evident that those parts must be 7 and 5.

CHAP, XIV.
. Of Cubic Numbers.
152. When a number has been multiplied twice

by itself, or, which is the same thing, when the square
of a number has been multiplied once more by that

"number, we obtain a product which is called = cube,

or a cubic number. Thus, the cube of a is aaa, since

-itis the product obtained by multiplying 4 by itself,

or by a, and that square aa again by a.
- The cubes of the natural numbers, therefire, suce-
ceed each. other in the following order®:

* We are indebted to a mathematician of the name of J. Paul
Buchner, for tables published at Nuremberg in 1701, in which

wre to be found the cubes, is well arthqumsottll Zwnben
from 1 to 12000. FT

VOL. 1. ' O F

‘
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s |'1 3[¢] 51617 10
Cubes | 1 | 8 |27|64{125|216]343|512|729]1000

. 153. If we consider the differences of those cubes,

. 3s we did of the squares, by subtracting each cube
from that which comes after it, we obtain the followmg
series of numbers: .

7, 19, 87, 61, 91, 127, 169, 217, 271.
Where, we do not at first observe any regularity in
them, but if we take the respective differences of
these numbers, we find the following series:

’ 12,-18, 24, 30, 36, 42, 48, 54, 60;
in which the terms, it is evident, increase always
by 6. - ,
154. After the deﬁnmon we have given of a cube, it
will not be dxfﬁcult to find the cubes of fractional pum-

bers; thus, is the cube of 217 is the cube -of -;-

and —7 is the cube of 3 and in the same manner, we

.,

have only to take the cube of the numcrator and that-
of .the denominator separately, and we shall have-

27 for the cube of =,

155. If it be reqmred to find the cube of a mixed
number, we must first reduce it to a single fraction,
- -and then proceed in the manner that has been de~

scribed. To ﬁn‘d, for example, the cube of 1%, we

‘must take that of §’ which is %Z, or Bg, also

-———— - . e - e

the cubé of 1 , O of the smgle fractlon 2’ is 36‘27‘»5’ or
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lg-%, and the cube of3 or 13 i32197 r34a
156. Smce aaa is the cube of a, that of ab.will be -
.aaabbb ; whence we see, that if a number has two or
‘more factors, we may find its cube by multiplying to-
gether the cubes of those factors; for example, ' as
12 is equal to 3X4, we multiply the cube of 3,
which is 27, by the cube of .4, which is 64, and we
obtain 1728, the cube of 12; and farther, the cube of
2a is 8aua, and consequently 8 times greater than
the cube of a; and likewise, the cube of 3a is'@7aaa,
that is to say, 27 times greater than the cube of «.
157. Let us attend here also to the sigis + and
-—. Tt is evident that the cube of a positive number
+a must also be positive, that is 4-aaa; but if it
be required to cube a negative number —a, it is
found by first taking the square, which is 42, and
then multiplying, according to the rule, this square
by —a, which gives for the cube required —aaa.
In this respect, therefore, it is not the same with
cubic numbers as with squares, since the latter-are
always positive; whereas the cube of —1is -1,
that of —2 is —8, that of —3 is —27, and s0 on.

l

"CHAP. XV.

Of Cube Roots, and of Irrationai- Numbers 1 e.mltmg
© from them.

158. As we can, in the ‘manrer alrea.dy ex-

. plained, find xhe cube of a given number, so, when

F 2
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a number i proposed we may also reciprocally
find a number, which, multiplied twice by itself, will
produce that number. The number here sought is
calléd, with relation to the other, the cube ropt ; so
that the cube root of a given number is the number
.whose cube is equal to that given number.

159. It is easy therefore to determine the cube
root, when the number proposed is a feal cube, such
as in the examples in the last chapter; for we easﬂy
‘percéive that the cube root of 1 is 1; that of 8is 2;
that of 27 is 3; that of 64 is 4, and s0 on. And, in
the same manner, the cube root of —27 is —3; and
. that of —1251is —35.
ther, if the proposed number be a fraction, as
64

343

-2—7- the cube root of it must be —; and that of
is ;’ Lastly, the cubc toot of a mixed number 259 :

must bg %,_ or 1; because 2%(7—) is equal to g:

160. Butifthe proposed number be not a cube, its
cube root cannot be expressed either in integers, or i
fractional pumbers; for example, 43 is not a cubic
number; therefore it is impossible to assign any -
number, either integer or fractional, ‘whose cube
- ghall be exactly 43 ; we may however affirfn, that the

cube root of that number is greater than 3, since the

“cube of 3 is only 27; and less than 4, because the cube
of 4. is 64; we know therefore, that the cube root
‘required is necessarily contained between the numbers
3and 4.

: 161. Since. the cube root of 43 is greater than 3,
i we. add a fraction to 3, it is certain that we may




~ read cube root, to distinguish it from the square root,
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approxlmate still nearer and negrer to the true value

. of this oot; but we can never pssign the number

which expresses the valye exactly; because the cube
ofa mixed number can never be perfectly equal to an
integer, such as 43; if we were to suppose, for ex-

ample, 3 or 5 7 to be the cube root required, the

error would be =; for the cube of 5 7 is only’ ?-ﬁ ‘or

7.

162 This therefore shows, that the cube root of
43 cannot be' expressed in any way, either by inte-

gers or by fractions ; still however we have a distinct .

idea of the magnitude of this root; which' induces
us to use, in order to represent it, the sign ¥/, which
we place before the proposed number, and which is

which is often called simply the root; thus /43

‘means the cube root of 43, that is to say, the number

whose cube is 43, or which, multiplied by itself, and
then by itself again, produces 43. -
163. Now it is evident that such expressions can-

not belong to rational quantities, but that they rather

form o particular species of irrational quantities:
they have nething in common with -square: roots,
and it is not possible tp express sueh a cube root by
8square root; as, for example, by +/12; for the
square of +/ 12 being 12, its cube will be 12v1¢2,

consequently still irrational, and cannot therefore be |

equal to 43. .
164. If the proposed number be a real cube, our

expressions become rational; thus,¥/1isequal to 1;
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V'8 is.equal to 2; ¥/27 is equal to 3; and, _gene-

- rally, Vaaa is equal to a. i

" 165. If it were proposed to multlply one cube
'root, ¥a, by another, ¥4, the product must be ¥/ab ;

for we know that the cube root of a product ab is -

found by multiplying together the cube roots of the

factors. Hence, also, if we divide ¥/a by ¥/5, the

quotient will be V 4

166. We farther perceive, that 2¥a is equal to
'¥/8a,-because 2 is equivalent to ¥/8; that 3Va is
equal to ¥/27a, and l¥/a is equal to ¥abbb; and,
reciprocally, if the number under the radical sign has.
a factor which is a cube, we may make it disappear
" by placing its cube root before the sign; for ex- °
ample, instead of ¥/64a we may write 43/a; and
5¥a instead of ¥/125a: hence /16 is equal to
2V 2, because 16 is equal to.8 2.

167. When a number- proposed is negative, its
. cube Toot is not subject to the same difficulties that
_occurred in treating of square toots ; for, sirice the
cubes of negative numbers are’negative, it follows
that the cube roots of negative numbers are also
negative ; thus ¥/ —8 is equal to —2, and ¥/ —27
to —3; it follows also, that 3/~ 12 is the same as
~3/12, and that ¥ —a may be expressed by —¥/a;
whence we sec that the sign —, when it is found
after the sign of the cube root, might also have been .
" placed before it.  We are not therefore led here to
impossible or imaginary numbers, which happened in
considering the square roots of negative numbers,
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CHAP. XVI.

Qf Powers in general.

168. The product which we obtain by multiplying a
number once or several times by itself, is called a pozw-
er. Thus, a square which arises from the multiplica-
tionof a number by itself, and a cube which we obtain
by mulnplymg a number.twice by itself; are powers.
We say also in the former case, that the_ number is
raised to the second degree, or to the second power;
and in the latter, that the number is ralsed to the
third degree, or to the third power.

169. We distinguish those powers from one
another by the number of times that the given number
bhas-been multiplied by itseif. For example, a square
is called the second power, because a certain given
number has been multiplied by itself; and if a num- -
ber has been multiplied twice by itself we call the pro-
duct the third power, which therefore means the same
as the cube; also if we multiply a number three times

- by itself we obtain its fourth power, or what is com-
. monly ealled the bxquadrate and thus it will be easy

to understand what is meant by the fifth, sixth, se-
venth, &c. power of a number. I shall only add,

. that powers, after the fourth degree, cease to have
_any other but these numeral distinctions.

170. To fllustrate this still better, we may observe,
in the first place, that the powers of 1 remain always
the same; because, whatever number of times we
multiply 1 by itself, the product is found to be always
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.1 We shall therefore begin by representing the
~ powers of 2 and of 3, which succeed each other as
in the following order :

Powers. - Of the number 2 Of the number .L
1st 2 3
ed 4| 9
8d 8 o7
4th » 16 81
Sth S2 . 243
6th 64 729
7th |’ - 128 2187
sth _ 256 6561
gth , 512 . 19683
J0th 1024 59049
11th : 2048 177147
12th 4096 531441
13th ' 8192 15943823 -
Y4th 16384 4782969
15th 82768 14348907
16th. 65536 43046721
17th 131072 129140163
18th 262144 387420489

But the powers of the number 10 aré the most re-
matkable; it being on ‘these powers that the system
of our arithmetic is founded; a few of them ranged
in order, and beginning with- the first power, are as
follow: .

1st 2d 8d 4th . sth = 6th
10, 100, 1000, 10000, 100000, 1000000, &c. -

. 171. In'order to illustrate this subject, and ¢o con-
sider it in a more general manner, we may observe,
that the pawers of any number, 4, suceeed each other
* in-the followmg order: :
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1st ' 2d -3d 4th_ Ssth  Gth
a, @a, aaa, aaaa, aaada, aaqaqad, &c.
But we soon feel the inconvenience attending this
manner of writing the powers, which consists in the
necessity of repeating the same letter very often, to
express high powers ; and the reader also would have’
no less trouble, if he were obliged to count all the let-
ters, to know what power is intended to be represented.
The bhundredth power, for example, could not be
conveniently written in this mamer; and it would be
equally difficult to read it.
. 172. To avoid this i mconvemence, a much more
oommodxous method of expressing such powers has
been devised, which from its extensive use deserves to
be carefully explained. Thus, for example, to express
the hundredth power, we simply write the number 100 -
above the quantity whese hundredth power we would
express, and a little towards the right-hand; thus
4 represents g raised to the 100th power, or the
hund:edth power of 2. It must here also be observed,
that the name exponent is given to the number written
above that whose power, or degree, it represents, and
which in the present instance is 100.
17S. In'the same manner, ¢° signifies a raised to
the 2d power, or the second power of 4, which we .
represent sometimes also by aa, because both these
expressions are written and understood with equal
facility; bat to express the cube, or the third power
aaa, we write &°, according to the rule, that we may
occupy less room; so a* signifies the fourth, d‘ thc
fifth, and a° the sixth power of a.
174. In a word, the different powers of  will be re-
presented by q, @°, a’, a, @, &, a'y &, a’; a¥, &c.
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Hence we see that in this manner we might very
properly have written &' instead of @ for the first
_tenin, to show the ordet of the sefies more clearly :
in fact @' is no more than a, as this unit shows that
the letter a is to be written only once.  Such a series
of powers is called also a geometrlcal progression, -
because. each term is one-tlme greater than the
preceding. '
175. As in this series of powers- eash term is
~ found by multiplying the preceding term by @, which

* -increases the exponent by .1; so when any term is

given, we way also find the preceding one if we di--
- vide by @, because this diminishes the exponent by 1.
- This shows that the term which precedes ghe first

. a .
. term a' must necessarily be 2 or 1; and, if we pro-

ceed according to the exponents, we immediately
conclude, that the term which precedes the first must
be ¢°; and hence we deduce this remarkable property,
that o° is always equal to 1, however great or

. small the value of the number z may be, and even

when. a is nothing ; -that is to say; a° is equal to 1.
" 176. We may also continue our series of powers
in a retrograde order, and that in two different ways ;
first, by dividing.always by a; and secondly, by di- -
minishing' the exponent by unity; end it is evident
that, whether we follow the one or the other, the
terms are still perfectlv equal. This decreasing se-
ries is represented in both forms in the following
table, which. must be 1ea,d backwards, or from right

T to left.
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1 1 BRI ERE
acaaaa | asaaa |agaa| aua| aa' | a
, - 1 1 1 1 1 1
| = | = | 3lsl—|=
. 1s a® a’ a*| a3fte | a
o ad. a—6| a—>5 |a—4|a—3|a—3|a—11a° |4’

177. We are now come to the knowledge of = -
powers whose exponents are negative, and are en-
abled to assign the precise value of those powers.
Thus, from what Yas been said, it appears that

a® 15
1 l. .
a t-l’ .
14 .
2 —, OF —;
T Visequalto{.aa’ ~ a&*’
1 .
a=? ‘ a7;
1 . ..
a—t ] tL L?"-&'c"

178. It will also be easy, from the foregoing nota-
tion, to find the powers of a product, ab; for they must:
evidently be b, or a'b', a’h’, a°F, a*b*, a°b, &c.
and the powers of fractions will be found in the same

b
L a @ & & & d
Y T - T S ‘ ,
179. Lastly, we have to consider the powers of
negative numbers.  In which case suppose the given
number to be' —~a; then'its powers will form the fol- -
Jowing series: - -
» -—a, +ad°, =a’, +a*, —a°, +a° &c.
‘Where wemay observe, that those powers only become

. a .
manner ; for example, those of — are

&ec.
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negative, whose exponents are odd numbers, @nd that,

.on the contrary, all the powers, which have an even

number for the exponent, are positive.  So that the

third, fifth, seventh, ninth, &c. powers have all the

sign — ;' and the setond, fourth, sixth, eighth, &c.
powers are affected by the sign 4-..

CHAP. XVII.
Of the Calcudation of Powers.

180. We have nothing particular to observe with
regard to the addition and subtraction of powers;
~ for we only represent those operations by means of
the s)gns + and —, when the powers are different; -
for example, a*+a® is the sum of the seeond and
third powers of a; and a*—a* is what remains whea
we subtract the fourth power of a from the fifth; and
- meither of these results can be abridged; but when
we have powers of the same kind or degree, it is f:vi-
dently unnecessary to connect them by sigus;
&°+a® becomes 24°, &c.-
181. But in the multlphcatlon of pOWers, several
circumstances requu'e attention.
First, whea it is required to mulhply any power
of a by a, we obtain the sucoeedmgpowu' that is to
_say, the power whose exponent is greater by an
unit; thus a® multiplied by 4, produces «°; and
o°, multiplied by 4, produces a*: and, in the same -
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manner, when it is required to multiply by a the
powers of - that number which have negative expo-
nents, we must add 1 to the exponent; thus a¢—!
multiplied by a produces a® or 1; which is made

more evident by considering that o= is equal to zlz’
and that the product Vof -;1— by @ being :—i, it is conse-
quently equal to-1; likewise a—* multiplied by &,
produces =1, or ;ll-; and 4~ multiplied by @, gives,

a= and so on. ‘

182. Next, if it be reqmrcd to multlply a power
of a by a* or the second power, I say that the ex-
ponent becomes greater by 2; thus, the product of

a’ by a® is a*; that of o by @*is a°; that of a* by a*
“is °; and, more generally, ¢» multiplied by a® makes
a+%,  With regard to negative exponents, we shall
have a, or a, for the product of a— by a?; for a—

being equal to z_lz’ ‘it is the same as if we'had divided -

aa by a; consequently the product required is %‘f
or¢; also a—*, multiplied by 4°, producesa®, or 1;
and ¢—2, multiplied by 4°, produces a—. -
183. It is no less evident, that to multiply any
power of 2 by &’, we must increase its exponent by
three units; and that consequently the product of a*

by @’ is a"+3 And whenever it is required to mul-

tiply together two powers of ¢, the product will be -
also a power of a, and such that its exponent will
be the sum of those of -the two given powers. For

~
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-example, o* multiplied by .4° will make %, and @ |
-multiplied by a” will produce ¢*, &c. ‘
184. From these considerations we may easily
-determine the highest powers. To find, for instance,
~ the twenty-fourth power of 2, I multiply the twelfth
power by the twelfth power, because 2% is equal to
2”X2”. Now we have already seen that 2' is
'4096; I say therefore that the number 16777216, or
the product of 4096 by 4096 expresses the power
required, 2°.
" 185. Let us now proceed todivision ; where we shall
remark, in the first place, that to divide a power of a
by @, we must subtract 1 from the expcnent, or di-
minish it by unity; thus, @° divided by « gives a*; and

’

a’,orl, “divided by a, is equal to ¢ or —;- also

‘@ divided by a, gives a—*.
186. If we have to divide a given power of @ by a?
we must diminish the exponent by 2; and if by a’
we must subtract 3 units from*the exponent of the
power proposed; and, in general, whatever pdwer of
aitis required to divide by any other power of «,
the rule is always to subtract tbe exponent of-the
second from the exponent of the first of those powers :
' thus ¢** divided by a7 will give ¢*; o divided by @7
will give a—*; and ¢~ divided.by a‘ will give a—7.’
'187. From what has been said abeve, it is easy to
understand the method of finding the powers of
powers, this being done by multiplication. When
we seek, for example, the square, or the secand power
of o we find a°; and in the same manner we - find
a' for the third power, or the cube, of a*; and to ob-
" ‘tain the square of a power, we have only to double
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. its exponent ; for its cube, we must’ tﬁple'the ex-
‘ponent; and soon; thus the square of a* is a**; the
cube of @ is @®; the seventh power of 4" is a?®, &ec.
~188. The square of @ ‘or the square of the square
of a, being a*, we see why the fourth power is called
the bi-quadrate: also, the square of &® being o*; the
sixth power has therefore recewed the name of the .
square-cubed: ' . .
Lastly, the cube of a® being % we call the ninth
power the cubo-cube : after this, no other denomina-
/tions of this kind have been introduced for powers;
' and indeed the two last are very httle used.

* CHAP. XVIIL
Of Roots, with relation to Powers in general.

189. Since the square root of a given-number is a
_ number whose square is equal to that given number;

and since the cube root of a given number is a num-
ber whose cube is equal to that giwen number’; it
follows that any: ‘number whatever being g given, we may
always suppose suchroots of it, that then' fourth, or _
their fifth, or' any other power of thatroot, may be

equal to the given number. To distinguish these dif-

_ ferent kinds of roots better, we shall, call the square
root, the second root; and the cube root, the third
700t; because according to this denomingtion :we
may call the fourth root, that whose biquadrate .is
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‘equal to & given number; and the fifth roof, that
whose fifth power is equal to a given number, &c.
190. As the square, or second root, is marked by
the sign v/, and the cubie or third root by the sign 3/,
s0 the fourth root is represented by the sign ¥/ ; the
fifth root by the sign ¥/ ; and so on. "It is evident
therefore that according to this method of expressiomn,
the sign of the square root ought to be/; but as of
. all roots this eccurs most frequently, it has -been
agreed, for the sake of brevity, to omit the number £
in the sign of this root. So that when a radical sign
has no number prefixed to it, this always shows that -
the’ square root is meant.
~ 191. To explain this matter still better, we shall
 here exhibit the different roots of the number a, with
their respective values:

vay - ed © - (a,

Val| 3d a,

Ya ris the< 4th >root of < g,

- ¥a| 5th ' a,’
Ya) | 6th J a, and so on.
* So that conversely,
The 2d va) a,
The 3d. Va )| a,
The 4th >power of < ¥/a >is equal to< a,
The 5th Va a,
The 6th Va: a,
.and so on.

. 192. Whether the number & therefore be great or
small, we know what value to affix to all these roots
of different degrees.
It must be remarked also, that if we subsmute
unity fof 4, all those roots remain constantly 1; be- -
cause all the powers of 1 have unity for their value,
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If the number a be greater than 1, all its roots will
also exceed unity. Lastly, if that number be less
than 1, all its roots will also be less than unity.

193. When the number ais positive, we know from
What was before said of the square and cube roots,
that all the other roots may also be determined, and
will be real and possible numbers.

But if the nimber @ be negative, its second fourth,
sixth, and all its even roots, become impossible, or

‘imaginary numbers; because all the powers of an evenr
order, whether of positive or of negative numbers, are
affected by the sign +: whereas the third, fifth,
seventh, and all its odd roots, become negative, but
rational; because the odd powers of negative num-
bers are also negative,

194. We have here also an inexhaustible source of
new kinds ef surds, or irrational quantities; for when-
ever the number a is not really such a power, as some

-one of the foregoing indices represents, or seems to
require, it is impossible to express that root either in
whole numbers or in fractionis; and consequently. i¢
must be classed among the numbers which are called

- irrational. : :

YOL.L . G
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CHAP. XIX

Of the Method of representing’ Irrational Nu,mbert
by Fractional E.z?cments '

. 195. We have shown in ihe preceding chapter,
that the square of any power is found by' doubling
the exponent of that power; or that, in general,
the square, or the second power, of a*, is a**; and the
converse also follows, viz. that the square root of
the power 4 is a», which is found by taking half
the exponent of that power, or dmdmg it by 2.

196. Thus the square root of ¢’ is a',or a; that of
@ js a*; that of ¢® is &°; and soon: and as this is
general 'the square root of @* must _necessarily be

a?., and that oans is a’ ; «consequently, we shall
have in the same manner & for'thé square root of

whence we see that' a% is . equal to ¥{@; which
new methog of representing the square root demands
particular attention.

197. We have also shown, that to find the cube of
a power as @*, we must multiply its exponent by 3,
and consequently that cube is a®".

Hence conversely, when it is required to. find the '
third, or cube roat, of the power a*, we have only to
divide that exponent by 3, and may therefore with
certainty conclude, thaf the root required is &™: cone
sequently a', or g, is the cube root of a*; 4* is that of
a’; a&° that of @°; and soon.

198. There is nothing therefore to prevent us from
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.

applying the same reasoning to those ¢ases m-which
the exporient is not divisible by 3, or from concludmg

that the cube root-of a? i is a3 and that the cube root
of & is: aa or a“, consequently, the third, or cube:
root -of 4; ‘or 4!, must be @ whence also it ap-

1. - .
pears that' @® is the same as ¥/a. ‘
199. It is likewise the same with roots of a higher’

degree: thus the fourth raot of @ will be a*, which
expression has the same value as ¥/ a; the fifth root

of a will be a", which is consequently equwalent
to ¥/a; and the same observation may be extended

to all roots of a higher degree.

200. We might therefore entirely reject the radlcal
signs at present made use of, and employ in their stead
the fractional exponents which we have explained;
but as we have been long accustomed to those signs,
and meet with them in most books of algebra, it might
be wrong to banish them entirely from calculation;
there is, however, sufficient reason alsa to emplay, as
is now frequently done, the other method of nota-
tion, because it manifestly corresponds with the naa
ture of the thing: in fact, we see immediately that

ot is the square roo't of a, because we know that the
squasé of a’ th:t is. tosay, & multlphedl)y a” !
equal to a', or a.

*-201. What has been now, v saidis sufficient to show

how we are to understand all other fractional expo-

s

nénts that s may occur: thusifwe have, for'examplé, a*,

this means, that we must ﬁrst take the fourth power
G2
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of a, and then extract its cube, or third root; so that

a” is the same as the common expression ¥/ ¢*. Hence,
' L]

to find the value of a*, we must first take the‘cube,v‘
. or the third power of a, which'is &°, and then ex-

. 3.
‘tract the fourth root of that power; so that a* is the

same as ¥/a°, and a“:' is equal to ¥/a*, &c.

202. When the fraction which represents the ex-
ponent exceeds unity, we may express the value of
the given quantity in another way : for instance, sup-

pose it to be a% this quantity is equivalent to 'a"}
which is the product of a* by a®: now a* being
equal to Va,itis evident that a¥ is equal to a*v/a%
;lsq a Y’ s OF a“, is equal to @* Va; ar;d alz’,_that

is, a°3, expresses a®*/ 4, These examples are suf-
ficient to illustrate the great. utility of fractional ex-

ponents. .
- 208. Then' use exzwnds also to fractional numbers :
foriftherebe given——, we know that this quantity is

equal to

Pt and we have seen already that gfraotion

of the form 7,1"; may be expressed by a™; so that in-
stead of t}awe may use the ex}inessioh a‘!’; andin the

same manncr,71- is equal to a: ggain,‘ if  the |
quantxt_y W be proposed; let 1t be transformed
into tbls, a:’ which is the product of a* by a7#; then
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this product is equivalent to a'g or to a'%, orlastly,
to a¥a. And practice will render similar reduc-
tions equally easy.

204. We shall observe, in the last place, that each
root may be represented in a variety of ways: for

+/ @ being the same as a*, and } being transformable
into the fractions, £, $, 4, &%, %, &c. it is evi-
dent that va is equal to ¥d? or to ¥d° or to
Y/ a*, and so on: and in the same manner, ¥/a, which
- is equal to at, will be equal to ¥a? or to Y,
or to '¥/a*. 'Hence also we see that the number a,
or a', might be represented by the following radical
expressions : : .
Ve, Ve, Y, Y, &e.

205. This property is of great-use in multiplicae
tion and division; for if we have, for example, to
multiply ¥ a by ¥a, we write ¥/a* for ¥/a, and ¥/a*
instead of ¥/a; sothat in this manner we obtain the
same radical sign for both, and the multiplication be-
ing now performed, gives the product {/a®: and the-

same result is also deduced from a* +% which is the
product of a’ multiplied by a“ for 41 is 4, and

consequently the product requlred is a% or ¥/a°
‘ _ On the contrary, lf it were required to dmde Ya,

& , by ¥a, or a’, we should have for the quo-
t_ient .“* *, or a% *, that is to say, a*, or {/a.
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CHAP XX

Of the different Methods of Calculation, and -of their
mutual Connexion.

206. Hitherto we have only explained the different
- methods of calculation: namely, addition, subtraction,
multlphcatlon, and division; the involution of powers, -
and the extraction of roots. It will not be improper
therefore, in this place, to trace back the origin of
these different ‘methods, and to explain the con-
nesion which subsists among them; in order that .
we may satisfy ourselves whether it be possible or
not for other operations of the same kind to exist;
which inquiry will throw new light on the subjects that
we have considered.
In prosecuting this design, we shall make use of &
.mew character which may be employed instead of the
' expressmn that has-been so often repeated, is equal fo;
this sign is =, which is read is'equal o : thus, when I
- write a==b, this means that a is equal to : as, for ex-
ample 3X 5=15.

207- The first mode of calculation which present,s
jtself to the mind, is undoubtedly addition, by whi¢h
we add two numbers together and find their sum:
let thercfore @ and b be the two given numbers, and
let their sum be expressed by the letter ¢, then we shall
have a4 b==c; so that when we know the two num-
bers a and b, addition teaches us to find the numberc.
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- 208. Preserving this comparison a+4b==c, let us
reverse the question by asking, how we are to find the
number &, when we know the numbers « and c.

It is here required therefore to know what number
must be added to g, in order that the sum may be the
number c: suppose, for example, &=3 and =8; so
that we must have 84 5==8; then & will evidently be
found by subtracting 3 from 8 ; and, in general, to find
b, we must subtract ¢ from ¢, whence arises b=—=c—a;
for by adding a to .both sides again, we have b+4a=
¢—a+a, that is to say ==c, as we supposed.

209. Subtraction therefore takes place, when we
invert the question which gives rise to addition. But
the number which it is required to subtract may hap- -
pen to be greater than that from which it is to be sub-
tracted ; as for example, if it were required to subtract
9 from 5: this instance therefore furnishes us with
the idea of a new kind of numbers, which we call nega-
tive numbers, because 5 —9=—-— 4.

210. When several numbers are to be added toge-
ther which are all equal, their sum is found by multi-
plication, and is called a product; thus ab means
the product arising from the multiplication of & by 5,

‘or from the addition. of the number @, 4 num-

ber of times ; and if we represent this product by the
letter ¢, we shall have ab==c ; thus multiplication
teaches us how to determine the number ¢, when the
numbers ¢ and b are known.

211. Let us now propose the following question :
the numbers @ and ¢ being known, to find the num-
‘ber b.  Suppose for example, =3 and c=135, so
that 35==15, and let us inquire by what number 3
must be multiplied, in order that the product may be
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15, for the question proposed is reduced to this candi-
tion which is division: hence the number required is
found by dividing 15 by 3; and therefore, in general,
the number & is found by dividing c by a; from which

results the equatlon b=

212. Now, as it frequently happens that the num-
ber ¢ cannot be really divided by the number «, while
the letter  must however have a determinate value,
another new kind of numbers presents itself, which are
fractions : for example, suppose 2==4, and ¢=3, so
that 46==3; then it is evident that b cannot be an inte-

ger, but a fraction, and that we shall have b=

213. Hence we have seen that multiplication arises
from addition, that is to say, from the addition of seve-
ral equal quantities; and if we now proceed farther,
we shall perceive that from the multiplication of se-
veral. equal quantities together powers are derived ;
which powers are represented in a general manner by
the expression af, which s1gmﬁes that the number «
mast be multiplied as many times by itself minus 1 as
is indicdted by thenumber). And we know from what
has been already said, that in the presapt instance,
a is called the root, bthe exponent, and ;’the power.

214. Farther, if we represent this power also by the
letter ¢, we have a'==c, an equation in which three let-
ters a, b, ¢, are found; and we have shown in treating
of powers, how to find the power itself, that is, the
letter ¢, when a root @ and its exponent 5 are given.

Suppose, for example a=5, and =3, so that
¢==5%: thenit is evident that we must t:ake the third

- power of 5, which is 125, so that in this case e==125.

1
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215. We have now seen how to determine the pdw- '

:er ¢, by means of the root « and the exponent 4; but

if we wish to reverse the question, we shall find
that this may be done in two ways, and that there
are two different cases to be considered : for if two
of these three numbers g, b, ¢, were given, -and it
were required to find the third, we should immediately

- perceive that this question would admit of three

ditferent suppositions, and consequently of three solu-
tions. Now we have considered the casein whicha
and b were the given numbers, we may therefore sup-
pose farther that cand 4, ot ¢ and b, are known, and
that it is required to determine the third letter; but
before we proceed any farther, let us point out a
very essential distinction betwéen involution and the
two operations which lead to it. - When, in addition,
wereversed the question, it could be done onlyin one
way; it was a matter of indifference whether we took
¢ and g, or ¢ and b, for the given numbers, because
wemight indifferently write a<+5, or b+4-a; and it was
also the same with multiplication ; we could at plea- .
sure take the letters & and & for each other, the equa-
tion ab=c being exactly the same as ba==c: but
in the calculation of powers, the same thing does
not take place, and we can by no means write 4 in-
stead of ¢*; as a single example will be sufficient to
illustrate: for let =5, and /==3; then we shall have
a'=5°=125; but 4°= 3°=243: which are two
very different results. -

216. It is evident then, that we may propose two
questions more : one, to find the root ¢ by means of
the given power ¢, and the exponent 4; the other,
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to find the expenent 4, supposing the power ¢ and
the root @ to be known.

217. It may be-said, indeed, that the former of
these questions has been resolved in the chapter on

the extraction of roots; since if =2, for example,’

- -and @’==c, we know by this means, that « is a num-
‘ber whose square is equal to ¢, and consequently
that a==+/c¢; and in the same manner, if b=3 and
@*=c, we know that the cube of ¢ must be equal
to the given number ¢, and consequently that a==¥/c.
It is therefore easy to conclude generally from this
how to determine the letter @ by means of the letters
cand &; for we must necessarily have a =¥{/c.

218." We have already remarked also the conse-
quence which follows, when the given number is nota
real power; a case which very frequently occurs;
namely, that then the required root ¢ can neither be
expressed by integers, nor by fractions; yet since
this root must necessarily have a determinate value,
the same consideration led us to a new kind of num-
- bers, which, as we observed, are called 3urd or irra-
tional numbers; and which we have seen are divisible

into an infinite number of different sorts, on account .

of the great variety of roots: lastly; by the same in-

quiry we were led to the knowledge of another parti- :

.cular kind of numbers, which have been called imagi-
nary numbers.

219. Itremains new to consider the second question,
which was to determine the exponent by means of the
power cand theroota, both being known ; and on this

"question, which has not yet occurred is founded the
important theory of logarithms, the use of which is so
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extensive through the whole compass of mathematics,
that scarcely any long calculation can be carried on
without their assistance ; and we shall find, in the fol-
ing chapter, for which we reserve this theory, that it
will lead us to another kind of numbers entirely new,
as they cannot be ranked among the irrational num-
bers before mentioned.

* CHAP. XXL
‘Of Logarithms in general.

220. Resuming the equation a*==c, we shall hegin
by remarking that, in the doctrine of logarithms, we
assume for the root a, a certain number taken at plea-
sure, and suppose this root to preserve invariably its
assumed value; and this being laid down, we take the
xponent b such, that the power a* becomes equal to
a given number ¢; in which case this exponent & is
said to be the logarithm of the number c: and to ex-
press this we shall use the letter L. or the initial letters
log.: thus, by b=L.. ¢, or b==1log. c, we mean that
b is equal to the logarithm of the number c, or that the
logarithm of ¢ is &.-

221. We see then, that the value of the root a
bemg once established, the logarithm of any number
¢ is nothing more than the exponent of that power of
a, which is equal to ¢: so that ¢ being ==a?, b is the
logarithm of the power a*.  If for the present we sup-
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pose b==1, we have 1 for the logarithm of &', and
consequently lg.a=1; but if we suppose b==4,
we have 2 for the logarithm of a*; that is to say,
log. a*=2¢, and we may in the same manner obtain
bog.a>=3; log.a*=4; log.a*=35, and so on.
292. If we make b=0, it is evident that O will
be the logarithm of a°; but a°==1; consequently
log.1=0, whatever be the value of the root a.
Suppose b==—1, then —1 will be the logarithm
of a'; but 4! =§; so that we 'have log.i
= —1, and in the same manner, we shall haye
Iog.al,=-2; log.;ls- —3; log. ;:—41 &e.
223. Itis evident, then, how we may represent
the logarithms of all the powers of a, and even those
of fractions which have unity for the numerator, and
for the denominator a power of a; we see also,
that in all those cases the logarithms are integers;

but it must be observed, that if 4 were a fraction, it
would be the logarithm of an irrational number: if

we suppo;e, for example, b=é, it follows that -;— is
the logarithm of a%, orof va; consequently we have

also log.v/ a=-2!; and we shall find, in the same

manner, that log.¥/a= %, log¥/a =i, &ec.

~ 224. But if it be required to find the logarithm of |
another number ¢, it will readily be perceived that
it can neither be an integer mor a fraction; yet
there must be such an exponent 4, that the power

-
|
i
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a*. may become equal to the number proposed; we
bave therefore b==Ubg. c; and generally, el-=c.
225. Let us now consider another number d,
whose logarithm has been represented in a similar
manner by log.d; so that gl¢==d. . Here if we mul-
tiply this expression by the preceding one alc=c,
we shall have al<tL4=cd; hence the exponent is
always the logarithm of the power; consequently
log.c+log.d=log.cd. But if, instead of multiplying,
we divide the former expression by the latter, we

shall obtain aL-f-W.-_.-g ; and consequently log.c—
c
bg.d_log.a.

926. This leads us to the two principal properties
of logarithms, which are contained in the equations

log.c+ log.d==log.cd, and log.c—log.d =]og.—3- Now

the former of these equations teaches us, that the
logarithm of a preduct, as cd, is found by adding
together the logarithms of - the factor; and the
latter shows us, that the logarithm of a fractien may
be determined by subtracting the logarithm of the
denominator from that of the numerator. .

927. It also follows from this, that when it is re~
quired to multiply or divide two numbers by one .
another, we have only to add or subtract their loga-
rithms; and this is what constitutes the singular utility
of logarithms in calculation ; for it is evidently much
easier tq add or subtract, than to multiply or divide,
particularly when the question involves large numbers.

228. But logarithms are attended with still greater
advantages in the involution of powers and the ex-

-
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traction of roots; for if d==c, we have-by the first
property log.c+log.c=log.cc; consequently log.cc==
2 log.c; .and in the same manner we obtain log.c’==
3log.c ; log.c=4log .c; and, generally, log.c~=nlog.c:

and if we now substitute fractlonal numbers for n, we

shallhave, for example, log.c%, that is to say, log.v/c,

.-:—;-Iog.c; and lastly, if we seppose # to represent
negative numbers, we shall have log.c“,.or Iog..l.,=

—log.c; log.c™?, or log. —]—, =-9lg.c, and so on;

which follows not only from the equation log.ct==
n log.c, but also from log.1==0, as we have already
seen.

229. Iftherefore we had tables, in whlch logarithms
should be calculated for all numbers, we might cer-
tainly derive from them very great assistance in per-
forming the ‘most- prolix calculatiotis; such, for in-

stance, as' require frequent multiplications, divisions, .

involutions, and extractions of roots; for, in such
tables, we should have not only the logarithms of alf
numbers, but also the numbers answering to all loga~
rithms. Ifit were required, for example, to find the

square root of the number ¢, we must first:find the

\

logarithm of ¢, that is, log.¢; and pext taking the half
of that logarithm, or }log.c, we should have the loga-
rithm of the square root required : we have there-
fore only to look- in the tables for the number an-
swering to that loganthm, in order to obtam the root
reqmred -

230. We have seen above, that the numbers 1,2
3,4, 5, 6, &c. that is to say, all positive numbers,
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are logarithms of the root'a, and of its positive
powers ; consequently logarithms of numbers greater
than unity; and, on the contrary, that the negative
numbers, as —1, —2, &c. are logarithms of the

. 1 1 . .
fractions 7 &c. which are less than unity, but

yet greater than nothmg. . ' -
Hence it follows, that if the logarlthm be posmve,
the number is always greater than unity; but if the
logarithm be negative, the number is always less than
unity, and yet greater than 0; conséquently we cannot
express the logarithms of negative numbers, and must
therefore conclude, that the logarithms'of negative

numbers are impossible, and that  they belong to the .

class of imaginary quantities. -

- 231. In order to illustrate this more fully, it will be
proper to fix.on a determinate number for the root a.
Let us make choice of that, on which the common
logarithmic tables are formed, that is, the number
10, which has been preferred, because it is the foun-
dation of our arithmetic. But it is evident that any
other number, provided it were greater than unity,
would answer the same purpose: and the reason why
we cannot suppose @==1, is manifest; as all the
powers ¢* would then be constantly equal to unity, and
could never become equal to another given number c.
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CHAP. XXII.
Of the Logarithmic Tables that are now in use.

,232. Inthose tables, as we have already mentioned,
we begin with the supposition, that the rogy a
is==10; so that the logarithm of any number c is
the exponent to which we must raise the number 10 in
order that the power resulting from it may be equal
to the number ¢ ; or, if we denote the logarithm of
¢ by L.c, we shall always have 10%=c.

233. We have already observed, that the logarithm
. ofthe number 1is always 0; and we have also 10°=1;
cansequently, Zg.1==0; bg.10==1; lbg.100=3;
log. 1000 =3; log. 10000 =4 ; log. 100000 == 5

, .
log.lOOOOOO_.-b' : farther, log.l—d_— 1 log.m_
1 1
1
=—3; I ——6.
5; og 3 6

234. The logarithms of the principal numbers,
therefore, are easily determined ; but it is much more
difficult to find the logarithms of all the other num-
bers, yet they must be inserted in the tables: this
?ewever is not the place to lay down all the rules that

necessary for such an inquiry ; we shall therefore
at presept content ourselves with a general view only
of the subject. :




CHAP. 2. - OF ALGEBRA. 97

285. First, since log.1==0 and lg.10==1, it is
evident that the logarithms of all numbers between 1
and 10 must be included between 0 and unity, and
consequently be greater than 0, and less than 1.
+"It will therefore be sufficient to consider the single -
sumber 2 ; the logarithm of which is certainly greater
than 0, but less than unity; and if we represent this
logarithin by the letter , so that log. 2=u, the value

of that letter must be such as to give exactly 10%=
We easily perceive also, that = must be consxder—
ably less than 4, or which amounts to the same thing, -

that 10 is greater than 2; for if we square both

sides, the square of 107—- 10 and the square of 2=4;
now this latter is much less than the former: and in the -
same manner we see that z is even less than §; that

. ’ 1, : 2-
isto say, 102 is greater than 2: for the cube of 109
is 10, and that of 2 is only 8. But, on the con-

trary, by making .z'=‘lL we give it too small a value,

: : 1 ‘ '
because the fourth power of 10%* being 10, and that

of 2 being 16, it is evident that 10é is less than 2
thus we see that @, orthe log.2, is less than 4, but
greater than }: and in the same manner we may de-

- termine, with respect to every fraction contained be-

tween 1 and §, whether it be too great or t9o small.
For example % is afraction less than 3.g0d greater

' than }; now le" is less than 2: “the- seventh power

of 10% is 10%, or 100, and the seventh powm'of 2®

128, which is consequently greater than thé forrner.

We see therefore that 4} is less than log 2, and that
VOL. 1. ‘ H
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log.2, which was found less than %;, is however
* greater than $. .

Let us try another fraction, whxch in consequence-

 of what we have already found, must be contained be-
tween $ and 4; - is a fraction between these liits,

and it is therefore required to ﬁnd whether 10}7—2
if this be the case, the tenth powers of those numbers

are also equal; now the tenth power of 1077 is
10°<1000, and the tenth power of 2 is 1024; we

conclude therefore, that 1073E is less than ¢, and
consequently that % is too small afraction, and
therefore the Iog. 2, though less than §, is yet greater
than 2.

236. This discussion serves to prove, that log 2 has
a determmite value, since we know that it is cer-
tainly greater than -%;, but less than §; we shall mot.

however proceed any- farther in this investigation at

present. Being therefore still ignorant of its true

" value, we shall represent it by z, so that log.2==r;

- and endeavour to show how, if it were known, we
could deduce from it the logarithms of an infinity of
other numbers. For this purpose we shall make use
of the €quation alréady mentioned, namely, log. cf
=log. c+log.d, whichcomprehehds theproperty, that

the logarithtn of a product is found by adding to-

' gether the loganthms of the factors. -~ ,

. 237. First, as bog. 2—-.z',and log. 10=1, we shall
have log.20=xz+1, = log.200=z+2

\ ,’ " log.2000=2x+3, log.20000=r+4

"3 log. ¢, andHog. ¢t =4'log , &c. we tiave -

. log. 200000 =x+35,. log.2000000==r+6,&c.
238. Farther, as log.c>=2 log.¢, and log. == -
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-5 log. 4==0 ; log. 8=3u; log. 16:::4:', log. 32=5
log. 64 =6z, &c. Hence we find also, that -
lag.4o='9.r+1, log. 400=2¢+42
log.4000=2r+3, log. 40000=2r+4, &c.
. log. 80=3z+1, - log.800=3r+48"
log, 8000 =3s=—=3, log.80000==3r+4, &c.
log.160=4r+41, . lg.1600=4r+2 .
log. 16000 =42+3, [log.160000 =424 &e.

- 239. Let us resume also the other fundamental
equation, log. §= log. c—lsg. d, and let us suppose ¢ \
=10, and d=¢; since log.10==1, and log. 2=,
we shall bave log. ‘2—0 or log. 5= 1=z, and shgll de-

duce from hence the following equations:

log.50=2—u, log. 500=3—2x
- lg.5000=4—2, Iog 50000=>5—ur, &c.
log.25 =2~2z, - log.125=38—3z
log. 625 —4—4x, log. 3125=5—5x, &c.
bg. 250 =3—2z, Iog. 2500=4—2r
log. 25000 =5—2¢, - Jog: 250000 =6—2z, &c. -
 log.1250=4—3r, 10g.12500=5—3zr
log125000= 63z, log.1250000=7— 3z, &c.
log. 6250=5— 4., log. 62500=6—4x
log. 625000-7—4-:; log 6250000=8 — 4, &t;
and so on.

240. If we knew the loganthm of 3, thls would be
the means also of determining a number of other
logarithms ; as appears from the following examples.
Let the log.3 be represented by the letter y: then,

dog. 30=xy+1, log. 500 ==y +2
log. 30002=y+4 3, log. 30000=y 44, &c..
v Hg
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.. log. 9::,23/, Iog 27=3y, log. 81_...4-_1;,-&c we
-shall have also,

log.6=ur+y, log.12=‘.r+y,- log. 1‘8=:r+2_1/,

log. 15=1Iog.3+log.5=y+1—ux.

241. We have already.seen that all numbers arise
from the multiplication of prime numbers. If there-
fore we only knew the logarithins of all the ‘prime
nuntbers, we could find the logarithms of all the
other numbers by simple additions. The number
210, for example, being formed by the factors 2, 8,
5, 7, its logarithm will be log.9+ log. 3+ log.5
+log.7. Inthe same manner, since 360==2%2X2
- X3X3X5=2°X3*X5, we have log. 360=3 log.2
+2 log. 3+log.5. It is evident, therefore, . that by
- means of the logarithms of the prime numbers we
miay determine those of all others; and that we must
first apply to the determination of the former, if we
would construct tables of logarithms,

|

 CHAP. XXIIL
Of the Method of expressing Logarithms.

.242. We have “seen that’ the logarithm ‘of g i8
‘greater than %, and less than 4, and that consequent-

ly the exponent of 10 must fall between those two .

fractions, in order that the power may become 2.
Now although we know this, yet whatever fraction we
assume on this condition, the power resulting from it
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will be -always an irrational number, greater or less
than 2; and consequently the logarithm of 2 cannot -
be accurately expressed by such a fraction ; therefore
we'must content ourselves with determining the value
of that logarithm by such an approximation as may
render the error of little or no importance; for which
purpose we employ what are called decimal fratctions,
the nature and properties of which ought to be ex=
plained as clearly as possible. ~

" 243. It is well known that, in the ordinary way of
writing numbers by means of the ten ﬁgures, or cha-
racters, ) .
: : 01,..,34,567,89, '

the first figure on the right alone has its natural signi-
fication ; that the figures in the second place have ten -
times the value which they would have had in the first;
that the figures in the third place have & hundred
times the value; and those in the fourth a thousand -
times, and so on: so that as they advance td-
wards the left, they acquire a value ten times greater
than they had in the preceding rank; thus, in-the
number 1765, the figure 5 is in the first place on the
right and is just equal to 5; in the second place i3
6 but this figure, instead of 6, represents 10X 6, or

~ 60: the ﬁgure 7 is in the third plaes; and mpresents o

100X 7, or 700; and lastly, the 1, which i is in' the
fourth row, becomes 1000; so that we read the
given number thus;

One thausand, seven hundred, and sizty ﬁ'oe

-244. As the value of figures becomes always ten
times greater, as we go frofo the right towards the left,
and asit consequently becomes continually ten times
less as we go from the left towards the mght we may -
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in conformity to this law advance still farther towards
the right, and obtain figures whose valug will continue
ta hecome ten times'less then in the preceding place;

but it must be observed, that the place where the
“ figures have their natural value is marked by a point. -

So that if we meet, for example, with the number
36.54802, it is to bé understood in this maneer; the
figure .6, in the first placc, has its natural value; and
the figure 3, which is in the second place to the left
. foeans 30. But the figure 5 which comes after the
~ paint, expresses anly +£;; and the 4 is equal only to
tiv; the figure 8 is equal to yo%; the figure 9 is
equal to 4y35y; and the figure 2 corresponds to
tosors. We see then, that the more those figtires
‘ndvance towards the right, the more their valués di-
minish, -and -at last, those values became sp small
that, they-may be. considered as nothing¥.
- 245, This is the kind of numbers which we call
~ detimal fradcw, and jn this- manner lpgarithms are
yeprezented in the tables. The logarithm of 2, for

, % The operatnqs of arithgnetio are employed on decnmal frac-
. pons in the same manner as on whole numbers ; some precautions

. anly are necessary, after the operafion, t6_place the point pro-’

perlys which separatea the whale numbers from the decimals. On
this mb,ect. we may cqnsult slmost any of the treatises onarithe

ic, ' In the mpltiplication of these fractions, when the multi- -

‘WW‘I and multiplier contain a great number of decimals, the ope-
yation would become to6 Jong, and would gjve the result mucb
. nore exact than is for the most part necessary ; but it may be sim-

plified by 8 method which is not to be found in many suthors, and

" wrhich ‘is pointed.out by M. Maxia in his edition of the mathe-
jcal Jessons of M. de I Caille, where he likewise explains *
gimilar method for the division of decimals. F.T.

The method alluded to in this noﬁe is’ clearly explamgd n

\nomycasﬁe’s Arithmetie.
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example, is expressed by .0r3010300; in which we
see, 1st. That. since there is O before the point,
this logarithm does not coutaiu an integer ; 2dly,
3. ] 3
thatits va'}ue is ——+l—6-0+——-+-—10000+ 100000'-]-
o - + L
1000000 - 10000000, -
two last ciphers, but they serve to show that the
logarithm in question. contains none of those parts
which-have 1000000 and 10000000 for the denomi-
natar. It is however to be understood, that by con-
tinuing the series we still might have found smaller
parts ; but with regard to these, they are neglected -
op account of their extreme minuteness. - :
246, The logarithm of 8 is expressed in the table
by 0°4771213; we see, theyefore, that it contams np
‘integer, and thatit is composed of the following frac-

We might bave left ‘out the -

4 7 7. 1 2
fractions: 75+ 755+ To55 + To006 + 100000 T
! + 3 Not that the logarit‘ﬁm is

1000000 ™ 10000000
thus expressed with the utmost exactness ; we are
1.
10000000’
. whieh is certainly so small, that it may very well be
- neglected in most calculations. ‘
247. According to this method of expressmg loga-
rithms, that of 1 must be represented by 0-0000000,
since it is really ==0: the logarithm of 10.is
10000800, where it evidently is exactly ==1: the
logarithm ‘of 100 is 2:0000000, or 2. And hence
we may conclude, that the.logarithms of all num-
bers, which are included between 10 and 100, and

however certain that the error is less than
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consequently composed of two figures, are com-
prehended between 1 and g, and therefore must be
expressed by 1 plus a decimal fractlon, as log. 50
.._.1 6989700, its - value _therefore is unity, plus

9 9 7. and it will be

’—"'—'"'_"' 10000"'100000
also easﬂy percelved that the logarithms of numbers
between 100 and 1000, are expfessed by the integer
< with a decimal fraction : those of numbers betweeli
-1000and 10000, by 3 plus a decimal fraction : those
of numbers between 10000 and 100000, by 4 in-
tegers plus a -decimal fraction, and so on: thus
the log. 800, for example, is 2:9030900; that of 2290
is 3:3598355, &c.
248. On the other hand, the logarithms of numbers
~ which are less than 10, or expressed by a single figure,
do not contain an integer, and for this reason-we find
0 before the point : so that we have two parts to con-
sider in a logarithm. First, that which precedes the
point, or the integral part; and the other, the deci-
mal fractions that are to be added to the former.
. The integral part of a logarithm, which is usually
called the characteristic, is easily determined from
‘what we have said in the preceding article. Thus it
is 0, for all the numbers which have but one figure; it
is 1, for those which have zwo ; it is 2, for those which
‘have three; and, in general, it is always one less
than the number of figures. If, therefore, the loga-
rithm of 1766 be required, we already know that the
first part, or that of the integers, is necessarily 3.
249. So reciprocally, we know at the. first sight of
the integer part of a loganthm, how many figures com-
.pose the number answermg to that logarithm; since

>




CHAP. 23. OF ALGEBRA. 105

.

 the number of those figures always exceed the integer
part of the logarithm by unity. Suppose, for ex-
ample, the number answering to the' logarithm -
6:4771218 were required, we know immediately that
that number must have seven figurés, and be greater
than 1000000. And in fact this number is 3000000;
for log. 3000000=1og. 3+ log.10000000. Now log.
3==04771213, and log: 1000000=6, and the sum’ ‘
" of those two logarithms is 6-4771213.

250. The prineipal consideration therefore with
respect to each logarithm is, the decimal frac-
tion which follows the point, and even that, when
oncé known, serves for several numbers. In order
to prove this, let us consider the logarithm of the
number 365; its first part is undoubtedly 2; with
respect to the other, or the decimal fraction, let us
at present represent it by the letter x; we shall
have log. 865=2-+x; then multiplying continually
by 10, we shall have log. 3650—=238+-z; Iog 36500
=4a+x; log. 365000=5+z, and so on.

But we can also go back, and contmually divide
by 10; which will give us log.36°5=1+4-x; log.3°65
=042; log. 0°365=—1+42; log.O’ 0365-_-—2-}-.1" _
log. 000365 =—3+, and so on.

951. All those numbers then .which arise from the
figures 365, whether preceded, or followed, by ci- .
‘phers, have always the same decimal fraction for the
second part of the logarithm: and the whole differ-
ence lies in the integer before the point, which, as
we have seen, may become negative ; namely, when
the number proposed is less than 1. But as be-
ginners find a difficulty in managing negative num-
‘bers, it is usual, in those cases, to increase the in-
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tegers of. the logarithm by 10, that is, ‘to write 10
instead of @ before the paint; so thiat instead of
‘'we have §; instead of =2 we have 8;.instend of —~3
we have 7, &c.; bugthen we must remember, that the
cbaracteristic bas been taken ten vnits too great, and
“ by no means suppaose that the pumber consists of 10,
9, or8 figures. Itis likewise easy. to conoeive, that, if
in the case we speak of, this characteristic be less then
10, we must write the figures of the number after 3 .
‘point, to show that they are decimals - for' example, if
the charagteristic be 9, we must begin at the first place
after a point; if it be 8, we must also place & cipher
in the first row," and not begin to write the figurey till
the second: thys 9:5622929 would be the logasithm
of 0'365, and 85622929 the log. of 0:0365. But
this manner of wntmg logarithms. is prmapa.lly emr
ployed in tables of sines. @ |

252. In the commen tables, the decmwls of loga-
sithms are usuglly carried to seven phq:es or ﬁgnma,

1

' 10000000
part, and wé are sure that they are never erroncous
by the whele of this part, and that therefore the, error
“cannot be of any importance. - There are, however,
calculations in’ which we require still greater exact-
.ness; and then-we employ the large tables of Vlacq,
where the logarithms are calculated to ten decimal
" places*.

the last of which congsequent] y represents the -

* The nost valuable set of tab]es we are acquamted with are
those published by Dr. Hutton, late Professor of Mathematics.at
the Royal Military Academy, Woolwich, under the title of,
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© 253. As the first part, or cheracteristic of a loga-
rithm, is subject %o no difficulty, it is seldom express-

ed in the tables; the secand part osly is written, or

the seven figures of the decimal fractich.. There isa
set of English tables.in which we find the loggrithms

~ of all numbers from 1 to 100000, and even those of
-~ greater numbers ; for small additional tables show

what is_to be added to the logarithms, in proportion
to the figures which the proposed numbers have more
than those in the tables, We easily find, for example,
the logarithm of 379456, by means of that of 37945
and the small tablés of which we speak™. -

-

¢ Mathematieal Tablés; containing common, hyperbolic, and
logistic logarithims. Also sines, tangents, &c. te which is pre-
fixed a large and original h\story of the dxscovenes and wntmgs
relating to those subjects.”

