Mathematics-Science 380 – History of Mathematics

Trent University, 2006–2007

Assignment #6

Due in the week of 8 January, 2007.

1. Write a poem which either

i. states and proves a non-trivial result such as the Pythagorean Theorem, or *ii.* gives a brief description of an ancient number system. |8|

2. A two-player game (in which the players take turns making moves) is considered to be *finite* if it cannot go on forever when played by the rules. For example, tic-tac-toe is finite. So is chess, thanks to some obscure rules about about the game being an automatic draw if no one captures a piece, moves a pawn, or delivers checkmate in a certain number of moves. (50 by each player in most situations, but there are a few exceptions.) The two-player game SUPERGAME is played as follows: the first player chooses a finite two-player game, which the two players proceed to play out with the second player going first. Is SUPERGAME itself finite? Why or why not? [2]

An Ode to a Derivative

Oh, Derivative, your form may be	Implicit or explicit,
Anything say quadratic.	Your beauty is still stunning.
And any time I must deal with you	Though it may make some people
My pulse becomes erratic.	Turn their tails and start running.
For once I've found you, Derivative,	But they can't outrun you, Derivative,
You enable me to see	No matter how they try;
That rate at which equations change,	Your tangents reach from the deepest seas
Whatever that may be.	And up into the sky.
Derivative, you are the limit As "h" approaches zero. And when I need a tangent's slope, You always are my hero. (Unless you're feminine: then you're my heroine!)	And you've many diff'rent notations, Some simple, some complex. I've known you to be just y' , Or $f'(x)$.
But when I want <i>your</i> rate of change,	But whatever your form, Derivative,
That's a thing you never give.	No matter which you choose,
So I must find your other form:	The form which Leibniz gave to us,
The Second Derivative!	I shall always use.
And if it's o'er your non-differential form	For we owe so much to old Leibniz;
Which I wish to mull	He fulfilled his mathematic duty
Then, again, must I change your beauteous shape	By making you, Derivative,
And find your integral.	A simple thing of beauty.
And lo! in this form there is hope, If you will observe, For in this form you show me The area under the curve.	Jim Newman