* The English tables spoken of in the text are those which
were published by Sherwin at the beginning of this century, and
have been séveral timmes reprinted ; they are likewlise to be found
in the taples of Gardener, which are commonly made use of by

" astronomers, and which have been reprinted at Avignon. With

respect to these tables it is proper to remark, that as they do not
carry logarithms farther than seven places, independent of the

characteristic, we cannot use them with perfect exactness except
on numbers that do not-exceed six digits; but when we. employ’

the great tables of Vlacq, which carry the logarithms as far as ten
decimal places, we may, by taking the proportional parts, work,

_.without error, upon numbers that have as many as nine digits, .

The reason of what we have said, and the method of employing

these tables in operations upon still greater numbers, is well ex- *

plaiged in Saundersons « Elements of Algebra,” Book IX,

v Part II.

. Itis farther to be observed, that these tables only give the loga-
rthss spswering to given numbers, so that when we wish to get
the numbers answermg to given logarithms, it is seldom that we
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‘254. From what has been said, it will easily be
‘perceived, how we are to obtain from the tables the
_number corresponding to any logaritbm which may
occur : Thus. in multiplying the numbers 343 and
2401; since we must add together the logarithms of
those numbers, the calculation will be as follows :

log. 343=2-5352941
" log. 2401_3 38039¢¢ § 2dded

5 9!56863 their sum.
log. 823540=5"9156847 nearest tabular log.

e ——  ———

16 difference,

w lnch in the Table of Differences answers to 3; this °

therefore being used instead of the ciphers, gives

823543 for the product sought: for the sum is, the

logarithm of the product reqmred its' characteristic 5

s_hows that the product is composed of 6 figures;
which are found as above.

255. Butit is in the extraction of roots that loga-

~ rithms are of the greatest service, we shall therefore

 give an example of the manner in which they are used

find in the tables the precise logarithms that are given, and we are
for the most part under the necessity of seeking for thése numbers
in an indirect way, by the method of interpolation. In order to
supply this defect, another set of tables was published at London

_in 1742, under the title of “ The Anti-logarithmic Canon, &e.
by James Dodson ;” he has arranged the decimals of logarithms
from 0,0001 t01,0000, and opposite to them in order the corre-
spondmg numbers carried as far as eleven places; and has like-
wise given the proportional parts necessary for determining the
numbers which answer to the mtermedxate logarithms that are ndt
to be found in thc table. P T.

N
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in calculations of this kind. Suppose, for example,

. it were required, to extract the square root of .10
Here ¢ we have only to divide the logarithm of 10,
which is 1:0000000 by 2; and the quotient 0°5000000
is the logarithm of the root required ; and the number
in the tables which answers to that logarithm, is
3:16228, the square of which is very nearly equal

to 10, being only one hundred thousandth part too
great""

_ * Inthe same manner we may extract any other root, by di-
viding the log.of the number by the denominator of the index of
the root to be extracted ; that is, to extract the cube root, divide
the log by 3, the fourth root by 4, and soon for any other ex-
traction. Thus, for example, if the 5throot of 2 were required,
The log. of 2 is03010300: therefore
5)0:3010300

" 0-0602060 is the lpg. of the root, which
by the tables is found to correspond to 141497 ; and hence we
have {/2=1'1497. But here it may be proper to observe, that
when the index, or characteristic of the log. is negative, and not.

" divisible by the denominator of the index of the root to be ex-
tracted; then as many units must be borrowed as will make it

exactly dlvmble, carrying those units to the next figure, as in
common dlvmon En.

.
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, - SECTION IL

’ Of the different Methods of calculating Compound .
~ Quantities. -
—— -
CHAP I .

. . Of the Addztzon qf Compo‘und Quantztzes.

256. When two or more expressions, consisting of .

several terms, are to be added togcther, the opera-
tion is frequently represented merely by signs, placing
each expression between ttvo parentheses, and con-
+ necting it with the rest by means of the sign 4-. Thus,
for example, if it be required, to add the expressions
Aa+b+c and d4-e+-f, we represent the sum by
. (a+b+c)+({d+e+f). .

. 257. It is evident that this is not to perform ad-
dition, but only to represent it; we-see, however,
atthe same time, that in order to perform it actually,

‘we have only to leave out the parentheses; for as

the number d+e+f is to be added to a+b+c, we
- know that this is done by joining to it first +4, then
+e¢, and then +f; which therefore gives the sum
a+b+c+d+e+f; and the same method is to be

observed,. if any of the terms are affected by the -

sign —; as they must be connected in the same way,
by means of their proper sign.

858. To make this more evndent, we shall consider
an example in pure numbers, proposing to add the

~
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expression 156 to 10-—8 Here, if we be«m by k

adding 15, we shall have 12—8+15; but this is

- adding too much, since we had only to add 15—6,

- and it is evident that & is the number which we have =
added too much; letus therefore take this.6 away by-
writing it with the negame swn, and we shall have

" the true sum, :

\

12—84 15—-5'

- which shows that the sums are found by writing all

the terms, each with its proper sign, )

259. Ifit were required therefore to add the ex-
pression d—e—f to a--b+c we should express the
~ sum thus,

u-r-b+c+d»- e~ f
remarking however that it is of no consequence in
what drder we write these terms ; for their places may -
be changed at pleasure, provided their signs he pre- |
served; so that this sum mwht have been written
thus, ) -
caeq-aaf-t-d—lz. '

-€80. Tt is evideiit, therefore, that addition”is at-

tended with no ‘difficulty; whatever be the form of
the terms to be added : thus, if it were necessary to
.add togethér the expressions 24° +61/ b—=4log.c antl :
. 5¥a—"T7c, we should write them

" 2846+ b—4 log.c+5¥ a~7c,
either in this or in any other order of the terms; for
if the signs are not changed, the sum will a.\ways be
~ the same.

261. But it frequently happeus that the sums re-
presented in this manner may be considerably
abridged, as is the case when two or more terms de-
stroy each other; thatis, when we find in the same sum



112 '~ ELEMENTS SEGT. II.

- the terms +e—a, or 3a—4a+d: also when two or
more terms may. be reduced to one, &c. Thus in
the following examples: ‘
Sa+-2a=5a, 7b~3b= +4b
—6c+10c=+4c; 4d—2d=2d
. 5a~—8a=-—23a, —7b4+b=—64
—3c—4c=-—7c, —3d—5d—=—8d
Qa—5a+a=—=—2a,—3b—5b+20=—65b.
- Whenever two or more terms, therefore, are entirely
the same with regard to letters, their sum may be
abridged ; but those cases must not be,confounded

with such as these, 2a%+ 34, or 26— 0%, which ad-

mit of no abridgment..

262. Let us consider now sonie other examples of
reduction, as the following, which will lead us im-
mediately to an important truth. Suppose it were

" required to add together the expressions a+5 and

a—b; our rule gives a+b+a—b; now a+a=2a,
and b—b=0; the sum therefore is 2a: conse-

quently if we add together the sum of two numbers ;

(a+4-b) and their difference (a~—5), we obtain the
double of the greater.of those two numbers. -

This will be perhaps better understood from the .

following examples :
. 8a—2b—c a— 2a‘~’b+’ 2ab? _
5b—6¢c+a — a*b4al®—b?
da+3b—7c &= 3a%b+4ab—b

. 48—38b+ 2 a4 2ab 41
© Sa’2b0—12c ab—2a°6+43b°

7a*— b—10c  2a°b+2ab+4b*
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. CHAP.IL |
Of the Subtraction of Compound Quantities.

963. If we wish merely to represent subtraction,

. we inclose each expression withiir two parentheses, -
joining, by the sign —, the expression which is to be
subtracted, to that from which we have to subtract.it.

When we subtract, for example, the expression

d—e+f frem-the expression a—b+c, we write the
remainder thus:
. (a-—b+c) (d-—e+f)
and this method of represermng it sufficiently shows

" which of the two expresswns is to be subtracted from
the other.

964. But if we wish to perform’ the actual sub— -

traction, we must observe, first, that when we sub-
tract a positive quantity + & from another quantity a;
we obtain a—&: and secondly, when we subtract a
negative quantity —b from @, we obtain a+0; as -
bas been before shown.-
" 965. Suppose now it were required to’subtract
the expression b—d from a—c, we first take away 0,
which gives a—c—b: but this is taking too much
away by the quantity d, since we had to subtract only
b—d; we must therefore restore the value of, d,and -
shall then have :
; a—Cc—b+d;
whence it is evident that the terms of the expressxon
to be subtracted must change their signs, and then
" be connected to the terms of the other expression.
VOL. 1. - ’ I
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266. Subtraction is therefore easily performed by
this rule, since we have only to write the expression
from which we are to subtraet, connecting the other
to it without any change beside that of the signs.

" Thus, in the first example, where it was required to
subtract the expression d—e+-f from a—b--c, we
. obtain a—b+-c—d+e~f.

An example in numbers will render this still more
clear; for if we subtract 6—2+-4 from 9—3+2, we
evidently obtain ' '
‘ 9—~3+2—6+2—4=0;
for g—3+4-2=8; also, 6—2-+4=—8; now 8- 8=0.

267. Subtraction being therefore subject to no
- difficulty, we have only to remark; that if there are
found in the remainder two or more terms which are
entirely similar with regard to the letters, that re-
mainder may be reduced to an abridged form, by
- the same rules which we have given in addition.

. 268. Suppose we have to subtract a— & from a-5;

_ that is, to take the difference of two numbers from
their sum:. we shall then have a--b—a+-5b; but
a—a==0, and b4-b==25; the remainder sought is
therefore 25, that is to say, the double of the less
of the two quantities.

- 269. The following examples will supply the place
of farther illustrations: -

 @*4-ab4-b*|3a—4b+-5¢ a’-l--3a’b--|-3ab’+b3 Vat2/b
. w—at4-ab+4 b 28+4c—6a'>a —3a’b+4-3ab*+b’|s/a—3./b

20" la—6bdc.|  GaW%420. | 4540,
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CHAP. 1IL. . |
Of the Multiplication of Compound Quantities,

270. When it is only required to represent multi-
plication, we put each of the expressions, that are to* -
be multiplied together; within two parentheses, and
join them to each other, sometimes without any sign,
and sometimes placing the sign X between them
Thus for example, to represent the product of the
‘two expressions a—b+c and d—e+ f, we write

(a~b4-c)X(d—e+f)
orbarelyby (a—b+c) (d—e+f)
which method of expressing products is - much used .
because it immediately exhibits the fnctors of which.
they are composed.

.271. But in order to show how multxphcatlon is -
actually performed, we may remark, in the first place,
that to multiply, for eéxample, a quantity, such as
a—b+c, by 2, each term of it is separately multi-
plied by that number; so that the product is -

2a—2b+2c.

And the same thing takes place with regard to all
other numbers ; for if d were the number by which

it was required to multiply the same expression, we
should obtain ~

ad— bd+ cd.

R7%: In the last article we bhave supposed 4 to be:
12
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a positive number; but if the multiplier were a nega-.
tive number, as —e¢, the rule formerly given must be
applied ; namely, that unlike signs multlphed together
produce —, and like signs . Thus we should
have R \ :

' —ac+be—ce. )

273. Now in order to show how a quantity, A, is
to be multiplied by a compound quantity, d—e; let
‘us first consider an example in numbers, supposing

_that A is to be multiplied by 7—3. Here it is evi-
dent, that we are required to take the quadruple of A:
for if we first take A seven times, it will then be ne-
cessary to subtract 3 from that product. .

- In general, therefore, if it be required to multiply
A by d—e, we multiply the quantity A first by & and
then by ¢, and subtract this last product from the first:

" whence results da—ea. '
~ +If we now suppose aA=—=a—»5, and that this is the
quantity to be multiplied by d—e; we shall have
da=ad—bd"
eA=ae—be

: whence dA-—eA-“ad—bd—ae+be is the product
- required. ‘ : -
- 274. Since therefore we know accurately the pro- :
duct (a—b8)X (d—e), we shall now exhibit the same
example of multiplication under the followmg form:
a—b :
d-—-c

‘ad— bd— ae+ be.

VVhlch shows, that we must multlply each tétm of
the upper expression by each term of the lower, and
that, : with regard to the signs, we must strictly ob-,
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serve the Tule before given; a rule which this circum-

~ stance would completely confirm, if it admitted of

the least doubt.

275. It will be easy, therefore, according to this
method, to calculate the following example, which is,
to multlply a+b by a—b;

a+b
a—b

N
Y

a*4-ab
—ab—b*

Product a*—5%

276. Now we may substitute for @ and 4 any.
numbers whatever; so that the above example will
farnish the following theorem; viz. The sum of two
numbers, multiplied . by their difference, is equal to
the difference of the squares of those numbers :
which theorem may be expressed thus:

(a-{-b))((a—b)—-a2

And from this another theorem may be derived;
namely, The difference of two square numbers is
always a product, and divisible both by the sum and .
by the difference of the roots of those two squares;
consequentl), the difference of two squares can never
be a prime number*.

— d

. ° . ' .
* This theorem is not general, for when the difference of the

two qumbers is 1, and their sum is a prime, it is evident that the _

difference of the two squares is also a prime: thus 6*—5°=11,
7°—06'=13, 9*—8"=17, &c. Infact, every. prime number is
the difference of two integral squares. Eb.

4
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277. Letus now calculate some other examples :

20—38 40 —6a+9
a+2’ ‘ 2a-+3
8a°—3a , 8a°— 124+ 18a
+4a—6 +12a°— 182427
24 a—6 - 82427
3a®—2ab ‘ a’4-ab®
6a*—4a*b asA4a’b®
—12a%b+-8ab? —aSh—a¥b®
64°— 168°b+8ab® =~ aS—a®
at+2ab+2b?
" a*—2ab+-2b°
. a*+42a°b+2a%h®
_—-‘zas’b—zta’b’—zlab2
4-a%b3 +4abP 440
b ‘
. 2d—Sab— 4P
| 8a"—2ab+ 0
. 6 —9a%b— 12a°6°
' —A4a*b 4 6a%b* 4 8ab®

+ 2a°0*— 3ab®— 45

‘ 6at— l$a°b—-4a’b’+5ab”—4~b‘
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' BB Cegb—ac—be
" a4b4c

@ +ab*+act—a*b—d’c—abc
&b+ b b —ah*—abe—bic
ac+bc+ ¢ -—abc—ac’— be?

a —Sabc+b’+c3 -

278. When we have more than two quantities to
multiply together, it will easily be understood that,
after having multiplied two of them together, we must
- then multiply that product by one of those which re-
main, and 50 on: hut it is indifferent what order is
observed in those multiplications.

"Let it be proposed, for example, to find the value,

or product, of the four following factors, wiz.
L . IL IIIL. Iv.

(a+8) (+eb+b) (a=0b) (a’—ab+F).
ist. The product of the * 2d. The produet of the

factors I. and II. factors ITI. and IV.

ad4ab+-¥ ‘ al—ab4-b

a+ b a— b

@+a’b+ab? . d—ab+ab?
+ab+ab* 4 b* © —a*bab®=b3

a*+2a*h+2ab*+ b a*—2a°b+ zab”—b’




120 . ELEMENTS " SECT. II.

" It remains now to multiply the first product I. II.
by thls second product ITL IV.
a°+20°b +2ab* + b
& —2a°b+2a6*— b’
& 420°b 4208+ &5
—2a°b—4a*h*— 40°H*— 2a°b*
2a*0* +44°0° + 44°0* + 2ab® |
| : . = P —2a°0—~2ab—0b°

a®—b°

which is the product required. '
279. Now let us resume the same example, but

" change the order of it, first multiplying the factors L
and I11. and then II. and IV, together..

a+b i &4ab+d?
a—b- a’—ab+b*
& +ab  A4abta
O gb—b? . — &b a?h—ab®
252
a——’—b2 | a’b*+ab*+- b
-  d+a b

Then multlplymg the two pxoducts L III and
1L IV.

B aB 4 B
aef_;bz

&b 4 b +a’b
—ath?— gt — b°

‘aG_bG_

which is the product required.

4
.
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* 280. We may even perform this calculatnon ina
manner still more concise, by first multiplying the
I*. factor by the TV*".-and then the II. by the III%

a—ab+ 5 C & +ab+ b
a+b a—b
a?—a’b+ab® B+ a*b+ab?
 db—ab 4P —ab—ab'—b*
o+ s_bsﬁ

"It remains to multlply the product I. IV. and II
IIL

R
a@—b

.a6+asb3 '
—ah—b°

as—b°

- the same result as before. ’ .
281. It will be proper to illustrate this example by
- & numerical application. For this purpose, let us
make =3 and .b==2, we shall have a4 b=35, and
a—b=1; farther, ¢°’=09, ab=6, b*==4: there-
fore a*+ab+56*=19, and a®>—ab+0*=17: so that
the product required is that of 5% 19X 1X7, which
is 665.

Now a®=729, and 5° =64, consequently the pro-
duct required is a*—5°=665, as we have already
seen. : ~
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- .CHAP. 1V.
Of the Division of Compound Quantities. |

282. When we wish simply to represent division,
we make use of the usual mark of fra.ctlons, whlch is,
to write the denominator under the .numerator,
separating them by-aline; or to inclose each quan-
tity between parentheses, placing two points between
the divisor and dividend, and a line between them.
- Thus if it were required, for example, to divide a+6
: atb
- c+d

accordmg to the former method ; and thus,
: (a+5)+(c+d)
"according to the latter, where each expression is
read ¢+ b dwided by c+d.
. 283. When it is required to divide a compound
- quantity by a simple one, we divide each term sepa-
rately, as in the following examples :

(6a—8b4-4¢)+27=3a—4b+gc -

- (@*—2ab)+~a=a—2b

- (a*—24%b+ 30b*) +~a=a*— 2ab+ 31)’

(4a’—Ga’c+ 8abc) -+ 2a = 2a— 3ac+-4bc

(9a%Bc— 12ab°c+ 15abc?) =~ 3abc = 3a— ab+5c.

284. If it should happen that a term of the . di-
- vidend is nat divisible by the divisor, the quonent is

+ represented by a fraction : thus,

| (9.+b)-.-2_1+£—

. 2
(a’+ab+b9)+a2=}+b+b—

Lo
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S co b e
(2a+b+0)-=-2—a+'§+§.

" And here we may write ), instead of gé’ because §

-

times & is equal to %~ and in the same manner g is

the same as 19, and 2 3 the same as 1, &c.

285. But when the divisor is itself a compound

" quantity, division becomes more difficult, which fre-
quently occurs where we least expect it; and when
it cannot ‘be performed, we must content ourselves -
with representing the quotient by a fraction, in the
manner that we have already described. But at
present we will only consider some.cases in which
actual division succeeds.

286. Suppose, for example, it were required to
divide ac—bc by a-b, the quotient must. here . be
such as, when multiplied by ‘the diviser .a—b, will
produce the dividend ac—bc. Now it is evident,
that this quotient must include ¢, since without it we
could not obtain ac; in order therefore to try whe-
ther ¢ is the whole quotient, we have only to multiply

it by the divisor, and see if that multiplication pro-

duces the whole dividend, or only a part of it. Inthe
present case, if we multiply @— b by ¢, we have ac—be,
~ which is exactly the dividend; so that c is the whole
quotient. It is no less evident, that : ‘
(@®+ab)+(atb)y=a;
:(84*~2ab)+(3a~2b)==a;
(64°—9ab) (22— 3b)=3a, &c.
287. We cannot fail, in this way, to find a partof
the quotiens; if, therefore, what we have found, when
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multiplied by the divisor, does not yet exhaust the di-
vidend, we have only to divide the remainder again by
the divisor, in order to obtain a second part of the quo-
tient; and to continue the same method until we have
found the whole.

Let us, as an example, divide @+ 3ab+2b’ by
a-+b; itis evident, in the first place, that the quotient
will include the térm a, since otherwise we should not
obtain ¢>. Now, from the multiplication of the divi-
sor a+b by a, arises a®+ab; which quantity being
subtracted from the dividend, leaves a remainder
26b426; and this remainder must also be divided
by a+b, where it is evident that the quotient of this
ivision must centain the term 25: aghin, 26, multi-
plied by a+4-b, produces 2ab425%; consequently
‘a+-2b is the quotient required ; which, multiplied by
the divisor- g4, ought to produce the dividend.
&*4-3ab+2b°. See the work at length:

a+b)a’+3ab+2b%(a+ 20
a’+ ab

-2ab+25*

2ab+26%
. Q.
288. This operation will be considerably facilitated
by choosing one of the térms of the divisor which con-
tains the highest power to be written first, and then,
in arranging the, terms of the dividend, begin ‘with
the highest powers of that first term of the divisor;
. continuing it according to the powers of that letter :
which term in the preceding example 'was a; but

- the followi ing examples will render the operatlon more -

" perspicuous. -
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a-—b)as— a"b+3ab’--b”(a —2ab+3’
a —a”b : :

— Qqeb +3ab®

—2a*h4-2ab®
ab*—p®
ab*—b*

0‘ .
a+b)a*—b(a— b
a*+-ab

L —ab—b?
—ab—b?

0. N
3a—2b)18a°— 86%(6a+4b
) lBa’—JQab _

12ab— 852
12a¢b—8d°

0.

a+b)*+b%(a*—ab+4-4* -
" B4a%h

—a’h+-b
| —a'b—ab®

ab’+- b
ab*+ 5

. 0.
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| QgeeB)8@~P(daP e 2ab Dt 7. |
8a°—44°b i

4a%h =5
 4a*h—2ub®

QabP—b®
2ab?—b®

0.

a'— 2ab+b’)a‘—-4a’b+6a’b’ — 4ab’+b*(a’.. 2ab+ 5
a*—2a%h+a*b?

—2a%h+ 50°*— 4ab®
—2a’b+4a’b’— 2ab®

A — Gab¥ 4 b
&P —2ab* 4 b

‘ol

8 —2ab - 450)a + A0 16U ¥ Qb4 45°
" p—20b 4

2a°h 1604 .
"a%b~44°H* -+ 8ab®

4a%b*—8ab*+ 166*
40°H—8ab*+ 165

. 0. o

*
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a’-—-zab-f-21»“)a‘-|-4-b’*(a"+czab-f-gl;2 o,
| d—2a%)+-24%0 o
2a%b—2a%b* + 4b
2a3b— 4a°H* 4 4ab®
- 9d b~ dab 4t
2a*b*— 4ab> 4 404
o : ‘ o
1~2z4-x%)1 —5241022— 10234524 —15(1 —324-82%—1°
1—-2z4-2? ,
—31+9,1_;’-‘—101° _
 —3r4-62— 32

812— 723452
8xt—61°4-32*

| =2t -1t
— 422 —2*

0.

- CHAP. V.
Of the Resolution of Fractions into Infinite Series *.

289. When the dividend is not “divisible by the
divisor, the quotient is expressed, as we have already -

* The Theory of Series i3 one of the most important in all the
~ mathematics. The series considered in this chapter wefc dis-
covered by Mercator, about the middle of the last centary ; and-
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ob'sexfyéd, !l)y a fraction: thus, if we have to divide 1

by 1-a, we obtain the fraction -I—l—: this, however,

does not prevent us from attempting the division ac-
cording to the rules that have been given, nor from -
continuing it as far as we please, and we shall thus
not fail-to find the true quotient, though under dif-
ferent forms. ,

. 290. To prove this, et us actually divide the
dividend 1 by the divisor 1—a, thus:

. I—a)l

i—a

remainder ‘@

. ' o V a2
‘or, 1—a)l 14a4+ —
, ‘) a+ +1-‘-a
1=—a
. a |
a—a?

.

- remainder @®

soon after, Newton discovereq those derived from the extraction .

of roots, which are treated of in Chapter XII. of this section.

This theory has gradually received improvements from several

" other distinguished mathematicians. The works of James Ber-
noulli, and the second part of the ¢ Differential Calculus” of
Euler, are the books in which ‘the fullest mfom}atlon is to be ob-,
tained on these subjects. There is likewise in the Memoirs of
Berlin for 1768, a new method by M. de la Grange for resolving,

. by means of infinite series, all literal equatlons of any dunen-

" sion whatever F.T. - ‘ . » _ N
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To find a greater number of forms, we bave only
to continue dmdmg the: remamder a by 1—a;

].—aw (ag+_.as_a “ :‘
a—a®

a

then, 1=a)d '(é?-;-.l.f_a -
@—g

a
| O
and again, 1-a)* (a2
. )  dh—at.
-u’,&c}_*

291. Thls shows that the fractlon il—may be ex-

thibited uh&er all the lfollowmg forms:
1 a tt’
1—a . 1+ 1 j

—1+a+i“+;"i_- -.-:1%*&’4-’4%4‘:-;
_ . 1—a
= l+a+a’+a’+a‘+—-—;, &c
Now, by eonsxdsrmg 'thetﬁrst of these mqneumn;,
‘which. st-I-—-—a-, and .remembenng that 1 is the

VOL.I. - N <
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, we have

-—a

. ‘same as :-~a
' l—a a _l—a+a 1

1—a 1—a'1—a  1—a _1—a

If we follow the same process with regard to the

l_l..

second expression, 14-a-- : a,a; that is to say, if we
reduce the integral part 1+a to thesame denomina-

to which if we add

‘ . —_n2
tor, 1—a, we shall have : ’

-_a

o 1=d4d® 1
+'i-_—a, we shall have‘a——T:‘-i__, that is to say,lT

, thé in-
a
' mia . B Y
tegers reduced to the denominator 1—a make =

—-—a

Co 3
In the third expression, 1+4a--a*+ la

and if we add to that the fmtlon -1—13—, we have T

as before ; therefore all these expresslons are equal
. value to -l——- the proposed fraction.
: 292“ This being the case, we may contmue the
series as far as we pléase, without ‘being under- the
' necessity of performing any more calculatlons and_
thus we shall have, - - :

g 1+a+a’+a3+a*+a’+a5+a"+——
or we mlght continue thls farther, and still. go on
- without end ; for which reason it may be said that
the proposed fraction has been resolved into an in--
finite series, “which is, 14+a+a’+a’+a*+-a°+a’,
+a"+a‘+a’+a‘°+a“+a" &c. to mﬁmty anﬂ
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there are suﬂiclent grounds to maintain, that the va-
lue of this mﬁmte series 1s the same as that of the

fraction .

1—a .
293. What we have said may at ﬁrst appear
strange ; but the consideration of some particular

‘cases will make it easily understood. Let us, for in-

stance, suppose, in the first place, a=1; our series
will become 1+1+1+l+1+1+] &c ; and the

fraction T 1

— to which it must be equal, becomes (—l)

Now wé have before remarked that— is a number

mﬁmtely great ; which is therefore here conﬁrmed in

- satisfactory manner.

Again, if we suppose a=2, our series becomes
1+2+4+_8+16+32+64 &c. to infinity, and its

. . 1 .
value must be the same ag =% ‘that is to say—l-l-

=—1; which at first sight will appear absurd. But
it must be remarked that if we wish to stop at any
term of the above series, we cannot doso. without
joining the fraction which remains; suppose, for'
example, we were to stop at 64, after having written
142+4+8+ 16432464, we must join the frac-
tion T]%’ or 12?, or —128; we shall therefore
have 127— 128, that is in fact —1..

294. These are the considerations which are neces-
sary, when we assume for g numbers greater than »
unity ; but 1f we suppose a less than 1, the whole be-

comes ;nore mtelhalble for example, Let a_% and
K2
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e shallhavella 11' 1-_—.é which will be
equal to the followmg senes l+ ata +—+4—6+§
ﬁ -

' -'_"'5‘-54'-1?.2;53" &c. to mﬁmty. Now, if we take qnly

- two terms of this series, we shall have 1 +%, and it

‘wants } of _Being ‘equal to ﬁ:&g ; if wé take three

te'rgns, it wants 1 ; for the sumis 1%; “if we ‘take four
terms, e have 1%, and the déficlericy i5 ‘only 3:
,therefore, the more terms we take, the less the dif-
ference becomes ; and, consequently, if we continue
the series to mﬁmty, there will be no difference at all-
' bet\been its sum ahd the value'of the fraction = 'f_a
or 2. .

95, Leta==; 3- dnd our fraction T'Z wil be
&f%%:l.é, which "reducéd to an‘inﬁnite'séries,

becomes l+ +9+27+81+243 &c. which is con-

sequently equal to -—l; ~

Here, if we take two terms, we have 1%, and there
wants 1 ; 'if we take three terms, we have 14, and
there will still be wanting 55; if we take four terms,
we shall have 113, and the difference will be -3
since, 'therefore, the error always becomes three times
Yess, it niust evidertly vanish at last.
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296. Suppose a.....-2L we shal bave R N --l-s

1—a- 1—%
2 4 8 16 32

=14> + +— 7+81 243, &c. tomﬁmty, and

here, by takmg first 1— the error is 1% takmg three

terrns, which make 2}), the error is -3 ; takmg four

terms, we have 2——, qud the error is ;—g

1

297. If a_—, the fractlon is ——__-.._1 ,and
4 1—-3 4
1
the series becomes 1+ + 6+ 64+25 5 &c. The

two first tcrms are equal to 1—' which gives —L for’ the

error; and tqknng one term more, we have l that

is to say, only an error of Zg'
298. In the same manner, we may resolve the
fraction ;

viding the numerator 1 by the denominator 1+4-a,
which, after a . certain number of terms have been
obtained, will give the law by which the “following
terms are formed, so that the series may be carried
to eny length without the trouble of continual divi-
sion, as is shown in the following example.
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1446) I (1—a+d=d+at
. 14a
. —a

—a—a®

. ag
o
—a®
—a—at
@
a+-a°

-a°, &ec.

" Whence it follows, that the fraction —.
14a

the series, . '
1—a+a*—a*+a*—a*+a°—d’, &c. 3
299. If we make a=1, we have this remarkable
comparison: _ .o

1T 1

is equal to.

14a¢ 2 ' ‘
finity; which appears rather contradictory; for if we
stop at —1, the series gives 0; and if we finish at

+1, it gives 1; but this is precisely what solves the

difficulty ; for since we must go on to infinity, with-
. out stopping either at —1 or at +1, it is - evident,
that the sum can neither be 0 nor 1 but that this
result must lie between these two, and. therefore
be 3 *.

.

* The author seems here to have assumed too much, for it
does not follow because the series is neither equal to 0, nor 1,

—=—=1—141—=141—141—1, &c. to in- -
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'300. Let us now make a-_-:é-, . and oup fraction '
1+ 2 o
1443
. 1 1 1
l—cga 2
value of the series —atitst

will be , which must therefore express the

11 1 ‘
—— -yl & .
65 ter °F
to infinity; here if we take only the. two leading

terms of this series, we have —;—, which is too small by
%; if we take three terms, we have %, which is top
much by TIE; if we take four terms, we have ‘—:—,
which is too small by %’, &ec.
301. Suppose again a=§, our_fraction will be -
1 '8 . . . - 1
-:IT%:Z’ wh;ch @st be eq‘ual to this series 1-3
+l —l-ll-—l~——1—+-1— &c continued to infinit
9 a7 81 243 79 o conunted ok

Néw, by considering only two terms, we have g-,

' which is too small by ]—lé; threeterms makeg ‘which

\

that it must necessarily be equal to §. This difficulty, however,
is easily obviated, by observing that no infinite series is in reality
equal to the fraction from which it is derived without the re-
mainder be considered, which, in the present case, is alternately
+4 and ~}; thatis; 4} when the series is 0, and —4# when
the series is 1, which still gives the same value for the whole ex-
pression. Eb, ’
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utoomuchby-z, four terms gwe——- Whiclluttoo
‘.smdlby-——, and soon. '

802. The fraction -l—'-:-_; may also be resalved inta

" an infinite series another way; namely, by dividing
*1 by a+1, as follows:

1
a1 Gt 7:3'7*? :
]+Z
_1
a
11
1 .
p
1,1
rars
3

It is however unnecessary 1o carry the actual di-
vision any farther, as we are enabled already to con-
tinue the series to any length, from the law which may
be observed inthose terms we have obtained ; namely,
the signs are alternately plus and minus, and each term

is eqi;al to the preceding one multiplied by i.

>



. CHAR S | OF ALGRERA. 187 .
Conﬁequedﬂy, quy fraction w_—:ﬁ, is cqua.l ta the

1
mﬁmw series —wl—z;rl-a, a‘+a5 a" &c. Let us

make q,.- 1, and we shall have the series l-,1+l
=14 1'_ 1) &cv —“;’1 as before and lf we Suppose

1 11,1

a__e, we shall have the serips 1 T

& &.¢
- 303 Iu the same manner, by resolvmg the general

" fraction m into an infinite series, we sha,ll have,

c bc b lu.
. etb)e &( 2t a7 a
c
- b
b_c b%c
ra
b bc
R
—

" And here aga\in' the law of continuation is mani-
fest; the signs being alternately + and —, and each
succeeding term is formed by multiplying the fore-

going one by 6 -
& P

.
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¢ f ] N
Whence it appears, that we may compare < w1th '

a+b .
32
the series c_bﬁ-;-f‘f b’c , &c. to mﬁmty

Let a=2, b=4, c._s and we shall have

¢c .3 _38_1 _
—_— ——3 6—12, &c.
atb—2+a 6 & 2 o ¢

If a=10, b=1, and c¢=11, we shall have
¢ 11 —1= 11 11 11 _ 11 &e.

© _a+b 10+1 .10 100 1000 10000

. Here if we cdnsxder only one term of the series,

we have — o whlch is too much by —; if we -take .

100°

lf we take three terms, we have :gg(l), which is too

‘two terms, we haveig— whxch is too small .by %; E

much by -1—0-6(—) &C

304. When there are more than two terms in the
divisor, we may also continue the division to infinity
in'the’ shme manner. Thus if the ﬁ:action ;+ 1
were proposed the_ infinite series, to whlch it is
equal, will be found by dividing the numerator by
the denominator till the particular law of the series
be observed, as in the following operation.

i
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1—g+a%) 1 (1+a—a*—a*+a°+a’, &c.
' 1—a+a®

a—a* .
- ¢—d*+a’
J—
—a’
-t d—a®

—dtrd

.76 |
&d—a +a

ad—a*.

a—a4ad 4

-

We have therefore the equation o

1 ;
]__a_+_g=l+a—a’-a"+a‘+a" &ec.; where, lf we .
make g=1, we have l_1+1-—l-1+]+1--1-l,
&c. which series contains twice the series found
above 1—141—=1+41, &. Now, as we have

- found this to be é, it i$ not extraordinary that we
should find '-:-, or 1, for the value of that which we

* bavejust determined. ‘
By making 'a=l, 'we shall have the eqqaﬁon‘ '

1 4 11 11
=] e e —, &C.
5 t37s 6+64+128 512
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o az-;-, we shall have the equation 19

¥ 7
1 1 1
l D ———
+3 e 81+/‘29 &c. and 1(' wetake the four ‘
leading terms of this series, we have -189#, -which is
S » .
nly —— 2
. only less than 2 |
Suppese again a=§,\.‘ we shall have %:g:
g 287 -:;—? 7‘?;; &c. this series is therefore
equal to the preceding one; and by subtractmg one
fram the other, we obtain l 7 ———+ 63 , &

3727 81'729

which is necessarily =0.
~ 305. The method, whlch we have here explamed
- serves to resolve, genera]l all fractions into infinite
series; which is often found to be of _the greatest utility;
it is also remarkable, that an infinite series, though'it
mever ceases, may have a determipate value. It
should likewise be observed that, from this branch
" of mathematics, inyentions of the utmost impertance
.. have been derived, on which accoupt the subject de-
~ serves to be studied with the greatest attention.

v
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| CHAP. VI, v
OF the Syuares qf Compound Quantities.

306 ‘Wheén Tt §s réduired to find the square 6f a
compound quantity, we have only to multiply i€ by
itself, and theé pro dct will ‘be the square required.

For example;, the squive of a+b is found in thé
foltoiving 'hiatiner :

a+b
~a+b

———

a4ab
ab4-b0%
P+ 0ab+0*
§07. So that when 'the oot ‘conisists of tivo teiins
- d¥ded’tdgethier, as a5, the squire’ oﬁmpréhehds, 15t. -
the squbftes of ‘each tértn, ‘nately * and 5% 2dly,
- tiice ¢he Product of the ‘tiwo terins, namiely 2ab; ‘so’
thdt the sum Wb +7 'is ‘thie square of a+b: let,
for 'éxatnple, 4=="T0 aidl 53, 'that is to say, Tét it
Be ‘féfjuired to 'fitid 'the ‘sqtiare of 13, we shiall have
1004-60+9, ‘or 169.

808, We iy easilyfind, by meiins.of this formula,
the squares of numbers, however great, if we divide
thiem itito two parts : tlius, for'example, the square of

' 57, 'if ‘we'ctnsider ‘that this lumber is the same as
5047, will be foutid ==2500+700+49 = 3249.

309. Hence it is evident, that the square of a+1

will be a’+2a+1: and since the-square of a is 4%,
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we find the square of a+ 1 by adding to that square
2a+1; and it must be observed, that this 2a+1-is
_the sum of the two roots ¢ and a+1.
Thus, as the square of 10 is 100, that of 11 will
be 100421 : the square of 57 being 3249, that of
58 1s 324941 15—-3364 the square of 59 =336
<117 =23481; the square of 60= 34.-81+119—-
3600, &c.
310. The square of a compound quantity, as a+ 5,
.18 represented in this manner (a+b)*; we have
therefore (a+b)’=a’+2ab+-b*, whence we deduce
the following equations :
(a+ 1)’—_—a’+2a+ 1; (a4 2)’=a’+4a+4;
(a+ 3)’_¢’+6a+9 ; (a+4)’—__-a’+ 8a-16;
&c.
311. If the root be a—b, the square of it is
a —2ab+b’ which centains also the squares of the
two terms, but in such’a manner that we must take
. from their sum twice the product of those two terms :
let, for example, =10 and b==— 1, then the square
of 9 will be found equal to 100—20+1_81
~ 812. Since we have the equation (2—b)*=a*
: —2ab+b’ we shall have (a— 1)*==4>—2a+1; the
square of a—1 is found, therefore, by subtracting
from a* the sum of the two roots ¢ and a— 1, namely,
Qa—l thus, for example, if a==50, we have
- @*=2500, and 2¢—1=99; therefore 49°==2500
..99-—2401 ‘
313. What we have said here may be also con-
. firmed and illustrated by fractions; for if we take as

; the root — +—_.1 the square will be,
9 12 25

25"'?.75"'25 25
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— SUANEPS G Pt B
her, the e — it Wl
Farther . squ=are of 2=5% will l?e_ 2 3-‘;-9

l

=36’ _
314. When the root consists of a greater number
of terms, the method of determining the square is
the same. Let us find, for example, the square of
a4-b+c: ' -
a+b4c

a+b+c

a*+ab+-ac
ab+-b*+be
ac+be4c*

a’+2ab+Q2ac+b*+2bc+c*

So that it includes, first, the square of each term'of
the root, and beside that, the double products of
those terms multiplied two by two.

315. To illustrate this by an example, let us divide
the number 256 into three parts, 200+50+4-6; its .
square will then be composed of the followmg parts;

2002=40000
50°%= 2500
6’= " 36

'2.50. 200==20000 -
2. 6.200= 2400
2. 6. 50= 600

’

65536=256% 256, or 256®.

816. When some terms of the root are negative, the
square is still found by the same rule; only we must
. be careful what signs we prefix to the doublé pro- -

\ .. v
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- duets: , thus (a-b—c)’—*a’+b’+c’~2ab—
+2bc; and if we represent the number 256 by-
300—40—4, we shall have,

Positive Parts.  Negative Pants.’

300=90000 2.40.300=24000
40= 1600 - 2. 4.300== 2400 .
2.40.4= 320 - ~
4= 16 . —26400
+91936 .

- =—26400

65536, the square -of 256 as before.

CHAP. VIL

. Of the Extraction of Roots applied to Compound
Quantities. \

317. In order to give a certain rule for this opera-
tion, we must consider attentively the square of the
root-a+b, which is a®+2ab+2?% in order that we,
may reciprocally find the root of a given square.

318. We must consider therefore, first, that as. _
the square a®+2ab-b* is composed of several terms,
it is certain thattire-root also will comprise more than
one term ; and that if we write the square in such a

‘manner that the powers of ope of the letters, as @, may
. go on contmually diminishing, the first term will be
the square of the first term of the root; and smce,
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in the present case, the first term of thie square is a?,
it is certain that the first term of the root is a. )

319. Having therefore found the first term of the
root, that is to shy @, we must consider the rest of the
square, namely 2ab+ 4%, to see if we can derive from
it the second- part of the root, which is &:-now this
remainder 2ab+-4* may be represented by the pro-
duct, (22+6)b ; wherefore the remainder having two
factors 2a+b and b, itis evident that we shall find the
latter, b, which is the second part of the root, by di-
viding the remainder 2ab+4* by 2a+b.

320. So that the quotient, arising from the division
of the above remainder by 2245, is the second term
of the root required; and in this division we ob-
serve, that 2a is the double of the first term @, which
is already determined ; so that although the second
term is yet unknown, and it is necessary, for the pre-
~ sent, to leave its place empty, we may nevertheless
attempt the division, since in it we attend only to the
first term 2a; but as soon as the quotient is found, - -
which in the present case is b, we must put it in the
vacant place, and thus render the division complete.

321. The calculation, therefore, by which we find
the root of the square a®4-2¢b+ 0%, may be repre-
sented thus : :
a’+42ab+b*(a+b

N Vag

0a4-b) 2ab+b*
Qab+b?

0.

329. ‘We may, also, in the saule manuer, find the
VOL.'I. . : L
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square root of other compound'q'ila.ntit.ies,~ provided
they are squares, as-will'appear frOm the followmg

examples

. 2a+3b)

4a—b)

a’+6ab+96’ (a+36 .
a‘Z .
6ab+9b*
6adb+98*

0. ‘

4a9-4ab+b’ @a—b -
44% :

4-4«ab+b’ :
—4ab+4b*

0.

: 9P;+e4p1+ 16¢* (3p-+4¢

6p+4g)

24pq+ 16q
24P +16¢°

0.

' .-252'2—60m+36 (51'—-6'

100—6)

251’

—60w+ 36
-7-60.r+ 36

0.

323. When there is a remainder after the division,
it is a proof that the root is composed of more than
two terms; and we must in that case consider the -
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two terms already found as forming the first part,
and endeavour to derive the other from the remain-
der, in the same manner as we found the second
term of the root from the first. The following ex-
amples will render this operation more cléar:
a“;+2db-2ac—-26l:+bz+c" (a+b—c
@

2a=b) 2ab—2ac—2bc+b*+c*
© Qab - +&

Qa+42b—c¢) —2ac—gbc+c®
, —2ac—‘zbc+c’

OO

Aot @ ot
p

2a’+a) 2a’+3a‘
2’4+ a4t

2a’+2a+ 1) 3a°+2a+1
2a*4-2a+1

0.

a‘—4asbA+8aI}’+46‘ (®—2ab—2b*
¢~
26— 2ab) —4a’b+ 8ab®4-4b
—4a’b+4a°0°

U—dab—ol) —aa48ab AL
o —4a 480l 4

0.
L2
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‘-céb 15a'0* - 20a36° 4 15004 — Gab*4-0° .
:‘ s + (a*—3a*b+-3ab>— b

' 24°~3a%h) —6a%b+15a*’
—6a%b4 9atb*

2¢°—6a*b4-34b?) Ga*h*—20a*b*+15a°b*
7. 6a*b*—18a°b*4 9a’b*

248 — 6a*h4-6ab*—F) — 2a%b*4-6a"b*—6abs4-b°
' — 2433 4-6a*b*—6ab’ 4b°

0.

324. We easily deduce from the rule which we
‘have explained, the method which is taught in books
of arithmetic for the extraction of the square root, as
. will appear by attending to the following examples in
- numbers : S '

529 (28 2304 (48
4 16 - -
43) 129 88) 704
129 704
- 0. 0.
4096 (64 - géoi (98 -
36 81
124) 496 188) 1504
' 496 1504
0. o
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15625 (125 ' 998001 (999
1 | 81

22) 56 . 189) 1880
44 , 1701

245) 1225 1989) 17901
1985, | © 17901

0. - 0.

325. But when there is a remainder after all the
figures have been used, it is a proof that the number -
proposed is not a square, and consequently that its
root cannot be assigned; in such cases, the radical
sign, which we before employed, is made use of,
which is written before the quantity, and the quan- -
tity itself is placed. between parentheses, or under a
line: thus the square root of 4°+ 5" is represented by
v (a*+5%), or by v a*+b*; and v/ (1—2%), or v/ 1—2%,
expresses the square root of 1—a?; or instead ‘of
this radical sign, we may use the fractional exponént
5 and represent the square root of 4*+4*, for in-

stance, by (a’ +b’)% or by a’+ b"\‘}
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. CHAP. VIIL
. Of the Calculation of Irrationa] Quantities.

- 826. When it is rpqufred to add together two or -

_more irrational quantities, this is to be done, accord-

ing to the method before laid down, by writing all
the terms in succession, each with its proper sign:
and with regard to abbreviations, we must remark-
that, instead of va++a, for example, we may write

_ 0~/a and that va—+/u=0, because these two
 terms destroy one another; thus the quantities -

3++/2 and 14+v2, added together, make 4+2v2,
or 444/8; the sum of 54+/3"and 4~+/3, is 9;

and that of 2¢/343v2 and v/ 3—+/2is'3v 342V 2.

327. Subtraction also is very easy, since we have
only to add the proposed numbers, after havmg

| _ changed their signs; as will be readlly seen in the

following example by subtractmg the lower lme from

the upper one:

4— V242V 3—3V54+4v6
1420 2—2V3—5v5+6v6

3—3v2+4v3+2v5—2V6. -

398. In multaphcatlon we must recollcct that x/ a

‘multiplied by v« pioduceg a; and that if the num-

bers which follow the sign +/ are different, as @ and
b; we have #/ab for the product of +/a multiplied by -
~b; and thus it will be easy to calculate. the follow-.
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14+,8 L A+Ve
14v2 \ 22— V2
1+v2 . Btave
+v2+2 - T —42—4
14+2v/242=3+22. = 8—4=4."

329. What we have said applies also to imaginary .
quantities ; we shall only observe farther, that v —a
+ . multiplied by ¥/ —a produces —a. Also if itwere re-
" quired to find the cube of — 14-+/ ~ 3, we should first’
take the square of that number, and then multiply
that square by the same number; asin the following

operation :
—1+~/f3
—14+v/~-=3
1—v/—38 . | .
_~/—3—3 ’ N .
12V —8—3=m~2—2V 3
—14 V-3
s+ev—3 |
) —2v—3+6
' 2+6==8.

330. In the division of surds, we have only to ex-
. press the proposed quantities in the form of a frac-
tion; which may be then changed into another ex-.

pression having a rational dengminator; for if the = '

denominator be a++/5, for example, and we multi- -
ply both this and the numerator by a—+/b, the new -

denominator will be a®*~— b, in which there is no radi-
cal sign. Let it be-proposed, for example, to divide
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3‘-]-‘2~‘.2.
14+ v2’
then multiplying the two terms of the fractlon by
1—4/2, we shall have for. the numerator :

3 +2v2

1— v2

. 3+2v2 by 14+v2: we shall first have

© 342v2
—3v/2—4

8—vV2—4=—v2—1;
and for the denominator :
: 14+v2
1—+v/2

1+v2
—7\/‘2—2

1—2—=—1. -

. . =21 .
~ Our new fraction therefore is “1‘ ; and if we

* again multiply the two terms by — 1, we shall have
for the numerator +/2+ 1, and for the denominator
+1. Now it is easy'to show that /241 is equal

to the proposéd fraction ‘:;2 ; for ¥/2+41 being
multlphed by the divisor 1+x/ 2, gives ’
1+v2
1+v/2
" 1442
+v2+2

we have 14-2v/2+2=3+2v2. )
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- Again’: .8‘—54/ 2 divided by 3—2~7 2 is in the first

. 8—
instance ———— 52, ; and mulnplymg the two terms of

__0\/2
this fraction by 3+4+2v2, we have for the numerator,
8—5v2 )
3+2ve
24—15v2

+16/2—20

24++/2—20=4+v2;
and for the denominator, '

3—2v/2
34-2v2

9—6v2
- +6v2-8

9—8=+1. .
Consequently the quotient will be 4++/2: the truth
of this may be proved as before, by multlphcatlon H
thus,

44 «/2
3—2vV2

—————

124-3v2
—8v2—4

12—54/2—4=8—5v2.

331. Inthe same manner we may transform irra-
tional fractions into others that. have rational de-
nominators : if we have, for example, the fraction.

‘1

5=av6 and multlply its numerator and denomina-
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' -
‘tor by 542v6; we transform it into this, 2 6.

—
) -l =3
assumes this form, 2+%.‘/—'3_1+‘/—3 ; also -

-4 —9
V6++v5 1142/30 ! '
TV = s,
332. When thé denominator  contains several
terms, we may in the same manner make the radical
signs in it vanish one by one : thus if the fraction

=5+2+v6; in like manner the fraction

be proposed; -we first multiply

1
vV10—v2—v3 \
these two terms by +'1044/2+-+/3, and obtain the
e V10+VEEVS L
" frchon s—o/6 then multlpl;mg its nu-.

merator and denominator by 5+2v6, we have

5v/ 10+ 11/24-9v 3+24/60.
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\ CHAP IX
Of Cubes, and of the Extraction of Cube Roots

. '333. To find thé cube of a+b, we have only
multiply its square ¢’ +2ab+4* agam by the quantlty
itself, thus,
@+ 2ab+b°
a+b _
@ +2a%b+ab®
Wh2ablP+1° -

~ @+ 3a*b+3a)°+ 1 -
which gives the cube required. :

We see therefore that it contains- the cubes of the
two parts of the root, plus 3a*h+ 3ab?, w hich quan- -
tity is equal to (3ab)X{a+0b); that is, the triple:
product of the two parts « and 4, multiplied by their
sum.

334. So that whenever a root is composed of two
terms, it is easy to find its cube by this rule: for
-example, the number 5_.3+2 lts cube is there-
fore 2748+ 18X 5=125.

‘And if 74-3==10 be the root ; then' the cube will
be 343427463 X 10=1000.

To find the cube of 36, let ‘us suppose the root .
- 86=230+6, and we have for thie cube requircd

© 270004216+ 540X 36 = 46656.

335. But if, on the other hand, the cube be given,
namely, a*+34%+3ab*+0°, and it be requne(l to
find its root, we must premise the following remarks:
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First, when the cube is arranged according to the
powers of one letter, we easily know by the leading
term a°, the first term @ of the root, since the cube
~ of it is a®; if, therefore, we subtract that ‘cube from
the cube proposed, we obtain the remainder, 345
+ 3ab*+5°, which must furmsh the second term of
the root.

396. But as we already know, from Art. 333, that
the second term is + 5, we have principally to dis-
 cover how it may be derived from the above re-
mainder. ' Now that remainder may be expressed by
two factors, thus (3a*+3ab4-56%) X (); if, therefore,
we divide by 3a®+3ab--b%, we obtain the second
part of the root +5, which is required. -

837. But as this second term is supposed to be
unknown, the divisor also is unknown; nevertheless
we have the first termof that divisor, which is suf-
. ficient; for it is 342, that is, thrice the square of the
first term already found; and by means of this, it is
not difficult to find also the other part, 4, and then to
complete the divisor before we perform the division; -
for this purpose, it will be necessary to join to 3a®
thrice the product of the two terms, or 3¢b, and 47,
or the square of the second term of the root.
~ 838. Letus apply what we have sald to two ex-
amples of other given cubes.

@+ 126°+48a+64 (a+4
a3

Sa®+12a+16)  122°448a+64
124*+ 484+ 64

0.
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' a°-6a"+1'5a'—20a3+15a*—6a+1(a'-2a+1
a

—60’-[-40") -—6a’-|-l5a —204®
—6a°412a*—8a°

"3a'—126°+4124a*+ 34*—6a+1) 36'—120°+15¢*—6a+1 |
© 3a'—12a°4 15a*—6a41

0.

339. The analysis whlch we have given is the
foundation of the common rule for the extraction of
the cube root in numbers; see the following example .
of the operation in the number 2197: -

2197(10+3=13
1000
300}1197
90
s R 9
399(1197
, 0. .
Let us also extract the cube root of 34965783:

‘ o4965783(300+20+7
27000000
270000 7965783
. 18000 -
400}

288400/ 5768000

307200, 2197783
6720
© 49

313969 2197783

0.
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CHAP X.
" Of the Izzgher Powers of Compound Quantzttes

340. After squares and cubes, we must consider
higher powers, or powers of a greater number of de-
grees ; which are generally represented by exponents
in the manner which we before explained: we have
only to remember, when the root is compound, to
“enclose it in a parenthesis : thus (¢4-5)° means that

_ a+b is raised to the fifth power, and (a—5)° repre-
“sents the sixth power of a—b, and so on. We shall
‘in this chapter explain the nature of these powers.

341. Let a+b be the root, or the first power, and

. the higher powers will be found by multiplication in
the follow ing manner:

(atb)'=atb
a+$bd
S
a*4-ab
4-ab4-b*

' S —
(a-+b)*=a’+2ab+b*
a+b

& 4-2a%b-}-ab*

L\)\)x + ab420b B
)\ (a+b)°-a=+ 3a’~’b+3ab‘+b’

\,\ . a+b

a*43a°b4-3a**4-ab®
r / + @b-3a% - 3aB b

@' 4% 66 - 4ab>4-b
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" (a¥B)'= ‘+4a"b+8a’b’+4-¢b’+b‘ o
a+b ‘
a’+4-a‘b+6a’b’+4a’b’+db‘
ST 4 apaabi 0ot 4 4abd b5
(a8)* =0 +50'+102%*+ 100"+ Sab' b -
a<$-b o
a®4535b410a*b*410a%5°4-5a%* +a‘b
. < a*b4-54 b’+10a3b’+IOa’b‘+5ab’+b‘
(a+5)5=a%+6a%h+ 15a*5°4200°0° 4 15a°h* 4 6abs4-b°, &c.
342. The powers of the root a—b are found i in
‘the same manner ; and we shall immediately perceive
that they do not differ from the ‘preceding, excepting
that the 2d, 4th, 6th, &c. terms are affected by the
sign minus.

(a-b)‘...a-b
a—b

a*—ab
. —ab4-P?

’ (a=BP=a*=2ab+d* = .

a—b

@ =26%+-ab®
.- a’b«l-'ﬂab’—b

(a-b)’—a’+3a’b+3ab’—b’

a-b _ <

a‘ — 34+ 3a%b* —ab®
— &b4-3a% ~Sab’4-b*

(a—Db)'=a*—4a°b4-60°0*~ 4ab>4-b* -

a-b

05— 40*h 460 — 405 +-ab*
| —a'b+4a% — 6a'h -+ dab’ B

@8 —5a'b4-10a%* — 10a%°4-5ub* ~ b*.
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(8-%)*=0a’~54'b4-10a°0*— 10°b°4-5ab* — b5
a—b

a%—5a%b+410a'b*— 10a°°+ 5a°b' —ab’
— @b+ 546~ 106°P 4+10a%* — 5ab’ 4 b

(a—b8)"=a°—6a%b+150h* — 20a°5*+ 1 54%* - 6abS4-b°, &e.

Here we see that all the odd powers of & have the
sign —, while the even powers retain the sign +;
. the reason of which is evident; for since —& isa
term of the root, the powers of that letter will ascend
in the following series, —b&, +6% —&%, +06% =0
405, &c. which clearly shows that the. even powers
must be affected by the sign +, and the odd ones by
the contrary sign —. )

343. An_important question occurs in this place;
namely, how we may find, without being obliged al-
‘ways to perform the same calculation, all the powers
either of a+4b, or a—b 2 .

We must remark, in the first place, that if we can
assign all the powers of a5, those of a—b are also
~ found, since we have only to change the sigos of the
even terms, that is to say, of the second, the fourth,
the sixth, &c. The business then is to establis.h a
rule, by which any power of a+b, however ‘high,
‘may be determined without the necessity of calculat-
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.of the exponents of a and of 5 is always the same,
and always equal to the exponent of the power re-
quired ; and, lastly, we find the term & by itself
raised to the same power: if therefore the tenth
‘power of a+b were required, we are certain that the
terms, without their coefficients, would succeed each
other in the following order; a'°, a®, a*F®, a0, o,
. @°b°, a*bb, &b, a’b®, ab®, b. _
345. It remains therefore to show how we are to
determine the coefficients which belong to those
terms, or the numbers by which they are to be mul-
tiplied. Now, with respect to the first term, its co-
efficient is always unity; ‘and, as to the second, its
coefficient is constantly the exponent of the power;
but with regard to the other terms, it is not so easy
to.observe any order in their coefﬁcxents, yet, if we
continue those coefficients, we shall not fail to dis«
cover the law by which they are formed;. as will ap« -

pear from the followmg table.
Powers. Coefficients,

Ist - = « - - - 1, 1

2d - - «+ - - - 1,21

sd - - - - - 1,831

4th - - - + - 1,4,6 4,1

5th = - - - 1,5 10,10, 5 1

6th - - - 1, 6, 15, 20, 15, 6, 1

7th - - -+ 1,7,21,8538521,7%1

8th - 1, 8, 28, 56, 70, 56, 28, 8, 1

gth - -. 1,9, 36, 84,126, 126, 84, 86,9, 1
10th 1, 10, 45, 120, 210, 253, 210, 120, 45, 10; 1

then that the tenth power of a5 will vbe,
b + 45a°D* + 120475° + 210a°0* + 2524°6°
' 1206°8" 4 450°E° + 10ab° + 5.

- M
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- 846. Now with regard to the coefficients, it' must
be observed, that for each power their sum must be .
equal to the number @ raised to the same power ;. for
let a==1 apd b==1, then each term, without  the

- coefficients, will be 1; consequently, the value of

tlie power will be simply the sum of the coefficients ;

this sum, in the preceding example, is 1094, and ac- ) )

cordingly (1+41)*=2""==1024; and it is the same
wgth all other powers ; thus we have for the

Tst 14+ 1=2=2},

2d 14241=4=9%

'8d 143+43+1=8=2%,

4th 1444644+ 1=16=

Sth 145410410454 1=32=2%

6th 146+ 1542041546+ 1=64=2°,

7th 14+7+21+85435421 47+ 1=128=2"

$47. Asother necessary remaik, with regard te
the coefficients, is, that they increase from the begine

' ning to.the middle, and then decrease in the same

order; and in the even powers, the greatest coefficient
is exactly in the middle; -but in the odd powers, two
coefficients, equal and greatey than tlie others, are
found in the middle, belonging to the mean terms.
The order of the coefficients likewise ‘descrves

" particular attention ; for it is in this order that we dis-

cover the'means of determining them for any power
whatever, without calculatingall the preceding powers.
We shall heve explain this method reservmg the de-

. moustration however for the rext-chapter.

-348. In order to find'the coefficients of any power
pi-opdsed, the seventh for example, ‘let us write the
following fractions one after the other: °
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765 4 38 2 1. N
75739‘475,‘6,‘,7- .

In this arrangement we perceive that the numerators

begin by the exponent of the power required, and

that they diminish au(:cessnvely by unity : while the

denominators follow in the natural order of the num- .

bers, 1, 2, 3, 4, &c. 'Now the first coefficient being -

always 1, the first fraction gives the second co-
efficient ; the product of the two first fractions, mul-
tiplied together, represents the third coefficient ; the
product of the three first fractions represents the
fourth coefficient, and so on. TFhus the.

1st coefficient is 1 . = 1

|32
=0
)
’
[ ]
L]
1]
-~

TR
[=)Y

i
I

E 2

[ 4 ]
. ' o

.- “a

[

(]

b 38 )

(=

n

. 1.2.3
S v o A
Gmb."fZ:;éf:§_~ —
Rt e Sk
Sh- - - - =]

849. And hence we readily find that the coefficients
of the second power, or square, are 1, 4, and 1.
The third power furmshes the fractlons 321

wherefore the _
M2

ﬂ?E; |



164  _ELEMENTS SECT. It

' 1st coefficient=1. od =§l.__- 3.
2 3.21__
3d——5.§-—3. 4th—-l-.§.§ 1.

We have, 11kew1se, for the fourth power, the

fractions —, 4321 hence the

.1 2 3
: 1st coefficient =1
4 43 __ '-
-4 3 2 o 4 3 21
- . ==4. th—. =.=. - =1,
‘m.ll 23 4 T 3 1°'2°38 4 1

’ S ‘ .
350. This rule evidently renders it -unnecessary

forus to find the coefficients of the preceding powers,
as it enables us to discover immediately the coeffi-
clents which belong to any one proposed. .Thus, for

| , the tenth power, we write the fractlons 10 2 876

1st coeﬂicnent_l

ad =119_1o. " 7th =202, =210,

54 =10.2=45. 8th.—21 =120.

' 4th.‘—.-_'45'.%=1'20. 9th=120

120 oolllm TS Q,(,,‘.
&

=210. lOth_=45 .

|~

)
=
Pt
e

[

' 6th==210. ~=252. . 1th=10.

ERTIE-Y
Pund
c
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3951. We may also write these fractions as they.
are, without computing their value’; -and- in this
manner it is easy to express any power of a-+b.-

. Thus’ (a+b 100_a100+100 99b+100 99+a93b2
2 107,
100.99 . 98, wo 99 98 . 07 \
3 656 :
T e s + T 2. 35,4 ° oh&e
Or, wlncb is a more general mode of expression,
(a+b)n—-an +_l_an-—lb+__Tf§._.. zbe
n.n—1.n—29 s M. =1 .7n—Q .n—3
< =373 4 .
T s Nt 4
n.n—=1.n=2.n—3-=--1
F e 1.2.3. 4-----n

This elégant theorem for the involution of a com- ~
pound quantity of two terms, evidently includes all
powers whatever ; and we shall afterwards show how
the same may be applied to the extraction of roots.

CHAP. XI.

Of the Transposition of the Letters, on which the
demonstration of the preceding Rule is foundéd,

. 352. If wetrace back the origin of the coeflicients
whlch we have been con51der1ng, we shall find, that
each term is presented, as many times as it is pos-
sible to transpuse the letters, of which that term-
is composed; or, to express the same thing dif-
ferently, the coefficient of each term, is equal to

&



i
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the number of transpositions that the letters com-
posing that'term admit of. In the second power,
- for example, the term ad is taken twice, thatis to
say, its coefficient is 2; and in fact we may change
the order of the letters which compose that term
twice, since we may write/ad and ba; the term ag,
on the centrary, is found only once, and here the
order of the letters:can undergo no change, or trans-
position ; in the third power of a-5, the term aah
may be written in three different ways, thus aab,
aba, baa; so likewise the cocfficient is 3; in the fourth
" power, the-term a*h or aaqad admits of four dif-
ferent arrangements, aaab, aaba, abaa, baaa; and its
- coefficient is “alsp 4; the term aabd admits of six
transpositions, aabb, abba, baba, ubab, bbaa, baab,
and its coefficient is 6; and so on for all other
cases. o

- 353. In fact, if we consider that the fourth
. power, for example, of any root consisting of more
than two terms, as (a+b+c+d)4 is found by the
multiplication of the four - factors,. (a+b+c+d)
- (a+b+c+d) (a+b+c+d) (a+b+c+d), we rea-

dily see, that each letter of the first factor must be

- . multiplied by each letter of the second, then by

pach letter of the third, and, lastly, by each letter
of the fourth. So that every term is not only compa-
sed of four letters, but it also presents itself, or enters
into the sum, as many times as those letters can be
dnfferently arranged with respect to each other, and.
hence arises its coefficient.

" 854, Ttis therefore of great importance to know,
“fn how many different ways a given number of
Jetters may be arranged; but, in this inquiry, we .

~
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must particularly consider, whether the letters in
question are the same, or different; for when they
are the same, there can be no transposition‘of them,
and for this reason the simple powers, as 4? a°, @, .
&c. have all unity for their coefficients. ‘

355. Let us first suppose all the letters different;
and, beginning with the simplest case of two letters,
or ab, weimmediately discover that two transpositions’
may take place, namely, ab and ba.

1f we have three letters, abc; to consider, .we
observe ‘that each of the three may take the first
place, while the two others will admit of two trans- .
positions; thus if a be the first letter, we have two
arrangements abc, ach; if b be in the first place, we
have the arrangements bac, bea ; lastly, if ¢ accupy
the first place, we have also two arrahgements, namely
cab, cha; consequently the whole number of ar-
rangements is 3X2=6.

If there be four lettets, abcd, each may occupy
the first place; and in every case the three others
may form six djfferént arrangements, as we have just .
seen, therefore the whole number of transposxtlons
is 4X6=24=—4X3X2X 1L

If we have five letters, abcde, each of the five
may be the fitst, and the four others will admit
‘of twenty-four transpositions; so that the whole -

_nmumber of trarspositions will be 5)(24—- 190._
5X4X3XeX1. :

356. Consequently, however great the number
of letters may be, it is evident, provided they are
all different, that we may easily determive the
number of transpositions, and that we may for this
purpose make use of the following table :
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* Number of Letters. : Number of Transpositions.
[ ) ['% - - - ]
1 - - 1=L
e - - - - 2.1=2.
3 - - '8$.2.1=6.
4 - - .- 4.8.2.1=24.
5 . - . 5.4.8.2.1=120.
6. = - 6.5,4.3.2.1=720. |
7 - - 7.6.5.4.3.2.1==5040. !
8 ~ 8.7.6.5.4.3.2.1=40320. -
9 - 9.8.7.6.5.4.3.2.1=362880.
10 10.9.8.7. 6.5.4.

3. 2.1=3628800. |

357. But, as we have intimated, the numbers in
" this table can be made use of only when all the
letters are different; for if two or more of them
are alike, the number of transpositions becomes
much less; and if all the letters are the same, we
have only one arrangement; we shall therefore now *
show how the numbers in the table are to be di-
minished, according to the number of letters that
._are alike.
-~ 358. When two letters are glven, and those letters
are the same, the two arrangements are reduced to
one, and consequently the number, which we have
_ found abpve, is reduced to the half; that is to say,
it must be divided by 2; if we have three letters
alike, the six transpositions are reduced to one;
‘whence it follows that the numbers in the table must
‘be divided by 6==3 : 2. 1; and for the same reason, .
if four letfers are alike, we must divide the numbers
found by 24, or 4.3 .2. 1, &c.

It is easy therefore to find how many transpositions
t,he letters aaabbe, for example, may undergo, They
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" are in number 6, and consequently, if they were-

all different, they would admit of 6.5.4.

*3.2. 1 transpositions; but since @ is found thrice

in those letters, we must divide that number of
transpositions by 3.2.1; and since & occurs
twice, we must again divide it by 2.. 1; the num-
ber of transposmons requlred will therefore be
6 5.4.3.2. '

'3.2.1.2.1 =54 360,

359. We may now readily determme the coefhi-
cients of all the terms of any power; as for example.
of the seventh power (a+bY.

The first term is a, which occurs only once;
and as all the other terms have each seven letters,
it follows that the number of transpositions for
each term would be 7.6.5.4.3.2.1, if
all the letters were different; but since in the
second term, ah, we find six letters alike, we
must divide the above product by 6.5.4.3.
2. 1, whence it follows that the coefficient is
7.6.5.4.3.2.1_7 )

6.5.4.3.2.1 1

In the third term, a°?, we find the same letter -
a five times, and the same letter b twice; we must
therefore divide that number firstby 5.4.3.2. 1,
and then by 2. 1; whence results the coeﬂiclent
7.6.5.4.3.2. 7 6
5.4.83.2.1.2. .2 :

The fourth term a’*bs contams the letter @ four
times, and the letter & thrice; consequently, the
whole number of the transpositions of the seven
letters, must be divided, in the first place, by 4, 3,
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.1, and secondly, bys.2.1, and the coefficient
7.6.5, 4 3.2.1_7.6.5
4.3.2.1.8.2.1 1.2.8
7. 6 5.4
52 “~ " for the
coeﬂicnqnt of the fifth term, and so of the rest; by
which the rule.before given is demonstrated *.
360. These considcrations carry us farther, and '
show us also, how to find all the powers of roots

becomes =

In the samie mainer, we fmd

* From the Theory of Combinations, also, are frequently de-
dpced the rules that have just been considered for determining
the coefficients of terms of the. power of a binomial ; and-this is
perbaps attended with some advantage, as the whole is then re-

duced to a single formula. . .

" In order to percéive the difference between permucauom and
combihations, it may be observed, that in the former we enquire
in how many different ways the letters, which compose a certain
formula may change places; whereas, in combinations it is
only necessary to know how many times thése letters may be
taken or multiplied together, one by ene, two by two, three by
three, &c. -

Let us take the formula abc; here we know that the letters
which compose it admit of six permutations, namely abe, acbh, bac,
bca, cal, cba: but as for combinatiens, it is evident that by taking
these three letters one by one, we have three combinations, namely
a, b, and"¢; if two by two, we have the three combinations, ab,
ac, 2nd be; lastly, if we take them three by three, we have only
the smgle combination abc.

Now, in the same mariner ds we prove that » different things
admit of 1 x2x 3.x 4--n-différent permutations, and that if r of
these n things are equal, the number of permutations is

12X 3x4--n
IX2ZX3X -r
. nx (#—1) %X (n—2)-(n—~r4-1)
by 7 Txixsr

-; solikewise we prove thatn things may be takea r

number of times; or that we
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composed of more than two terms * We
shall apply them. to the third power of a+b+c ;-
the terms of which must be formed by.all  the pos-.
sible combinations of three letters, each term having
for its coefficient the number of its tmnsposmons,
‘as above.

Here without performing the muluphcatlon, the -
third power of (¢4 b4c) will be, @*+ 8a*b+3a’c+
3ab"’+6abc+3ac’+b5+3b2+3bc2+c” , ‘

Now suppose a=1, b=1, c¢=1, the cube of -
14141, orof 3, willbe 1+ 3+4+3+3+6+3+ 14
8434 1==27; which result is accurdbe, and con-
firms the rule.. But if we had supposed a=1, =1,

—

- may take r of these n things in so My different ways. Hence,

if we call » the exponent of the power to which we wish to raise
the binomial «+45, and r the exponent of the letter 6 in any
term, the coefficient of that term is always expressed by the

nx(n—1)x (n-—-Q)---(n—r+l). T'h

form fa 1X2X 3=-ner us, in the mmplg
article 359, where n=7, we have a’b’ for the third  the
7x6
exponent r==2, and consequently the coefficient _._X_E ; for
Tx6x5

the fourth term we have” r-3 and the coemcxent ="
Ix2xs

and so on; which are evidently the same results as the permu- *
tations, )
For complete and exensive treatises on the theory ofcombma-
tions, we are indebted to Frenicle, De Montmort, James Bernoulli,
‘&c. The two last have investigated this theory, with a view tg

its great utility in the calculation of probabilities. F.T. -
* Rootd, or quantities, composed of more than two terms, are
called polynomials, in order to distinguish them from binomials, er

. fuantities composed of two terms. F.T.

\
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- and c=~—1, we should have found for the cube of
14+1—1, thatis of 1, .

14+3—3+3— 6+3+1-—-3+3—-1_1 whlch is
g still further couﬁrmatlon of the rule.

CHAP. XII,

* Qf the Expression of Irrational Powers by Iqﬁmtc
- Sertes. -

361. As we have shown the method of finding
any power of the root a-+5, how ever great the
exponent may be, we are able to express, generally,
thé pawer of a-b, whose .exponent is undeter-
mined; for it is evident that if we represent that
exponent by #, we shall have by the rul¢ already
given (art. 348 and the following) :

= 4 b B I gy 7 1
(a+b)"_a l b+ 2 b+1. 3
n—g Cspa B -1 n 2 n 3 s
5 Iz+ 2 3 4 a"—‘b+&c

' 362. If the-same power of the rdot a—b were
required, we need only change the signs of the
second, fourth, sixth, &e. terms, and should have

. (a‘_b)"=a“—?a“"‘b+-';- . -”—;-.—l—a"—ﬂb? .7_13 . n;’l
n—2 Psb’-}-!—z n—~1 Nn—2 n— 3a"—4b‘ &c

3 1" 2" 8 " 4
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363. These formulas are remarkably useful, since
they serve also to express all kinds of radicals; for
we have shown that all irrational quantities may as- -
sume the form of powers whose exponents are frac-

tlonal, and "that s/a—_-_aé \/a__ai, and x/a._a{,

&c.: we have, therefore, -

Vat+h=(+b); V(a+b)=(a+h);
and ¥ (a+b)=(a+0)}, &ec.
Consequently, if we wish to find the square root
of a+b we have only to substitute for the ex- .
‘ponent 7 the fraction 4, in the general formula,
art. 361, and we shall have first, for the coef-
ficients, ' '

n_1 n—1. 1, n—2 3 n-3 5

T 2 4 s 6
n—4 7.on=5__ 9 .
=10 6 — '12' Then, a"=a;=,/a
and an—.l_—:_.l_. Q2= 1 . a"—3=._l_. &C'
’ ava’ “ava C
or we might express those powers of a in the fol-
lowing manner : a"=va; a’*-‘—-iaf- m—ﬂzf;—-
a
va . at __Va : a__va
AT =T == ke

364. This being laid down, the square root of a+5"
- may be expressed in the following manner :

‘1,4 a llb«/a

B)=va+~ 1 ~1 Ve
V(a+)~/+ba 2 4 aa 4

3
Eb

365. If a therefore be a square number, we may
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assign the value of +/a, and, consequenﬂy, the square

root of a+4-b may be expressed by an infinite series,
without any radical sign.

Let, for example, a=c?, we shall have ,/a....c,‘ )

then ‘ o

s e N 161 B ¥ o5 B
“ 2 =C+=-.--—=. —— —
v(ctbh)=c+g- T3 (:3+ 16 ¢ 128 ¢
&e. R ' .

We sce, therefore, - that there is no number,

whose square  root we may not extract in this
manner'; since every number may -be resolved

into two parts, one of -which<is.a square repre-

sented by ¢”. 1€ for example, the square..root

of 6 be required, we make 6=4+2, consequently ‘

=4, =2, b==2, whence results

11 L5
V6=2+7 ~16+64L 1024’ &e.

- If we take only the two leading terms of thls

serlcs we shall’ have 05—‘; $the square of whxch

0%
221, is — 4 Sreater. than 6; but if we consider three
' 27 59 152}
_ terms, we have 2— T T the square of which,—; 56 —_—

is stlll.—-f— too small

366. Smce in this example, = apploaches vcry ,
pearly te ‘the true value of 4/6 we shall tagke for

 6the equwalent quantlty —b:-—- thus =22 ; ¢=

~

4;,
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2’ 7%

terms, we find ¢6-_=—+_, =S,

1 49
he of
20 20° the square whxch fractlon beut 100’

~

it exceeds the square of +/6 only by -——O——O

2401 1

49
ot _~—~ .
200200 $0 that c== and

wa, making 6==

g=— and still taking enly the two leading

400 ;

terms, we have ~/6:=-—+] Tt 49 1 s

: 20727 8% 20”2 83
=49 1 4801

=50 1960 _9“6-6 the square of whacb is

23049601 and 6 when reduced to the sdme dea
3841&5
. 23049600 ..
= - th
nommato‘r, is= 1600, the error therefore is

1.
only S8a1600° ~
367. In the same manner, we may express

the eube roct of a++b by an infinite series; for -
since ¥/ (a+b)=(a+0b)}, we shall have 'in the .

genetal formula, n_—:%, and for the coefficients,

x_1. n—~1__ 1 n=2 5 n-—'s__z,‘
178> 2 7 3 379 47 8’
n—4 11
= “&c. and with regard to ‘the powers
%/a

of 4, we shall have a"—s/ a; a"—’—-—Z—-; a"—? —

= b_l; and calculatmg only the two leading.

Ay
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E/a s
- a"-”::—, &c. thenJ (a+b)—s/a+- b
a
1 ,Ja va 10 , Va
o ¥ +81 P Y &

368 If a therefore be a cube, or a=c% we -
have ¥/a==c, and the radical signs will vanish; for

‘we shall have

sy py=—erl B
z/(C +b)-—-C+3 * CQ
+, &c.

369. We have therefore arrived at a formula,
which will enable us to find, by approximation,
the cube root of any number; since every number
may be resolved into two parts, as c*+4 5, the first -
of which is a cube.

" If we wish, for example, to determine the cube
root of 2, we represent 2 by 141, so that c=1

B 5 B 10 B

1
9 +81 ¢ 243" "

— 370111
and b=1, consequently \/2 1+3 9+81 &e.

g
the cube of which —6—7- is too great by -é—i let us there-
1

. fore make 2—-6—4——-—, we have c= % and b——

7 27 .
0 g ly Ve=o4l 22, these’
rrd and consequent y 2——-]-— Tag’ these
’ . 4 5 91

. ter ———— e

two te res give g——2=>o the cube of which is
753571 746496 .
373248 but, 2= 373948’ so that the error 18
7075

373248 and in this way we might still approximate,
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' the faster in proportlon as we take a greater number
of terms *. :

~ CHAP. XIIL
Of the Resolution of Negative Powers.

370. We have already shew-n, that % may be ex-
] . . ' N 1 '
pressed bya=!; we may. .therefore. also express pEw

by (a4 5)—*; so that the fraction a—l-l:z may be con-

sidered as a power of @43, namely, that power
whose exponent’ is —1; from which it follows, ‘that
the series already found as the value of (a+b)" ex-
tends also te this case.

r R4

* In the Philosophical Transactions for 1694, Dr. Halley has
given a very elegant and general method for extracting roots of
any degree whatever by approximation; where he demonstrates
this general formula, .

@ . 2%
(m=1)"" (mt=m)am—1"
Those ‘who have not an opportumty of consulting the Philo-
" sophical Transactions; will find the formation and the use of this
formula explained in the new edition of Legons Elementaires de
Mathematiques by M. L’Abbé de la Caille, published by M.
L’Abbé Marie. F, T. See also Dr Hutton’s Dxcnonary

YOL. I. S N .

‘/ Py b= ——a+\/
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3871. Since, therefore, _l"'bis'tbe'selmeas(a+‘b -,
let us suppose, in the general fqrmula, n-——l,

_and we shall first have for the coeﬁicxents -1-_ =~1;

n—1 n—2 n—3
e — —1; — = d f
2 1 —._3 1; > l &c an OF

" 1
- the powers of @ we have a"=r1:_-_.—-a; Lt

1 . 1 - 1. . L
=;,"; a"-&?-; a’H_'-"..raT&c.: sothat(a+b)_)._;__
11 % 8 B » ¥
a+b a a’+a3 a‘+a‘ 2 &e. wblchlsthe
same series that we found before by division.
@t b)gbemg thesame with (a+-5)7, ‘

et us reduce this quantity-alko to an infinite series:
“for this purpose we must suppose n=—g, and we
‘shall ‘thus have for the “coefficients i—::-—% i

2
8 n—2_ 4. n—3 ,
_—-2, —3—-— 3 ; 2 —-—— &c and for the

.372. Farther,

‘ powers of a we obtain a“—;li- ; @ -_-5;, =

a"*"-—-— &c. : 'we have therefore (a+5)—

1 __1_8h 23 2346*_*_03456*
(a+b)‘ a’ 1.8 1248 12.5¢ @ 12.344
2.3 2.34,_ 2345

.ﬂ“

&e. Now, =25 2% 123 4’1334 =%
&c. and consequently,
T 1 b BB l)‘

@R E ettt 6'—+”
- &e. -
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. 3373 Tet ys procaad and sappose #==—3, and
we ' shall have @ series expressmg the velue of
T b)” or of (at+0)=*. Here the coeﬁicxent_s “will

": ? 3 zt—-g-—!"-: 3 n;——%m——? &e. uud the
" I . - | 1 - ‘n——) 1
powers of ¢ become, @ F=rgs 4T =R AT =
&c. which gives - .
1 1 3856  3405° 3450 3.4.56b

| (a+b)’— la‘+ Ted 1e3@ T Tesad

2 s b8
a., sb +6b 1off+15 —21[’,+28 &c.
If now we make n=—4; we shall have for the
n_ 4. n—1 5 n—2 . 6
coefficients i—-—i N Tc-——li 5 —-5*-‘ ‘—§ H
n—3 1,
— n
3 &c a.ndfarthepnwers, aW.
_1. YRS [P IS §
CEF TSRS T
whence we ebtain, _ .
1 1 ab 4507 4-.5.61:3 &e
@Hoy & 18 134 1238 T
1 b b B b b o
"F"’?"’m 20,7+35?-—56?+, &e.
374. The different cases that bave been considered
enable us to conclude with certainty, that we shall |

have, generally, for any negative power of a+4-5 ;-

1 1 mb mm— b mm=lm—2b®
@b et gt T g ia
&c. And, by means of this formula, we may trans-

“form all such fractions into infinite series, subantutmg

fractions also, or fractional exponents, for 7, in order
to express irrational quantities. .
' N 2
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: 375 The following " considerations ‘will illustrate

this subject still farther : for we have seen that,

1 1 &6 8 B B b
a+b a —FZtE—ats— ‘+’ &e.

- If, therefore, we multiply this series by_a+b, the

product ought to give 1; and this is found to be

1 b BB B '
aFte—ats a‘+’ &e.
a+b
b BB BB
1=ta—gta—gh &
b BB BB --&
tomat et ke

where all the terms but the first cancel each other.
- 376.- We have also found, that : '
' 1 1 25 36 4b  5b% 6b° &
(a+6)2_'a* @ st a—F tFE—m %
if, therefore, we multiply this series -by (a+b), the
product ought also to be equalto l now (a+b)“‘"
: a”+2ab+l)2 and
1 26 3b® 463 55‘ 6b5

a“+2¢b+b’

; 2b 3,,2 4B 5B 6B

R S T B

N 26 w 66° 8b* 106° |
L e R R BT

ook s 4
ta—gta—sh &

true, as will be seen by performing the multiplica-
. tion: ' ' .
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which gives 1 for the product as the nature of the
thing required. :
377. If we multlply the series. which we found for.

the value of ——— T b)” by a+b pnly, the product

ought to answer to the fraction a-:- 3 be eqqal to

: - 2 23 '
the series already found, nan‘xely, 1 %+%—3.—%+!§, '

&c. and this the actual mulhphcatlon will conﬁrm.
1 25 3b0° 4b° 5b‘* :
45 P

o a3+a‘ e

at+b

"1 9b 3 ab® 5k

a a2+a’—~+a"
b 2 3 46‘

1 6.8 b’ b
r a’+ e -t & &c. as required.
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g - SECTION L
" Of Ratios and Proportions.
—— :

CHAP. 1.

Of Aréthmetical Ratio, or of the Difference between '

twe Numbérs.

.378. Two quantities are either equal to one an-
othen or they are mot: In the latter ease; where
one is greater than the other, we may consider their

‘inequality under two différent points of view: we
. may ask, how much one of the quantities %5 greater

than the other? Or we may ask, how hany times the
one is greater than thé other? The reésults which
_constitute the Ankwers t6 these two questions aré both
“called relalzons, or ratios ; but weé call the former an
" arithmetical ratio, and the latter a geometrical ratio,

‘without however these denominations having -any

connexion with the subject itself, the adoption of
the expressions having been entirely arbitrary. .

" 879. It is evident, that the quantities of which.we

speak must be of one and the same kind ; otherwise
we could not determine any thing w:th regard to
their equality or inequality; for it would be absurd

to ask if two pounds and three ells are equal quan-
~ tities. So that in what follows, quantmes of the

same kind only are to be eonsidered; and as they

" may always be expressed by numbers, it is of num-
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bers only that we shall treat; as was menhone& at:
~ the beginning, o

380. When of two given mnmbers, thevefore, m is
' requn'ed how mnch one is greater than the other, the
answer to this question determines the arithmetical-
ratio of the twe rumbers ; and. since this answer con-
sists in giving the difference of .the two nembers, it °
follows, that an arithmetical ratio is nothing but the
difference between two numbers ; and a$ thig appears
to be a better expression, we shall reserve the words
ratio and relation to express geometrical ratios.

381. As the difference. between two numbers is-
found by subtractmg the less from the greater, no-
thing can be easier than resolving the question how:
much one ‘i3 greater -than the other;.so that when -
the numbers are equal, the difference being nothmg,
if it be required how much one of the numbers. is
greater than the other, we answer, by nothing; for
example, Gbemg equai to 2%X 3, the difference be- o
tween 6 and 2X 8 is 0.

382. But when the two numbers are not equal, as

5and 3, and it is requu‘ed how much 5.is greater \

than 3, the answer is, 2; whieh is obtained by sub-

tracting 3 from 5 ; likewise 15 is greater than 5 by -

10; and 20 exceeds 8 by 12.

883. We have therefore three things to consider
“en this subject ; 1st. the greater of the two numbers ;-
2d. the less; and 3d. the difference ; which three
quantities are so connected together, that any two of
the three bemg given, we may always determine tbe
third.

Let the greater number be ¢, the less b, and the
difference d; then & will be found by subtracting

’
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from a, so that d_.a-b whence we see how to
find d, when a and b are given.

384. But if the difference and the less of the two
numbers, that is, if d and b were given, we- might de-
termine the greater number by adding together the
difference and the less number, which gives a==b+d;
for if we take from b-4-d the less number 4, there re-
mains d, which is the known difference: suppose,
for example, the less number is 12, and the differ-
ence 8, then the greater number will be 20.

885. Lastly, if beside the difference d, the greater
number a be given, the other number & is found: by
subtracting the difference from the greater number,
which. gives b==a-d; for if the number a—d be
* taken from the greater number 4, there remams d,
which is the given difference. ‘

- 386. The connexion, therefore, amongthe num-
bers a, b, d, is of such a nature as to give the three
following results : 1st, d==¢—b; 2d. a==b+-d; 3d.
, be=a—d; and if one of these three comparisons be
just, the others must necessarlly be so alsa: there-
fore, generally, if z=r4-y, it necessanly follows,
that y=3—u, and r==z—y.

-387. With regard to these anthmetlcal ratios we
must remark, that if we add to the two numbers a
and & any number ¢, ‘assumed at pleasure, or sub-
tract it from them, the difference remains the same;
‘that is, if d is the difference between a and 5, that
number d will also be the difference between a+4¢
and b+4-¢, and between a—¢ and b—c; thus, for ex-
. ample, the difference between the numbers 20 and
12 being 8, that difference will remain the same,
whatevér number we add to or subtract from tte
numbers 20 and 12, .
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- 388. The proof of which is evident : for if a—b=d"
we have also (a+c)-—(b+c)==d, and likewise
(@—c)—(b—c)=d.

389. And if we double the two numbers g and b,
the difference will also become double; thus, when‘
a—b=d, we shall have Qla—ﬂb_=2d;'an,d,. gene-
rally, na—nb=nd, whatever value we give to n.

- CHAP. IL |
Of Arithmetical Proportion.

390. When' two arithmetical ratios, or relations, '
are equal, this equality is called an arithmetical pro-
portion. )

Thus, when a—b==d and p—g==d, so that the dif-
ference is the same between the numbers p and g as
between the numbers a and 4, we say that these four
numbers' form an arithmetical proportion; which
we write thus, a—b=—p—g¢, expressing clearly by
this, that the difference between-a and b is equal to
the difference between p and g¢.

. 891. An arithmetical proportion cons:sts therefore
of four terms, which must be such, that if we sub-
tract the second from the first, the remainder is the
same as when we subtract the fourth from the third;
thus, the four numbers 12, 7, 9, 4, form an ariths
metical proportion, because 12—7==9—4,

\
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* 392. When we have an arithmetical proportion; as
a—b=p— g, we may makethe second and third terms
chapge places, writing a—p=—>b—g¢: and this equality
will be no less true ; for, since a—b=—=p—gq, add bto
both sides, and we have a=—=b-p—g: then subtract
pfrom both sides, and we have a—p=—>b—q.

In the same manner, as 12—7=9—4, so also

12—9=7—4. '

393. We may in every arithmetical proportion
put the second term also in the place of the first, if
we make the same transposition of the third and
fourth; that is, if a—b==p—gq, we have also b—q
~ ==g~—p; for b—a is the negative of a—b, and ¢g—p

- is also the negative of p—¢ ; and thus, since 12—7
='2-4, we have also, 7—12—=4—9.
. 394. But the most interesting- property of every
arithietical proportlon is this, that the sum of the

second and third term is always equal to the sum of |

the first and fourth. ‘This praperty, which we must
particularly consider, is expressed also by saying that
the sum of the means is’ equal to the sum of the er- .
tremes; thus, since 12—7=—=9--4, we have 749 '
=12414; the sum being in both eases 16.
-895. In order to demoustrate this principal pro«
perty, let a-—b_p—q, then if we add to both d+-¢,
we have a+q—b+p, that is, the sum ‘of the first and
fourth terms is equal to the sum of the second and
third: and inversely, if four numbers, ¢, &, p; ¢, are
such that the sum of the second and. third is equal
to the' sum of the first and fourth, that is, if b4-p
=a--g, we conclude, without a possibility of mistake,
that those numbers are in arithmetical proportion,
and that a—b=p—gq fer, since a-+g=b+p, if we'
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subtract from both s:des b+q, we -obtain. a—5
R :
Thus the numbers 18, 13 15, 10, being such that
the sum of the means (134-15==28) is equal to the
sum of the extremes (184 10==28), it is certains
that they also form an arithmetical proportion; and
consequently, that 18—13=15~10. i :
396. It is easy, by means of this property, to re-

. solve the following question. The three first terms
‘of an arithmetical proportion being given, to find the

fourth? Let a, &, p, be the three first terms, and let
us express the fourth by ¢, which it is required to
determine, then a+¢==5-p ; by subtractinga from
both sides, we obtain’ q:cb+p—a. -

Thaus the fourth term is found by adding together '

" the second and third, and subtracting the first from.

that sam. Suppose, for example, that 19, 28, 13,
are the three first given terms, the sum of the second
and thind is 41; and taking from it the first, which is
19, there remains 22 for the fourth term sought, and
the arithmetical proportion will be represented by
19—~28==13—23, or by 28— 19—-—22— 13, or, lasly,
by 28-22==19—13.

.397. When in an arithmetical promrtnon the se-
cond term is equal to the third, we have only three

" numbers; the property of which is this, that the first,

minus the second, is equal to the second, mimms the
third; or thet the difference between the first and
second number is equal to the difference between the
second and third; the three numbers 19, 15, 11, are

. of ¢his kind, since 19—~15=15—11.

998. Three such numbers are said to form a con-
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tinued arithmetical proportion, which.is sometimes
written thus, 19 : 15 : 11. Such proportions are
also called arithmetical progressions, particularly ifa -
greater number. of terms follow each other accordmg
' to the same law.

An arithpmetical progression may be either increas-
-ing, or decreasing ; the former distinction is applied
. when the terms go on increasing, that is to say, when
the secontl” exceeds the first, and ‘th,e third exceeds
the second by the same quantity; as in the numbers
4,7, 10; and the decreasing progression is that in

which the terms go on always diminishing by the
- same quantity, such as the numbers 9, 5, 1. ‘

399. Let us suppose the numbers 4, b, c, to be in
arithmetical progression; then a—b=5b-¢, whence -
it follows, from the equality between the sum of the
‘extremes and that of the means, that 2b=—=a-+c;
and if we subtract ¢ from both, we have 20—a=—c.

. 400. So that when the two first terms a, b, of an
arithmetical progression are given, the third is found
by taking the first from twice the second. Let 1 and
3 be the two first terms of an arithmetical pro-
. gression, the third will be 2X8—~1=5; and these
three numbers 1, 3, 5, give the proportion.
1—3=3—5.

401 By following the same method, we may pur-
sue the arithmetical progression as far as we please;
-we have only to find the fourth term by means of the
second and third, in the same manner as we deter-
mined the third by means of the first and second,
and soon. Let a be the first term, and b the second,
the third will be 2b—a; the fourth 4b—20—b==
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3b—2a, the fifth 60— 46— 2b+a== 4b— 34, the sixth
Sb— 6a— 3b+ 2a—56—4a, the seventh 1ob —8a’

CHAP. III1.
Of Arithmetical Progresstons.

402. We have already remarked, that a series of
numbers composed of any number of ters, which
always increase, or decrease, by the same quantlty, :
is called ‘an arithmetical progression.

Thus, the natural numbers written in thexr order,
asl,2 34,356, 7,8 9, 10, &c. form an arith-
metical progression, because they constantly increase
by unity; and the series 25, 22, 19, 16, 13, 10, 7,
4,-1, &c. is also such a progression, smce the num- .-
bers constantly decrease by 3.

403. The number, or quantlty, by which the terms
of an arithmetical progression become greater or
less, is called the difference ; -so that when the first
-term and the difference are given, we may continue
the arithmetical progression to any length.

For example, let the first term be 2, and the dif-
ference'S, and we shall have the following increasing
progressxon g5, 8, 11, 14, 17, 20, 23, 26, 29, &c.
in which each term is found by adding the dlﬁ'erence
to the preceding one.

404. Itis usual to write the natural numbers, 1,
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2, 3, 4, 5, &c. above the terms of such an arithme- .
tical progression, in order that we ey immedistely
perceive the rank which any term holds in the pro-
gression, which numbers, when written above the
terms, are called indices; thus the above example
will be written as follows :
 Indics. 1234 56 7 8 9 10
. Arith. Prog. 2, 5,8, 11, 14, 17, 20, 23, 26, 29, &c.
where we see that 29 is the tenth term. ,
405. Let a be the first term, and d the difference,

the arithmetical progression will go on in the follow-
ing order: .

1 2 38 4 5 6 7
- a, a+d, a*+2d, a+3d, a+4d, a+5d, a+-6d, &c.
according as the series is increasing or decreasing,
whence it appears that any term of the progression
mlght be easily found, without the necessity of find-
ing all the preceding ones, by means only of the first
term @ and the difference d; thus, for example, the
tenth term willbe a-9d, the hundredth term 2= 99,
and, generally, the nth term will be a4 (r—1) d.

406. When we stop at amy point of the pro-

gression, it is of importance to attend to the.first and
the last term, since the index of the last will repre-
sent the number of terms; if, therefore, the first
term be a, the difference d, and the number of terms
n, we shall have for the last term a+(n—1)d, ac-
cording as the series is increasing or decreasing,
which is consequently found by multiplying thé dif-
ference by the number of terms minus one, and add-
ing or subtracting that product from the first term.
. Suppose, for_example, in an ascending arithmetical
progression of ‘a hundred terms, the first term is 4,
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and . the dlﬂ’erence 3; then the last term wlll be
99X 3+4=301. - ,
407. When we know the first term @ and the last.
3, with thé number of terms », we can find the dif-
ference d; for, since the last term z=—a+(n—1)d,
if we subtract a from both sides, we obtain 2w a=
{n—1)d. So that by taking the difference between
the first and last term, we have the product of the
" difference multiplied by the number of terms minus
1; we have therefore only to divide zv2a by n—1
in order to obtain the required value of the difference

d, which will be :i;l; and this result furnishes the -

following rule: Divide the difference of the first and
last term by the number of terms minus 1, and the
quotient will be the comman dnﬁ'erence by means
of which we may write the whole progression.

408. Suppose, for example, that we have an in-
creasing arithmetical progression of nine terms,
whose first is 2 and last 26, and that it is required to
find the difference; here we must subtract the firsg
term 2 from the last 26, and divide the remainder,
which is 24, by 9— 1, that is by 8 ; and the quotient
3 will be equal to the difference required, -and the
whole progression will be :

128 4 5 6 7 8 9
2, 5, 8, 11, 14, 17, 20, 28, 6.

To give another example, let us suppose that the
first term is 1, the last 2, the number of terms 10,
. and that the arithmétical’progression, answering to
these suppositions, is required ; we shall immediately
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have for the difference 120 ll ;—, and thencé con-

" elide that the progression is:

1 2 3 4 S5 6 7 8 9 10
l; 1‘3’) 1'93 1'0': 1'3'7 1'3':. 1%) l'b‘) 1‘6’ 2.
_ Let now the first term be 23, the last term 124,
and the number of terms 7;-the difference will be
%%-:_:Tgé =lg-‘ =g-é-—1-23—g, and' consequently the
progression: _ o
1 2.3 4 5 6 7
2‘;‘;, 4"‘{; 5‘L’3’ 7’"?’ 9'0" 10'5’% 122
409. If now the first term g, the last term 2, and
" the difference d, are given, we may from them find
. the number of terms 2 ; for since 2v2 a==(n— 1)d, by
' dividing both sides by d, we have z_‘;“’,_-‘—n_; ; also
n being greater by 1 than n—1, we have

= (2 Z41; consequently the number of terms is

found by dividing the difference between the first and
" the last térm, or z»2 4, by the difference of the pro-
. gression, and adding unity to the quotient. ‘
For example, let the first term be 4, the last 100,
and the difference 12, the number of terms will be
100—4 '
12

+1=9; and-these nine terms will be,

12 3 4 5 6 7 8 9
4, 16, 28, 40, 52, 64, 76, 88, 100.

If the first term be 2, the last 6, and the dlﬁ'erehce&,
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the number of terms will be i-I'-1=4 , anvd. these

_ 1%
four terms will be,
1 2 8 4
2 3?’ 4‘%3

Again, let the first term be 34, the last. 7-}, énd the

difference 14, the number of terms will be’ 7%1;3%'
~+1=4; which are,
3%, 4%, 64, 7%

410. It must be observed, however, that as the .
number of terms is necessarily an integer, if we had
not obtained such a number for », in the examples of
the preceding artlcle, the questions would have been
absurd. :

Whenever we do not obtain an mteger number for

. the value of —-d—q, it vnll be 1mpossnb]e to Tesolve

the qﬁesuon, and, coasequently, in order ;hat ques-
‘tions of this kind may be posmble, zwna must be _
divisible by d.” ..

411. From what has been sald it may be. coi~
cluded, that -we have always four ' quantities; or
things, .to consider in ao arithmetical progressio,n':

1st The first term a. .

2d The last term 2.

3d The difference d.

4th. The pumber of terms 7.

And the relations of these quantities to each other
age such, that if we know three of them, we.are able

to determine the fourth; for,: =~ ... .- .
1. If a, .d; and n, axe l\nown, we -have z....a;|-_-
(n—1)d.

VOL. 1. . Q
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2 If 2, d, and n, are known, we have
a=zw (n—1)d.
2nda.

3 If a, z,and n, are known, we have d-— -

4 Ifa,z, and d, are known, we have 1#:—-——-}- 15

4

) CHAP. 1V. .
Of the Summation of Aritlzmeiical Progressions -
412. It is often necessary also to ﬁnd the sum of
an arithmetical progression; which. mlght be done
by adding all the terms together ; .but as the addition
would be .very tedious, when the prdgression con-
- sisted of a great number of terms, a rulé has been de-
vised by which the sum may be more. readxly ‘obe.
tained. 3
413. We shall ﬁrst consader a particular. given
‘progression, such that the first term is 2, the differ-
ence 3, the last term 29, and.the number of terms
.10, '

AY

1 23 4 56 7 89 10

. 9 5 8 11, 14,517, 20, 23, 96,. 29
Jn this progression we see that the sum of the
 first and last term is 31;- the sum of thesecond and
the last but ene 31; the sum of .the third and the
last but two 31, and so on; and thence we conclude
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that the sum of any two terms equally dlstant, the -
one from the first, and the other from the last term, is
always equalto the sum of thefirst and the last term..

414. The.reason of this may be easily traced; for *
if we suppose the first to be q, the last z, and the dif-
ference d, the sum of the first and the last term is
u+z; and the second term being a4-d, and the last
but one z—d, the sum of these two terms is also
a-+z.- Farther, the third term being a+2d, and the
last but two z— 2d,'it is evident that these two terms
also, when added together, make ¢+z; and the des
monstration may be easily extended to any other two
terms equally distant from the first and last.

415. To determine, therefore, the sum of the pro-
gression proposed, let us write the same progression.
term by term, inverted, and add- the corresponding
terms together, as follows:

945484114144 17420+234+ 26429
29+26423+20+17+14+114+ 8+ 5 +2 |

81+314314-31+431+314+314+31+31451 -
This series of equal terms is evidently equal.to twice
the sum of the given progression : now the number of
- those equal terms is 10, as in the progression, and
their sum consequently is equal to 10X31==310.
Hence as this sum is' twice the sum of the arith-
metical progression, the sum required must be 155.

416. If we proceed in the same manner with re- .
spect to any arithmetical progression, the first term
of whicli is g, the last 2, and the numiber of terms #;
writing under the given progression the same pro-
gression inverted, and adding term to term, we shall
Bave a series of # terms, each of which will be ‘ex-

: . 02
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pressed by a+2z; therefore the sum of this series -
. will be n(a+ z), which is twice the sum of the, pro-
posed arithmetical progression ; the latter, therefore,
will be represented by ——— (a+z)
417 This result furmshes an easy method of find-
. ing the sum of any arithmetical progression ; and may
* be reduced to the following rule: ~ :

Multiply the sum of the ﬁrst and the last term by
the nuez.ber of tergs, and half the product will be the
sum of the whole progression. = Or, which amounts
to the same, multiply the sum of the first and the

last term by half the number of terms. Or, multiply
half the sum of the first and the last term by the

" . whole number of terms.

. 418. It wi)l be necessary to illustrate this rule by
* some examples. \

~ First, let it be requlred to find the sum of the pro-
. “gression of the natura}'l numbers, 1, g, 3, &e. to 100.

Thls wﬂl be, by. the first ;u_le, 100;( ]9_1_50)001

E=5050. - il s ~
If it were leqmred to tell how many strokes a
clock strikes in twelve hours; we wust add together
the numbers 1, 2,.3;, as far as 12; now this sum is

"”“3_6x 18—78. If

. We w;shed to know the\sum of the same progression
" continued to 1000, we should find it to be 500500
and the sum of this progression, continued to’ 10000,

would be 50005000Q. .
' 419. Suppose a person buys a horse, on condmon :
that for the first nail he shall pay 5 pence, for the

found 1mmed1ately to be
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second 8 pence, for the third 11 pence, and so on,
a]ways increasing 3 pence more for each nail, the
whole number of which is 32 ; required the purchase
of the horse?
In this question it is reqmred to find the sum of
an arithmetical progression, the first term of which
-is 5, the difference 3, and the number of terms 32;
we must therefore begin by determining the last :
term; which is found by the rule in articles 406 and

411 to be 5+3—] =098; after which the sum re-
22X = 103 X 165
whence we conclude that the horse costs 1648 pence, .
or 6/. 17s. 4d. '

- 420. Generally, let the first term be a, the dif-
ference d, and the number of termns #; and let it be
required to find, by means of these data, the sum of
the whole progression. As the last term must be
a+ (n— 1)d; the sum of the first and the last will be
9a+(n—1)d; and multiplying this sum by the numa
ber of terms n, we have 2na+n(n—1)d; the sum
n(n—1)d
—

quired is easily found to be

iequi_red therefore will be na-+

Now this formula, if applied to the precedinc ex-
ample, or to a=5,d=3, and n= 32, gives 5 X 32

32. Zl == 1604 1488 = 1648 ; the same sum

that we obtained before. , ,
421. If it be required to add together all the na-
tural numbers from 1 to », we have, for finding this
sum, the first term 1, the last term », and the num-

"t +n.
2 f

ber of terms %, therefore the sum required is



-. of this -progression is equal to

198 - ELE\IENTS " SECT. ML

n(n;l- l). 1® we make n-—1766 the sum of all

the numbers, from 1 to 1766, will be 883)(1767::‘-

1560261. s

422. Let the progression of uneven .numbers be
proposed, 1, 3, 5, 7, &c. continued to % terms, and
let the sum of it be required. Here the first term is

), the difference ¢, the number of terms 2 ; the last

term will therefore be ]-I-(n— 1)2=2n—1, and
consequently the sum required #?.

‘The whole therefore consists in multlplymo ‘the
number of terms by itself; so that whatever number
of terms of this progression we add together, the sum
will be always a square, namely, the square of the
‘number of terms; which we shall exemplify as fol-
lows :.

- Indices, 1 23.4 5 6 7 8 9 10 &c
Progress. 1, 3,5, 7, 9, 11, 13, 15, 17, 19, &c.
Sum, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, &c.

423. Let the first term be 1, the difference 3, and

the number of terms # ; we shall have the progres-
sion 1, 4, 7, 10, &e. the last term of which will be

'14-(n—1)3=3n—2; wherefore the sum of the first

and the last term is 32— 1, and consequently the sum
'12(371—]) Sn’—n
e 2

and if we suppose #==20, the sum will be lOXoy
=590.

424. Aoam, let the first term be 1, the dnﬁ'erence
d, and the number of terms z; then the last term
will be 14(n—1)d; to which adding the first, we

have 2+(n- l)d and multlphmﬂ by the number 6f

LN

, .
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.terms, we have én-}-h(n‘-l)d;'whence' we deduce
the.sum of the progression n+£§ﬁ-§-—12—‘{.
And by making d successively equal to 1,238 4, -
&c., we obtain the following particular_valués, as
shown in the table below.

C n(n— $,,
~If d=_l, the_spm is n+”(”2 1)=n -;-n ‘

=2, - - - n+2”("2"1)=,,2

Sn(n—1) 8n°—n
(I=3 - - -n ) .
2 . n<t P 3

=4, - - - ”+4n(n2— D ontn

; ' - ’ 2 -
Cd=5, - - - ,',,+;5”(”0 1)__572 - 3n |

d=6,' - -’n+@£’g-_12=3n2_?2"‘

S Tn(n—1)_7n—5n
d""‘7’. n- E 2 =
dmg - o mpBO=D
: _ o
Cd=9, ~ - - n+9”(” 1)=9n n

2

2 » .
n+}2’}$:;1)=5n2-—-4‘n o

-

. ‘d=10>,
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CHAP. V.
. Of Figurate®, or Polygonal Numbers.

425, The summation of arithmetical progressions,
" which begin by 1, and the difference of which is 1,

“* The French translator has justly observed, in his note at the
conclusion of this chapter, that algebraists make a distinction be-
tween figurate and polygonal numbers, but as he has not entered
far upon this subJect, the followmg illgstration may not be un-
acceptable.

It will be nmmedlately perceived in the followmg table, that .
each series is derived immediately from the foregoing one, being
the sum of all its terms from the beginning to that place, and
hence also the law of continvation, and-the general term of each
series; will be readily dnscovered

Natural L2 3 4, 5 - -

n general term

Triangular 1, 3, 6,10, 15 - . ""‘H

1

Pyramidal 1, 4, 10, 20, 35 - - - '.'_"_‘*:{::.SL‘L'“’

Triangular- - ; C 7 1. a2 n+3
pyramidal - 1, 5, 15, 85, 70. - - - 2':.;

And in general the figurate number of . any order m will be ex-
pressed by the formula

nn+l n+2.rﬁ:3_- - n.-lT—-l ..

L2, 3., 4 - e m ‘
Now one of the prmcnpal properties of these numbers, and
which ‘Fermat considered as very interesting, (sec his notes on
Diophantus, page 16), is this: that if from the nth term of any

series the n— 1 term of the same series be subtracted, the re-
mainder will be the nth term of the preceding series. Thus, in

the third series above given, the nth ternt is '-,—n-%’i?, and
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2, 3, or any other integer, leads us to the theory of
polygonal numbers, which are formed by adding te-
gether the terms of any such progression.

426. Suppose the difference to be 1; then, since
the first term is 1 also, we shall have the arithmetical
progression, 1, 2, 3,4, 5, 6,7, 8, 9, 10, 11, 12, &c.
and if in this progression we take the sum of one, of
two, of three, &c. terms, the following series of num-
bers will arise:

1, 8, 6, 10, 15, 21, 28, 36455566&c.
for 1-—] 14-2=3, l+2+3—‘6 1+2+3+4—-10
&e.

Which numbers are called triangular, or trigonal
nuinbers, because we may always arrange as many
points in the form of a triangle as they contain units,
thus

1 3 6 10 15

427. In all these trxamrles we see how many
points each side contains. Tn the first triangle there
is only ene point; in the second there are two; in
the third there are three; in the fourth there are

consequently the v}_—— 1 term, by substituting n— 1 instead of W is

’.'___l_i‘."*'l ; and if the latter be subtracted from the former,

.._..

. . mn—1
the rema_mder is

, which is the nth term of the preceding

order of numbers. - And exactly the same law will be observed
between two consecutive terms of any one of these sums. T
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four, &c.: so that the triangular numbers or the
- number of points, which is slmply called the ¢riangl,
.are arranged according to the number of points that
“the side contains, which number is called the side ;
that is, the third triangular number, or the third tris
angle, is that whose side has three points ; the fourth,
that whose side has four; andso on; which may be
represented thus :

Side i - ) .

Triangle

498. A question therefore presents itself here,

" which is, how to determine the triangle when the
side is given? and, after what has been said, this may
be easily resolved. .

For if the side be 7, the triangle will be 1+243
+44+4---n. Now the sum of this progression is
n*+n

2

S e
) ——— e .,
2 ’ .
rn-._—l, !1, S
‘e ":'—2, - . 3, .
Thus if —3, pthe triangle is < 6.
n—.4 . . Llo,

~ and 50 on: and when n=100 the tnangle will be
5050 :

\ -

* M. de Joncourt published at the Hague, in 1762, a table of

trigonal numbers answering to all the natural numbers from 1 to-

20000; which tables are found useful in facilitating a great num-
- ber of arithmetical operations, as the-author showsin.a very long
_ fatroduction. F.T.

; consequently the value “of the triangle is
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429 This formula "s

? is called the general for-

mula of tnangular numbers because by it we find-
the triangular number, or the triangle, which answers
to any side indicated by .

; which' |

serves also to facilitate the calculation; since one of
the two numbers 7, or #+ 1, is always an even num-
ber, and consequently divisible by 2.

12 X 13

This may be transformed into

n(n+1)
2

So, if .n:=12, the triangle is =6 X 18_78"

and if 7==15, the triangle is =15X8=120,
&c. ' : R
© 4830. Let us now suppose the difference to be 2,
‘and we shall have the .following arithmetical pro- .
gression :
1, 8, 5, 7, 9, 11,13, 15, 17, 19, 21, &ec.

the sums of which, taking successively one, two,
three, four terms, &c. form the following series:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, &c.
the terms of which are called quadrangular num-
bers, or squares ; since they in fact represent .
the squares of the natural numbers, as we found
them before ; and this denomination is the more suit-
able from this circumstance, that we can always form
a square with the number of points whu_h those terins
indicate, thus: :

15X16
2
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431. We see here, that the side of any square
contains precisely the number of points which the
s'qudre root indicgtes ; thus, for éxample, the side
of the square 16 consists of 4 points; that of the
square 25 consists of 5 points ; and, in general, if
the side be », that is, if the number of the terms of:
the progression, 1, 3, 5, 7, &c. which we have taken,
be expressed by #, the square, or the quadrangular
number, will be equal to the sum of those terms,
that is to 77, as we 'have already seen, Article 422;
but it is unnecessary to extend our consideration of
‘'square numbers any farther,  having already treated
of them at length.

432. If now we -call the difference 3, and take
the sums in the same manner as before, we obtain
numbers which are called pentagons, or pentagonal
numbers, though they cannot be so well represented
by pomts"‘

* Itis not, however, that we are unable to represent, by
poim.s, polygons of any number of sides; but the rule which I
am going to explain for this purpose, seems to have escaped all
the writers on algebra whom I have consulted.

* I begin‘with drawing a small polygon that has the number of
sides - requlred this number remains constant for one and the
same series of polygonal numbers, and it is equal to 2 plus the
difference of the arithmetical progression from which the series is
produced. I then choose one of its angles, in order to draw
from the ‘angular point all the diagonals of this polygon, which,
- with the two sides containing the angle that has been taken, are

“to be mdeﬁmtely produced; after that, I take these two sides, and
_ the diagonals of the first polygon on the indefinite lines, eachas
- often as I choose; and draw, from the corresponding points
marked by the compass, lines pnrallel to the sides of the first
polygon; and divide them m_to as many equal parts, or by as
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Indices, 12 3 4 5§ 6'7 8 9 &c.
Arith. prog. 1, 4, 7, 10, 18, 16, 19, 22, 25, &c.” ' - .
Pentagon, . ' 1, 5,12,92, 35, 51, 70, 92, 117, &e.
the indices showing the side of each pentagon..
433. It follows from this, that if we make the side
3nt— —n _n(8rn-1)

n, the pentacronal number will be g PR

Let, for example, n==7, the pentagon will be 70;
and if the pentagon, whose side is 100, be required,
we make 7= 100, and obtam 14950 for the numbey
sought.

434. If we suppose the difference to be 4, we ar-
rive at Ize.ragonal numbers, as we see by the follow-
ing progressions : .

Indices, 123 4 56 7 8 9 &
- Arithm. prog. 1, 5, 9, 13, 17, 21, 25, 29, 33, &ec.
Hexagon, - 1, 6, 15, 28, 45, 66,91, 120, 153, &c. .
where the . indices still show the side of each hex-
agon. :

435. So that when the side is n, the. hexanonal‘
numbey is 2n* —-n——n(‘zn— 1); and we have farther
to remark, that all the hexagonal numbers are also
triangular; since, if we take of these last the fist,

~r

many points as. there are actually in the diagonals and the two
sides produced. This rule is general, from the triangle up to the
polygon of an infinite number of sides: and the djvision of these
figures into triangles might furnish matter for many curious con-
siderations, and for alegant transformations of the general formu-
1=, by whichthe polygonal numbers are expressed in this chap--
ter; but it is unnecessary to dwell ort them at present. F.T.

The mgenmty of the reader will readily lead him'to the forma-
;xon of the figures above descnbed
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the thxrd the fifth, &c. we have’ preclaely the series
" of hexagoris.

-436.- In the same manner we may find the num-
bers whxch.are heptagonal, octagonal, &c.; and thus
it is easy to construct the following table of formuls
for all numbers that are comprehended under the
general name of polygonal numbers. ‘

Suppesing the side to be represented by », we . ’

have for the

triangle n_—i—_n:@(_yz_-_l-_} ),

| on?4-0n.
2

Snf—n  n(3n—1)
vgen - ————rr—.

47°—9n

_nQ

square -

' .vfgoh - :Q_,—gn?—-n::n(zn-—-l).

5n’—3n__n(5n—3)

2 9

VIl gen

2—
VJI1Igon 6n 4":3;:2—271—._-"(3”-.2),

7ni—5n  n(7Tn—>5)
IxXgon - — 2 — 2 o

\ . .
xgon L 6”—4n’—3n=n(4n-3),
- n’—7n_ n(9n—7)
rgon - = .
xre 2 2
i ;
x11g0N ]-0—"2—8—”;571?-4n=n(5u—4);
18n% — 160

' xxXgon- -———2——-—-=9n’-—8n=n(9n-8)7'
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XXVgon

931 —21n n(QSn—Ql)
2 . 2 .
(m-Q)n‘"—(m—-4»)n,,
2 ) .

437. So that the side being #, the m gonal number
(m—)n*—(m—a)n,
: I i
whence we may deduce all the possible polygonal
numbers which have the side % :- thus, for éxample,
if the bigonal numbers were required, we should
‘have m=2, and "consequently the number sought
=n; that is to say, the bigonal numbers are the"
natural numbers, 1, 2, 3, &c. -

mgon -

will be generally représented by

2 o
If we make 7==3, we have - -;—n for the triangu-

Jar number required. : L
If we make m==4, we have the square number

w, &c. -

438. To illustrate this rule by examples, suppose

that the xxv gonal number, whose side is 36, were

required ; we fook first in the table for the xx v gonal

numbér, whose side is », and it is found to be

[y

* The ‘general exptéssion for the mgonal number is easily
derived from the summation of an arithmetical progression;
whose first term is 1, common difference d, and number of terms
n; as in the following series; vnz 14(14-d) 4 (142d) 4, &c.
(147—=1.d), the surh of which is expressed byg--!“-f—;-"—d)-’i ut
in all cases. d=m—2, therefore substituting this value for d, the -
2n-+-(x*—n) . (m—2) (m—2) 7w —(m—4)n

] 2 .

expresslon becomes

as in the formula. Ens .
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“-)ﬁli—)_-—gl'-t Then, mnlunu n== .;6 we find 14526
for the number souoht

439. Suppose, for example, that a person bought
a house, and being asked how much he paid for it,
he answers, -that the 365"gonal number of 12 is the
number of crowns which it cost him. '

In ovder thercfore to find this nuinber, we make’
m_..,.36 35, and n==12; and substituting these values
-in the general formuh, we find for the price of the

hou;e 25970 crowns *,

* This chapter is intitled « Of Figurate or Polygonal Num-
bers.” Jt is not however without foundation that some algebraists
make a distinction between Jfigurate numbers and polygonal num-~
bers. For the numbers commonly called ﬁgura« are ‘dll derived
irom a single arithmetical progression, and each series of numbers
#s formed from it by adding together the terms of the series

. which goes before. On the other hand, every series of po{ygml
. pumbers is produced from a different arithmetical progression.
Hence, jn strictness, we cannot speak of a amgle series of figurate
numbers, as “being at the same time' a series of palygonal num-
bers. ,Thls will. be made more evident by the following tables,

TABLE OF FIGURATE NUMBERS.
.- Constant numbers. - - 1. L..d..l. 1. 1 &
Natural - - - « - 1.2 3. 4.5 6 &
" Triangolar - - - ~ -1.8.7 6. 10: 15, 21. &c.
Pyramidal - + - - 1. 4 10. 20..35. 56. &c. .-
‘Iriangular-pyramidal. - . 1. 5. 15. 35. 70. 126. &c.:

TABLE QF POLYGONAL NUMBERS.

Diff. of the progr. | Numbers’
o © 1|triangular - 1. 3. 6. 10. 15. &c.
- 2|square -+ v l. 4. 9. }6. 25. &o...

3 [pentagon - 1. 5. 12. 22. 35, &ec.

4 [hexagon - 1. 6. 15. 28. 45. &o,

Powers likewise form particular series of numbers. Thetwo
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CHAP. VI.
or Geometrical Ratio.

440. The geometrical ratio of two numbers i3
found by resolving this question, How many times i .
one of those numbers greater than the other? which
is done by dividing one by the other ; and the quo-
tient will express the ratio required. :

441. We have here therefore three things to con-
sider;- 1st, the first of the two given numbers, which -
is called the antecedent; 2dly, the other number,
which is called the consequent ; 3dly, the ratio of the
two numbers, or the quotient arising fiom the divi-
sion of the antecedent by the consequent; thus, for
example if the relation of the numbers 18 and 12 be
required, 18 is the antecedent, 12 is the consequent, ;

first are to be found among the figurate humibers, and the third
among the polygonal; which will appear by successwely substi<
tuting for ¢ the numbers 1, 2, 3, &c.

TABLE OP POWERS.

@ - - - 1L L L L 1 &
& - - - - 1. 2. 3. 4 5, &c
@ - - - - 1. 4 0. 16. 25. &c..

@ - - = - L. 8 27. .64. 125, kc.
@t - - - - 1. 16. 81. 256. 625. &e:

The a]gebralsts of the sixteenth and seventeenth centuties pald
great attention to these different. kinds of numbers and their
- mutual connexion, and they discovered in them a great variety of"
curious properties; but as their utility is not great, they are now
seldom introduced into the systems of mathematics. F.T. ’

VOL. I. P
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and ‘the ratio will ‘be 18 18 =14; whence we see that

the antecedent contains the consequent one and a

half times.
442. Tt is usual to repre&ent geometrical relation
by two points, placed one above the other, between
- the antecedent and the consequent ; thus a:5 means
the geometrical relation of these two numbers, or the
ratio of ¢ to b. '

We have already remarked that this sign i emr
ployed to represent division®, and for this reasen we -
make use of it here; because, in order te know the
ratio, we must divile g by & the relation expressed :

by this sign being read simply, a is ¢o0 b."
443, Relation therefore is expressed by a fraction

whose numerator is the antecedent, and whose de- .

nominator s the consequent; but perspicuity re
quires that this fraction should be always reduced to
its lowest terms ; which is done, as we have already
shown, by dividing both the numerator and degomi-
nator by their greatest common divisor: thus the
. fraction 1§ becomes $, by dividing both terms by 6.

444. So that relations only differ sccerding aa
‘their ratios are different; and there are as many

different kinds of geoinetrical relations as we can ~

conceive different ratios.

The first kind ‘is undoubtedly that in which the

—' ratio becomes unity; this case happens when -the
two numbers are equal, asin 3:3::4:4::4:qa; the

ratio is here 1, and for this reason we cali 1t the rela- .

tlon of equality.

# It will be observed that in the present edition we have made
~ use of thesymbol =~ for division, as is fiow nsually done in books
_ on this-subject. -
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N

l\ext follow those relations ‘in whlch the ratio is
another whole number; thus 4:2 the ratio is 2, and
is -called double ratio; 12:4 the ratio is 3, and is
called ¢riple ratio; 24:6 the ratio is 4, and is called
quadruple ratio, &c

We may next consider those relations whose ratios
are expressed by fractiens; such as 12:9, where the
ratio is 4 or 11; and 18:27, where the ratio is %, &c.
We may also distinguish those relations in which the . -
consequent contains exactly twice, thrice, &c. the
antecedent : such are the relations 6:12, 5:15, &c.
the ratio of which seme call subduple, subtriple, &c,
ratios. N

Farther, we call that ratlo ratzonal whlch js an
expressible number; the antecedent and consequent
being integers, such as 11:7, 8:15, &c. and 'we call
that an irrational or surd ratio, which can neither
be exactly expressed by mteoers, nor by fractions, -
such as +/5:8, or 4:v/3.

445. Let a be the antecedent, b the consequent
and d the ratio, we know already that & and & being

. : a . . .
given, we find d=:: if the consequent & were given

; b
with the ratio, we'should find the antecedent a==5d,
because bd divided by b gives d: and lastly, when
the antecedent a is given, and the ratio d, we find the
consequent b'=g~ for, dividing the ‘antece'dent a by
the consequent 7 Ve obtain the quotient d, that is

to say, the ratio..
446. Every relation a: b remains the same, if-we

multlply or dmde the antecedent and consequent by
- P2
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the same number, because the ratio is the same:
thus, for example, let d be the ratlo of a:b, we have
d= ....—; now the ratio of the relatlon na: nb is also

b

Zl-_d and that of the relatlon “. é is likewise
nb _ nn
=d.
nb

447 When a ratio has been reduced to its lowest
terms, it is easy to perceive and enunciate the rela-

. : . a
tion: -for example, when the ratio zhas been reduc-

ed fp the fractiong, we say a:b=p:gq, Qf azbiip:g,

which is read, a i3 to & as p is to ¢: thus, the ratio
of 6:3 being £, or 2, we say 6:3::2:1; we have
likewise 18:12::3:2, and 24:18::4:3, and 30:45 -
":,': 2:3, &c.; but if the ratio tannot be abridged, the
relation is already expressed in its simplest form ; for
we do not simplify the relation by saying 9:7::9:7.

448. On the other hand, we may sometimes
change the relation of two very great numbers into
" one that shall be more simple and evident, by reduc-
ing both to their -lowest terms; thus, for example,
_we can say 28844:14422::2:1; or, 10566:7044
:1:13:2; or, 57600:25200::16:7.

449. In order, therefore, to express any relation
in the clearest manner, it is necessary to reduce it to
the smallest possible numbers ; which is easily done,
by dividing the two terms by their greatest common
divisor ;. thus, to reduce the" relation 57600:25200
to that,of 16:7, we have only to perform the single
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operation of dividing the numbers 57600 and 25200
by 3600, which is their greatest common divisdr. -

450. It is important, therefore, to know how to
find the greatest common divisor of. two given num-
bers ; but this requires a rule, which we shall explain
in the following chapter.

CHAP. VII.

Of the Grcatest Common Divisor of two given
Numbers.

451. There are some numbers which have no
other common divisor ‘than unity, and when the
numerator and denominator of a fraction are of this
nature, it cannot be reduced to a more convenient
form*. The two numbers 48 and 35, for example,
have no common divisor, though each has its own
divisors; for which reason we cannot express the
relation 48:35 more simply, because the division of
two numbers by 1 does not diminish them.

452. But when the two numbers have a common
divisor, it is found, and even the greatest which they
" have, by the following rule:

Divide the greater of the two fumbers by the less;

Y
* In this case, the two numbers are said to be prime to each
other. ' \ -

v
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next, divide the preceding divisor by the xemamder ;
what remains’in this second division will afterwards
become a divisor for a third division, in which the
remainder of the preceding divisor will be the divi-
dend; which operation must be continued till we
-arrive at a division that leaves no remamder, and
this last divisor will be the gr eatest. common divisor
~ of the two given numbers.

Thus for the two numbers 576 and 252,

' 259) 576 (2
' 504
7¢) 252 (3
216
36) 72 (2
72
0.

- 80 that in this instance the greatest common
divisor is 36.

-453. It will be proper to illustrate this rule by
some other examples; and for this purpose let the
greatest common divisor of the numbers 504 and 812
 be required.

312) 504 (1

- 312
192) 312 (1
192
120) 192 (1
120

——

72
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o 782) 120 Q
7%

T
48

. : © 4) 48 {2
- : 48
, ) 0.

" So that 24 is the greatest common divisor, and
consequently the relatlon 504:312 is reduced to the
form 21:13.

454. Let the relation 625 529 be given, and the
- greatest common divisor of these two numbers be -
required.
529) 625 (1 .
529

" 96) 529 (5
430

7_;5)96(1
49

st

47) 49 (1
47

'2) 47 (23
46

THaga
2

—

0.
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- Wherefore 1 is, in this case, the greatest common
.+ divisor, and consequently we cannot'express the re-

lation 625:529 by less numbers, nor reduce it to
_ :SImpler terms:

455. It may he necessary, in this place, to give a
demonstration of the foregoing rule ; and in order to
this, let.z be the greater,. and b the less of the given
numbers ; and let d be one of their common divisors;
then it is evident that 4 and b being divisible by 4,
we may also divide the quantities a— b, a1——2b a—3b,
and, in general, a—nb by, d. "

456. The converse is no less true: that is, if the
numbers b and a—nb are divisible by d, the number
a will also be divisible by d; for nb being divisible
\byd we could not divide a—nb by d, 1f @ were not
also divisible by d.

457. We observe farther, that if d he the greatest
common divisor of twa numbers, b and a—nb, it will
also be the greatest common djvisor of the two num-
‘bers a and b; for if a greater common divisor than 4

_could be found for these numbers @ and b, that num-
. ber would also be a common divisor of 4 and a—nb;
and consequently d would net be the greatest com-
mon divisor of these two numbers; but we have sup-
posed d the greatest divisor common to 4 and a—nb;
therefore d must also be the  greatest common dmsor
of a.and b.
458. -These things being laid down, let us dlvxde,
according to the rule, the greater number a by the
" less b and let ‘us suppose the quotient to be #n;
then the remainder will be a—nb, which must neces-
sarily be less than &; and this. remainder a—nb
‘having the same greatest common divisor with 5, as
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~the given numibers @ and b, we have only to repeat
the division, dividing the preceding divisor &'by the

- remainder a—nb; and the new remainder which we -
obtain will still have, with the preceding divisor, the
same greatest common divisor, and so on.

459. We proceed in the same manner till we ar-
rive at a division without a remainder; that is, in -
which the remainder is nothing ; let therefore p be
the last divisor, contained exactly a certain number
‘of times in its dividend; and this dividend will evi-
dently be divisible by p, and will have the form mp;
so that the numbers p and mp are both divisible by
p; and it is also evident that they have no greater .
‘common divisor, because no number can actually be
‘divided by a number greater than itself; consequently
this last divisor is also the greatest common divisor of
‘the given numbers a and b. .

 460. We may now givé another example of the
same rule, requiring the greatest common divisor of
the numbers 1728 and 2304: the- operathn is ag
follows ; -

1728) 2304 (1 o

1728
576) 1728 (3
1728
0.

Hence it follows that 576 is the .greatest common
. divisor, and that the relation 1728:2304 is reduced-
to 3:4; thatis to say, 1728 is to 2304 the same as

3isto4.

-
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'CHAP. ViIL
(y' Geometrical Pmportwm

. 461. Two geomemcal relatlons are equul when
their ratios are equal ; and this equality of two rels- -
tions is called a geometrical proportion ; thus, for
example, we write a:b==c:d, or.q:5::c:d, to indi-
cate that the relation a: b is equal to the relationc:d; .
bat this is more simply expressed by saying ais to &
as ¢ tod; asinthe following proportlon, 8:4::12:6;

. when the ratio of the relation 8:4 is 2, which is a.lso,

the ratio of the relation 12:6. ’
462. So that a:b::c:d being a geometncal pro-
portion, the ratio must be the sam¢ on both sides,

qonsequehtly (-;-.-_—g; and reciprocally, if the fractions

, %;2, we havea:b::c:d.

463. A geometrical proportion consists therefore
of four.terms, such that the first divided by the
second gives the same quotient as the third divided
'by the fourth; and hence we deduce an important
property, commgn to all geometrical proportion,
which is, that the product of the first and the last
term is always equal to the product of the second and
third; or, more simply, that the preduct of the ex-
tremes is equal to the product of the means. . - .

"464. In order to demonstrate this property, let -
us take the geometrical proportion @:5::c¢:d, so that
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%z‘% . Here if we multiply both these fractions by =

b we obtain a-;_-.-b—dc, and multiplying both sides far-

ther by d, we have ad=>bc ; butadis the product of
the extreme terms, and Jc is that of the means, which
two products are found to be equal.

465. Reciprocally if the four numbers g, b, c, d;
are such that the product of the two extremes a and
dis equal to the product of the two means 4 and ¢, -
we are certain that they form a geometrical propor-
“tion ; for, since ad== bc, we have only to divide both-

. Co ad_bc a__c
sides by -bd, which gives us b OrZ"—(? andv
consequently a:b::c:d. )

466. The four terms of a geometrical proportion,.
asa:b::c:d, may be transposed in different ways,
without destroying the proportion; for the rule being
always, that the product of the extremes is equal to
‘the product of the means, or ad=bc, we may say,

1. braidic; 2%.a:ciib:d;
8. d:b:icia; 4™.d:c: b:a.

467. Beside these four geometrical proportions,
we may deduce some others from the same propor-
tion, a:b::c:d; for we may say,’ a+b:a::c+d:c,
or the first term plus the second is to the first as the
third plus the fourth is to the third; that is, a4-6:
a:.c4d:c,

- We may farther say, the first minus the second is
to the first as the third mnus the fourth is to the
third, or a—b:a::c—d:c. - For if we take the pro-
* duct of the extremes and the means, we have.
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: ac—-bc-ac—aa’ which evidently leads to the equal-
ity ad= be,
! And in the same manner we may demonstrate that
- a+b:b::c4+d:d; and that a—0b:b::c—d:d.
. 468. All the propoftions which we have deduced
from a:b::c:d may be represented generally as
- follows;
) ‘ - ma-4nb: pa+¢bimc+nd:pc+-qd.
For the product of the éxtreme terms is mpac
. =+upbc+mgad+ngbd ; which, since ad=bc, becomes
. mpac+npbc+ mgbc+ngbd ; also the product of the
mean terms is mpac+mgbc+npad+ngbd ; or, since
ad=bc, it is mpac—+mqbc+npbe+-ngbd; so that the
two products dre equal.
469: It is evident, therefore, that a geometrical

proportion being given, for example, 6:3::10:5,an |

infinite number of others may be deduced fromit;
we shall however give only a few:

8:6::5:10; 6:10::3:5; 9:6::15:10;
8:3::5: &§; 9:15;:3:5; 9:8::15: 5.

470. Since in every geometrical proportion the
product of the extremes is equal to theproduct of the
means, we may, when the three first terms are known,
find the fourth, from them; thus let the three first
terms be 24:15 :: 40 to the fourth term : here, as the
product of the mcans is 600, the fourth term multi-
plied by the first, thatis by 24, must also make 600;
consequently by dividing 600 by 24 the quotient 25
will be the fourth term required, and the whole pro-
portion will be 24:15::40:25. In general, there-
fore, if the three first terms are a:b::c; we putd
for the unknown fourth letter ; and since ad==#éc, we
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divide both sides ’by‘ a, and have -dz%; so that fbg

fourth term is @, which is found by multiplying the .

second term by the third, and dividing that product
by the first.

471. This is the foundatlon of the celebrated
Rule of Three in arithmetic; for in that rule we
suppose three numbers given, and seek a fourth,
which is in geometrical proportion with those three;
so that the first may be to the second as the third is
to the fourth.

472. But here it will be necessary to pay attention
‘to some particular circumstances.

. First, if in two proportions the first and the third
terms are the same, as in a:b::c:d, and a: f::¢: g,
then the two second and the two fourth terms will
also be in geometrical proportion, so that b:d:: f:g; -
for the first proportion being transformed into this,

"a:c::b:d, and the second into this, a:c::f:g, it
follows that the relations b:d and f:g are equal,

since each of them is equal to the relation a:c; thus, |
for example, if 5:100::2:40, and 5:15::2 .6, we
must have 100:40::15:6.

473. But if the two pl‘OpOl‘thDS are such that the
mean terms are the same in both, I'say that the first
terms will be in an inverse proportion to the fourth .
terms; thatis,if 2:6::c:d, and f:54::c: :g, it follows
that a:f ::g:d. Let.the proportions be, for example,
24:8::9:3, apd 6:8::9:12; we have 24:6:: 12:3;
the reason is evident; for the first proportion gives
ad=bc; and the second gives fg=bc; therefore
ad=fg,and «:f ::g:d, ora:g:.f:d.
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- 474. Two proportions being given, we may always
produce a new one by separately multiplying the
first term of the one by the first term of the other,
the second by the second, and so on with reqpect to
the other terms; thus the proportions 2:4:: c:d and
- eifiig:h will furhish this, ag:ff': cg:dh ; for the
first giving ad=Abc, and the second giving eh=fg, we
have also adeh=4bcfz ; but now adek is the product
of the extremes, and bcfg is the product of the means
in the new propertion; so that the two products
'being equal, the proportion is true.

475. Letnow the two proportions be 6:4::15:10
- aud 9:12::15:20, their combination will give the
propmtmn 6.9:4. :15.15:10. 20,

or 54: 48 "25 200,
or 9: 8:: 9: 8.

476 We shall observe, lastly, that if two pro-
ducts are equal, ad=—=bc, we may reciprocally con-
vert this equality into a geometrical proportion; for
we shall always have one of the factors of the first
product, in the same’ proportion, to one of the factors
-of the second product, as the other facter of the se-
cond product is to the other factor of the first pro-
duct: that'is, in the present case, a:c::b:d, or
a:b:ic:d. Let 3X8=4X6, and we. may form
from it this proportion, 8:4::6:3, or this, 3:4.::6:8;
hkewxse if 3% 5=1% 15, we shall have 3: 15‘ 1:5,
or5:1::15:3, or 3:1::15:5.
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CHAP. IX.

- Qbservations on the Rules of Pro])ortzon and their
: Utility,

477. This theory is so useful in the common oc-
‘currences of life, that scarcely any person’'can do
without it ; there being always proportion between
prices and commodities; and when different kinds of
money are. the subject of exchange, the whole consists
in determining their mutual relations ; and the exam-
ples furnished by these reflections will be very proper
for illustrating the prineiples of propertion, and show-
ing their utility by the application of them. -
* 478.. If we wished to know, for example, the re-
. lation between two kinds of money; suppose an old
louis d’or and a ducat : we must first know the value
of those pieces when compared with others of the
same kind ;-thus, an old louis being, at Berlin, worth .
5 rixdollars and 8 drachms, and a ducat being worth
3 rixdollars, we may reduce these two values-to one
-denomination; either to rixdollars, which gives the
proportign 1L:1D::53R:3R. or :716:9; or to
drachms, in which case we have 1L:1D::128:72::
16:9; ‘which proportions evidently give the true re-
lation of the old louis to the ducat; for the equahty
of the products of the extremes and the means gives,
in both cases, 9 louis==16 ducats ;. and, by means of
this comiparison, we may change any sum of old louis
into ducats, and vice-versa. Thus, suppose it were .
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reqmred to find how many ducats there are in 1000
old louis, we have this proportion :
Lou. Lou. Duc. Duec.
As 9:1000:: 16: 17773, the number sought

If, on the contrary, it were 1equ1red to find how
tnany old louis d’or there are in 1000 ducats, wé
. have the following propoition :

' Duc. Duc. Lou.
As 16:1000::9:562% louis:  Ams.

479. At Petersburgh the value of the ducat varies;
and depends on the course of exchange which
course determines the value of the ruble in. stlvers,
or Dutch halfpence, 105 ‘of which make a ducat.
So that when the exchange is at 45 stivers per ruble;
we have this proportion :

As 45:105: :3: 73
" and hence this equahty, 7 rubles = 3 ducats.
Hence again we shall find the Value of & ducat in
rubles, for
Du. Du. Ru.
" As 8:1::7:2% rubles;
that is, 1 ducatis equal to g1 rubles.

Butif the exchange were at 50 stlvers, the propor-

‘tion would be,
As 50: 105:'; 10:21;-
which would give 21 rubles = 10 ducats ; whence
1 ducat = 2 rubles. Lastly, when the exchange
is at 44 stlvers, we have ' -
" As 44:105:: 1: 211 rubles;
which is equal to 2 rubles 38-%; copecks.
480. Tt follows also from thls, that we may com-

pare different kinds of money, which we have fre-
/

. . f .
. T -
. 7 . ,
. - . .
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quently occasion to do in bills of exchange. Sup-
pose, for example, that a person of this place has
11000 rubles to be paid to him at Berlin, and that hé
wishes fo know the value of thls sum in ducaxs at

. Berlin. ’ .

- The exchange is here at 47%; that is to say, one
ruble makes 474 stivers ; and in Hollard, 20 stivers
make a florin; 24 Dutch florins make a Dutch dol- -
lar : also, the exchange of Holland with Berlin is at
142 ; thatis to say, for 100 Dutch dollars, 142dol-
lars are paid at Berlin; and lastly, the ducat is worth .
8 dollars at Berlin. .

481. To resolve the question proposed, we may
proceed s’tep by step: let us therefore begin with the
stivers : since 1 ruble = 47% snvers, or2 rubles =935
stivers, we shall have -

Ru. Ru. . ‘Stiv.
"~ As 2: 1000 ::' 95 : 47500 stivers;
then again, : , '
Stiv. = Stiv.  Flor. :
As 20 : 47500 :: 1: 2375 florips. .

Also since 24 florins =1 Dutch dollar, or 5 flo- -

rins = 2 Dutch dollars ; we shall therefore have

b Flor. Flor. D D.

As'5:2375 :2 2: 950 Dutch dollars.

Then taking the dollars of Berlin, *according to the
exchange, at 142, we shall have / ’

D.D. D.D. Dollars. . A
As 100 : 950 :: 142 : 1349 dollars of Berlin.
And lastly,
' Dol. Dol. Du.
As 8 : 1349 :: 1.: 449% ducats, .
'which is the number sought.

482. Now in order to render these calcylations

VOL. 1. - Q
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still more complete, let us suppose that the Beilin
. banker refuses, under some pretext or ether, to pay
~* this summ, and to accept the bill of exchange without
five per cent. discount; that is, paying only 100 in-

" steadof 105. In that case we must make use ofthe
- following proportion:

- As 105:449% :: 100: 428-}-3- ducats;
which is the answer under those conditions.

483. We have shown that six operations ‘are

.. necessary in making use of the Rule of Three; but

we can greatly abridge those calculations by a rule
which is called the Rule of Reduction, or Double Rule
. of Three. , To explain which, we shall first consider
- the two antecedcnts of cach of the six precedmg

operations : ,
s 1st. 2 rubles : 95:stivers. .
©ad. 20 stivers .t 1 Dutch flor.

8d. 5 Dutchflor. * : 2 Dutch doll.
4th."100 Dutch doll. : 142 dollars.
~ 5th. 3dollars & 1 ducat.
6th. 105 ducats : 100 ducats.
-If we now look over the preceding calculations,
" we shall observe, that we have always multiplied the
" given sum by the third terms, or second antecedents,
and divided the products- by the first; it is evident,
therefore, that-we shall arrive at the seme results by
multiplying at once the sum proposed by the product
of all the third terms, and dividing by the product of

i all the first terms : or, which amounts to the sams

thing, that we have only to make the followmg pro-
pomon As the product of all the first terms, is to the
given number of rubles, so is the product of all these~ -
~cond terms, to the number of ducats payable at Berlin:

? .
. A}
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484. Thas calculatnon is abridged still more, when

a.mongst the first terms some.are found that have
' common divisors with the second or third terms ; for,

in this case, we destroy those terms, and substitute '

the quotient arising from the_division by that com-
mon divisor. The preceding example will, in this’

manner, assume the following form.
A$(2.20.5.100.8.105): 1000 :: (95.2.142. 100)
1000 95.2.142. 100
" 2.20.5.100.3.105 °
mon divisors in the numerator and denomlnator, this
~ will become . C Sy
19.71.20__ 26980
321 ~ 63 ; T
485. The -method which must be observed in
using the Rule of Reduction is ‘this:-we begin with
the kind of money in question, and'compare it- with
another which is to begin the next relation, in which
we compare this secend kind with a third, and se on.
. Each relation, therefore, begins with the same - kind
as the preceding relation ended with ; and the opera-
tion is continued till- we arrive at the kind of money
which the answer requires; at the end of which we
‘must reckon the fractional remainders.
486. Let us give some other examples, in order to
facilitate the practice of this calculation. .
If ducats gain at Hamburgh 1 per cent. on two

and after cancelmg the com-

=4981¢ duca;s, as before. "

dollars banco; that is to say,'if 50 ducats are worth,
not 100, but 101 dollars banco; and if the exchange

between Hamburgh and Konigsberg is 119 drachms

of Poland; thatis, if 1 dollar banco is equal to 119
Dolish drachms ; how many Palish florins are equiva- .-

lent to 1000 ducats?
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Tt bemg understood that 90 ‘Polish drachms make
1 Polish florin,
" Here ' 1:1000:: 2 dollars banco
100 . — 101 dollars banco
1 =~ 119 Polish drs.
%0 — 1 Polish flor.
therefore, : \
1000.2.101.119
(100.30): 1000: (2 101.119): 100.50

a“_=2.<10;.119

=8012$ Polish florins. Ans.

- 487. We will propose another example, which
may still farther illustrate this method. .
Ducats of Amsterdam - are brought to Leipsick,’
“ baving in the former city the value of 5 flor. 4 stivers
current; thatisto say, 1 ducatis worth 104 stivers,
. and 5 ducats are worth 26 Dutch florins : if, there-
~ fore, the agio of the bank at Amsterdam is 5 per
., «<ent.; thatis, if 105 currency are equal to 100 banco;
and if the exchange from Leipsick to Amsterdam, in
bank money, is 133} per cent. ; that is, if for 100
dollars we pay at Leipsick 133} dollars; and lastly,
2 Dutch dollars making 5 Dutch florins; it is re-
- quired to determine how many dollars we must pay
at Leipsick, according to these exchanges; for 1000
ducats? :
By the rule .
. 5:1000:: 26 flor. Dutch curr.
105 .— 10Q flor. Dutch banco
. 400 — 533 doll. of Leipsick
. 5 — 2doll. banco;

therefore,
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As (5.105.400.5):1000:: (26.100.533.2) -
. 1000.26.100. 533.'2_4 .26.533 —963042 dollars,
5.105.400.5 . - &l
the number sought, L .
- And exactly in the same manner we may pyoj:eed
m.th o;het qxamplg,s of tl;:a kmd

'3' ‘l:;".. i

RN O E S B

Fis et .

CHAP. X.
. Of Compound_Relations.

488. Compound Relatidns are obtained by mwbiiy
plying the terms of two er.more rolations, the; aute-
cedents by the antecedents; ;and the consequests: by
the consequents ;. we say;then, that the. relatipn be-
tween those two products is domjazmahd of' thnoi'ela-i, '
ﬁonsgwen ' O SR |

* Thus ‘the relations a: b; dfd e j} glve ths come
. pound relation ace:ddf. I IPNRTR AN

1= 4819usA vefation’'continuing always ! the same, Iwhen
we divide both its:terits by the same number; in,or-
der to abridge. it,.we Ry greatly facilitate the above
composition by comparmg the antecedents and the
‘cqpsequpnts, for the purpose of making such reduc-
tlons as, we performed in the last chapter

For example we find thg compound relatlon of
the following given relatlons thus:

~+. .- Relations crwen .
12:25, 28: 33 and 55 56

~
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" Which becomes -
v (12.28.55): (25.33.56) =2: 5

by' cancelling the common divisors. o
So that 2: 5 is the compound relation requlred

" 490.  The same operation is to be performed, when

- it is required to calculate generally by letters; and
the most remarkable case is that in which each ante-

cedent is equal ta the consequent of the. precedmg

' relatnon If the given relations are

a:bh
b:c
c:d
d:e
e:a

the cmnpound refation is 17 1.

491. The utlhty of these principles will be per- .

' ceived, -when it is observed, that the relation between

two square fields is compounded of the relations of

- the. lengtbs and the breadths.
" Let the two ﬁelds, for example, be A and- B; A

~ having 500 feet-in length by 60 feet-in breddth; the

length of B being 360 feet, and its breadth 100 feet*
the relation of the lengths will be 500:360, and that
of the breadths 60:100. So that we have :

'(500.60) : (360.100) =

Wherefore the field A is to'the field B,‘a’s 5to 6.
492. Again, let the field A be 720 feet long, 88

feet broad ; and let the field B be 660 feet long, and

90 feet broad the relations will be compounded in
the following manner:
Relation of the lengths 720 : 660
Relation of the bréadths 88 .: 90
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and- by canceling, the. - _

Relation of the fields A and B 16 :
493. Farther, if it be required to compare two -
rooms with respect to the space or contents, we ob-
serve, that that relation .is compounded of three re-
lations ; namely, that .of the lengths, breadths, and.
heights,  Let ‘there be, for example, a room-A,
whose length is 36 feet; breadth 16 feet, and height
14 feet, and a room B, whose length is 492 fe
* breadth 24 feet, and height 10 feet; we shall have

these three relations:
~ For the length 36 : 49
For the breadth 16 : 24 .
For the height 14 : 10
And canceling the common measures, these betome
4:5. \So that the contents of the room A is to the
* contents of the room B, as 4 to 5.

494. When the relations which we compound in®
this manner are equal, there result multlphcate rela-
tions. Namely, two equal relations give a duplicate
ratio, or ratio of the squares; three-equal relations-
produce the triplicate ratio, or ratio of the cubes;
and so on. For example, the relations a:b and
a:b give the compound relation 4*:4*; wherefore:
we say, that the squares are in the duphcate ratio of
their roots. And the ratio a:4 multiplied twice,

giving the ratio ¢: §°, we say that the cubes are in ~

the triplicate ratio of their roots.

495. Geometry teaches, that two circular spaces
are in the duplicate relation of their diameters; this
means, that they are te each other as the squares of
their diameters. -
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Let A be suchraspace, havingite diameter 4.5 feet,
and B another circular space, whose diameter is 30
feet; the first space will be to the second as 45X 45
to 0% 30; or, compoundmg these two equal rela-
tions, a3 9 : 4. .

Therefore the two areas are to, eaah other as
9 %o 4.

496 It is also demonstrated that thg golid con-

ts of spheres are in the ratio of the cuhes of their

lametnrs so that the.diaméter of a globe, A, being
1 foot, and the diameter, of a glgbe, B, being 3 feet,
the solid content of A will be to that of B, as 13: 2%;
oras 1to8. If, therefore, the spheres are formed
_ of the same substance, the latter will.weigh 8 times
" ‘a8 much as the former.
. 497. Ttis évident that we may in this manner find
. the weight of cannon balls, their diameters and the
weight of one being given, For example, let there
be-the ball A, whose diameter is 2 inches, and weight
.5.pounds; and if the weight of another ball be re-
quired, whose diameter is -8 inches, we have this
" proportion,

. 2%:8%::5: 320 pounds, - . .
whlch gives the welght of the ball B;.and for ano-
ther ‘ball C, whose diameter is 15 inches,” we should
have, .

2°:15%::5:210931b.  Auns.”’
"498. When the ratic of two fractions, as %: s,
is required, we may always express it in.integer num-
bers; for we hgve only to multiply the two fractipns
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by 4d, in order to obtain the ratio'ad: bc, which is
equal to the other; and from hence results. the pro-.

portlpn 2.C . ud: be. If, therefore, ad and b¢c have

b d
. common divisors, the ratio may be reduced to fewer
terms. Thus —1-‘2‘25 :(15.36) : (24.25)::9: 10.

499. If we wlshed to’ know the ratio of the frac-
tlonsland > it is evident that we should have

; E th:a; which is expressed by saymg, “that two

fractions, which have upity for thelr numerator, are
in_the reciprocal or inverse ratio of their denomina-
tors: and the same thing is said of two fractions

which have any comm(m numerator ; for & y 'Z" b:a.
But if two ﬂacuons h,ave theur denommators equal,

a :
as s '3’ they are m the a’zr,ect ratzo of the numera-

8 8.6 3
to el b Tl — 0
rs; nam Y asa s gt 16 16’ 16 6 \
16 ]5 N R
nd_ 77— 10 15 2 3; LTSS S

'500. It has heen<observed, in'the free desceiit of
bodies, that a body'falls about 16°English feet in &
second, that in two seconds of time it falls from
the helght of 64 feet, and in three seconds it falls
144 feet. Hence it is-concluded, that the heights
are to each other as the squares of the times; “and
reciprocally, that the times are in the subduplicate
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ratio of the hexghts or as the square roots of the
heights ¥, -
-If, therefore, it be requir ed to.determme how long
a stone will be in falling from the height of 2304 feet;
we have 16 :2304¢:1:144, the square of the time;
and consequently the time required is 12 seconds.
501. Ifit be required to determine how far, or
through what height, a stone will pass by descending
for the space of &n hour, or 3600 seconds ; we must

1

. - say,.

, As 1°:3600°:: 16:207360000 feet,
' the helght required. '
. ‘Which being reduced is found equal to 39272
miles; and consequently neaily five times greater
than the'dlameter of the earth. -
502.- It is the same with regard to the pnce of.
- precious stones, which are not sold in the proportlon
of their weight; every body knows that their prices
follow a much greater ratio. The rule for diamonds -
is, that the price is in the duplicate ratio of the
weight; that is fo ssy, the ratio of the prices is equal
to the square of the satio of the weights.” The
welght of dlamonds 1s expressed in carats, and a ca-
rat is equxvalent to 4 grains; if, therefore, a diamond
of, .ane carat 4s worth 10 livres, a diamond of 100
cagats will be worth as many times 10 livres as the

. -

* The space descended by a heavy body, in the latitude of
London, in the first second of time, has been found by, experi-
- ment to be 164% English feet; but in calculations where great,
accuracy is not required, the fraction'may be omitted. Ep/
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square . of 100 contains 1; so that we: shall have,
-according to the Rule of Three : -

As 1:10000:: 10: 100000 liv. Ans‘.
“There is a diamond in Portugal which weighs 1580
carats ; its price will be found, therefore, by making
17:1680%:: 10: 28224000 livres

508. The posts, or mode of tra,vellmg, in France,
" furnish sufficient examples of compound ratios; be-
cause the price is regulated by the compound ratio of
the number of horses, and the number of leagaes, or
posts. Thus, for example, if one horse’cost 20 sous
per post, it is required to find. how much must be
peid for 28 horses for 43 posts.

We write first the ratio of the horses - - - - 1: 28
Under this ratio we put that of the stages --2: 9

And, compoundmg the two ratios, we have - 2:258
Or, 1:126::1 liv. to 126 fr. or 42 crowns. '

Again, I I pay a ducat. for eight horses for. 3.
miles, how much must I pay for thirty - horses for.
four miles? The calculation is as follows: -

- ~ 8:80 :
8: 4 :
5::1 duc. : 5 ducats; the sum required.

504. The same composition occurs when work-
men dre to be paid, since those payments generally
follow the ratio compounded of the number of work-
men and that of the days which they have been ‘
employed. ,

If, for example 25 .sous per day be glven to one
mason, and it is required what must. be_paid to 24
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' masons who have worked for 50 days: we state the
calculation thus: . .
1:24 . c :

P

P

1:1200::25 : 1500 francs. !~ SRt
In these examples, five things being givén, the rule’

which serves to resolve them is.called, in: books: of
srithmetic, The Rule of: Fwe, oF - Doul'de. Rulq of
Three... - . : ; . .

'CHAP. XL~

"Of Geometrical Progressions..

506. A series of numhbers, which are always.be-
coming & certain number of times greater or.less;is

called a geometrical progression, beceuse each: term

is constantly to the following one in the same 'geo- .

* metrical ratio: and the number which expresses how

~ many times oach term is greater than the preceding,

.ds-called the expoment, or ratio.  Thus, when the first

term is 1 and the exponent 2 the geqmemcal pro-

gression becomes, , o

Terms 1 2 3 4 5 6. 7 8 -9 .&c
Prog. 1,2, 4, 8, 16, 32, 64, 128, 246, &c. -
'The numbers 1, 2, 3, &c. always marking the place

.which each term holds in the progressian.
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-506. If'we supposé, in*deneral, the -first term -
to be 4, :4nd the ratio.b, we. have the followmg
geometrical progression ; :

1,2 8 4 5 6 7 8 ...n .
Prog. a, ab, ab®, ab®, abt, ab®, b, ab" . .. . ab*=. -
" So that, when this progression consists of n terms,
the last term is'ab™: we must, however, remark
here, that if the ratio 5 be greater than unity, the
terms iricrease contipually; if 5==1, the terms are
all 'eqﬁal 5 lastly, if & be less than 1, or a fraction, the
terms continually decrease. “"Thus, when a__l and

b= ;, we have this geometncal progresslon

pLl11o11 1
'2 4 ¥ 16 32 64’ 128

507. Here therefore we have to consnder

1. The ﬁrst term, which we have called a.

2 The exponent, which we call b.

8. The number of terms, Whlch we have ex-
pressed by z.

4. And the last term, whlch we have already
seen, is expressed by ab»—1. . .
So that, when the three first of these are given, the
last term is found by multlplymtr the n—1 power
of 4, or &, by the first term .

Tf, therefore; the 50th term of the geometrical
progression 1, 2, 4, 8, &c. were required, we should
have a=1, b=2, and n=50; -consequently the
50th term would be 2¥; and as 2°=1512, we
shall have 2'°=1024 ;" wherefore the square of 2'°,
. or 2%°,=1048576, and the square of this number,
‘which is'1099511627776,==2%. Multiplying there-

{

- &c.
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fore " this value of 2¥ by 2% ‘ar by 518, we have
¥ equal to 562949953491312 for the 50th term..

© 508. One of the principal questions which occur .

on this subject, is to find the sum of all the terms
of a geometrical -progression; wé shall therefore
explain the method of doing this. .In order to
which let there be given,  first, the followi ing pro- ‘
gression, ‘consisting of ten terms :
i 1, 2, 4, 8, 16, 892, 64, 128, 256,512,
the sum of which we ‘shall represent by s, 80 that
L s=i +24+4+84164+324+64+1284256+512 ;
now doubling both sides, we shallhave,
" 28=244+8+16+32+64+1928+256+512+1024;
and subtracting from this progression that represented
by s, there remains s==1024— 1= 1023 ; wherefore -
the sum required is 1023. S
509. Suppose now, in the same" procressnon,
~ that the number of terms- is undetermined, that is,
let them be cenera.lly represented by %, so that the
‘sum m question, or . .
. s, =1+2+22+23+24 .2l
and if we multiply by 2, we have
Q=2+ 2°+2°42..... o,
- then subtracting from this equation the preceding
one, we have s==2"—1. It is evident, therefore,
- that the sum required is found, by multiplying the
last term," 21, by the exponent 2, in order to have
- @, and subtracting unity from that product.
510.-This is made still' more evident: by the fol-
lowing examples, in which we substltute successively,
- for », the numbers 1, 2, 3, 4, &c. .
L d=1; 14-2=3; 14244=7; l+°+4+8—-15,
‘,1+2+4+8+16-—-31 5 l+2+4~+8+16+32 :
—63 &c.
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511, On 'this subject ‘the follomng questlon is' .
‘generally proposed. - -A man offers- to sell his horse
upon the following condition, that is, he demahds
1.penny for the first nail, 2 for the second, 4 for -
the third, 8 for the fourth, and so on, doubling the
. price of each succeeding nail. It is required to
find the price of the horse, the nails being 32 in
number?

This question is ev1dently reduced to finding the
sum of all the terms of the geometrical progression
1, 2, 4, 8, 16, &c. continued to the 32d term.
Now, that last term is 2*'; and, as we have already
found ' 2°°=1048576, and 2"°=1024, we shall
_ have 20%( 20 = 9% =— 1073741824 ; and .multi-
plying again by 2, the last terin 2*'=2147483648 ;
doubling therefore- this number, and subtracting
"unity from the product, the sum required becomes.
4294967295 pence ; which being reduced, we haye

178956971. 1s. 3d. for the price of the horse. '

512. Let the ratio now be 3, and suppose it be’
,reqmred to find the sum of the geometncal pro-
gressnon 1, 8, 9, 27, 81, 243, 729, consisting of 7
terms. )

Calling the sum s as before, we have

' $=1+3+9+27+81+243+729.

And multiplying by 3,

: 38—3+9+27+81+"43+799+2187
Then subtracting the former series from the later,
we have 25==2187-—1==2186; so that the double
of the sum is 2186, and consequently the sym re,
quired is 1098.

318. I the same progression, let the numbet

- of terms be #,-and the sum &, so that
b .
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If now we multiply by 3, we havg
35=3+3"+F+3+ ..
Then subtracting from this expression the value of

s, as before, we shall have 2s=3"—1; therefore

3=3n2—1. So that the sum required is found by

multiplying the last term by 3, subtracting 1 from
the product, and dividing the remainder by 2; as
will appear, also, from the followmg particular
cases : :

1 - - - -.Tx—g—l = 1
148 - - - 3—{2_1 = 4
1+3+9': - - 5—;5—%-'11 = 13
1+3+9+427 - - 2(__2——2——1: 40.
1+3+9+27+81 - ?’—_)i—g—l:l—_:lzl.

514. Let us now suppose, generally, the first
term to be @, the ratio 4, the number of terms %
and their sum s, so that p

o s=a+ab+ab’+-abi4-abt+ .. ..ab™".
If we multiply by 4, we have. -
bs—ab+ab®+ab®+abttab’+ . . . . ab",

and taking the diffesence between this and the above
equation, there remains (6 w0 1) s=ab» vra ; whenoe
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a.(b"m 1)
bn 1’
Consequently, the sum of any geometrical pro-
gress:on is found, by multiplying the last term by.
the ratio, and dividing the difference between - this
product and the first term, by the difference between
1 and the ratio.

'515. Let there be a geometncal progression of
seven terms, of which the first is 3; and let the '
ratjo be 2: we shall then have a=38, =2, and
n="7 ; therefore the last term is 3% 2¢, or 3)(64,—- -
192; and the whole progression will be

3, 6,-12, 9.4 48, 96, 192.

Farther, if - we multlply the last term 192 by the
ratio 2, we have 384; subtracting the “first term,
there remains 381; and dividing this by 6—1, or
by 1, we have 381 for the sum of the whole pro-
gression. ;

516. Agam, leb there .be a geometncal pro-
‘\gressnon.of six terms, of which the first is 4; and

we easily deduce the sum required =

" let the ratio be g : then the; progréssion is

27 81 243
4 6,9 o 2’ 4’ 8"

If now we multlply the last term by the ratio,

we shall have —7—??, and subtracting the firstterm, the.

-remainder is 66(;,5, Whlch divided by b—1==,

wlw

- gives g?: 83§ for the sum of the series.

VOL. L. R
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517. When the exponent is less than 1, and,

consequently, - when the terms -of the progresslon"
. contmually diminish, the sum of such a decreasmg
" progression, carried on to infinity, may be dccu-

rately expressed.
For example, let the first term be 1, the ratio

%, and the sum s, so that:

1,1
s=1+- +4+8+16+32+64+, &e.

1
2

-ad infinitum.

If we multlply by 2, we have '

23=2+l+‘-+ -I- + +, &c

16 32

ad mﬁmtum. and,, ‘subtractmg the preoedmg pro-
gression, there remains s==2 for the sum of the
proposed infinite progression.

'518. If the first term be 1, the ratio 5, and the
sum s; so that

’

s—1+ +9+§7+81+’ &c. ad infinitum :

“Then multlplymg the whole by 3, we have

3s=3+1+3+9+27+: &c. ad ii)ﬁnifum; :

and subtracting the value of s, there remains 2s=3;

wherefore the sumi s=1 é

- 519. Let there be.a prooressmn whose sum is 4,

" first term 2, and ratlo%, so that
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s_2+ +9+27+ —, &e.. ad mﬁmtumr

128

Now multiplyma by é; we have

'g-s——+2+ += +9'7+18;8+, &c. 'adin'ﬁﬁtum; ,

and subtracting from this progressiont s, there re-,» .

1
mains 3s-‘:, wherefore the sum requ:red is 8.

520. If we suppose, in general, the first term~
to be a, and the ratio of the progreSsmn to beé

so that this. fraction may be less than 1, and~
consequently ¢ greater than &; the sum of.the

_progression, carried on ad mﬁmtum, will be found .

thus :

3 : .
Make s a_..a+—é+ al? +i£ + +, &e.

Then multxpl}mg by b, we shall have

B ab® abh
s___ ’ b _a__ +a +a
and, subtractmg this equation from the preceding
there iémaiiis (1= %) s==a. .
e

—+; &c. ad infinitum §

Conse ue’nﬂJ =t % ‘

The sum of the infinite geometrical progressiott
proposed is; therefore, found- by dividing the first
term a by 1 minus the ratio, or by multiplying the i
first term & by the denominator of the ratio, #nd

R2 -
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dividing the product by the same denommator di-
minished by the numerator of the ratio *.

521, In the same manner we find the sums of
‘progressions, the terms of which " are alternately
affected by the signs + and —.° Suppose, for
example, . C.

ab  ab® ab® ab"
o J—G—‘—c—+°c-§-—?+?—-‘—, &c.
and multiplying by g,. we have, -
- b _ab ab® ab® abt
et e e
* Now, addmg thxs equatlon to the preredmg, we

: ob&ﬁm (1+—) s=a: whence we deduce the sum

requxred $=—, or §==

c .

1+ Te4b

529. Itis ewdent, therefore, that if the ﬁrst term °
a== z, and the ratio be =, that is to say, b==2 and

c=5; we shall ﬁnd the sum’ of the. progresslom'
3 6

| 3+§3+125+625+’ ke =1; smce’ by b

3
tracting the ratlo from L, there remains 3 and by
dividing the first term by that remamder, the quotlent
is 1.

It is also evident, 1f the terms be altemately

** This particular case is included in the 5§ﬁeral rule, Art. 514,

-
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positive ‘and negative, and the px;pgresslon assume

. this form :» ¢ -

3 _6- 24
’ 5. 25 125 625
.'that the sum will be

—, &c.

523. Again: let there be proposed the mﬁmte
progression, , ,
+ Too+ 1000 RLNNUL NP + &e.
1000 * 10000 * 100000 "’

The first term is here 1‘1, and the ratio is — l

 therefore subtr acting this last from 1, there remains

190, ‘and, 1f we divide the ﬁrst term by this fraction,

we have 3 3 for the sum of the given progression. So N

 that taking only one term of the pfogression, namely,
8 : R S
10 the error would be —1-6 '
3
, 107 100~ 100’
would still be wanting T('l)—(—) to make the sum, which

S |
we have seen is 3

524." Let there now be glven the infinite pro?

gression,” - R

9 A}
9 +""+ 1oo+ 1ooo+ 1oooo+ &e.

IO’~

And taking two terms, -—+ 3 =33 there . .-



”
]

e ELEMENTS $ECT. IH.
The ﬁlst term is 9, the ratlo 153-6 So that 1

~ minus the ratio 1519 ; and :;,::10, the sum re-

, 3 ,
quired : which series is- expressed by a- decimal
fraction, thus, 9'9999999, &c,

CHAP. X1,
| Of Infinite Decimal Fractions.

. 525. We have already seen, in logarithmic cal-
culations, that decimal fractions are employed in-
stead of vulgar fractions: the same are also ad-
vantageously employed in other calculations ; it will
. ‘therefore be very necessary to show how a vulgar
‘ fractlon may be transformed into-a decunal fraction ;
and, conversely, how we may express the value of a
decimal by a vulgar fraction. .

526. Let it be required, in general, to change

the fraction %, into a decimal; as this fraction

expresses the quotient of the division of the nume-

~ rator a by the' denominator b, let us write, instead

of a, the quantity 000000, whose value does not
. at all differ from that-of @, since it contains neither

“tenth parts; hundredth parts, nor any other parts
_ whateyer If we oW dmde this quantity by the
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number 4, according to the common rules of di-
vision, observing to put the point in the ‘proper
‘place, which separates the decimal and the integers,
we shall obtain the decimal sought. "Thus in the
following examples : '

Let there be given first the fraction 4, the division
in decimals will assume this form :
2)1:0000000 1
0’5000000 g

Hence 1t appears, that  is equal to.0 50000Q0
or to 0°5; which is sufficiently evident, sirice this
decimal fraction represents —%, which is equivalent
to 4. }
527. Let now 4 be the gwen fractlon, and- we

have _
31 ooooooo 1

0°3333333 =3
- This shows, that the decimal fraction whose

‘value is %’, cannot, strictly, ever be discontinued,

and that it goes on ad infinitum, repeating always -
the number 3; which agrees with what has been
a]ready shown, namely, that the fractions
1
_+E6+10_—00+10000 &c. adugﬁmtum, =§’
The. decimal fraction wlnch expresses the va-
lue of 4, is also continued ad infinitum ; for we

have
’ 3)2:0000000__2

-0 6666666 3
Which is also evident from what we have just said,
bepause-g is the double of 4.
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528. If 3 be the fraction proposed, we have
© 4)1:0000000__1

R 2500000 y
So that %is equal to o 2500000 or to 0.25: which
25 l :
lsendcntlytrue, smce +—— 100—%'

-In like manner, we should have for the frac-
tion £,

4) s-ooooooo__s -

- 07500000 4 ,
So that §=0'75 7 and in fact 3
_75__3
_""100 100 4

. 'The fraction §.is changed into a deéimal fraction,

" by making
, 4) 5 0000000 5

T 2500000 ‘1! T

, 5
- Now 1+m y

- 529. In the same manner, % will be found equal

Cen 2 3 6
to 0'2; -5~—04 '-5--—06 -—08 z

5T

12, &c ,
_ When the denominator is. 6, we ﬁnd—_.o 1666666
&c.  which is equal to o 666666—0 5; mnow

O'666666=§ and 0 5 =§, wherefore 0 1666666 =
2 1 ' '

v

1"
6




" quently, the sum =

CHAP.12.  OF ALGEBRA. 240

5 .

We find, also, 6.._.0 333333 &c, =3 but G
becomes 0'5000000=-2-; -also,,. %:0'833333:’
1_5
0333333+O 5, that is to say, — 3 36 L

530. When the denominator is. 7, ‘the decimal
fractions become more complicated : thus for example,

we find %: 0:142857; however it must be observed,

that these six figures are continually repeated. To
be convinced, therefore, that this decimal fraction’

‘precisely expresses the value of 4, we may transform

it'into a geometrical progression, whose first term is
142857

the ratio bein -——1——: and conse
1000000’ €& Tooo000’ :

LLodggesT 142857 1
, 1—roodoao 1000000 7'
531. ‘We may prove, in a manner still more

‘easy, that the decimal fraction which we have found - |

_ is exactly equal to 4; for by substltutmg for 1ts value

the letter.s, we have

 $=0142857142857142857, &c.
_ 10s=1" 42857142857142857,. &c.
1005 == 14" 2857142857142857, &c.
1000s= 142" 857142857142857, &c.
100008 = 1428"" 57142857142857, &c.
100000s==14285" 7142857142857, &c. .
1000000s = 142857" 142857142857, &c. -
Subtract s= " 0 142857142857, .&c.

9999995 =.142857.

-
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142857
999999
~ Wherefore the decimal fractlon, which was‘

And, dividing i')y 999999, we have =

represented by s, is= ;

532. In the same manner 3 may be transformed -
“into a decimal fraction, which will be 0-28571428,
&ec. and this enables us to find more easily the value |
of the decimat fractlon which we have represented by
-8 ; because 0°28571428, &c. must be the double of
_it, and, consequently, =9s. Now we have seen
that | :

. . 100s=14"28571428571, &c.

Sa that subtracting  2s= 0'28571428571, &ec.

there remalns 98s = 14 '

wherefore s—-é%’ %

We also find §=o-49357142357, &c. which, ac-

cording to our suppposmon, must be equal to 3s; and

we have found that :

- 10s=1'42857142857, &c.
. $o that subtractmg 35=042857142857, &c.

we have 7s._- 1, wherefore s= ; '

$33. When a proposed fraction, therefore, has

_ the demominator 7, the decimal fraction is infinite,
“and 6 figures are continually repeated:; the reason of
whlch 18 easyto perceive, namely, that when we con-
tinue the division a remainder must return, sooner or
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later, whlch we have had already. Now, in this di-

visign, 6 difféerent numbers only can form the re-

mainder, namely 1, 2, 3, 4, 5, G; so that, at least

after the sixth division, the same figures must return;

but when the denominator is such as to lead to a

division without remainder, these cases do not,
happen.

534. Suépose now that 8 is the denomma.tor of
the fraction proposed: we shall find the following
decimal fractions :

1 2 3 4
-§=O'l-5; §=O‘25; §'"'"O 375; v—~—-05
5__o ; 6__,. 7_
If the denommator be 9, we have
1
-==011 . ——-0222 &ec. ——-0333 &c
9 01 1, &c 9 , 9
1
And if the denommator be 10, we have 6= =01,
12 __o 2, _31____ 0'3. Thisis evrdent from the nature |
of decimals as also that L——o ‘01; 37 ——=037;
’ 100 > 100
256 4
= = —_— &
o5 = 02565 Jo50p="00024, &e.

536. If 11 be the denommator of the given frac-
tlon, we shall have -i-l-l-_O 0909090, &c. Now,
suppose it were required to find the value of thig
decimal fraction: let us call it s, and we shau
have
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. $==0090909,
"10s==00-909090, L
1008 =9°09090. '
If, therefore, we subtract from the last the value
of s, we shall have 99s=9, and consequently

~

s=—=—]-— thus, also,

2

. C—==0 181818 &c.
L1

. 3 .

-l—l-=0'272727, &c.
. 6

—IT—O 545454, &c.

537. There area great number of dec1mal fractions,
therefore, in which one, two, or more figures con-
stantly recur, and which continue thus to infinity,
Such fractions are curious, and we shall show how

their values may beepsily found *.

* These récurring decimals furnish many interesting researches;
I had entered upon them, before I saw the present Algebra, and
shduld perhaps have prosecuted my inquiry, had I not likewise
found a Memoir in the Philosophical Transactions for 1769, intitled
The Theory of circulating Fractions. 1 shall content myself.with
stating here the reasoning with which I began. :

, Let sbe any real fraction irreducible to lower terms. And

sappose it were required to find how many decimal places we
must reduce it to, before the same terms will return again. In or-
der to determine this, 1 begin by supposing that 10n is greater
than d ; if that were not the case, and only 1007 or 1000% > d,

" it'would be Hecessary to begin with trying to reduce 131 or %’-’—'

nl
&c_. to less terms, or to a fraction brs

This being gstablished, I say that the same périod’ can return

\
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Let us first suppose, that a smcrle figure is con-
stantly repeated, and let us represent it by a, so that
s==0auaaaaa. We have
: ' - 10s=ataaaaaa '
and subtractmg $§=0‘aaaasaa . ' -

a
we have Qs_a wherefore s=— 9

Whenhtwo figures are repeated, as ab, we Have
s==0abababa.  Therefore 100s=ab-abapab ; and

only when the same remainder » returns in the continual division.

Suppose that when this happens we have added s cyphers, and that .
g is the integral part of the quotient; then abstracting from -the

point, we shall have z );10

Now as ¢ must be an integer number, it is required to determine

the least mteger number for s, such that x (10°— 1) or only

10°—1 . : ’ .
7> may be an integer number, -

~ This problem requires séveral casesto be distiilgu'ished: the first

’=q+3; -wberefére'qzﬁ x (10°—1).

is that in which d is a divisor of 10, or of 100, or of 1000, &c. - ,

and it is evident that in this case there can be no cn'culatmv frac-
tion. “For the second case we shall take that in which dis an odd
number,” and not a factor of .any power of 1Q; .in this case the.

v;lue of s may rise to d— 1, but frequently it is less. A third case
isthat in which d is even, and consequently, without being a facter -

of any power of 10, has nevertheless a common divisor with one of
those powers: thls commondmsor can only be a number of the form

, -

2¢ ;-s0 that if §5=c’ I say, the period will be the same as for the

fraction 2, but will not commenrce before the 'ﬁgure‘represented
e ‘ : :

- by c. This case comes to the same therefore with the second
case, on which it is evident the theory depends. F.-T. See Ap-
pendlx, note 3.

-

1

R

~
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if we. subtract s from lt, there remmhs 990....ab

' consequently, s=— —é

"+ When three ﬁgureg, as abc, are found repea;ed,
we have s==0°abcabcabc; consequently, 1000s=

abc-abcabe ; and subtract s from it, there remains

999s==abc ; wherefore 's'—y; o and so on.

" Whenever, therefore, a decimal fraction of. this kind

occurs, it is easy to find its value. -Let there be

given, for exainple, 0 296"96 its value will be

296__ 8.
999 97’ " by dWldmg both 1ts terms by 37.

© This fraction. ought to give again the dechnal
© fraction’ proposed and we may eaSlly be eonvinced
. that this i is. the real result, by dividing 8 by 9, and
then that quotlent by 3, because 27=38%9: thus.

" we have.
9) S'OQOOOOO

3) 0-8888888

02962964, &c.
which is the decimal fraction that was proposed.
539. Suppose it was required to reduce the fraction
= 1
IXLXIXAXSIKOXKTXEXIX 10
The operation is as follows: _
- 9) 1°00000000000000. * .

to a decimal.

3) 0°50000000000000
~ 4) 0:16666666666666
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. 5)004166666666666 - -

6) 0°00833333333333 -

© 7) 0°00138888388588

. 8)0°00019841269841

9) 0°00002480158730

10) 0°00000275573192

0°00000027557319.

|

CHAP. XIII.

Of the Calculation of Interest *.

~ 540. We are accustomed to express the interest
of any principal by per cents., signifying how much .

* The thedry of the calculation of interest qwes its first improve- . .
ments to Leibneitz, who delivered the principal elements of it in the -

. Acta Eruditorum of Leipsic for 1683. It was afterwards the sub- |
ject of several detached dissertations written in a very interesting
manner. It has been most indebted to those mathematicians who -
have cultivated political arithmetic ; in which are combined,in a .
manner truly useful, the calculation of probabilities, the calcu-
Jation of interest, and the data farnished by the bills of mortality,
We are still in want of a good elementary treatise of political .
arithmetic, though this extensive branch of science has been much
attended to in England, France, and Holland. F.T.

¢
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interest is annually. paid for the sum of 100 pounds,
And it is very usualto put out the principal sum at5.
per cent., that is, on such terms, that we receive 5
pounds interest for every 100 pounds principal:
nothing therefore is more easy than to calculate the
interest for any sum; for we have only to say, ac-
cording to the rule of three :

As 100 is to the prmclpal proposed so is the rate
per cent. to the interest required. Let the prmc1pal
for example, be’860L., its annual interest is found
by this proportion ; ,

As100 : 860 ~: 5 : 43..
Therefore 43/. is the’ intérest reqnired.

. 541. We shall not dwell any longer on examples of

s:mple interest, but pass on immediately to the calcu-
lation of compound interest ; where the chief subject
~ of enquiry is, to ‘hat sum does a given principal
amount, after a certain number of years, the interest
being annually added to the principal? In order to
resolve this question, we. begin with the conmderatlon,
that 100l placed out at 5 per cent. become, at the
end of a year, a principal of 105/. : therefore let the
principal be &; its amount, at the end of the year,
will be found, by saymg, as 100 is toa, so is 105
to the answer, which gives -

105¢__ 2la 21 :
— = =a+—Xa.
- 1007 20 201 + 0% '
542. So that, when we, add to the ongma‘l prin-
cipal its twentieth part, we obtain the amount of
_ the principal at the end of the first- year and add-
mg to this 1ts twentleth paAt we know the amount




CHAP.13. ~ OF ALGEBRA. 257

of the gnven principal at the end of two years, and
so on. It is easy, therefore, to compute the suc-
cessive and annual increases of the principal, and to
continue this calculation to any length.

543. Suppose, for example that a principal, which’
is‘at present 1000/, is put out at five per cent. and
that the interest'is added every year to the principal;
to find its amount at any time. As this calculation
must lead to fractions, we shall employ decimals, but
without carrying them farther than the thousandth

parts of a pound, since smaller parts do not at pre-

" sent enter into consideration.
"The glven principal of 1000/ will be worth

after 1 year - - - 1050.
o 54°5,
K after 2 years - - - 11025
' o 55125,
after $years - -.- 1157625
. 57-881,
after 4 years - - - 1215506
- 60775, -

after 5 years - - - 1276-281, &ec. .
which sums are formed by always addmg 31; of the
. preceding principal.

'544. We may continue the same method, for any-
. number of years; but when this number is very
great, the calculation becomes long and tedious; but
it may always be abridged, in the following man-
ner:

Let the present pnncnpal be &, and. sinee a prm-.
VOL. L. . R )
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_cipal of 0., amounts to 211, at ﬂle end of a year, the

principal @ will amount to %bl- a at the end of a -
- year: and the same principal will amount, the follow-
31

20°°
- of two years will amount to ( ) a, the year after:

. 21,* Ce
ing year, to a=(—) .a: also, this principal

' whu;h will therefore be the pnnclpal of three years;
and still increasing in the samne manner, the given

' +
‘principal will amount 'to (‘271))".’ at the end of four

P N s .
years; to (—g—l-) .a, at the end of five years; and after

,

a century, it will amount to (——) a; so that, in -

general, (-—) a w111 be the amount of this prin-

cipal, after » years; afnd this formula will serve to
deterimine the amount of the pnnclpal after any
number of yedrs. .

© 545. The fractlon‘-Z—(l), which is used in this calcu-
lation, depeads on the interest having been reckoned

1 .
at 5 per cent., and on bemg equal to -1%3 Bit

if the mterest_were estlmabed at 6 per-cent. thie prig~

cipel @ would amount to %%—g . a, at the end of a
106y o s '

year; to (.1%0) . a, ‘at the‘ end of two years; and to
106"

700 ° a, “at the end oti n ygars :
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If the’ mterest is only at 4? per cent the
n

principal @ will amount only to (———) . a, after #

years.

546. Now when the prmclpal a, as well as the -
number of years, is given, it is easy to resolve these
formule by logarithms. - For if the question be. acs
cording to our first supposition, we shall take the

logarithm of (3)" a, which is=log, (%) "+ &g
because the giveri formula is the produet: of B

‘(21) and 4. Also, as (——-) is a" pow‘ér,-vl'e' shall
llave log. §5) =n' log. 56: so that ’the"logar'vlthm
of the principal"fequired is 2 log.. Q—I--I- log.a; and far-

ther, the logarlthm of the fracnon -Z—-— log. 21--

- log. 20.

- 547. Let now the pnmnpal be 1000.. and let it be
required to find how much this principal will amount
to at the end of 100 years, reckonmg the interest at -
5 per cent.

- Here we haven=100; and consequently, the lo-
garithm of the princlpal requmad will be 100 log. -—+ ,

log. 1000, which quantity is calculated thus

. log. 21==13222193
" subtracting log. 20=1" 3010300

log. 2—0~_—o-02 1 1.393
- se
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» xhultiplying by 100

100 log. :l—-z 1189300

adding log. 1000 = 3:0000000

- gives ' 51189300 which is the lo-
garithm of the principal required.

We perceive, from the characteristic of this loga
 rithm, that the principal required will be a number
consnstmg of six figures, and it is found to be
131501/

548. Again, suppose a principal of 3452/ was
put out at 6 per cent., what will it amount to at the
end of 64 years?

We have here a= 345'2 and n=64. Wherefore
the loganthm of the principal sought is

64 log +log 3452, which is calcula.te'd thus

. log. 53=1.7242759
subtracting log. 50 =1. 6989700

g —-—-o 0253059 -
multlplymg by 64

64 log. E= 16195776
log. 3452 = 135380708

-which gives - 5°1576484.
And taking the number of this logarithm, we
, find the principal required equal to 143763

- 549. When the number of years.is very great, as
it is required to multiply this number by the loga-
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rithm of a fraction, a considerable error might arise - .

from the logarithms in the tables not being calculated
beyond 7 figures of decimals; for which reason, it
will be necessary to employ logarithms carried to a
greater number of figures, as in the following example.
A principal of 1. being placed at 5 per cent., com-
pound interest, for 500 years, it is required to find
to what sum this principal will amount, at the end of
- that period. :
Wehave here =1 and #==500; and consequently
the loganthm of the principal sought is equal.to 500 -

: log: +lo«r 1, which produces this calculatlon ;

log. 21=13222 19294733919
‘subtracting log. 20=1-301029995663981

log. §;=o~021189299069933 .
multiply by 500

500 Iog 5 O_. 10 5946495 34-969000

Which is, therefore, the loganthm of the principal
required, and will be found to correspond to
39323200000!. '

550. If we not only add the interest annually
to the principal, but also increase it every year by
_ - a new sum &, the original principal which we call g,
- would increase each year m the followxng manner :

after 1, year, —a+b \ S .

after 2 years, ( a+%—b+ b,

2
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 after 3 years, (z ) a+ (—) b+—b+6, T |
_after 4 ye'ars,' (gl) a+( ) ( ) b+ b+b
after n years, (—) a+( ) b-ll-( ) b+ 13, &c

_This principal consists, &s is evident, of two parts
of which tbe first is (-2—1)“a; and the other, taken in-

versefy, forms the series 6+ b+( ) b+ (21) b+

( ) b whxch series is ev1dently a geome- -
trical progressnon, the ratio of which is equal to

Z 0’ and we shall therefore find 1ts sum, by first mul-
. t:plymc the last term (—) Y’ by the exponent 2.
which gives (—) "6 then, subtracting the first term -

*. b, there remains (-—-—) b—5; and, lastly, dividing by
. the exponent minus 1, that is to say by & }&e shall

ﬁnd the sum required to be 20(-2—) b— 201) ‘there»
" fore the pmmpal sought i, ( ):a+30(.—é—6). b—806
=)+ (a+20b)-—206

551. The resolution of this formuh requn‘es us to
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calculate, separatély, its first term (@-)"x(d-q-ﬁo?;), )

.which is nlog +log (a+4-200); for the number

which answers to this logarithm in the tables, will bé
. the first term ;- and if from this we subtract 2056, we
. shall have the principal sought.
552. A persorrhas a principal of 1000/. placed out
" at five per cent., compound interest, to which headds
annually 100/. beside the interest: what will be the
amount of this principal at the end of twenty-ﬁve
years ?
We have here a——IOOO b=100; n_25 the
operation is therefore as follows:

log. -1=o 021 189299 ,

Multiplying by 25 we have
25 log. %’i —0-5297324750
lag. (a+206)=3'4771913135

And the sum=4 0068537885.

So that the first part, or the number which answers
to this. logarithm, is 10159'1, and if we subtract
205==2000, we find that the prineipel in question,
after twenty-five years, will amount to 8159°1/

$53. Since then this principal of 1000/, is always
increasing, and after twenty-ﬁve years ainounts to
815912 we may require, in how many years it wnll

amount to 1000000/

‘ lxt n be the number of years reqmred and, sincé

L]
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- - a=1000, b= 100, the principal will be,. at the end -

of n years ;
( ) (3000)—2000, which sum must make
1000000 ; from it therefore results thxs equation;
© 3000 (20 fzom—xoooooo,
And adding 2000 to both sides, we have
3000 ( ) =1002000

Then dnvxdmg both sides by 3000, we have ( )

=334.

And taking the logarithms, n/og. -:T‘) = log. 334;
S § L
Then dividing by log. 20 e obtain ”—Eg_.%T'
Now log. 334==2'5237465, andlog 20 =00211893;

£5237465
0°0211893’
the two terms of this fraction by 10000000, we shall

__ 25287465 .
211893’ =19 years, 1 month, 7 days;
and this is the time, in which the punclpal of 10001

" therefore n= and if, lastly, we multiply

have n—=

. will be'increased to 1000000/.

554. But if we supposed that a person, instead of

log. 334 .

, annually increasing his principal by -a certain fixed -

sum, diminished it, by spending a certain sum every’

'year, we should have the following gradations, as the
values of that principal 4, year after year, supposing
it put out at 5 per cent., compound interest, and re-
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. presentmg the sum which is anpually taken from it
by &4:

after 1 year, it would be —-a—b

'

after 2 years, ( ) d———b—b, ' .

213
20)

.vafter n years, (—) a— ( ) b—(—) bot..

after S'years, (== a-—( )b—ﬁb;b,

21
- %)b— b. _
- 555. This principal consists of two parts one of
[
which is (= 2(])) . a, and the other, which must be sub-

tracted from it, taking the terms inversely, forms the
followmg geometncal progn ession +

P L PRy

Now we have already found that ‘the sum of this
.progressioh is 2(}(3'—(13)1l b— 20b ; if, therefore, we
subtract this quantit'y'from (ﬂ)na, we shall havle‘
, for the principal requlred after n years, ‘
| ( ) (a—208)-+20b.

556. We might have also deduced this formula - .
immedidtely from that of Art. 550. For, in the
‘Same manner as we annually added the sum b, in
the former supposition ; so, in the present, we sub- -
tract the same sum b every year. We have there. -
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fore only to put in_the former formula, b every
where instead of 4. But it must -here be par-
ticularly remarked, that if 206 is greater than g,
the ‘first part becomes negative, and ‘consequently,
-the princip'al will continually diminish, and this will be
easily perceived ; for if we annually take away
from the prmcxpal more than is added to it_by the
interest, it is evident that this principal must con-
tmually become less, and at last must be absolutely
rediced to nothing; as will appear from the fol-
: lowmg example :.

557. A person puts out a prmc1pal of 100000L
at 5 per cent. interest; but he spends annually
6000L.. ;. which is more than the interest of his
principal, the latter being only 5000/ ; con-
sequently, the principal will contmually dxmlmsh

. and it is required - to détermine, in what time it will
. be all spent? Let us suppose the number of years -
40 be n, and since 2==100000 and b=6000, we
know that after n years the amount of the prmclpal
- will be E

zoooo( ) +1zoooo or 120000—20000(
- Se that the ‘principal will ‘become nothmg,

, when 20000(——) amounts to 120000 or when

21,"
20

. . Q ‘n . .
by 20000, we have“(—é%) ==6; and taking the loga-

zoooo( ) ._.120000. _Now dividing both sides

rithm, we have nlog. Si==hg. 6 then dividing by




CHAP.13. .- OF ALGEBRA. 267

_lg.6 07781513,
“log. ¥ o= 0211893’

consequently, #== 36 years,” 8 months, 22 days; at

. the end of which time, no part of the prmcq)al will,

remain.

- 558. It will here be proper also to show how,
from the same principles, we m!i;y calculate interest

- for times shorter than whole years; for this purpose

| log g(l), we havens=

we make use of the formula (-:%)ﬂ.v‘a ‘already found,

which expresses the'amount of a principal, at 5 pet

cent.,, compound interest, at the end of » years; for
if the time be less than a year, the exponent s be-

comes a fraction, and the calculation is performed by .

logarithms as before. If, for example, the amount
of a principal at the end of one day. were reqmred
we should make #=—=-r— 36 = If after two days,
and s0.on.

Suppose, for example, the amount of 100000! for
8 days were required, the interest bemg at 5 per cent.

" Here 2=100000, and "=§'§g’ consequently the

principal sought is (?-l)ThX 1(50000; the logarithm

of Whlch quantity is Iog ( )Th + log. 100000=
365log 21+Iog 100000. Nowlog —-——o 0211893,

which, multlphed by —— 3 65’ gives 0° 0004644 to whnch
adding log. 100000= 50000000

B ———

. the sum 1§ , 5°0004644.
- and the natural number of this logarithm is found to

.

365” ,

“ -
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be 100107. So that, in the first elght days, the j mterest
of the principal is 1074

560. To this subject belong also the questions for
calculatmg the present value of a sum of money,

"~ which is payable only after a term of years. For as
» 20L, in ready money, amounts to 21/ in a year;

so reciprocally, ‘a sum of 21/, which cannot be re-
ceived till the end of one year, is really worth only
20/. If, therefore, we express, by a, a sum whose
payment'is due at the end of a year, the present value

" of this sum is 20, s and therefore to find the present

-

21 : ,
worth of a principal a, payable a year hence, we must

o mqlt_;iply it by -:—%; to find its value two yeafs before

. . 2
the time of payment, we multiply it by (g-(-l)) a; and

- in gerieral, its value, n years before the time of pay-

ment, will be expressed by (gg)na.v' '

- 561. Suppose, for example, a man has to receive
for five successive years, an annual rent of 100/.
and that he wishes to give it up for ready money,
the interest being at 5 per cent. ; it is required to
find how much he is to receive. Here. the cal-
culations may be made in the following manner :

For 100/, due '

after 1 year, he receives 95 239

, after 2 years - - - - - - - 90704
after 3 years «------ 86'385
after 4 years « - ----. 82272
after 5 years « - - - - - - 78355

Sum of the 5 terms=432:955 .
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So that the possessor of the rext can claim, in ready
money, only 432:955/. :

562. If such a rent were to last a greater number
of years, the. calculation, in the manner we have per-
formed it, would become very tedious; but in that
case it may be facilitated as follows: 2

- Let the annual rent be ¢, commencing at ‘present
and 1asting n years, it will be actually worth

at+ G+ (5] 0+ (E) 0+ E) e £ G))

Which is a geometrical progression, and the wholeis

* reduced to finding its sum. We' therefore multiply
the last term by the exponent, the product of which

is ( ) a ; then, subtra.ctmg the first term, there -
remains (-2—1) 4—a ; and lastly, dividing by.theexpo-

nent minus 1, that is, by —-2—li,' or, which amounts -
" to the same, multiplying by —21, we shall have the
sum reqmred, :
. ’* n+ .
—2l (_ .a +21a, or, 21a—21. (-— .a;

' and the value of the second term, which it is required
to subtract, is easily calculated by logarithms.
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" SECTION IV.

Of Algebraic Equations, and of the Resolution of
- those Equations.
. CHAP. L

OF the Solution qf Problems in general.

563. The prmcnpal object of Algebra, as well as
of all the other branches of the Mathematlcs, is to

. determine the value of quantities which were before

- unknown ; and this is obtained by considering atten- -

2

" tively the conditions given, which are always ex-

pressed in known numbers: for which reason Alge-
brd:has been defined, The science which teaches how

1o determine unknown quantities by means of thom
that are known.

564. The above definition agrees with all that has
been hitherto laid down: we bave always seen that

. the knowledge of certain’ quantities lead to that of

other quantities, which before might have been con-

" sidered as unknown.

Of this, Addition will readily furnish an examiple;
for, in order to find the sum of two or more given
numbers, we had to seek for an unknown number
which should be equal to those known numbers. taken
together. And in Subtmctlon, we sought for a num-

ber which should be equal to- thie difference of two

~
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known numbers. And a multltude of other exam.
ples are presented by multiplication, division, the in-
~ volution of powers, and the-extraction of roots; the
question being always reduced to finding, by means
of known quantities, other quantities which are un-» :
known. :
565. In the last sectlon, also, different questions
were resolved, in which it was required to determine
. a number that could not be deduced from the know-
ledge of other given numbers, except under certain

~‘conditions. Yet all those questions were reduced to . -

finding, by the aid of some given numbers, a new.
number which should have a certain connexion with
them; and this connexion was determined by certain
conditions, or properties, Whlch were to agree with .
the quantity sought.

566. In Algebra, when we have a question to re~
solve, we represent the number sought by one of the
last letters of the alphabet, and theh consider in what
manner-the given conditions can form an.equality
between two duantities; which equality is repre-
sented by & kind of formula, called an eguation, that
~ enables us finally to determine the value of the num-
ber sought, and consequently to resolve the question.
Sometimes several numbers are sought ; but they are
found in the same manner by equations.

567. Let us endeavour to explain this farther by
an example ; by supposing that the following questwn,
or problem, was proposed :

Twenty persons, men and wemen, dine at a ta-
vern; the share of the reckomng for one man is 8
shillings, for one woman is 7 shillings; and the whole
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- reckoning 7/ 5s.: required the number of men and
women separately? .

In order to resolve this question, let us suppose
that. the number of men is »; and, considering this
number as known, we shall proceed in the same man-

“ner as if we wished to try whether it corresponded .
with the conditions of the question. Now the num-
ber of men being z, and the men and women making
together twenty persons, it is easy to determine the
number of the women, having only to subtract that
of the men from 20, that is to say,  the number of
women is 20— 7.

But each man spends 8 shillings ; therefore + men
must spend 8 shillings.
And, since each woman spends 7 shillings, 20—

_ women must spend 140— 7.2 shillings.
- So that adding together 8+ and 140—7x, we see
that the whole 20 persons must spend 140+ shil-.
liigs. And we know already how much they haye
. spent; pamely; 7/. 5s. or 1455.; there mtust be an
equality, thetefore, between 140+ and 145; that.

.18 to say, we have the. equation 140+.r=145, and
thence we easily deduce #==5, and consequently
20-—1'—20—5_15, so that .the company con-
sisted of 5 men and 15 women.

568. Agaln, suppose twenty persons, men and
women, go to a tavern ; the men spend 24 shlllmgb, '
and the women as much; butit is found that the men
have spent 1 shilling each more than the women.
"Required the number of men and women separatgly? -

Let the number of men be represented by @

Then the women will be 20—
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Now the = men - havmg spent 24 shlllings, the
share of each man is —2‘-; ‘also the 20—z women hav-

ing also spent 24 shllhngs, the share of eath woman
- 24
is

20—

But we know that the share of each woman is one
shilling less than that of each man; if, therefore, we
subtract 1 from the share of a man, we must obtain

that of a woman ; and consequently 2= - Og 4

‘This, therefore, is the equation from whncli we are to .

deduce the value of - ; which value is not found' with-
the same ease as in the preceding question; but we
shall afterwards see that w==8, which value corre-
sponds’ to the equation; for 2;—4-'1 =_z;% includes
the equahty 2=2.

569. It is evident therefore how essential it is, in
all problems, to consider the circumstances of the
question attentively, in order to deduce from it ‘an
equation that shall express by letters the numbers -
sought, or unknown. ~ After that, the whole art con<
sists in resolving those equations, or deriving from
them the values of the unknown numbers; and this
shall be the sabject of the present section.

570. We must remark, in the first place, the dx-
versity which subsists:among the questions them-
selves.” In some, we seek only for one unknown
quantity ; in others, we have to find- two, or more;
aund, it is to be observed, with regard to this last case,
that in order to determine them all, we must deduce
from the circumstances, or the conditions of the pro-
. YOL. L o T
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" blem, as many equations’ as there are unknown
quantltles

571. .1t must have ah'eady been percelved that an
equation €onsists of two parts separated by the sign
of equality, =, to show that those two quantities are
equal to one another; and we are often obliged to
perform a great number of transformations on those
two parts, in order to deduce from them the value of
the unknown quantity; but these. transformations
must be all founded on the following principles:
That two equal quantities remain equal, whether we
* add to thew, or subtract from them, equal quantities ;
~ whether we. multiply them, or divide them, by the .

 same number, whether we raise them both to the

sawe power, or extract theit roots of the same de-
gree; or last]y, if we-take the logarlthms of those
quantities, as we have already done in the precedm«
sectlon :

572, The. equatians: whichi' are most. easily re-
galved are those in which the unknown quantity does
not exceed the first pawer, after .the terms of the
equation have been properly arranged ; and these are
_called simple equations, or-equations of the first de-
gree. But if, after-having reduced an equation, we
find in it the square, or the second power, of the un-

* . known quantity, it is called an'equatios of the second

degree, which' is mere difficult to resolve. :Egia-
tions of the third degres are those which-contain the
‘cube of the,unknown quantity, and so on; all of -
which, we shall treat of inthe present sectl_on,
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U &HAP. 1L -

. 'Of the Resoluﬁm of S'imple Equations, oy Equatiom
: “of the First Degree.

573. When the number somrh& or the unknéw
quastity, is represented by the letter 2, and. the
equation: we have obtained is such, that one side
contains. only that ; ard the other simply’ a known -
namber, as; for example; #==25, the valoe of 2 s
- already known: we must always endeavour, there-
“fore, to amve at such a fOrm, however comphcated
"the equation thay be when first obtained,s-aidd; in
the course.bf this section, the rules shall be explametl
whidh derve to facilitats: tirese reduttions. .:

574. Let us' begin With the simplest cases, and
suppose, first, that we have arrived at the equation
r4-9g==165 here we see immediately thata=A7:
and, in general, if  we have found #-:a==J, whera -

a and b express any keéswn niimbers, vwe havé only ta .
subtract a. ﬁ:om both ‘sides, to obtain tbe equat_xon '
" x=b—a, which *indicates the valué of z. '

576 3 webad the equation; v a=-+b, we-must ddd.
a to beth sises, .and obitain the valite of w==x? Ha ;
and weagust proseed in.the@anre' maniier; if the eqha- -
tion has this form, v—eet 1 ftt we:shalt bave
unmedlatel r=ad +a+1 R

Iu the equatlon t-—Sa-‘-QO—6a, 'we ﬁnd

.. w5t 20 +-BurkBa; o .r::n%+2(i
And in this, r+4-6a=20+ 34, we have.
R .z=9.0+aa-a6'a, orxzxao—'sa.
: : T2
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576 If the original equation has this form,
x—a+b==c, we may begin by adding @ to both
sides, which-will give od-b==c+a; and then sub-
tracting b from both sides, we shall find r=c+a—b:

" but we might also add 4-a—5 at once to both sides;
and thus obtain immediately ==c+a—b.

So likewise in the following examples :

If +—2a4-8b==0, we have r=2a—3b. .
 If r—3a+2b==25+a+2b, we have r—=25 +4a

If #~9+46a==25+24, we have 2=384—4a.

. 577. When the given equation has the form
a.z'=b we only divide the two sides by a, to ab-

tain .z'-- " But if the equation has the form

az +b—c_d, we must first make the terms that
_accompany ax vanish, by addingto both sides —b4-c; .
. and then dividing the new equation ar=d—b--¢ bya,

by which is obtained .r_d’-b"'c

- . And the same value of 2 would have been found
' by subtracting 4-6—c from the given equation ; that
is, we should have had, in the same fom),

__d—b-l-c, and o= d— 2+c

. Hence, ' 7
If 2@ +5._..I7, wehave anlﬂ md r=6.
-~ If 30—=8=7, we have' 3a=15, and 2==5.
, If 4v—5—3a=15+49a, we have 4.r==20+19a,
and consequently »==5+4-3a.

578. When the first equation has the form - _b
we multiply both sides by 4, in order to have .r....ab
But if jt is %-}-.bf—c‘::d, we must first make
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--—d—-b+c, after wluch we find
(da-&-i-c) a_ad—ab+ac
Let —2-.1_'—3':4-, then -2-.r=7, ahd r=14.

Let %.r—,l+2a=3+d, the :—;x=4— a,»h and
r=12=~30a..

Let _i_— ;:..--a, then ﬁ=a+l, and
.z'—-a’—- 1. .

579. When we have arrived at such an equatlon
as a—}:c, we first multiply by b, in qrdgr to have
ar==bc, and then dividing by 4, we find == %ca

If 2 c=d, we begin by giving the equation this .

b
form i‘;:d+c, after which, we obtain the value of
az'-—bd+6c, and then that of .r‘—bd"'bc .

Let §~r—4= 1, then 2 3= 5, and 2r= 15;
15 1
whence .r——z—- —72.
If 2.r+l=5 we have —3w=5- -l—=2- whernce.

4 2 g

Sr= 18 and r=6.

580. Let us now consider the case, which may
frequently occur, that is, in which two or more terms
contain the letter 7, either on one side of the equa-

tion or on both.
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. If those terms are all on the same mde, asin the ,

‘equation .r+—.r+5_ll .we have .r+ F= 6 or

3.z'=12, and lastly, r=4. . P )

Let .z'+ z'+ r=44, be an equatlon, ip which
the value of ris reqmred if we first multiply by 3,
~ we have 4.z'+§.r= 132; then multlplymg by 2, we

have 112=264; wherefore 7=24. We might have
proceeded in a more concise manner, by beginning
with the reduction of the three terms which contain «

to the single term lél—x ; and then dividing the equa-

tion 16}—.1"=44 by 11: this would have given é.t'=4,

wbmefoye .r....24. . -
2 3 5
, Letgt —Etr+ .z'—l thcn,by reductlon, -I—\z-—-l :
2
d  y— _~_ .
\au =2 3 ‘

And generally, let ar—by+4cr=d; whlch is the
sahe- a3 (@ —b & €)resd, - whence we vderive
d : ; )
~a—b+c - : ,
581 When there are- tprm; conta.mmg Z on both .
sxdes of the equation, wé begm by making such terms
vanish from that side from which it is aminst easily ex»
panged ; shat ds_to ‘say,i Eiwhich ‘there. are fewest
. temssdmvo}vcd Vo ab b5 VA
v 1f "we have, for* esample, the equation 32
r+10, we. must first subtract z from-both sides,

l(.
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which g;ves 2v+2=10; wherefox’e 2.r—-8 and
r=4.
Let x’+4-—-20-—w, here it is evident that

2r+4=20; and consequently 2r==16, and r==8." . |

Let x48=32—3x, this gives us 4r+48=32; =
or 4r—24, whence r=6. . '

Let 15~2=20—2r, here we shall have
154r=20,. and x==5,

Let 1+x=5—é.z-, which becomes l+13- .r=5,

or —:-.r ==4; therefore 327=8; and lastly, 2= .._,-—2-

1 1 1 .y o
If -2--§w=§-z.r, we must add -éw,\jvhxch glves
1_1 1 .1 .
§_§+1—§m,’ su’btractmg 3 and transposing the
- terms, tifere remains -l—lévz-_%, then multiplying by
12, we obtain r=2.
If 1-;—-—-§»v=-l-+l.r, we add -9-‘.2', which -gives

+ 61', then subtractmg . and transposmg

15
14

1

1
we h =1-, vhence we deducez'-'- —_—
e have, 6” 1 w 1 Vi

" by multiplying by 6 and dlvxdmg by 7.

582. If we have an equation in which the unknown
number 2 is a denominator, we must make the frac-
tion' vanish by multlplymg the whole equatlon by that
denommator '

Suppose that we have found 72 -8 =l2, then,
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addingj 8, we have L.9-=:20; aﬁd'mulﬁplyihg bys,
it becomes 100=20x; lastly, dmdmg by 20 we

find r=35. .

Let now 5:+

=17 ;. here multlplymg by z—1,

we have 50+43="7r—7; and subtracting 5, there
remains 3=2r—7; then adding 7, we have 20==10;

- whence r=235.

"-583.. Sometimes, also, radical signs are found in
equations of the first degree. For example: a num-
ber x below 100 is required, such, that the square
root of 100— . may be equalto 8, or /(100—x)=8;
the square of both sides will give 100—2 =64, and
addmg 2, we have 100==64+z; whence again

" Or, since 100—1_64 we might have subtracted
100 from both sides; which would give —r=—36;
~ or, multiplying by —1, r==36.

. 584. Lastly, the unknown number z is sometimes
found in the exponent, of which we have already seen
some examples; and, in this case, we must have re.
course to logarithms. :

Thus, when we bave 27=512, we take the loga-
rithms' of both sides; whence we obtain
wlog.2=log. 512 ; and dmdmg by Iog 2, we find

. log.512
r= =lge The tables then give,

27092700 _ 270927 or 2=09
T0°3010300° 30103’ "

Let 5)(3 ~—100=305, we add 100, wlnch gives
,5)(3 --405 dividing by 5, we have 3" =38l ;
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and taking the logarithms, 2 log. 3=1log.81, then |
& dmdmg by 2log. 3 we have .z-—;ogfl‘ or ==

1°9084850 19084850
09542425 9542425

' whence ==

’ .

CHAP. IIL

Of the Solution of Questions relating to the pre-
cedmg Chapter.

585. Questzon 1. To, divide 7 into two such parts
that the greater may exceed the less by 3. '

Let the ‘greater part be , then the less will be
" 7—x; so that y=7—2+3, or 2==10—r; add-
ing z, we have 22=10; and dividing by 2, the re- -
sultis 2==35.

The two parts therefore are 5 and 2.

Question 2. It is required to divide a into two '

parts, so that the greater may exceed the less
by &.

Let the greater part be 2, then the other will be
a—z; so that r—a-.z'+b, adding 2z, we have
Qr=a+b; -and dividing by ¢, r-..—}é
* Or tﬁe. same may otherwise be done thus: let the
greater part be x; which as it exceeds the less by 5,
it is evident that this is less than the other by 4, and
therefore must be z—b. Now these two parts,

-
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- taken together, ought to make a; so that Qr—~b=aq;
adding b, we have 2r==a+-b, wherefore ;z':.:f-;-é,
" which is the value of the greater part; and that of the
less will be —— +b or _a_-_i-_b__gb_, or (E—-—b.
2 2 2 g
'586. Question 3. A father leaves 1600 pounds
to be divided among his three sons in the following -
.- manner; viz. the eldest is to have 200 pounds more
than the second, and the second: 100 pounds more -
than ‘the youngest. Required the share of each?
« Let the share of the third son be » -
Then the second will be - - - - #4100
The first son’s share’ - - - - - 24300
Now these three sums make up together 16001
we have, therefoie,
3 r+400—' 1600
30=1200
; and v= 400
The share of the youngest is 400/.
That of the second is - - - 500/,
That of the eldest is - - - 700/,
587.- "Question 4. A father leaves to his four
sons 8600/. and, according to the will, the share of
~ the eldest is to be double that of the second, minus
~ 100/.; the second is to receive three times as much
~ as the third; minus 2001 ; and the thirdis to receive
. four times as much as the fourth, minus 300/. What
are the respective portions of these four sons? '
Call the youngest son’s share @
Then the third son’s is - - 42—300
The second son’s is - - - - 122—1100
And the eldest’s - - - - « - 942—2300
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And the sum of these four sharés must make 8600%
we have, therefore, 41— 3700=8600, -or
T 41r==12300, and 1 =300.
Therefore the youngest’s share is 3001
The third son’s = - - - =~ = = = QOOL
The second’ ~ - - = - - - . - - 2500 -
‘ Theeldest-~-—------‘-4gool )
588. Question 5. A man leaves 11000 crowns
to be divided between his widow, two sons, and three '
daughters ; and he intends that the mather should
' receive twice the share of a son, and each son to re-
ceive twice as much as-a daughter. Required how
much each of them is to recelve ?
. Suppose the share of each daughter to be
Then. each son’s is consequently ----
And the widaw’s == - - - - - - - - . 4r
The sum of which gives 112==11000, and 1_1000
Each daughter 1000 crowns ;
So that tbethree receive in all 3000
Each son receives 2000 ; c
So that the two sons receive - 4000 -
And the mother receives - - 4000

e p——— v

Sum 11000 crowps.

589. Question 6. A father intends by his will,
that his three sons should share his praperty in the
following manner: the ‘eldest is to reccive 1000
¢rqwns less than half the whole fortune ; the second
is to receive 8§00 crowns less than the third of the
whaole. praperty; and the.third ig to have 600 erowns
less than the fourth of the property. Required the
sumn of the whole fortune, and the portlon of eacb .
son?
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Let the fortune be expressed by 2:
The share of the ﬁrst son is é.r—.lOOO

‘That of the second « - - %x—"soo
That of the third -- - - i.z"-GOO.
‘So'that the three sons receive in all

;1'+%¢'+ér—9400, and this sum must be equal to
r; wehave, therefore, the equation -}%.r— 2400=xr;
and subtracting &, there remains Tlg"r — 2400=0;

. also adding 2400, we have —1-15.r=2400; and lastly

multiplying by 12, we obtain £==28800.
" The fortune therefore consists of 28800 crowns,

and
The eldest of the sons receives 13400 crowns
Thesecond - - - - - 8800
The youngest - - - - - 6600

28800 crowns.

590. Question7. A father leaves four sons,
who share his property in the following manner : the
first takes the half of the fortune, minus 3000/ ; the
second takes the third, minus 1000Z ; the third takes
exactly the fourth of the property; and the fourth
takes 600l and the fifth part of the property. What
was the whole fortune, and how much did each son

. recelve ?
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Let the whole fortune be represented by x :
Then the eldest of the sous will have %.r- 3000

Thesecond - - - < - - - %.r—lOQO

Thethird-,g---..--.‘i,

'Ihe youngest C e e e - %i+606.

.

And the four will have received in all é.r-{-%lr-l—

i.r -,I-%-.r-— 3400, which must be equal tox. -

6

subtracting x, we have -é—g-.r- 3400==0 ; adding 3400
17

we obtain %3#3400; dividix{g by 17, we have

§16‘2=200’ and multiplying by 60, gives ==12000.

Whence results the equation Z%x-— 3400=2r; thex

The fortune therefore (\:onsisteﬁ of 120007
' The first son received 3000
The second - - - 3000
The third - - - - 8000
The fourth” - -. - 3000
591. Question 8. To find a number such, that
if we add to it its half, the sum exceeds 60 by as
much as the number itself is less than 65,
Let the number be represented by & -

Then .z'+%.r—60=65-z', or gx—.-60=-65-.-.r.



.\'6,

o6 - xma'mﬂrs« . sEcr.vL
Now by addmg z, we have §.r - 60-65 ; addmg

60, we have %v— 125; dmdmg by 5, glves .z=25

" and multiplying by 2, we have =50.
Consequently the number soughtis 50.
 592. Question 9. To divide 32 into two such -
parts, that if the less be divided by 6, and the greater
by 5, the two quotients taken together may make 6.
. Let.the less of the two parts sought be &' the
greater will be 32— the first, divided by 6, glves

the secend, divided by 5, gives: -3-5"-5—~ how,

.1'321’
6+

==6: 80 that multlplymg by 5, we have

§m+32—~1_~30 or —-—-.z'+ 32"—30 addmg -1',

we have 32= 30 +5 x;. vSubtracting-. 30‘ tﬁeté re:

maing 2—-66', and. lastly, mulmiymg by 6, we

have r==12. " .7 - s "

" So that the less partls 12, and the greater part is 20. .
593. Question 10. To find such a numiber that if

" multiplied by 5, the product shall be as, much less

than 40 as the number itself is less than 12.

Let. the number. be x; which is less than-18" by
13—a ; then taking the nymber & five times, we bave -
5x, which is less than 40 by 4;0--5«*, aud this; quan-
tity must be equal fo 12—z, . = . ;

+ We have therefore 40—352=12—';, addmg 51',
we have 40_._ 12442 and subtracting 12, we ob-
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tain 28—4x;’ lastlj, dividing by 4, we have r=7,
the number sought.

594. Question 11. To divide 25 into two such
parts, that the greater may be equal to 49 tnmes the
less.

Let the less part be 2, then the greater w:ll be
25—x; and the latter divided by the former ought to

glve the quotlent 49; ; we have therefore: 25— L —19;

multlpfylng by x, we have 25—a=497; addmg o,
we have 25==50x; and dlvndmc by 50, gives a-..-l-

al

The less of the two numbers m.é, and the greatec

is 243; dividing therefore the latter by -;. or multi-
plymo by 2, we obtain 49. o
595.. Question 12. To divide 48 mto nine parts,

so that every part may be always = greater than thev

part which precedes it.-
Let the ﬁrst and least paft be a'. then the se.cond

w1ll be .r+— the tlnrd .r+l &c -

Now these parts form an amhmetlcal progreSsm,
whose first term is »; therefare the ninth and last
will be.z+4. "Adding those two terms together, we -
have 22+ 4; multiplying this quantity by the number .
of terms, or by 9, we have 1824 36; and dmdmg :
this product by 2, we obtain ‘the sum of all the nine

“parts =924 18; which ouglt to be equal to 48.
We have, therefore,. g+ 18=48; subtracting 18;
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" there remams 9.r=30 and dmdmg by 9, we have

7—35

The first part therefore is 35 and the nine parts

succeed in the followmg order:
1 2 3 4 5 6 7 8 9
3%+3%+41+4%+5%+5%+6%+6%+71
Which together make 48.
596. Question 13. To find an arithmetical pro-

gressnon whose first term is 5, last term 10, and the.

‘entire sum 60.

Here we know neither the difference nor the num-
ber of terms; but we know that the first and the last
term would enable us to express the sum of the pro-
gresslon, provided only the number of terms was
given. . We shall therefore suppose this number to
be z, and express the sum of the progression by

!54';' we know also that this sum is 60; so that

e

- Now since the number of terms is 8, if we suppose
the difference to be z, we have only to seek for the
eighth term upon this supposition, and to make it

" equal to 10. The second term is 54-z, the third is
5 +23, and the eighth is 5472; so that .

5472=10
2= §

' : 5
d 2==.

j‘he difference of the pr‘ogre'ssion therefore is g,
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and the number of terms is 8 ,. consequently the pro-
gression is L ,
1 2 8 4 5 6 7 8
5+5i+6}-+71+7—+s*+9*+10 ~
the sum of which is 60. :
507. Question 14. To find such a number, that
if ‘1 be subtracted from its "double, and the re-
mainder be doubled, from which if 2 be subtracted,
and the remainder divided by 4, the number result-
ing from these operations shall be 1 less than the
number sought.
" Suppose this number to be r ; the double is 2 ;
subtracting 1, there remains Qz—1; doublmg this,
we have 4r—2; subtracting 2, there remains 42—4;
dividing by4 we have w—l and this must be 1 less .
than.r, so that
' pail=g—1.
But this is what is called an idenical eqaatzon ;

and shows that 2 is indeterminate ; or that any num- .

ber whatever may be substituted for it.

598. Question 15. 1 bought some ells of cloth at -
the rate of 7 crowns for 5 ells, which I sold again at
the rate of 11 crowns for 7 ells, and I gained 100
crowns by the transaction. How much cloth was
there?

Suppose the number of ells to be & ; we must ﬁrst
see how much the cloth cost; which is found by the -
following preportion : :

As 5 :w::7,:Z5— the price of the ells.

This being the expenditure ; let us now see the re-
ceipt: in order to which we must make thefollowmg
proportion:

VOL. I. ' L]
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El!'s- Ells. Crs.

'Aé7‘:w::ll:-l-}.r.crowlns; R

- and this receipt ought to exceed the expenditure by.

100 crowns ; we have, therefore; this equatlon

-1—71.v—zx+ 100;

subtracting %.z', there remains %x: 100; therefore.
' ol

3

There were therefore 5 83- ells which were bought

for 8]6— crowns, and soivd again for 9162 crowns,by

which. means the profit was 100 crowns.
599. Question 16. A person buys 12 pieces of

.cloth for 140.; of which two are white, three are
black, and se'ven are blue: also, a piece of the black
. cloth costs two pounds more than a piece of the white,
"and & piece‘of blue cloth costs three pounds more

than a piece of black Required the price of each
kind? ,

Let the price of a white pwce be 2 pounds; then
the two pieces of this kind will cost 2z ; also, a black

‘piece costiig r+2, the three pleces of this colour .
.will cost 3r+6 and lasﬂy,, a blue piece costs z+5,
~ wherefore the seven blue pieces cost 72435 ; so that

the twelve pieces amohnt in all to 127441.
Now the actual and known price of these twelve

,,,pxeces is 140 pounds; we have, therefore, 12v-+441
"z..-:140 and 1%——99, threfore .Z'—Si.

1
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A piece of white cloth costs 8-l
A piece of black cloth costs 104—’1.5 :

A piece of blue cloth costs 13%!.1

600. Question 17. A man having bought some
nutmegs, says that three nuts cost as much more-.
than one penny as four cost him more than two pence’
balfpenny. Required the price of the putmegs?

Let & be the excess -of the price of three nuts
above one penny, or four farthings. Now if three
nuts cost v+ 4 farthings, four will cost, by ¢ condition
of the questlon, 2410 farthings; but the price of
three nuts gives that of four nuts in another way
also, namely, by the Rule of Three. Thus, -

3:4: 044 ‘1‘?-';—'1—6 |

8o that &2 +]6—'-.r+10; or, 4r+ 16223+ 30;
therefore 2+ 16—30 and r=14. ,

Three nuts cost 44d. and four cost. 6d.. wherefore ~
each costs 14d.

601. Question 18. A certain person has two sile
ver cups, and only one cover for both. The first
cup weighs 12 ources, and if the cover be put on it,
it weighs twice as much as the other cup ; but if the
other cup be covered, it weighs three times as much
asthe first. Required the weight of the seconid: eup,
and that of the cover? .

Suppose the weight of the coverto be ounces, _then
the first cup being covered it will weigh 4-12; and
now thns weight bemg double that of the second, this

]
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cup must weigh '-;-.74-6; and if it be overed, it wil

weigh %r-}- 6; which weight ought to be the triple of
12, that is, three times the weight of the first cup.
‘We shall therefore have the equation g‘r+6 =36, or

g.v= 80; wherefore' é.r: 10 and r=20.

. The cover theréfore weighs 20 ounces, and th¢

. second cup weighs 16 ounces.

" 602. Question 19. A banker has two kinds of
change: there must be @ pieces of the first to make
a crown; and b pieces ‘of the second to make the
same sum. Now a. person wishes to have c pieces
for a crown; how many pleces of each kind must the
*banker give him?

Suppose the banker gwes xr pleces of the first kind;

" it is evident that he will give c— pieces of the other

kind; but the 2 pieces of the first are worth %
“crown, by the proportion a:2:: 1 ;2; and the c=2

ol ; . c—ux
 pieces of the seécond kind are worth ——- crown, be-

b
. c—r
cause we have b:c=z::1 P So that,
c—x
—=1;
a b ’

or éf+c_.r£b ; or b.z’+ac—a.z'=ab ;

. or, rather, b.z—av ab—ac;




CHAP. 8, _OF ALGEBRA. | QQS |

whence we have r= Z % orx __a(: —c)
_ bc—ab -
gonsequently, C—a= cb—l:z ',—b(lf—z) ,

’,[' he banker must therefore give s}b 2 pxeces of

the first kind, and b( pleces of the second kind.

Remark. These two numbers are easily found by
the Rule of Three, when it is required to apply the
results which we have obtained. Thus to find thé

'ﬁrst we say, b—a:a: b=c: a(bb :), and the - sea
Y
.cond numberlsfound tbus b—a:b:ic—a: b(bc_ a)

. It ought to be observed also, that @ is- less then &,
and that ¢ is also less than &, but at the same nme
greater than g, as the nature of the thing requires.

603. Question 20. A benker has two- kinds ef
change; 10 pieces of one make a crown, and 20
pieces of the other make a crown; and a persea
wishes to change a crown'into 17- pieces of money :
how many of each sort must he have ?

We - have here a==10, 5=20, and c=17,
which furnishes the following proportions:

1st. 10:10::3:3, so that the number of pieces of
the first kind is 3.

2d. 10:20::7:14, and there are 14 pleces of the
second kind.

604. Questitn 21. A father leaves at his death
several children, who share his property in the fol- .
lowing manner: namely, the first receives a hundred -
‘pounds, and the tenth part of the remainder; the -

)
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" second receives two hundred pounds, and the tenth'
part of the remainder ; the third takes three hundred
pounds, and the tenth part of what remains ; and the

. fourth takes four hundred pounds, and the tenth part
of what then remains; and so on. And it is found

_that the property has thus been divided equally
amongall the children. Required how much it was,
how many children there were, and how much eacli
repewed ?

. This question is rather of a singular nature; and
therefore deserves particulgr attention. In order ta
resolve it more easily, we shall suppose the whdle
fortune to be £ pounds; and ‘since all the children
recejve the same sum, let the share of each be z,
by which means-the number of children is expressed

byt-‘ now tlﬁ*s being laid down, we mdy proceed to
' the soluuoq ofthﬁ question, which will be as follows

8
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i

sm, Order of
the Portion af eqch. = Differences.
ivi ed. children. :
h-—v——/ \—M—J - —~——— o | W. J
' d e xé:loo+“l(1)°°
) y —r—200 1
s— 2 W =200+ 100—21% o
’ 20 10
o 2=23r—=300 . z+100
£—2r] 3d [r=300+4 0 100— 5 =0
. 3x—400 . x4+
s=3r] 4th ' [r=400+ JiO 100="> lz)oo=°
) Z—4x—500 x+ 100
- 3t =500 —_— =
g—4a| Sth |r +—5 100~ 22
z—53 6th u=aoo+”‘5’;;“°° and 5o on.

We have inserted, in the last'column, the differ-
ences which we obtajn by subtracting each portion
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from that which follows; but all the portions being
equal, each of the differences must be =0: and
as it happens that all these differences are expressed
exactly alike, it will be sufficient to. meke ene of
them equal to nothing, and we shall have the equation.
| 100--‘”";:)00
1000—2—100=0, or 900—2==0; conseqﬂently
r=900.

We know now, therefore, that the share of each
child was 900; so that taking any one of the
equations of the third column, the first, for ex-
ample, it becomes, by subsututmg the value of &

900 =100+ 000’ whence we lmmedlately ob-

tain the value of z; for we have
9000 == 1000+4-3~100, or 9000.._900+z,

=0. And mﬁltiplying by 10, we have

therefore 2==8100; and consequently ;: 9.

. So that the number of children was 9; the fortune '
left by the father was 8100 pounds and the share of
each child 900 pounds

CHAP. 1V.

" Of the Resolutions of two or more Equations of the
First Degree. : '

605. It frequently happens that we are dbliged to.
" introduce ipto algebraic calculations two or more un-
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known quantmes, represented by the letters Y 37
and if the question is determinate, we are brought to
the same number of equations as there are unknowa
‘quantities ; from which it is then required to deduce
those quantities. And as we consider, at present, those
equations only which contain no powers of an un-
known quantity, higher than the first, and no products
of two. or more unknown quantities, it is evident
that those equations have all the form
' az+by+cz'_.d

" 606. Begmnmg therefore with two equations, we -
shall endeavour to find from them the value of » and'
. ¥: and in order ‘that we may consider this case in a
general manner, let the two equations be,
. ar+by=c, and fr+gy=rF,

-in which, @, b, ¢, and f; g, &, are known numbers.
It is required, therefore, to - obtain,- from these
two equations, the two unknown quantities  and g. -
__ 607. The most natural method of proceeding will

reach]y present itself to the mind;" which is, to deter-

mine, from both equations, the value of ong of
 the unknown quantities, as for example z; ‘and to
consider the equality of those two values ; for then
we shall have an equation, in which the unknown
" quantity y will be found by itself, and may be deter- .

mined by the rules which we have already given,
- and knomng Y, we §hall havF only to substitute its

value in one of the quantities that express .

- 008. Accprdmg to this rule, we. ohtain from'
c—by . '

the f ﬁrst equatlon, rE=—, .

’ }l- - .
from the second, z=- f”.s and putting thesg
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values equal to each other, we have thls new equa-
non ,

ﬂg’gg_y; o

a
f,uultiplying by a, the product is cqby_qh*agy

‘again by f, the product is fe~ fby=ah—agy;
addmg agy, wehave fe— fby+agy=ah; subtracting

Je, gives — fby+agy=ah—fc; or (agq-lgf)y—i -

ah=— fc; lastly dividing by ag— bf, we have

- ah—fc -

y —ag ~— b;
- In order now to substitute this value of yin one of
the two values which we have found of z, as in the

first, ‘where .1.°=.c.— by , we shall first have

e—-by=—a—bii:;, whence c=by= C_M(-f
acg— bef —-abh+bgf acg+abh_
ag—bf ag—bf ’
c-lg cg—bh
dmdmg bya, r= T =i \
609. Questwn 1. To illustrate this method by ex-
amples, let it be proposed ‘to find two numgers, '
whose sum may be 15, and difference 7.
Let us call the greater number , and the less y:
then we shall hayve '
.z'+y=l5 and r—y="7.

The first equation gives
; r=15—y
and the second, ' r==7+y;

whence results this equation, 15—y=7+iy. So

or ¢c—by=
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thet 15=7+2y; 2_y-—.8 and y==4; bywlnebmeam
we find 2=11.

L So that tire less number is 4, and the greater is 1

610. Question 2. We may also generalise the
preceding , question,” by requiring two numbers,
whose sum may be a, and the difference $.

Let the greater of the two be expressed by .r, and
thelessby v

~ And we shall thus have

r+y=a, and .z'--;1/=6 3

and ilere the first equation gives r==¢—y, and the
- second .r——b+y

Therefore a-g-—b+_1/, a=b-42y; .Zy::a-b'

lastly, y___ =5 , and consequently

Thus we findl the greater number, or =, is 5.}‘;

L . a—b .
and the less, or ¥, is ‘—l—é—— ; or, which comes to

) N .1 1
the same, .r—é—a+§b, and -’/_Ea”ﬁb’ and hence

. we derive the following theorem : When the sum of
any two numbers is.q, and their difference is &, the
greater of the two numbers will be equal to half the
sum plus half the difference; and the less of the-two i
numbers will be équal to half the sum minus half the
* difference.
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611. We may also resolve the same queltion in
the following manner: :
Since the two equations are,
r+y=a, and
r—y=mb; ‘
if we add one to the other, we hive Qr=xa-kb.

Tberefore .w::—%—ll

Lastly, subtracting the same equatlons from

- each other, we have Q_y-_—.a—b and therefore

. 612. Question 3. A mule and an ass were car~
rying burdens amounting to several hundredweight.
The ass complained of his, ‘and said to the mule, I

need only one hundredweight of your load, to make
- mine twice as heavy as yours; to which the mule -

amswered, But if you give me a hundredweight of-
‘yours, I shall be loaded three times as much as you
will be. How many hundredweight did each carry?
. Suppose the mule’s load to be hundredwenght
“and that of the ass to be y hundredweight. If the
mule gives one hundredweight to the ass, the one

~ will have y+1, and- there will remain for the other -
z—1; and since, in this case, the ass is loaded twice

, as\much as the mule, we have y+1=2r—2.
Farther, if the ass gives a hundredweight to the
*.mule, the latter has 41, and the ass retains y—1;
but the burden of the former being now three times
that of the latter, we have 24 1=23y—3 '
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Our two equations will consequently be,
Y+ 1_2.1'-2, and 241 _Sy—s

y+

.From the first r=*—=, and tbe second gives

r=3y—4; w"hence we have- the new equation

e +3 3y-4, which gives y....—— ‘and" this ‘also

determmes the value of x, whnch becomes zg.

Thc mule therefore carried 2— hundredwelght, and

the ass carrled 2— hundredwelght

613. When there are three unknown numbers,
and as many equations; as, for example,
| o ry—z=S§,
r+2—y=9,
y+z—w_10 5
-we beam, as before, by deducing a value of x from
’ each, and we have, from the
) 18t v=8+42—y;
2d r=9+y—z;
3d' r=y+2—10.
Companng the first of these values with the second,
ard after that with the third also, we have the fol-
lowing equations:
8+z— y_9+y—z
8+A—y_-y+/.— 10,
. Now, the first gives 23—y == 1, and the second
gives 2y=18, or y==9; if therefore we substitute

i
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this/val‘ue of y in'@2—2y =1, we have ¢z~ 18=

. or 22=19, so that 'z=9% ; it remains, therefore,
only to determine z, which is easily fourid = 8-'21- -

- Here it happens, that the letter z vanishes in the -
~ last equation, and that the %alue of y is found imme-
_ diately; but if this had not been the case, we should
have had two equations between z and y, to be re-
solved by the precedmg rule. , -
614: Suppose we had found the three followmg ,
equations 1.
3.z'+5y~ 4z._ 25
" Sr—9y+43z=
' L SytSi— a= 62
: If we deduce from each the value of w, we shall
Jhaye from the .

955y 44z
lst ‘r‘-*-.45__31-_+_é_

2d o= 46+2y—3z

'ad .r—3y+5z—62 .
Comparing these three” values together, and first
the third with the first;

-

95— 5y+4z
3 ,
v multlplymg by 3, gives 9y + 15— 186=05— 5y+4z,
so that 9y +152=211—5y+4s,
and 14y+11z=211.
Comparing also the third with the second, '
46+42y—32
5 ?

we have 3y+5z-»62—-

we have 3_1/+5z —62=
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or 464 9y—8z= 15y 252310,
which when reduced is 356 =13y+282. -

We shall now deduce, from these two new equa-
tions, the value of y: .

1st 14y+411z=211; or 14y"“211—11z,

211— llz
andy==—-77
2(1 13y+08z_356 or 13y=2356—283,
' 356~QSz ,
and Y=~ . -

. These two values form the new equatlou

211—11z__ 356—zsx
14 13

2743—143z=4984—392z, or 249z=2241, and

© =9

This value being substituted in orié of the two
-equations of y and 2, we fiad y==8; and lastly a .
similar substitution i in one’ of the three values of «,
- will give x=7. '

615. If there were more than three unknown
- quantities to determine,. and as' many equations
to resolve, we should proceed in the same manner;
‘but the calculations would often prove very tedious.
It is proper, therefore, to remark, that, io each
partlcular case, means may always be discovered of
- ‘greatly facﬂltatmg its resolution ; which censist in in-
troducing into the calculation, besxde the principal,
‘unknown quantities, a new uriknown quantity arbi-
trarily assumed, such as, for examplc, the ‘sum of all
the rest ; and when a person is a little accustomed in
such calculations, he casily perceives what is most
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proper to be done*. . The foowing examples may

serve to facilitate the application of these artifices. ‘

616. Question 4. Three persons, A, B, and c, -
play together; and in the first game, A loses to each
of the other two, as much money as each of them
has; in the next game 8 loses to each of the other
two, as much money as they then hady and lastly,
in the third game A and B gain each, from c, as

mach money as they had before: when leaving off,’

. they find that each has an equal sum, namely 24
guineas each. Required, with how wuch money
each sat down to play? =~ .

.* Suppose that the stake of the first person was .,
" that of the second y, and that of the third 5: also
et us meke the sum of all the stakes, or 24y+z,

==s. Now, 4 losingin the first game as much money

* as the other two have, he loses s—x (for he himself

having had 2, the two others must have had s—z) ;'

therefore there will remain to him 2r—=s; also B
will have 2y, and c will have 2z.. .

~ So that, after the first game, -each will have as
follows : A==2r—s, B==2y, c=2z. :
" In the second game, B, who has now 2y, loses

as much .money as the other two have, that is to
say, s—2y; so that he has left 4y—s. With re-
gard to the others, they will each have double what
they had ; so that after the second game, the three

‘% M. Cramer has given, at the end of his Introduction to the
Analysis of Curve Lines, a very excellent rule for determining im-
mediately, and without the necessity of passing through the or-
thinary operations, the value of the unknown quammes of such
M uations, to any number F. T
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_ persotis have as follows T AT=4r-e28, =4y-—s;
c=4z.

- In the third game, ¢, who has now 4z, is the‘
loser ; he loses to &, 4v—2s, and to B, 4g-s F
'consequently after this game they will have : -

A==8r—4s, B==8y—2s, c==8z—s.

Now, each having at the end of this game 24
guineas, we have three equatioiis, the first of which
. immediately glves x, the second y, and the third
% ; farther, s is known to ,be 72, since- the three
.persons have in all 72 guineas at the end of the last
game; but it is not ‘necessary to attend to this at
first ; since we. have :

1st 8.2‘*‘—4-8——-.-4, or 8r=24+4s, or .r=3+és :

od 8y—s2.s‘=£24, or'8y=24+2-s, or y=3+i

. 8d 8z—5=24, or 83=24+s, or z.....3+;s,

$i

" - and adding these three values, we have , X

w+y+z 9+ s.
S0 that, siiice w+y+z=‘s, we have s= 9+§s"‘;
and consequently 1aﬁg, and 3:72a

If we now substitute this value of ¢ i the ex-
pressions which .we ‘have found for z, y, and z, we
shall find that before they began to play, & had 39
guineas, B 21, and ¢ 12.

This solution shows, that by means of an-ex-
pression for the sum of the three unknown qudti-
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tities, we méy overcome the difficulties which occur -
~ in-the ordinary method.

617. Although the preceding question appears .
difficult at -first, it may be resolved even without -
algebra, by proceeding inversely.  For 'since the
players, when they left off, had each 24 guineas,
and, in the third game,” o and B doubled their
- .money, they must have had before that last game,
as follows : : - .

a==1g, B==1%, and c=48 o
In the second game, A and c doubled thelr
money ; so that before that game they had ; .
' A=6, B==42, and c=24. ' .

Lastly, in the first game, A and ¢ gamed each .
as much money as they began with ; so that at first
.the three persons had :

| A=39, B=2¢Il, c=12.
“The same. result as we obtained by the former so-
lution. :

618. Question 5. Two persons’ owe conjointly
29 plstoles they have both money, but neither of
them enough to enable him, singly, to discharge

_this common debt ; the first debtor says therefore

to the second, If you give me g of yopi- mbﬁey, B

I can immediately pay the debt: and the se- -
cond answ ers, that he also could discharge the

+ debt, if the ‘other would give him = of hls money..

- Requlred how many pistoles each bad P ,
Suppose that the first has & pistoles, and that the
second has y' pistoles. : :

VOL. I. x
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Then_ we shall first have, x+-§y=‘-29 ;
and also, y+%x=29.

The first eQﬁation gives 1_29——%

. 116—4
.and th_e second = 3 y; S
| g _ 116—4y
so that 29—-—33/ =3

From which equation, we obtain y= 14% ;

Therefore 2= 19—13-‘.

‘Hence the first person had 19% pistoles, andthe

second had 14— pistoles.

- 619. Questzon 6. Three brothers bought a vine-
yard for a hundred guineas. The youngest says,
that he could pay for it alone, if the second gave
him half the money which he had; the second says,

“that if the eldest would give him only the third of
his money, he could pay for the vineyard singly;
lastly, ‘the eldest asks only a fourth part of the money
of the youngest, to pay for the vineyard himself.
How much money had each ?

Suppose the first had 2 guineas; the second, ¥

guineas; the third, & guineas; we shall then have
‘the three following equatlons -

.r+§y= 100;
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:'/+-1-z,='100;

z+ +=100;
two of which only give the value of z, namely
lst b= loo—éy’

| 8d #==400—4a.
So that we have the equation,

. ‘1 ' o
100—-2-y=400f4z, or 4z—%y=300, which
must be combined with ‘the second, -in order to
determine ¥ and z. Now, the second equation

was, y+%z,=100' ; we therefore deduce from it -
y:loo——;fz ; and the equation found last being

,4z-—% ¥==300, we have y=—=8z—600. Consequently )
the final equation is, '

100—'§z=8z—600 ; so that 8%z= 700, or
25 , ,
:iz—700 and z=84: consequently

Y=100—28=72, and @ =64.

The youngest therefore hiad 64 guineas, the second
had 72 guineas, and the eldest had 84 guineas.

620. As, in this example, each equation: contains
- only two unknown quantities, we may obtain -the
- solution required in an easier way.

The fitst equation gives y==200—2v, so that
¥ is determined by » ; and if we substitute this value
in the second equation, we have

. T X2
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2‘00—2x,+%zﬁ= 100; therefore ‘-;-z=2m— 100, -

. and z=6w—300. 4

So that z is also' determined by x; and if we ,
,introduce this value into the third equation, we

obtam 6.v—300+—.r-.- 100, in whxeh z stands

anne, and whlch whep redueed to .
"252x—1600=0, gives 2==064 : consequently, .
y=200—128=172, and 3= 384— 300 = 84.
621. We may follow the same method, when we
have a greater number of equations.  Suppose, for
example, that we have in gencral ;

“+2".‘”’ i .z'+‘g=n,
y+§#n, o z+§=n;
or, destroying the fractions, o
‘au+-xr=—an, br+y=1bn,
cy+z=cn, . . dxtu=dn.

Here, the first equation gives lmmedlately
" x==an—au, and, this value being substituted in
_the second, we have abn—abu+y=bn; so that
y= bn—abn+-abu ; and the substitution of this value, *
m the thnrd equation, gives bcn—abcn+abcu+mn,
therefore z=—=cn— bcn+abcn-—abcu, ,
substituting this in the fourth equation, we have
cdni—bedn+ abcdn-— abcdu+-u=—dn.
So that dn— cdn+ bedn— abedn=—=-— abcdu+u,’ }
,or (@bed— 1).ti==ab¢dn— bedn-+cdn—dn ; whence we
have
abcdn—-bcdn+cdn—dn ' (abcd—-bcd+cd—d)
u= abcd—1 = abcd— '
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And consequently, . : '
_abcdn-acdn+adn—qn_ x(abcd-acd-irad—a)

abed—1 abcd—1
=abcdn—abdn+abn;bn  {abed — abd-4-ab—b)
. abed — - abcd—1 )
- abcdu—abcn-l-bcn—cn % (abcd — abc4-be—c)
abcd—1 . abed—1 .
_ abedn—bedn+-cdn—dn___ (abed—bcd+cd—d)
=TT abed—1 X T ad—1

622. Question7. A captain .has three coﬁnp
‘panies, one of Swiss, another of Swabians, and a

third of Saxons. He wishes to storm with partof *

these troops, and he promises a reward of 901
crowns, on the following condition; namely, that -
each soldier of the company, which assaults, shall
receive 1 crown, and that the rest of the money
shall be equally distributed among the two other
companies. ' Now it is found, that if the Swiss
make the assault, each soldier of the other com-
panies will receive half a crown; that, ‘if the °
Swabians assault, each.of the others will receive
4 of 'a crown; and lastly, if the Saxons rhake the
assault, each of the others will receive- ; of a crown.
Required the number of men in each company ? -
Let us suppose the number of Swiss to be.x, that
of Swabians y, and that of Saxons z. . And let us
also make v+y-+2=s, because it is easy to see,
that, by this, -we abridge the calculation considerably.
-If, therefore, the Smss make ‘the assault, their
number being 2, that of the other will be s—2: now,
the former receive 1 crown, and the latter half a

1 1
—§=—=p=901.
x+23 zv 90
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In the same manner, if the Swabians make the
assault, we have

y+ §—= _1/--901

And lastly, if the Saxons mount to the assault,
7, y, we have,

1 1
z+;s—z 3=901.

Each of these three equations will now enable
us to determine one of the unknown quantities
and z; ’ :

For the first gives »=1802~s. '
- thesecond 2y =2703—s,
the third - 33=138604—s.’

"And if we now. take - the valies of 6z, Gy, ‘and
6z, and write those values one above the other,
we shall have,

6r 10812—6s,
6y= 8109— 3s,
6z—= 7208—2s,

by addition : 65 =26129—11s, or 17s==26129;
so that s=1537; which is the whole number of
soidiers.” By this means we find,
r=1802~1537=265;
2y ==2703— 1537 =1166, or y = 583;

. 8r=3604— 1537 =2067, or x = 689.

The company of Swiss therefore has 265 men;
that of Swabians 583; and that of Saxons 689.
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'CHAP. V.

Of the Resolution of Pure Quadratic Equations.

623. An equation is said to be of the second -
degree, when it contains the square, or the second
power, of the unknown quantity, without any of its
higher ‘powers; and an equation, containing like-
wise the third power of the unknown quantity,
belongs to cubic equations, and its resolution re-
quires particular rules.  There are, therefore,

“only three kinds of terms in an equatlon of the
second degree : - :

1. The term in which the unknown quantlty is not
found at all, or which is composed only of known
numbers.

2. The term in which we find only the first power
‘of the unknown quantity. ,

3. And that which contains the square, or the se-
cond power, of the unknown quantity. -

So that & representing an unknown quantity, and
the letters @, b, ¢, d, &c. the known quantities, the
terms of the first kind will have the form a, the terms
of the second kind will have the form bx, and the
terms of the third kind will have the form ca®

625. We have already seen, how two br more
terms of the same kind may be united together, and -
considered as a single term. ‘ '

For example, we may consider the formula
av’—br*+ca® as a single term, representing it thus
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(a—b+c)2?; since, in fact, (a—b+c) is a knowu
quantity.

And also, when such terms are found on both
sides of the sign =, we have seen how they ‘may be
brought to one side, and then reduced to a single
term: let us take, for example, the equation,

_ Q' —3r 4= 5.1"—8z+11,

we first subtract 22°, and there remains
' -3.2'+4=3r’—81‘+ll
then adding 8z, we obtain,

5.Z'+4'—'3.l" +11;
-last]y, subtractmg 11, there remains 3r*=5r—-7.

'626. We may_also bring all the terms to one side
of the sign =, so as to leave zero, or 0, on the other;
but it must be remembered, that when terms are
' transposed from one side to the other, their signs
~must be changed. ,

Thus, the above equation will assume this form,
828~ 52+7=0; and, for this reason also, the fol-
lowing general formula represents all equations-of the

~second degree;
a.r’+ bz'+c=0

'in which the sign & is read plus or minus, and in-
dicates, that such terms may be sometimes positive,
and sometimes negative.

" 627. Whatever® therefore be the original form
of a quadratic equation, it may always be reduced to
this formula of three terms. If we have, for ex-
ample, the equation

.ar+b-_ er+f
cr+d g‘z'+k, _ .-
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- we may, first, destroy the fractnons, multlp]ym
,for this. purpose, by .cr+-d, which gives:
a.r+b cex +gf‘z‘+edr+fd
gr+h
ag.r’+bg.r+ahr+bh__cer’+gfr+edr+fd -
‘which is an equation of the secand degree, and re-
ducible to the three following terms, which we shall
transpose by arranging vthem in the usual manmer:

, thenby gr-l-h we have

: +bg Y

ag\ . +ak + +bh

—ce } 2’4 r+ }—-O.
—e

We may exhibit this equatlon also in the followmg
- form,. which is still more clear :

(ag—ce).z”+(bg+ak—gf—ed).r+bh-—fd-’:0.

628. Equations of the second degree, in which
all the thrée of terms, are found, are called, com- -
plete, and the resolution of them is attended with
greater difficulties; for which reason we shall first
“consider those, in which one of. the terms is want- )
ing. :
. N ow, if the term &* were not found in the equa-/ ,
tion, it would not be a quadratic, but would bélong

to those of which we have already treated; and if S

the term, which contains only known aumbers, were
" wanting, the equation would have this form,
a2* 4 br=0, which being divisible by x, may be re-
duced to ar4 =0, which is likewise a simple equa-
tion, and belongs not to the present class.

629. But when the middle term, which contains
the first power of «,.is wanting, the equation as-
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sumes this form, aa®*4c=0, or ar’==7c; as the
sign of ¢ may be either positive, or negative.

We shall call such an equation a pure equation of
the second degree, since the resolution of itis attend-
ed with no difficulty : for we have only to divide by

a, which gives & =—2—; and taking the square root of .

“both sides, we find w=V§ ; by which means the

’

equation is resolved.
+ 630. - But there are three cases to be considered

here. In the first, when 9 is a square number (of

* which we can therefore really assign the root) we ob-
‘tain for the value of i a rational number, which may
be either integer, or fractional. For example, the

© equation 27==144, gives r=12. And .r’:l%,

- 3
1VES &'=——=~-.
 gives =+

The second case is, when s not a square, in

which case we must therefore be contented with the
 sign v/, If, forexample, 2*==12, we have r==+19,
the value of which may be determined by approxi-
mation, as we have already shown. -

The third case is that, in which f—; becomes.a ne-

gative number; and then the value of is altogether
impossible and imaginary; and this result proves
that the question, which leads to such an equatlon,

. Bin itself impossible..
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631. We shall also observe, before proceeding -
farther, that whenever it is required to extract the
square root of a number, that root, as we have
alréady remarked, has always two values,. the one

positive and the other negative. Suppose, for ex-
" ample, we have the equation 2?==49, the value of »
will be not only +7, but also —7, which is expressed
by #==+7. So that all those quéstions admit of a

double answer; but it.will be easily perceived that

in several cases, as those which relate to a certain
number of men, the negative value cannot exist.

632. In such equations, also, as az?=>bx, where
the known quantity c is wanting, there may be two
values of z, though we find only one if we divide by
2. In the equation 27 = 3, for example, in which
it is required to assign such a value of &, that 2% may
become equal to 3, this is done by supposing #=3,
a value which is found by dividing the equation by "
#; hut, beside this value, there is also another,
which is equally satisfactory, namely »=0; for
then #?7=0, and 3v==0. Equations therefore of
the second_degree, in general, admit of two solutions,
whilst simple equations admit only of one. -
- We shall now illustrate, by somne examples, what

we have said with regard to pure equations of the se-
cond degree.

633. Questum I Requn‘ed a number, the half of
which multiplied by the third, may produce 24.

Let this number be z; then by the question

-;-.r, multiplie‘d by %‘z‘, must give 24; we shall there- .

fore have the equation % *=24.
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Multiplying by 6, we have z*=144; and the ex-
traction of the root glves r==+12 We put +

. for if e=+12, we have -.r=6 and -r=4' now
‘the product of these two numbers is 24; and if
==12, we have ;r._..-G and = .r_—4, the

product of which is likewise 24.

634. Question 2. Reqmred,a number such, that
* being increased by 5, and diminished by 5, the pro-
duct of the sum by the-difference may be 96.

Let this number be z, then 245, multiplied by
r—>5, must give 96; whence results the equation,
2*—25=96.

. Adding 25, we have 2*=121; and extracting the
root, we have 2#=11. Thus r+5=16, also
-x—=5=06; and, lastly, 6X16=96.
635. Question 3. .Required a number such,
" that by adding it to 10, and subtracting it from 10, .
"the sum, multiplied by the d’H'erence, will give 51.
Let « be this number; then 1042, multiplied by
10—7, must make 51, so that:100—a2®=51. -
_ Adding 2%, and subtractmg 51, we have 2*==49,

+ the square root of which' gives 2==7.

636. Question 4. Three persons, who had been
“playing, leave off; the first, with as many times 7.
_ crowns,’as the second has three crowns; and the
second, with as many times 17 crowns, as the third
has 5 crowns. Farther, if we multiply the money of
the first by the money of the second, and the money
. of the second by the money of the third, and lastly,

" the money of the third by that of the first, the sum

-
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: of these three products wxll be 38305. How ‘much

money bhas each?

Suppose that the first player has 2 crowns; and
since he has as many times 7 crowns, as the second
bas 3 crow ns, we know that his money is to that of
the second,  in the ratio of 7: 3 :

- We shall therefore make 7: 3w ’—:;r, the'money

of the second player.

Also, as the money of the second player is to4hat
of the' third in the ratio of 17:5, we shall say,
' .3, 15

C17:5: .r 1 9 7,

Multlplymg z, or the money of the ﬁrst player, by

the money of the third player.

; 2, the money of the second, we have the product

-.r’ then, 7 .r, the money of the second, multlphed

by the money of the third, or by : 19 r, gives — :35 3

and lastly, the money of the third, ‘or -, ‘multi-

119
" plied by, or the moﬂe& of the first, gives T]l%.zﬂ. Now .
the sum of these three products is o

_1.!+

7

5 3.:-’-}-“ g.r’ and reducmg these fractlons

} (¢
to the same denommator, we find their sum g—s-g.r’

_ which must be-equgl to the number 38302-;'
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2
We have, themfore, 3350 = = 3830 7
l::; =1 1492 and'1521 2° bemg equal
9572836

to 9572836, dmdmg by 1521, we havea®= VTR

and takmg its root, we ﬁnd r—3234 This fraction

is redugible to lower terms, if we divide by 13, SO

that x=%—8-=79%; and hence we éonclude, that

-S~.z'= 34, and ﬁ.r:: 10.
7 ‘119

" The first player has therefore 79% crowns, the

second has 34 crowns, and the third 10 crowns.
Remark. This calculation may be performed in an
easiéi’ manner; namely, by taking the factors of the
numbers which present themselves, and attending
chiefly to the squares of-those factors.
It is evident, that 507=3X 169, and that 169 is
the square of 13; then, that 833=7X119, and
3X 169 —
49

' 119=7X'17: therefore T _38302, and if

9X1 69
17%49"
us resolve this number-also into its factors ; and we rea~
dily perceive, thatthe first is 4, that is tosay; that 11492
==4X 2873 ; farther, 2873 s divisible by 17, so that
2873=17X169. Consequently, our equation will

X169 et X 17X 169,

we multlply by 8, we have ——=2"=11492. Let

‘. 9
assume the following form. 17349
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. - o . N . . ¥ . , 9 —
 which, divided by 169, is reduced to I X49r2 =4
X17; multlplymg aiso by 17X 49, and dmdmg by
4%X289X49 -

9, we have 2°=

tors are squares; whence we have, without any far-

..X1’7X7 328

ther calculatlon, the root r= 3 3 =

795, as before.v_

637. Question 5. A compan'y of merchants \
appoint a factor at Archangel. Each of them con-
tributes for ‘the trade, which they have in view,
ten times as manv crowns as there are partners;
" and the profit of the factors is fixed at twice as many
crowns, per cent as there are partners. Also, if

. we multiply the part of his total gain by 95, it

will give the number of partners; and that number i
required., :

. Iet it be r, and since, each partner has con-
tributed 10z, the whole capital is 102°. Now,
for every hundred crowns, the factor gains 2r, so-

that with the capital of 102® his va'oﬁt'will be %m’.

The 756 ‘part of bjs gain is -—.—-.rs,' multlplymg’by 25,_

or by —9-, we have
9 4500 - 225

1 : .
r’, or — 2° and this must
be equal to the number of partners, or z. '

We have, therefore, the equation — 22 3 :r"—'-.r,

FP==925xr; which appears, at first, to be of the

,'in which all the fac- .
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~ third degree; but as we, may divide by 2, it is re-
.duced to the quadratic #?=225, whence .r_l5 ’

Hence there are fifteen pattners, and - each con-
tributed 150 crowns. ‘

_— CHAP. VL.
Of the Resolution of Mixt Equatzons qf the Second
Degree.

638. An equation of the second degree is sald
to be mizt, or complete, when three terms are
' found in it, namely, that which contains the square
of the unknown quantity, as @2?; that, in which the
unknown quantity is found only in the first power,
as bz ; and lastly, the term which is composed of only
known quantities. - And since we may unite two or
_ more terms of the same kind into one, and bring all
the terms to one side of the sign=, the general.
form of a mixt equatlon of the second dcgree
will'be -
' o a,z'?;l_-b.r:l_-c-_-.fo.
In ‘this chapter, we shall show, how the value of
_ @ is derived from such equations: and it will be
seen, that there are two methods of obtaining it.

639. An equation of the kind that we are now
considering, may be reduced, by division, to such a’
form, that the Tirst term may contain only the square:

’ . .
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2% of the unknown quantity“.z". ‘We shall Jeave the

" second term onthe same side with #;, and transpose

the known term to the other'side of the sign—": by )

which' means our 'equation will assume the form

2*4+pr=oy¢, in which p and ¢ represent any
known numbers, positive or negative; ‘and the
whole is at present' reduced to determining the -
true value 'of 2. - We shall begin with remarking, *
that if »’+4ps were a real square, the resolution
would be attended with no difficulty, because it
would only be reqmred to take the square root of

- both sides.

' 640. Butitis evrd'entthatm”-}- prcannot bea square;
since wehavealready seen, that ifa root consists of two |
terms, for example, x4, its square always contains
three terms, namely, twice the product of the two

. parts, beside the square of each part;- thatis to say,'
- the square of #+n is 2*+2nr+n°. Now, we have

already on one side a®4pir; we-may, therefore,

\; consider @? as the square of the first part of the

root, and in this case pa. must represent twice the
product of x, the first part of the root by the second .

- part: consequently, this second part must be ép,

and in fact the square of w+% P, is found to be -

- w’+p;z'+‘li-p’.
41. Now .z"-i&p.r-i-'-i p* being a real square,

wliich has for its- root x+%‘p’, if we resume our equa-
VoL I .Y |
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tion 2°+4-pr==q, we have only to add % P to both

sides, which gives us 2’4+ p‘v+lp’=q+lf’, the

first side being actually a square, and the other con-
taining only known quantities. If, therefore, we
" take the square root of both sides, we find

1 1 .1 .
.r+§p= J(Z p*+¢); and subtractmg 2 p,.,we obtfury

x'—_.-—% p-l-s/(ip’-l-q); and as every square root

may' be taken either affirmatively or negatively, we-
. shall.bave for & two values expressed thus;

1 1
r=—3pEV (G +)

- 642. This formula contains the rule by which all
’quadratxc equations may be resolved, and it' will be
proper to commit it to memory, that it may not be
necessary to repeat, every time, the whole operation
which we have gone through. We may always
‘arrange the equation in such a manner, that the
pure square 2* may be found on one side, and the
above equation have the form &*==—pv+¢, where

we see imme;liately that =—ép +v (‘% P+9).

- 643. The general rule, therefore, which we de-
duce from that, in order to resolve the equation
= pv+¢, is founded on this consideration;
~_ That the unknown quantity 2 is equal to half the
.coefficient or multiplier of = on the other side of the
equation, plus or minus the square root of the square
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of this number, and the known, quantity which forms‘
the third term of the equation. ,
Thus, if we had the equation 2*=—62+7, we
‘'should immediately say, that r—=3+ ,/ 947=3+4,"
whence we have these two values of x, namely +=7,
and r=—1. In the same manner, the equation
a*=10r—9, would give =5+ 25,—9.=5_-l;'4,.
that is to say, the two values of x are 9 and 1. :
644. This rule will be still better understood, by
distinguishing the following cases: 1st, When p is an

even number; 2d, When p is an odd number ; and
8d, When p is a fractional number. o

" 1st, Let p be an even number, and the equatxon
such, that a-’—-zp.r+q, we shall, in this case, have

T=pEV pi+g.
2d, Let p be an odd number, and the equation:

r*=pr+q; we shall here have .z'=-;- pt %

and since 1p,+q=p_’_-_l-_-4_l~g wemay extractthe square
.root of the denommawr, and write ’

pe] P_,_@’;—w pﬂg +49.

ad, Lastly, if p be a fraction, the equation may
be resolved in the following manner. Let the equation

be ar*=br4c, or z’=9—{+£, and we shaH have, °

e
by the rule, w_2—+J .|-.., Nov, Z&T’fz —

Y2
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- B*+4a0

4a? ?

that o=
. a ’ :

645. The other method of resolving mixt qua-

dratic equations, is to transform them into pure -

equations; which is done by substitution: for ex- -
ample, .in the equation 2*==pr-4-¢, instead of the

theé denominator of which is a square} so

bV b +4ac
2

~ ..unknown quantity .z, we may write anbther unknown

quantity, ¥, such, that r=y+%p-by which means,

when we have determined y, we may 1medxamly ,
find the value of ». :

- ¥f we make this substitution of y+—'2-p instead of r,
we have .za'=_-y’-i-py+1p?,'aﬁd p.z'=py+% D*; con-
scquently our unatlon vn.ll become S

' ”+py+4l’ —py+21> +q;: .
which is first reduced, by subtractmg by, to

“,_“'y+p =2 P4y
and thein, by subtraqtm« —-[F, to y =.-j;’+q. This
is a pure quadratic equation, which i 1mmed1ately gWes
y—+~/ el
: /Now,' since .r::y+§ D, we have |
4’=%I’i~/ip'+q.

as we found it before. It only remains therefore, to
. illustrate this rule by some examples.

1
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B46.  Question 1. There are two numbers; one
exceeds the other by 6, and their product is 91:
what are those numbers ? :

If the less be r; the other will be 24-6, and their
_ product 2?+462r=91: and subtracting 6., there re-
mains #?=91—62, and the rule gives

r=—3+v9+91=—3+10; so that x=17,
Tor r=-13. .
The question therefore admits of two solutions ; .
By one, the less number & =7, and the greater
246=183;

By the other, the less number #=-—13, and the
greater r4-6=—7. .

647. Question 2. To find a number such, that.
if 9 bé taken from its square, the remainder may be

anumber, as much greater than 100, as the num-~ -

ber itself is less than 23.
Let the number sought be v; we Rnow that *—9
_exceeds 100 by 2°—109. And since x is less than
23 by 23—, we have this equation '
2?—109 =23—a.
Therefore 2% =— r<4132, and, by the rule, -

.'___+\/1+132___ :l:~/529 --i%

that =11, or p=—12.

Hence when only a positive number- is required,
that number will be 11, the square of which minus
9 is 112, and consequently greater than 100 by 12,
in the same manner as 11 is less than 23 by 12.

648." Question 3. To find a number such, that '
if we multiply its half by its third, and to the pro-
duct add half the number required, the result will
be 30. :

Al
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Suppose the number to be 2, its half, rrrultiplied |
by its third, will give o so that 1@«*4-1 2= 30;
and multiplying by 6, we have .z""+3.r 180, or

=32+ 180, which gives .z'.._—-+ J9+180
8,97 '

29— 9 0

‘Consequently either 2==12, or ==—15._

649. Question 4. To find two numbers, the one
being double the other, and such, that'if we add
their sum to their product, we may obtain 90.

Let one of the numbers be #, then the other will
be 2x; their product also will be 24%, and if we add
to this 3, or their sum, the new sum ought to make
. 90. So that 22*432r==90; or 2*=90~3r;

,whenee .,r’=--3-.z'+45, and thus we obtain_, |

'. .r=--+J--+45—’ §¢?_7

Consequently =6, or v—-—-7—;-

650. Question 5. A horse-dealer bought a horse
for a certain number of crowns, and sold: it again for
119 crowns, by which means his profit was as much
per cent. as the horse cost him; what was hls first
_ purchase? '

Suppose the ‘horse cost crowns; then as the
dealer gains 2' per cent., we have this proportion;

2
l 4 . -—'—
As 100:2:: @t lOO
' -since therefore he has oamedvl—o—d -and the horse ok
ginally cost him & crowns, he must have sold. it for
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x + therefore x+—()-_ 119: and subtractmg

,2
x, we have -m+o-=-—.r+119; then multiplyipg' by

. 100, we obtain 2®===—100x411900. Whence, by
the rule, we find 2=—50++'2500+ 11900=
—-—504¥ 14400-.———50-:120'::70.

The horse therefore cost 70 crowns, and since the -
horse-dealer gained 70 per cent. when he sold it
again, the profit must have béen 49 .crowns. So.
that the horse must have been sold again for
70449, that is to say, for 119 crowns.

651." Question 6. A person buys a certain number
of pieces of cloth: he pays for the first 2 crowns,
for the second 4 crowns, for the third 6 crowns, and
in the same manner always 2 crowns more for each
following piece ; also, ‘all the pieces together cost
him 110: how many pieces had he? -

Let the number sought be . ; then, by the ques-
tion, the purchaser paid for the dxﬁ'erent pleces of
cloth in the following manner:

forthe 1, %, 3,4, 5 .... .rpieces
he pays 2, 4, 6, 8, 10.. .. 2x crowns.

. . Ttis therefore required to find the sum of the arith-
. metical progression 2+4+46+8+..... 22, which
consists of & terms, that we may deduce from it the
price of all the pieces of cloth taken together. The
rule which we have already given for this operation
requires us to add the last term to the first; and the

~ sum is 224-2; which must be multiplied by the num-
ber of terms 2, and the product will be 22°+2z;.
lastly, if we divide by the difference 2 the quotient .

1
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will be #*4u, whlch is the sum of the procressmn-
so that we have r7+.r'—- 110; therefore a?=—=—ua

+110, and .r_~—+Jl+110_—l+—_10

And hence the number of pieces of cloth is 10.

652. Question 7. A person bought several pieces
of cloth for 180 crowns; and if he had received for
“the same sum 3 pieces more, he would have paid

3 crowns less for each piece; how many pieces did
he buy?

Let us represent the number soughtby z ; then each
piecc will have cost him 1_3_9_ erowns. Now if the.
purchaser had had 243 pieces for 180 crowns,
each piéce would have cost ;1_—?_% crowns; aﬁd, since

this price.is less than, the real price by three crowns,
we have this equation, :

.  +3 w
180 __ ‘
And multlplymg by z, we obtain —— e =180 - 3r;

dmdmg by 3, we have

6_?_3::60-—»&” ; and again,v:

multiplying by 248, gives 602 =180+ 57x=a*;
therefore adding 2% we shall have

.z"+60.z'_180+57.r, subtracting 60x, we shall

.have 2*=x ~—32r+180,

" The rule consequently gives,

9 -3 o7
< 0. ————— .
4+18 ,'orw 2+2-—12

He therefore bought for 180 crowns 18 pieces of

’
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cloth at 15 crowns_the piece; and if he had got 3

pleces more, namely, 15 pieces for 180 crowns, each
piece Wwould have cost only 12 crowns, that is to say,
3 crowns less.

-653. Question 8. Two merchants enter into part=,

neyship with a stock of 100 pounds; one leaves his
money in the partnership for three months, the other °

leaves his for two months, and each takes aut 99
pounds of capital and profit; what proportion of the

stock did they separately furnish ?

Suppose the first partner contributed . pounds, thq
other will have contributed 100—x2. Naw,the former
receiving 99/., his profit is 99—, which he has gained
in three months with the principal @ ; and since the
second receives also 99/. his profit is #~ 1, which he
has gained in two months withthe principal 100w}
it is evident also, that the proﬁt of this second part-.-

, 1,£ he had remained

Sr—
ner would Lave been >

three months in the partnership: and as the profits . °
. gained in- the same time are in proportion to the

principals, we have the following propartion,
Jo— 3

v

a 99—1 100—a:

And the equality of the pxoduct of the extremes
to that of the means, gives the equation,
32°—3x
2 R

= 9900— 199.r+.z~*;'

* then multiplying this by 2, we have

3a?— 30==19800— 3982+ 24*; then subtracting 22*,

_ we obtain 2°-—82=19800—398x ; and adding 3z,

gives 2°==19800~395x; therefore, by the rule,
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r-=_gg_5 + J 156025 | 79200 - 395 Ll
4 2 2

D=5
Therefore the first partner contnbuted 451 and
* the other 55I. The first having gained 54/. in three
months, would have gained in one month 18/.; and
- the second having gained 44/. in two months, would
have gained 22/ in one month: now these profits
. aggree ; for if, with 451., 18/ are gained in one month,
221. will be gained in the same time with 55/,

654. Question' 9. Two girls carry 100 eggs to '
- market; one had more than 'the other, and yet the
sum which they both received for them was the same.
The first says to the second, If I had had your eggs,
-1 should have received 15 pence. The other an-
swers, If I had had yours, I should have received

6g mce ; how many eggs did each carrj to market?

Suppoee the first had = eggs; then the second
must have had 100—u.
Since therefore the former would have sold 100—2
eggs for 15 pence, we have the followigg proportxon
152
100—2"
" Also, sm the second would have sold eggs for

(100—2): 1512 .

6; pence, we readily find how much she ‘got for

100—x eggs " thus, :
As 2:(100—3):: 22 20003:20.r

Now both the girls recelved the same money ; we
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15.2'- 2000 20-2'
100—2 ° 3¢

have consequeﬂdy the equahor;,

which becomes this, ,
| 25x2=2ooooo—4ooo.r ; \
and lastly this, o
= 160.2'+ 8000
-whence we obtain ' -

== ~-80-+/6400+4 8000=— 80+ 120=40.

.-Hence the first girl had 40 eggs, the se'cond bad
60, and each received 10 pence.

655. Question 10. Two merchants sell each a,
certain quantity of silk; the second sells 3 ells -more .
. than the first, and they received together 35 crowns,
Now the first says to the second, I should have got -
24, crowns for your silk ; the other answers, And I
should have got for yours 12 crowns and a half,
How many ells had each? n

Suppose the firsthad z ells ; then the second must
have had w43 ells ; also, since the first would have
sold z+3 ells for 24 crowns, he must have received
242

227 crowns for his x ells. And with regard to'the -
x+3 .

L4

second, since he would have sold x .ells. for 12%
250475
er '

.crowns, he must have sold his 243 ells for

so that the whole sum they received was
24r  Wwe+T5_
| 7 3T e =353
- which equation becomes 2* =20x="75, whence we' .
have ==10+/100—75=105.
. So that the question admits of two solutions : ac-
cordmg to the first, the firet merchiant had 15 ells,
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and the second had 18; and since she former would .
have sold 18 ells for 24 crowns, he must have sold
his 15 ells for 20 crowns; the second, who would .
bave sold 15 ells for 12 crowns and a half, must have
sold his 18 ells for 15 crowns; so that.they would
have actually received 35 crowns for their commodity.

But according to the second solution, the first
merchant had 5 ells, and the other 8 ells; and
smce the first would have sold 8 ells for 24 crowns, .
he must have received 15 crawns for his’s ells; also
since the second would have sold 5 ells for 12 crowns

. . and a balf, his 8 ells inust have produced him 20

erowns ; the sum being, as before, 35 crowns.

"CHAP. VII,
Of the Extraction of the Root: of Polygon Numbm.

656. We have shown, in a preceding chapter, how
po!ygonal numbers are to be found; and what we
then called side, is also called aroot. If, therefore,
we represent the root by v, we shall find the follow-
- ing expressmns for al] polygon numbers ;'

. 24

- the IXI gon, ar triangle, is

the 1v gon, or ﬂmare, -~ a
R Lt
]

~thevguu- s g
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tbevrgon - -

& -

the virgon

. the viirgon

- -

the 1x gon

‘the x god-"‘

[3

the #goh -

657. We have a!ready satisfactority shown, that it

- - .

'
-’

-

2&'2 hamad :’,

58—z
o) »
Sa*® -2,
782w b7

. o ]

~4

A~ 3 2y
(n—e)x’-—-(n—- 4}r

2

is easy, by means of these formule, to fmd, for any’
_ given root, any polygon number required : but when
it is required reciprocally to find the side, or thé root
of a polygon, the number of whose sides is knovn,

'the operation is more difficult, and aiways requares -

the solution of a quadratic' equation; ot which ac-

count the subject deserves, in this place, to be seps- -
rately considered ; and in this we shall proceed regu-

larly, beginning with the triangular numbers, and
-passing from them. to those of agﬂntﬂr number of

angles..

- 658. Let therefore 91 be tha given tr langdat

number, the side or root of which is required. .
. I we make this mt......r, we musblnwe

’+.r ‘ =91l; or @ +x'—-182, and 7’==

ot

consequentl Ys

—a+1s9.

x=;3+;/1¥ 182= ——+~/-@= st =13;

- from Whlch we conclude, that the tnangular ‘oot
requived is 13; tha.txs, the tmﬂglé of 13 i 91. -
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659. But, in general let a be the given tmmgular
number, and let its root be required.

Here if we make it =, we have %, or a2*

+1r=2a; therefore, v == o224, and by the rule

o _1+J1+2,, o,,=:_‘i~§/;31t1,

This result gives the following rule: To find a tri-
angular root, we must mulﬁply the given triangular
number by 8, add 1 to the product, extract the root
of the sum, subtract 1 from that root, and lastly,
divide the remainder by .

660. So that all triangular numbers have this
property ; that if we multiply them by 8, and add
unity to the product, the sum is always a square; of
which the following small table. furnishes some ex-
amples :

Triangls 1, S, 6, 10, 15, 21, 28, 36, 45, 55, &c.
8 times -+ 1=9, 25, 49, 81, 121, 169, 225,289, 361, 441, &c.
_ If the given number @ does not answer this con-
dltlon, we conclude, that it is not a real triangular
number, or that no rational root of it can be ‘as-
'sngned '

' 661. According to this rule, let the tm.ngular root
of 210 be required ; we shall have =210, and
4 1=—=1681, the square root of- which ‘is 41;
whence we see, that the number 210 is really trian-

gular, and that its root is 31—2-——1- ==20. Butif 4 were

given as the triangular number, and its root were re-

qmred, we should find it __}_/53_5’_'__;_’ and conse--
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quently lrratlonal however, the triangle of this root.
V33 1

T may be found in the following manner :
Since o= '(33 , We have .r’—w 2~/33 and

adding » to it the sum is 2?4 r=1—26=8, and con-

sequently the triangle, or ‘the triangular number
FP+r_ —4. :

2

662. The quadrangular numbers being the same
thing as the squares, they occasion no difficulty. -
For, supposmg the given quadrangular number tobe g,
and its required root #, we shall have +*=g, and
‘consequently, »==+/a; so that the square root and
the quadrangular root are the same thing,

663. Let us now proceed to pentagonal numbers

Let 22 be a number of this kind, and 2 its root ;.

then we shall have 3‘”; ‘”_.22 or S.r’—. r== 4, ’

or .z"’ .._§.z'+? from whlch we obtain,

V1 a4 1+~/ 529 e_s
=g+ 36+ T=""% =5+
and consequently 4 is the pentagonal root of the
number 22.
‘664. Now let the followmg questlon be proposed
the pentagon a being given, to find its root. '
- Let this root be ., and we have the eq'u'ation
3 —r e 1 '
2 _a,or3.z—.z 2a, or ¥*== r+3, )y -

=4;

means of which we ﬁnd w-q—+ J ....+ that is,
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14+v22at1
=
,tagon, 24a+1 must be a square.
Let 330, foi example, be the given pentagon, the
14+v7921_ 1489 - . °
6 6
665. Agam, let @ be a given hexagonal number,
the toot of which is required.
If we suppose it =, we shall have 2z*—1==,

Therefore, when @ isa real pen- -

root will be 7=2=

-

1 1 ) . . .
oy 2* ""'5"'*'?" ; and this gives

ol F .1 _ 14Y8a+1
‘r_1+7/—1?£+§a=—_———4 -

. So that, in order that @ may be really a hexagon,
8a+1 must become a square; whence we see, that
all hexagonal numbers are contained in t-nang!ﬂar,
* but it is not the same with the roots.

For example, let the hexagenal number be 1225
1449801 1499
= =25.
4 4
666. Suppose a an heptagonal nember,; of which
the root is-required.

" 1its root will be 1=

—-34’

Let thxs r00t be .z, then we shall have =,

or 2=3.r+—a, which gwes

9 2 3+~/ 40d+9
. +J 100+3 ) —5
therefore the heptacronal numbers have thlS property, -
that if they be multiplied by 40, and 9 be added to
the product, the sum is always a square.
_ Let the heptagon, for example, be 2059 ; its root.
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3++'82369__ 349287 29
10 10
"667. Now let a be an octagonal number, of which
the root 2 is required.

~will be found =a=

We shall here have 8P Qr==q, or .z’-—-z-w+—a,

1 _14+¥38a+1 3a+1
3

Consequently, all octagonal numbers are .such,.
that if they be multiplied by 3, and unity be added
to the product, the sum is constantly a square.

For example, let 3816 be an octagon; its root
will be 1+¢;1449 ""3107?_536.

698. Lastly, let' ¢ be a given n-gonal ‘humber,
the root of which it is required to assign; we shall .
* then bave this equation :

whence results r=- +J !

(n—-2)z"-2-(n—4).z_ 4, or (n—z)x’-(n- m_%
consequently =0 n-—42)v+n 5 Whence,

—_ n—4 J (n—;ls)2 2a

=3 (n 2)-|- or

J (Il‘—4')2 S(n» Q)a

z(n 2) =2y T xn—a) °
_n—4+V 8(n—2)a+(n—4)’
. 2(n—2) -

This formula contains a general rule for finding alt
the possible polygonal roots of gnven numbers.

For example, let there be given the xxxv-gonal
number, 3009: since a is here =5009 and n=24,

VOL. 1. z

‘21
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we bave n—2z=28 and n—4=—20; wherefore the

N rrrT T
root, or.r’ 20+ 5249:84-}-400 20-:;728 17.

: " 'CHAP. VIIL.
O the Extraction of the Square Roots of Binomialb.

669. By a binomial* we mean a guantity com-
posed of two parts, which are either both affected
by the sign of the square root, .or of whlch ore, at
least, contains that sign. -

For this reason 3+4+5is a bmomnl aud likkewise

' v/8++3; and it is'indifferent whether the two terms
be joined by the sign 4 or by the sign —. So that
3—+/5 and 3+4+/5 are both binemials.

670. The reason that these binomials deserve par-
ticular attention, is, thiat in the resolution of quadra-
tic equations we are always brought to quantities

. of this form when the resolution cannot be per-
formed. For example, the equation . ¥*==6r—4
gives 2=38~++5.

It is evident, therefore that such quantities must

B ,
. * In algebrawe generally give the name binomial to any quan-
* tity composed of two terms, but Euler has thought proper to.

' confine this appellatlon to those expressions which the -French

analysts call quantitics partly commensurable and partly i&'ommcn
surable. F T.
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often occyr in algebralc calculations; for which rea- -

son, we have already carefully. shown how they are .

to be tréated in the ordinary operations of addition,
" subtrpction, multiplication, and divisian; but we
. have not been able till now to show how their squa.re
Toots are to be extracted ; thet is, so far as that ex--
traction is possible ; for when it is not,” we must be
-+ satisfied with affixing to the quantity another radical
sign. Thus the square root of 3+~/ 2 is wntten

.~/3+~/2

671. And it must here be observed, in the ﬁrst? .

place, that the squares of such binomials are:also bi-
nomials of the same kind ; in which also obe of the
terms -is always rational. ‘
For, if we take the square of ‘a++/, we shall ob.
“tain (@°+6)+2avb. If therefore it were reqpited
reciprocally to take the roet of the quantity (¢*+5)
++2a./b, we should find it to be a+4+/b, and it is un=

doubtediy much easier to form an idea of it in this - N

maonef, than if we had only put the sign 4/ before
that quantity. In the same manner, if we take the
square of v a++/b, we find it (¢+b)+2vab; there-
fore, reciprocally, the square root of (a-+5)+2+v/ak
will be v a+ 4/, which is likewise more easily under-
- stood than if we had been satisfied with putting the
: slgn + before the guantity.

679. Itis here, therefore, chleﬂy reqmred to as-
sign a character, which may, in all cases, point out
whether such a square root exists or nat; fof' which

:purpose we shall begin with an easy quantity, re-
quiring whether we can assign, in the sense that we
have explained, the square root of the binomial

5+2s/6 .
- Z2
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Suppose, therefore, that this root is vo+4+vy;
the square of it is (¢+y)+2vzy, which must be
equal to the quantity 5+2+/6. 'Consequently, the
rational part v+4y must be equal to 5, and the ir-
rational part 2v/.ry must be equal to 2+/6; which
last equality gives v/2y=+'6. Now, sinc¢ rHy=S5,
we have y=>5—, end this value substituted in-the
equation ay="6, produces 52— 2*=6, or 2*=5z—6;

. ~ 5 J/e5 24 _5 1 -
therefore o=—-— 2 Al =2"4-=3. So that
ores=s+y 33 atg . "

© g==3 and y=2, whence we conclude that the
square root of 54-2v'6 is V34,2

673. As we have here found the two equations,
r+y=>35, and 2y==G6, we shall give a particular
method for obtaining the values of x.and y.

. Sipce o4-y==>5, by squaring 2°+-22y+y’=25;
and as we know that 2°—2xy~+y® is the square of
- 2—y, let us subtract from 2+ 3xy+y* =25, the

equation 2y =6, taken four times, or 4zy =24, in
.order to have a*—2zy+y*==1; whence by extrac-

tion we have #—y=1; and as' #+y==5, we shall
easily find #==3, and y==2: consequently, the
square root, of 54246 is v/3+v2. ,
674. Let us now consider the general binomial
a++'b, and supposing its squaré root to be ¥z,
we shall have the equation (2+y)+2¥ zy=—a¥ /b;
so that w+4y=a, and 2/xy==vb, or 4xy=b;
subtracting this square from the square of the equa-
tion v+y==a, er from 2*+2zy+y’=a’, there re-
mains a¥—2zy—+y?=—a’—b, the square root of
which is e—y=Vd*—b. Now r+y=a; we

: va— —Va—h
. have therefore x=“_+_‘l__lf, andy=2="2 ,1’;
2

A
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: consequently, the square root required of a4+ b is -
J +va—b Ja—-*’a" b ‘
2 2

675. We admit that this expressnon is more com-
plicated than if we had simply put the radical sign
+/ before the glven binomial a++5, and written it
v a+vb: but the above expression may be gr eatly
simphﬁed when the numbers @ and b are such that

a*—b is a square; since then the sign 4/ which is
under the radical disappears. We see also,” at the
same time, that the square root of the binomial a++'5
cannot be ‘conveniently extracted, except when
a*—b==c?; for in this case the square root required

J a+c+J but if a®—b is not a perfect

square, we cannot express the square root of a+vb
moré simply, than by puttmg the radical sign +/ be- -
fore it. ,
~ 676. The condition, therefore, which is requisite,
in order that we may express the square root of a
binomial a++/5 in a more convenient form, is, that
a@’—b be a square; and if we represent that square
by ¢? we shall have for the square root in question

] Ja-zi-c + J a'-2-0_ We must farther remark, that

 the square root of a—+/b will be J“;‘C_Ja-z-c,

a*—c?,

for, by squaring this quantity, we get a— QJ

now, since ¢==a’—b, and consequently a’—c*=j,

the same square is found —a—2s/ ——a—?—?n '

a_.“b L ) . . . ~\ P
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. 677. When it i required, therefore, to extract the
square root of a binomial, as a++/b, the rule is, to
subtract from the square &° of the rational part the
square & of the irrational part, to take the square
root of the remainder, and calling that root c, to

write for the root required J a-;-ci J a-;-c'.

h 678.‘-If the square root of 24473 was required,
'we should have a==2 and b=3; wherefore a*—b

\A:=c’==1; so that the root sought ;x/g-l-u/-é.

Let it be required to find the square root of the
binomial 114-6v2. Here we shall have a=11,
~and vb=6v2; consequently, b=36%X2=72,
and g’ b=49, which gives ¢=17; and hence we
conclude, that the square root of ll+6v/2 is
V9+v3, or 34V2
Required the square root of 114-%/30. Here
a=11 and v'6==2+30; consequently, 5==4X30
&=120, a*~b=1, and c¢==1; therefore the root
required is V64 /5. :
679. This rulealso applies, even when the bino-
mial contains imaginary, or impossible quantities.
Let there be proposed, for example, the binomial
144+ —~3, First, we shall have a==1 and
) Jb._4\/—3; that is to say, b=--48, and a*~b
. ==49 ; therefore ¢==17, and consequently thie square
yoot required is «/4+~/-—3—-2+~/—3

Agam, let there be glven —~—+7‘r*/ -3 First, we

hve a-—-""’ \/b‘——‘\/ 3 mdbzzx —3:—%;
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whence g®~b=—= +Z._1 and c=1; and the resuh .

_required is JZ+V—- —+‘/ 3 —-+-—«/—
. Another remarkable example is that in whmh itis -
required to find the square root of 2¢/—1. As

there is here no rational part, we shall have a==0;
now v/ b=2v —1, and b=—4; wherefore a*—b=—4

‘and c=72; consequently the square root required is

_ Jl+¢—1 ==14+=1, and the square of this

- quantity is found to'be 142¢/ —1—1="2¢v/=1.

- 680. Suppose now we have such an equation as
a?==a%+vb, and that g*—b=c"; we conclude

from this, that the value of .r-_—J a+C:tJ a—c’

1

which may be useful in many cases.
For example, if +*==174-12v2, we shall have
r=3+v8=3+42v2.

- 681. This case ogcurs most ﬁ'equently in the reso-
lution of equations of the fourth degree, such as
a*=2ar*+d. For, if we suppose #*=y, we have
 ad==y’, which redices the given equation- to

y'=2ay+d, and from. this we find y-?.::a-j-_;/a"+3,

therefore, 2*=a-+ va*+d, and consequently we have
anotherevolution to perform. Now since v/ b=V 2"+ d, a*+d,
we have b=—=g*+d, and ®—b=—d; if, thercfore, ’

«d s a square, as ¢?, that is to say, d=—c° we
- may assign the root required. : :

Suppose, in reality, that d==—c?; or that the
proposed equation of the fourth degree is #*=242"~¢’,

which glves .r==Ja+° \/a—c
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682. We shall illustrate what we have j Just said by
some examples.

1, Required two numbers whose product may be
105, and ‘whose squares may together make 274.

Let us represent those two numbers by = and y,
we shall then have the two equations,

: 2y=105 -
- Py =274,

The first gives y....l-g— and this value of y bemg

substltuted in the second equation,. we have

. ‘ 2
zﬂ+£§-._274

Wherefore a4+ 105%=274a?, or a%==0742%— 105%,
If we now compare this equation with that in the pre-
¢eding article, we have 2a=274, and —c*=—105?;
" consequently, =105, and 2=137. We therefore
find , , - .
— /1874105 187—105_" .. '
T= Tij————-——--——lli4.
Whence o==15, or #=<x7. In the first case y.....7,
‘in-the second case ys=15; whence the two num-
. bers squght are 15and 7. '

683. Itis proper, however, to observe, that this
calculation may be" pérformed much more easily in
another way. For, since 7°422y+y* and ¥*—2xy

- -+y* are squares, and we know the values of oyt
-and of 2y, we have only to take the double of this
last quantity, and then to add and subtract it from
- the first, as follows: &?+y*=274; to which if we

add 22y =210, we have 2+2.z;y+3; =484, which
- gives v +y=22. -
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But subtracting 22y, there remains a?—2zy+y*
=64, whence we find r—jy=38, Y '

So that 2r==30, and 2y=14; consequently,
- r=15 and y=7. ~

The fellowing general questlon )s resolved by the
same method. - |

2, Required two numbers, whose product may be.
‘m, and the sum of the squares 7. N

If those numbers are represented by » and y, we
bave the two following equations :

ay=m
© P4y=n.

Now 2xy==2m being added to 2?4 y*=n, we have -
. &’ 2ry+y'=n+2m, and consequently, -
' z+y=vn+2m. .

But subtracting 22y, there remains 2%—2zy-}-3*
==n-—2m, whence we get .r-'y=\/ n—2om; we

have, therefore, .z"-lv n+9m + ~/ n—om and’

4 .

1 :
\ y=§~’n+gm¢f§Vne-z7n.

684. 3, Required two numbers, such, that their
product may be 35, and the dlﬁ'erence of their
squares 24.

Let the greater of the two numbers be z, and the
- less y : then we shall have the two equatlons

ay=35, ‘ 3
T
and as we have not the same advantages here, we
shall proceed in the usual manner. Here the first

equation gives y=§§, and, substituting this value. -
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'of y in the,second, we have r’—-l—?—q—-% Mul-
tiplying by 2°, we have a*-— 1925=—244*; or
- 2=Q42°+41225. Now the second member of this
equation being affected by the sign +, we cannot
make use of the formula given above, because hav-
ing ¢ = 1225, ¢ would become imaginary. )
Let us therefore make 2*=—=3; we shall then have

=24x4 1225, whence we obtam

2==12 172 1225, or 2= 194-87; \
consequently a’==124 37, that is to say, either =49
or =—25.

Or if we adopt the first value, we have .z'.._7 and
y=5.

The second value glves r=y —25 and

35 1925

-

- 685. We shall conclude this chapter with the fol-
lowing question.

3, Required two numbers, such, that their sum,
thesr product, and the difference of their squares,
may be all equal.

* Let & be the greater of the two numbers, and y
theless ; then the three following expressions must be
equal to one another: namely, the sum r4-y; the
product a2y ; and the difference of the'squares 2°—y°
Now if we compare the first withi the second, we

" have v+ y=axy, which will give a value of x; for
we shall have y—=xy—~ar=2x(y—1), and .z'-_.——-_y_-i
. y ¥ T
Consequently, ‘r+y==y_ l»-/l- y=y_ D

i
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y—

that is to say, the sum is equal to the pmduct-
and to this also the difference of the squares ougt

A. to"'bvé equal. Now,‘we have 2'—y —y—:z_y-l-l

_y‘l—:ﬁ—f-, so that making this equal to the

F=YFT p
- Y’ ==Yy
quantlty foundy > e have =1 F—g+1°

R ' —2
dividing by 3% we have =i 1= y ;1/. Q;i{l
multiplying by (y— 1)°, we, bave y-—l=—y’+2_y,‘

; and

: consequeutly, y*=y+1; whichgives y=§i J ‘—1 +1

1 ' 1+V5
q_“ po——
e ¢4’ oY=

, and we shall therefore

ik S .
Wz by using the sign +4-.

In order to remove the surd quantity from the
denominator, multiply both terms by s/5+l and
6+2v5__3+vV5

we obtain IR =g

 Therefore the greater of the numbers sought,
or .z, —3+vs. -";/5

Hence their sum .z'+y=2+~/ 5 ; their prbduct '

+o/5 and since 2*= _+:~/5

have, by substitution, 7=

; and the less, Y=

, and y’==

3+ ~/5
2
a*—y'==24+5, being all the same quantity,

, We have also the difference of the squares
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' 686. As this solution is very long, it is proper-
to remark that it may be abridged. In order to
* which let us begin with making the sum r+-y equal
to the difference of the squares *~—3y®; we shall
then have v+y=a?—4*; and dividing by x4y,
because 2*— y*=(v+y) X (v—1), we find 1==2—y
and r=y+1. Consequently, v+y=—2y+1, and
‘?—y’=2y+1; farther, as the product 2y, or y*+y,
must be equal to the same quantity, we have
Y +y=2y-+1, or y>=y+1, which gwes, as above,
: l+\/ 5
2

68/ The pre(;edmo question leads also to the'

solutlon of the followmg

v

5, To find two numbers such, that their sum,
their product, and the sum of their squares, may. be .
. all equal.

" Let the numbers sought be represented by « and v;
then there must be an equality between w+y, xy, and
Al
" Comparing the first and second quantities, we'
have 24y = x4, ‘whence o= FQ—_T ; consequently,
_ y"
XY, .o.r .r-l-y._y_ I
equal to 2°+y% so that we have
: 3 2

, y— 2y1-l+y g—éi_l

Multiplying by 3°—2y+1, the product i
' P—2°+ 2 =y’—¢*, or y4=3y3—3y’;,:;
and dividipg by y°, we_have y*=38y—3: which

Now, the same quantity is
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; consequently,

—1"-'—1-:*-—‘-/:—:31 whenee results 3+v—3.
y - g 'y 1eNc $—1+~/ 3 >

and multiplying both terms by 1—+/—3, the
6—2v—3 or3-—~/:§
4 e

SV —3

Therefore the numbers sought are r'— —

S4+vV—

2

result is r=

and y=-
-3y —3

thelrproductz;y—-3 andlasﬂy,smce.r = —

-

34+3v -3
2 v
P 4yP=3, all the same quantity as required.

~and Y= , the sum of the squares

688. We may greatly abridge this calculation

by a particular artifice, that is applicable likewise

to other cases; and which consists in expressing .

~ the numbers sought by the sum and the difference
' of two letters, instead of representing them by
distinct letters.

In our last question, let us suppose one of the
. numbers sought to be p-+g¢, and the other p—g,
- then their sum will be 2p, their product will be

=7
and the sum of their squares will be

2p*+2¢°,
which three quantities must be equal to each other;
therefore making the first equal to the second, we
have 2p=—p*—¢?, which gives ¢’=p’—2p.
-Substituting this value of ¢* in the third .quan-
tity (2p°+2¢), and comparing the vesult 4p*—4p

, the sum of whlch is w+_1/—3 '

RURVESIN
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with the ﬁrst, AL have 2p—4p —4p, whence

p=§‘ , ' ’ ) o i
‘ 5° —3
, Consequently q’=-z, and g=—3—; %0 that
- the numbers sought arep+q—3+;/- , and
3—v—3 :

p—q:——z——, asbeforc.

CHAP. IX.

Of the Nature of Egquations of the Se'coml Degree.

" 689. What we have already said sufficiently
shows, that equations of the second degree admit
of -two solutions; and this property ought to be
examined in every point of view, because the na: .
ture of equations of a higher degree will be very
much illustrated by such an examination. We -
~shall therefore retrace, with more attention, the
reasons which render an equation -of the second
‘degree capable of a double solution; since they
.uridoubtedly will exhibit an essentlal property of
those “equations.

690. We have already seen, it is tme, thas
this double solution arises from the circumstance
that- the square root of any number may be taken
- either positively, or” negatively ; however, as this
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- principle will not easily apply to equations of higher .

degrees, it may 'be proper to illustrate it by a distinct -
analysis. Taking, therefore, for an example, the qua-

© dratic equation, 2*==12r— 35, we shall give anew
reason for this equation being resolvable in two

ways, by admitting for & the valaés 5 and 7, both of
which satisfy the terms of 'the equation.

691. For this purpose it is most convenient’ to"
begin with transposing the terms of the equation,
so that one of the sides may become 0; the above
equat!on consequently takes the form

*— 1224-35=0;
and it is now requlred, to find a number such; that,
if we substitute it for 2, the quantity 2*— 120435
may be really equal to nothing; after which, we
shall have to show how this may be done in two dlf-
ferent ways.

692. Now, thé whole of this consists in showing
~ clearly, that.a quantity of the form & 190435
may be considered as the product of two factors;
thus, in fact, the quantity of which we spéak is
" composed of the two factors (r—5)X (z2—7).

For, since this quantity must become 0, we must
also have the product (»—5)X(2—7)==0; but
a product, of whatever number of factors it is .
composed, . becomes equal to O, only when one of
those factors is reduced to 0 ; this is a fundamental
principle to which we must pay particular attention,
especially when equations of higher ,degrees are
treated of.

693. It is therefore easily understood, that the
“product (z—5)X (r—7) may become 0 in two
ways : -first, wherf the first factor.2—5=0; and
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also, when the second factor r—7==0. Iu the
first case =5, in the second r==7.- The reason
is therefore very evident, why such an equation
. a?=1%r+435=0, admits ‘of two solutions; that
is to say, why we can assign two values of z, both
‘of whith equally satisfy the terms of the equation;
which depends upon this fundamental principle, that
the quantity 2*— 122435 may be represented by
the product of two factors. |
" 694. The same circumstances are found in all
equations of the second degree: for, after having
brought all the terms to one side, we always find
an equation of the followmﬂ form 2’—ar+4-b=0,
and this formula may be always considered as the
product ‘of two factors, which we shall represent -
by (v—p)X(v—y¢), without concerning ourselves’
. what numbers the letters p and ¢ represent, or
whether they be negative or positive. Now, as
this product must be =0, from the nature of our
equation, it is evident that this may happen in two
cases; in the first place, when #==p; and in the
second place, when v==¢; and these are the two
values of 2 which satisfy the terms of the equation.
695. Let ys here consider the nature of these
‘two factors, in order that the multiplication of the .
one by the other may exactly produce 2?—ax--b.
Now by actually multiplying them, we obtain
P*—(p+q) x+pg; which quantity must be the’
‘same as a’—axr+b, therefore we have evidently
p+g=a; and pg=0b. Hence is deduced this very '
- remarkable property ; that in every equation of the
form a?—ar+0=0, the two values of » are such,
that their sum is equal to @, and their product -
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" equal to b; it therefore necessarily follows that,
" if we know one of the values, the other also is ..
easily found.

696. We have at present considered the case in
which the two values of z are positive, and which
requires the second term of the equation to bhave
the sign —, and the third term to have the sign 4+ :
let us also consider the cases in which either one
or both values of » become negative. The first
takes place, when the two factors of the equation -
give a product of this form' (v—p) X (¥+9¢);
for then the two values of 2 are o==p, and
x==—¢ and the equation itself becomes

| 2+ (g—p)r—pg=0;
the second term having the sign +, when ¢ is greater
than p, and the sign —, when ¢ is less than p ; lastly,
the third term is always negative.

The second case, in which both values of 2 are
negative, occurs, when the two factors are

(e+p)X(r+9);
for we shall then have 2==—p and g==—g¢; the
équation itself therefore becomes
2*+(p+q) 2+pg=0,
in which both the second and third terms are affected
by the sign +-.

697. The signs of the second and the third
terms consequent]y show us the nature of the roots
of any equation of the second degree. For let the
equation be 2% ...av....b=0, now, if the
second and third terms have the sign 4, the two
values of » are both negative; and if the second
term have the sign —, and the third term 4, both
values are positive ; lastly, if the third term also .

YOL, I. 2A
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has the sign —, ene of the values in question is pe-

sitive. But in all cases whatever, the seeond term

contains the sum of the. two values, and the third
term countains their product.

698. After what has been said, it will be very
‘easy to form: equations of the second degree con-
taining asy two given values. Thus, for example,
Jet there be required an equation such, that onme
ofi the values of » may be 7, and the other —3
We first form the simple equations »==7 and
2 x=%—3.; thence these, r—7==0and ¥43==0,
which give us, in this maoner, the factors of the
equation required, whicl consequently lyecomes
2*—4r—21=0. Applying here, also, the above
rule, we find' the two: given values of »; for i
‘al==42+-21, we have .r—2+~/'§§=2+5 that is
to say, .r=7, or r=-—3.

699. The values of » may also happen to be equal.
Suppose, for example, an equation be required, in
which both values may be 5: bere the two factors
will be (r—5)X(z~5), and the equation sought
will be 22— 102r4-25=0; in this equatwn, & appears
to have only one value; but it is because z is
twice found =35, as the common method of reso-
lution shows ; for we have 2*=102s~25; wherefore
2=5+v0=5 + 0, that is to say, » is in two
ways =3J.. :

700. A very remarkable case sometimes ogcurs,
in,which bath values of » become imaginary, or ims
possible; and it is then wholly impossible to assign
any value for that would satisfy the terms of the
equation. Letit be propesed, for example, to divide
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the humber 10 into two parts, such that thelr product \

may be 30. If we call one of those parts , the

" other will be 10—a, and their product will be

102—2" = 30; wherefore o* = 102—30, and
r=54+ =5, which being an imagin‘ary number,
shows that the question is 1mpos51ble

701. It is very important, therefore, to discover
some sign, by means of which we may lmmediately
kiow whether an equation of the second degree'is
possible or not.

Let usresume the general equation 7°— ap 4. b=o.

We shall have .r =ar—>b, and r~—a+J —a?=b.

This shows, that 1f b be greater than —d’é or 45

greater than 7, the two values qf 2 are always ima-
ginary, since it would be required to extract the
square root of a negative quantity ; on the contrary,
if 5bé less thar i.a* 6t even less than @, that is G
say, if it be a negative number, both values wxll be pos-
sible or real. But, whether they be real or imaginary,:
it is no less true, that they are still expressxble, and
always have this property, tha,t their sum is equal to
a, auq their product equal to d. . Thus;n the equation,
! -6r+ 10==0, the sum of the two values of
x muast be 6, and, the product. of these two valueq
must’ also be 10 by the qucstlon hence we find,
.r=3+~’ —1, and 2=3—+v -l, quantities whose
sum is 6, and the product 10.

702. The expression whxch we have Just found

. 2A2
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!

may likewise be represented in a manner more ge-
neral, and so as to be applied to equat.ions of this
form, f.z"+g.z-+h=0 for this equatxon gwes
—87_
= j f aqd r= iJ i
—FetVe—4fh
the two values are imaginary, and consequently the
equation impossible, when 4fh is greater than g?;
that is to say, when, in the equation f*— g2 +h=0,
four times the product of the first and the last term
exceeds the square of the second term : for the pro-
duct of the first and the last term, taken four times,
is 4fha®, and the square of the middle term is g%+*;
now, if 4fha? is greater than g2% 4fh is also greater
than g%, and, in that case, the equation is evidently
impossjble ; butin all other cases, the equation is pos-
sible, and two real values of > may be assigned : it
is true, they are often irrational; but we have already
‘seen, that, in such cases, we may always find' them
by approximation : whereas no approximations can
take place with regard to imaginary expressions,
such as ¥/ —5; for 100 is as far from being the
value of that root, as 1, or any other number.

703. We have farther to observe, that any quan-
tity of the second degree, 2?+ax-+b, must always
beresolvableinto two factors, such as (x4p) X (v4¢).
For, if we took three factors, such as these, we
should come to a quantity of the third degree; and
teking only one such factor, we should not exceed
the first degree. :

; whence we conclude, that

—\
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It is therefore certain, that every equation of the
second degree necessarily contains two values of ,
and that it can neither have more nor less.

704. We have already seen, that when the two
factors are found, the two values of » are also known,
since each factor gives one of those values, by making
it equal to 0. 'The converse also is true, wiz. that
when we have found one value of , we know also
one of the factors of the equation; for if »==p re-
presents one of the values of &, in any equation of
the second degree, 2—p is one of the factors of that
equation ; that is to say, all the terms having been
brought to one side, the equation is divisible by
2—p; and farther, the quotient expresses the other
factor. ' | .

705. In order to illustrate what we have now
said, let there be given the equation 2*+40—21=0,
in ‘which we know that »==3 is one of the values of
z, because 3 X 3'4+4X31—21==0; this shows, that
r—3 is one of the factors of the equation, or that
2*+4x—21 is divisible by x—3, which the actual
division proves. Thus,

r=3) ¥’ +4r—21 (.r+7
at—32

7-1'—" 21
7r—921

0, :

So that the other factor is #+47, and our equation
is represented by the product (v—3)X (2+47)=0;
whence the two values of » immediately follow, the
first factor giving r=3, and the other v==—7.
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CHAP. X.
Of Pure Equations of the lejﬁ Degree.

706.. An equation of the third degree is said to be
pure, when the cube of the unknown quantity is
equal to a known quantity, and neither the square of
the unknown quantity, nor the unknown quantity’
itself, is found in the equation; so that ‘

2°==125, oy, more generally, ’=4, r’=%, &e.

are equations of this kind.

707. And it is evident how we are to deduce the
value of # from such an equation, since we have only
to extract the cube root on both sides. -Thus the.
equatlon =125 glves r==5, the equatlon .zv’_a

gives .z_i/a, and the equation .f’._ glves

w—V 7 or .r_..i—;z therefore, to be able to resolve

such equations, it is sufficient that we know how to ex-
tract the cube root of a given number.
708. But in this manner, we obtain only one

value for z: as, howevet, every equation of the se-'
" cond degree has two values, there is reason to sup-

pose that an equation of the third degree has also
more than one value; qnd it will be deserving our at-
fennon to u!vesngatp this; and, if we find that,
in sueh equations must have several values,

.,..

w1ll be very useful to dctermme thqsa Vqlues
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709. Letus conslder, for example, the eguation
2°==8, with a view of deducing from it all the num- -
beérs whose cubes are 8. As z==2 is undoubtedly -
such a number, what has been said in the last chapter
shows that the quantity 2°—8 ==0, must be divisible
. by 2—2: let s therefore perform this division.
r—2)a°—8 (.z"‘+2r+4

, a’—zw

" ar—s
2&1’2 - 4«1‘

4r—8
41'_8 -

. 0. |
 Hence it follows, that our equation, +*—8=0,
may be represented by these factors ;

(#—2) X (22 + 22 +4)==0.

710. Now the question is, to know what number
we are to substitute instead of z, in order that 2°=38,
or that 2°— 8==0; and it is evident that this condition.
is answered, by supposing the product which we have
just now found equal to O: but this happens, not
only when the first factor 2—2=0, which gives us
=2, but also when the second factor
P*42r4+4=0. Let us, therefore, make
2?4 9r+4+4=0; then we shall have 4* = —2r—4,
and thence r==—14v~=3. : :

711. So that beside the case in which #==2, which
corresponds to the equation 2°==8, we have two
other values of 2, the cubes of which are also 8;
angd these are,
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r==14++~38, and r=—1—v =3, as will be
evident, by actually cubing these expressions;

—14v =3 —1—v—3
~14v=3 . . =l=y=3
1—v/—3 1+v—3
—V—3—3  +v—3=3
~2—2v/ —3 square, —24-2y/—3
~14+ V=3 = —l1— =3
. etav—3 9—2v/—3
—~2v/ =346 " 42V —3+46
'8 cube, 8.

It is true, that these values are imaginary or im-
possible ; but yet they deserve attention.

712. What we have said applies in general to
every cubic equation, such as 2*=a; namely, that
beside the value r==Va, we shall always find two
other values. To abridge the calculation, let us
suppose ¥Va==c, so that a==c% our equation will
* then assume this form, &*—c®=0, which will be
divisible by w—c, as the actual division shows :

- w=c) = (PP 4cr4c?
r—cy? '
c*—¢
c*—cr

C’J‘— 83
Er—c®

————

) 0' .
~ Consequently, the equation in question may be re-
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presented by the product (»— c) X (2?4 cr+c%)==0,
which is in fact =0, not only when r—c=0, or
a==c, but also when 24 cr-+c¢*=0. Now this ex-
_pression contains two other values of & ; for it gives

c. [fct
P=—cr—c® and x::——_-j_—J——c’, [+
.2 4
x:ii:%.:g, that 18 to say’ ‘zv_:_c;.-;J—
—1+vV~-3
._..-——2——-—Xc.

718. Now as ¢ was substituted for 3/a, we con-
clude, that every equation of the third degree, of
the form z*=4, furnishes three values of = expressed
in the following manner:

1st =V a,
2d r=— %{——SXV(I,
3d a= 1—2‘/——Xi/a.

' 'This shows, that every cube root has three different
values; but that one only is real, or possible, the
two others being impossible; which is the more
remarkable, since every square root has two values,
and sinee we shall afterwards see that a biquadratic
root has four different values, that a fifth root has
five values, and so on.

In ordinary calculations, indeed, we emp]oy only
the first of those values, because the other two are
imaginary ; as we shall show by some examples.
 714. Question 1. To find a number, whose square

multiplied by its fourth part, may produce 432,

Let  be that number; the product of 2* multiplied



‘ N

362 ELEMENTS SECT. IV,
by %.r must be equal to the number 432, that is to

say, i.r’——p 432, and 2°=1728: whence by ex-

tracting the cube root we have r==12. ‘

The number sought therefore, is 12; for its square
144, multiplied by its fourtb part, or by 3, gives
432. .

715. Question 2. Required a number such, that
if we divide its fourth power by its half, and add 14§
te the product, the sum.may be 100. . .

_ Calling that number ' ; its fourth power will be

#*; dividing by the half, or éw, we have 22°; and
adding o that 1421.’, the sum must he 100: we have
- therefore 22°+ l4-:-'= 100 ; subtracting 14.%, therere-

mains 2.&:%—2 ; dividing by 2, gives .r’=3:—3, and

' extracting the cube root, we find 2=2%

* 716, Question 3. Some officers being quertered
in a country, each commands three times as many
hersemen, and twenty times as many foot-soldiers,
as there are officers; also a horseman’s monthly pay
amounts to as many florins as there are officers, and
each foot-soldier receives half that pay; the whole
monthly expense is 13000 florins. Required the
- pumber of officers. :
If 7 be the number required, each officer will bave
under-him 82 horsemen and 202 -foot-soldiers. So
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that the whole number of horsemen is 327, and that
of foot-soldiers is 202°.
Now, each horseman receiving z florins per

month, and each foot-soldlerrecemngl.rﬂorms, there-

fore the pay of the horsemen each month, amounts
to 347, and that of the foot-soldiers to 104°; conse-
quently, they all together recgive 134° ﬁorins, and this
sum must be equal to 13000 florins ; we have there-
fore 13.13—-13000 or 2°= =1000, and ¥y==10, the
number of officers requlred

717. Question 4. Several merchants enter into a
partnershlp, and each contributes a hundred times as
many sequins as there are partners; now they send
a factor to Venice, to manage their capital; who
gains, for every hundred sequins, twice as many se-
quins as there are partners, and he returns with 2662
sequins profit. Required the number of partners.

If this number is supposed ==z, each of the part-

“ners will have furnished 1002 sequins, and the whole

cappta.l must have been 1002*; now, the profit being
Qv for ]00 thq capxtal must have produced 22°; sa
that 21’—2662, or .rs—133l ; this gnves r=11,
which is the number of partneré

7 18 Questwn 5. A country glrl exchanges gees@
for hens, at thq rate of twq geese for three hens ;

which hens lay eachg as many eggs as there are

gegse ; and ‘the gul sells at market nine eggs for as
mapy, § sous as each hen had laid eggs, receiving in all
79 s0yS ; how many. geese did she exchange ?

Let the number, of geese =z, then the-number of,
hens Wthh the girl will havereceiyedip exchange wpll be
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3., and each hen laying Lz eggs, the numbe £
g™ ying g% €ges ro
eggs will be =%v’. Now, as nine eggs sell for
1 8, .1
2% sous, the money which 2" eges produce is -2—4.1’,

and él:iw’,=72. Consequently 2°=24X72==x8X3 .

X 8X9=8X 8X 27, whence r==12; that is to say,
the girl exchanged twelve geese for eighteen hens.

CHAP. XI.

Qf the Resolution of Complete Eqaatibm of the
Third Degree.

'719. An equation of the third degree is called
-complete, when, beside the cube of the unknown
quantity, it contains that unknown quantity itself, and
its square; so that the general formula for thesé
equations, bringing all the terms to one side, is

‘ a2°+ b+ crdd=0.

And the purpose of this chapter is to shaw haw we
are to derive from such equations the values of z, -
which are also called the roots of the equation. We

- suppose, in the first place, that every such an equa-
tion has three roots; since it has been seen, infthe
-~ last chapter, that this is true even with regard to pure
equations of the same degree.
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720. We shall therefore first consider the equa-
tion 2°—6a?+110—6==0; and, since an equation
of the second degree may be considered as the fro-
duct of two factors, we mayalso represent an equation
of the third degree by the product of three factors,
which are in the present instance, -

(e—1)X(r—2)X(r—3)=0;

since, by actually multiplying them, we obtain the
given equation; for (v— 1) X (v—2) gives 2*— 3r4-2,
and multiplying this by #— 3, we obtain. 7°— 6224
112—6, which are the given quantities, and which
must be==0. Now this happens, when the product

- (e—1)X(z—2)X(r—3)=0; and, as it is sufficient
for this purpose, that one of the factors become =0,
three different cases may give this result, namely,.
when £—1=0, or v=1; secondly, when r—2=0,.
or =2 ; and thirdly, when 2—3=0, or +=3.

We see immediately also, that if we substituted,
in lieu of &, any number whatever beside one.
of the above three, none of the three factors would .’
become equal to 0; and, consequently, the product
would no longer be 0; which proves that our equa-
tion can have no other root than these three.

721. If it were possible, in every other case, to
assign the three factors of such an equation in the.
same manner, we.should immediately Mave its three
roots. Let us, therefore, consider, in a more ge-
‘neral manner, these three factors, 2—p, 2—g, v—r;
now if we seek their product, the first, multiplied by
the second, gives 2°—(p+¢)vr-+pg,” and this pro-
duct, multiplied by x—r, makes

B (p+g+1)*+(pg+pr+gr)e—pgr. -
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. Hereg, if this formula must becomé =0, it may
Kappén in' three cases: the first is that, in which

2=!p==0, or v==p ; the second is, whem ¥+—g=0,
or r==¢; the third fs, when 7=r==0, of v=r

722. Let us riow répresent the quantity found, by
the equation 2°—a2®+br—c=0; it i§ evident, in
‘order that its thiiee roots may be r==p, #<=q, r=r,
that wé must havé,

. 1st, a=p+¢+7y
, od, B=pg-+prqr, nd
3d, c=pgr.

And we perceive, from this, that the second term
" ¢ontains the suii of thethree roots; that the third term
containg' the sut' of the products of the roots taken
two by two’; and lastly, that the fourth term consists
of tie prodiict of all the thrée roots multiplied
together. ' .

From' this last property we may deduce an impor-
taht trith, which'is, that ai’ equation of the third
degreé can liave no other rational roots than the di-
-visors of the ldst térm; for, sirice that term is the
prodirct of the' threé roots, it must be divisible
by each of them. So that when we wish to find a_
root by trial, we'inmediately see what numbers we
aire. 5 use ¥, o

.For examflé, let us consider the equation

S eemer s e

* We shall 'find in 'the sequel; ‘that'this'is a gerieral property’
of equations of any dithénsion; and as this trial requires us’
to know all the divisors of the last term of the efeéation, we
may for this purpose have recourse to the tables pointed out at
page27.. R T. . : :
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=6, or'a"a-x’-e- 6==0. Now as this eqiutioﬁ
can have hoother vational roots but numbeys which are
factors of the last term 6, we have only the i¥mbers

1,-2, 8, 6, to try with, and the resalt of these triafs

wrll be: as follows :
Ifr=1, wehave I—1—<6==6.
If #5=2, we have 8-<3—6=0.
If.z=3, we have . 27—3—6=18.
If =6, we have 216—6—6=204. *
" Hence we see, that 2==9 i5 one' of the' rdots
of the given equation; and, knowing this, it is easy
to find the other two; for x==2 being one of the

roots; »—2 is a factor of the equation, and we have -

only to seek the other factor by means of division, as
follows :
Te=2) 2= 2r—6 (z”+2x+3
- P

¥ —.z'—6 -
vt —4ax

Slr_ 6
3v—6

. , 0. .
Since, therefore; the formula is represented by

the product (#—2)X(2#+2x-+3), it- will become:

=0, not only when x—2=0, but also when’

ot p2r43==0: and, this last factor gives
2%=—2r—3, consequently r=—14~—2;
and these are the other two roots of our equation,
- which are evidently impossible, or imaginary.

723. The method which-we have explained, is.

applicable only whert the first téerm: 2* is'multiplied’

~
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by 1, and the other terms of the equation have
integer coefficients ; therefore, when this is not the
case, we must begin by a preparation, which consists
in transforming the equation into another form having
the condition required, after which we make the trial’
that has been already mentioned.

Let there .be given, for example, the equatlon

a’—Sz’+Hr—§—0

4 4
and as it contains fourth parts, let us make r—_-g,

whlch will give
¥ By lly 3
s~ 4T —Z—O
and multlplymg by 8, we shall obtain the equat»on
YP’=—6y*+11y—6=0,
the roots of which are, as we have already seen,
y=1, y=2, y=3; whence it follows, that in the

~ given equation, ng have .r=%, r=1, =g

724. Let there be an equation, where the coeffi-
cient of the first term is a whole number but not 1,
and whose last term is 1; for example,

, 62°—112°462—1=0;
here, if we divide by 6, we shall have

' 16[ ’+x—%—-0 which equation we may clear

e
of fractions, by the method we have just explamed.

First, by making e=7, we shall have

6
1y y 1
216 116+6 6“'0

and multiplying by 216, the equation will be-
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come 3°— 11y°+36y—36=0. But asitwould betoo_

* long to make trial of all the divisors of the number 36,
and as the last term of the original equation is 1, it

is better to suppose, in this equation, a=L; forwe
z

6 1. 6

shall then have —-—-|-——- 1-—30, which, multipl‘ie'd"

2 ‘
by 2°, gives 6—11z+Gz —2%=0, and transposing
all the terms, z°—62%+ 113—6=0"; where the roots
are 3==1, ,..—.2 z_3 whence it follows that in
1

1.
our € uatnon = l =, p=—-,
q 2 T= 3

725. It has been observed in the precedmg ar-

ticles, that in order to have all the roots in positive
numbers, the signs plus and minus must succeed
each other, alternately ; by means of which the
equation takes this form W-4a.z"'+br—c—0, the
signs changing as many times as there are positive
roots. If all the three roots had -been negative;
and we had multiplied together the three factors
.r+p, 2+4q, v+, all the terms would have had
the sign plus, and the form of the equation would
-have been 2*+4a2*+br+c==0, in which the same
signs follow each other tlzree tlmes, that is, the
number of negative roots. o

- We-may conclude, therefore, that as often as the
signs change, the equation hes positive roots, and
that as often as the same signs follow each other,
the equation has negative roots ; and.this remark is
very imiportant, because it teaches us whether the
divisors of the last term are to be taken aﬁirmatlvely
_or negatively, when we wish to make the trial which

. has been mentioned.

VOL. 1. . o - 2B
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796. Tn order to illustrate what has been said

- by an example, let us consider the equation

¥*+2°=34r+56 =0, in which the signs are
changed twice, and in which the same sign octurs
only once. Here we concludé that the equation

‘ ‘has two positive roots and one negative root; and

as these roots must be divisors of the last term 56,
they must be included in the numbers *1, 9 47

. 8, M4, 28,56

Let us, therefore, make 2==¢, and we shall have .
8+4—684-56==0; whence we conclude that
Z==2 13 a positive root, and that therefore r—2isa

-divisor of the equation, by means of which we easily
~ find the two other roots; for actually dividing by *

r—2, we have
w-—Q) P2t 34.r+56 (4437 —28
=222

; ——— Al
32%—34x - A
, Sat=—62

— 281456
— 282456 .

——

' 0. - : .
And making the quotient 2*432r—28=0,

“we find the two other roots, which will be

. .r—> -i~/9+28-—,-—+-— that is. .r=4 or

m=—7‘, and takmg into account the root found be-

fore, namely, x==2, we clearly perceive that the
~equation has two positive and one negative root. .

We shall give some examples to render this still more
evident. . )
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797. Qu.esti'or'zll.' There are two numbers, whose
“difference 'is 12, and whose product multiplied by
their sum makes 14560. What are those numbers-?
~ Let 2 be the less of the two numbers, then the
greater will be 2412, and their product will be
2%+ 122, which multiplied by the sum 22412, gives
2%+ 362°+ 144 = 14560 ;
and dividing by 2, we bave
P+ 1822+ 720 ==7280. ,
‘ Now, the last term 7280 is too great for us to
make trial of all its divisors, but as it is divisible
by 8, we shall make v==2y, because the new
. equation, 8y°372y’+ 144y==7280, after the sub-
stitution, being divided by 8, will become
¥*+9y*+18y=910, tosolve which weneed only try
the divisors 1, , 5, 7, 10, 13, &c. of the number 910:
where it is evident, that the three first, 1,2, 5, are
‘too small ;. beginning therefore with supposing y=7,
- we immediately find that number to be one of the

" . roots ; for the substitution gives 3434441+ 126=

910. It follows, therefore, that v==14 ; and thetwo
other roots will be found by dmdmg ¥*+9y*+ 18y
~910 by y—7, thus:

y—=7) ¥’ +9y°+18y—910 (3°+ 16y+4-130

: r=79 _

l6y2.+ 18y
16y*—112y

130y—910
130y-—910

0.

Suppoamg now this quotient y +16y+l30...o,
2B 2 ' .
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y .

we shall have y*==—16y—130, and thence
=—8++/~66; a proof that the other two roots
. are impossible,

‘The two numbers sought are therefore 14 and 26; y

the product of which, 364, multiplied by their sum,
40, gives. 14560. \

728 Question 2. To find two numbers whose
difference is 18, and such, that their sum mul-
tiplied by the dlﬁ'erence of their cubes, may produce
275184. '

Let & be the less of the two numbers, then
‘v418 will be the greater; the cube of the first
will be 2% and the cube of ‘the second

_ 2’ +542"+972r+ 5832 ;
the difference of the cubes

542°+9720+ 5832 = 54(«*+ 182+ 108),
‘which multiplied by the s‘um 2318, or 2(r+9),
.gives the product '
® 108 (2°+272°+ 270r+972) = 275184
And dividing by 108, we have

- 2*4-272°+-270r+972 == 2548, or
2°4-2727 42700 =1576.
~ Now the divisors of 1576 are 1, 2,4, 8, &c. the two
first of which are too small; butif we try r=4, that
number is foynd to satisfy the terms of the equation.

It remains, therefore, to divide by #—4, in order

"to find the two other roots; which division gives -
the quotient 2*+ 312+ 394 ; making therefore
.z" =—31r—3894, we shall find

e

p=31, [961_1376
ST eTNY e T

that is, two imaginary roots. -

- Hence the numbers.sought are 4 and 22.

[ 4
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. 729. Question 3. Required two numbers whose:

difference is 720, and such, that if the less be mul-

tiplied by the square root of the greater, the product ‘

may be 20736.
" If the less be represented by z, the greater will'
evxdently be 24-720; and, by the question,
2V F720=20736==8. 8 . 4. 81.
Squaring both sides, we have . ‘
22 +720)==2"+7202"=8" . 8%. 47. 81"
Let us now make #==8y ; this supposition gives
8%°+720. 8%*=8". 8°. 4°. 81%;
and dividing by 8% we have Y+90y*=8. 4. 81%
Farther, let us suppose y==2z, and we shall have
82°4-4. 90z’z8 4?.81%; or, dmdmg by 8,
BS44550==47. 81%
Again, make =9, in order to have
9P +45 . 9Pu’=4* . 9%, because dividing now by
9°, the equation becomes #’+45u*=4?. 9, or.
W (u+5)=16 , 9=144; where it is obvious, that
u==4; for in this case u?=16 and u+5=9: since,

therefore, #=—=4, we have z==36, y==79, and .

2==576, which is the less of the two numbers sought ;

so that the greater is 1296, and the square root of

this last, or 36, multiplied by the other number 576, °
gives 20736.

780. Remark. This quest_ion admits of a simpler
solution ; for since the square root of the.greater
number, multiplied by the less, must give a product
equal to a given number, the greater of the two
numbers miust be a square. If therefore, from this
consideration, we suppose it to be a° the other

number will be 2?~720, which being multiplied by .

.
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the square root of- the greatér, or by =, we have
2°—7202=20736 =64.27.12.
If we make r==4y, we shall have
64y —720. 4y=64 27.12,-or .
Supposing, farther, yf-- Sz, we find
272*—1353=97 . 19, or dividingby 27,2~ 52=12,
or 2’—~52—12¢=0. The divisors of 12 are 1, 2,
8, 4, 6, 12; the two first are too small ; but the sup-
position of =3 gives exactly 27— 15—12=0.
Consequently, z==8, y==9, and r==36; whence we .
conclude, that the greater of the two numbers sought,
or #* ==1296, and that the less, or 4 —720, =576,
as above.
731. Question 4. There are two numbers, whose
difference is 12; the product’ of this difference
.by the sum of their cubes is 102144 ; what are the
numbers ? , _
Calling the less of the two numbers z, the
greater will be »4-12: also, the cube of the first
is 2% and of the second 2%+ 362%+44327+ 1728 ;
the product also of the sum of these cubes by the
"difference 12, is
12(22°+ 362+ 4322+ 1728) = 102144 ;

‘and dividing successively by 12 and by 2, -we have -
2°+182°+2160+864=4256, or
2°4 182242160 =3392=28. 8. 53.

If now we substitute #==2y, and divide by 8, we
shall have 3*+9y*+54y=38 , 53=424.

" Now the divisors of 424 are 1, 2, 4, 8, 53, &c.
but 1 and 2 are evidently too small; but if we make
y=4, we find 64+4144+216=424. ~ So that
-y==4 and »r==8; whence we conclude that the two
pumbers sought are 8 and 20. '
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. '732. Question 5. Several persons form a partner-
ship; and establish a certain capital, to which each

contributes ten times as many pounds as there are )
persons in company, and they guin 6 plus the num-
ber. of partners per cent., also- the whole profit is
‘392 pounds; required how many partners there are ?
Let = be the number required ; then each partner
will have furnished 102 pounds, and conjointly 102°
‘pounds ; ‘and since. they gain x+6 per cent. they
4 3 +6.I‘2

’

wall have . gained mth the whole capital, -

uhlch i3 to be made equal to 392.

We have therefore ,r’+6 r*=23920, consequently‘
' makmg a#==2y and dividing by 8, we have

y +3y’—490

Now the divisors of 490 are 1, &, 5, 7, 10, &c
the three first of which are toa small; but if we
suppose y=17, we have 343+ 147==490; so that .
y=7, and r=14.
~ There were therefore fourteen partners, and each
-, of them put 140 peunds into the common stock.

783. Question 6. A company of merchants have
a common stock of 8240 pounds; and each con-
tributes to it forty times as many pounds as there
are partoers ;. with which they gain as much per -
cent. as there are partners; now on dividing the
profit, it is found, after each has received ten times
as many pounds as there are persons in company, -
that there still remains 2241 Required the number
of merchants.

If  be made to represent the number, each will
have contributed 40z to the stock ; consequently all
-together will have contributed 40..1", which makes the .
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stock ==402*+-8240; now with this sum they gain
x per cent.; so that the whole gain is '

40z° 8240:- 4 28 1824

Too+t 100 —10° T 10 ‘ﬁ+ _
From whnch sum each receives 101', and con-
sequently they all together receive 102 leaving a
remainder of 224 ; the profit must therefore have

“been 104°+4224, and we have the equation

Bﬁ+412r

412

— IQ.z*5+ 224,

Multiplying by 5 and dividing by 2, we have
2’4 2060=252°+ 560, or z*< 25‘z’+20.6.z'—‘560
==0: the first, however, will be more convenient for
trial. .Here the divisors of the last term are 1, 2, -

.4, 5,7, 8, 10, 14, ‘16, &c. and they must be taken
positive, because in the second form of the equation
the signs vary three times, which shows that the
three roots are positive.

Here, if we first try r==1 aud =2, it is evi-
dent that the first side will become less than the -
~gecond. We shall therefore make tnal of other
divisors. .

When .z'—'-4- we have 64+824—400+560,
which does not satisfy the terms of the equation. |
- If 2=35, we have 105+1030—625+560
which likewise does not succeed.

But if #==7, we have 3484 1442= 1225+560

" which answers to the equation’; so that r=7 is.a
root of it. Let us now seek for the other two,
dividing the second form of our equation by

- 2—7. Thus,
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2=T7) 2*=252°+2062— 560 (2°— 187+ 80

-~ 184° 4206
- —182°+4 1262
802— 560
800—560
< 0.

877

- Now making this quotient equal to nothing, we
have 4°—18s+80=0, or 2’==182—80, which
gives 2==9=1, so that the two other roots are

r=8§; or 2=10.

This question therefore admits of three answers,

" According to the first; the number of merchants

i 7; according to the second, itis 8; and, ac-
‘cording to the third, it is 10; and the following
‘tablet shows that all these will answer the conditions

T of the question :

Number of merchants ' 7 8 .
Each contributes 40 - - 280 320

10

400

In all they contribute 402* 1960 2560 4000
The original stock was -~ - "~ 8240 8240 8240

The whole stock is 4022
48240 - -
W:tb this capital they gain

} 10200 10800 12240

as much per cent. asz 714 - 864 . 1224

there are partners - -
Each takes fromit - - - 70 80
So ]tga:t they all together take} 490 640
Therefore there remains - 224 224

’

. 100

1000
224
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~ CHAP. XIL
Of the Rule of Cardan, or of Scipio Ferreo.

" 734, When we have removed fractions from an .

equation of the third degree, according to the manner

which has been explained, and none of the divisors

of the last term are found to be a root of the equa-

tion, it is a certain proof, not only that the equation

has no root in integer numbers, but also that a frac-

tional root cannot exist, which may be proved as

" follows.

. Let there be given the equatxon P RY v
=0, in which, &, b, c, express integer numbers.

I we suppose, for example, .r=g, we shall have

%Z—2a+—b—c=0 now the first term only has
8 for the denominator; all the others being elther
integer numbers, or numbers divided only by 4 or
" by 2, and therefore cannot make 0 with the first

term : and the same thing happens with every other

. .fraction (Appendn note 4)

735. As in those fractions the roots of the
equation are neither integer numbers, mor frac-
_ tions, they are irrational, and, as it often happens,

" ¥magina The manner, therefore, of expressin
ry- P! 4

them, and of determining the radical signs which
affeet them, forms a very important point, and de-

serves to be carefully explamed in this place. This

[—
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method, called Cardan’s Rule, is ascnbed to Cardan,
though it properly belongs to Scipio Ferreo, being
discovered by the latter about the year 1500 *.

736. In order to understand this rule, we must
- first attentively consider the nature of a cube, whose-
root is & binomial.

Let a5 be that root; then the cube of it wnll be

@+ 3a%h+3ab* +5°, and we see that it is composed
~ of the cubes of the two terims of the binomiu), and
beside that, of the two middle terms, 3a*b+43ab?
which have the commen factor 3ab, multiplying the
other factor, a4-b; that is to say, the two terms con-
. tain thrice the product of the two terins of the bmo-
mial, ‘multiplied by the sum-of those terms.

737. Let us now suppose r==a+5 ; taking the
cube of each side, we have 2*=a*+ b3+ 3ab (a+0d):
and, since a4+b=—wx, we shall have the equation,
C =a’+b*+3abr, or a*=3aba+a*+b%. one of
the roots of which we know to be v=—=a+6. When-
" ever, therefore, such an equation occurs, we may
-assign one of its roots.

For example, let =2 and b=3; we shall then
have the equation a°*=18v+35, which we know
with certainty to have x=15 for one of its roots. =

738. Farther, let us now suppose a*=p and
b*==¢ ; we shall then have a==%¥p and b=¥/¢, con-
sequently, ab=3{/pq; therefdre, whenever we meet

* This rule when fitst discovered by Seipio Ferreo was only for
particular forms of cubics, but it was afterwards generalized by
Tartalea and Cardan. See Montucla’s History of the Mathema- -
tics; and also Di. Hutton's Dictionary, article Algebra. Eb.
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with an equatnon, of the form a*==32¥pg+p+¢,
we know that one of the roots is ¥/p+3/4.

Now we can always determine p and ¢, in such a
manner, that both 3¥/pg and p+¢ may be quantities
equal to determinate numbers; so that we can always

resolve an equation of the third degree, of the kind

which we speak of *.
789. Let, in general, the equation *=fr+g

be proposed. Here, it will be necessary to compare .

J with 8¥pg, and g with p+¢ ; that is, we must de-
termine p and ¢ insucha manneér, that 3/ pg may
become equal to £, and p+g=g; for we then know
that one. of the roots of our equation will be =
D ¥Vp+¥g.

740. We have therefore to resolve these two '

’. equations,

o | Vpg=f,
: p+g=g.

7 R . —f. JS; ]
_The first gives qu_g, or pq_?f’"g" 7fs’ and

4pq=-2i Tf“. The second equation, beifg squared,

* It must not be understood here, that these values of p and ¢

are necessarily rational, or even possible surds. Suppose, for

-example, we'haVe the general equations

Wpg=a
, p+9=b,
these, bemg reduced by the rules g:ven for quadratics, give

- q._..(b-——-a") therefore, when b* <-—a’ the values of p

“and ¢ fall under an magmary form, and mvolve what is usually
termed the irreducible case in cubic equations.. Eb.
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gives p’+2pq+q’-;-g and if we-subtract from it
4pq--—f“, we have p*—2pg+¢°=g" —%f": and
taking the square root of both sides, we have

O p—=VET
Now, since p+g==g, we have, by adding p4-g to

one side of the equation, and its equal, g, to the
other, 2p=g+V g*— % f*, and, by subtractmo

p—q from p+q, we have 2g=g—Vg"- ,-1-1"'
N s/_———"’_ :
consequently, p—g+ g 7 i , and.
g—fﬁ— il

2
741. In a cubic equation, therefore, of the form
a*={fr+g, whatever be the numbers f and g we
have always for one of the roots

_exVe—ap V- = ;

S 2 v 2
that is, an irrational quantity, contaihing not only
the sign of the squarc root, but also the sxgn of the

" cuberoot; and this is the formula whlch 1s called' .

the Rule of Cardan. :
749. Let us apply it to some examples, m order

* that its use may be better understood.

Let P=6x+09. Flrst we shall have f ==6-and
g==9; so that g*=81, f’—216 and f3—3g’ >

then g’——f3 49, and Jg—27f3~7.. ;
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Therefore one of the roots of the given equation is
.r=J9+7 Jg 7_fV‘-2~+§/_§-:-;~§/8+V1=

2+1=3. :
743. Let there be proposed the equation 2° =3¢
+2. Here, we shall have f==3 and §=2; and

consequently, g?=4, f* =27, and — 7f ’—'4, which

" gives J g"———f = 0; whence it follows, that

'

one of the roots is . ’
.._~/.”"'°+~/2 0 1=,

744. It often happens, however, that, though

such an equation has a rational root, that root -

cannot be found by the rule which we are now
_ considering.

- Let there be given the equatxon = 6.z~+4«0 in
which z=4 is one of the roots. We have here
f__6 and g =40, farther g"= 1600 and

7]“’_—32 80 thatg’——f-"’: 1568, and

Jga___ﬁfa:u 1568=v4.4.49. 2:&23/2; :
cbnsequently one of the roots will be
‘ =:/40+28v’2 +i/4o—98{2 or
2 . .
r=20+14v3+Y 20— 14v2;
Whlch quantity. is really __4, although, upon in-
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spectlon, we should not suppose it. In fact, the
cube of 242 being 20+ 14v/2, we have recipro-
cally the cube root of 20+ 14v'2 equal to 24-v'2;

" in the same manner, ¥' 20— 14v2 =2—+/Q; where-
fore our root r=2+4¢/2+4+2—v2=4% '

745. To this rule it might be objected, that it
does not extend to all equations of the third degree,
because the square of ‘# does not occur im it,. that
is to say, the second term of the equation is

wanted. But we may remark, that every complete =

equation may be transformed into another in which
the second term is wanted, which will therefore en-
able us to apply the rule.

To prove this, let us take the complete equmon
=634+ 112—6=0: where, if we take the third .
of the coefficient 6 of the second term, and make
- ¥=-2=y, we shall have

r=y<+2, . z"’-—y +4y+4, and
r=y'+6y*+12y+8;
Consequently, 2° = y*+-6y* +12y+ 8
—6r'= —06y’'—24y~24
+lla= +41ly+422 .
—6= -6
or, *—62"+11lr—6=y’—y. '

* We have nq general rules for extracting the cube root of
these binomials, as we have for the square root; ‘those that
have.been given by various authors, all lead'to a mixt equation
of the third degree similar to the one proposed. However, when
the extraction of the cube root is possible, the sum of the two
radicals which represent the root of: the equatien, always be-
comes rational; so that we may find it xmme(hately by the
. miethod explamed Art.722 F.T.
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. We have, therefore, the equation 3°—y==0, the
resolution of which is evident, since we immediately
perceive that it is the product of the factors

¥ ¥’ = 1)=y(y+1)X(y—1)=0.

If we now make each of the_s'e fag:tors =0, we

have

o 1st g:gz ad {3’3" {: 3d g: ’:
. ‘that is fo say, the three roots which we have already
found.

746. Let there now be given the general equatwn
of the third degree, +*+4-a1’+bx+c=0, of which
itis required to destroy the second term.

For this purpose we must add to & the third of the

coefficient of the second term, preserving the same

. sign, and then write for this sum a new letter, as for

example y, so that we shall have .r+513-a =y, and.

.z'—_-.-y-—gla; whence results the following calcula-
tion : ‘e .
w—y——la =y —-~ay+§a’
and *= y’—ay +—-a’3/.——-as ;
Cpnséqﬁently, :
‘ P =y'—ay +;a"’y -l—a’
ar*= +ay -%ay+ é’a’.

by = + by-—-;-ab ‘

c.= | +c faa
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or, y‘“’—(—a— )_y +27 s_ —ab+c-._0

_an equation’in which the second term is wanted. _

747. We are'enabled, by means of this trans-
formation, to find the roots of all equations of the -
third .degree, as wxll be seen in the followmg ex--
ample.

Let it-be proposed to resolve the equation

P*—62"+13r—12=0.

Here it is first necessary to destroy the second :
term; for which purpose, let us make r—2=y, and
then we shall have r=y+2, **=3y"+4y+4, and
2*=1y°+6y’+ 12y+8; therefore,

. P=y’+6y°+12y+ 8

—62’=" —6y*—24y—24

- +18a= + 13y 426

=12 = L —12
which gives y’-l-y-—ﬂ_o or y’= —y+2

And if we compare this.equation with the formula

=fv+g, we have f——l and g==4; where-

' fore,g =4, and—-—f’-*-g—i, also,g’---;— o

4 112 4 11_2__4-«21

consequently,
MEALY
Y= —2 ) +

y—J 1+2“”“+~/ o 2‘:,21

s JeFava 9—2~/21
o=

VOL. I. L . 2¢C

I E
9 y Or
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=Je/+6J01+J27 6«21

‘J 27+6«/21+ J 97—Gval;

and 1t remains to substltute this value in r=y--2.
“748. In the solution of this example, we have been
brought to a quantity doubly irrational ; but we mnst
not immediately conclude that the root is irrational:
because the binomials 2746421 might hapfen to
be real cubes ; and this is the case Lere ; for the cube

of3+¢21 216448v21
2

L)

- being 5 ‘27+6~/21}, it fol-

: lo'w's' that the cube root of 27+46+21 is 3+;/21

3—v21

and that the cube root of 27—6«/21 is

And hence the value whlch we found fm y becomes * -
3+v 21 3— x/ 21

Now, since y=1, we have 2=3 for one of the

roots of the equation: proposed, and the other two

will be found by dividing tlie equatwn by 2-3;

- _thus,

¥—3) ¥*—62"413r—12 (.19—31'+4
2% —32?

1

- 34‘2+ 182
—32%4 9x

4a—12
4r—12

‘0.
‘Also 1naking the quotient .v’—32'+4.-0, we
have #*==87r—4; and
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e=3s fO_16_8, , 7 3kv—7.
27N 4 4T TV T 4= g

which are the other two roats, but they areimaginary.

749. It was, however, by chance, as we have re-
marked, that we were able, in the preceding example,
'to extract the cube root of the binomials that we
obtained, which is.the case only when the equation
‘has a rational root; consequently, the rules of the
precéding chapter are more easily employed for
finding that root. But when there is no rational
root, it is, on the other hand, impossible to express
the root which we obtain in any other way, than ac-
_cording to the rule of Cardan; so that it is then im-
possible to apply reductions.. For example, in the
gquation #°=6z+-4, we have f=—=6 and gz=4; %0
* that #=¥'942v — 14+Y 22V —1, which cannot
be otherwise expressed *.

N ' ’

* In this example we have -—-f 3 ‘il"ess than g2 which is the

well-known . srreducible case; a case which i is s0 much the more
remarkable, as all the three roots are then always real. We can- -
not, here, make usg of Cardan’s formnla, except by apply-
ing the methods of approximation, such as transforming it into
an infinite series. In the work spoken of at Note, p. 15, Lambert
has given particular tables, by which we may easily find the nu-
mierical values of the roots of cubic equations, in the irreducible;
as well as the other cases! For this purpose we may also em-
ploy the ordinary tables of sines. See the Spherical Astronomy
. of Mauduit, printed at Paris in 1765. :
The reader is also referred to Bonnycastle’ s Trigonometry for
a clear and explicit investigation of this method. We shall here
- only give the formule, for the solution of the different cases of
cubnc equations; which will be found useful in many cases.

1. 2°+pr—q=0.
' Here put %(;) =tan.z; andy/ an. (45°— 3s) (46°— Is)=tan. u
' 2Cce
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CHAP. XIIL

of tke Resolution of Equatzons of ‘the Fourth
Degree.

v 750. When the highest power of the quantity »

-

Then x=2¢§xeph2u. . L
2. B4px4q=0.
‘ :Put %(%)i=tan. 2, and VW??):M.&
' Then i=42J£xcoL2u.
3. x’—pr—q:O ‘
This form has two cades accordmg as _(p) is less or greater
. than L :
" Case 1. Put ( ) =cos.%, deW):tm .

~

N

Then 1—QJP X cosec. 2u.

Case 2. Pntq(P) —cos £, thenyz has the three followmg

values,

»

x.—.aw” x Cos> S x=-2¢p X ¢os. (60°;|; 5.
i | 4 Pd—pr4g=0.
This form has also two cases according as ;(g)éis less orgreat-

- erthan.1, ) Coe
Case 1. Pul(®yi_ AV B T =tan.s
. 7'3 =cos. .z, and 4/ tan. (45°— §z)=tan.u.
Then x= —‘2«/{—; X cos. 2u.
ba;w2 Put 1(%)*:(:0& z,“ then z has the three Toﬂowing
values, :

r= -2¢ 3 b4 cos.—, and r—QJp x cos: (60';[-—-)
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rises to. the fourth degree, we have equatwm of the
Jourth degree, the general form of which is
P4 ar’ bt 4 cr+d=0.
We shall, in the first place, consider pure equa-
" tions of the fourth degree, the expression for which
is simply 2*=F, and the root of which is immediately
found by extracting the biquadrate root of both SIdeS, ,
since we obtain r—«/ f.

751. As a*is the square of 2%, the calculation is
- greatly facilitated by beginning wnh the extraction of
the square root; for we shall then have a*=—=v/f;
and, taking the square root ‘again, we have v=%/f;
so that ¥f is nothing but the square root of the -
square root. of f. -

For ‘example, if we had the equation a*==2401,
we should 1mmedxately have 2*=49, and then’
r=7.

758. Tt is true this is only one root, and since
there are always three Toots in an equation of
the third degree, so also there are four roots in an
equation of the fourth degree; but the method which
we have explained will actually give those four roots.
For,in the above example, we have not only 2* =49,
but alsp 2?==—49; now the first value gives the
two roots x==7 and r===7, and the second value
gives 25=+—49, and r=-wv —49z= 7+ =1, and
—7+—1; which are the four biquadrate. roots of
2401: and the same also is true with respect to other
numbers. :

753. Next to these pure equatlons, we shall con-
sider those in which the second and fourth terms are .
wanted ; which have the form 2#4-f2*+g=0, and -
may be resolved by the rule for equations of the
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second degree; fot if we make #'==y, we have
Y'+fy+g=0, or y*==—fyy—g, whence we deduce

——— ' 2 __f__|:~/jﬂ_4 .
b gt

now z’==y; so that r— _4_-J --f-_u_-V'f’—4g; in
: 2 .

which the double signs + indicate all the four roots.

754. But whenever the equatlon contains all the
. terms, it ‘may be considered. as the product of four
_ factors. ' In fact, if we multiply these four factors

together, (.z'—p)X(r—q))((r-—r)x(.r—s), we get
the product t"'—(p+q+r+s)a3+(pq+pr+ps+qr
+gs+rs)a’—(pyr + pgs + prs + qrs)a + pgrs, and
this quantity cannot be equal to 0, except when one
of these four factors is =0. Now that may happen
in four ways ; : ,
1st when 2=p; adly whenao=g;
3dly when #=r; 4thly when 2=y

and consequently these are the four roots of the
equatlon

755. Now if we oonmder this formula, we obscrve,
in the second term, the sum of the four roots multi-
plied by —a®; in the third term, the sum of. all the
possible products of two roets; multiplied by 2%;. in
the fourth term, the sum of thé products of the roots
combined three by three, multiplied by —a ;. lastly,
in the fifth term, the product of .all the four -roots
multiplied together.

756. Now as the last term contains the product of
all the roots, it'is evident that such an equation of
the fourth degree can have no rational roet which ig
pot likewise a divisot of the last term; this principle,
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thetefore, furmshes an easy method of determmmg
all the rational roots, when there are any, since we
have only to substitute successively for.  all the di-
visors of the last term, till we find one which an-
. swers to the equation ; for having found such a root,”
for example, 7=p, we have only to divide the equa-
tion by 2—p, after having brought all the terms to
one side, and then suppose the quotient =0; by
which we obtain an equation of the third degree, -
- which may be resolved by the rules already given.
 757. Now for this purpose it is absolutely neces-
sary that all the terms should consist of integers, and
-that the first. should have only unity for the coef-
ficient; whenever, therefore, any. terms contain fra¢-
tions, we must begin with destroying those fractions,
and this may always be done by substituting, instead |
_ of x, the quantity y, divided by a numbér which con-
“tains all the denominators of those fractions.' o
. For example, if we have the equation

1 1, 8 1
b — ‘2"'—; —_— O
o 37+ ="
since we find here fractions which have for denomit
nators 2, 3, and multiples of these numbers, we shall:

“suppose .z'='%

¥ i Wy 1
6 6 62..6+18_0’

, and shall thus have

’ ~ an equation, which, multiplied by 6%, becomes

« o P—8y°+12°~162y+72=0.
If we now wish to know whether this equation has
rational roots, we must write, instead of y, the di-
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visors of 72 successively, in order to see in what
cases the formula would really be reduced to 0.

758. Butas the roots may as well be positive as’
negative, we must make two trials with each divisor;
one, supposing that divisor positive, . the other, con-.

: s:denng it as negative ; however, the following rule.
~will frequently enable us to dispense with, this¥,

~

Whenever the signs + and — succeed each ether
regularly, the equation has as many positive rqots as

 there are changes in the signs ; and as many times as
. the same sign recurs without the other intervening,

SO 1pany negative roots belong to the equaxlon. Now

- our example contains four changes of the signs, and

no succession ; so thatall the roots are positive ; and "
we have no need to take any of the divisors of the

Jast term negatively.

759. Let. there be gwen the equatian
4203 =7a —8r+1 =0. )
We see here two changes of signs, and also two suc-
cessions ; whence we conclude, with certainty, that
this equation contains twb positive and a3 many nega-
tive roots, which must all be divisors of the number
12. Now its divisors being 1, 2, 3, 4, 6, 12, letus
first try ==+ 1, which actually produces 0; there-
fore one of the roots is #==1. i
If we next make r=~—1, we find +1—2-—7+38
+12=21=~9==12: so that'2x==—1 is not one of

* Thisrule is general for equations of all dimensigns, provided
there are no imaginary roots ; the French ascribe ittp Descartes,
the Enghsh to Harriot ; but the general demonstration of it was
first given by M. PAbbé de Gua. See the Memoires de I'Aca-

demie des Sciences de Paris, for 1741, F.T.
) . . v
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the roots of the equation: make thereforer =2,

and we again find the quantity ==0; consequently,,

another of the roots is #==2; but x==—¢, on the
contrary, is found not to be a root. If we make

o ==3, we have 81 +54—63-—24+ 12—-60 so that.

_ the supposition does not answer ; but v==—3, giv-
ing 81—54—63+424+12==0, it is evidently one
of the roots sought. Lastly, when we try =4,
we likewise see the equation reduced to nothing; so
that all the fopr roots are rational, and have the fol-
lowing values: z=1, +=2, #=-—3, and r==—4;
and, according to the rule given above, two of these
roots are positive, and the two others are negatwe.

760. But as no root could be determined by this

method, when. the roots are all irrational, it was
" necessary to devise other expedients for expressing
. the roots whenever this case occurs; and two dif-
ferent methods have been discovered for finding such

roots, whatever be the nature of the equation of the-

fqurth degree.
" But before we explain those gener ral. methods, it

will be proper to give the solutions of some particular ,'
‘cases, which may frequently be applied with great.

advantage.

~

761. When the equation is such, that the co-

efficients of the terms succeed in the same manner,

both in the direct and in the inverse order of the °

_terms, as happens in the following equation *:

-* These equations miy ‘'be called rcciprqcél, for they are not at
all changéd‘by substitutingi for x From this property it fol-

. . . 1 . -
* lows, that if a, for instance, be one of the roots, - will be one
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PEmBFnat4+me41=0; )
~ or in this other equation, which is more general :
. 2*maxd $na*P+mar4at =0 ;
we may always consider such a formyla as the pro-
duet of two factors, which are of the second degree,
and are easily resolved. In fact, if we represent this
last equation by the product.
(2*+pav4-a?) X (v’ +qar+a®)=0,
in which it is required to determine p and ¢ in such
a manner, that the above equation may be obtained,
we shall find, by performing the multiplication,
PP+ Q)ar +(pg+2)d s +(p+ ) s+ =0;
and, in order that this equation may be the same as
the ﬁ)rmer, we miust have,
Ist p4-g=m,
2dly pg+2=nmn,
and consequently pg—n=2.

Now, sqaaring the first of those equatxdns, we
have p’+2pq+q"—m’ 2 and if from this we subtract
", the second, taken four tlmes, or 4pg=<4n—8, there
remains p*—2pg+¢* -—m“’—-4-n+8 and takmg the
~ square roof, we find p—g=v/m*—4n+8; also
- p+g==m; we shall therefore have, by addition,

AV oF—angs.
4 2 ’
dnd, -by subtraction, 2¢=m—/m* —an+8, or

9p=m+v/m’4n+8, or p=

likewise; for which reasoti such equations may be reduced fo

others of a dimension oné half less. De Moivre has given, in’

his Miscellanea Analytica,.page 71, general formule for the re

duction of such equations, whatever be their dimension. F.T.
See also Wood’s Algebra, the Complément des Elemens d’Al-

- gebra, by Lacroix, and Waring’s Medit. Algeb. chap. 3.




CHAP. 13, OF ALGEBRA. : 395

m—V mE—dnt
7= z . n+® Having therefore found p- .

and ¢, we have only to sappose each factor =0, in
order to determime the valae of #. The first gives .
24parf-a°=0, or a?=t~par—d’, whence we

obtain 4= 224 /P%_g,
. v 2 - 4
DAY L 2NN Sy pe—— '
ora==rdaaVp—4; |

. . a 1 = :
the second factor gives 2= —22—-_;-2-4/ ¢—4;

and these are the four, roots of the given equation.
762. To render this fiore clear, let there be given
the equation 2#— 42°— 82" —42+1=0. We have
here a=1, m=—4, w=—3; consequently, -
m?—4n+8 = 36, and the square root of this quan-

' —446 .
g*-*—»_—-ﬁlié'———@—-'- —5; wherice result the four roots,

——

1 —1+vY 3

1 X
1st apd 2d ‘r""—éi’g"_/_ "'__—é— i and
O . Va1 .

3d and 4th mﬁgié«/ﬂl. =5—':-':-;1-2-'-; that is, "
the four roots of the given eqﬁat.ion are’:

- . =144/ =3 —1—+/ -3

‘1St w=————-— 2 , 2d .z'= 7

sd jt%_m’ 4;&1.@-_-_—.5.::{—2-1-\

The two first of these roots are imaginary, or im-
_possible; but the two last are possible; since we
may express 421 to any degree of exactness, by -

I3
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means of decimal fractions. In fact, 21 bemg the

same with 21°00000000, we have only to extract the
square root, which gives /21 ==4-5825.

Since, therefore, +/'21==4-5825, the third root is '
very nearly vt==4-7912, and the fourth, r==0-2087;

- it would also have been easy. to have determined
these roots with still more precision.

For we observe that the fourth foot is very nearly
2
100

suﬁic:ent exactness ; in fact, if we make .z'=%, we

1 4 38 4

find 625 125 25 5
to have obtained 0, but the difference is evndently not
great.

~ " 768. The second case in which such a resolution
takes place, is the same as the first with regard to
the coefficients, but differs from it in the signs, for we

—, or é, which value will’answer the equation With

=t l= 15, we ought however

- shall suppose that the second and the fourth terms
~ have different signs; such, for example, as the equa-

tion _
. A mar’4na’s —ma’r+at =0,
which may be represented by the product,

C (P 4par—a) X (2 tgar—a®)= 0.

For the actual multiplication . of these factors
gives

(Pt e +(pg— e () +a
X 3 quantlty equal fo that which was’ given, if we sup-

pose, in the first place, p+g=m, and in the second.

. place, pg—2=n, or pq_.n+2 because in this

manner the fourth terms become equal of themselves:

if now we square the first equation, as before, we

~N
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shall have p’+2pq+q’=m’ and if* from ‘this we
subtract the second, taken four times, or 4pg==4n+8, °
there will remain p*—¢pg+¢*=—=sm?—4n—38; the

square root is p—q-—V m*—4n—8, and thence we -

obtain ' , _
. m+*’m”—-4n-—8 " mmsV M —4n—8
= P ; and g= 2 .

‘ Havmg therefore found p and g, we shall get by the“
first factor the two roots y=-—- 2[uz+~a~/ r+4, and' )

by the second factor the two roots

.z'._——qa-l- 2a¢q~+4 ‘
that is, 'we have the four roots of the equatlen pro-
posed. :

764. Let there be given the equation
’ #—3.22°4+3 . 82+ 16=0.

Here we have a=9, m=—=—3, and #n=0; so.that*

v m®—4n—8==1, and consequently,
—34+1__ —3—1
p=

=-1, and g=
Therefore the two first roots are 2 ==1 +s/ 5 and

the two last are 2 =< 24-+/8; so that the four roots
sought will be ' ' ‘

1st .Z'—"l+~/5 T od a=1—-v5,

3d r=2+v38, 4th r==9~v8.
ConSequently, the four factors of our equation will
be (r—1—+5) X (2—1++ 5) X (z—2— v 8) X
(F=24v 8), and their actual multiplication pro-
duces the given equation; for the two first being
multiplied together, give 2*—2r~—4, and the other

‘

—2
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bwo.givé a®—4ax—4; now these products multiplied
together, make 24— 61° 4242+ 16, which is the same
equation that was proposed. | ,

"'CHAP. XIV.

Of the Rule of Bombelli for reducing the Resolution
of Equations of the Fourth Degree to that of
Equations of the Third Degree.

765. We have already shown how equations ef
the third degree are resolved by the rule of Cardas;
50 that the principal obJect with regard to equations
of the fourth degree, is to reduce them to equations of
the third degree. For it is impossible to resolve, gene-
. rally, equations of the fourthr degree thhout the aid
of those of the third; since, when we have deter-
mined one of ‘the roots, the others always depend on
an equation of the third degree. = And hence we may
eoaclude, that the equations also of higher dimen-.
- sions presuppose the resolution of all the equatlons

" of lower degrees

, 766, It js now some centur ies since Bombelli, an
Italian, guve aryle for this purpose, whxch we shall
xplgm in ttus chapter *

Ty A t T T

. “This rule rather belongs to Louis Ferrari. It is 1mproperly
. ealled the Rule of Bombelli, in the same manner as the rule ‘dis-
covéted by Scipio Ferreo bas beenascribed to Candan. . E.T.
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Let there be given the general equatlon of the,
fourth degree, ar4ar®* 4 bar*4cr+4+d=0, in which ‘
the letters g, , c, d, represent any possible numbers; -

and let ys suppose that this equation’ is the same as
(.z"’+-l-a.z'+p)2 —(qr+4r)*=0, mwhlch itis requn'ed

"~ to determine the letters p, ¢, and 7, in order that we
may obtain the equation proposed. By ordenng the
‘new equation, we shall have :

, .r"+ax5+za.z' +apa+p*
+‘~’pz"“-—2qm'—rsz .

=g
 Now, the two first terms are already the same
here as in the given equation ; the thlrd term requlres

us to make —a"+2p—g’._.b which gives ¢*—= a’-l-

. 99Pp=b; the fourth term shows that we must make
ap—2gr=c, or 2gr==ap—c; and, lastly, we have

for the last term p*—r’=—d, or r"‘—p —d. We. '

have therefore three equations, which will -give the
values of p, g, and 7. ' .
'*767: The easiest method of dermng those values~
,from them is the following: if we take the first equa-
tion four times, we shall have 4¢*=—a*+4-8p—4b;
which equation, multiplied by the last r’=p'—d,
gives '
4{99"9 = 8p -+ (a“-s- 4&)?’—' Sdpﬂ' d(a’ - 4&)
Farther, if we square the second equation, we have
AP r*=ad*p*—2acp+c*. Sothat we haye two values
of 444, which, being made equal, will fumnh thc
equation
80°+ (@ — 45)p*— 8dp- d(«-em*p *wwpm
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* or, bringing all the terms to one side,
8p°— 4bp*+(2ac— 8d)p-a’d+4bd—c’——o

an equation of the third degree, which will alway;
give the value.of p by the rules already explained.

768. Having therefore determined the - three va-
lues of p by the given quantities a, b, ¢, d, which re-
quires only one of those values to be found, we shall
also have the values of the two other letters ¢ and r;

for the first equatxon will give q—-\/ a4 zp..[; :
ap—c
2

and the second gves r=

qu these three

~ values being determ?ned for each givén case, the four
roots of the proposed equation may be found in the
‘ followmg manner: .

This equation havmg been reduced to the form,

| (.r’+—ax+p)’ (q@+7)*==0, we shall have
(@ larrpy=Gadry,

aﬁd extracting  the root, .r’+§a.r+p=:q.r+r, or .

a’+é¢w+p‘=: —gv—r. The first equation givéas

= (q—éa).r—p+r, from which we ﬁay find two

‘roots; and the second equation, to which we may

give the form .r’._.-(q+-a ‘z'-p-r, will furnish

the two other roots. -
769. Let us illustrate this rule by an exa,mple. .
and - suppose that the equatxon '
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A= 1027435225004+ 94 =0 -
was given. If we compare it with our general
formula, we have a==— 10, b=85, c==— 50, d==24;
and, consequently, the equation which must glve the
value of p is .

8p°— 140p* 48080 — 1540;:0, ar,

op'— 35p°+4202p— 385=0.
The divisors of the last term are 1, 5,7, 11, &c.;
the first of which does pot answer ; but m@kmg p=29,
we get 250—-875+1010—-385=O, so that p==5;
and if we farther suppose p=7, we get 686 —1715
+1414—~385==0, a proof that p=7 is the sgcond
root. It remains now to find tfe third root; let us
therefore divide the equatien by g, in order to have

P —"—P + 101,11—?—-'5-—0 and let us consider that

the coefficient of the second term, or 9— being the

sum of all the three roats, gpd the 'two first maklng

together 12, the third must necessarily be 1?1

We consequently know the three roots required.

~ But it may be observed that ane would haye been .
 sufficient, because each gives the same foqx roqts. forr

our equation of the fourth degree.
770. To prove this, let p=>5; we shall then have

--50+5O 0
o o0
Now, nothing being determined by this, let us take
the third equation,
rP=p'—d=25—24=1,
so that r=1; our two equanons of the second de-
gree will then be: ,
VOL. I s ’ 2D

g=v/25+10—35=0, and r&=—



402 ELEMENTS. °  SECT.IV.

Ist, P=5r—4  2d, *=50—6.
The first gives the two roots

that is to say, .1'_4 and r=1.
" The second equation gives
. 5. ,1_5+1

that is to soy, r=8 and 2=2. ,
But suppose now p==7, we shall have

’

oy . __ =70450
g=V/25+ 14— 35=2, and pm 1030

4
whence result the two equat:ons of the second degree,
1st, rP=70—12, . zd .z”—sx-—ﬁ

the ﬁrst gives
: _7+1

| .z"—' -:—;-4— \/—, or .l'—-h—g—,
so that y=—4 and r=—3; the second furnishes the .
root .
: 3+1
==,
and consequently .r-—-z and w==1; therefore by this
second supposition the same four roots are found as
the first, '
+. Lastly, the same roots are found by the thlrd va-

i«’—

: l 1,
lue of p, =—: for, in this case, we have

4=/Z5F11—85=1, and r—_ﬁt@_;é;

-2 2
so that the two equatxons of the second degree be-
“v COme,
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_' 1st, #?=6r, ‘ad, P=4r—3. -
. Whence we obtain from the first, 7==3++/1;' thht
is to'say, x==4 and r==2; and from the second,
=241, that is to say, v==3 and r=1, which
are the same roots we originally obtaiged.
77 l Let there now be proposed the equation
ar—160r—12=0, . © .
in which a=0, b=0, c=—16, d=—12; and' ,
our equation of the third degree will be D
3p“+96p-—256._.0 or p°4 12p—32-—0,
and we may make this equation still more simple, by
writing p==2¢ ; for we have then" N
. 834-24¢~32=0, or £*+43t—4=0.
The divisors of the last term are 1, 2, 4; whence
one of.the roots is found to be #==1; therefore

=2, g=v4=2, and 1_*:;%3 =4, Consequent-

_ly, the two equations of the second degree are

2*=2r+2, and 2= —22—6;

. -which give the roots

r=1+v3, and r=-—1+v~35, _
772. We shall endeavour to render this resolution
still more familiar, by a repetition of it in the follow-
ing example. Suppose there were given the equa-
tion ' ’ =
=622+ 12— 120+4=0, -
which  must be contained in the formula '
(8= 3a+p)~(gr+rP=0,
in the former part of which we have put —3.,- be-
cause — 3 is half the coefficient —6, of the given

equation. - This formula being expanded, gives
2Dp2 -
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.z*—dz"+(2p+9~q’)z‘—(6p+ﬂqr).r+p’-—r’=o
‘whith compared with our equation, there will result
from that comparison the following equations:
1st, 2p+9—¢*=12,
ed, 6p+Qyr=12,
!  8d, pPrertmdg,
The first gives §*==2p~S5;"
* the ‘sécend, 2gr == 12=-6p, or yr==6--8p,
the third, r®z=p®es.
Multiplying »* by ¢°, and p*~4 by 2p«-3, Wwe have
‘ *riz=9pi~ 3p=-8p+412;
and if we square the value of gr, we have -
' 7°r* == 36 36p+-9p°;
80 that we have the equation
2p° s 8PP — 8p+ 122== 9p® == 36p + 36, or
p°~ 190° +98p—24=0; or
PP—6p*+14p—12=0,
one of the roots of which is p==2; and it follows
that ¢*=1, ¢==1, and gr=+r==0. Therefore our
~ equation will be (2°—3z+2)*==2*% and its squire
. root will be 2*—8r42=4as. If we take the
upper sign, we have ¢*==4r+Q; and taking the
lower sign, we obtain #*==2v—@, whence we derive
the four roots w =2++/2, and =1t ~—1.
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.

CHAP. XV

Of a new Method of resolvmg Equations Qf tke
Fourth Degree

'778 The rule of Bombelh, as we have seen, re-
. solves equations of the fourth degree by means of an
. equation of the third degree; but since the invention
of that rule, another method has been discovered of
performing the same resolution; and e itis altegether |
different from the first, it deserves to be separately
_ explained *.

774. We suppoge that the root of an equation of
the fourth degree has the form w==+vp+vg+v1,.
in which the letters p, ¢, 7, express the roots of an
equation of the third degree, 2°—fz*+4gz—h=0;
50 that p+g+r=f; pg+pr+qri=g; ant pgr=h.
"This being laid down, we square the assumed formu-.
la, .r_.s/p+«/q+~/r, and we obtain i ‘

F=ptg+r+2/pg+aV/pr+2vyr;
and, since p4g+r=Ff, we have
P —fr=opg+Wpr42/ygr; )
we again take the squares, and find a*—2f2*+ f 3
Apq+4pr+4qr+8vpPqr+8vpg*r+8+pgr®. Now -
4pg+4pr+4qr'=4g, so that the equation becomes
b —9f a4 f?—4g=8Vpyr X (Vp+vg+v7r); but

* This method was the invention of Euler himself. He has
explamed it in ‘he sixtednth volume of the Ancient Commenta-
* ries of Petersburg. F.T.
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s/p+s/q+~/r._.r, and pgr=h, or Vpgr=vh;
wherefore we arrive at this' equation of the fourth
degree, z*—gf.r —8rvh+f?—4g=0, one of the
roots of which is certainly z= vp+vg++'r, and
" in which p, ¢, and 7, are the roots of an equation of
the third degree, 2°—f3?+gz—h=0.

775. ‘The equation of the fourth degree, at which
we have arrjved, may be considered as general, al-
though the second term 2y is wanted ; for we shall
afterwards show, that every complete equation may
be transformed into another from which ‘the second
term has been taken away.

Let there be proposed the equation

. P=ar’—br—c=0,
it order to determine its root. This we must first-
compare with the formula, in order -to obtain the
values of f; g, and %; and we shall hgve,

1st, gf._a, and f._

B
. ed, 8vh=b, sothath_64,

3d, f’—4o‘__—c, or———4g+c.-.-0
" or -a’+c__4g, )

. consequently, g'—i%a’+—c

774. Since, therefore, the equation
P—ar?—br—c=0,

- gives_the values of the letters f, g, and &, so that
_1 o LY o1
f?‘z”’ g= 16 + e and/z._-64b, or ‘/h'fsb’
we form from these values the equation of the third

\
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: degnee z’-fz’+gz-k-_o, in order to obtam its

- roots by-the known rule. And if we suppose those |

roots, Ist, z==p, 2d z==q, 3d, z2=r, one of the
roots of our equation of the fourth degree must be
- a=vp+Ve+Vr

777. This method appears at first to furnish only
one root of the given equation’; but if we consider
that every sign v may be taken, negatwely as well as
positively, we 'shall immediately perceive xhat this
formula contains all the four roots. ’

Farther, if we chose to admit all the posslble
. changes of the signs, we should have eight different
values of , and yet four only can exist: But it is to
be observed, that the product of those three terms,

~ or v/pgr, must be equal to vA= —b and that if —b ;

be positive, the product of the terms vp, Vg, a/ r,
- must likewise be posmve, 80 that all the variations.
- which can be admltted are reduced to the four fol-
lowing: '
. 1st, r_.x/p+«7q+~/r,

od, o=vVp—vq=vr,"

3d, a=—vp+vg—v'r,

4th, 2= —Vp—vq++r.

) : -1, . .
In the same manner, when '§l’ is negative, we

have only the four following values of @
o 1st, a=Vp+Vg—v'r,

R ad, x=vp—Vg+vr,
3d, r=—vp+Vvg+vr,
4th, r——-s/p—«/q—Vr

Thls circumstance enables us to detenmme the four
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roots in all cases; as may bé seen it the followmg
example. '

778. Let there be proposed the . equation of the
fourth degree, A= R52%4-600—~36 =0, in which’
the second term is wanted.  Now if we compare
_ this with the general formula, we have a==25,
- b=—60, and ¢==36; and after that,

~ 25 2 223
f=’§’ &= 6 €+9_"'71669’ and f=—o

by which means our equatron of 'the third degree be-
comes,

2520 769 225

—2 -'_'—"'——0

2 T %
To remove the fractions, let us ma;ke 2 =z; and

' we shall hav.e-zéi— 250 +7gzu 225’—0, and mul-

tiplying by the.greatest denominator, we Gbtam
%' — 500’4 769u— 3600=0;

. and we must determine the three roots of this equa- -

tion ;_which are all ‘three found to ‘be positive; one

of them being u_Q, ‘then dwndmg the equation by

u—9, we find the new equhtion u’v-41u+400_-0,
or u“’—'41u-—400 which gives -

1681 1600 41.—!—9
\ 4 — 2 ,
go that the three roots are ©=9, u=16, and u=25
Consequently, the: Toots are

lst'z—%, 2d,z-—4, Si’l,"z=%5-..

.And these are therefore the values of the letters
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p, q, and r that is to say, p_g, q—-4 r._‘z:

-Now, if we consider that +/ pgr='~/ h= —1—:, and

‘ . Lo
that therefore this value =§b is negative, we must,

agreeably to what has been said with regard to the
.signs of the'roots ¥p, +¢, and +r, take all those
three roots negatively, or take only one of them nega-

tively; and consequently, as v/p =§’ v§=2, and

v r—_.-‘-‘-;-, the four roots of the given equation are |
found to be: - '
- -3 5
1st, J’-—§+2—§——,l,
3 5 :
3 5
3d, r= --'2-+2+§— 3,
3 5 '
4th, r= —§—2—§= —6.
From these roots result the four factors, )
(z— 1)X(r—2)X(.r—3)X(r+6)—O .
The first two, multiplied together, give +*— 3r4-2;
the product of the last two is 2+ 3r~—18; again
multiplying these two products together, we obtam
exactly the equatlon proposed.
779. It remains now to show how an equation of*
the fourth degree, in which the secend termis found,
~ may be transformed-into another in which that term
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is wanted: for whnch we shall gwe the following
rule *,
" Let there be proposed the general equation

Y+ay+by’+cy+d=0. If we add to y the.

fourth part of the coefficient ‘of the second term, o'
%a, and write, instead of the sum, ‘a new letter z, so

 that y+ia=.z~, and consequently y=.z'—ia: we

shall have

_1/’----.1'7—la.z'+—a2 g".—.z -—-a.z"+ 60 —2'- “s

and lastly as follows;

1

— 2 22 AT

o P a.z'°+—a o l—éa’.z+256a‘
—_— 2224 Y 3

’ +ay’= +az"‘ a.r+16ar 64“4
+by = + ba? ——abw+—éa’b
+oy= 4+ cr— %ac '

+d= + d

And hence by addition,

b0 perla 3 L)
#‘+0 ar+ a“.t 256“ )

2 __l —_—n?
+b.z | 2abw+l6ab  —0.

<+ cr -f%a_c

* An investigation of this rule may be seen in Mac]aurms
A.lgebra, part IL chap. 3.’ y

’
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We have, now an equation from ivhich_ the second
term is taken away, and to which nothing prevents .

. us from applying the rule before given for determin-
ing its four roots. After the values of » are found,

. those of y will easily be determined, since _y::r-’-ia.‘

780.. This is the greatest length to which we have
yet arrived in the resolution of algebraic equations;
_ all the pains that have been bestowed in order to re-

solve equations of the fifth degree, and of higher di-

mensions, in the same manner, or, at least, to reduce

. them to inferior degrees, have been unsuccessful: so .

that we cannot give any general rules for finding the .

roots of equations that exceed the fourth degree.

The only success that has attended these attempts
has been the. resolution of some particular cases ; the .
chief of which is that, where a rational root takes

- place; for it is easily found by the method of divisors, .
as we know that such a roo6t must be always a factor
of the last term; the operation, in other, respects, is
the same as that we have taught for equations of

the third and fourth degree. .

781. It will be necessary, however, to apply the
_rule of Bombelli' to an equation which has no rational
‘roots.

> Let there be given the equation y*—8y°+ 14_1/
+4y—8=0. Here we must begin with destroying
the second term, by adding the fourth.of its coefficient
to y, supposing y—2=r, and substltutmgm the equa-

tion, instead of ¥, its new value &2, instead of y?,

its value @?+44r+44; and doing the same with re-

gard to ¥° and y*, we shall have,
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y*—-r‘+8.r'+24.z"+m+16-

| —8pPm= —Br—481°—962~64
+14y° = 41424562456
Ay = + 4r4 8
-8 = - 8

P40—102°—4r 48220,

This equation being compared with our general
formula, gives a==10, b=4, c.-—S ~whence we
conclude that _f=5, g—l{— b=y, and V=5
that the product +/pgr will be posmve md that n

is from the equatmn of the third degree,
1

] 82+—-‘A— E == O
+ that we are to seek for the three roots p, ¢, 7.
782. Let us first remove the fractions from this

equation, by making z._...;‘, ‘and we shall thus have,

after multiplying by 8, the equation-
w— 106+ 17u—~2=0,

in which all the roots are positive. Now, the di-
visors of the last term are 1 and 2; if we try u==1,
we find 1—10417—2=6; so that the equation is .
not reduced to nothing: but trying u=2, we find
~ 8—40+434—2=0, which answers to the equation,

and shows that ¥==2 is one of the roots; and the
two others will be found by dividing by u—g, as
usual ; then the quotient u*~8u+41==0 will give

zi’:Sd—l and u=4+s/ 15. ‘And since zzéu,

the three roots of the equauon of the third degree
, are,
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sty a=p==1,

ah, s g LIS
84, g=—=r— 4-~/1—5-.

783. Having therefore determined p, g, 7, we
have - also their square roots; namely, vp=1,

V8¥avis | B—av 15
Vg="8115 ‘/r______f/S 2%/15“

‘But we have alr'eady seen, Art. 675 and 676, .
that the square root of a++/b, when V/a*—b=c, is

expressed - by \/a+:/b;-=~/a+c'4-~/a—c ; 80

that, as in our case ¢=8 and s/ b=2+v15, and
consequently b==60 and c==2, we have

s/s+.w15—-~/5+v'3 and V8—2/15..
C==¢/5=4/8.

Hence we have Vp‘_:-—'l
- V5—+/3

v q__¢5-;-vs and

Vr= ; wherefore, since we also know that

the product of those quant:txes is positie, the four
values of will be these:

1o, smy/pty/gpyrmt PRIy g,

- 94, sexg/p—/g—y/r=1 4= 5 ~/32-¢5+J3;

¢5+~/3-“5+~/3 se e .‘
. 2 L4

8d, == /pty/g=y/r=—1 {

==1+4/3 '
"4-!h,.r$.-—‘llp—-v‘.q_l.“,:_.l;._-‘/5-5/32‘*'&/5—1\/.3 N

=~1=4/3.

-5



»
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Lastly; as we have y==r-2, and the four roots of
the given equation are :

1st, y=3++5, 2d, y=3~+v5,
8d, y=1+4v3,  4th y=1—+3.

.CHAP. XVI.
QF the Resolution of Equations by Approzimation.

'784.\'theti the roots of an equation are not
rational, whether they may be expressed by radical

quantities, or even if we have not that resource, as is

the case with equations which exceed the fourth de-
gree, we must be satisfied with determining their va-
lues by approximmation ; that is to say, by methods
which are continually bringing us nearer to the true
value, till at last the error being very small, it may be
_ neglected Different methods of this kind have been
- proposed, the chief of which we shall explain.
+ 785. The first method which we shall mention,
- supposes that- we have already determined, with
tolerable exactness, the value of one root *; that we

* This is the method given by Newton at the beginning of
his Method of Fluxions. When irivestigated, it is found subject
to different lmperfectlons 3 for which reason we may with-advan-
tage substitute the method given by M.dela Grange, in the Me-.
moirs of Berlin for 1767 and 1768. F.T.

This method has since been pubhshed by La Grange, under

_ the title of Sur la Resolutlon desEquauons Numeriques ; in which
work the subject is treated _in the usual masterly style' of this
“author. Ep.
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. know, for example, that such a value exceeds 4, and
that it is less than 5. Iy this case, if we suppose
this value == 4 +-p, we are certain that p expresses a
fraction. Now "as p is a fraction, and consequently
less than unity, the square of p, its cube, and, in
general, all the higher powers of p, will be much less
with respect to unity ; and, for this reason, since we
require only an approximation, they may be neglected
in the calculation. When we have, therefore, nearly
determined the fraction p, we shall know -more ex-
actly the root 4+p; and from that we proceed to
determine a new value still more exact, and continue
the same process till we come as near the truth as’
we desire.

786. We shall illustrate this method first by an
easy example, requiring by approximatlon the root
of the equation 2% =20.

Here we perceive,. that 2 is greater than 4 and~
less than 5 ; making, therefore, r==4-p, we shall
have 27==16+48p+4p’=20; but as p* is very
small, we shall neglect it, in order that we may have
only the equatlon l6+8p—-20, or 8p==4. This

gives = and r_4§ which already approaches
nearer the true root. If, therefore, we now suppose
r= 4-l+p'- we are sure that p’ expresses a fraction

“much smaller than before, and that we may neolect \
p* with greater propriety. We have, therefon e,

1
= 2()1-!- 9p'==20, or gp.__.——, and consequent-

ly, p'— —-3—6, therefore &= 45—:% 4——



»
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And if we wished to approximate st;ll nearer to

‘the true value, we 'must * make .r_4—-+p A and

I JE—
should thus have 22— 201—2—93+8 6p "=20; so that

34 1 36 1
.p -l-ég—é. 322]) _—W_ —-3—6', and
p=— l

36X82e 11592 .

17 1 44783
thercfore = T 11502 11592
is so near the truth, that we may consider the error
as of  no importance.

.787. Now in order to generalize what we have
bere laid down, let us suppose the given equation to
be 2°=a, and that we previously know & to be
greater than n, but less than n+1.  If we now make
x==n4p, p must be ra fraction, and p* may be
neglected as a very small quantity, o that we
shall have 2% =n’4-2np=a; or erpr=a—~n’, and

a—n? a—nt n*4-a

= consequently .z'=n-i- =

Now if » appréximated towards the true value,
’ 2

. n
this new value

a value which

a . . X
- will approximate much nearer ;

. and, by substituting it for #, we shall find the result

much nearer the truth; that is, we shall obtain a
new value, which may again be substituted, in qrder
to approach still nearer; and the same operation
may be continued as long as we please

For example, let a==¢; that-is to say, let the
square root of 2 be required; and 'as we already
know a value sufficiently near, which is expressed by
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n, we shall have a still nearer. value of thﬂ root ex-.
2

+2. Let therefore,

pressed by
1st »=1, and we-shall have 2=
3 ' . 17
gd n._‘2,vand we shall have r— 2 .
577
408’ :
Thls last value approaches so near 4/Q, that its-

332929
166464

the.small, .quantlty "—1—6@_6'_5’ by which it exceeds it,

" ad n= :;, and we shall have =

square differs from the number 2 only by,

788. We may proceed in the same manner, when-
it is required to find by approxnmatlon cube roots
biquadrate roots, &c.

Let there be given the ‘equation of the third de-:
gree, z°=a; or let it be proposed to find the value-
o Va. . .

Knowing that it’ is nearly n, we shall suppose
g=n-=p; neglecting p* and p’, we _shall have,
.r’-n’-d-an?p_a.' so that +3n“ =—a—n, and

3
a—n’ _en'+a
Tk whence r_—%r, If, therefore,

+p=:

7 is nearly =3%/a, the quantity which we have now’
found will be much nearer'it. But for still greater
exactiess, we may again subst!tute thls new value'
for », and so on. " Co

For example, let 2*=2; and let it be requu'ed

to determine ¥/2. Here if n is neatly the value of '
3

the number- sought the formula __i% w111 exprqss

PO

3n?
* VOL, 1. . QE\
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 that number still more nearly; let us therefore make

"1st n=1, and we shall have .r:-.-g,

ed n=§, and we shall have .r=g—;-,'
3d n=2-l- and we shall have .r:.———————:gzéggzgz

789. Thls method of approxlmatlon may be em-
ployed, with the same success, in finding the roots
of all equations.

To_show this, suppose we have the general equa-
tion of the third degree, *+ar*+br+4-c=0, in
which 7 is very nearly the value of one of the roots.
Let us muke r=n=p; and, since p will be a frac-
tion, neglecting the powers of this letter which are
higher than the first degree, we shall have
2’ =n’42np, and 2*=n’43n%p, whence we have
the equation %°- 3u°p+an®+ 2anp + bn bp - =0,
or n*+an*+bn+c= F(3n P+9:ﬂp-l[;f£)—-+(3n’

n* +antb4-n—c
+24n+b_)p, so that +p--. W 2an D’ and
n’+an’+b7n+c)__2n’+an’—c Fhis va-

3wl +Qan+b T 3n'+2n+b
lue, which is more exact than the first, being substi-
tuted for », will furnish a mew value still more ac-
curate,

790. Ib order to apply this operation to- an ex-
. ample, let 2*+2+° 4+ 3r—50=0, in which a=2,
+ b=38, and e==—50. If n is supposed to be near-
on’+2n*+ 50

SW+an+t3 "

2==n—(

ly the value of one of the roots, =<

will be a value still. pearer the truth,
Now, the assumed value of z==3 not being far
from the true one, we shall suppose n= 3, whu:h‘
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gives us .zj=£g4; and if we were to substitute this

21 .
riew value instead of n, we should find another still
more exact. '

. 791. We shall give only the following example,
* for equations of higher dimensions than the third.
Let #°=6.r+10, or £’—62—10=0, where we
readily perceive that 1 is too small, and that 2is too
great. Now, if v=n is a value not far from the
true one, and we make r=n-p, we shall have
2 =n°+5n'p; and, consequently,
A 5n*p=—6n+6p+10; or
+p(5nt—6)=6n+10—2n°.

—— 5 . ? (
Wherefore ip:%ﬁ, and r= 4;';;1%9.

- If we supposen=1, we shall have .z'——lil=—l4'

this value.s altogether inapplicable, a circumstance
which arises from the approximated value of  hav-
ing been taken by much too small. We shall, there-
138 .69

fore, make 7 =2, and shall thus obtain r—ﬂ,
a value which is much nearer the truth. And if we

were now to substitute for z, the fraction g%, we

should obtain a still more exact value of the root .z.
792. Suchis the most usual method of finding the
roots of an equation by approximation, and it applies
, successfully to all cases. '
We shall however explain another method ¥, whlch

* The theory of approximation here glven, is founded on ‘the
theory of what are called rccumng series, invented by M.de
. Morvre This method was given by Daniel Bernoulli, in vol. iii.

. 6) EQ ’
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* deserves attention on account of the facility of the
, calculation. The foundation of this method con-
sists in determiting for each equation a series of.
numbers, as a, b, ¢, &c. such, that each term of the
series, divided by the preceding one, may express
the value of the root with so much the more exact-’
ness, according as this series of numbers is carried to
a greater length. -
* Suppose we have already got the terms p, g, r, s, t,

&c. % must express the root 2 with tolerable exact-
ness; that is to say, we have nearly %:x. We‘sha]l
bave als’o?:.z"‘, and the multiplication of the two .
valugs will give %:x’. Farther, as.;_...—-..w, we shall
alsq have%:_.r’; then, since ;—:.r, we shall have

¢ .
—=uz4, and so on, .

+793. For the better explanation of thls method,
we shall begin with an equation of the second degree,

of the Ancient Cemmentaries of Petersburg. But Euler has here
presented itin rather a different point of view. Those who wish
to investigate these matters, may consult chapters 13 and 17 of
vol.i. of our author’s Introd. in Anal. Infin.; an excellent work,,
in which several subjects treated of in this first part, beside

. others equally connected with pure mathematics, are profoundly
analysed and clearly explained. F.T.

¥ It must only be understood here that - . is nearly equal to:,‘
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#*=p+1, and shall suppose that in the above series
we have found theterms p, ¢, r, s, ¢, &c. ' Now, as
g=.r, 'and%:.i’, .w'e shall have ' the equation

P

p g+l, or q+p=r And as we find, in the

safne manner, that s._r+q, and t_....s'+r, we
conclude that each term of our series is_the sum of
the two preceding terms ; so that having the two first
terms, we can easily continue the series ‘to any
length. With regard to the two first terms, they may
be taken at pleasure; if we therefore suppose them
to be 0, 1, our series will be 0,1, 1, 2, 3,'5, 8, 13,
21, 34,"55, 89, 144, &c. and such, that if we divide
any term by that which immediately precedes it, we
shall have a value of 2 so much nearer the true one,
according as we have chosen a term.more distant.

The error, indeed, is very great at first, but it di-
minishes as we advance. The series of those values
of x, in the order in which they are always approxl-

mating towards the tru€ one, is as follows :

=l 1238819 21 5485 80 144
011235 8’ 138 al’ 34’ 55 89’ o

441

169

in which the error is only — : 69 Auy

, If, for example, we make .r_m, we have 221

13
21 442
H =169

6f the succeeding terms will give it still smaller."
794- Let us also conslder the equatlon .r“-2¢-+ 1;

gnd since, in all cases, m——lq—’, and & ..a.g, we shall

have g_. :+ 1,orr=2q+p; whence we mfer that
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the double of each term, added to the preceding

term, will give the succeeding one. If, therefors,

we begin again with 0, 1, we shall have the series,
0, 1, 2 5, 1, 29, 70, 169, 408, &c.

- Whence it follows, that the value of 2 will be ex-
pressed still more accurately by the following
fractions:

1 2 5 12 29 70 169 408
TEO T 2 5 12 290 70’ 169
which, consequently, will always approximate pearer
gnd nearer the true value of r=14+v/2; so that if
we take unity from these fractions, the value of v/ 2
will be expressed more and more exactly by the suc-
eeeding fractions :
1187 17 41 99239

-———--—-————

, &e.

99 9801
70 has for its square 29500° which

differs only by —— 2 900 from the number 2.

- For example,

795. This method is no less appllcable to equa-
tions which have a greater number of dimensions.
If we have, for example, the equation of the third
degree 2°=1* 422+ 1, we must make 1:%,— .r*::;—;,

and r"=§, we shall then have s==r+2g+p;

which shows how, by means of the three terms p, g,
and 7, we are to determine the succeeding one s;

- and, as the begmmng is always arbitrary, we may

form the following series:
0,0 1, 1, 8 6, 13, 28, 60, 129, &e.
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from which result the following fractions for the ap-
. proximate values of :

01136132860129
———————— &e.

The first of these values would be very far from the
. truth; but if we substltute in the equanon instead

60 15
b -
| for.rgs,or 7,weo tain
3375 225 30 3388
343 49 =20 " + 843’ ‘

* in which the error is only ;433

796. It must be observed, however, that all equa-
tions are not of such a nature as to admit the appli-
cation of this method ; and particularly when the
second term is wantmg, it cannot be made use . of.
For example, let 2*=2; if we wished to make

~

7= and a”_:r, we should have £=2, or r==2p,
P B p

that is to say, 7==0¢+2p, whence would result the
series

1,1, ¢ 2 4, 4,8 8, 16, 16, 32, 32, &c.
from which we can draw-no conclusion, because each

term, divided by the preceding, gives always r=1,

or #=2. But we may obviate this inconvenience,
by making 2=y—1; for by these means we have

y'—2y+ 1=2; and if wé now make y=%,,and

y?:.:% -we shdll obtain the same “t’zpproximati‘cmthat B

has been already given.
797 It would be the same with the equation
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'==2; it would not furnish such a series of numbers
as would express the value of /2. But we have
only to suppose r==y—1, in order to “have the
equation.y*— 3y*+ 3y— 1=2¢, or y*=3¢* 3y+3

. and then - making _1/_;, y’—; and y*= ,.we"

have s= 3r— 3¢ + 3p, by means of which we see how
three given terms determine the succeeding one. -
Assuming then any three terms for the first, for
example 0, 0, 1, we have the following series :
Q 0, 1, 3, 6, 12, 27, 63, 144, 324, &c.

94.
The two last terms of this series give y_%

'

" and m:% ;-and this fractlon approaches suﬂicwntly

near the cube root of 2; for'the cube of g is 16?42’.'

and 2=1—2§

64 :

793. We must farther observe, with regard to this
method, that when the equation has a rational root,”
and the beginning of the period is chosen such, that-
this root may result from it, each tetm of the series,
~ divided by the preceding term, will glve the root with

equal accuracy. :

To show this, let there be given the equatlon
a*=x+2, one of the roots of whichis #=2; as:
we have here, for the series, the formula r—q+2p,',
if we take 1, 2, for the first two terms, we have the-
series 1, 2, 4, 8, 16, 32, 64, &c. a geometrical pro-
~ gression whose exponent =2. The same property

is proved by the equation of the third degree:
=z’ +3.z +9, which has =3 for one of the
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roots.. If we mppbse the first termstobé 1, 3, 9,
we shall find, by the formula, s=7+ 3y+9p, and

the series 1, 3, 9, 27, 81, 243, &c. whichis hkewnse o

a geometrical progression.

799. But when the beginning of the series exceeds
the root, we shall not approximate towards that rootat
all; for when the equation has more than one root, the
series gives by approximation only the greatest: and
we do not find one of the less roots, unless the first -
terms have been properly chosen for that purpose.
This will be illustrated by the following example:

Let there be given the equation .2‘2—451'—3 whose
two roots are =1 and »==3. The formula for the
series is 7==4¢— 3p, and if we iake“l, 1 for the two
first terms of the series, which consequently expresses
the least root, we have for the whole series, 1, 1, 1;
1, 1, 1, 1, 1, &c. but assuming for the first terms
the numbers 1, 3, which contain the greatest root,
we have the series, 1, 3, 9, 27, 81, 243, 729, &c. in
which all the terms express precisely the root 3.

" Lastly, if we assume any other beginning, provided

it be such-that the least term is not comprised in it
the series will continually approximate towards the .
greatest root 3; which may be seen by the followmg
senes

 Beginning,

0,1, 4, 13, 40, 121, 364, &c.

1, 2, 5, 14, 41, 122, 365, &c.

2,8, 6, 15 42 123, 366, 1095 &c.

2 1,—2,—11,—38,—118,—362,1—091,— 3278,
&c. in which the quotients of the division of the last
terms by the preceding always approximate towards -
the greater root 3, and never towards the less.
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800. We may even apply this metliod to equations
which go on to infinity. The following will furnish
an example:

o= r°-—!+ro—-9+wo—8+‘r -4+’ &C

The series for this equation must be such, that
each term may be equal to the sum of all the pre-
- ceding; that is, we must have

1 1, & 4, 8, 16, 32, 64, 128, &c.

wbem:e we see that the greater root of the glven,

equation s exactly #==2; and this may be shown in
_ the following manner. If we divide the equation by
.r°° , we shall bave .

l_ + + .r”+ ‘,.4"” &c
» geometrical progression, whese sum is found

—
S—

LI R P .
=2—; %o, that 1= ; multiplying therefore by

=1, we have v—1=1, and r==2.

801. Beside these two methods of determmmg the
roots of an equation by approximation, some others
have been invented, but they are all either too-tedious,
or not sufficiently general. The method which de-
serves the preference over all others, is that which
we explained first; for it applies successfully to all
kinds of equations - whereas the other often requires
the equation to be prepared im a certain manner,
without ‘which it cannot be employed; of this we
have seen a proof in different examples. '

END OF VOL. L
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